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Preface

This volume constitutes the proceedings of 20th International Conference on Artificial
Intelligence and Soft Computing (ICAISC 2021) held in Zakopane, Poland, during
June 21–23, 2021, which took place virtually due to the COVID-19 pandemic. The
conference was organized by the Polish Neural Network Society in cooperation with
the University of Social Sciences in Łódż, the Department of Intelligent Computer
Systems at the Częstochowa University of Technology, and the IEEE Computational
Intelligence Society, Poland Chapter. Previous conferences took place in Kule (1994),
Szczyrk (1996), Kule (1997), and Zakopane (1999, 2000, 2002, 2004, 2006, 2008,
2010, and 2012–2020) and attracted a large number of papers and internationally
recognized speakers: Lotfi A. Zadeh, Hojjat Adeli, Rafal Angryk, Igor Aizenberg,
Cesare Alippi, Shun-ichi Amari, Daniel Amit, Plamen Angelov, Albert Bifet,
Piero P. Bonissone, Jim Bezdek, Zdzisław Bubnicki, Jan Chorowski, Andrzej
Cichocki, Swagatam Das, Ewa Dudek-Dyduch, Włodzisław Duch, Adel
S. Elmaghraby, Pablo A. Estévez, João Gama, Erol Gelenbe, Jerzy Grzymala-Busse,
Martin Hagan, Yoichi Hayashi, Akira Hirose, Kaoru Hirota, Adrian Horzyk, Eyke
Hüllermeier, Hisao Ishibuchi, Er Meng Joo, Janusz Kacprzyk, Jim Keller, Laszlo T.
Koczy, Tomasz Kopacz, Jacek Koronacki, Zdzislaw Kowalczuk, Adam Krzyzak,
Rudolf Kruse, James Tin-Yau Kwok, Soo-Young Lee, Derong Liu, Robert Marks,
Ujjwal Maulik, Zbigniew Michalewicz, Evangelia Micheli-Tzanakou, Kaisa Miettinen,
Krystian Mikołajczyk, Henning Müller, Ngoc Thanh Nguyen, Andrzej Obuchowicz,
Erkki Oja, Nikhil R. Pal, Witold Pedrycz, Marios M. Polycarpou, José C. Príncipe,
Jagath C. Rajapakse, Šarunas Raudys, Enrique Ruspini, Jörg Siekmann, Andrzej
Skowron, Roman Słowiński, Igor Spiridonov, Boris Stilman, Ponnuthurai Nagaratnam
Suganthan, Ryszard Tadeusiewicz, Ah-Hwee Tan, Dacheng Tao, Shiro Usui, Thomas
Villmann, Fei-Yue Wang, Jun Wang, Bogdan M. Wilamowski, Ronald Y. Yager, Xin
Yao, Syozo Yasui, Gary Yen, Ivan Zelinka, and Jacek Zurada. The aim of this con-
ference is to build a bridge between traditional artificial intelligence techniques and
so-called soft computing techniques. It was pointed out by Lotfi A. Zadeh that “soft
computing (SC) is a coalition of methodologies which are oriented toward the con-
ception and design of information/intelligent systems. The principal members of the
coalition are: fuzzy logic (FL), neurocomputing (NC), evolutionary computing (EC),
probabilistic computing (PC), chaotic computing (CC), and machine learning (ML).
The constituent methodologies of SC are, for the most part, complementary and syn-
ergistic rather than competitive”. These proceedings present both traditional artificial
intelligence methods and soft computing techniques. Our goal is to bring together
scientists representing both areas of research. This volume is divided into four parts:

– Neural Networks and Their Applications
– Fuzzy Systems and Their Applications
– Evolutionary Algorithms and Their Applications
– Artificial Intelligence in Modeling and Simulation



I would like to thank our participants, invited speakers, and reviewers of the papers
for their scientific and personal contribution to the conference. Finally, I thank my
co-workers, Łukasz Bartczuk, Piotr Dziwiński, Marcin Gabryel, Rafał‚ Grycuk, Marcin
Korytkowski, and Rafał‚ Scherer, for their enormous efforts to make the conference a
very successful event. Moreover, I appreciate the work of Marcin Korytkowski who
was responsible for the Internet submission system.

June 2021 Leszek Rutkowski
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Abstract. Stock portfolio construction is a difficult task which involves
the simultaneous consideration of dynamic financial data as well as
investment criteria (e.g.: investors required return, risk tolerance, goals,
and time frame). The objective of this research is to present a two phase
deep learning module to csonstruct a financial stocks portfolio that can
be used repeatedly to select the most promising stocks and adjust stocks
allocations (namely quantitative trading system). A deep belief network
is used to discover the complex regularities among the stocks while a
long short-term memory network is used for time series financial data
prediction. The proposed deep learning architecture has been tested on
the american stock market and has outperformed other known machine
learning techniques (support vector machine and random forests) in sev-
eral prediction accuracy metrices. Furthermore, the results showed that
our architecture as a portfolio construction model outperforms three
benchmark models with several financial profitability and risk-adjusted
metrics.

Keywords: Portfolio construction · Quantitative trading system ·
Deep learning · DBN · LSTM

1 Introduction

The Portfolio is a collection of financial investment assets such as stocks, bonds,
commodities, etc. Portfolio management is the science of selecting a suitable
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group of assets with the right proportions to meet the investors’ strategic
objectives. Managing the portfolio includes repeated evaluation of the portfo-
lio value, making the necessary trading processes to generate a balance between
the required return and the acceptable level of risk. Quantitative trading is
defined as using mathematical and statistical methods to identify and build an
automatic rule-based model to trade assets in the financial markets. Quantita-
tive trading has the advantage of taking out emotions, rumors and fraud from
the trading decisions which allow investors to invest with confidence and clarity.
Machine learning techniques were widely used in quantitative trading. In [1],
integrating support vector machines (SVM) with other classification methods
has been proposed to forecast the weekly movement direction of NIKKEI 225
index. In [2], a forecasting model based on chaotic mapping firefly algorithm
and SVR is proposed to predict stock market price, while [3] proposed a risk-
adjusted profitable trading rule based on technical analysis and pattern recogni-
tion techniques. Moreover, [4,5] presented a comprehensive literature review on
the application of evolutionary computation (EC), including genetic algorithms,
genetic programing and multi-objective evolutionary algorithms, in stock trading
and other financial applications, while [6] suggested the formation of a recursive
clustering technique. Once the assets are hierarchically clustered, a risk- adjusted
capital allocation is applied. In [7], the author explores the use of Gaussian pro-
cesses and Bayesian optimization in modeling “the structure of interest rates”,
and building the trend-following optimization strategies. In [8], a comprehen-
sive survey of particle swarm optimization (PSO) algorithm, in studying market
behaviors is given, as well as, the potential future research directions for enhanc-
ing PSO-based stock market prediction.

The objective of this research is to present a deep learning quantitative trad-
ing architecture that can be used for stocks selection and stocks allocation to
achieve maximum return with an accepted risk level. The proposed architecture
has two modules. The first selects the efficient stocks for investment using deep
learning while the second decides the budget to be invested in each selected
stock. Our contributions can be summarized as:

1. Proposing a novel automatic quantitative trading model that relies on a Deep
Belief Network (DBN) to extract the financial data regularities and reducing
its dimensionality while using an LSTM (Long Short Term Memory Neural
Network) to learn/model the dependency in the input financial data time
series.

2. Conducting intensive experiments to evaluate and compare the performance,
of the proposed deep learning architecture, to other conventional machine
learning techniques in stocks’ price prediction based on several prediction
accuracy metrics.

3. Capturing the performance of the proposed architecture as a quantitative
trading module and comparing it to other markets’ strategies benchmarks
using several risk-adjusted profitability metrics.

The remaining of this paper is organized as follows: Sect. 2 defines what is meant
by a quantitative trading system and provides technical background on the deep
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learning networks used in this paper, in addition to presenting a review about the
related work (using deep belief networks and long short-term memory networks
(LSTM) in predicting stocks prices). Section 3 presents the proposed deep learn-
ing architecture. Section 4 describes the experiments performed on the proposed
model and its performance evaluation. Finally, conclusions are summarized in
Sect. 5.

2 Background and Literature Review

2.1 Quantitative Trading System

The quantitative trading system is based on forecasting the market movement.
First, the proper mix of assets with the right proportions are chosen (portfolio
construction) then - based on the market movement - trading rules are built
that aim to achieve the maximum return given the risk tolerance set by the
investor. A periodic evaluation is performed to determine whether the obtained
performance is satisfactory or not. Necessary adjustments are made in the stocks
to preserve the investment objectives.

2.2 Deep Learning Networks

2.2.1 Deep Belief Networks
Deep Belief Networks (DBN) [9] are probabilistic generative neural networks
composed of multiple layers of restricted boltzmann machines (RBM) to capture
higher-level representations of input features with the advantage of avoiding
getting stuck at local optima.

2.2.2 Long Short-Term Memory (LSTM) Networks
Long Short-Term Memory (LSTM) [10] networks are special type of recurrent
neural networks (RNN) capable of learning long-term dependence in time series
data with the advantage of avoiding vanishing gradient problems existing in the
training of RNN.

2.3 Related Work (LSTM and DBN in Financial Forecasting)

Numerous studies have shown that long short-term memory neural networks are
very effective networks in the forecasting of financial times series data. Research
in [11] introduced multivariate denoising wavelet transforms (WT), in order to
eliminate the noise in the time-series data, then combined stacked autoencoders
(SAEs) and long-short term memory (LSTM) networks to forecast six market
indices. Fischer et al. [12], deployed LSTM networks for predicting out-of-sample
directional movements for the S&P 500 stocks in the period from 1992 to 2009.
Research in [13] proposed a long short-term memory (LSTM) network to predict
stock movement in order to construct multiple portfolio optimization techniques
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using equal-weighted modeling (EQ), simulation modeling Monte Carlo simula-
tion (MCS), and mean variant optimization (MVO). The work in [14] presented
a DBN model with strong ability to generate high level features representation
for accurate financial prediction that has been tested on a real dataset of French
companies. In [15] a DBN has been used to forecast the currencies exchange
rates. Conjugate gradient method was applied to accelerate the learning for
DBN. The results showed that DBN outperforms other traditional methods.
While in [16] an RBM is combined with SVM to detect trends in the Brazil-
ian Stock Market prices. The obtained results were better compared to those
obtained by SVMs only. Rasha et al. [17] proposed a novel multi-stock end-to-
end trading model based on DBN and multi-agent deep reinforcement learning.
Its efficiency, compared to existing techniques has been verified on datasets of
different characteristics obtained from the American stock market.

3 Proposed Deep Learning Model Architecture

The proposed deep learning architecture is shown in Fig. 1 It is specialized in
quantitative trading. Per each trading time period T, the model is fed with the
data received from the financial market. Depending on this data, the model
generates predictions on the stocks’ returns during the next trading period.
According to the errors between the predicted and the actual stocks’ returns
values, the back-propagation learning algorithm is applied to update the weights
of the model’s NNs. The model consists of two phases.

1. Phase I (Deep Learning module): in which financial raw data, for a set
of M market stocks is received. For each stock, a DBN module extracts dis-
criminant features from the high-dimensional raw financial data and reduces
its dimensionality. Next, an LSTM module is fed with the stock DBN features
and predicts the sum of the relative changes in the stock returns during the
next trading period as given in Eq. (1) below.

2. Phase II (Portfolio construction and assets allocation module): the
portfolio is dynamically constructed from the best N, as determined in Phase
I, out of the available M stocks. The fund allocated to each selected stock
depends on its predicted sum of relative changes in the stock returns, during
the next period, as given in Eq. (2) below.

3.1 Phase I (Deep Learning Module)

3.1.1 Stocks’ Features
The following types of data are used at the input:

1. OHLCV data: include the opening price, highest price, lowest price, closing
price and the trading volume of each stock.
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Fig. 1. Proposed deep learning model architecture.

2. Technical indicators: which correspond to equations applied on the
OHLCV data for a stock to obtain indicators about its future position(price
trend/oscillation/volatility/moving average) in the market: e.g. Directional
Movement Indicator (DMI), Exponential Moving Average (EMA), Relative
Strength Index (RSI), Stochastic Momentum Index (SMI), and Weighted
Moving Average (WMA).

3. Financial market indices: which correspond to the averages of the OHLCV
data for a group of stocks that is used to get an indication about the whole
market direction. In our research, five indices are fed to the system, namely,
(ˆGSPC, ˆ DJI, ˆIXIC, ˆNYAC and ˆXAX).

The data of the financial time series is fed to our proposed module in steps
where each step T consists of 5 d. Each day includes 50 features corresponding
to 5 features from the OHLCV data values of the stock, 25 features from the
financial market indices and 20 features from the technical indicators of the
stock. At each time step T, the features of each of the five days are arranged
sequentially and in order to form a feature vector of length 250.

3.1.2 DBN Module
The deep DBN network consists of three hidden layers with 100-80-60 neurons
and an output layer of 20 neurons (representing the compressed and uncorrelated
features extracted by the DBN from the raw financial data relative to the higher
dimensional input vector of length 250).

3.1.3 LSTM Module
The LSTM receives 20 input features from the DBN and has one hidden layer
with 28 units (each unit consists of input, output, memory and forget gates)
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while the output consists of only one neuron that represents a prediction of the
stock return during the next period T. The actual stock return during the period
T, is denoted RT , and is calculated as follows:

RT =
T∑

t∈1

(
Pt

Pt−1
− 1) (1)

where Pt is the stock closing price during day t, t ∈ [1, T ].

3.2 Phase II (Portfolio Construction and Assets Allocation Module)

Consider S = (S1, S2, . . . . . . , SM ) a set of M market stocks. For each stock in
the set S, the model will run and predict the return of this stock during the
next period. Let RT = (R1

T , R
2
T , . . . . . . , R

M
T ) be the set of stocks’ returns for the

period T. let N be the preferred number of stocks to trade in (the number of the
stocks in the constructed portfolio). The set of largest N stocks’ returns from
the set RT will be chosen RN

T = (R1
T , R

2
T , . . . . . . , R

N
T ) to construct the portfolio

L, and the weight of each stock S in portfolio L will be estimated as :

WS
T =

RS
T∑N

s=1 R
S
T

(2)

While other stocks will have zero weights. At time interval T = 0, the amount
of fund F, is used to buy shares of the portfolio’s stocks, using: FS

T = F ∗ WS
T .

However, in other time series steps the (Buy/Sell/Hold) signals are generated
according to the following rules:

If WS
T > WS

T−1 then a Buy signal with F ∗ (WS
T −WS

T−1) fund is generated,
If WS

T < WS
T−1 then a sell signal with F ∗ (WS

T−1 − WS
T ) fund is generated.

In case the fund required for Buying/Selling a stock is less than the mini-
mum transaction cost allowed, a hold signal is generated and the fund will be
reallocated to other stocks buying/selling transactions.

4 Experiments Design

4.1 Datasets Used

The thirty industrial stocks registered in the Dow Jones Industrial Average
“DJI” index are used as the market’s stocks to be traded in. All the finan-
cial data are available online at “Yahoo Finance”. The datasets from January
2009 to December 2019 have been downloaded. Each input dataset is composed
of a window of fixed length (Fifty weeks) moving along the time series (continu-
ously shifted for 5 weeks periods) as shown in Fig. 2. Each input dataset has been
divided into three parts, 80% of which (around 40 weeks) is used for training, i.e.
to set the model parameters, while 10% (around 5 weeks), is used for validation,
i.e. for hyper-parameters tuning, and the last 10% (around 5 weeks) is used for



Financial Portfolio Construction for Quantitative Trading 9

testing, i.e. to test the model predictions. The experiments were conducted on
a personal computer (with Microsoft windows 10 Enterprise operating system)
with Intel Core i5-3210M (2.50 GHz), 2 core(s), and 128 GB RAM. Python 3.7
with TensorFlow 2.0 backend have been used for implementation.

Fig. 2. Moving windows for training, validation and prediction (testing) datasets. The
window is continuously shifted for 5 weeks periods.

4.2 Performance Evaluation

4.2.1 Benchmark Models
For benchmarking our proposed module Deep Learing (DBN with LSTM) the
following conventional machine learning module are chosen:

1. Random Forests (RAF): introduced in [18] and developed in [19]. In this
technique multiple decorrelated decision trees (ensemble of B trees each with
a maximum depth J) are built on different samples of the training data. The
prediction decision is based on the majority voting from the B committee
trees. The number of trees B is set to be 100 while the maximum depth J is
set to be 15.

2. Support Vector Regression (SVR): introduced in [20] and developed in
[21]. The SVR uses the same principles as the SVM for classification. In this
technique a linear regression function in a high dimensional feature space is
computed to map the input data and minimize the generalization error bound
to ensure that the distance between the input data points and the hyperplane
generated by this function is not farther than epsilon. The hyper-parameters
of SVR C, gamma and epsilon are set to 0.1, 0.01 and 0.1, respectively.
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For financial bench-marking, the previous machine learning techniques are used
to predict the stocks’ prices, and the portfolio construction strategy along with
the buy and hold strategy, described in Sect. 3.2, are used.

4.2.2 Predictive Accuracy Metrics
The conventional indicators adopted to evaluate the performance of the proposed
model are given in Table 1. each row contains the metric name, acronym, how it
is estimated and a brief description.

Table 1. Predictive accuracy metrices

Metric Acronym Estimation

Mean squared error MSE 1
N

∑N
t=1 (xt − x∗

t )
2

Mean absolute percent error MAPE 1
N

∑N
t=1 |xt−x∗

t
xt

|
Correlation coefficient R

∑N
t=1 (xt−x−

t )(x∗
t −x∗−

t )
√

∑N
t=1 (xt−x−

t )
2
(x∗

t −x∗−
t )

2

Theil’s inequality coefficient Theil U

√
1
N

∑N
t=1 (xt−x∗

t )
2√

1
N

∑N
t=1 (xt)

2+
√

1
N

∑N
t=1 (x∗

t )
2

In Table 1, xt and x∗
t stand for the actual and predicted values, respectively.

N represents the number of test prediction periods. x−
t is the mean value of the

actual vector values (x1, x2, . . . ., xN ), and x∗−
t is the mean value of the predicted

vector values (x∗
1, x

∗
2, . . . ., x

∗
N ). The smaller the MSE/MSEP/Theil U values, the

better the prediction results. On the other hand, the larger the R value the better
the prediction results.

4.2.3 Profitability Metrics
The profitability test is implemented to find how the proposed model can earn
real profits for the investors when implemented in real stock markets. Table 2
contains the profitability metrics used in our experiment. The higher the annu-
alized return (AR) and the calmar ratio values, the better for the investors.
While the lower the values of the standard deviation (SD), sharp ratio (SR) and
maximum drawdown, the lower the risk taken in the investment and the better
for the investors.
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Table 2. Profitability metrics

Metric name Short Description

Volatility SD Annualized volatility, standard
deviation of the profit and loss during
the given time interval

Annualized Return AR The geometric average of the amounts
of money earned by an investment
each year over a given time period

Sharp ratio SR The ratio between (annualized return
minus free-risk return) and annualized
volatility

Maximum Drawdown MDD Maximum loss from a peak to a
trough in the value of the trading
portfolio during time interval T

Calmar Ratio Calmar The ratio between annualized return
and max drawdown

4.3 Results

4.3.1 Predictive Accuracy Metrics Results
Figure 3 shows the average results obtained from the predicted data by the three
models plus the average actual results. The results are given for the ten year
periods from 2010 to 2019.

Fig. 3. Stocks’ return percentage prediction data (RT ) versus actual data. Each interval
of length 10 on the horizontal axis corresponds to one year.
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Table 3 shows that the proposed Deep Learning model outperforms the other
models since all metrics, except R, are required to be of low values. The SVR
has the worst prediction result, as it has the largest deviations from the actual
data.

Table 3. Prediction accuracy metrics of the different models calculated for the period
from 2010 to 2019. For the MSE metric the shown results should be multiplied by 10−2.

Deep Learning (DBN with LSTM)

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

MSE 0.189 0.087 0.076 0.142 0.294 0.058 0.16 0.199 0.241 0.23 0.168

MAPE 0.0879 0.0919 0.248 0.102 0.189 0.103 0.186 0.209 0.245 0.244 0.171

R 2.219 2.008 1.931 1.848 1.529 2.01 1.718 1.537 2.406 1.286 1.85

Theil U 0.356 0.362 0.392 0.379 0.588 0.278 0.419 0.471 0.442 0.509 0.42

Random Forests (RAF)

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

MSE 1.163 0.948 0.305 2.049 0.79 0.613 0.604 0.336 1.132 0.912 0.885

MAPE 0.276 0.4488 0.559 0.376 0.671 0.4.01 0.604 0.541 0.544 0.595 0.499

R 2.557 2.025 1.62 0.505 1.397 2.1 1.621 1.506 2.229 1.147 1.67

Theil U 0.515 0.594 0.547 0.721 0.654 0.564 0.549 0.54 0.634 0.675 0.6

Support Vector Regression (SVR)

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

MSE 1.997 2.431 1.68 1.967 2.27 1.949 1.014 1.252 2.992 1.979 1.953

MAPE 0.574 0.856 0.523 0.323 0.925 0.515 0.765 0.603 0.768 0.894 0.678

R 1.93 2.152 1.66 1.648 1.582 0.784 2.214 2.055 2.206 1.505 1.77

Theil U 0.626 0.695 0.742 0.679 0.755 0.712 0.627 0.677 0.745 0.725 0.699

4.3.2 Profitability Metrics Results
The profitability of each model is compared against the returns of the buy-and-
hold strategy. For each model a portfolio, with ten stocks, is constructed and the
trading strategy mentioned in Sect. 3.2 is applied to all models. Table 4 presents
the profitability of each model. The results demonstrate that the proposed Deep
learning model outperforms the other models in both the profitability return
and the risk-return metrics. The RAF outperforms the SVR by a clear margin
also. The Worst technique in the profitability return and the risk-return metrics
is the buy and hold technique.
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Table 4. Profitability metrics of the different models calculated for the period from
2010 to 2019.

Deep Learning (DBN with LSTM)

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

SD 0.069 0.044 0.041 0.054 0.066 0.046 0.052 0.046 0.076 0.063 0.0557

AR 19.5% 16.4% 20.6% 23.6% 18.6% 16.7% 18.6% 25.1% 16.8% 28.2% 20.4%

SR 2.1 2.59 3.8 3.4 2.06 2.54 2.61 4.37 1.55 3.689 2.77

MDD 0.226 0.159 0.126 0.172 0.214 0.144 0.162 0.154 0.203 0.274 0.184

Calmar 0.863 1.031 1.635 1.372 0.869 1.16 1.146 1.63 0.828 1.031 1.156

Random Forests (RAF)

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

SD 0.161 0.125 0.073 0.141 0.096 0.101 0.094 0.059 0.137 0.099 0.1086

AR 14.6% 12.2% 16.2% 18.8% 16.12% 16.65% 15.82% 19.9% 17.51% 15.3% 16.31%

SR 0.596 0.576 1.534 0.979 1.158 1.64 1.151 2.525 0.913 1.044 1.041

MDD 0.388 0.349 0.238 0.412 0.313 0.309 0.309 0.339 0.321 0.215 0.319

Calmar 0.376 0.35 0.681 0.456 0.515 0.539 0.512 0.587 0.545 0.713 0.524

Support Vector Regression (SVR)

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

SD 0.169 0.195 0.155 0.175 0.161 0.139 0.125 0.105 0.196 0.142 0.156

AR 10.8% 9.12% 10.35% 13.9% 12.68% 11.7% 13.4% 14.6% 8.88% 12.88% 11.83%

SR 0.343 0.211 0.345 0.509 0.477 0.482 0.672 0.914 0.198 0.555 0.437

MDD 0.452 0.388 0.289 0.427 0.429 0.462 0.463 0.434 0.352 0.453 0.415

Calmar 0.239 0.235 0.358 0.326 0.296 0.253 0.289 0.336 0.252 0.284 0.287

Buy and Hold

Metric 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

SD 0.058 0.039 0.026 0.035 0.026 0.045 0.043 0.019 0.04 0.029 0.036

AR 9.8% 5.53% 7.26% 11.2% 8.4% 2.3% 7.34% 9.3% –5.63% 8.2% 6.37%

SR 0.828 0.136 0.869 1.771 1.308 –0.6 0.544 2.263 –2.66 1.103 0.381

MDD 0.67 0.56 0.594 0.593 0.522 0.544 0.62 0.52 0.64 0.622 0.589

Calmar 0.146 0.099 0.122 0.189 0.161 0.042 0.118 0.179 –0.088 0.132 0.11

5 Conclusion

This research proposes a novel framework to construct a financial stocks’ port-
folio, to be used as a quantitative trading system, that repeatedly adjust the
number of stocks and their percentages based on a deep learning prediction
module. The proposed module has the ability to extract useful knowledge from
the input dynamic financial information using a DBN network, that is also used
as a dimension reduction tool. A powerful prediction neural network (LSTM)
is used to forecast the stocks’ performance. The predicted stocks’ performance
affects the buy/sell/hold decisions taken by the model and the corresponding
fund allocated to each stock.
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Abstract. This paper develops a global liquidity prediction model based on
financial and macroeconomic information from different geographical areas. The
methodology of the Factor AugmentedArtificial Neural NetworkModel is applied
to improve the predictive capacity of liquidity models compared to traditional
econometric methodologies. This hybrid methodology based on dynamic fac-
tor models and neural networks is compared with Deep Learning methodologies
such as Deep Recurrent Convolutional Neural Network and Deep Neural Decision
Trees, which has recently shown great results. Our results show the superiority
of the precision capacity of Factor Augmented Artificial Neural Network Model
over the applied Deep Learning methodology, which demonstrates the importance
of data treatment in International Macroeconomics and Finance with techniques
from the Vector Autoregressive model. Our conclusions also show the importance
of the impact of monetary policy, financial stability, and the real activity of the
economy in the behavior of liquidity. This work may be useful for those interest
groups in public and macroeconomic policy, showing the potential in the combi-
nation of conventional statistical methods with the envelope of Machine Learning
techniques.
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1 Introduction

Global liquidity is defined as the availability of funds for the purchase of goods or assets
provided by institutional and private channels [1]. Global liquidity is gaining importance
because of the recent episodes of financial crises, becoming a vital concern in the design
and analysis of public policy. In this context of the financial crisis, global liquidity is
identified as a potentially important factor in the accumulation of financial imbalances
before the crisis [2]. For example, the Asian crisis has been associated by different
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researchers with the previous global liquidity conditions [1]. Also, the concept of global
liquidity has been used in the debate on the effects of the propagation of accommodative
monetary conditions from advanced economies to emerging economies. [3] showed that
there is great regional heterogeneity in liquidity preferences, something that has been
accentuated after the recent banking and sovereign debt crisis, which makes it difficult
to synchronize monetary policies.

In the previous literature on the prediction of global liquidity, different models that
have identified various liquidity indicators have been successfully developed. [4] applied
a factormodel and identified as predictors both indicators based on prices (market interest
rates) and implied volatility indices of the stock market. [5, 6] pointed to the monetary
base as a reflection of the initial condition of access to liquidity defined by the monetary
authorities. [7] showed that foreign exchange reserves are another indicator of global
liquidity that is very convenient for emerging countries.

Focusing this review of the literature on studies that have studied the factors that drive
global liquidity, [8] focused their study of liquidity on international credit as a key factor.
They showed using a linear regression that liquidity growth has been driven by the inter-
national issuance of debt securities, while the role of banks has declined, both as lenders
and investors in debt securities. This has been more intense in advanced economies. [7]
studied the factors influencing global liquidity movements and concluded after using
panel data models that the uncertainty of economic policy and the yield differential of
the US bond achieved adjustability of 0.40 setting. [2] studied the determinants of global
li-quidity using data on cross-border bank flows for a logistic regression model. They
showed that global liquidity is mainly driven by uncertainty (VIX), US monetary pol-
icy, and UK and euro area banking conditions. Their results ob-tained an adjustment of
around 0.45. With the use of factor models, [4] analyzed global liquidity using a large
set of financial and macroeconomic variables from advanced and emerging economies.
Their results concluded that global liquidity conditions are driven by global monetary
policy, global credit supply, and global credit demand. His level of adjustment was below
0.5. [6] studied the fluctuations in the estimated sensitivities to the US monetary pol-
icy through a logistic regres-sion showing a high degree of convergence between the
monetary policies of the advanced economies. They also conclude that there was a drop
after the 2007 crisis in the sensitivity of international bank loans to global risk. They
obtained adjustability of 0.11. [1] conducted a review of recent work on global liquidity
and its factors that determine it. This analysis highlighted the role of major inter-national
financing currencies, such as the US dollar. The analysis also showed the need to take
into account a set of global liquidity indicators based on the size and currency compo-
sition of balance sheets for future work, as well as to in-crease the search for empirical
methods that allow accurate modeling of their future movements

Therefore, after the most recent studies on the determination of global liquidity
dynamics, the need to explore the sensitivity of the factors that influence the trajectory of
liquidity flows, as well as the lack of ineffective empirical tools for changes, is observed.
in future scenarios of global liquidity [1, 6]. Even though advances in global liquidity
prediction models have been important, the recent literature demands new research that
resolves the differences between regional and global indicators [1–4], and on the prop-
erties of the global liquidity dynamics [1, 9]. To respond to these demands, the present
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study develops a new model based on the financial and macroeconomic information
corresponding to a sample of 160 countries divided by geographic zones. The Factor
Augmented Artificial Neural Network Model (FAANN) methodology, which is a novel
hybrid technique that combines the properties of Factor-Augmented VAR (FAVAR) and
artificial neural networks (ANN), has been applied to the data of our sample. Further-
more, it has been compared with two novel Deep Learning techniques, such as Deep
Recurrent Convolutional Neural Networks (DRCNN) and Deep Neural Decision Trees
(DNDT), to contribute to the methodological discussion in global liquidity dynamics.
The results show as FAANN has allowed us to know which factors are the best predic-
tors of global liquidity and achieve rates of accuracy greater than 90%, outperforming
recent and popular Deep Learning methodologies. These results are important for the
various interest groups in public policy, financial institutions, central banks, and other
institutions with concern about macroeconomic forecasting and financial stability.

2 Methods

2.1 Factor Augmented Artificial Neural Network Model (FAANN)

The FAANN model is a hybrid technique of ANN and factor model, to obtain more
accurate forecasts [10]. The ANN structure chosen for this methodology is the well-
known Multilayer Perceptron (MLP). MLP is an advanced architecture of one entry,
one or more hidden, and an exit layer [11]. The network structure provides a forward
network connected to the neuron activation function. The input nodes are connected to
the nodes in the hidden layer, and these nodes are joined to the single node in the output
layer. The entries in this model serve as independent variables in the multiple regression
model and are linked to the output node, which is similar to the dependent variable,
through the hidden layer. Therefore, the following equations can be specified as follows:

nk,t = ω0 +
∑p

i=1
ωiyt−i +

∑J

j=1
∅jNt−i,j (1)

Nk,t = f (nk,t) (2)

yt = αi,0 +
∑K

k=1
αi,kNk,t +

∑p

i=1
βiyt−i (3)

where the inputs yt-i represent the lagged values of the independent variables and
the output yt is the result. ω0 y αi,0 are the bias, and ωi and αi,k denote the weights that
link the inputs to the hidden layer, and the hidden layer to the output layer, respectively.
The j y i connect the entrance to the exit through the hidden layer [10]. The independent
variables of p are linearly connected to form neurons K which then combine linearly
to produce the output. Equations (1)–(3) define the entries of link yt-i to the output and
through the hidden layer. The function f in a logistic function defined by Nk,t = f(nk,t)
= 1/(1 + e−nk,t ). In the FAANN model, the series represents a nonlinear function of
several previous observations, and the factors are formed from a large data set that is
related to the series analysed, as shown in (4).

yt = f [(yt−1, yt−2, . . . , yt−p
)
, (F1,F2,F3,F4,F5)] (4)
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where f is the nonlinear functional form defined through ANN. In the first stage, the
factor model is employed to obtain factors from an extensive dataset. In the second step,
ANN is applied to model the nonlinear and linear relationships that exist between the
factors and the data of the sample. Equation (5) defines the output layer of the FAANN
model for our case study based on five factors.

yt = ∝0 +
q∑

i=1

∝jg

(
β0j +

∑p

i=1
βijyt−i +

∑p+5

i=p+1
βijFt,i

)
+ εt (5)

As noted above, αj (j = 0, 1,…, q) and β ij (i = 0, 1,…, p; j = 1, 2,…, q) are the
parameters of the most known model as connection weights. In the same line, p and q
are the number of input and hidden nodes, respectively, while εt is the error term.

2.2 Deep Recurrent Convolution Neural Network (DRCNN)

Recurrent neural networks (RNN) have been successfully used in many fields for time-
series prediction due to their huge prediction performance. For a simple neural network,
the inputs are assumed to be independent of each other. The structure ofRNN is organized
by the output ofwhich is dependent on its previous computations [11–13]. Given an input
sequence vector x, the hidden states of a recurrent layer s, and the output of a single hidden
layer y, can be calculated as follows:

st = σ(Wxsxt + Wssst−1 + bs) (6)

yt = o
(
Wsost + by

)
(7)

where Wxs, Wss, and Wso denote the weights from the input layer x to the hidden
layer s, the hidden layer to itself, and the hidden layer to its output layer, respectively.
by are the biases of the hidden layer and output layer. σ and o are the activation function

STFT {z(t)}(τ, ω) =
∫ +∞

−∞
z(t)ω

(
t − τ)e−jωtdt

)
(8)

where z (t) is the vibration signals, ω (t) is the Gaussian window function focused
around 0. T (τ ,ω) is a complex function that describes the vibration signals over time and
frequency. When time-frequency features {Ti} are used for global liquidity prediction
with RNN, the convolutional operation is conducted in the state transition. To calculate
the hidden layers with a convolutional operation the next equation is applied:

St = σ(WTS ∗ Tt + WSS ∗ St−1 + Bs) (9)

Yt = o
(
WYS ∗ St + By

)
(10)

where W term indicates the convolution kernels. The convolutional operation has
been determined by local connections, weight sharing, and local grouping, which allow
every unit to integrate time-frequency data in the current layer. Recurrent Convolutional
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Neural Network (RCNN) can be heaped to establish a deep architecture, named deep
recurrent convolutional neural networks [12]. When DRCNN for liquidity prediction,
the last part of the model is a supervised learning layer for liquidity, which is determined
as:

r
∧ = σ(Wh ∗ h + bh) (11)

L
(
r, r

∧) = 1

2
‖r − r

∧‖
2

2
(12)

Stochastic gradient descent is applied for optimization to learn the parameters. The
gradient of loss function regarding parameters Wh and bh are determined as follows:

∂L

∂wh
= −(

r − r
∧)

σ
′
(.)h (13)

∂L

∂bh
= −(

r − r
∧)

σ
′
(.) (14)

2.3 Deep Neural Decision Trees (DNDT)

DNDT are decision tree models executed by deep-learning neural networks, where a
configuration of DNDT weightings corresponds to a specific decision tree and is thus
interpretable [11, 13]. The algorithm begins by implementing a soft binning function
to calculate the error rate for each node, making it possible to make decisions divided
into DNDT [11, 14]. In general, the input of a binning function is a real scalar x, which
generates an index of the containers to which x belongs. Assuming x is a continuous
variable, group it into n + 1 intervals. The cut-off points are denoted as [β1, β2,. . ., βn]
and are strictly ascending such that β1 < β2 <…< βn.

The activation function of the DNDT algorithm is implemented based on the NN
defined in Eq. (15).

π = fw, b, τ (x) = softmax((wx + b)/τ (15)

where w is a constant with value w = [1, 2,. . . , n + 1], τ > 0 is a temperature factor
and b is defined in Eq. (16).

b = [0,−β1,−β1 − β2, . . . ,−β1 − β2 · · · · · · − βn] (16)

The NN defined in Eq. (1) gives a coding of the binning function x. Additionally, if τ
tends to 0, (often the most common case), the vector sampling is implemented using the
Straight-Through (ST) Gumbel–Softmax method [11, 14]. Given the binning function
described above, the key idea is to build the DT using the Kronecker product. Assuming
we have an input instance x ∈ RD withD characteristics. Associating each characteristic
xd with its NN f d(xd), we can determine all the final nodes of the DT, in line with Eq.
(17).

z = f 1(x1) ⊗ f 2(x2) ⊗ · · · · · · ⊗ fD(xD) (17)

where z is now also a vector that indicates the index of the leaf node reached by
instance x. Finally, we assume that a linear classifier on each leaf z classifies the instances
that reach it.
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2.4 Sensitivity Analysis

To improve the interpretation of the results offered by the computational methods, a
sensitivity analysis has been applied in the three methodologies used to detect the most
significant variables and their impact on the objective studied. For this, themost common
sensitivity analysis in neural network techniques has been chosen [15]. This analysis
consists of taking 100% of the data and dividing them into groups, and each group of
data is processed in the network constructed as many times as there are variables of the
model. Each time the value of one of the variables is modified, placing it with zero value.
The answers of the network are evaluated about the objective values or classification
values already known, using expression (18).

Sxi =
∑n

j=1

(

xij(0) − 
xij

)2 (18)

3 Sample and Factors

The sample used in this study is composed of 160 developed and emerging countries,
which have been grouped into seven regions: Advanced Economies (United States,
Europe, and Japan), Emerging Europe, Latin America, Africa & Middle East, Asia-
Pacific, Emerging Economies, and Global. The selection of countries is mainly guided
by the availability of data and covers the main regions to meet the needs of the literature
regarding the differentiation of factors between regions [1]. From the sample of countries,
financial and macroeconomic information has been available for the period 1995q1-
2018q4. This information has been extracted from the databases of IMF International
Financial Statistics, World Bank Development Indicators, World Economic Outlook,
the World Bank Global Financial Database, Bank for International Settlements (BIS)
Statistics, and Federal Reserve Economic Data (FRED). The sample is divided randomly
into two sets: training data set (70%) and testing data set (30%). In this process, we used
the cross-validation method with 10-fold and 500 iterations to estimate RMSE ratios
[16]. The first data set is used for model training, that is, for parameter estimation.
Finally, the second data set is used to evaluate the prediction accuracy of the model. Two
four-core Intel Core I7-6500U are used as computing resources and the code is made
from MATLAB package (R2016b version).

With this information, and based on the previous literature, a set of 23 predictors
has been constructed, of quarterly frequency, which has subsequently been transformed
into 5 factors through the analysis of main components using the method of Principal
ComponentAnalysis. These predictors have been chosen from the literature reviewmade
in this study [1, 4, 6–8]. Besides, and as a proxy for global liquidity, cross-border credit
has been used [4, 6, 8]. Table 1 shows the factors and indicators used for the construction
of liquidity models.

4 Results

Tables 2, 3, and 4 show the results obtained by the FAANN,DRCNN, andDNDTmodels
for each region and the global sample of countries. Prediction models have been built
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Table 1. Factors and indicators

Factors Code Indicators

Factor exchange rate Fexch Bilateral Exchange Rate Against USD

Factor real activity Fact Consumption (% of GDP)

Gross Fixed Capital Formation (% of GDP)

Government Spending (% of GDP)

Industrial Production (% of GDP)

Credit Growth
National Savings (% of GDP)

Real Interest Rate

Real GDP

Unemployment Rate

Imports and Exports (% of GDP)

Factor inflation Fcpi Consumption Price Index

Factor financial stability Ffstab House Price Index

3-month Treasury Bond Rate

10-year Government Bond Rate

Stock Exchange Index

VIXa

Factor monetary aggregates Fmagg Global Indicator based on Monetary Base

Global Indicator of Foreign Reserves

Global Indicator of Central Bank Interest Rate

Global Indicator of Narrow Monetary Aggregate (M1)

Global Indicator of Broad Monetary Aggregate (M2)

Global Indicator of Credit to Private Sector
a Chicago Board Options Exchange Market Volatility Index
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3 months ahead (t-3), 6 months (t-6), and 12 months (t-12) concerning the current time
(t).

The results show that the factor of aggregate monetary (Fmagg) is the most significant
factor in the estimated models, showing an impact higher than 60%. This factor reflects
the influence ofmonetary policy decisions of central banks on the interest rate, themoney
supply, and currency reserves, among others. This result is in line with some previous
works [2], but shows a consistent impact throughout the applied time horizon, something
that co ntradicts the results previously thrown [4]. This factor has been more important
for emerging regions such as Asia-Pacific and Latin America, and with a lower impact
in advanced areas such as Europe and Japan. For its part, the financial stability factor
(Ffstab) is shown as another factor with high significance, and with an impact of more
than 20%. This factor indicates the level of volatility existing in the markets and access
to them, in addition to the monetary policy implemented. The trend of the results of
this factor increases throughout the study horizon, contradicting what was evidenced by
the previous literature [5]. Financial stability has shown a greater impact for emerging
regions such as Asia-Pacific and Latin America, and with a lower impact in advanced
areas such as Europe and Japan. Finally, the factor of real activity (Fact) has been shown
to have a significant impact, like the Ffstab factor, and also higher than 20%. This factor
demonstrates the importance of the real economy in the level of liquidity and summarizes
indicators such as the behavior of credit, economic growth, and the external sector. Also,
its results have been of greater importance in advanced regions such as the United States
and Europe, and less so in emerging regions such as Africa & Middle East. Several
previous works have not shown such significant results on this factor [4, 5, 8].

On the other hand, the precision of our FAANN models shows a level higher than
90%, both in the training sample and in the testing, and throughout the entire time
horizon used. Similarly, the average errors obtained show reduced levels. These levels of
precision obtained improve those shownby the previousworks [2, 6, 8]. They also exceed
the precision shown by the models built from the applied Deep Learning techniques,
even though in the most recent previous literature the superiority of these mentioned
techniques over the rest has been common [5, 6]. Finally, Tables 1, 2, 3 and 4 show
the time-lapses required for each technique used to estimate all the proposed models
and for each of the time horizons considered. It is observed that the FAANN method
needs a slightly shorter period than the rest of the methodologies, where it stands out
that DNDT is the one that obtains the highest levels of time. Finally, the overall of time
lapses required for each technique used to estimate all the proposed models and for each
of the time horizons have been 20.12 s for FAANN, 24.65 s for DRCNN, and 27.29 s
for DNDT.
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Table 2. Results of forecasting evaluation for FAANN Model

Horizon time Regions Classification
matrix (%)

RMSE Impact of factors (%)

Training Testing Training Testing Fexch Fact Fcpi Ffstab Fmagg

t

United States 91.74 89.47 0.24 0.29 8.86 21.52 9.86 18.65 71.46

Europe 93.07 89.79 0.22 0.26 5.72 21.22 10.51 19.99 67.82

Japan 92.28 90.01 0.21 0.23 7.43 19.08 8.78 18.21 65.74

Emerging
Europe

92.61 90.33 0.17 0.22 11.24 22.14 10.97 21.62 62.85

Latin America 92.82 90.53 0.16 0.21 15.07 18.55 9.11 21.2 69.62

Africa & Middle
East

92.97 90.73 0.22 0.24 13.44 16.64 9.53 20.74 74.83

Asia-Pacific 93.19 90.89 0.16 0.18 18.65 17.73 10.08 22.51 81.04

Global 93.39 91.09 0.14 0.18 12.82 18.96 9.15 20.95 68.89

t + 3

United States 93.51 91.26 0.16 0.19 11.81 31.83 14.79 23.31 76.96

Europe 93.56 91.37 0.15 0.18 7.63 28.62 15.77 24.99 73.04

Japan 93.69 91.38 0.14 0.16 9.91 33.21 13.17 22.76 70.80

Emerging
Europe

93.99 91.69 0.11 0.15 14.99 27.83 16.46 27.03 67.68

Latin America 94.06 91.81 0.15 0.18 20.09 24.96 13.67 26.53 74.98

Africa & Middle
East

94.19 92.01 0.18 0.21 17.92 26.6 14.31 25.93 80.59

Asia-Pacific 94.43 92.17 0.14 0.16 24.87 32.28 15.12 28.14 87.27

Global 94.64 92.37 0.13 0.16 17.09 28.44 13.73 26.19 74.19

t + 6

United States 94.74 92.56 0.16 0.17 13.52 35.81 16.64 25.92 69.96

Europe 94.78 92.59 0.12 0.15 8.72 32.27 17.74 27.76 66.40

Japan 94.94 92.67 0.11 0.13 11.32 37.36 14.82 25.29 64.36

Emerging
Europe

95.25 92.98 0.09 0.12 17.13 31.35 18.51 30.03 61.53

Latin America 95.3 93.11 0.12 0.16 22.96 28.08 15.37 29.44 68.16

Africa & Middle
East

95.67 93.48 0.11 0.15 20.48 29.92 16.08 28.81 73.26

Asia-Pacific 95.76 93.24 0.16 0.19 28.42 36.32 17.01 31.26 79.34

Global 96.1 93.57 0.14 0.18 19.54 32.04 15.44 29.13 67.44

t + 12

United States 96.19 93.98 0.07 0.11 12.67 38.56 15.53 28.26 63.62

(continued)
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Table 2. (continued)

Horizon time Regions Classification
matrix (%)

RMSE Impact of factors (%)

Training Testing Training Testing Fexch Fact Fcpi Ffstab Fmagg

Europe 96.32 93.79 0.11 0.14 8.14 34.67 16.55 30.29 60.36

Japan 96.36 93.83 0.11 0.15 10.57 40.24 13.83 27.59 58.51

Emerging
Europe

96.67 94.13 0.10 0.13 15.99 33.71 17.28 32.76 55.94

Latin America 96.89 94.37 0.09 0.14 21.43 30.24 14.35 32.12 61.96

Africa & Middle
East

97.27 94.73 0.08 0.12 19.11 32.22 15.01 31.42 66.63

Asia-Pacific 97.48 94.93 0.07 0.11 26.52 39.11 15.88 34.11 72.13

Global 96.11 94.56 0.12 0.15 18.23 34.46 14.41 31.74 61.31

Table 3. Results of forecasting evaluation for DRCNN Model

Horizon time Regions Classification
matrix (%)

RMSE Impact of factors (%)

Training Testing Training Testing Fexch Fact Fcpi Ffstab Fmagg

t

United States 85.40 83.23 0.41 0.44 8.76 24.54 8.54 19.65 70.89

Europe 86.61 83.62 0.33 0.42 5.03 21.66 9.44 20.56 67.65

Japan 85.89 83.81 0.33 0.39 6.73 22.88 8.35 20.32 60.88

Emerging
Europe

86.19 84.11 0.35 0.40 10.86 24.17 10.26 24.22 61.14

Latin America 86.38 84.30 0.33 0.38 14.58 18.65 7.64 22.77 68.68

Africa & Middle
East

86.52 84.48 0.33 0.43 13.33 18.05 9.23 23.57 71.51

Asia-Pacific 86.72 84.62 0.21 0.27 18.23 18.93 9.86 23.01 80.36

Global 86.90 84.81 0.36 0.43 12.62 19.97 7.84 21.05 67.56

t + 3

United States 87.01 84.96 0.28 0.33 11.27 33.39 14.25 24.12 75.39

Europe 87.05 85.00 0.33 0.36 6.82 30.24 15.55 26.14 71.99

Japan 87.17 85.07 0.32 0.37 9.30 35.79 12.16 24.98 66.78

Emerging
Europe

87.45 85.35 0.35 0.36 14.29 31.01 15.99 29.36 66.82

Latin America 87.51 85.46 0.31 0.37 19.53 28.61 13.24 27.30 70.71

Africa & Middle
East

87.63 85.64 0.38 0.35 17.71 30.10 13.66 28.81 77.65

Asia-Pacific 87.85 85.79 0.28 0.28 24.65 33.57 14.37 29.63 87.11

Global 88.04 85.97 0.17 0.29 16.99 29.68 13.56 26.45 71.44

t + 6

United States 88.13 86.14 0.31 0.35 12.63 36.53 15.73 28.25 66.64

Europe 88.17 86.17 0.28 0.30 8.53 35.16 16.29 29.00 63.98

(continued)
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Table 3. (continued)

Horizon time Regions Classification
matrix (%)

RMSE Impact of factors (%)

Training Testing Training Testing Fexch Fact Fcpi Ffstab Fmagg

Japan 88.31 86.24 0.24 0.28 11.11 40.53 14.01 26.29 64.27

Emerging
Europe

88.59 86.53 0.28 0.30 16.46 33.26 18.08 30.76 58.09

Latin America 88.64 86.64 0.27 0.31 22.29 28.79 14.71 30.72 63.63

Africa & Middle
East

88.98 86.98 0.37 0.41 19.67 33.05 15.70 29.39 69.17

Asia-Pacific 89.06 86.76 0.26 0.37 28.00 37.95 16.89 33.94 78.34

Global 89.37 87.06 0.31 0.38 19.34 34.42 14.39 31.18 65.41

t + 12

United States 89.45 87.44 0.26 0.37 12.10 38.72 14.42 30.84 59.10

Europe 89.57 87.26 0.33 0.45 8.12 38.60 15.82 32.70 57.01

Japan 89.60 87.30 0.33 0.41 10.30 43.41 12.41 29.98 57.55

Emerging
Europe

89.89 87.57 0.35 0.39 15.51 35.56 17.25 33.18 53.02

Latin America 90.09 87.77 0.30 0.38 21.12 30.37 13.86 34.86 61.94

Africa & Middle
East

90.43 88.12 0.23 0.31 18.29 36.21 13.81 33.28 65.82

Asia-Pacific 90.62 88.30 0.22 0.26 25.88 42.54 15.37 36.40 68.02

Global 89.38 87.96 0.26 0.35 17.52 34.62 13.63 31.85 57.60

Table 4. Results of forecasting evaluation for DNDT Model

Horizon time Regions Classification
matrix (%)

RMSE Impact of factors (%)

Training Testing Training Testing Fexch Fact Fcpi Ffstab Fmagg

t

United States 86.91 84.11 0.34 0.38 9.09 20.93 10.58 18.06 70.28

Europe 89.12 89.19 0.32 0.37 6.16 20.16 10.95 19.34 66.85

Japan 88.36 89.42 0.24 0.33 7.56 18.95 8.82 17.33 64.35

Emerging
Europe

88.68 89.73 0.23 0.31 11.35 21.93 11.39 20.87 60.98

Latin America 88.88 89.93 0.22 0.31 15.57 18.23 9.95 20.65 69.21

Africa & Middle
East

89.02 90.13 0.26 0.28 13.8 14.59 9.87 19.94 74.45

Asia-Pacific 89.24 90.29 0.29 0.26 18.88 16.89 10.57 21.83 80.06

Global 89.43 90.49 0.19 0.23 13.04 18.78 9.74 20.7 67.19

t + 3

United States 93.06 90.66 0.16 0.21 11.95 30.11 15.16 22.71 75.41

(continued)
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Table 4. (continued)

Horizon time Regions Classification
matrix (%)

RMSE Impact of factors (%)

Training Testing Training Testing Fexch Fact Fcpi Ffstab Fmagg

Europe 93.13 90.75 0.18 0.27 8.2 27.11 15.95 24.57 71.59

Japan 93.24 90.78 0.17 0.20 10.4 32.61 14.05 22.58 69.76

Emerging
Europe

93.54 91.09 0.15 0.18 15.5 26.87 16.58 26.92 67.54

Latin America 93.61 91.21 0.20 0.22 20.5 24.64 14.54 25.98 74.51

Africa & Middle
East

93.74 91.41 0.27 0.31 18.18 25.88 14.77 25.32 79.81

Asia-Pacific 93.98 91.57 0.21 0.26 25.39 31.52 15.22 28.14 85.65

Global 94.19 91.77 0.22 0.24 17.16 27.61 13.95 25.86 73.89

t + 6

United States 94.29 91.96 0.2 0.27 13.53 33.44 16.69 25.19 68.52

Europe 94.33 91.99 0.22 0.27 8.91 31.32 18.08 27.53 66.29

Japan 94.49 92.07 0.19 0.22 11.39 37.08 15.45 24.83 63.46

Emerging
Europe

94.82 92.38 0.21 0.24 17.66 30.68 18.85 29.9 60.47

Latin America 94.85 92.51 0.24 0.26 23.41 27.82 15.37 29.42 67.08

Africa & Middle
East

95.22 92.88 0.21 0.26 20.77 29.04 16.90 28.05 71.77

Asia-Pacific 95.31 92.64 0.19 0.21 28.73 35.86 17.15 31.05 78.81

Global 95.65 92.97 0.18 0.20 20.04 31.28 16.04 28.83 66.24

t + 12

United States 95.74 93.38 0.11 0.18 12.88 37.3 16.24 27.87 62.88

Europe 95.87 93.19 0.11 0.14 8.65 34.59 16.61 29.69 59.93

Japan 95.91 93.23 0.11 0.19 10.61 38.66 14.43 27.12 56.81

Emerging
Europe

96.22 93.53 0.14 0.18 16.46 32.31 17.84 32.22 55.57

Latin America 96.44 93.82 0.16 0.22 21.96 27.9 14.37 31.23 60.51

Africa & Middle
East

96.82 93.23 0.15 0.21 19.11 29.82 15.66 31.34 66.18

Asia-Pacific 97.03 94.03 0.11 0.16 26.87 37.05 15.96 33.79 70.71

Global 95.66 93.59 0.12 0.19 18.54 32.74 14.91 30.92 60.98
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5 Conclusions

The results obtained in the present study show that monetary aggregates, financial sta-
bility, and real activity are the main factors to predict the dynamism of global liquidity.
Aggregates represent the most important factor in determining liquidity flows, in many
cases exceeding 60% of the impact, regardless of the area and the time of the projection.
On the other hand, the levels of impact of the factors of stability and real activity show
some differences between regions, indicating that financial stability is more important
in emerging economies, while real activity is more significant in advanced economies.
Therefore, the present study offers new models of the main regions of the world, trying
to cover the need to show the regional differences in the prediction of capital flows that
the previous literature requested.

The FAANN methodology applied in this work has shown high levels of accuracy,
exceeding 90% in all treated cases. Besides, together with the application of the sensitiv-
ity analysis that measures the impact of the factors, this methodology shows an improve-
ment in the interpretability of the results and in the extension of predictions to different
future time horizons, showing itself as a promising alternative to other methodologies
widely used in this line of study such as the dynamic factor model or Factor-Augmented
Vector Autoregressive (FAVAR), not only to predict liquidity flows but also other finan-
cial stability and macroeconomic policy concerns. On the other hand, Deep Learning
methodologies have shown a high and robust level of success, but lower than the FAANN
model. Despite this, our results show that these techniques can also be used efficiently
for the prediction of liquidity flows for those professionals and academics interested in
the development of Deep Learning methodology.

These conclusions can be extremely useful for institutions, both public and private,
that need to make forecasts about public policy financial and macroeconomic analysis.
Finally, as a future line of research, it could deal with the possible influence of political
decisions and the management of their management on the differences in liquidity flows
between regions of the world. It would also be interesting to analyze the shocks created
by the unconventional programs of the world’s major central banks and their long-term
impact on liquidity patterns between different world regions, both in advanced and
emerging economies.
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Abstract. Embedded systems acquire information about the real world
from sensors and process it to make decisions and/or for transmission.
In some situations, the relationship between the data and the decision is
complex and/or the amount of data to transmit is large (e.g. in biolog-
gers). Artificial Neural Networks (ANNs) can efficiently detect patterns
in the input data which makes them suitable for decision making or com-
pression of information for data transmission. However, ANNs require
a substantial amount of energy which reduces the lifetime of battery-
powered devices. Therefore, the use of Spiking Neural Networks can
improve such systems by providing a way to efficiently process sensory
data without being too energy-consuming. In this work, we introduce
a low-powered neuron model called Integrate-and-Fire which exploits
the charge and discharge properties of the capacitor. Using parallel and
series RC circuits, we developed a trainable neuron model that can be
expressed in a recurrent form. Finally, we trained its simulation with
an artificially generated dataset of dog postures and implemented it as
hardware that showed promising energetic properties.

Keywords: Remote system · Spiking Neural Networks ·
Integrate-and-fire · Neuromorphic hardware

1 Introduction

Embedded systems acquire physical measurements of the real world from sen-
sors before performing simple computations [13]. From signal acquisition, these
systems often require a transformation of the data to make decisions or compress
the information for transmission. Pattern recognition is an important area in the
emergence of intelligent systems the classification of patterns from sensory infor-
mation into categories is necessary to achieve a goal [13]. For example, recent
years have seen the development of new animal-attached devices called Biolog-
gers which are used to monitor the environment, track locations and quantify
the behaviour of certain species [1]. These devices sometimes use transmission
technologies such as Very High Frequency (VHF), acoustic telemetry or, more
recently, orbiting satellites to monitor certain species over a long period. How-
ever, data transmission has a high cost not only financially, but also in terms of
c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 29–40, 2021.
https://doi.org/10.1007/978-3-030-87986-0_3
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energy. This can be problematic on battery-powered devices. Thus, to optimise
the lifetime of remote devices, the number of transmissions must be minimized.
As some sensors often run at a high sampling frequency – typically 10 Hz and
1000 hz for inertial sensors – the amount of collected data becomes so large that
transmission becomes difficult without any compression or processing. To reduce
this amount of data, embedded classifiers can directly process the sensor val-
ues, which significantly reduces the information to transmit. For example, some
methods have been used on biologgers to classify animal activities from inertial
data using machine learning approaches, especially Artificial Neural Networks
[7,11,17]

Artificial Neural Networks (ANNs) are one of the most powerful methods
to solve classification problems. ANNs try to mimic the behaviour of biological
neurons to find complex relationships between input signals and desired out-
puts. However, the computation of these artificial neurons is computationally
expensive due to complex operations that require substantial amounts of energy
or sometimes the use of Graphics Processing Units (GPUs) which makes them
unsuitable for battery-powered devices [15]. Contrary to the abstracted models
used in Deep Learning, Spiking Neural Networks (SNN) are biologically plausible
artificial neuron models [8] that transmit information through discrete electrical
signals called spike trains [8,15]. Spiking neurons integrate synaptic events only
when they occur and fire action potentials when the membrane potential reaches
a defined threshold [8]. This event integration property makes them relatively
easy to simulate and can also be implemented as energy-efficient dedicated hard-
ware (called neuromorphic chips) [2,3,5,6]. To the best of our knowledge, there
is no hardware implementation of SNNs embedded in small remote devices such
as biologgers – mainly because of the size of the current neuromorphic hard-
ware. Therefore, it is necessary to bring new simple and non-energy-consuming
solutions for embedded pattern recognition in remote systems.

In this paper, we present a simple neuron circuit that can be used for basic
pattern recognition in remote systems. This model developed is the Integrate
and Fire (IF) which is easily implementable as energy-efficient hardware with
low-cost components. It integrates successive currents during different amounts
of time – according to the inputs – and exploits the charge and discharge capabil-
ities of capacitors to create a trainable and electronically implementable neuron.
The model has both excitatory and inhibitory synapses and we introduce it as a
recurrent form which makes it suitable for gradient descent optimisations. This
model has been chosen for the simplicity of its hardware implementation and
its simulation. To validate it, we trained three neurons to classify dog postures
using inclination vectors (calculated from inertial data) and implemented them
with electronic components to compare the hardware and its simulation.

2 Results

The capacitor is an electronic passive component that creates a potential dif-
ference between two conductive plates, analogous to the difference of electric
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potential of the biological neuron membrane created by ions that flow in and
out of the cell. Therefore, the capacitor is often used in computational models of
spiking neural networks to reproduce membrane potentials of the biological neu-
rons. Connected in series or parallel with a resistance, the capacitor forms two
circuits with distinct charge and discharge properties respectively called series
and parallel Resistor-Capacitor circuits (RC). Thus, the IF neuron is mainly
composed of passive components: a capacitor that reproduces the membrane
potential and resistors that charge (excite) or discharge (inhibit) the neuron.

2.1 Series RC Circuit for Excitatory Stimulations

Vin

Re

C

Fig. 1. Electric diagram of the series Resistor-Capacitor (RC) circuit. The circuit is
composed of a voltage supplier Vin, a resistor Re that is analog to the excitatory
synapses of the neuron and a capacitor C that reproduces the membrane potential.

The series RC circuit is defined by a successive resistor Re which represents
the excitatory synapses of the biological neuron and a capacitor C which repro-
duces the membrane potential – see Fig. 1. Taking into consideration Ohm’s law
(I = V

R ), the fact that the current IRe
flowing through the resistor Re is equal

to the current IC flowing through the capacitor C (IRe
= IC) and that the

capacitor component theoretically does not produce any resistance, the current
flowing through the circuit depends only on the input voltage Vin and the exci-
tatory resistor Re. Thus, the resistor can be seen as a weight defined as w = 1

Re

which scales the input value Vin such as IRe
= wVin. Consequently, the higher

the value of the resistor, the lower the current will flow through the capacitor
and vice versa. Knowing that the total voltage Vin of the circuit is defined as the
sum of the voltages VR and VC respectively across the resistor and the capacitor
(Vin = VR + VC), and the Ohm’s law, we can define the following equation:

Vin = ReIRe
+ VC

⇔ IRe
=

Vin − VC

Re

(1)

Equation 1 shows that the current flows through the excitatory resistor does
not only depend on the input voltage and the resistance but also depends on
the voltage across the capacitor. Therefore, the higher the voltage across the
capacitor, the lower the current flowing in the circuit will be. To describe the
dynamic of the capacitor, the instantaneous rate of voltage change dV

dt of the
capacitor is introduced as the current I flowing through the capacitor divided
by the capacitance C (dVdt = I

C ). Equation 1 can be reformulated as:

τe
dVC

dt
= Vin − VC (2)
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where τe = ReC is the time constant of the series RC circuit which represents the
number of seconds needed to reach approximately 63.2% of the input voltage Vin

– this value is explained below. For a constant input voltage and a given initial
voltage VC(t) at time t, the capacitor voltage VC(t+Δt) after an amount of time
Δt can be found by integrating Eq. 2:

VC(t + Δt) = Vin − (Vin − VC(t))e− Δt
τe (3)

The fact that the time constant τe represents the amount of time to reach a
voltage of approximately 63.2% of the input voltage is due to of the exponential
property of Eq. 3. Indeed, with an initial voltage of 0, the voltage VC(τe) reached
by the capacitor after a stimulation of τe seconds with an input voltage Vin is
Vin(1 − e−1) where 1 − e−1 ≈ 0.632.

2.2 Parallel RC Circuit for Inhibition

C

Vin

Ri

Fig. 2. Electric diagram of the parallel Resistor-Capacitor (RC) circuit controlled by
a N-Channel MOSFET transistor.

Inhibitory neurons represent 10%–20% of brain population and their activ-
ity plays a major role in cognition [16]. By producing stop signals of excitation
and therefore decreasing the membrane potentials of neurons receiving inhibitory
stimulus, inhibitory neurons can be seen as regulators of firing rates by maintain-
ing neurons to sub-threshold regimes. In the IF neuron, an inhibitory connection
is implementable with a controlled leakage – similar to the leak of the leaky-
integrate-and-fire neuron (LIF). As Fig. 2 shows, the parallel Resistor-Capacitor
(RC) of the LIF neuron circuit can be improved with an N-Channel MOSFET
transistor to control the current flowing out of the capacitor. In the parallel RC
circuit, the current IC flowing through the capacitor is equal to the current IRi

:

IC = IRi
=

VC

Ri
(4)

Kirchhoff’s voltage law states that the voltage of the capacitor is equal to the
voltage drop across the resistor Ri – and the transistor – is equivalent to the
voltage VC of the capacitor:
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VRi
+ VC = 0

⇔ IRi
Ri = −VC

⇔ ICRi = −VC

(5)

Finally, as mentioned in Sect. 2.1, the instantaneous rate of voltage change dVC

dt of
the capacitor can replace the capacitor’s current term in the previous equation:

τi
dVC

dt
= −VC (6)

As for the series RC circuit, the time constant τi = RiC is introduced which also
represents the time required by the discharged capacitor to lose approximately
63.2% of its voltage. Thus, the previous equation can be integrated to obtain
the capacitor’s voltage VC(t + Δt) after a stimulation time Δt:

VC(t + Δt) = VC(t)e− Δt
τi (7)

2.3 Integrate-and-Fire Neuron

Biological neurons receive several stimuli (excitatory and inhibitory) at their
dendrites and having multiple inputs is a necessary condition to allow the IF
model to compute separations of multi-dimensional spaces. Both excitatory and
inhibitory can be combined to obtain several inputs – see an example in Fig. 3. In
some specific situations, no excitation is provided by inputs and, for this reason,
a bias connection – i.e. a connection always set to 1, as in rate-based models – is
introduced to provide a constant stimulation. This allows a permanent charge of
the capacitor and the neuron can become excited even if no pattern is provided.
In such configuration, the total resistance of parallel resistors is not a simple
sum of all the resistances but the inverse of the total resistance is the sum of all
inverted resistances ( 1

Rtotal
=

∑n
i

1
Ri

). For this reason, computation of the IF
model can become complex due to the differences of input stimulation times. For
a lack of simplicity, inputs are stimulated one by one and as the capacitor must
be charged to allow inhibition of the membrane potential inhibitory stimulations
must follow excitatory ones. Therefore, the inference of the IF model becomes
sequential and can be represented under a recurrent form where synapses are
stimulated independently.

2.4 Integrate-and-Fire Neuron as a Recurrent Model

Sequential data are sequences with chronological order. In the deep learning field,
this type of data is processed using recurrent units which are feedforward neural
networks augmented with the inclusion of internal states of units, introducing a
time dimension to the model [10]. At each step t of the inference of a recurrent
neural network, the states at t − 1 of the neurons are integrated into the com-
putation. Intrinsically, the integration of stimulus in the IF model depends on
the capacitor voltage – see Eqs. 3 and 7 – and can be expressed as a recurrent
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Fig. 3. Recurrent representation of the inference of the integrate and fire model. Green
states represent excitatory stimulations and red states represent inhibition. (Color
figure online)

form where each step is a precise synapse stimulation. As presented in Fig. 3,
each step represents the stimulation of a synapse (excitatory ones first) and the
hidden state is the potential of the neuron at time t − 1 with an initial voltage
of 0 – i.e. fully discharged capacitor. Thus, the final hidden state represents the
membrane potential of the inferred neuron that can be compared with the volt-
age threshold to determine if the unit must release a spike or not – this step is
achieved by the micro-controller controlling the circuit. The IF model defined
as a recurrent form is a continuous and differentiable function which makes it
suitable for the gradient descent algorithm. Therefore, some particular set of
resistance values makes the IF neuron reach sub-threshold or super-threshold
regimes for specific input and this behavior is exploited to achieve classification
of patterns. To find the right combinations of resistances, optimisation algo-
rithms can be used such as the well known gradient descent [9]. The loss of the
model can be defined as the Mean Squared Error (MSE) between output mem-
brane potentials and target potentials and the gradient used in the algorithm is
computed with respect to resistance values.

2.5 Dataset, Network Architecture and Training

To demonstrate our model, we generated an artificial dataset of dog postures
and trained a network of three IF neuron on it. It has been generated by using
the average inclination vector for each class – i.e. we determined the average tilt
of the device for each class – and created many samples by augmenting these
vectors with random noise. The tilt of the device can be computed using both
accelerometer and gyroscope data from inertial sensors [14] which gives a three-
dimension vector (pitch, roll and yaw). In this work, three distinct classes of dog
postures have been used: stand, sit and lay on the side. The average tilt vectors
of each class can be determined by only the pitch and roll axis as following:(
0 0

)
for stand,

(
0 0.25

)
for sit and

(
0.5 0

)
for lying – the maximum value for

each axis is 1. The yaw axis is ignored because it corresponds to the horizontal
angle of the device and is irrelevant in this case. From these average tilt vectors,
we can generate new input samples with a normally distributed random noise
ε ∼ N (0, 0.042).

The model has been implemented as a 3 neuron network – one per class
– with both excitatory and inhibitory connections for every input to allow the
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model to have both types of connection and be flexible enough to achieve correct
separations of the input space. The chosen capacitance value for the capacitors
is 1e−6 which is small enough to have a low charging time, but high enough
to have fine control of the charge, to limit noise and voltage dissipation when
implemented as hardware. The maximum stimulation time per input is defined
as 50 ms – e.g. an input of value 1.0 will stimulate the corresponding synapse
during 50 ms and an input of 0.5 during 25 ms. Finally, the output class is
determined by the unit with the highest membrane potential using an argmax
operator and the model has been trained using the gradient descent algorithm
with a learning rate α = 5e−4.

During the training, the algorithm did not converge properly due to the
scale of resistance values (between 103 and 106) which produces exceedingly
large gradients. As the resistances are large and computed into gradients, the
scale of gradients also becomes large. This very well known problem is known
as exploding gradient in machine learning [12]. Many solutions exist to solve the
exploding gradient problem such as gradient clipping [12]. However, the gradient
clipping method makes gradients too small to converge in an acceptable amount
of time – again due to the large scale of resistance values in the model. Another
solution has been found to solve the issue: reduce the scale of resistances (between
1−3 and 1) and compensate with the capacitance value C of the unit. As the
charge and discharge are driven by RC time constants τ = RC, decreasing the
resistance R can be balanced by increasing the capacitance C. Thus, by scaling
down the resistance value, calculated gradients become small enough to obtain
stable learning.

2.6 Weights Selection and Hardware Validation

Table 1. Resistance values (weights) of stand, lie and sit units. Excit. is for Excitatory
and Inhib. is for Inhibitory. All values are given in kilohms (kΩ).

Output neuron Excit. x Excit. y Excit. bias Inhib. x Inhib. y Inhib. bias

Stand 20.33 101.47 1.53 9.77 6.65 1000.00

Lie 7.61 1000.00 1000.00 1000.00 22.44 1000.00

Sit 1000.00 5.42 1000.00 19.57 1000.00 1000.00

Table 1 presents the weights of the model after training. In the IF neuron, a
low resistance gives high weight to the input because it lets more current flow in
or out of the capacitor and thus has a high contribution in its charge or discharge.
Therefore, the contribution of very high resistances is insignificant and can be
ignored. For this reason, all resistance values that converged to the maximum
resistance (1000 kΩ) can be ignored in the trained model presented in Table 1
and consequently only 9 synapses remain out of the 18.



36 F. Bacho and D. Chu

Fig. 4. Diagram of the experimental setup. The micro-controller collects the raw
accelerometry and gyroscopic data from the inertial sensor, pre-process it to obtain
tilt vectors that are sent to a network of IF neuron implemented as hardware. The
class inferred by the network can be read by the micro-controller before being sent to
the serial display (or a transmitter in real situations of remote systems).

After a weight selection (i.e. removing weights that converged to the maxi-
mum value), the three IF units for dog posture classification have been imple-
mented as hardware to validate the training. The microcontroller used in this
work is an ATmega328P on an Arduino Uno to ease its programming. An inertial
unit (MPU-6050) is used to obtain accelerometry and gyroscopic data. Therefore
the accelerometry data is used by the microcontroller to determine the gravity
vector and the gyroscope data is integrated and combined with the previously
computed vector to obtain the precise orientation of the device. Then, the micro-
controller stimulates the synapses one by one during variable times depending on
the pitch and roll of the device. The synapses charge (excitatory) then discharge
(inhibitory) the capacitors using the digital pins. Finally, the microcontroller
can read the membrane potential of each neuron by reading the voltage of the
capacitors. See Fig. 4 for a diagram of the setup.

The model has been validated by sending all the possible inputs to the sim-
ulation and the hardware and comparing their responses. To achieve this, the
hardware has not been tested using the inertial sensor but stimulated with the
same tilt vectors as used in the simulation. Therefore, a mapping of the units’
responses for both the simulation and the hardware has been generated – see
Fig. 5. It appears that the behaviour of the electronic implementation is close to
the simulation and the slight variations in voltage are due to noise and rounding
of resistance values – e.g. a resistance of 3230 Ω in the simulation is rounded
to 3000 Ω in the electronic implementation. Once the hardware is implemented
and the model accuracy is validated, the power consumption of the device can
be measured and compared to the use of simulated artificial neural networks.



IF Neuron for Low-Powered Pattern Recognition 37

Fig. 5. Comparison of neural responses between simulated and electronic IF neurons.
Each simulated unit (i.e. Stand, Sit and Lie) is compared with its corresponding elec-
tronic implementation by measuring the capacitor voltage for all possible inputs (pitch
and roll). The hardware implementation of the model is very close to the simulation
behavior and only varies due to electric noise and rounded resistance values.

Table 2. Comparison of average power consumptions of the micro-controller only, a
Logistic Regression model running on the micro-controller and the micro-controller
with the designed IF neurons. The values are given with and without the micro-
controller power consumption to ease understanding.

Setup Average power
consumption with
the micro-controller
(in Watt)

Average power
consumption without
the micro-controller
(in Watt)

Micro-controller only 0.2155 –

Logistic Regression on
the micro-controller

0.2265 0.011

Micro-controller + IF
circuits

0.218 0.0025

2.7 Power Consumption Analysis

To measure the power efficiency of the hardware, the current consumed by the
device (i.e. the micro-controller, inertial sensors and IF circuits together) has
been recorded while performing real-time classification of dog postures. The
measures were done using a power analyzer and power supply (Otii ARC)
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and performed on the micro-controller running alone, on the micro-controller
classifying postures with the IF neurons implemented as hardware and on the
micro-controller classifying postures with logistic regression. The following aver-
age power consumptions have been determined and written in Table 2. Most of
the power consumed by the device is due to the micro-controller, but the results
show that the use of the IF circuit for embedded classification consumes less
than a simple logistic regression performed on the micro-controller. If the power
consumption of the micro-controller is ignored, the implemented hardware con-
sumes 4.4 times less than the logistic regression method, which is significant.
Therefore, the designed circuit is faithful to its simulation and able to recognize
patterns in presented inputs with less energy demand than simulated ANNs.

3 Discussion

In this work, the Integrate-and-Fire model has been simulated and trained to
achieve dog posture classification and showed promising results with relatively
low energy expenditure when implemented with electronic components compared
to the use of embedded logistic regression. The designed model implemented
as hardware can be integrated into remote systems for embedded and energy-
efficient pattern recognition, reducing the amount of data to transmit and thus
reducing the number of transmissions, leading to low energy consumption. The
simulation of the IF neuron is faithful to the electronic implementation which
makes it possible to train using the gradient descent algorithm. Once trained,
the resistances that do not contribute to the pattern detection – i.e. those that
converge to the highest value – are removed from the final circuit and the remain-
ing are implemented with the final hardware. This hardware implementation has
been done with only a few passive components (resistors, diodes and capacitors)
and one active component (N-MOSFET transistors) which all have low costs.
It has been implemented using prototyping boards but can be miniaturised on
Printed Circuit Boards (PCBs) with Surface Mount Technology (SMT) that pro-
vides miniature components to produce a version of the hardware small enough
to be integrated into small devices.

In terms of power, the measured consumptions are almost identical due to the
power demand of the micro-controller. However, the lifetime of battery-powered
devices is very important and no aspect of the entire device should be overlooked,
including the power usage of data processing. Therefore, by disregarding con-
sumption of the micro-controller, the IF model consumes four times less when
it is electronically implemented than a trained logistic regression running on the
micro-controller. With this setup, the battery life-time is improved by 3.75%,
but it can be enhanced even more by using a low-powered micro-controller.
Moreover, an implementation of the model with spike trains should significantly
reduce energy consumption. Therefore, it would be wise to rethink the way of
communicating features given to the model using spike trains to further reduce
the power consumption of the circuit.

One main issue of the IF approach is the time dependence of the inference.
As the stimulation time of synapses varies according to the input values, the
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inference time is also variable. Thus, the higher the inputs, the longer the infer-
ence time will be. This maximum inference time can be calculated by summing
the maximum stimulation time of inputs or can be compensated by varying
the capacitance value of units. Another issue of the IF model is that the leak
channel, specific to the LIF neuron, has been removed and the time dimension
disappeared. This model is thus no longer able to process animal dynamics to
infer its activity and only the posture – i.e. static patterns – can be classified.
To achieve this task, the LIF model should be used which involves transforming
features into spike trains. However, due to the non-continuity of spike trains
in spiking neural networks, algorithms based on differentiation – such as the
gradient descent algorithm used in this work – cannot be applied for training.

4 Future Work

In future works, the time capabilities of the Leaky Integrate-and-Fire model must
be exploited to classify time-series patterns using spike trains. As the gradient
descent algorithm is not suitable to train such models, other training algorithms
must be explored to find new ways to classify patterns or compress sensory
data into a spike code generated by a spiking neural network. Recent advances
in neurosciences permitted the development of unsupervised learning algorithms
such as Spike Time Dependent Plasticity (STDP) which is a biologically plausible
Hebbian learning rule that adjusts the strength of connections between neurons
in the brain [2,4,8]. Based on the timing of pre and post-synaptic spikes, STDP
allows neurons to learn time-dependent correlations in spike trains and thus
a relevant representation of input features [2,4,8]. Therefore, such algorithms
may be able to find correlations between some sensory inputs and achieve a
compression of recorded data.
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Abstract. This paper presents an application of the scaled Givens rota-
tions in the process of feedforward artificial neural networks training.
This method bases on the QR decomposition. The paper describes math-
ematical background that needs to be considered during the application
of the scaled Givens rotations in neural networks training. The paper
concludes with sample simulation results.
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1 Introduction

Artificial intelligence is one of themost popular research areasworldwide. Together
with the evolution of the industry towards digitalization and big data, a growing
number of companies are starting to benefit from AI. In recent years many research
projects have been conducted in multiple areas including security and surveillance
[14,17,30], environment protection and air quality [37,41], vehicle and automation
industries [12,13,27,28], classification, image and speech recognition [20,21,32–
34] and others [29,36,39]. This produces an everlasting need for developing high
performance algorithms for neural networks as attempted in [3,5,11,16,17,23,24,
31,35].

Many modern training algorithms such as Adam and its derivatives [15,26,40]
originate from the classic Backpropagation method initially presented in [38].
Some of the well performing algorithms such as the Levenberg-Marquardt [22]
are burdened with a very high computational complexity, which makes them
impractical in use for larger data sets [11]. Despite that, such algorithms are
being developed due to continuous improvements of the processing devices such
as CPUs and GPUs.

In this paper a novel approach to neural networks training is presented. The
idea originates from the scaled Givens rotations and the GQR algorithm [4]. As
a result of reducing the computational complexity of the classic GQR algorithm,
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the scaled Givens rotations (SGQR) is expected to achieve better results in terms
of the performance when compared to the classic GQR training method. This
comparison is shown in the last section of this paper.

2 Givens Rotations Basics

The Givens rotation originates from elementary orthogonal transformations. The
most commonly used rotation is limited to a single plain which is stretched
between two vectors span{ep, eq}(1 ≤ p < q ≤ n). The rotation itself is repre-
sented by an orthogonal matrix of the following structure [19,25]:

Gpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
. . .

c · · · s
...

...
. . .

...
...

−s · · · c
. . .

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

p q

(1)

To keep it simple, matrix Gpq is referred to as the rotation matrix or rotation.
By definition, this matrix differs from the Identity matrix only in terms of four
elements gpp = gqq = c and gpq = −gqp = s, where

c2 + s2 = 1 (2)

From (2), it is known that GT
pqGpq = I, which proves that matrix Gpq is an

orthogonal matrix. Let a ∈ R
n. The rotation is performed by the orthogonal

transformation given as
a → ā = Gpqa (3)

Due to that, only two elements of vector a are directly affected by the rotation.
Based on that property, we are able to find values of c and s, so the aq element
equals 0 after being rotated. Let us consider

āq = −sap + caq = 0 (4)

Parameters c and s of rotation matrix Gpq are calculated as follows

c =
ap

ρ
, s =

aq

ρ
, where ρ =

√
a2

p + a2
q (5)
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3 The Scaled Givens Rotation

For vector a ∈ R
n, consider transformation given by (3) [18,25]. Matrix Gpq

has to meet the condition (4). The scaled Givens rotation is obtained by using
scaled multipliers K2 and K̄2:

a = Kd, where K = diag (
√

χl)

ā = K̄d̄, where K̄ = diag
(√

χ̄l

) (6)

where χl, χ̄l > 0 (l = 1, . . . , n). Also matrix Gpq will be presented in a scalable
form

Gpq = KFpqK−1 (7)

where Fpq is:

Fpq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
. . .

α · · · β
...

...
. . .

...
...

−γ · · · δ
. . .

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

p q

(8)

Equation (3) takes the form

K2 → K̄2

d → d̄ = Fpqd
(9)

and Eq. (4) becomes the following

d̄q = −γdp + δdq = 0 (10)

From (7) the following is obtained

χ̄l = χl for (l �= p, q; l = 1, ..., n) (11)

c = α
√

χ̄p

χp
= δ

√
χ̄q

χq
, s = β

√
χ̄p

χq
= γ

√
χ̄q

χp
(12)

Equation (2) must also be satisfied.
Because there are six variables α, β, δ, γ, χ̄p, χ̄q and only four Eqs. (10), (12)

and (2), two cases have to be treated as parameters. Two variants are possible,
see the important parts of the Fpq matrix

[
1 β

−γ 1

]
and

[
α 1
−1 δ

]
(13)
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From (5) and (6) the following is obtained

c2 =
a2

p

a2
p + a2

q

=
χpd

2
p

χpd2p + χqd2q
, s2 =

a2
q

a2
p + a2

q

=
χqd

2
q

χpd2p + χqd2q
(14)

There are two computational cases:

Case 1: c �= 0 i.e. dp �= 0. The two parameters are set as follows

α = δ = 1 (15)

from (10), (12) and (14) the following is obtained

γ =
dq

dp
, β =

γχq

χp
=

γχ̄q

χ̄p
. (16)

From (12) is χ̄i = χic
2 for i = p, q. Taking into account equation

1
c2

= 1 + βγ
def
= τ (17)

and (12), the following values are obtained

χ̄p =
χp

τ
, χ̄q =

χq

τ
, d̄p = dpτ. (18)

Case 2: s �= 0 i.e. dq �= 0. The two parameters are set as follows

β = γ = 1 (19)

from (10) we obtain

δ =
dp

dq
, α =

δχp

χq
=

δχ̄q

χ̄p
. (20)

From (12) is χ̄p = χqs
2 and χ̄q = χps

2. Taking into account equation

1
s2

= 1 + αδ
def
= τ (21)

and (12) the obtained values are

χ̄p =
χq

τ
, χ̄q =

χp

τ
, d̄p = dqτ. (22)

Equations (11, 15–22) allow to determine parameters α, β, γ, δ of matrix Fpq and
scaling multipliers χ̄i.

4 The Scaled Givens Rotation in the QR Decomposition

The QR decomposition method assumes that any non-singular matrix regular
by columns can be depicted by the product of the upper triangle and orthogonal
matrices.

A = QR, (23)



A New Variant of the GQR Algorithm 45

where
QTQ = I, (24)

QT = Q−1, (25)

rij = 0 for i > j. (26)

The presented process of the QR decomposition is called the Givens orthog-
onalization [25]. According to the previous equations, for any vector a ∈ R

n

and matrix A ∈ R
n,n, there exists a sequence of the scaled Givens rotations of

a = Kd, and also A = KE, where K = diag(
√

χl), which leads to ā = K̄d̄,
Ā = K̄Ē, where K̄ = diag(

√
χ̄l)

K2
11 = K2, K2

1,i−1 → K2
1,i

d1 = d, di−1 → di = F1id

E11 = E, E1,i−1 → E1,i = F1iE1,i−1

⎫
⎬
⎭ (i = 2, · · · , n) ,

K̄2 = K2
1 = K2

1n

d̄ = dn =
∏n

i=2 F1id
Ē = E1,n =

∏n
i=2 F1iE.

(27)
Parameters α, β, γ, δ of matrix Fpq and scaling multipliers χ̄i can be applied to
matrix A = KE to obtain matrix Ā = K̄Ē = ḠpqĒ, where Ē has the following
values

ēi,j = ei,j for (j = 1, ..., r; i �= p, q; i = 1, ..., n)
ēp,j = ep,j + βeq,j , ēq,j = −γep,j + eq,j for (j = 1, ..., r) , α = δ = 1
ēp,j = αep,j + eq,j , ēq,j = −ep,j + δeq,j for (j = 1, ..., r) , β = γ = 1

(28)

Matrix F1 is able to perform multiple rotations at once and transform vector a
to the pattern given by the following form

ā = K̄d̄ = K1F1d = K1e1ρ = K1[ρ, 0, . . . , 0]T , ρ = ±‖a‖2 (29)

where
F1 =

∏n

i=2
F1i = F12F13 · · ·F1n (30)

In the scaled rotation, Eq. (27) are also able to transform the whole matrix. Let
A be a non-singular matrix regular by columns and let A ∈ R

m,n. The left-sided
multiplication of matrix

A = A1 = M1 =
[
a1 B1

]
(31)

by matrices K1 and F1 results in a pattern shown in Eq. (32)

A2 = K1F1M1 = K1

[
ā1 B̄1

]
= K1

[
ρ1
0

∣∣∣∣ B̄1

]
= K1

[
r11 r12 · · · r1n

0 M2

]
(32)

At this point, the very left column vector of matrix A equals as shown in Eq. (29).
The top row of matrix A is also already rotated as desired in the final upper-
triangle form. In the next steps, new sequences of rotations need to be performed

KkFk = Kk

∏n

i=k+1
Fki = KkFk,k+1Fk,k+2 · · ·Fkn (33)
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By performing similar transformations of matrix Mk, each time the input matrix
is one step closer to the desired upper-triangle form

Ak+1 = KkFkMk = Kk

[
āk B̄k

]
= Kk

[
ρk

0

∣∣∣∣ B̄k

]
= Kk

[
rkk rk,k+1 · · · rk,n

0 Mk+1

]

(34)
The algorithm is operational until it reaches n−1 steps. Then, the input matrix
is fully transformed into the upper-triangle form

R = KnFn . . .F1A1 = QTA (35)

The full QR decomposition has been accomplished by the scaled Givens rotations
as given in Eq. (23).

5 Weights Update in the SGQR Algorithm

The SGQR algorithm is designed for any multi-layered neural network with any
differentiable activation function. The weight update is computed based on the
error measure given as

J (n) =
n∑

t=1

λn−t
NL∑
j=1

ε
(L)2
j (t) =

n∑
t=1

λn−t
NL∑
j=1

[
d
(L)
j (t) − f

(
x(L)T (t)w(L)

j (n)
)]2

(36)

Finding the minimum of function (36) is a primary target for the SGQR algo-
rithm. It starts with the classic error back propagation phase followed by lin-
earisation of the activation function, which yields

n∑
t=1

λn−tf ′2
(
s
(l)
i (t)

) [
b
(l)
i (t) − x(l)T (t)w(l)

i (n)
]
x(l)T (t) = 0 (37)

The SGQR algorithm is using rotation matrices, hence Eq. (37) needs to be
presented in the matrix notation as follows

A(l)
i (n)w(l)

i (n) = h(l)
i (n) (38)

where

A(l)
i (n) =

n∑
t=1

λn−tz(l)i (t) z(l)Ti (t) (39)

h(l)
i (n) =

n∑
t=1

λn−tf ′
(
s
(l)
i (t)

)
b
(l)
i (t) z(l)i (t) (40)

and
z(l)i (t) = f ′

(
s
(l)
i (t)

)
x(l) (t) (41)
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b
(l)
i (n) =

{
f−1

(
d
(l)
i (n)

)

s
(l)
i (n) + e

(l)
i (n)

for l = L
for l = 1 . . . L − 1 (42)

e
(k)
i (n) =

Nk+1∑
j=1

f ′
(
s
(k)
i (n)

)
w

(k+1)
ji (n) e

(k+1)
j (n) for k = 1 . . . L − 1 (43)

All neurons of the network compute their own linear response (s(l)i ). Due to
that, Eq. (38) needs to be solved for each neuron. Equation (38) is solved by
the Givens QR decomposition as described in the previous section. During the
process, orthogonal matrix QT is implicitly calculated, but it is not stored in
the memory. Only the rotations described by the c and s parameters are applied

Q(l)T
i (n)A(l)

i (n)w(l)
i (n) = Q(l)T

i (n)h(l)
i (n) (44)

R(l)
i (n)w(l)

i (n) = Q(l)T
i (n)h(l)

i (n) (45)

Equation (45) yields fully transformed matrix A(l)
i (n) to its upper-triangle given

as R(l)
i (n). Since R(l)

i (n) is an upper-triangle matrix, its inversion is no longer
so expensive. The weight update formula of the i-th neuron takes the following
form

ŵ(l)
i (n) = R(l)−1

i (n) Q(l)T
i (n) h(l)

i (n) (46)

w(l)
i (n) = (1 − η)w(l)

i (n − 1) + η ŵ(l)
i (n) (47)

6 Experimental Results

The SGQR algorithm has been tested against the classic GQR variant. The
scope of the experiment includes three types of feedforward neural networks,
i.e. MLP—the Multi-Layered Perceptron, FCMLP—the Fully Connected Multi-
Layered Perceptron, and FCC—the Fully Connected Cascade. The performance
of the presented SGQR algorithm has been measured in two areas: SR—Success
Ratio and T—average training time in milliseconds. The presented results have
been gathered according to the best combination of SGQR’s hyperparameters
η and λ. The initial phase of the experiment assumed a search for the highest
value of the algorithm’s performance factor given as (48). Each training has been
attempted 100 times to gather valuable statistics data.

ξ =
SR

Ep · T
(48)

where Ep is the average epoch count.
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Fig. 1. The logistic function success ratio.

6.1 Logistic Function Approximation

The logistic function performs a single argument mapping according to the fol-
lowing equation

y = f (x) = 4x (1 − x) (49)

The teaching sequence contains 11 samples where x ∈ [0, 1] with the average
accepted error threshold set to 0.001.

In Fig. 1 the success ratio across all tested networks is given. The overall
success ratio of the SGQR algorithm is similar as for the classic GQR variant.
One can observe lower values of the SR for the bigger FCC and FCMLP networks.

Fig. 2. The logistic function average time.

In terms of the average training time (Fig. 2), the SGQR convergence time is
on average 22% shorter when compared with GQR. The time difference grows
together with the network’s size.
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6.2 Hang Function Approximation

The Hang function performs a non-linear mapping of two arguments x1 and x2

with respect to the following formula

y = f (x1, x2) =
(
1 + x−2

1 +
√

x−3
2

)2

(50)

The Hang teaching sequence contains 50 samples which cover arguments in the
range of x1, x2 ∈ [1, 5]. The target error threshold was set to 0.001 as the epoch
average.

Fig. 3. The Hang success ratio.

The success ratio for the Hang benchmark is shown in Fig. 3. Both tested
algorithms showed a similar performance in this scope.

Fig. 4. The Hang average time.

In Fig. 4 the average training time comparison is shown. The SGQR conver-
gence time is on average 26% shorter than for the classic GQR algorithm. The
time gap grows together with the network’s size.
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6.3 The Two Spirals Classification

The Two Spirals is a well known classification problem, where a neural network
needs to group incoming two-dimensional samples into one of two spirals. The
training sequence in this benchmark contains 96 samples. The trial is assumed
to be successful if the average epoch error goes below the 0.05 threshold.

Fig. 5. The Two Spirals success ratio.

The Two Spirals success ratio is shown in Fig. 5. One can observe that the
SGQR performance drops low for the MLP-5-5-5-1 network. For the FCC and
FCMLP networks the success ratio for both algorithms is similar.

Fig. 6. The Two Spirals average time.

In terms of the average training time (Fig. 6), one can observe that the
SGQR training converges on average 31% faster than the classic GQR algorithm
(excluding the MLP networks).
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7 Conclusion

In this paper the novel approach to the GQR algorithm has been presented. The
proposed modification utilizes the scaled Givens rotations, hence its name—
SGQR. The main section of the paper presents a comprehensive discussion of
the mathematical background of the algorithm. The experiments concluded in
Sect. 6 show that the proposed method is superior for the classic GQR variant
in terms of the average training time. The SGQR algorithm maintains a very
high success ratio. Due to the close relation of the SGQR to the GQR, it can be
applied to any feedforward neural network. The flexibility of this method opens
a lot of opportunities for further research projects, such as momentum [1] or
parallel variants as shown in [2,6–10].
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Abstract. The backpropagation (BP) algorithm is a worldwide used
method for learning neural networks. The BP has a low computational
load. Unfortunately, this method converges relatively slowly. In this
paper a new approach to the backpropagation algorithm is presented.
The proposed solution speeds up the BP method by using vector calcula-
tions. This modification of the BP algorithm was tested on a few standard
examples. The obtained performance of both methods was compared.

Keywords: Feedforward neural network · Neural network learning
algorithm · Backpropagation algorithm · Parallel computation

1 Introduction

Artificial intelligence methods have become an increasingly important and
interesting field for science and industry. They are studied by many authors,
e.g. [1–11]. Feedforward neural networks (FNN) are often used in numerous
research projects and applications. They are used in many fields, e.g.: approxi-
mation, classification, prediction, pattern recognition, or signal processing [14–
18]. Many researchers are working on the development of the FNN, e.g. [19–23].
This results in a lot of works on neural networks application [24,25] and parallel
processing in neural networks [26–33]. Learning of artificial neural networks is
very important. To train FNNs, gradient methods [34–36], the conjugate gradi-
ent (CG) algorithm [37–42], the Levenberg-Marquardt [43] and others [44], are
usually used.

The bacpropagation algorithm is a gradient algorithm based on the steepest
descent method for each iteration of the learning process. Generally, the neural
networks learning algorithms are implemented on a serial computer. The learning
algorithms require a high computational load. Fortunately, many new processors
have many cores and vector instructions, which can be used in parallelization
computations.

This paper presents a new approach to learning algorithms based on parallel
computations using vector instructions. The proposed solution executes a few
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learning steps with a different learning coefficient, simultaneously. Then, based
on the best result suitable, new steps are chosen for the next calculation step.
This is achieved by using vector calculations. This significantly reduces the com-
putation time. The results part of this paper shows a very promising performance
of the proposed approach.

2 Background

In this paper, the backpropagation algorithm is used for FNNs. FNNs have
various structures. The data are delivered to the input of the neural network,
they are processed by neurons and the result is obtained at the output of the
network. In this paper three structures of FNNs are used. The first structure is
the multilayer perceptron (MLP), see Fig. 1. This network is divided into a few
layers, and each layer is built from neurons. The first layer is connected to the
input of the network. The next layer is connected to the output of the previous
layer, and so on. The last layer outputs are at the same time the FNN outputs.
All layers except the last (output) layer are called hidden layers.

Fig. 1. Sample illustration for the MLP neural network.

The second FNN structure is the fully connected multilayer perceptron
(FCMLP), see Fig. 2. This type of network is similar to the classic MLP, but
its layers are connected to the outputs of all the previous layers and to the
network inputs.

The third considered structure is the fully connected cascade network (FCC),
see Fig. 3. In this network each layer contains only one neuron and the connec-
tions are identical to the FCMLP network.

Consider the FNN with L layers, Nl neurons in each l − th layer and NL

outputs. The input vector has N0 input values. The FNN recall phase is defined
by formulas

s
(l)
i =

Nl−1∑

j=0

w
(l)
ij x

(l)
i

y
(l)
i (t) = f(s(l)i (t))

(1)

The BP algorithm [36] is used to train FNNs. The following target criterion
is minimized
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Fig. 2. Sample illustration for the FCMLP neural network.

Fig. 3. Sample illustration for the FCC neural network.

J (t) =
1
2

∑NL

i=1
ε
(L)2

i (t) =
1
2

∑NL

i=1

(
d
(L)
i (t) − y

(L)
i (t)

)2

(2)

where ε
(L)
i is defined as

ε
(L)
i (t) = d

(L)
i (t) − y

(L)
i (t) (3)

and y
(L)
i (t) is the i − th network output and d

(L)
i (t) is the i − th desired output.

Using the steepest descent method, the new weight w
(l)
ij (n + 1) can be calculated

by
w

(l)
ij (n + 1) = w

(l)
ij (n) + η

(
−∇J

(l)
ij (n)

)
(4)

where ∇J
(l)
ij (n) is the gradient computed by

∇J
(l)
ij (n) =

∂J (n)

∂w
(l)
ij (n)

=
∂J (n)

∂s
(l)
i (n)

x
(l)
j = −δ

(l)
i x

(l)
j (5)
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and where δ
(l)
i (n) is defined by δ

(l)
i (n) ∧= − ∂ J(n)

∂ s
(l)
i (n)

. Errors ε
(l)
i and deltas δ

(l)
i (n)

in the hidden layers are calculated as follows

ε
(l)
i (t) ∧=

Nl+1∑

m=1

δ
(l+1)
i (t)w

(l+1)
mi (t), (6)

δ
(l)
i (t) = ε

(l)
i (t) f ′

(
s
(l)
i (t)

)
. (7)

Finally, weights w
(l)
ij (n + 1) are determined by

w
(l)
ij (n + 1) = w

(l)
ij (n) + ηδ

(l)
i x

(l)
j . (8)

3 Vector Approach to Learning Neural Networks

In the proposed solution, the possibilities offered by modern processors are used.
They have vector registers containing a few values (2k) and they can compute
simultaneously using all vector values in one instruction. In the vector approach,
the 2k starting points are used. The recall phase for all points is computed by
formulas

s
(l)
iv =

Nl−1∑

j=0

w
(l)
ijvx

(l)
i , y

(l)
iv (t) = f(s(l)iv (t)) (9)

where v = 0, . . . , 2k − 1. Index v means the v-th point number. All values with
different v indexes are placed in the vector register and 2k − 1 computations are
carried out simultaneously. Next, the target criteria are computed

Jv (t) =
1
2

∑NL

i=1
ε
(L)2

iv (t) =
1
2

∑NL

i=1

(
d
(L)
i (t) − y

(L)
iv (t)

)2

(10)

After that, the lowest criterion value from all points needs to be found

∃vmin∀v (Jvmin (t) ≤ Jv (t)) for v = 0, . . . , 2k − 1 (11)

and the best point is chosen (the smallest point)

w
(l)
ij (n + 1) = w

(l)
ijvmin

(n) . (12)

For this point errors ε
(l)
i and deltas δ

(l)
i (n) are designated by (6, 7). Now, the

new 2k points are calculated

w
(l)
ijv (n + 1) = w

(l)
ij (n) + ηvδ

(l)
i x

(l)
j where v = 0, . . . , 2k − 1. (13)

Generally, the η learning rate is a constant (8). In the proposed approach, the
2k coefficients ηv are used. They are used to calculate the 2k new points. Note
that by using vector instructions, the time needed to compute the 2k new points
is identical to the computation time of one point. All new points are calculated



58 J. Bilski et al.

Fig. 4. Sample illustration for directional minimization.

according to the steepest descent rule and are placed all in one direction. The ηv

coefficients are selected in such a way so as to increase the scope of the search for
new points, from which the one with the lowest value of the minimizing criterion
is chosen, see Fig. 4. This causes that in each iteration a lower minimization
criterion value is obtained compared to the value obtained with the constant
learning rate. This leads to faster algorithm convergence to the minimum point
reducing computation time without using more than one processor core.

4 Experimental Results

In the paper a new approach to the error backpropagation algorithm is pre-
sented. The new approach was compared with the classic BP algorithm. All the
simulations were carried out on a computer with the Intel i9-9980X processor
and 128 GiB memory. As part of the tests, three selected problems were simu-
lated; i.e., the logistic function, the SINC function and the circle problem. All
problems were simulated for various networks including the MLP, FCMLP and
FCC with a select few architectures. Each problem was tested using nine archi-
tectures. The simulations results are presented in the tables. In each case, 100
experiments were performed with a maximum of 1000 epochs and at a specified
error and learning rate. In all cases, the weights were set at random values in the
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range [−0.5−0.5]. The first column of each table presents network architectures
with the number of hidden neurons and the number of outputs for the MLP
and FCMLP networks or with the number of neurons for the FCC network. The
next four columns present the used learning rate, the success ratio (SR), the
average number of epochs and the average time for the classic BP method. The
next four columns show these values for the new approach. The last two columns
show how the number of epochs (ED) and the time (TD) of the new approach
decrease compared to the classical BP algorithm.

4.1 The Logistic Function

The logistic function is given by equation:

f (x) = 4x(1 − x) x ∈ [0, 1]. (14)

The training set has 11 samples from the range of x ∈ [0, 1]. The target error
is 0.005. All simulation results are presented in Table 1. It should be noted that
the success ratio is similar in both cases, but the number of epochs and the time
for the new approach to the BP algorithm is significantly shorter. The average
acceleration for epochs is 50.3% and for time is 41.6%. A sample graph for the
FCMLP 13-1 network is depicted in Fig. 5.

Table 1. Training results for the logistic function.

Classic BP New version
Network η SR Ep T η base SR Ep T ED TD

[%] [ms] [%] [ms]

FCC10 0.015 94 568.1 3.0 0.015 91 361.0 1.9 0.635 0.641
FCC12 0.015 99 490.5 3.3 0.015 97 285.3 2.0 0.582 0.595
FCC14 0.015 98 411.5 3.7 0.015 95 251.2 2.3 0.610 0.621
FCMLP12-1 0.03 97 656.1 2.0 0.03 92 273.6 1.2 0.417 0.595
FCMLP13-1 0.03 99 637 2.3 0.03 86 275.8 1.2 0.433 0.506
FCMLP15-1 0.03 98 608.2 2.5 0.03 97 259.3 1.4 0.426 0.559
MLP12-1 0.03 91 690.3 2.2 0.03 96 336.2 1.5 0.487 0.687
MLP13-1 0.4 100 173.2 0.5 0.4 99 73.7 0.2 0.425 0.516
MLP15-1 0.03 97 658.5 2.8 0.03 91 302.8 1.5 0.460 0.539
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4.2 The SINC 2D Function

The SINC two-dimensional function is defined by equation

y = f (x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for x1 = x2 = 0
sin(x2)

x2
for x1 = 0 ∧ x2 �= 0

sin(x1)
x1

for x1 �= 0 ∧ x2 = 0
sin(x1)

x1

sin(x2)
x2

for x1 �= 0 ∧ x2 �= 0

(15)

Fig. 5. Exemplary training process of the logistic function using the FCMLP 13-1
network.

Table 2. Training results for the SINC function.

Classic BP New version
Network η SR Ep T η base SR Ep T ED TD

[%] [ms] [%] [ms]

FCC14 0.009 98 122.8 11.8 0.009 98 83.2 8.3 0.678 0.706
FCC16 0.009 99 99.7 12.0 0.009 100 78.8 9.68 0.790 0.800
FCC18 0.009 100 86.1 12.7 0.009 98 72.8 10.3 0.839 0.812
FCMLP4-4-1 0.01 96 469.5 16.3 0.01 98 292.1 12.5 0.622 0.769
FCMLP6-6-1 0.009 100 252.9 14.7 0.009 100 155.0 9.9 0.613 0.674
FCMLP8-8-1 0.005 98 166.8 14.3 0.005 99 111.5 10.3 0.669 0.723
MLP4-4-1 0.009 95 518.4 14.4 0.009 99 150.7 5.6 0.291 0.388
MLP6-6-1 0.009 100 242.1 11.6 0.009 100 186.4 10.9 0.770 0.939
MLP8-8-1 0.009 100 139.2 10.3 0.009 100 39.5 3.3 0.284 0.314
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Fig. 6. Exemplary training process of the SINC function using the MLP 8-8-1 network.

The training set consists of 50 points from the range of x1 ∈ (1, 5) and
x2 ∈ (1, 5). The target error is 0.005. Table 2 shows the simulation results. The
success ratio is similar in both cases, but the number of epochs and the time for
the new approach are significantly shorter. The average speedup is 38.3% for a
the epoch and 31.9% for time. A sample graph for the FCMLP8-8-1 network is
shown in Fig. 6.

4.3 The Circle Problem

The circle is a classification problem that says if a given point is inside or outside
the circle. The training set has 100 samples from the range of x1, x2 ∈ [−5, 5].
The target error is 0.09. Table 3 presents the simulation results. As previously,
the success ratio is similar in both approaches, but the number of epochs and
the time for the new approach is significantly shorter. The average acceleration
is 56.1% and 50.0%. A sample graph for the FCC 18 network is shown in Fig. 7.

Table 3. Training results for the circle problem.

Classic BP New version
Network η SR Ep T η base SR Ep T ED TD

[%] [ms] [%] [ms]

FCC10 0.0016 100 3.36 0.22 0.0016 100 1.74 0.11 0.518 0.5
FCC12 0.0016 100 4.2 0.34 0.0016 100 1.47 0.1 0.35 0.294
FCC14 0.0016 100 3.31 0.33 0.0016 100 1.55 0.15 0.468 0.455
FCMLP11-1 0.0016 100 4.23 0.16 0.0016 100 1.54 0.07 0.364 0.438
FCMLP13-1 0.0016 100 4.67 0.23 0.0016 100 1.71 0.1 0.366 0.435
FCMLP15-1 0.0016 100 3.76 0.21 0.0016 100 1.8 0.13 0.479 0.619
MLP11-1 0.0016 100 3.29 0.13 0.0016 100 1.33 0.07 0.404 0.538
MLP13-1 0.0016 100 2.79 0.13 0.0016 100 1.58 0.09 0.566 0.692
MLP15-1 0.0016 100 2.95 0.17 0.0016 100 1.28 0.09 0.434 0.529
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Fig. 7. Training process of the circle problem using the FCMLP-2-11-1 network.

5 Conclusion

In this paper a new approach to learning neural networks is presented. As an
example, the error backpropagation algorithm was used. Our modification is
based on using the 2k = 8 learning rates simultaneously, which results in an
acceleration of the learning process. The experiments show that our approach to
the learning algorithm significantly decreases the neural network’s learning time
(about 40% on average). The obtained results are very satisfying and testify to
a high efficiency of the proposed solution.

In our future work we plan to test our approach with other algorithms and
with different neural networks. Our approach can be implemented to solve several
industrial problems, see e.g. [45–47].
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Abstract. This work contributes to the development of a new data-
driven method (D-DM) of feedforward neural networks (FNNs) learning.
This method was proposed recently as a way of improving randomized
learning of FNNs by adjusting the network parameters to the target
function fluctuations. The method employs logistic sigmoid activation
functions for hidden nodes. In this study, we introduce other activa-
tion functions, such as bipolar sigmoid, sine function, saturating linear
functions, reLU, and softplus. We derive formulas for their parameters,
i.e. weights and biases. In the simulation study, we evaluate the perfor-
mance of FNN data-driven learning with different activation functions.
The results indicate that the sigmoid activation functions perform much
better than others in the approximation of complex, fluctuated target
functions.

Keywords: Data-driven learning · Feedforward neural networks ·
Randomized learning algorithms

1 Introduction

FNNs are widely used as predictive models to fit data distribution. They learn
using gradient descent methods and ensure a universal approximation property.
However, gradient-based algorithms suffer from many drawbacks which make the
learning process ineffective and time-consuming. This is because gradient learn-
ing is sensitive to local minima, flat regions, and saddle points of the loss function.
Moreover, its application is time-consuming for complex target functions (TFs),
big data, and large FNN architectures. Randomized learning was proposed as an
alternative to gradient-based learning. In this approach, the parameters of the
hidden nodes are selected randomly from any interval, and stay fixed. Only the
output weights are learned. The optimization problem in randomized learning
becomes convex and can be solved by a standard linear least-squares method [1].
This leads to very fast training. The the universal approximation property is kept
when the random parameters are selected from a symmetric interval according
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to any continuous sampling distribution [2]. The main problems in randomized
learning are [3,4]: how to select the interval and distribution for the random
parameters, and whether the weights and biases should be chosen from the same
interval and distribution.

It was shown in [5] and [6] that the weights and biases of hidden nodes have
different functions and should be selected separately. The weights decide about
the activation function (AF) slopes and should reflect the TF complexity, while
the biases decide about the AF shift and should ensure the placement of the
most nonlinear fragments of AFs into the input hypercube. These fragments are
most useful for modeling TF fluctuations. The method proposed in [5] selects
the proper interval for the weights based on AF features and TF properties.
The biases are calculated based on the weights and data scope. This approach
introduces the AFs into the input hypercube and adjusts the interval for weights
to TF complexity. In [6], instead of generating the weights, the slope angles of
AFs were randomly selected. This changed the distribution of weights, which
typically is a uniform one. This new distribution ensured that the slope angles
of AFs were uniformly distributed, which improved results by preventing over-
fitting, especially for highly nonlinear TFs.

To improve further FNN randomized learning, in [7], a D-DM was proposed.
This method introduces the AFs into randomly selected regions of the input space
and adjusts the AF slopes to the TF slopes in these regions. As a result, the AFs
mimic the TF locally, and their linear combination approximates smoothly the
entire TF. This work contributes to the development of data-driven FNN learning
by introducing different AFs, i.e. bipolar sigmoid, sine function, saturating linear
functions, reLU, and softplus. For each AF, the formulas for weights and biases
are derived.

The remainder of this paper is structured as follows. In Sect. 2, the framework
of D-DM is presented. The formulas for hidden nodes parameters for different
AFs are derived in Sect. 3. The performance of FNN data-driven learning with
different AFs is evaluated in Sect. 4. Finally, Sect. 5 concludes the work.

2 Framework of the Data-Driven FNN Learning

Let us consider a shallow FNN architecture with n inputs, a single-hidden layer,
and a single output. AFs of hidden nodes, h(x), map nonlinearly input vec-
tors x = [x1, x2, ..., xn]T ∈ R

n into an m-dimensional feature space. An output
node combines linearly m nonlinear transformations of the inputs. The function
expressed by this FNN has the form:

ϕ(x) =
m∑

i=1

βihi(x) (1)

where βi is the output weight linking the i-th hidden node with the output node.
Such FNN architecture has a universal approximation property, even when

the hidden layer parameters are not trained but generated randomly from the
proper distribution [2,8].
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The output weights β = [β1, β2, ..., βm]T can be determined by solving the
following linear problem: Hβ = Y, where H = [h(x1),h(x2), ...,h(xN )]T ∈
R

N×m is the hidden layer output matrix, and Y = [y1, y2, ..., yN ]T is a vector of
target outputs. The optimal solution for β is given by:

β = H+Y (2)

where H+ denotes the Moore–Penrose generalized inverse of matrix H.
The hidden node parameters, i.e. weights a = [a1, a2, ..., an]T and a bias b,

control slopes and position of AF in the input space. For a sigmoid AF given by
the formula:

h(x) =
1

1 + exp (− (aTx + b))
(3)

weight aj decides about the sigmoid slope in the j-th direction and bias b decides
about the sigmoid shift along a hyperplane containing all x-axes. The appropriate
selection of the slopes and shifts of all sigmoids determine the fitting accuracy
of FNN to the TF. To adjust the sigmoids to the local features of the TF, in
[7], a D-DM for FNN learning was proposed. This method selects an input space
region by randomly choosing one of the training points for each sigmoid. Then,
it places the sigmoid in this region and adjusts the sigmoid slopes to the TF
slopes in the neighborhood of the chosen point. By combining linearly all the
sigmoids randomly placed in the input space, we obtain a fitted surface which
reflects the TF shape in different regions.

The D-DM algorithm, in the first step, selects randomly training point x∗.
Then, sigmoid S is placed in the input space in such a way that one of its
inflection points, P , is in x∗. The sigmoid value at the inflection point is 0.5:

h(x∗) =
1

1 + exp (− (aTx∗ + b))
= 0.5 (4)

From this equation we obtain the sigmoid bias as:

b = −aTx∗ (5)

The slopes of sigmoid S are adjusted to the TF slopes in x∗. The TF slopes
in x∗ are estimated by fitting hyperplane T to the neighborhood of x∗. The
neighborhood, Ψ(x∗), contains point x∗ and k training points nearest to it.
Hyperplane T has the form:

y = a′
1x1 + a′

2x2 + ... + a′
nxn + b′ (6)

where coefficient a′
j expresses a slope of T in the j-th direction.

We assume that sigmoid S is tangent to hyperplane T in point x∗. This
means that the partial derivatives of S and T in x∗ are the same. Comparing
the formulas for partial derivatives of both functions, we obtain an equation for
the sigmoid weights (see [7] for details):

aj = 4a′
j , j = 1, 2, ..., n (7)
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To generate all the FNN hidden nodes, the D-DM algorithm repeats the
procedure described above m times. So, for each node it randomly selects train-
ing point x∗, fits hyperplane T to its neighborhood Ψ(x∗), calculates weights
aj according to (7), and calculates biases b according to (5). Finally, it calcu-
lates hidden layer output matrix H, and output weights from (2). The resulting
function, ϕ(x), constructed in line with such data-driven learning, reflects TF
fluctuations.

The D-DM has two hyperparameters: the number of hidden nodes m and
neighbourhood size k. They control the fitting performance of the model and
its bias-variance tradeoff. Their optimal values for a given TF should be tuned
during cross-validation.

3 Data-Driven FNN Learning with Different Activation
Functions

When we employ other AFs instead of logistic sigmoids, the projection matrix
H changes in a way which can entail changes in the approximation properties
of the model. Using other AFs requires the derivation of new formulas for the
hidden node parameters in the following ways.

Bipolar sigmoid sigmoid_b. Usually the bipolar sigmoid is defined as a hyper-
bolic tangent function. In this study, we define it slightly differently:

hsigb(x) =
2

1 + exp (− (aTx + b))
− 1 (8)

D-DM places sigmoid_b in the input space in such a way that one of
its inflection points is in the randomly selected training point, x∗. The
sigmoid_b value at the inflection points is 0, so, hsigb(x∗) = 0. From this
equation we obtain the formula for the bias, which is the same as for the
unipolar sigmoid (sigmoid_u), (5).
To find weights aj , we equate the partial derivatives of sigmoid_b in x∗ to
the partial derivatives of hyperplane T , (6):

∂hsigb(x∗)
∂xj

=
1
2
aj(1 + hsigb(x∗))(1 − hsigb(x∗)) = a′

j (9)

From this equation, taking into account that hsigb(x∗) = 0, we obtain:

aj = 2a′
j , j = 1, 2, ..., n (10)

Sine function sine. Let us place the sine AF, hsin(x) = sin(aTx + b), in the
input space in such a way that it has one of its inflection point in randomly
selected training point x∗. The sine value in the inflection points is 0, so,
hsin(x∗) = 0. From this equation we obtain the formula for bias, which is the
same as for both sigmoid AFs, (5).
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To determine equations for the weights for sine, we equate the partial deriva-
tives of sine in x∗ to the partial derivatives of hyperplane T , (6):

∂hsin(x∗)
∂xj

= aj cos(aTx∗ + b) = a′
j (11)

Taking into account that sin(aTx∗ + b) = 0 implies cos(aTx∗ + b) = 1, from
(11) we obtain:

aj = a′
j , j = 1, 2, ..., n (12)

Saturating linear unipolar function satlin_u. This is a linearized version
of sigmoid_u defined as follows:

hsatu(x) =

⎧
⎨

⎩

0 if z ≤ 0
z if 0 < z < 1
1 if z ≥ 1

(13)

where z = aTx + b.
satlin_u is placed in the input space in such a way that it has a value of
0.5 in x∗. This is analogous to sigmoid_u to which satlin_u has a similar
shape. Thus, aTx∗ + b = 0.5. From this equation we obtain:

b = 0.5 − aTx∗ (14)

We assume that the middle segment of hsatu(x), aTx+b, has the same slopes
as hyperplane T , thus:

aj = a′
j , j = 1, 2, ..., n (15)

Saturating linear bipolar function satlin_b. This AF is a linearized ver-
sion of bipolar sigmoid sigmoid_b:

hsatb(x) =

⎧
⎨

⎩

−1 if z ≤ −1
z if −1 < z < 1
1 if z ≥ 1

(16)

where z = aTx + b.
satlin_b is placed in the input space in such a way that it has a value of 0
in x∗. Thus, aTx∗ + b = 0. From this equation we obtain the same formula
for a bias as for sigmoid AFs, (5).
As with satlin_u, we assume that the middle segment of satlin_b has
the same slopes as hyperplane T . Thus, weights aj are the same as the T
coefficients, (15).

Rectified linear unit relu. This is an AF commonly used in deep learning.
It is expressed by:

hreLU (x) =
{

0 if z ≤ 0
z if z > 0 (17)

where z = aTx + b.
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relu is composed of two half-hyperplanes: the first being y = 0 and the
second y = aTx+b. D-DM places the relu AF in the input space so that the
second half-hyperplane coincides with hyperplane T . Thus, their coefficients
are the same:

b = b′, aj = a′
j , j = 1, 2, ..., n (18)

Softplus softplus. This is a smooth approximation of the relu. It is expressed
by:

hsoft(x) = ln
(
1 + exp

(
aTx + b

))
(19)

For x = [0, 0, ..., 0] and b = 0, the value of hsoft(x) = ln(2). Let us shift this
function in such a way that it has the value of ln(2) in x∗. In such a case
ln(1 + exp(aTx∗ + b)) = ln(2). From this equation we obtain a formula for b,
which is the same as for the sigmoids (5).
Now, let us assume that the slopes of softplus in x∗ are the same as the
slopes of T . Equating the partial derivative of both functions we obtain:

∂hsoft(x∗)
∂xj

=
aj

1 + exp(−(aTx∗ + b))
= a′

j (20)

From ln(1 + exp(aTx∗ + b)) = ln(2) we obtain 1 + exp(aTx∗ + b) = 2. Substi-
tuting this into (20), we obtain the weights of hidden nodes with softplus
AFs:

aj = 2a′
j , j = 1, 2, ..., n (21)

Table 1 details the hidden nodes parameters determined by D-DM for dif-
ferent AFs. Note that in all cases, weights aj reflect hyperplane T coefficients
a′

j . Biases for all AFs, excluding relu, are expressed using a dot product of the
weight vector and x∗ vector.

Table 1. Hidden nodes parameters for different activation functions.

Activation function Weights aj Bias b

sigmoid_u: hsigu(x) = 1
1+exp(−(aT x+b))

4a′
j −aTx∗

sigmoid_b: hsigb(x) = 2
1+exp(−(aT x+b))

− 1 2a′
j −aTx∗

sine: hsin(x) = sin(aTx + b) a′
j −aTx∗

satlin_u: hsatu(x) =

⎧
⎪⎨

⎪⎩

0 if z ≤ 0

z if 0 < z < 1

1 if z ≥ 1

a′
j 0.5 − aTx∗

satlin_b: hsatb(x) =

⎧
⎪⎨

⎪⎩

−1 if z ≤ −1

z if −1 < z < 1

1 if z ≥ 1

a′
j −aTx∗

relu: hreLU (x) =

{
0 if z ≤ 0

z if z > 0
a′
j b′

softplus: hsoft(x) = ln
(
1 + exp

(
aTx + b

))
2a′

j −aTx∗

where a′
j and b′ are coefficients of hyperplane T , y = a′

1x1 + a′
2x2 + ... +

a′
nxn + b′, adjusted to the TF in the neighborhood Ψ(x∗) of randomly

selected training point x∗; z = aTx + b.
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Figure 1 shows AFs of different types introduced into the input space by D-
DM. The training points belonging to the neighborhood of x∗, Ψ(x∗), are shown
as red dots. Note that the AFs in all cases have the same slopes in x∗ as the
slope of line T , which estimates the TF slope in x∗. D-DM introduces m AFs in
different regions of the input space.
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Fig. 1. AFs of different types introduced into the input space in x∗ by D-DM. (Color
figure online)

4 Simulation Study

In this section, we report the experimental results over several regression prob-
lems in order to compare the fitting properties of D-DM with different AFs. They
include an approximation of extremely nonlinear TFs:

TF1 g(x) = sin (20 · exp x) · x2, x ∈ [0, 1]
TF2 g(x) = 0.2e−(10x−4)2 + 0.5e−(80x−40)2 + 0.3e−(80x−20)2 , x ∈ [0, 1].
TF3 g(x) =

∑n
j=1 sin (20 · expxj) · x2

j , xi ∈ [0, 1]

TF4 g(x) = −∑n
i=1 sin(xi) sin20

(
ix2

i

π

)
, xi ∈ [0, π]

TF5 g(x) = 418.9829n − ∑n
i=1 xi sin(

√|xi|), xi ∈ [−500, 500]

Both the training and test sets for TF1 and TF2 included 5000 points. For
the training set, argument x was generated randomly from U(0, 1), and for the
test set, it was evenly distributed in [0, 1]. The function values were normalized
in the range [0, 1]. Note that TF1 starts flat, near x = 0, then has increasing
fluctuations (see Fig. 3). TF2 has two spikes that could be difficult to model with
FNN (see Fig. 5).

TF3–TF5 are multivariate functions. We considered these functions with
n = 2, 5 and 10 arguments. The sizes of the training and test sets depended
on the number of arguments. They were 5000 for n = 2, 20,000 for n = 5, and
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50,000 for n = 10. All arguments for TF3–TF5 were normalized to [0, 1], and the
function values were normalized to [−1, 1]. Two-argument functions TF3–TF5
are shown in Fig. 2. Note that TF3 is a multivariate variant of TF1. It combines
flat regions with strongly fluctuated regions. TF4 expresses flat regions with
perpendicular grooves. TF5 fluctuates strongly, showing the greatest amplitude
at the borders.
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Fig. 2. Target functions TF3–TF5.

Figure 3 shows the results of TF1 fitting. The fitted lines are composed of AFs
of different shapes. The AFs distributed by D-DM in the input interval (shown
by the gray field) are shown in the lower panels. FNN included 30 hidden nodes.
The neighborhood size was 2 (k = 1). As you can see from Fig. 3, the slopes of
the AFs reflect the TF slopes. D-DM introduces the steepest fragments of the
AFs into the input interval. These fragments are the most useful for modeling the
TF fluctuations. The saturated AF fragments in the input interval are avoided.
The best fitting results were achieved for both sigmoid AFs. sine cannot cope
with a TF with variable intensity of fluctuations. Neither relu, which yielded
the highest fitting error, nor the saturating linear functions are not able to
fit smoothly to TF1. The smooth counterpart of relu, softplus, improves
significantly on the relu fitting results by offering a smooth approximation of
TF1. Obviously, the results are dependent on the number of hidden nodes. The
left panel of Fig. 4 shows the TF1 fitting error for different numbers of hidden
nodes. As can be seen from this figure, the sigmoid AFs outperformed all the
others. Slightly worse results were achieved for softplus, while the highest error
was observed for relu. Detailed results for each AF, i.e. RMSE for the maximal
number of hidden nodes shown in the figures, are presented in Table 2. The lowest
errors, i.e. those that are at least 5% lower than the others, are marked in bold
in this table.
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Fig. 3. TF1: Results of D-DM fitting for different AFs.
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Table 2. Fitting errors (RMSE).

sigmoid_u sigmoid_b sine satlin_u satlin_b relu softplus

TF1 2.39E−7 4.74E−7 7.44E−4 1.86E−3 4.78E−3 7.84E−2 4.00E−6
TF2 2.63E−7 1.23E−6 6.65E−2 9.93E−4 2.93E−2 5.46E−2 4.89E−5
TF3 n = 2 2.19E−5 2.26E−6 1.64E−3 5.81E−3 9.01E−3 1.87E−2 –
TF3 n = 5 0.2214 0.2215 0.2213 0.2214 0.2215 0.2212 –
TF3 n = 10 0.2329 0.2328 0.2331 0.2329 0.2328 0.2329 –
TF4 n = 2 6.69E−7 4.87E−6 3.95E−2 2.65E−3 9.05E−3 5.18E−2 –
TF4 n = 5 0.2419 0.2412 0.2411 0.2381 0.2433 0.2418 –
TF4 n = 10 0.2611 0.2723 0.3095 0.2618 0.2738 0.2571 –
TF5 n = 2 0.0083 0.0116 0.0426 0.0257 0.0258 0.0319 –
TF5 n = 5 0.2385 0.2380 0.2404 0.2390 0.2381 0.2405 –
TF5 n = 10 0.2246 0.2243 0.2260 0.2247 0.2243 0.2238 –
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Figure 5 shows fitting results for TF2 (120 hidden nodes and k = 1). In this
case, sigmoid_u and sigmoid_b provided the best fitting, while satlin_u and
softplus provided a slightly worse fitting. Other AFs could not cope with this
TF. For them, increasing the number of hidden nodes did not improve results
and RMSE remained outside the acceptable level of 0.01 (see right panel of Fig. 4
and Table 2).
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Fig. 5. TF2: Results of D-DM fitting for different AFs.

Figure 6 shows the convergence curves of FNN trained using D-DM for two-
argument TF3-TF5 (k = n). In all these cases, the sigmoid AFs yielded the best
results, while relu, sine and both saturating linear functions yielded the worst
results. softplus suffered from numerical problems related to the rapid growth
of this function and exceeding the limit for double precision numbers. So, in
Table 2, no results for softplus are given.
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Fig. 6. Convergence of FNN for TF3–TF5, n = 2.

In the case of multidimensional modeling (n = 5 and 10), results for all
AFs were comparable (see Figs. 7 and 8; k = n). This could be explained by
the change in the TF landscape, which flattens with an increasing number of
dimensions. When modeling flat TF, the AF shape turned out not to be as
important as in the case of TF with strong fluctuations.
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It is obvious from the performed simulations that the approximation proper-
ties of FNN trained using D-DM strongly depend on the AF type. The most use-
ful for smoothing highly nonlinear TFs with fluctuations turned out to be the sig-
moid AFs. The piecewise linear functions, i.e. relu, satlin_u, and satlin_b,
have problems with modeling smoothly complex TFs. Their linear parts do not
fit accurately to TF nonlinearities. Likewise sine AFs cannot build an accept-
able fitted function for the fluctuated TFs. The reason for this is probably the
periodic nature of sine. When sine AF is introduced into the input space to
improve the fitted function in region Ψ(x∗), it can worsen the fitted function in
other regions by introducing unwanted fluctuations. softplus AF gave slightly
worse results than sigmoid AFs for one-argument TFs, but it caused numerical
problems for multivariate TFs.

5 Conclusion

The data-driven FNN learning described in this study is an alternative to both
standard gradient-based learning and randomized learning. It allows us to bypass
the tedious iterative process of tuning weights based on gradients. In the pro-
posed approach, the parameters of hidden nodes are calculated based on the
local properties of the TF. The AFs, which compose the fitted function, are
introduced into the input space in randomly selected regions and their slopes are
adjusted to the TF slopes in these regions. Consequently, the set of AFs reflects
the TF fluctuations in different regions, which leads to accurate approximation.
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Our approach is completely different from typical randomized learning, where
the AF parameters are chosen randomly and do not reflect the TF landscape.
D-DM finds the network parameters quickly, without repeatedly presenting the
training set.

FNN performance strongly depends on AF shape. In this work, using a data-
driven approach, we derived equations for the hidden node parameters for dif-
ferent AFs. As our experimental study has shown, the best FNN performance
in smoothing highly nonlinear TFs was achieved by the sigmoid AFs. They were
able to fit to the TF fluctuations. relu AF, which is very popular in deep learn-
ing, fared very poorly in fluctuation modeling due to its piecewise linear nature.
Its smooth counterpart, softplus, produced much better results but suffered
from numerical problems related to rapid growth.
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Abstract. Data scarcity is a significant problem when it comes to
designing machine learning systems for structural health monitoring
applications, especially those based around data-hungry algorithms and
methods, such as deep learning. Synthetic data generation could poten-
tially alleviate this problem, lowering the number of measurements that
need to be acquired in slow and often expensive conventional experi-
ments. Such synthesis can be done by Generative Adversarial Networks,
potentially creating unlimited synthetic samples recreating the original
data distribution. While most of the research about these networks is
centered around using them on image data, they have also been applied
to audio waves - going as far as successfully synthesizing human speech.
This suggests that these networks should also apply to synthesizing time-
domain signals in various fields of structural health monitoring, guided
waves in particular, as they are in many ways similar to audio wave
signals. This work proposes an adaptation of style-based GAN archi-
tecture to time-domain signal generation, and presents its viability for
guided waves synthesis, utilizing a database of signals collected in series
of pitch-catch experiments on a composite plate.

Keywords: Neural network applications · Neural network theory and
architectures · Supervised and unsupervised learning

1 Introduction

Guided wave based monitoring is one of many methods utilized for structural
health monitoring. They’re based on analyzing how high-frequency vibration
propagates on a multitude of paths between transducers placed on the structure.
Though the concept is fairly simple, the analysis of the output signals is complex
and may overshadow the advantages offered by the method - like their sensitivity
to small damage, being able to monitor large structures with a low amount of
transducers, or their comparably low mass and cost [8]. This prompts attempts
to apply various advances in machine learning to the analysis of these signals,
however, these are generally very data-hungry algorithms. While this is often not
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-87986-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87986-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-87986-0_7


Time-Domain Signal Synthesis with GANs 79

a problem for tasks like image recognition with plentiful rich publicly available
datasets, the same is not true for guided waves. In this case, data is at best
scarce and time-consuming to acquire - and at worst expensive or borderline
impossible, as measurements for damaged scenarios require introducing damage
to the part we are collecting data for, destroying it in the process.

Similar problems have been found in some more niche areas of application for
deep learning, where the availability of publicly accessible data is lower due to
various reasons - e.g. medicine with relatively difficult data collection as well as
privacy concerns. Due to that, some methods for combating data scarcity have
been researched and established as viable. The simplest one is data augmen-
tation, based on passing the available samples through various transformations
which despite altering it, still present viable (and possible to encounter) data.
For image recognition examples would include random cropping, blurring, or
adding noise to the image - because while it does alter the image, it doesn’t
change the nature of what the image represents (e.g. a blurry cat is still a cat).

Among newer methods, are Generative Adversarial Networks (GANs) [4] that
create synthetic data. They are a pair of deep neural networks trained to imi-
tate the distribution of the data they were supplied with for the training process.
During training, these two networks are pitted against each other, with the Dis-
criminator network attempting to distinguish synthetic data provided by Gen-
erator from real examples. Both of these networks are trained to progressively
get better at their respective tasks so that the Discriminator can continuously
provide Generator with information on how to create more “believable” data.

There has been a significant amount of research and improvements on how
to utilize GANs, as well as what problems they can be applied to [5]. Their use
has also since expanded from image data to various other types of data - such as
audio wave synthesis [2]. Using the synthetic data for training in addition to real
samples has also been shown to improve the capabilities of models across multiple
domains, including kidney CT scan segmentation [10], machine fault detection
[11], card fraud detection [3] and many others, underlining their potential as a
tool for creating viable training data.

This work proposes a GW-GAN (Guided Wave - Generative Adversarial
Network) model based on a state-of-the-art style based architecture for image
synthesis StyleGAN2 [6,7], which besides generating high-quality images allows
for controlling the output via style vectors. The motivation behind this work was
the success of GANs in multiple fields as a data generation tool - in particular
when it comes to audio signals which in principle are similar to guided waves.
Additionally, to the best of authors’ knowledge, style-based GANs (besides style
transfer) have not been used to work with other time-domain signals, and while
the presented model was created for guided waves, it can very well be used with
any time-domain data - though it may need minor adjustments depending on
the nature of the signals in question. For the guided waves proof of concept,
the model was trained using OpenGuidedWaves dataset [9] and used to generate
new signals that match the original distribution.
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2 Style-Based Generative Adversarial Networks

2.1 Generative Adversarial Networks

Generative Adversarial Networks are generative models defined by their adver-
sarial training procedure involving 2 networks, referred to as the Generator and
the Discriminator. The Generator network is usually fed random noise as input,
and its task is to create some data out of this random noise. The training gradi-
ents for making its output similar to the training data are given by the Discrim-
inator, which is tasked with distinguishing the output produced by Generator
from the training examples. These two nets are trained in turns, with Discrim-
inator progressively getting better at distinguishing these fake examples from
original data, and giving the Generator information on how to better fool it.

2.2 StyleGAN

Many of the newer GAN architectures differ from the original in various ways.
StyleGAN [6,7] has re-imagined the way in which the random controlling (also
called latent) vector is applied to the Generator. While normally it is the input
to the first layer, in the case of Stylegan that input has been replaced with a
constant vector which is modified during training to provide optimal initializa-
tion for the data generation. The random vector is instead fed into a multilayer
perceptron mapping network - which is also trained together with the generator -
whose goal is to provide a style vector. The goal of that is to allow the Generator
to extract arbitrary learned features from the random vector. These styles are
then applied to the generator at multiple scales (between upscales), influencing
the output both in terms of large-scale information (e.g. background) as well as
fine details. After the training phase, this mapping network can be disconnected,
and the styles can be provided directly by the user, resulting in a large level of
control over the output of the generator.

The original StyleGAN2 Generator is constructed out of an arbitrary amount
of convolutional blocks (depending on the desired output size). Each of these
wraps upsampling with gaussian blur, followed by 2 convolutional layers together
with weight demodulation, which is used in place of instance normalization. The
signals at each scale are then appropriately upsampled to much final output size
and added together using skip-connections, with the output of the Generator
being a sum of the signals from each scale. The goal of such architecture is to
simplify the training process in comparison to classic progressive-growing [4],
and avoid some of its drawbacks [7].

2.3 Finding Styles for a Given Image

After training a StyleGAN, besides generating random images and experimenting
with manually making changes to the style vector, it is also possible to find the
style vectors for specific examples. This comes in handy when a database of
labeled examples is available - this way identifying style vectors for them may
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allow for finding some connections between the style values and contents of the
images.

Finding the style vector for a set image is done using just the Generator,
which has its weights frozen throughout this process. An arbitrary set of styles
is supplied to the network as a starting point (ideally one that is somewhat close
to the result, if it is possible to create an accurate “style-guessing” network).
This style vector then undergoes adjustment via backpropagation, with the loss
function being defined as the distance between the desired image, and the image
produced by the Generator. This distance can be a simple mean square error,
however, it often leads to the process getting stuck in local minima. A better dis-
tance metric is using the differences between the output of the last convolutional
layer of a robust image classifier as perceptual distance [1].

3 GW-GAN

3.1 Generator

Fig. 1. Proposed GW-GAN generator architecture

The GW-GAN Generator is composed of 6 convolutional blocks with the
initialization constant vector that has a size of 32× 384 for output signal length
of 2̂ 13. Due to the various scales reflecting frequency bands in the output signal,
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as well as the fact that the output signals are oscillating, a non-uniform upscaling
approach was used to increase the number of high-frequency components at
the cost of low-frequency ones. The first block does not have an upsampling
operation, following 3 upsample the signal by the factor of 4, and last 2 by the
factor of 2. Since the values of signals can have both positive and negative values,
tanh activations were used in place of more common relu. Besides styles, each
block is supplied with random noise like in StyleGAN2 [7]. The schematic of
generator architecture can be seen in Fig. 1, and the number of filters in each
convolutional block, as well as the output samples in Table 1. All upsampling
operations are done using bilinear interpolation.

The mapping network is a 4-layer multilayer perceptron with 128 nodes per
layer, and leaky relu activations (alpha = 0.2).

Table 1. Filter count and output samples for convolutional blocks in the Generator

Block id 1 2 3 4 5 6

Filter count 384 192 144 96 48 24

Output samples 32 128 512 2048 4096 8192

3.2 Discriminator

Fig. 2. Proposed GW-GAN discriminator architecture

The Discriminator is a simple 6-block residual network using the same filter
counts as Generator (Table 1) however in reverse order. The blocks consist of
splitting the signal into 2 copies, one of which goes through a convolution layer
with a set filter count and kernel size of 3, while the other goes through one with
kernel size of 1. Lastly, the outputs of these 2 operations are added, and (besides
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the last block) go through average pooling at a size of 4 to downsample them.
The Discriminator ends with a dense layer for the fake/real decision-making.
The schematic of the discriminator can be seen in Fig. 2.

3.3 Training

The proposed model was trained on data from OpenGuidedWaves dataset [9].
The dataset is composed of a series of measurements of guided waves between
12 transducers spread along 2 opposite edges of a composite plate. A total of
28 damage states are simulated by attaching magnets to various fragments of
the plate. The measurements are also performed across a wide spectrum of exci-
tation frequencies, ranging from 60 kHz to 240 kHz. For the training procedure,
a total of 160 signals have been hand-picked from damaged measurements for
damage positions 1–24 at an excitation frequency of 60 kHz, selecting instances
where the damage was either directly on the measured path or close to it. The
selected signals have been cropped to 8192 samples and passed through band-
pass filtration with the lower band at 20 kHz and upper at 110 kHz. The filtration
was performed due to a significant amount of measurement noise present in the
signals (as can be seen in Fig. 3), to prevent the Generator from attempting to
mimic that noise and instead focus on the actual signal. The final model (map-
ping network + discriminator + generator) had around 1.8 million parameters
in total and followed the same training procedures as StyleGAN2 [7]. It was
trained for a total of 326 epochs, which took 120 h on an Nvidia GeForce 1060ti
graphical processing unit, using a batch size of 8.

3.4 Style-Finding for a Given Signal

Finding the style vector for a desired signal has proven to be more difficult than
initially anticipated. The attempts at training a residual convolutional network
to perform style-guessing and give the style backpropagation an approximate
starting position have failed to produce satisfying results. Due to random ini-
tialization not being reliable enough, in an effort to increase that reliability,
a series of random style-signal pairs are generated and compared against the
desired signal, resulting in the closest one (in terms of mean square error) being
selected as the starting position.

Due to the lack of a robust feature extractor for guided wave signals, as well
as a very prominent local minimum at y(x) = 0 due to the oscillating nature of
these signals, the backpropagation was broken down into 2 steps:

1. loss = perceptual difference + raw signal mean square error
2. loss = raw signal mean square error
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Fig. 3. Effect of bandpass filtering the training data

The network used for the perceptual difference was the aforementioned style-
guesser. While it wasn’t particularly good at the task it was trained to perform,
the features from the last convolution layer have proven to work well for the
style-finding process. The reasoning behind breaking it down into these 2 steps
is the fact that starting with raw MSE loss practically always resulted in getting
stuck in the local minimum of y(x) = 0, and relying on the combined perceptual
+ raw loss produced close, however not satisfying results. Instead, the result is
initially approached using the combined loss and later fine-tuned with raw MSE
loss.

4 Results

4.1 Generation from Random Noise

As can be seen in Fig. 4, the GW-GAN training was successful despite a very
small amount of training data. Random generation produces a variety of signals,
showing that mode collapse did not occur. It is a situation in which the network
“collapses” into only ever producing the same signal, as it finds it to be the
easiest way of fooling the discriminator. The generated signals also resemble the
measured ones (presented in Fig. 3): they contain clearly visible wave packets
that tend to merge in later portions of the signal. At this point, an experienced
operator likely wouldn’t be able to distinguish between real and fake data.
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Fig. 4. Example of several signals generated from random noise

4.2 Finding Style Vector for a Given Signal

The plots in Fig. 5 demonstrate that the process of finding style vectors for a
given signal works and that manipulating the style vectors can change the output
of the network in various ways.
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Fig. 5. Example of a process of finding style vector for a specific signal
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5 Discussion

As presented in the previous section, the generator can successfully synthesize
various guided wave signals - be it via random generation or manipulating the
style vector to achieve a specific result. This is a promising stepping stone on the
road to creating a comprehensive tool for guided waves database augmentation
and synthesis - as it suggests that it is indeed possible in the first place.

Since adjusting the input values in style vector allowed the generator to
synthesize signals of a desired shape, establishing how to work directly on the
style vectors by investigating the connections between labeled signals and the
style vectors required to generate them should lead to formulating a control
scheme that would allow for the synthesis of various desired signals - ideally
ones that were not present in the original training distribution - e.g. synthesizing
signals at new sensor locations.

This work did not explore the effects that adding synthetic data to training
would have on classifiers trained using it, as it still preliminary research, at this
moment focused on the controlled synthesis of high-quality data. Though using
GAN generated data for dataset expansion has proven to result in more accurate
or robust classifiers in other domains [3,10,11], the exact impact will have to be
investigated once proper synthesis control is formulated.

Lastly, while GW-GAN was designed with guided waves in mind, it should
be usable for any time-series signals. This may require minor changes in the
architecture, such as altering activations (which will certainly be required if the
signal in question should not produce negative values), scaling the output signal,
or adding/removing convolution blocks, and altering scale distribution.

6 Conclusions

The proposed GW-GAN was successfully trained to generate guided wave sig-
nals. The initial attempts of controlling the result via adjusting style vectors
have worked, and prompt further research to achieve better control over the
generation outputs. Once such control is achieved, the effects of adding various
amounts of synthetic data on the efficacy of classifiers trained on it should be
investigated. The applicability of the architecture to other time-series problems
is yet to be verified.

Acknowledgement. The work presented in this paper was supported by the
National Center for Research and Development in Poland, under project number
LIDER/3/0005/L-9/17/NCBR/2018.
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The Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou
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Abstract. Trend estimation, i.e. estimating or smoothing a nonlinear
function without any independent variables, belongs to important tasks
in various applications within signal and image processing, engineer-
ing, biomedicine, analysis of economic time series, etc. We are inter-
ested in estimating trend under the presence of heteroscedastic errors in
the model. So far, there seem no available studies of the performance
of robust neural networks or the taut string (stretched string) algorithm
under heteroscedasticity. We consider here the Aitken-type model, analo-
gous to known models for linear regression, which take heteroscedasticity
into account. Numerical studies with heteroscedastic data possibly con-
taminated by outliers yield improved results, if the Aitken model is used.
The results of robust neural networks turn out to be especially favorable
in our examples. On the other hand, the taut string (and especially its
robust L1-version) inclines to overfitting and suffers from heteroscedas-
ticity.

Keywords: Nonlinear regression · Robust neural networks · Taut
string · Outliers · Heteroscedasticity

1 Introduction

Estimating and predicting a nonlinear trend of an observed continuous variable
represents an important task with various applications in signal and image pro-
cessing, engineering, biomedicine, economics, etc. A broad spectrum of trend esti-
mation methods has been proposed and investigated in machine learning as well
as statistics. If we consider (only) one-dimensional regressors X1, . . . , Xn ∈ R,
the nonlinear regression model can be expressed as

Yi = f(Xi) + ei for i = 1, . . . , n, (1)

where Y1, . . . , Yn are observed values of an unknown continuous nonlinear func-
tion f under the presence of random errors e1, . . . , en. The errors must be inde-
pendent and identically distributed (i.i.d.) but we do not want to assume any
particular probabilistic distribution of the errors. The aim is to estimate (pre-
dict) the response variable based on given regressors.
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L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 89–98, 2021.
https://doi.org/10.1007/978-3-030-87986-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87986-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-87986-0_8


90 J. Kalina et al.

We consider however a special case of (1) in the form

Yi = f(i) + ei for i = 1, . . . , n, (2)

with equidistant observations and denote the task to estimate the unknown
nonlinear function f as trend estimation (in this context, also commonly denoted
as smoothing, function approximation, pattern estimation, etc.). The values of
the response in (2) are not modeled by means of any independent variables
(regressors, predictors). In our regression point of view, we take the horizontal
axis, i.e. the vector (1, . . . , n)T , as a regressor, which is a common approach in
time series [2], but our approach here is not limited only to time series. The
estimated values will be denoted as f̂1, . . . , f̂n, and an estimate of f considered
as a function will be denoted by f̂ . We are interested in neural networks and the
taut string algorithm, while our aim is to discuss and investigate the performance
of both approaches (as well as their robust versions) under heteroscedasticity.

Heteroscedasticity is well known to complicate regression modeling. In lin-
ear regression, numerous hypothesis tests of heteroscedasticity are available; if
a suitable heteroscedasticity test is significant, the least squares estimator bLS

of the parameters β is not efficient and the standard estimates of var bLS are
biased. Therefore, the least squares estimator in the linear model is commonly
replaced by a generalized least squares approach (also known as weighted least
squares, Aitken estimator) [7]. Also, robust statistical estimation in linear regres-
sion, i.e. robust with respect to the presence of outliers in the data [9], has to
be adapted for heteroscedastic data accordingly [1,25]; in fact, there have been
heteroscedasticity tests proposed as tailor-made tools for robust regression [11].

Also in nonlinear regression (1), standard estimation methods such as neural
networks lose their efficiency under heteroscedasticity. Nevertheless, the litera-
ture on modeling heteroscedastic data by neural networks remains rather rare.
Heteroscedasticity was revealed in numerical experiments to have effect on neu-
ral networks (however without attempts for its modeling) in [18]. A specific
likelihood-based approach assuming gamma distribution of the data was used
in [16]. A heteroscedastic model combined with clustering (based however on
the non-robust maximum likelihood principle) of the data was exploited in [19].
While there exist several robust approaches to training neural networks, which
have dealt with robustness to outlying values (outliers) in the data [12], their
performance under heteroscedasticity has not been investigated. In fact, some
robust neural networks (e.g. those of [23]) are clearly not much suitable for het-
eroscedasticity, because they may consider a large portion of observations in
such parts of the data, where the variability of the errors is the largest, to be
outlying. In this paper, we propose a transformation of the basic model and to
exploit robust neural networks in a heteroscedastic regression model.

The taut string (stretched string) algorithm [3,4] for (2) represents one of
available nonlinear (and nonparametric) estimators for (2). It estimates a nonlin-
ear trend by a piecewise monotone function, which is desirable in various appli-
cations e.g. in signal and image processing. However, we are not aware of any
study of the performance of the taut string under heteroscedastic errors, which
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at any case appear quite commonly in real data. Section 2 of this paper recalls
the taut string algorithm and some available robust neural networks. It also
proposes a heteroscedastic-adapted (Aitken) model, which is used in numerical
experiments with heteroscedastic data in Sect. 3. Section 4 concludes the paper.

2 Methodology

In this section, we give a list of regression methods, which will be used in the
subsequent computations in Sect. 3. Here, we also specify our particular selec-
tion of parameters for each method. If necessary, we also describe other details
necessary in order to uniquely describe our computational approaches.

2.1 (Robust) Neural Networks for Nonlinear Regression

In our computations, we use the following versions of neural networks. While we
do not need to recall definitions of their standard types (see e.g. [8]), we comment
their recently proposed robust versions. field of numerical mathematics, i.e. in
mathematics by means of deterministic tools without specifying any uncertainty
or randomness (e.g. splines, Chebyshev polynomials,

to the free space.

– MLP: Multilayer perceptron with 2 hidden layers, which contain 16 and 2 neu-
rons, respectively. We use a sigmoid activation function in the hidden layers
and a linear output layer.

– RBF network: Radial basis function network with a Gaussian kernel and
10 radial units.

– LWS-MLP, LWS-RBF: LWS-based versions of MLPs or RBF networks,
replacing the common loss (i.e. minimal sum of squares residuals) by the
loss of the least weighted squares (LWS) estimator [10,25].

– LTS-MLP, LTS-RBF: LTS-based versions of MLPs or RBF networks, exploit-
ing the loss function of the least trimmed squares (LTS) estimator [21,22,24].

– Back-MLP, Back-RBF: Robust approaches to training MLPs and RBF net-
works using the backward subsample selection of [12], i.e. a backward search
of the least outlying subsamples.

Robust versions of MLPs (LWS-MLP, LTS-MLP, Back-MLP) have 2 hidden
layers, which contain 16 and 2 neurons, respectively. They use a sigmoid acti-
vation function in the hidden layers and a linear output layer. Robust versions
of RBF networks (LWS-RBF, LTS-RBF, Back-RBF) use a Gaussian kernel and
10 radial units. For LWS-MLP and LWS-RBF, we use the particular choice of
the weight function in the form

ψLWS(t) = ψ0

(
t

τ

)
· 1[t < τ ], t ∈ [0, 1], (3)

with τ = 3/4, where

ψ0(t) = exp
{

− t2

2σ2

}
, t ∈ [0, 1]. (4)
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With again τ = 3/4, LTS-MLP and LWS-RBF use the weight function

ψLTS(t) = 1[t < τ ], t ∈ [0, 1]. (5)

2.2 Taut String

The taut string algorithm [4], also denoted as stretched string or piecewise mono-
tone regression with taut strings, has received great attention in signal and image
processing, especially in image deblurring and restoration, or in real-time com-
munication systems; see [15] or [17] and the references cited therein. It is formally
defined for the model (2) for equidistant data as a regularized smoother penal-
izing the total variation. It has not been however discussed whether the method
is suitable under heteroscedasticity or not.

Appealing properties of the taut string include its ability to keep the number
of local extremes of the fitted curve under control. In other words, the method
does not have a tendency to include redundant local extremes in the estimated
trend [4]. The taut string was proven in [17] to be equivalent to the Rudin-
Osher-Fatemi model, which is a popular tool for image denoising based on total
variation. The taut string method was also exploited in [13] within proofs of
asymptotic properties of other more complex approaches to solving statistical
inverse problems; it belongs to a broader class of non-parametric procedures
with an adaptive choice of the regulation parameter [14]. Other properties of the
taut string may be rather limiting; particularly, the taut string is defined only
equidistant observations in (2) and its trajectory is non-smooth. In addition, the
method does not perform a prediction for a new (independent) observation, but
only provides a data-driven approximation. Thus, it is not possible to evaluate
its performance within a cross validation. Neither can be cross validation used for
finding a suitable value of the regularization parameter; therefore, an approach
based on a multiresolution analysis of the residuals was proposed in [4].

In addition to the plain taut string, there exists an alternative robust app-
roach of [6] estimating the conditional median of Yi (rather than its expectation)
in (2). We are however not aware of applications of such L1-version of the taut
string. The computation of the plain as well as robust taut string may exploit
the combinatoric algorithm of [4]. This minimizes the trajectory of f̂ under con-
straints, which require f̂ to lie between the largest convex minorant and smallest
concave majorant computed from Y1, . . . , Yn (and depending on the chosen reg-
ularization parameter). Thus, the estimator corresponds to an intuitive idea of
a taut string with the shortest possible trajectory.

2.3 Neural Networks and Heteroscedasticity: The Aitken Model

Let us now assume the model (1) with var ei = σ2ki for i = 1, . . . , n, where the
positive constants k1, . . . , kn are known. We propose now an alternative model,
which is more suitable for the modeling under heteroscedasticity. It is appropriate
to replace (1) by an alternative model,

Yi√
ki

= f

(
Xi√
ki

)
+

ei√
ki

, i = 1, . . . , n, (6)
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which takes heteroscedasticity into account. We call (6) the Aitken model, as it
is usual to denote an analogous approach for linear regression (as discussed in
Sect. 1). The errors in (6) are homoscedastic, as it holds

var
ei√
ki

=
1
ki
var ei = σ2. (7)

None of available studies of robust neural networks considered heteroscedastic
data. As our novelty, we propose to use also robust neural networks of Sect. 2.1
in the transformed model (6).

3 Numerical Experiments

3.1 Data Description

The aim of the numerical experiments is to compare various methods on two
different datasets, which are considered in different versions with a different
severity of heteroscedasticity. We use the notation of the model (2) here.

– Dataset A: Simulated heteroscedastic data (n = 500) using

Yi =
(i − 100)2

200
− 50 + ei, i = 1, . . . , n, (8)

where e1, . . . , en are generated as i.i.d. random variables with ei ∼ N(0, σ2
i )

and σ2
i = 0.3i for i = 1, . . . , n. in the data (however c = 0 would correspond

to exact fit
– Dataset B: Simulated heteroscedastic data (n = 500) with

Yi =
i

5
+ ei, (9)

where e1, . . . , en are generated as i.i.d. random variables from the normal
distribution with ei ∼ N(0, σ2

i ) and σ2
i = 0.6i for i = 1, . . . , n.

In addition, we also consider the datasets after an artificial contamination.

– Contaminated version of Dataset A. We replace �n/6� = 83 observations by
(deterministic) values Y6k = −40 + k for k = 1, . . . , �n/6�, where �x� denotes
the integer part of x ∈ R.

– Contaminated version of Dataset B, we replace (again) �n/6� = 83 observa-
tions by values Y6k = 80 − 0.9k for k = 1, . . . , �n/6�.

In all examples, the construction of the model (6) considers ki = i for i =
1, . . . , n. We use either Python or R software [20] for the computations, as indi-
cated in Table 1 for each of the trend estimation methods.
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3.2 Evaluating the Prediction Ability

Because the taut string does not allow to be computed within a cross validation
(see Sect. 2.2), we evaluate the approximation ability of all methods by means
of the mean square error (MSE) in an autovalidation (autoverification). Only
for all the methods without the taut string, we perform a standard 10-fold cross
validation; this divides a particular dataset to 10 groups, repeatedly performs the
trend estimation jointly over 9 groups, and applies the prediction to the omitted
group. Denoting the cross validation prediction error of the i-th observation for
i = 1, . . . , n, as Ŷi, MSE is finally aggregated as MSE = (1/n)

∑n
i=1(Yi − Ŷi)2.

Because MSE is not suitable for evaluating the prediction performance under
contamination, we consider its robust version known as the trimmed mean square
error (TMSE). Let us denote by r1, . . . , rn prediction errors of individual obser-
vations and by r2(1) ≤ · · · ≤ r2(n) their ordered squared values. TMSE is defined

as TMSE = (1/h)
∑h

i=1 r2(i), where we use h = �0.8n�.
Specifically, if we perform the prediction of the response in (6), MSE there

is however not directly comparable with values of MSE in (1). Nevertheless, we
are able to re-transform the predictions from (6) back to the original model (1).
If the fitted value of the response of the i-th observation in (6) is denoted as Ŷ ∗

i ,
then the corresponding fitted value in (1) is Ŷi =

√
kiŶ

∗
i and

MSE transformed to (1) is thus obtained as

MSE =
1
n

n∑
i=1

(√
kiŶ

∗
i − Yi

)2

. (10)

TMSE in (6) is evaluated in an analogous way.

3.3 Results

Results for Dataset A are presented in Table 1, which contains values of the mean
square error (MSE) within autovalidation, and Table 2 with values obtained in
the 10-fold cross validation. Results for Dataset B are presented in Table 3 for
autovalidation and Table 4 for 10-fold cross validation. Let us now discuss the
results.

For contaminated data, robust neural networks improve the prediction error
compared to standard ones. If the data are non-contaminated, the performance
of robust neural networks stays only slightly behind that of standard ones. This is
analogous to results of [12] on data without heteroscedasticity. The Aitken model
brings benefits compared to estimating in the plain nonlinear model. This is true
basically for each (heteroscedastic) situation.

The best results in both examples are obtained in the Aitken model, if robust
neural networks are used. Particularly, the best results in the two datasets are
obtained with LWS-RBF and LTS-RBF. Their robustness is beneficial much
more in the Aitken model compared to the plain nonlinear model. The taut
string and especially its L1-version overfits the data. This is clearly revealed by
graphical visualizations (not shown here). Moreover, no version of the taut string
method turns out to be suitable for data, which are heteroscedastic.
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Table 1. Autovalidation results of model (2) in Dataset A, evaluated as MSE and
TMSE for raw or contaminated data. For each method, we also present the software
used in the computations (and in parentheses, particular packages or functions are
given, or a statement that we used our code).

Method Software Raw data Contam. data

MSE TMSE MSE TMSE

Taut string R (ftnonpar [5]) 76.0 18.6 211.4 46.4

L1-taut string R (ftnonpar [5]) 56.9 16.8 164.9 45.7

MLP Python (Keras) 77.2 23.7 225.1 72.3

LWS-MLP Python (own) 78.5 23.0 253.6 51.6

LTS-MLP Python (own) 80.3 22.9 262.1 54.2

Back-MLP R (own) 82.4 23.4 270.4 61.8

RBF network Python (Keras) 73.6 21.1 203.9 60.8

LWS-RBF Python (own) 75.4 20.5 247.0 47.7

LTS-RBF Python (own) 79.8 19.4 252.8 50.3

Back-RBF R (own) 80.1 20.8 264.3 52.6

Table 2. 10-fold cross validation results in Dataset A, evaluated as MSE and TMSE
for raw or contaminated data.

Method Raw data Contam. data

MSE TMSE MSE TMSE

Model (2)

MLP 79.3 27.8 243.7 83.4

LWS-MLP 81.4 26.1 271.8 56.0

LTS-MLP 83.5 25.8 279.3 57.6

Back-MLP 85.0 26.9 286.4 63.1

RBF network 76.7 25.8 232.2 76.3

LWS-RBF 80.6 25.2 251.8 52.5

LTS-RBF 82.2 24.8 256.1 54.9

Back-RBF 84.9 25.3 263.2 59.4

Model (6)

MLP 75.9 26.7 241.4 74.3

LWS-MLP 79.4 25.2 275.2 31.9

LTS-MLP 80.3 25.0 286.5 33.0

Back-MLP 83.6 27.6 303.6 37.4

RBF network 72.2 24.3 237.0 69.8

LWS-RBF 74.9 25.7 259.3 30.7

LTS-RBF 75.1 24.7 262.1 31.6

Back-RBF 78.5 26.8 280.7 34.7
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Table 3. Autovalidation results of model (2) in Dataset B, evaluated as MSE and
TMSE for raw or contaminated data.

Method Raw data Contam. data

MSE TMSE MSE TMSE

Taut string 142.8 34.2 500.2 62.6

L1-taut string 98.0 27.1 204.2 53.0

MLP 134.4 37.8 480.8 98.7

LWS-MLP 145.1 37.5 494.3 64.1

LTS-MLP 148.9 37.2 491.6 66.4

Back-MLP 156.3 38.1 503.7 70.3

RBF network 125.3 36.1 463.7 97.0

LWS-RBF 136.6 35.7 482.5 61.2

LTS-RBF 138.2 35.3 481.1 63.9

Back-RBF 147.0 36.8 487.8 65.4

Table 4. 10-fold cross validation results in Dataset B, evaluated as MSE and TMSE
for raw or contaminated data.

Method Raw data Contam. data

MSE TMSE MSE TMSE

Model (2)

MLP 145.1 40.4 516.7 115.6

LWS-MLP 148.2 38.5 541.9 70.5

LTS-MLP 147.6 39.9 538.4 72.6

Back-MLP 153.7 38.8 568.1 78.2

RBF network 136.8 38.8 483.2 109.4

LWS-RBF 139.4 37.0 509.7 65.3

LTS-RBF 138.3 36.2 506.3 67.8

Back-RBF 145.7 38.1 511.0 73.9

Model (6)

MLP 133.2 37.0 452.3 104.6

LWS-MLP 139.1 35.3 490.7 46.1

LTS-MLP 137.6 34.9 494.8 45.3

Back-MLP 145.7 36.1 503.4 49.4

RBF network 128.2 33.5 437.9 99.2

LWS-RBF 132.1 32.2 474.7 42.0

LTS-RBF 130.5 32.8 478.0 44.8

Back-RBF 141.8 33.1 488.1 47.5
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4 Conclusions

Estimating trend in the model (2), i.e. smoothing a continuous variable, rep-
resents an important (and only seemingly simple) task in the analysis of real
data in various fields. We consider heteroscedastic data possibly contaminated
by outliers and compare standard and robust versions of neural networks and
the taut string method. As a novelty, we consider very recently proposed robust
neural networks of [12] in the Aitken model (6), which takes heteroscedasticity
into account.

While standard as well as robust methods for training neural networks suffer
from heteroscedasticity, the Aitken model turns out to be more suitable in our
examples and we recommend to perform the estimation in it; a suitable model
for the heteroscedasticity can be (at least in the situation with a single regressor)
easily formulated based on a visual inspection of the data. In the examples, we
achieved the best performance with LWS- and LTS-based robust versions of
RBF networks if the Aitken model (6) was used. As future research, we plan
to perform additional computations for robust neural networks, especially for
models with more-dimensional regressors.

The taut string algorithm is appealing for very specific applications of signal
and image processing. The taut string, which does not allow a cross valida-
tion, is clearly overcome by recently proposed robust neural networks in our
heteroscedastic examples. Indeed, it is the idea of the multiresolution analysis
of the residuals, which implicitly assumes homoscedastic errors within the taut
string method (although not explicitly stated in the literature); the same is true
for the robust L1-version. Under heteroscedasticity, the taut string (and espe-
cially its L1-version) turns out to overfit the data heavily. In addition, we are not
aware of any reliable extension of the taut string algorithm to regressors with
more than one dimension.
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pp. 145–157. Matfyzpress, Prague (2006)

15. Makovetskii, A., Voronin, S., Kober, V., Voronin, A.: Tube-based taut string algo-
rithms for total variation regularization. Mathematics 8, Article 1141 (2020)

16. Ng, N.H., Gabriel, R.A., McAuley, J., Elkan, C., Lipton, Z.C.: Predicting surgery
duration with neural heteroscecastic regression. Proc. Mach. Learn. Res. 68(26),
100–111 (2017)

17. Overgaard, N.C.: On the taut string interpretation and other properties of the
Rudin-Osher-Fatemi model in one dimension. J. Math. Imaging Vis. 61, 1276–
1300 (2019)

18. Paliwal, M., Kumar, U.A.: The predictive accuracy of feed forward neural networks
and multiple regression in the case of heteroscedastic data. Appl. Soft Comput. 11,
3859–3869 (2011)

19. Paul, C., Vishwakarma, G.K.: Back propagation neural networks and multiple
regressions in the case of heteroscedasticity. Comm. Stat. Simul. Comput. 46,
6772–6789 (2017)

20. R Core Team: R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna (2019). https://www.R-project.org/

21. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley,
New York (1987)

22. Rousseeuw, P.J., Van Driessen, K.: Computing LTS regression for large data sets.
Data Min. Knowl. Disc. 12, 29–45 (2006)

23. Rusiecki, A.: Robust LTS backpropagation learning algorithm. In: Sandoval, F.,
Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp.
102–109. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73007-
1 13
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Abstract. Humans have long aspired to understand dog behavior.
While research on the Calming signal has achieved substantial progress
in understanding dog behavior, it remains an unfamiliar concept to non-
expertise. Therefore, in this paper, we introduce a framework for ana-
lyzing dog behavior, which defines the interrelationship between dog
postures through a graph model without any additional devices but a
camera. First of all, our framework classifies the dog posture in frame
units, using a machine learning model based on the position information
of the dog’s body part in the video captured by the camera. We then
analyze dog behavior using graph models that define interrelationships
among classified dog postures. We expect that our approach will help
non-expertise to understand dog behavior.

Keywords: Canine behavior analysis · Object detection · Graph
model

1 Introduction

For centuries, dogs have socially interacted with humans by playing various
roles such as hunters, security guards, and friends. As such, dogs have come to
be thought of as spiritual companions rather than mere possessions for one’s
pleasure. Nevertheless, humans and dogs have many differences. In particular,
unlike a human, dogs communicate non-verbally using body language. To inter-
pret their behavior is more difficult for humans because of these differences.
Therefore, keeping dogs would become handy if it is possible to understand
dog’s behavior.

Norwegian dog trainer Turid Rugaas defines at least 30 types of “Calming
signals [6]” to understand dog behavior. The calming signal is a communication
method with dogs each other, but also known to use these signals with humans
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too. Research on the calming signal has helped many dog trainers and behavior-
ists and has led to the development of dog ethology. However, it is still arduous
for non-expertise to understand dog ethology without any knowledge of biology,
genetics, evolution, etc.

Moreover, various studies have been done using high-quality equipment, yet
attaching the equipment might cause stress for dogs, and it is too price for
commercializing.

Also, Previous studies have been defined dog behaviors by analyzing a single
posture. But it neglects the continuity of dog postures. For example, a dog’s
tail-raising posture is usually considered a friendly signal. Nevertheless, the tail-
raising posture could sign fear, anxiety, danger, or warning depending on the
previous postures.

Therefore, in this paper, we will introduce a framework for dog behavior anal-
ysis by defining the interrelationship between dog postures, using a graph model
without any additional devices but a camera. The graph model uses various dog
postures as nodes and defines the continuous interrelationships between nodes
in reference to the calming signal. First, Our framework uses object detection to
detect dogs and their body parts from the video captured by the camera. Then, the
detected dog area is set as absolute coordinate space to utilize the location infor-
mation of each body part detected regardless of the size and position of the dog
in the image. And, a dog’s posture is classified in frame units through a machine
learning model based on the absolute coordinate values of the body parts. Finally,
the graph model determines the dogs’ behavior using the postures classified on
frame units. Our framework is extensible to adding a new dog posture as a node
and redefining the continuous interrelationships between nodes.

Organization. In Sect. 2, We discuss about basic knowledge on dog behaviors.
In Sect. 3, we explain our posture classification method and graph model. In
Sect. 4, we evaluate the training process and performance of dog posture classi-
fication models. Lastly, we conclude the study in Sect. 5.

2 Dog Behaviors

A dog’s body language is a sophisticated non-verbal system that non-understand
in a single posture. A single posture is only part of the package that displays
its mood. Therefore, skilled dog trainers and behaviorists do not analyze a dog’s
behavior with just a single posture but observe every posture expressed in suc-
cession. For example, a beginner trainer may believe that when a dog lifts one
paw, it is emotional such as anxiety, fear, or stress, or describe as being hurt.
However, experienced trainers take into account the previous postures the dog
has shown. If a dog raises its paw after tilting its face, it can express curiosity
and expectation. Also, if the dog raises its paws after raising its tail, this may be
an action to get someone’s attention. Therefore, it is imperative to consider all
the postures they have shown when decoding dog behavior. In the next chapter,
we explain how a dog’s behavior can be analyzed through dog posture continuity
(Fig. 1).
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Fig. 1. Overall process of Canine Behavior Interpretation Framework. Given a video,
detects the dog’s body part in a frame unit. Each body part’s location information is
extracted after setting the detected dog area as an absolute coordinate space. Then, the
dog posture is classified through a machine learning algorithm based on the extracted
body part location information. Later, dog behavior is analyzed through a graph model
that defines postures’ continuous interrelationships classified in frame units.

3 Method

We introduce a graph model that sequentially represents an interrelationship of a
dog’s postures. This graph model puts the nodes defined in various dog postures
and explores the successive interrelationships between each node to understand
dog behavior. To implement this model, we first detect dogs and their body
parts using the object detection method [4,5] in the video. We then project the
detected dog area as absolute coordinate space and classify the dog’s posture
in frame units using each body part’s coordinates. After that, the graph model
determines the dogs’ behavior using the posture classified in frame units.

3.1 Dog Body Parts Detection Using Object Detection

It is vital to observe the dog’s body parts’ location to understand its body
language. In previous studies, researchers attached sensors to dog body parts for
movement analysis. However, dogs were reluctant to have the sensors attached.

Therefore, we established our goal to detect the dog’s body part through a
deep learning-based object detection method without any additional equipment
but a camera to extract the dog’s body part’s location information. For this goal,
we collected an image dataset of beagles among dog breeds through YouTube.
Yet, considering that the deep learning-based object detection method requires
a vast dataset, we encountered a problem that it is too expensive to collect and
label additional datasets.
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Fig. 2. We set the absolute coordinate space to utilize the dog’s body part’s position
information without space constraints. Black is padding to maintain spatial information
of the dog’s body part.

To address this problem, we decided to use transfer learning [7]. Transfer
learning is a training method that uses pre-trained models in similar domains
to the corresponding model when data is deficient. The advantage of transfer
learning use is previous learning experiences are adaptable for related tasks.
Thus, a model is trained to detect dog body parts by applying transfer learning
with a few samples, and as a result, it is possible to get the location information
of dog and body parts from the image without using expensive equipment.

3.2 Dog Posture Classification Using Machine Learning

Once the dog and its body parts are detected from the video, the next step is to
classify the dog’s postures using the detected body parts’ coordinates. Setting
an absolute coordinate space is necessary to accomplish the exact coordinate.
As shown in Fig. 2, the absolute coordinate space allows us to obtain fixed posi-
tion information of body parts regardless of the size and position of the dog in
the image. Our absolute coordinate space is established in the following process.
First, To maintain the spatial information of the detected dog area, padding is
added its area according to the ratio of width and height. We then resize the dog
area where the padding was added in the same size and set it as absolute coor-
dinate space. Once the absolute coordinate space is set, the detected dog’s body
parts center coordinate values are extracted based on the absolute coordinate
space. And the dog’s postures are classified in frame units through a machine
learning model based on the absolute coordinate values. Our dog posture classi-
fier yields an expected percentile value.
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Fig. 3. We analyze dog behavior by considering posture change based on a graph
model. For example, posture 2, which is finally classified, can be analyzed into two
behaviors according to the postures classified in the previous frame. (Blue vs. purple).
(Color figure online)

In this paper, following notation for the extracted absolute coordinate values.
We define the body part vector as l= (l1, l2, .., li), i ∈ {1, 2..., k}, where li is the
(x, y) absolute coordinate value of the kth dog body parts.

3.3 Dog Behavior Graph Model Generation

Deep learning based object detection methods and machine learning are applied
to classify dog postures in frame units. However, a single posture is merely part
of the package that expresses a dog’s mood. Therefore, we generated a graph
model to analyze the behavior using the posture patterns that show continuously.
The process of generating a graph model is as follows. First, combine successive
postures and define them as behavior concerning the calming signal. After that,
generate a graph that expresses the posture as nodes and the posture order as
an edge. Also, the defined behavior is added as the end node of the graph, and
the behavior node contains the information of the dog posture sequence. Finally,
compose various graphs that define dog behavior through posture sequences into
one graph model as shown in Fig. 3.

We denote for dog behavior set as B = {b1, b2, b3..., bn}, where bn is a repre-
sentation of variable length sequences data and oi indicates one element of the
dog posture set P = {p1, p2, .., pn}.

bn = (o1 → o2 → o3 → ... → oT )T (1)
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Algorithm 1. Canine Behavior Interpretation Framework
Input: Video frames f
Output: Behavior

Dog Behavior set B = {b1, b2, b3, ..., bn}
prevposture ← Posture classified from previous frame
route ← graph travel route
for f = 1 to n do

Obtain body parts vector l = {l1, l2..., li}
posture ← PostureClassifier(l)
if posture ∈ neighbors(prevposture) then

route ←Insert(posture)
end if

end for
if route.endnode is connected to behavior nodes then

for behavior in connected behavior nodes do
Choose higher-similarity behavior to the route

end for
else

for bj ∈ B do
Chooses highest-similarity behavior to the route

end for
end if
return behavior

3.4 Dog Behavior Analysis Using Graph Model

Once the graph model is built, our framework analyzes the dog’s behavior as
in Algorithm 1. First, approaches from the first frame to the nthframe in the
input video. And, the posture classifier expects the dog posture for each frame
based on the body part vector l by setting a threshold with a probability of 0.8.
With the first classified posture as the starting node, the graph model is explored
by sequentially traveling to the next frame’s classified posture node. However,
incorrect posture classification can lead to an error in analyzing dog behavior.
Therefore, if the classified posture from the current frame is not a neighbor node
of the previous posture node in the graph model that defines the relationship
between postures, it is considered misclassified and does not travel.

After exploring the graph up to the nth frame of the input video with this
method, our framework determined the dog behavior by dividing the informa-
tion into 2 cases. If the end node is connected to the behavior node, measure
the similarity between the travel route and posture sequence information of each
connected behavior node and determine the behavior node with a higher simi-
larity as the final behavior. And, if the similarity under the threshold is gained,
or the end node is unconnected to the behavior node, the similarity is computed
between the travel route and posture sequence information of all behavior nodes.
Then, the dog behavior of the highest similarity value is considered as an output.

The similarity between the travel route and the posture sequence of the
behavior node is measured through the graph editing distance [3] with the
following Eq. 2.
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d(g1, g2) = 1 − |mcs(g1, g2)|
max(|g1|, |g2|) (2)

where, d(g1, g2) means graph edit distance and mcs(g1, g2) indicate the max-
imum common sub graph [1]. Also, |g| indicate the size of graph. If the graph
edit distance [3] is close, it means that the two graphs have high similarity.

4 Experiment

4.1 Evaluation for Dog Body Parts Detection

This section evaluates the object detection method’s training process and per-
formance to detect dog body parts.

Dataset and Traning. One of the most critical tasks is to prepare qual-
ity datasets when training the deep learning-based object detection method.
To prepare a high-quality dataset of dog’s body parts, we collected a total of
9,282 images of beagles with various backgrounds from YouTube. All images are
annotated by drawing a bounding box on the dog and body part utilizing Labe-
lImg [8] Then the images are converted to XML files in PASCAL VOC format
[2]. Although high-quality datasets have been collected adequately through this
process, an enormous amount of data is required to train the object detection
method. However, acquiring a larger dataset is cost-prohibitive.

To overcome these barriers, we applied transfer learning [7]. A pre-trained
Faster RCNN and SSD Mobilenet model is taken that uses a COCO dataset
containing a large amount of animal data provided by the TensorFlow Model
Zoo [9].

Result. We compared the performance of Faster R-CNN and SSD Mobilenet
trained through transfer learning. We first set the IOU (Intersection over Union)
threshold to compare the two models’ mean average precision (mAP). The mAP
is the result of precision and recalls “precision-recall” calculations on determining
bounding boxes. Also, we observed the FPS(Frame per second), an important
index in real-time detection. Table 1 shows mAP and FPS of Faster R-CNN
and SSD Mobilenet. Faster R-CNN was an accurate model with high mAP but
showed a poor FPS to detect dog’s body parts in real-time. In contrast, SSD
Mobilenet was effective in detecting dog body parts in real-time by showing good
mAP and FPS.

Table 1. Dog body part detection comparison

Method mAP@0.50 mAP@0.75 FPS

Faster R-CNN 0.97 0.91 2

SSD Mobilenet 0.89 0.63 32
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4.2 Evaluation for Dog Posture Classification

This section evaluates the machine learning model’s training process and per-
formance classified into six postures(stand, playbow, lie, sit, stand on two paws,
tail raising) as shown in Fig. 4.

Dataset and Traning. Our dog’s body part detection model emits the coor-
dinate values of each body part. We constructed a dataset of dog posture classi-
fiers by converting the emitted coordinate values into absolute coordinate values.
Then, trained the Decision Tree, Neural Network, and Support Vector Machine
among machine learning algorithms with the Configured dataset.

(a) stand (b) playbow (c) lie

(d) sit (e) stand on two paws (f) tail raising

Fig. 4. Example of classifying dog postures through machine learning based on the
absolute coordinates of each body part.

Result. We first observed the accuracy of machine learning algorithms. As
shown in Table 2, the Support Vector Machine’s accuracy was the highest at
99.9%.

Also, we evaluated the Support Vector Machine’s performance, the most
accurate algorithm through the Confusion Matrix as shown in Fig. 5. A small
misclassification occurred mainly between Tail raising and Playbow. This hap-
pens because the absolute coordinate values are similar between the two classes.
As shown in Figs. 4(f) and 4(b), the difference between the two postures is
in the position of the dog’s upper body. However, the dog’s upper body is in
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Table 2. Dog posture classification compare

Algorithms Accuracy

Decision Tree 85.6%

Neural Network 92.4%

Support Vector Machine 99.9%

an ambiguous position when analyzing the misclassified images. Although the
postures classifier caused some misclassification, it is not a big problem in our
framework for analyzing dog behavior by exploring a graph model that defines
the interrelationships between postures.

Fig. 5. Confusion matrix.

4.3 Experiment for Dog Behavior Analysis Using Graph Model

In this section, we describe the dog behavior defined according to the calming
signal [6] and the experiment that analyzes the behavior for various videos based
on the graph model.

Definition. As shown in Table 3, we defined the dog’s behavior into seven
types (Playful, Suspicious, Demanding, Relaxed, Peaceful, Interested, Joyful)
according to the dog’s posture change, and then generated a dog behavior graph
model. However, according to dog trainers and behaviorists’ needs, the specific
behaviors are open to addition or modification.
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Table 3. Defined dog behavior according to posture sequence

Posture sequence Behavior

playbow→tail raising Playful

tail raising→tail raising Suspicious

tail raising→sit Demanding

sit→sit Relaxed

lie→lie Peaceful

stand→tail raising→stand on two paws Interested

sit→stand on two paws Joyful

Table 4. Graph Edit Distance. The closer the graph edit distance is to 0, the higher
the similarity between the two graphs. Conversely, as the graph edit distance is closer
to 1, the similarity between the two graphs low.

Video 1 Video 2 Video 3

Playful 0.0 0.833 1.0

Suspicious 0.666 0.833 1.0

Demanding No calculation 0.833 0.75

Relaxed No calculation 1.0 0.75

Peaceful No calculation 1.0 1.0

Interested No calculation 0.166 0.8

Joyful No calculation 0.833 0.25

When the End Node is Connected to Behavior Nodes. Figure 6(a) shows
the travel route(playbow→tail raising) created from Sample Video 1. The end
node of the created travel route is connected to the behavior node Playful and
Suspicious when according to Table 3. Our framework evaluates the similarity
between each posture sequence information of connected behavior nodes(Playful
and Suspicious) and the travel route to determine the final behavior between
Playful and Suspicious. As a result, the behavior is regarded as Playful with
higher similarity, as shown in Table 4.

However, as shown in Fig. 6(b), the end node of the travel route(stand→tail
raising→stand on tow paws→tail raising) created from Sample video 2 is also
a Tail raising, but when referring to Table 4, the similarity with the connected
behavior node (Playful, Suspicious) is very low. Therefore, the similarity between
the travel route and posture sequence of all the behavior nodes is measured, and
the final behavior is determined as Interested with the highest similarity as
shown in Table 4.

When the End Node is Not Connected to Behavior Nodes. As shown in
Fig. 6(c), the end node Stand of the travel route(sit→stand on two paws→stand)
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(a) Sample Video 1

(b) Sample Video 2

(c) Sample Video 3

Fig. 6. Example of Behavior Graph travel route created from Input Video

created in sample video 3 is not connected to any behavior node. In order to
analyze the behavior of video 3, the similarity between the travel route and
posture sequence of all the behavior nodes is measured, and the final behavior
is determined as Joyful with the highest similarity as shown in Table 4.
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5 Conclusion

In this paper, we proposed a noble framework for help non-expertise to under-
stand dog behavior. Our framework analyzes dog behavior by exploring a graph
model that defines successive postures’ interrelationships with only a camera
without additional high-quality equipment. This process eliminates the need to
use multiple sensors and overcomes the limitation of analyzing dog behavior by
depending on only a single posture. Our research can be applied to applications
such as dog health status and abnormal behavior detection in the future.
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Abstract. Global trade imbalances and poor, partial and unreliable information
about available equipment make the coordination of empty containers a very chal-
lenging issue for shipping lines. The cancellation of transport operations once
started or the extraordinary repositioning of containers are some of the problems
faced by the local shipping agencies. In this paper, we selected theArtificial Neural
Networks technique to predict the reception and withdrawal of empty containers
in depots to forecast their future stock. To train the predictive models we used
the different messages generated along the containers’ shipment journey together
with the temporal data related to these events. The evaluation of the models with
the test dataset confirmed the possibility of using ANN to predict the number of
empty containers in depots.

Keywords: Artificial Neural Networks · Empty Container Depots · Container
Flow Prediction · Forecasting

1 Introduction

The management of the fleet of empty containers carried out by the local agencies
of large shipping companies is an activity difficult to optimize. Among the different
reasons, the level of uncertainty in the operations of delivery and reception of containers
and the difficulty to predict them stands out [1]. This uncertainty leads to repetition of
problems that cause extra costs and discontent of customers. Repeated lack of equipment
in certain places (i.e. container depots) and times when attending export operations, and
the extraordinarymovements of repositioned equipment due to bad decisions are some of
these problems. According to a study by the Boston Consulting Group the repositioning
of empty containers costs the shipping industry between $15 and $20 billion a year. The
same study estimates that 33% of these costs are derived from company inefficiencies
and poor management decisions [2].

Nowadays, shipping agencies do not have systems to forecast the availability of
empty containers. They keep track of the movements of containers and the ordered
transport operations while maintaining an updated stock, which is contrasted with the
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information received from empty container depots. Therefore, shipping agencies make
decisions based on the current stock of containers and the experience of the equipment
control department. However, they wouldmake better decisions with the support of good
predictions of the stock of containers using the information available.

With the help of artificial intelligence, this work aims to improve the effectiveness in
short-term andmid-term planning operations of the Spanish agency of COSCOShipping
Lines, the world’s third-largest shipping company in terms of container traffic. It is
expected an improvement in the quality of service level to clients by avoiding situations
of lack of availability of empty containers thanks to the quality of the forecasts.

The real-time prediction of the empty container delivery and demand in certain
inland depots is a complex task. Therefore, previous work has been concentrated in opti-
mizing the container transport operations by reducing the empty container movements
[3] and in optimizing the repositioning of empty containers using various techniques
such as evolutionary algorithms [4], policy-based decision making [5], and Multi-Agent
Reinforcement Learning techniques [6].

In this paper, we selected Artificial Neural Networks (ANN) as it is used to cope with
complex forecasting problems in applications with a high level of uncertainty that need
to take into account several variables at a time. We wanted to verify if ANN models can
be effectively used to make short/mid-term predictions of the delivery and withdrawal
of empty containers from the warehouses. To train our ANN models, we used the date
and time related parameters, and the different events generated along the containers’
shipment journey as input variables. In this paper, we show the results for the most
frequently used container type (i.e. 20 feet containers) by the local agencies. The same
approach can be used for the other types.

The paper is structured as follows: in Sect. 2, the empty container management
process is described and the different data sources are identified. In Sect. 3, we provide
the Exploratory Data Analysis of the variables used to fit our models. The data pre-
processing steps are presented in Sect. 4. In Sect. 5, we describe the ANN architecture
of our solution and the method used to build our models. Results of the evaluation and
its further discussion are presented in Sect. 6. Section 7 provides the main conclusions
resulting from this work and proposes some guidelines for future work.

2 Empty Container Management Process

Generally, a container can have 3 states: empty, full and in maintenance. A depot is a
warehouse used by the shipping and logistic companies to keep their empty containers
until it is time for reloading of goods. In the process of export of goods, the empty
container (EC) leaves a warehouse to be loaded at a client, transported to the port of
origin, loaded on a vessel and transported to the destination country. In an import process,
the loaded container arrives at the port of destination, is unloaded at the port terminal and
is delivered to the carrier that takes it to the goods’ destination. The emptied container
is finally taken to the EC depot selected by the shipping agent.

The flow of ECs in a depot is generally determined by the delivery of ECs by the
carriers to the depot (i.e. confirmed entries) and the delivery of ECs by the depot to
the carriers (i.e. confirmed exits). These operations are also known as Acceptance and
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Release of ECs. The number of confirmed entries and the number of confirmed exits per
day are the target variables that we want to predict. These two variables will help the
shipping agents to know the actual stock of ECs in the near future.

Two different transport orders lead to the entries and exits of ECs in a depot:

Empty Acceptance Order (EAO): it is the order generated for the delivery of the EC by
the carrier to the depot in an import of goods (i.e. a new entry)
Empty Release Order (ERO): it is the order generated for the delivery of the EC by the
depot to the truck driver in the export of goods. (i.e. a new exit)

Each of the above orders can have two states: generation and confirmed. The order
generation serves as a statement of intent to inform the various agents involved in ship-
ping operations that such EC acceptance or release will occur soon. The confirmation
message is sent once the operation has been carried out. These events are:

Empty Acceptance Order Generation (EAOG): it is the event triggered when a new EAO
is generated.
Empty Release Order Generation (EROG): it is the event triggered when a new ERO is
generated.
FullReleaseConfirmation (FRC): it is the event generatedwhen the port terminal delivers
the full container to the carrier (i.e. a new EC about to enter at the depot).
EmptyAcceptanceConfirmation (EAC): it is themessage generated in themomentwhen
the carrier delivers the EC to the depot.
Empty Release Confirmation (ERC): it is the message generated in the moment when
the EC is withdrawn from the warehouse by the truck driver.

A history of such events has been the main data source for our training and validation
datasets. More precisely, EAOG and FRC events have been the source of data for the
input variables to predict the quantity of EAC while the number of ERC was forecasted
using the EROG events.

In addition to the above events, the temporal information associatedwith these events
has also been taken into account as input variables for the models. We use the month,
the day of the week and the day of the month as additional predictors.

All the above order and confirmation messages are exchanged between the shipping
agent and the different transport actors (i.e. port terminals, carriers and depots) through
its internal fleet management system. These messages are also stored in an internal
database. The dataset used for the training and validation of our models is built from
three years-long history of messages extracted from the database of Cosco’s Spanish
agency. A total of 163.441 messages generated over 1154 days has been used.

3 Exploratory Data Analysis

This section describes the Exploratory Data Analysis (EDA) process realized before the
model training phase. The EDA refers to the important process of conducting initial
research on the data to discover patterns, detect outliers, check correlations between
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variables, and test assumptions. In this paper, we show the most relevant results due to
lack of space.

Our EDA has been performed to the numeric variables: EAOG, EROG, FRC, EAC
and ERC. These variables refer to the number of messages registered in a given day. The
parameters EAOG, EROG, FRC are the predictors for our predictive models, whereas
EAC and ERC are the target variables to predict.

The tools used in the EDA phase are: a) Pandas [7] Python library for the manage-
ment and analysis of our different data structures; b) Seaborn [8] Python library for the
statistical data visualization of our dataset; and c) Jupyter Notebook [9] as our web-based
development environment to run the above libraries and to build and train our models in
the following phase.

A summary of the descriptive statistics for all the numeric variables in the dataset is
shown in Table 1.

Table 1. Input and Output variables statistics.

Statistics EAOG EROG FRC EAC ERC

Max 87.0 71.0 53.0 53.0 83.0

Mean 8.01 7.32 7.99 7.99 7.31

Median 4.0 4.0 5.00 5.0 5.0

Std. dev 10.53 9.31 9.31 9.3 8.86

Skewness 1.98 1.99 1.43 1.42 2.05

Kurtosis 5.92 5.80 2.12 2.18 7.55

As we can observe from the above table, all variables have similar statistical values
which indicate that they all follow a similar behavior. All variables present relatively
high maximum values which may show the presence of outliers if we look at the values
of their variance. These outliers can also be seen in Fig. 1. As can be seen in the boxplot
on the left, all variables have a zero value as the minimum. This is normal as there are
many days (especially the weekends) where no transport orders nor confirmations occur.
The quantity per day of EAOG, EROG and ERC have a high value of kurtosis which
indicates a higher degree of concentration around the mean and a sharper distribution
of their observations [10]. A lower kurtosis in FRC and EAC variables shows a more
normal distribution of their recorded quantities. As for the bias (i.e. skewness), the values
between 1.5 and 2 indicate a slight bias towards the upper side of the mean, also visible
in the boxplots’ upper quartile of Fig. 1.

As it can be observed from the above boxplot, all variables have their whisker (i.e.
1.5 * [Q3 − Q1]) between 30 and 35. The number of EAOG per day has the biggest
outliers. This could be also noted from its higher deviation from the rest.

Last but not least, it is worth analyzing the time lapse between the container’s
EAOG/EROG and its final EAC/ERC at the depot. For this purpose, the boxplot on
the right-hand side of Fig. 1 is shown. As it can be noted, the orders usually take from 0
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Fig. 1. Number of events per day (left) and time lapse between order and confirmation (right)

to 7 days to be completed.As itwill be shown in Sect. 4, this is relevantwhen representing
the input data for the prediction models.

Now we analyze the existing correlations between the different numeric variables
considered. We run the heatmap() method of the Python Seaborn tool to obtain the
correlation matrix for the entire dataset. As for the strength of the relationship, a value
of ±1 indicates a perfect degree of association between the two variables. And a value
of 0 means a weak correlation between variables [11].

The matrix showed a correlation 0.63 between EAC and the EAOG. This correlation
is between moderate and strong with a positive linear relationship as expected (the more
orders the more acceptances). A correlation of 0.86 between confirmed acceptances and
the number of full container releases (i.e. FRC) is also strong. Both correlations can be
confirmed as their Pearson’s p-values obtained are 1.75E-127 and 0.0 respectively. A
value of 0.71 between ERC and EROG reflects a strong correlation between these two
variables as well. This is also confirmed with a p-value of 2.0E-175. The p-values have
been calculated using Python’s Scipy library [12].

4 Data Preprocessing

To train the models with data of good quality a historical data preprocessing of the three
years’ messages from the database is required. As mentioned in Sect. 2.1, before the EC
is delivered to the depot a EAO is issued first followed by a FRC. Similarly, before an
ECwithdrawal from the depot takes place, a ERO is generated. Each row in our database
corresponds to a registry of timestamps for the events generated within each container
import or export operation that took place along these 3 years of data. An extract example
of this database is shown in Table 2.
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Table 2. Transport operation database.

Op. Id Imp./Exp EAOG date EROG date FRC date EAC date ERC date

7739 Exp – 11/05/19 – – 12/05/19

7740 Imp 13/05/19 – 13/05/19 14/05/19 –

Moreover, the analysis done in Fig. 1 highlights the importance of considering the
event to event elapsed time in the input data for the predictive models. To do this, we
quantify the number of messages in each of the 7 days before the daywhen the prediction
is made (from now on the PD day). These are the ECs that have not yet been delivered
or withdrawn.

For the prediction of the quantity of EAC, we build two arrays as input data to the
model. In Function 1, the steps to build these arrays are shown. The first one (EAOGs) is
an array of length 7 where the first value corresponds to the number of EAOG issued the
day before the prediction day (i.e. PD-1), the second value is the number of EAOG two
days before the PD, and so forth until the last value. The last value of this array refers to
the number of EAOG (and not confirmed yet) equal or older than 7 days before the PD
(i.e. d≤ PD-7). The second array (FRCs) of length 5, corresponds to the number of FRC
messages for the days PD-1, PD-2, PD-3, PD-4 and d ≤ PD-5. As for the forecast of
ERC, an array of length 7 (EROGs), with the number of EROG in the past days before the
PD, is also computed. A new array is built for every day from the start date (StartDate)
until the end date (EndDate) of the whole history of registries. At the end, it is obtained
a matrix where each row represents a new observation in the training dataset. The arrays
EAOGs, FRCs and EROGs are appended as new rows in the matrixes [EAOG], [FRC]
and [EROG] respectively.
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Function 1 Build Prediction Input and Output Arrays 
Input: StartDate, EndDate 
Output: [EAOG], [FRC], [EROG], [EAC], [ERC] 
1: let [EAOG], [FRC], [EROG], EAOGs, FRCs, EROGs = new Array [] 
2: let [EAC], [ERC], EACs, ERCs = new Array [] 
3: Let currentDay = StartDate 
4: while currentDay ≤  EndDate do 
5:  for d in range(0,6):
6:     dayBack = currentDay - timedelta(days= d) 
7:   let N_EAOG_orders = COUNT registries WHERE EAOG_Date = dayBack 

and EAC_Date > currentDay 
8:   let N_EROG_orders = COUNT registries WHERE EROG_Date = dayBack 

and ERC_Date > currentDay 
9:     EAOGs.append(N_EAOG_orders); EROGs.append(N_EROG_orders) 
10:  for d in range(0,4):
11:     dayBack = currentDay - timedelta(days= d) 
12:   let N_FRC_orders = COUNT registries WHERE FRC_Date = dayBack and 

EAC_Date > currentDay 
13:    FRCs.append(N_FRC_orders) 
14:  for d in range(0,6):
15:      dayForec = currentDay + timedelta(days= d) 
16:     let N_conf_EAC = COUNT registries WHERE EAC_Date = dayForec 
17:      let N_conf_ERC = COUNT registries WHERE ERC_Date = dayForec 
18:      EACs.append(N_conf_EAC); ERCs.append(N_conf_ERC) 
19:  [EAOG].append(EAOGs); [FRC].append(FRCs); [EROG].append(EROGs) 
20:  [EAC].append(EACs); [ERC].append(ERCs) 
21:  currentDay = currentDate + timedelta(days=1) 
22: end while
23: return [EAOG], [FRC], [EROG], [EAC], [ERC] 

In regards to the output data for the model’s training dataset, a similar approach is
followed. In this case, the third for loop of Function 1 collects the number of deliveries
and withdrawals confirmed in the following 7 days from the prediction day (i.e. EACs
and ERCs arrays). In each while loop iteration, each EACs and ERCs array is added to
the matrixes [EAC] and [ERC] respectively.

Besides the above matrixes, another one ([Temp]) with the temporal parameters is
also created. Each row in this temporal matrix contains an array with 3 elements: day of
the month, day of the week and the month. From the above functions, these values are
taken as follows: [currentDay.Day, currentDay.DayWeek, currentDay.Month].

Before proceeding to the models’ training step, we first need to merge all above
matrixes into a single dataset using Python’s Numpy [13] and Pandas libraries (lines
2–4 in Function 2), split the whole dataset into a train set and a test set, and finally,
normalize these data partitions. The code implemented to perform these steps is described
in Function 2. This function is a reduced version of the one used which only shows the
steps for the dataset to train the model that forecast the number of EACs. In lines 5–7
we remove the rows with outliers greater than the 99% percentile of the dataset’s values.

To find out the best configuration parameters (a.k.a hyperparameters) that control the
learning process of our models, the whole set of observations is split into a train set and
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a test set. The former is used to initially fit the model while the latter is used to evaluate
the predictions done by the fitted model with the true values from this partition. A good
rule of thumb is to divide the whole dataset into 80% train set and 20% test set [14]. In
our case, we made a random split of our observations (see line 8 in Function 2) using
the Panda’s sample() function of our dataset class.

The next step is to normalize the train and test input datasets for the model fitting
process. The data normalization process is used to train models with homogeneous data
and without outliers. This is a well-known procedure that considerably improves the
performance of predictive models [15]. In our case, the min-max technique has been
used (lines 12–13 in Function 2), which leverages the Pandas’ DataFrame describe()
function [7] that returns the min and max values for each column in our dataset.

Function 2 Get Train and Test Data 
Input: [EAC], [EAOG], [FRC], [Temp] 
Output: x_train, x_test, y_train, y_test 
1: let dataset = [EAC] 
2: dataset = column_stack((dataset, [EAOG])) 
3: dataset = column_stack((dataset, [FRC].)) 
4: dataset = column_stack((dataset, [Temp])) 
5:    q = dataset.quantile(0.99) 
6:    dataset = dataset[dataset < q] 
7:    dataset = dataset.dropna() 
8: train_dataset = dataset.sample(frac=0.80,ra dom_state=0) 
9:    test_dataset = dataset.drop(train_dataset.index) 
10: x_train, x_test, y_train, y_test =    split_to_x_and_y(train_dataset, test_da-

taset) 
11: train_stats = dataset.describe() 
12: x_train = (x_train - train_stats['min']) / (train_stats['max']-train_stats['min']) 
13: x_test = (x_test - train_stats['min']) / (train_stats['max']- train_stats['min']) 
14: return x_train, x_test, y_train, y_test 

5 Methodology: ANN for the EC Fleet Forecast

ANN basically performs like a human brain. A neural network is a dense parallel-
distributed processor composed of simple computing nodes, also known as neurons
[16]. This network is made of groups or layers of interconnected nodes. Each node is
an artificial neuron and contains a function (i.e. activation function) that aggregates and
correlates the weighted input parameters byweights (wij) into an output parameter that is
transmitted to the next node. ANNs are trained by an optimization process (e.g. Gradient
Descent Algorithm [17]) which is an iterative task aiming to find the value of the network
weights that minimizes a loss function. This loss function is used to calculate themodel’s
error. In regression problems, like the one described in this work, it is common to use
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the mean squared error as the loss function (1).

MSE = 1

n

n∑
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Ỹi − Yi

)2
MAE = 1
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∣∣∣Ỹi − Yi
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In our approach, we use a multi-layer neural network composed of an input layer
(i.e. input data), N hidden layers and an output layer. In this work, we had to find the
value of N and the number of neurons in each layer that provided a higher performance
in the predictions. The output layer consists of 7 nodes; each one returns the number
of delivered/withdrawn ECs for each of the following 7 days’ prediction. As we aim to
forecast numeric values greater than the unit, the Relu activation function is used [16].
This architecture is visually described in Fig. 2.

Fig. 2. ANN architecture for ECF forecast

The input layer is a concatenation of the normalized arrays [EAOG], [FRC] and
[Temp] for the 7-day prediction, and [EROG] with [Temp] for the ERC forecast.

The architecture of Fig. 2, is built using Python’s Tensorflow [17] and Keras [18]
libraries. We made an iterative function (see Function 3) that automatically builds a NN
following the architecture of Fig. 2. The input parameter “layers” is an array with N (i.e.
the number of layers) values, each one referring to the number of nodes in each layer.
The function Sequential() instantiates a model structure with a plain stack of layers. In
steps 2 and 4, the add() function of the model class is used to add the layers with the
number of nodes given by the layers array. Finally, the function compile() configures
the model for training, which in this case we have indicated the MSE as loss function
and the Mean Absolute Error (MAE) with the MSE as metrics for evaluating the model
in the training and testing phases.

Function 3 Build NN model 
Input: layers 
Output: x_train, x_test, y_train, y_test 
1: model = keras.Sequential() 
2: model.add(layers.Dense(architecture[0],activation=‘relu’,input_shape=[layers(0)])) 
3:  for d in range(1, len[layers]):
4:  model.add(keras.layers.Dense(architecture[i],activation = ‘relu’)) 
5: model.compile(loss='mse', metrics=['mse','mae']) 
6: return model 
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6 Results: EC Fleet Forecast Evaluation

Now, the two neural networks to predict the number of EAC and ERC are trained with
the datasets obtained from Function 2. Asmention before, we had to train several models
with a different number of layers and neurons in each layer that approximates us to a NN
architecture that performs better in terms of MAE and MSE metrics. To do so, Function
3 was run for all the possible combinations of the possible values in the 3 hidden layers
in Eq. (2). A total of 294 NN architectures was tried. As a heuristic widely adopted by
the community, we also used powers of 2 number of nodes in each hidden layer.

layers = [l1, l2, l3]

l1 =
(
24, 25, 26, 27, 28, 29, 210

)

l2, l3 =
(
0, 24, 25, 26, 27, 28, 29, 210

)
(2)

To train themodel,weused thefit() function of ourmodel instance created inFunction
3, which returns the MSE and MAE values for each iteration on the test data set. In each
run, we used a learning rate decay [19] approach to progressively decrease the learning
rate to avoid weights’ oscillation and speed up the learning of our model. We fit our
model using 500 iterations in each run. The results are shown in Fig. 3. As we can
observe, the minimum values of MAE and MSE obtained for the EAC forecast are 2.2
and 16.6 respectively. These values correspond to the [1024,518,128,7] architecture of
the NN. As for the ERC forecast (see Fig. 4), the found architecture is [1024,256,32,7]
whose MSE and MAE are 3.04 and 38.8 respectively.

Fig. 3. EAC NN architecture selection

We have used the predict() function of our model to compute the predictions for the
test dataset. The scatter plots of the true and predicted values for the EAC’s model are
shown in Fig. 5. In this figure, we can see that our model predicts reasonably well.

Also in Fig. 5 the scatter plots of the true and predicted values for the ERC’s model
are presented.

In this case, the plotted points on the first and second day are slightly farther from
the true line than in the EAC forecast. One reason for this could be the lack of an event
previous to the actual withdrawal of the container from the depot similar to the FRC
event in the import operations.
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Fig. 4. ERC NN architecture selection

Fig. 5. Scatter plot for EAC and ERC 4-day predictions evaluation

To see the performance of our model for the 7 days of forecast we use the boxplot of
theMAE for each forecast sample (see Fig. 6 Left andRight). As it can be observed, from
days 3 to 6, the forecasted error is noticeably higher than the first 3 days. In Sect. 3.1,
we saw that most of the transport orders (75% approx.) are carried out within 0 to
4 days. The rest of the orders introduces more uncertainty for longer-term predictions.
Nevertheless, shipping agents still can make decisions based on the predictions of days
3–6 by aggregating the forecasted values.

The above results show the possibility to use our method to forecast the flow of
ECs in depots. The future stock would be calculated by adding and subtracting these
forecasted values to the actual amounts in each depot on the day when the forecast
is computed. These stock predictions can then be effectively used to support shipping
agents to make decisions in selecting the depot from which a EC should be withdrawn
to attend an export operation as well as the depot to which the EC should be delivered to
correct in advance a predicted lack of equipment. A direct consequence of this would be
a reduction of the extraordinary displacements of trucks between depots. This, in turn,
contributes to a CO2 reduction too.
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Fig. 6. Absolute 7-day EAC forecast error (left) and Absolute ERC forecast error (right)

7 Conclusion and Future Work

This paper presents a 7-day empty container delivery and withdrawal forecast approach
for the empty container depots. In this work, we successfully demonstrated the possi-
bility to forecast the stock of containers using Artificial Neural Networks. In the current
scenario where freight transport is constantly increasing, our solution is able to sup-
port shipping agencies in taking greener and cost-effective decisions in the containers’
release and pick-up operations, taking into account the forecasted stock in the different
locations. In our test data, we are able to forecast EAC and ERC events for the next 7 days
in an absolute error of 2.2 and 3.2 containers respectively. We have also checked the
predictions’ errors for each forecasted day. We observed that our approach makes more
accurate predictions for the first three days whose mean absolute errors are 1.24, 1.79
and 1.86 containers respectively for the EAC. The error of our predictions increases for
the following days as one could expect as the uncertainty also increases. Hence, future
work could involve the usage of additional parameters such as customer class, weather
variables or location of clients. These variables may affect the midterm forecast of the
number of EAC and ERC. If these parameters will also be taken into account, the result
of forecasting can be further improved. Other further work includes the usage of other
techniques such as Recurrent Neural Networks [16] which is also used for time series
prediction.
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Abstract. In this paper we present an original method for style trans-
fer between music tracks. We have used a recurrent model consisting of
LSTM layers enclosed within an encoder-decoder architecture. In addi-
tion, a method for programmatic synthesis of sufficient, paired training
datasets using MIDI data was presented. The representation of the data
in the form of a real and an imaginary part of short-time Fourier transfor-
mation allowed for independent modeling of the music components. The
proposed architecture allowed us to improve upon the state of the art
solutions in terms of efficiency and range of applications while achieving
high precision of the network.

Keywords: Artificial intelligence · Neural networks · LSTM · Style
transfer · Timbre · MIDI · STFT · Synthesizer · AI in music

1 Introduction

Recent years have brought a great number of innovations in machine learning and
artificial intelligence. Some of the most prominent applications of such technolo-
gies are associated with image and language processing. Generative-adversarial
[1] has promised significant improvements to image generation, while attention-
based transformer networks [2] have been a breakthrough in language processing.

Some of the applications of machine learning algorithms to music include
generating new musical content [3–6], music genre classification [7–9] and vari-
ous forms of automated music information retrieval [10,11]. Another interesting
issue, originating from image processing [12], is called style transfer. The general
idea is to combine two images, i.e. a photograph and a painting, in order to pro-
duce a “version” of the photograph as if it has been painted by a given painter.
A similar idea may be applied to music.

In this paper, we propose an original recurrent neural network architecture
suitable for style transfer between pairs of instruments, along with a method for
generating sufficient, synthesized training datasets. Our solution, given a piece
played on a particular instrument, is able to produce a piece with the same
content but played on a different instrument. The proposed method achieves the
c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 124–132, 2021.
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state of the art precision, while greatly decreasing the computational cost when
compared to existing approaches. We have chosen piano to guitar style transfer as
the main focus and benchmark of our experiments, but the presented architecture
is versatile and allows for style transfer between any two instruments.

2 Previous Work

2.1 Musical Style Transfer

In musical style transfer [13] we consider the composition (harmony, rhythm,
arrangement) as the content of the piece of music, while the particular sound
(timbre, sonic qualities, particular instrument) as the general style.

Previous work on the subject of musical style transfer includes applications
of VAEs (variational autoencoders) i.e. MoVE [14] and convolutional neural net-
works (i.e. WaveNet [15]). MoVE consists of convolutional, dense and FiLM [16]
layers in an encoder-decoder architecture. The Non-Stationary Gabor Trans-
form [17] is used to obtain the time-frequency representation of the audio signal.
However, the Transform introduces some loss of information, making it difficult
to reconstruct the original signal and lowering the quality of the resulting sound
files.

[18] proposes the Universal Music Translate Network a network capable of
style transfer between instruments and composers. The authors use raw audio
signals as the representation of music. The usage of raw audio has also been
described in [19] and [15] - WaveNet has shown significant improvements over
previous works, especially in speech generation. The usage of raw audio sig-
nal allows to maintain full information about the signal but requires massive
amounts of computational power to process.

Another approach to the style transfer is the usage of relativistic-average
generative adversarial networks [20] with a complex, compound representation
of music using Mel-spectrograms, MFCCs, spectral difference, and spectral enve-
lope. In [21], the authors use this representation to perform multi-modal one-to-
many style transfer. [22] proposes the use of symbolic MIDI data representation
and a variational autoencoder, while [23] uses an AlexNet model and spectro-
gram representation.

2.2 Approach to the Usage of MIDI

The domain of music continues to prove a challenge for the development of AI
algorithms. There has been no single, agreed-upon representation of music suit-
able for machine learning applications [13] and the availability of datasets is
much sparser when compared to image and text processing. Many of the per-
ceivable qualities, like the harmony, rhythm, instrumentation, and composition
qualities of music are abstract and difficult to capture simultaneously. Also, the
psychoacoustic side of music [24,25] and the non-linearities of the human hearing
apparatus introduce the need for additional arbitral representations [26].
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The plethora of approaches has also led to some criticism. The available
datasets are often either sparse and vague [27,28] or highly-specific [29], while
many are undisclosed. [30] and [31] also highlight the need for the practical
impact of ML algorithms in music and state that no music data is independent
of its context and function. Having a background in music production and per-
formance, we also include this idea in our approach by proposing a streamlined
method of generating training datasets by synthesizing MIDI data into sound.
This is very close to the context of how MIDI data would be used by a musician
in professional music production. Another advantage of this approach is that
sufficient pure MIDI datasets already exist (i.e. [32,33]).

3 Data Processing

We have used data from the LMD-matched subset of the Lakh MIDI Dataset v0.1
[34] which consists of 45129 samples and from the 130,000 MIDI File Collection
[35]. We have compared all of the files using their MD5 hash and eliminated direct
duplicates. However, the same piece may be present more than once, since there
may be different versions of its way (i.e. different key, different arrangements).
The presence of different arrangements of the same piece is beneficial to the
network’s ability to generalize. We have selected a subgroup of songs performed
in at least 95% on a single instrument.

The collected dataset consists of 2000 piano songs - networks with LSTM cells
have previously been shown to perform well on moderate datasets [36,37]. On
top of that, the amount of songs we have synthesized translates to roughly 130 h
of music, which is sufficient enough for our needs. The dataset was divided into
training and test subsets. The test dataset contains 200 tracks and represents
about 10% of the volume of the training dataset.

The MIDI files were synthesized using a state of the art programmatic syn-
thesizer FluidSynth, which allowed us to obtain high-quality .WAV files with
music encoded with a pulse-code modulation. FluidSynth is very similar to VST
synths applied in professional music production, which further brings musical
context to our approach.

For the purpose of this work, we have decided to represent the model input
in terms of the Short-Time Fourier Transform (see Eq. 1) of the audio signal for
a time-frequency representation, as shown in Fig. 1. In order to keep complete
information about the provided signal, both the real part and the imaginary part
of the STFT are passed to the model in the form of two independent inputs.

STFT{x(t)}(τ, ω) ≡ X(τ, ω) =
∫ ∞

−∞
x(t)w(t − τ)e−iωt dt (1)

The STFT is invertible - the signal can be recreated from the transform by
the inverse STFT. We use this to recover playable .WAV files from the outputs
of our network.
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Fig. 1. Example of input data passed to the model. This spectrogram contains the
full range of frequencies present in the song and must be processed serially due to its
length.

4 Method

4.1 Baseline Encoder

For the purpose of this task, we assume the input X and the output Y sam-
ples come from two different distributions that share some high-level charac-
teristics. We humans naturally perceive this common part as the content of
the music. However, it is challenging to precisely indicate the parameters of an
audio signal that separate the content from the timbre. Therefore, we propose
an encoder-decoder model that reduces all the attributes of a song to the latent
space and encodes the only common part of X and Y —the content, ignoring the
instrument-specific representation (timbre). Later, we use the decoder network
to restore the desired style of an output instrument from the encoded content.

The baseline model we prepared is a symmetrical encoder-decoder consisting
of fully connected layers with a fixed-size bottleneck in the middle. This bottle-
neck layer separates the encoder from the decoder and is responsible for storing
information needed to transform samples between domains. We use this model
for comparison purposes in succeeding experiments.

The main disadvantage of the described baseline benchmark model is its
limited context. Music is sequential with respect to time and should be processed
in a manner that accounts for temporal dependencies. This is not the case in the
baseline model, which forces long tracks to be processed in independent chunks.
This results in poor overall performance but is especially noticeable between the
boundaries of consecutive blocks, where context continuity is not preserved.
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4.2 Proposed Approach

We present a new artificial neural network architecture for music style transfer
based on LSTM layers that addresses the issues outlined above. LSTM cells have
been used with great success in a similar encoder-decoder fashion for NLP prob-
lems [38]. These tasks share many similarities that we can leverage in our method
to build on the conclusions from previous research, as music has a sequential rep-
resentation similar to speech and written text. Although we have chosen piano
to guitar style transfer for our particular experiments, style transfer between any
pair of instruments is possible using the described method.

Our system has two main parts, as shown in Fig. 2. The recurrent encoder
takes one time step of the STFT signal xt as an input and combines it with the
context vector henc

t−1 to produce compressed representation of the content vector
ct. The information this vector retains is not limited to the currently processed
section of the song but also contains a cumulative summary of previous parts.
This allows us to continuously process an arbitrarily long song without the need
to explicitly segment it into artificial chunks.

The last state vector henc
T produced by the encoder summarizes the whole

sequence. Then it populates the initial context vector hdec
0 of the decoder. The

decoder processes the data in a manner analogous to the encoder. It uses the
encoded portions of the current signal and its hidden state, to step-by-step pro-
duce a consistent next sequence prediction containing the song’s features in the
domain of the target instrument.

Each sequence is passed to the second stage of the decoder where nonlinear
transformations are applied and the data is projected onto the final output shape.
We have selected the ReLU as an activation function between the final layers.

The Mean Squared Error was used as a loss function. As our model processes
real and imaginary parts separately, the sum of both components is included in
the final optimization criterion. We also use this metric to evaluate the quality
of the models. The optimizer we have chosen in our network was Adam [39].

While the current trend for the state of the art solutions is to create extremely
large models with dozens of repeating blocks - each with multiple layers, our
approach consists only of a few simple components. This allows us to train the
network on a single GPU card within a reasonable amount of time. The model
is fast to converge, as it takes roughly ∼4–5 h of training time on a standard
Nvidia Tesla T4 card.

4.3 Hyperparameters Tuning

The appropriate choice of hyperparameters can have a significant impact on
model results. During our experiments, we have considered a wide range of set-
tings in order to select the setup that was used in the final version of the proposed
approach.

Among the main parameters are the size and location of the network layers.
In general, increasing the state vector in the recurrent layers shows a tendency
to improve performance and to enhance the ability to remember a wider context.
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Fig. 2. Proposed architecture of our model. The input audio of piano songs is processed
by the network to create samples corresponding to the guitar timbre.

On the other hand, this results in increased usage of the graphics card memory,
so a trade-off is needed. In the end, we opted for recurrent connections with a
state vector of length 2048, followed by dense layers matching the output size.

We also noted the positive effect of using the Hann window in signal process-
ing on the model’s ability to produce samples with finer sound qualities. Overall,
of the cost functions we tested, MSE was a superior choice over Mean Squared
Logarithmic Error.

5 Results

To establish a reference point for further comparisons, the loss value of the test
dataset was calculated. The difference between the input given to the model
X (piano) and the expected output Y (guitar) is used as a relative benchmark
of models’ performance. Every result below this score should be treated as a
contribution of the model.

As shown in Table 1, the final architecture has achieved the loss of 0.1138 on
average. Our method is several times better than the conventional autoencoder
and introduces very low noise values. The content of the music (i.e. the notes,
rhythm, etc.) has not been shifted or modified by the network. The samples
produced by the network have clear characteristics of the output instrument,
which in this case was a guitar. As the guitar is a plucked string instrument, we
expected to hear a brighter, slightly more “metallic” sound quality with more
attack and pronounced middle range when compared to a piano, which was
exactly the case with our output samples. No additional, strange sonic artifacts
or unwanted sound qualities were audible in the output samples.
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Table 1. The mean squared error (MSE) of different approaches for style transfer task
on test dataset.

Real Imaginary Average

Raw data 0.7328 0.7308 0.7318

Baseline 0.5284 0.5273 0.5279

Ours 0.1139 0.1137 0.1138

6 Conclusions and Further Work

In this paper, we have proposed an original method for style transfer between
music tracks played on different instruments. We propose an encoder-decoder
structure with LSTM cells. We have chosen piano-guitar style transfer as the
base of our experiments and have achieved a very low error of the network. The
samples produced with our method have clearly audible, desired sonic qualities
of the output instrument. The network also persists the melody and structure of
the original sample with no distortion, additional noise, or sonic artifacts. The
method is also suitable for style transfer between any pair of instruments.

We have also proposed a method for generating paired datasets by using
music written in the MIDI format, which allowed us to train the network in
a supervised manner. We programmatically synthesize MIDI data into audible
files and compute their STFT for a time-frequency representation. The MIDI
data format has been a standard in the music industry since its introduction
and is the base of music production with electronic instruments, which is most
of today’s music. MIDI also allows us to incorporate dynamics, rhythm, pitch
(including bends), pressure, control change, and other musical information in
our style transfer. Our usage of MIDI and synthesizers ensures our approach is
close to the context and subject of style transfer in music.

With a parallel dataset, our network is also much faster to converge when
compared to existing approaches and can be used without massive computational
resources. To the best of our knowledge, we have proposed an original, efficient,
and highly applicable solution for musical style transfer.

In the future, we plan to conduct further experiments with the usage of LSTM
encoder-decoder structures (including VAE architectures) and use our approach
to build creative, usable tools for musicians.
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Abstract. The foreign exchange market is of the utmost importance
for many sectors of the economy, therefore attempts to forecast changes
in currency price levels are the research area of many practitioners and
theorists. The article aims at examining the impact of settings of vari-
ous neural network parameters on the results of currency forecasts. The
three currency pairs the US dollar, British pound, and Swiss franc to
EUR were selected for the analysis. The forecast results for different
network settings are examined with three different indicators: forecast
error, the ratio of correctly forecasted changes in the course direction and
the potential profit generated. The neural network used for the study is
Extreme Learning Machine and the forecast horizons taken into account
are in the range of one to ten days. The better-quality forecasts based on
price levels than on rates of return was shown and good quality forecasts
for two out of three currency pairs was obtained in the study. The article
also presents the relationship between the results generated by the neural
network and the settings of these networks - in particular, the impact of
the number of delays on forecast errors and the number of hidden nodes
on all three assessment parameters.

Keywords: Neural networks · Currency · Forecasting

1 Introduction

In the era of open economy and highly developed globalization, one of the key
factors influencing the economy of individual countries is the situation of the
national unit of currency. The exchange rate is considered by many as a factor
reflecting the current situation and condition of the economy of a given coun-
try [12]. Due to the specific nature of the currency exchange markets, the level
of currency rates should be constantly monitored because of possible fluctua-
tions in the market rates. In international trade, the exchange rate plays a key
role and has a real impact on the profits and/or losses generated by compa-
nies. In the exchange between counterparties using different currencies, the size
of cash flow is determined by the current exchange rate of currencies involved
in the transaction. This directly translates into profit or loss for the enterprise
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or other institution. Exchange rates can also be a direct profit (loss) factor by
trading them [13]. By proper forecasting of the change in the currency market,
the investor is able to obtain positive cash flows on their account.

Referring to the above characteristics of currency pairs, it should be noted
that both practitioners and scientists are interested in creating the most effec-
tive model or method of forecasting future values of the time-series patterns of
exchange rates. The main objective of forecasting should be to reduce the risk
associated with making decisions which affect the work of enterprises, financial
organizations, and private investors. The aim of the following study was to check
the effectiveness of using neural networks in investments, to ensure positive cash
flows using currency pairs as an underlying asset. For this purpose, a study was
conducted to verify the ability of ELM (Extreme Learning Machine) to generate
profit when investing in US$, British Pound, and Swiss Franc currency pairs
in relation to Euro (USD/EUR, GBP/EUR, CHF/EUR). The study took into
account different ELM neural network settings and different investment hori-
zons from 1 to 10 days. Various settings of the neural network were introduced
in order to search for dependencies between them and to analyze it for the opti-
mal selection of settings depending on the expected investment horizon.

Forecasting methods used in financial markets fall into two trends or cat-
egories. One of them is the use of statistical measures such as the ARMA
(Autoregressive moving average) or the ARIMA (Autoregressive integrated mov-
ing average) model and the later introduced ARCH (Autoregressive conditional
heteroskedasticity) and GARCH (Generalized autoregressive conditional het-
eroskedasticity) models. The models listed above may be less effective due to the
non-linear nature of the relationship between assets listed on stock exchanges.

In a recent literature review, among the methods belonging to the first
stream, research on forecasting the risk of the US dollar exchange rate under
volatile conditions can be distinguished [5] with the use of estimated value at risk
(VaR), so that is possible to forecast significant declines in the US dollar (USD)
price levels. The literature also includes studies on the volatility of the Euro
and USD (EUR/USD) currency pair, where various GARCH and ARCH models
are considered, estimated using the maximum likelihood method with different
variants and using different tests (normality, Student’s t, etc.) [9]. Therefore,
research is often undertaken on the possibilities of modeling volatility using the
ARCH and GARCH models recently, e.g., for the economy of Turkey [16] or
Tanzania, where the impact of previous information about the exchange rate
on the current course value. The above indicates that volatility in the previ-
ous day’s rate may affect the current volatility of the exchange rate [10]. The
above-mentioned models are also used in the course forecasting research. Some
of the articles show better results in forecasting the British pound against the
US dollar for the ARFIMA model than for the ARIMA model [17]. The reasons
for such an advantage can be found in showing the property of long memory by
series.

In the area of forecasting, much more dynamic development can be observed
in the case of methods from the latter group, i.e., those based on soft computa-
tional methods. In the literature, authors [7] indicate that the largest share of
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MLP (Multi-Layer Perception Network) and FLANN (Functional Link Artifi-
cial Neural Network) among artificial neural networks used for forecasting time
series. Very often scientists use MLP (Multilayer Perceptron) neural networks for
the prediction of time series [23] and [18]. Many scientists indicate that it is this
type of neural network that works best for forecasting, among others, currency
exchange rates, but there are indications to look for more effective ways than that
of MLP. These premises result from overmatching, a large number of iterations
and thus long computing time, as well as slow convergence, and local minimum
of the MLP network [14]. In the case of ELM models, scientists point to the high
speed of learning and good efficiency of generalization. However, they also point
to the disadvantages of this type of network, which is often not resistant to badly
conditioned data, which may cause learning errors such as, for instance, overfit-
ting of the neural network [22]. In literature, there are many other examples of
correct results of currency price prediction using models implementing the ELM
neural network. [6] used ELM with the multi-population search scheme of Jaya
optimization technique to forecast two Indian Rupee currency pairs in relation
to the US$ USD/IND and the euro against US$ USD/EUR. ELM is also used
together with other methods, such as empirical mode decomposition (EMD) and
phase space reconstruction (PSR) responsible for the initial processing of data,
which is then predicted by the ELM neural network [21].

In literature, there is a great interest in combining [4] both of these methods,
creating hybrid models [15]. Hybrid methods are designed to reduce the limita-
tions stemming from statistical methods [3]. The approach combining parametric
methods, such as neural and nonparametric networks, shows promising results
than using these methods separately [1,2,19].

The rest of the paper is organized as follows: the second part contains a
description of the data sets, the third part describes the methodology, including
the configuration of neural network parameters and methods of assessing the
quality of the forecasts made. Part four is an experimental analysis while part
five concludes the article presenting conclusions derived from the research.

2 Dataset Description

The exchange rate of two currencies characterizes the price at which one currency
is convertible to another. All currencies have a buying and selling price. In this
study, three currency pairs were taken into consideration - the US$, the British
Pound and the Swiss Franc - for which the buying price of 1 Euro was analysed.
The study was conducted for ten different time horizons ranging from one to ten
days. The data has been divided into training data and test data. The data come
from the period between 01.01.2015 and 31.12.2019. The learning set always
contained the last hundred observations up to day t− 1, where t is the day when
the investment decision was made. Therefore, the size of the training set was
always the same - one hundred observations, while the range changed depending
on the date of making the investment decision. The study was conducted for
price levels and for rates of return. In the first attempt, the empirical results will
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compare the prices of past currencies, that have actually been recorded on the
stock exchange, to the prices of the currencies derived from the prediction. In the
case of return rates, the study will compare the direction of change forecasted
by neural networks with the direction of change recorded on the stock exchange,
for a given period.

3 Methodology

Forecasts are made on the basis of historical data, on which the neural network
learns. Due to the 1-day, 2-day, etc. investment horizons with data of daily
frequency. The selected type of neural network to perform the test is ELM (i.e.,
feedforward neural networks). In this model, the biases in the hidden layer are
selected randomly and the output weights are calculated based on them. This
network is characterized by the lack of recursion [24]. Forecasting models from
the nnfor package [25] were used in the R program for time series forecasting
with Multilayer Perceptrons (MLP) and Extreme Learning Machines (ELM).
What is more, the current version of this pack (version 0.9.6) was used.

At the preliminary stage of forecasting, both models provided by the above-
mentioned package were used. The first results indicated better results of fore-
casts for ELM currency pairs, therefore forecasting using this neural network
was extended and is presented below.

In the following study, only one type of feedforward neural networks was
taken into account for comparisons, however the parameters within the network
were being changed and ten different forecast horizons were analysed. The study
analyses three currency pairs: USD/EUR, CHF/EUR, and GBP/EUR. For each
currency pair, forecasts were made on both rates of return and price levels, which
gives two studies for each currency pair for forecasts from one to ten days.

For each length of the investment horizon, variances of two parameters were
used: the number of hidden nodes (2, 5, 10, 15, 20, 25, 50) and the number of
lags (1, 2, 3, 4, 5, 6, 7).

The number of hidden nodes was assumed not as consecutive natural numbers
but keeping certain intervals in order to search for the most optimal orders of
magnitude of nodes and to investigate the dependence of the forecast results on
this parameter. Through such settings, the study answers the question whether
increasing the number of hidden nodes has a positive effect on the results of
neural networks, and if so, to what level it is profitable to increase them so that
the benefits of improving the results are greater than the computational load
resulting from the use of many hidden nodes. The use of the number of delays
in the range from one to seven stems from the character of research on financial
markets and the support for such an approach in the selection of this parameter
can be found in many scientific studies [8]. Due to the research method used,
it can be concluded that the size of the collected results is big. For all three
currency pairs, forecasts were made at price levels and rates of return - for each
of them, forecasts were made at ten different investment horizons (from one to
ten days ahead). In addition, forty-nine different ELM network settings were



Impact of ELM Parameters and Investment Horizon 137

used for forecasts resulting from a combination of two parameters (the number
of hidden nodes and the number of delays). The study was carried out on such a
large scale of various settings of the neural network, so to obtain an answer to the
question on how individual parameters of the neural network affect the quality
of prediction and in order to search for the relationship between the parameters
of the neural network and the results of predictions in various forecast horizons.

The assessment of effectiveness of the forecasts for 1 to 10 days ahead, made
with the use of neural networks on the rates of currency pairs, will be presented
in the study using three categories. The first category includes the most common
forecast errors in similar studies. Mean Absolute Error (MAE) will be used in
this category. In order to determine the error for the entire method or model
which was used, a measure called the mean error ME. In case of perfect fit of
forecasts to the model, ME is 0. The smaller the value of ME, the better the
model fit. Based on the default ME character, it can be concluded that when
its sign is positive our forecasts are undervalued, and when its sign is negative,
our forecasts are overvalued. It is believed that ME can be applied to evaluate
the model used for forecasting and to guide researchers to the possibility of
changing the model and/or removing some variables from the model to reduce
forecast errors. However, this measure cannot be the only used for comparative
evaluation between different models [11,20].

Additionally, the proposed categories to evaluate the forecast results are:

• the percentage of correct decisions made by the neural network in the total
number of decisions made. A correct decision is understood as a correctly
forecasted increase or decrease in the rate of a given currency pair, both for
forecasting of returns and price levels. For return rates, the correct decision
made by the network is confirmed by the same sign by the forecast and actual
return rate for a given iteration. For the price level, the correct decision is
when the difference between the rate on the investment start date and the
rate on the investment completion date is characterized by the same sign as
the difference between the rate on the day of starting the investment and the
expected rate value on the day of its completion,

• profit - potential profit understood for each iteration as the absolute value of
the differences between the exchange rate on the investment completion date
and the exchange rate on the investment completion date. In this way, we
get a potential profit with a well-forecasted direction of exchange rate change
for each of the days covered by the study. The measure of profit is the sum
of these values, where the values of the potential profit receive the “+” sign
if the network has made a correct decision on the direction of the exchange
rate change (the correct decision is understood here in the same way as in
the category of the percentage of correct decisions made) and the sign “–”
otherwise.

4 Experimental Analysis

Three currency pairs USD/EUR, GBP/EUR and CHF/EUR were used for fore-
casting, and the dataset spans over four years and includes over 1,290 sample
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market quotations. The model forecasts for 1, 2, 3, 4, 5, 6 and 7 days ahead using
historical data price levels and rates of return. The analysis takes into account
the influence of forecasting parameters on the methods of assessing the quality
of these forecasts

The generalized results of three measures taken into account are presented in
the Table 1 below. The first table shows the averaged results for all observations.
These results were presented with the assumption of maximization of the profit
and the number of correct direction predictions of change made by the network
in the total number of attempts made. The table shows two measures of error
- ME and MAE and how they look depending on the use of different types of
data (price levels and rates of return) for the same currency pairs.

Table 1. Averaged results of profit, correct decisions and ME/MAE for three currency
pairs when forecasting price levels (PR) and rates of return (RR)

Profit PL Cor. PL ME/MAE PL Profit RR Cor. RR ME/MAE RR

USD/EUR 0,9874 0,5464 0,0007/0,0094 0,1498 0,5067 −0,0000134/0,0036

CHF/EUR 0,3725 0,5353 −0,0004/0,0062 0,0573 0,5035 −0,00000631/0,0023

GBP/EUR −0,0667 0,4802 −0,0024/0,0165 −0,5498 0,4843 −0,0000257/0,0004

As can be seen in the two tables above, forecasting on price levels is charac-
terized by better results, which are understood as the possibility of generating a
greater profit and a higher percentage of correct decisions in the total number of
decisions than forecasting on rates of return. Later in the analysis of the results,
the results for the price levels of the three currency pairs will be presented in
order to support the reasons why forecasting on this data gives better results in
the two parameters mentioned above. For the sake of clarity in the presentation
of results, they will be presented in the form of graphs.

4.1 MAE

In further stages of the following article, for the sake of clarity, the graphs and
results will be presented in narrower data ranges, considering the fact that con-
clusions drawn on these narrower ranges can be generalized for the entire study,
taking into account all the applied settings of neural networks and three cur-
rency pairs. There are several conclusions that will be analysed in more detail
later on in the discussion of the results. Those include:

• Noticeable arrangement of the MAE results for the shortest horizons closest to
the centre and its systematic expansion along with the increase of the invest-
ment horizon (arrangement (in the order from the centre) in blue-yellow-red
with various markers and ending in green symbolizing the longest ten-day
prediction horizon).
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• For the first four horizons, there is a very clear gradual proximity to the middle
of the MAE results graph for the network settings where the investment
horizon is equal to the set number of lags. This phenomenon can be observed
especially well for forecasts for one day ahead, where for a setting with one
delay, the markers are around the 0.004 line. Then they gradually increase for
delays from two to seven, and again with a network setting with one delay,
but with increased number of hidden nodes, get closer to the middle of the
graph, to line 0.004.
On the charts below, presenting the Mean Absolute Error values for currency
pairs, it should be noticed that:

• For all three currency pairs, the shorter the investment horizon, the lower
the MAE. The chart presented in Fig. 1 shows the MAE for USD/EUR for
the number of hidden nodes one and two and for delays ranging from one to
seven. The chart is only a representative one, because such a relationship can
also be noticed for a higher number of hidden nodes and for all three currency
pairs. (see Fig. 1) shows that the MAE levels range from 0.003 to 0.013, but
each time for a given grid setting, the longer the investment horizon, the
greater the MAE.

Fig. 1. Results of the MAE for the forecast horizon from one to ten days and the
number of hidden nodes from one to two in combination with lags from one to seven
for the CHF/EUR currency pair

Figure 1 shows the trend for the best results, i.e., the lowest MAE, for lags
equal to the investment horizon with the same number of hidden nodes. In one-
day ahead predictions for the first seven different network settings, the lowest
MAE was obtained for the setting: one delay and one hidden node, for the next
seven for two hidden nodes, and also one delay for the next three nodes and
again one delay, etc. For the two days ahead prediction, the lowest MAE was
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obtained for the hdXlags2 settings (where X are consecutive natural numbers
from 1 to 7) - i.e., the number of delays is equal to two and the number of hidden
nodes changes. What is more, this relation applies to all currency pairs.

When deepening the analysis for the best results for the forecasts from a
given forecast horizon from the previous point, it is visible that the value of
MAE decreases together with the increase in the number of nodes. This means
that the results of the neural network for the predictions for one, two and three
days with the number of delays equal to the prediction horizon are characterized
by the lower value of the forecast error, the greater the number of hidden nodes
used. However, it should be also noted that the decrease in the value of the
forecast errors together with the increase in the number of hidden nodes has an
expiring nature.

The forecast error value increases along with the increase of the investment
horizon. For horizons from one to three days, it ranges from 0.002 to 0.006. For
investment horizons of more than seven days, it is higher than 0.006 for each
combination of neural network settings.

Fig. 2. Profit results for the forecast horizon from one to ten days and the number
of hidden nodes from one to two in combination with lags from one to seven for the
USD/EUR currency pair

4.2 Profit

The currency pair CHF/EUR and USD/EUR are two of the analysed currency
pairs, which for all network settings and for all time horizons always show a
positive profit, as for the assessment category described in the previous chapter.
For the analysed currency pair, a similar trend can be noticed as in the case of
errors in forecasts regarding the increase in profit together with the increase in
the investment horizon - (see Fig. 2).
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Fig. 3. Share of correct forecast decisions for the forecast horizon from one to ten days
and for the number of hidden nodes from one to three in combination with lags from
one to seven for the CHF/EUR currency pair

The forecast for more days ahead has a greater risk of making a mistake, but
as can be seen in the Figure below, a greater risk is associated with the possibility
of generating higher flows. In the case of profit, the relationships between the
number of hidden layers and delays and the amount of profit are less visible. It
seems that the forecasts for one day ahead for each of the 49 network settings
have the lowest profit value compared to the forecasts for two to ten days. This
is caused by smaller increases/decreases in the price of the currency for one day.
The price fluctuations over a longer time horizon may be greater, and with an
appropriate prediction, the profit ratio will be characterized by a higher level.

4.3 The Number of Correct Decisions

The percentage of correct decisions made by the neural network presents the
number of correctly predicted directions of currency exchange rate changes to the
total number of decisions made, which in this study were 1,184 cases. Results for
all 49 network settings and for all 10 different prediction horizons for CHF/EUR
and USD/EUR are higher than 50% of correct decisions. For forecasts for one
to four days, one can observe an increasing number of correct decisions. For
forecasts for more than four days, no clear trends or tendencies can be found. In
Fig. 3 (see Fig. 3), one can see the best results for the ten-day prediction with
the network setting – lags = 7 and regardless of the number of hidden nodes.
For the remaining three currencies and with a greater number of hidden nodes,
there is also no dependency. It is particularly well reflected in Fig. 3, which, in
contrast to the MAE and profit charts, is characterized by a large variation in
the order of the best results depending on the network settings.
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5 Discussion

The results of the conducted research confirm the effectiveness of neural net-
works as used for forecasting future changes in the currency market. However,
as shown by the results, their effectiveness depends on many factors and may
vary depending on the settings of neural networks. The quality of forecasts for
major currency pairs may be very similar (USD/EUR and CHF/EUR) but may
also be characterized by worse results (GBP/EUR). Both researchers and prac-
titioners find it very valuable to search for optimal solutions for forecasting on
financial markets. Not only did the study show a few dependencies that should
be further developed but also it confirmed some of the assumptions presented
in the literature review, such as, for example, an increase in the quality of fore-
casts along with an increase in the number of hidden nodes, but this increase is
smaller and smaller together with adding new nodes. In connection with this too
many hidden nodes will significantly extend the time needed to conduct forecasts
without significantly increasing the results generated by such a network.

Network setup results may play a valuable role in future research. They may
minimize forecast errors (MAE) and maximize the number of correct decisions.
The study presented in this article is a kind of introduction to further consid-
erations on the possibility of using neural networks in forecasting the prices of
currency pairs and the use of these forecasts for investments in derivatives. The
desire of the networks to minimize forecast errors may be considered a flaw of
neural networks used in this study. In further considerations on the possibilities
of using this type of network for forecasting, which will then be used to invest
in derivatives, the network’s attempt to minimize forecast errors is not a fully
desirable action. This is due to the fact that it is more important for investing
in derivative instruments to predict the direction of changes, and not to min-
imize the forecast error. As also was mentioned in the preliminary literature
review, the results presented in this study can be used as an introduction to the
application of the hybrid method by applying the best settings of neural net-
work parameters, e.g., fuzzy sets, in order to increase the effectiveness of their
forecasts.

6 Conclusion

Extreme learning machines give satisfactory results in predicting future price
levels of two key currency pairs - the US$ and the Swiss Franc in relation to
the Euro, while the relation of the British Pound to Euro was slightly worse.
Important for further research are answers to questions about the relationship
between the settings of the neural networks and their results in various forecast
horizons. The results that were noted, especially for short horizons, were con-
firmed for all three currencies. Regardless of the number of hidden nodes, the
lowest forecast errors were found for the settings of the number of delays equal
to the forecast horizon. It was also proven that there is a possibility of generating
the highest profits for investments made with forecasts for longer periods (more
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than 5 days). However, it was also shown that for the same settings there is a
higher risk than in the case of shorter forecasts (less than 5 days).
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Abstract. In pharmaceutical industry, dissolution testing is part of the
target product quality that are essentials in the approval of new prod-
ucts. The prediction of the dissolution profile based on spectroscopic data
is an alternative to the current destructive and time-consuming method.
Raman and near infrared (NIR) spectroscopies are two complementary
methods, that provide information on the physical and chemical prop-
erties of the tablets and can help in predicting their dissolution profiles.
This work aims to use the information collected by these methods by
creating an artificial neural network model that can predict the dissolu-
tion profiles of the scanned tablets. The ANN models created used the
spectroscopies data along with the measured compression curves as an
input to predict the dissolution profiles. It was found that ANN models
were able to predict the dissolution profile within the acceptance limit
of the f1 and f2 factors.

Keywords: Artificial neural networks · Dissolution prediction ·
Raman spectroscopy · NIR spectroscopy

1 Introduction

In pharmaceutical industry, a target product quality profile is a term used for
the quality characteristics that a drug product should process in order to satisfy
the promised benefit from the usage and are essentials in the approval of new
products or the post-approval changes. A target product quality profile would
include different important characteristics, very often one of these is the in vitro
(taking place outside of the body) dissolution profile [1]. A dissolution profile
represents the concentration rate at which capsules, and tablets emit their drugs
into bloodstream over the time. It is especially important in case of tablets that
yield a controlled release into the bloodstream over several hours. That offers
many advantages over immediate release drugs like reducing the side effects
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due to the reduced peak dosage and better therapeutic results due to the bal-
anced drug release [2]. In vitro dissolution testing has been a subject of scientific
researches for several years and became a vital tool for accessing product quality
performance [3]. However, this method is destructive since it requires immersing
the tablets in a solution simulating the human body and time-consuming as the
measurements usually take several hours. As a result, the tablets measured rep-
resent only a small amount of the tablets produced, also called batch. Therefore,
there is a need to find different methods that do not have the limitations of the
in vitro dissolution testing. The prediction of the dissolution profile based on
spectroscopic data is an alternative on which many articles have been published
and showed promising results. Raman and near infrared (NIR) spectroscopies are
two complementary methods that are applied in the pharmaceutical industry.
They offer the opportunity to obtain information on the physical and chemical
properties of the tablets that can help predicting their dissolution profiles in few
minutes without destroying them. Hence, Raman and NIR are recognized as a
straight-forward, cost effective alternatives and non-destructive tools in the qual-
ity control process [4,5]. However, these spectroscopies produce a large amount
of data as they consist of measurements of hundreds of wavelengths. This data
can be filtered out or maintained depending on how much useful information
can be extracted from it. This can be achieved using multivariate data analysis
techniques such as Principal Component Analysis (PCA).

Several researchers have used the spectroscopies data along with the multi-
variate data analysis techniques in order to predict the dissolution profiles. Zan-
nikos et al. worked on a model that permits hundreds of NIR wavelengths to be
used in the determination of the dissolution rate [6]. Donoso et al. used the NIR
reflectance spectroscopy to measure the percentage drug dissolution from a series
of tablets compacted at different compressional forces using linear regression, non-
linear regression and partial least square (PLS) models [7]. Freitas et al. created a
PLS calibration model to predict drug dissolution profiles at different time inter-
vals and for media with different pH using NIR reflectance spectra [8]. Hernandez
et al. used PCA to study the sources of variation in NIR spectra and a PLS-2 model
to predict the dissolution on tablets subjected to different levels of strain [9].

Artificial neural networks (ANNs) are very suitable for complex and highly
nonlinear problems and have been used in pharmaceutical industry in many
aspects, such as the prediction of chemical kinetics [10], monitoring a phar-
maceutical freeze-drying process [11], solubility prediction of drugs [12]. ANN
models have been also used for the prediction of the dissolution profile based
on spectroscopic data. Ebube et al. trained an ANN model with the theoreti-
cal composition of the tablets to predict their dissolution profile [13]. Galata et
al. developed a PLS model to predict the contained drotaverine (DR) and the
hydroxypropyl methylcellulose (HPMC) content of the tablets which are respec-
tively the drug itself and a jelling material that slows down the dissolution, based
on both Raman and NIR Spectra, and used the predicted values along with the
measured compression force as input to an ANN model in order to predict the
dissolution profiles of the tablets defined in 53 time points [14]. Using NIR and
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Raman spectra to predict the DR and HPMC content of the tablets then along
with the concentration force predicting the dissolution profile is a fast method
that require minimal amount of human labor and which makes it easier to eval-
uate a larger amount of the batch. However, using predicted values as input to
the ANN model might limit the accuracy of the dissolution profile prediction.
Furthermore, training a neural network model to map three inputs to the 53
time points of the dissolution profile, is still a heavy task that might also affect
the accuracy of the prediction. Thus, our goal was to create ANN models with
a different approach that do not use predicted values as input. Our aim was
to extract the useful information directly from the NIR and RAMAN spectra
using a multivariate data analysis technique. This information, along with the
extracted information from the compression curve of the tablets were used as
input of two ANN models created that predict the dissolution curve represented
in the 53 points.

2 Data and Methods

In this section, the data used will be described and the methods used for the
data pre-processing will be presented. The artificial neural networks created will
be presented and finally the error measurement methods adopted to evaluate
the results.

2.1 Data Description

We have been provided with the measurements of the NIR and RAMAN spec-
troscopy, along with the pressure curves extracted during the compression of
the tablets. The data consists of the NIR reflection and transmission, Raman
reflection and transmission spectra, the compression force - time curve and
the dissolution profile of 148 tablets. The tablets were produced with a total
of 37 different settings. Three parameters were varied: drotaverine content,
HPMC content and the compression force. From each setting, four tablets were
selected for analysis (37 * 4). The spectral range for NIR reflection spectra
was 4000–10,000 cm−1,with a resolution of 8 cm−1, which represents 1556 wave-
length points. NIR transmission spectra were collected in the 4000–15,000 cm−1

wavenumber range with 32 cm−1 spectral resolution, which represents 714 wave-
length points. Raman spectra were recorded in the range of 200–1890 cm−1 with
4 cm−1 spectral resolution for both transmission and reflection measurements
which represents 1691 points. Two spectra were recorded for each tablet in both
NIR and Raman. The pressure during the compression of the pill was recorded
in 6037 time points. The dissolution profiles of the tablets were recorded using
an in vitro dissolution tester. The length of the dissolution run was 24 h. During
this period, samples were taken at 53 time points (at 2, 5, 10, 15, 30, 45 and
60 min, after that once in every 30 min until 1440 min).



148 M. A. Mrad et al.

2.2 Data Analysis

The collected data were visualized and analyzed using MATLAB and Excel
in order to detect and fix missed and wrong values: Setting first point of the
dissolution curves to zero, detecting missed values, and fixing negative values
found due to error of calibration, etc. Specifically, the data is represented in
matrices Nn

i for NIR transmission data and Mn
j for NIR Reflection data, where

i = 1556, j = 714. Rn
k and Qn

k respectively for Raman reflection and trans-
mission data where k = 1691. Cn

l for the compression force data where l =
6037 and Pn

s for the dissolution profiles where s = 54. With n representing the
number of samples which is equal to 296. All the different NIR, RAMAN and
the compression force matrices have been standardized using scikit-learn pre-
processing method: StandardScaler. StandardScaler fits the data by computing
the mean and standard deviation and then centers the data following the equa-
tion Stdr(NS) = (NS − u)/s, where NS is the non-standardized data, u is the
mean of the data to be standardized, and s is the standard deviation. All the
different standardized NIR, RAMAN and the compression force matrices have
been row-wise concatenated to form a new matrix Dn

m where n = 296 and m =
i+j+2k+l=11686 as follow: Dn

m = (Nn
i |Mn

j |Rn
k |Qn

k |Cn
l ). After standardization,

PCA was applied to the different standardized matrices as well as the merged
data Dn

m and in order to reduce the dimension of the data while extracting and
maintaining the most useful variations. Basically, taking Dn

m as an example we
construct a symmetric m*m dimensional covariance matrix Σ (where m = 11686)
that stores the pairwise covariances between the different features calculated as
follow:

σj,k =
1
n

n∑

i=1

(x(i)
j − μj)(x

(i)
k − μk) (1)

With μj and μk are the sample means of features j and k. The eigenvectors
of Σ represent the principal components, while the corresponding eigenvalues
define their magnitude. The eigenvalues were sorted by decreasing magnitude
in order to find the eigenpairs that contains most of the variances. Variance
explained ratios represents the variances explained by every principal compo-
nents (eigenvectors), it is the fraction of an eigenvalue λj and the sum of all the
eigenvalues. The following plot (Fig. 1) shows the variance explained rations and
the cumulative sum of explained variances.

It indicates that the first principal components alone accounts for 50% of the
variance. The second component account for approximately 20% of the variance.
The plot indicates that the seven first principal components combined explain
almost 96% of the variance in D. These components are used to create a projec-
tion matrix W which we can use to map D to a lower dimensional PCA subspace
D’ consisting of less features:

D = [d1, d2, d3, . . . dm], d ∈ Rm → D′ = DW,W ∈ Rm∗v (2)

D′ = [d1, d2, d3, . . . dm], d ∈ Rm (3)
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Fig. 1. PCA explained and cumulative variances.

2.3 Artificial Neural Networks

ANN models were used to predict the dissolution profiles of the tablets. The
models were created using the Python library sklearn. Two ANN models were
created, Model 1 and Model 2 respectively using Input1 and Input2 which are
described later in this paper. The models used the rectified linear unit activa-
tion function referred to as ReLU on the hidden layers and the weights on the
models were optimized using LBFGS optimizer. The mean-squared error (MSE),
was the loss function used by the optimizer in both models. The training target
for both models were the 53 dissolution curve points. The number of layers on
the models and the number of neurons were optimized based on their perfor-
mances. Regularization term has been varied in order to reduce overfitting. In
each training, 16% of the training samples (49 samples) were selected randomly
for testing. The accuracy of the models predictions was calculated by evaluating
the similarity of the predicted and measured dissolution profiles using the f2 and
the f1 values.

2.4 Error Measurement

Two mathematical methods are described in the literature to compare dissolu-
tion profiles [15]. A difference factor f1 which is the sum of the absolute values
of the vertical distances between the test and reference mean values at each dis-
solution time point, expressed as a percentage of the sum of the mean fractions
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released from the reference at each time point. This difference factor f1 is zero
when the mean profiles are identical and increases as the difference between the
mean profiles increases.

f1 =
∑n

t=1 |Rt − Tt|∑n
t=1 |Rt| ∗ 100 (4)

Where Rt and Tt are the reference and test dissolution values at time t.
The other mathematical method is the similarity function known as the f2

measure, it performs a logarithmic transformation of the squared vertical dis-
tances between the measured and the predicted values at each time point. The
value of f2 is 100 when the test and reference mean profiles are identical and
decreases as the similarity decreases.

f2 = 50log10[(1 +
1
n

n∑

t=1

(Rt − Tt)
2]−0.5) ∗ 100 (5)

Values of f1 between zero and 15 and of f2 between 50 and 100 ensure the
equivalence of the two dissolution profiles. The two methods are accepted by the
FDA (U.S. Food and Drug Administration) for dissolution profile comparison,
however the f2 equation is preferred, thus in this paper maximizing the f2 will be
prioritized. The average of f1 and f2 on the different samples was then calculated
and returned.

3 Results and Discussions

In this section the results after the PCA dimensionality reduction will be dis-
cussed. The results and the performance of the Artificial Neural Network models
created will be presented.

3.1 Dimensionality Reduction Using PCA

Principal component analysis transformation was applied in a first step to the
standardized NIR and Raman spectra recorded in reflection and transmission
mode (Nn

i , Mn
j , Rn

k , Qn
k matrices) and the standardized compression force curve

Cn
l , and in a second step on all the data merged in matrix Dn

m in order to
investigate the effect of the transformation on the merged and the separate data
(Fig. 2).

The resulting PCA decompositions, showed that in the case of NIR reflection,
three principal components explaining 84.79%, 9.67% and 4.83% of the total
variance in the data, respectively, leading to a cumulative explained variance of
more than 99%. Four principal components explained more than 80% of the total
variances of the NIR transmission data and 95% of the compression force data.
However, for Raman transmission, the first principal component alone explains
99.69% of the variance in the data. The first two principal components explain
98.51% and 1.01% of the variance in the Raman Reflection data, respectively.
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Fig. 2. Explained variance of spectral data, compression force, and all merged.

For matrix Dn
m, 7 principal components explain more than 95% of the variance

and 33 explain more than 99% of the merged standardized data. These data
resulting from the PCA decomposition were used as the inputs for the Artificial
neural network models. Two different inputs were created for the ANN models.
Input1 was composed of the most important principal components of the different
data. All components that explain less than 2% of the variance were eliminated,
12 principal components from the different data remained explaining a total
average of 95% of the variance (Table 1). Input2 maintain 99% of the variance
in the merged data with 33 principal components.

Table 1. Inputs selected for the ANN models

Input name Composition

Input1 NIR RE NIR TR Raman Tr Raman Re Compression

3, 99.3% 3, 78.8% 1, 99.96% 1, 98.51% 4, 96.83%

Input2 33 PCs, 99% of the variance of all data merged

3.2 Predicting the Dissolution Profile by Artificial Neural Network

Two ANN models were created, Model 1 and Model 2 having Input1 (12 compo-
nents) and Input2 (33 components) as inputs. For each setting, 100 trainings with
randomly selected testing datasets were run. The average f2 of the 100 trainings
was recorded. The number of neurons was increased from one to 13 and results
were recorded. A second layer and then a third layer having all the same num-
ber of neurons, were added in order to check the effect of deeper network on
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the behavior of the models and their results. Results showed that increasing the
number of neurons until 10 neurons was beneficial and improved the average
f2 value on both Model 1 and Model 2. however, after 10 neurons both models
maintained the same behavior and even the results decreased starting from the
12th neurons. Adding further hidden layers, slightly increased the performance
of the models starting from 5 neurons when adding a second layer and a third
layer on Model 1. Adding a second layer on Model 2 increased the results after
the 5th neurons, while it was only beneficial after the 7th neuron for the third
layer. Both models with at least one hidden layer and 7 neurons, were capable
to predict all the measured dissolution profile of all the 49 test tablets within
the acceptance range of both f1 and f2 factors. Adding more neurons and more
layers was beneficial in improving the prediction. The best f2 result achieved for
Model 1 was by using one hidden layer with 10 neurons. However, the best f2
result for Model 2 was achieved by three layers each having 10 neurons. This
might be due to the higher number of features in the input used in Model 2 (33
features) compared to only 12 features in Model 1 inputs (Fig. 3 and Table 2).

Fig. 3. Average f2 values, using different layers and neuron numbers

Table 2. Results of best performing models

Model f2 value of the best ANN model f1 value of the best ANN model

Model 1 67.05 6.51

Model 2 70.35 5.29
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Fig. 4. Sample predicted dissolution profiles using Model 1

Fig. 5. Sample predicted dissolution profiles using Model 2
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4 Conclusion

The current work aimed to utilize the recorded NIR and Raman spectroscopy
data along with the compression force to predict the dissolution profiles of tablets
produced with 37 different settings. The dimensionality of the data was reduced
using PCA, then used as an input for the two neural models created. ANN models
used Limited-memory BFGS as optimizer, and the dissolution profiles as training
targets. It was found that ANN models using NIR and Raman spectroscopy
along with the compression force, can predict the dissolution profiles withing
the acceptance range of the f2 and f1 factors. The results show that the in vitro
dissolution testing can be replaced by more advanced methods that use similar
data providing a large amount of information about the tablets (Figs. 4 and 5).
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Abstract. Classification in a possibilistic scenario is a kind of multiple
class assignments for data. One of the most prominent and interpretable
classifier is the learning vector quantization (LVQ) realizing a nearest
prototype classifier model. Figuring out the problem of classifying based
on possibilistic or probabilistic class labels (assignments) leads to the
use of likelihood ratio to organize a sustainable approach. To this end,
we start with a special kind of probabilistic LVQ, known as Robust Soft
LVQ, and propose a possibilistic extension to pave the way to our new
method. Particularly, the proposed possibilistic variant takes positive
and negative reasoning known from RSLVQ into account to secure a
contrastive learning model in the end. In the paper we will explain the
model and give the mathematical justification.

Keywords: Contrastive learning (CL) · Multiple classification · LVQ ·
RSLVQ · Interpretable models

1 Introduction

The challenge of secure classification is still subject of ongoing research, in par-
ticular if the classification learning has to deal with label noise, decision stability,
etc. [2,4,5,15]. Recently, in [13] we proposed a mathematical framework which
guarantees an optimum solution for trade-off between classification and rejection
of a data point. In this method, we try to assign a crisp label given a probability
class assignment, albeit if it is not rejected yet. But, in reality sometimes we
face a situation that rejection of data as an option is absolutely off the table. In
addition, instead of class probability assignment we have to deal with class possi-
bility assignments. For example, in case of medical diagnosing patients can suffer
from several diseases with high certainty. A probabilistic classification scheme
would suggest respective diseases all with low probability which could lead to
a classification reject because of ambiguous decision. Here, the importance of
possibilistic classification emerges.

Hence, it is inevitable to deal with possibilities for classification and avoid
the inherent uncertainty of possibilistic assignments. To clarify our concerns,
c© Springer Nature Switzerland AG 2021
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sometimes an event with high possibilities for several classes would lead to low
probabilistic decisions, which may lead us to confusion. But, definitely the less
the possibility of an event is the less is its probability [14,21,25].

Prototype based classifiers are known to be both interpretable and robust
[2,17,24]. Among them, the family of learning vector quantizers (LVQ) plays
a leading role [1,9,10,18]. A probabilistic LVQ based on cross-entropy loss was
proposed in [22] whereas likelihood ratio loss was taken in robust soft LVQ
(RSLVQ, [19]) to obtain a probabilistic class assignment.

In this paper we adopt the RSLVQ approach to obtain a possibilistic soft
LVQ. For this purpose, the conventional log likelihood ratio in RSLVQ is replaced
by a new ratio, defined based on possibilities. Finally, the resulting new ratio
is able to investigate both positive and negative reasoning to establish a con-
trastive learning structure for a possibilistic labeling method which is not only
interpretable but more comprehensive than some other common methods. Fur-
ther, this positive and negative reasoning shows similarities to recently proposed
probabilistic classifier learning scheme inspired by cognitive learning theory [16].

2 Problem and Model Description

The task is to classify a given data point x ∈ R
n with a class assignment pos-

sibility y(x) = (y1(x), . . . ,yNc
(x)) where yj(x) ∈ [0, 1] represents the possi-

bility of assigning the class j ∈ C = {1, . . . , Nc} to the sample x ∈ R
n. For

this purpose, we suppose a prototype-based scheme with a set of prototypes
W = {ωi ∈ R

n|i = 1, . . . , N} where each prototype ωi stands as a feature rep-
resentative of a certain class such that at least one prototype is responsible for
each class.

The starting point is to adopt the RSLVQ-model and modify it accordingly
to handle multiple class assignments in a possibilistic setting adequately.

Remark 1. Our priority is to classify the sample data x, regardless of its classi-
fication costs. Thus, x should be classified unless proven otherwise.

2.1 Likelihood Ratio and Predicting Labels – Preliminary Concepts
and Notations

Let P (i|x) be the probability of choosing i ∈ C as a label given the data point x,
which as a posterior to be predicted by the classifier. Due to the Bayes’ theorem
we have the relation

P (i|x) = P (x|i) · pi

P (x)
(1)

to be valid with class priors pi.
Additionally, we also consider the quantity

P (¬i|x) =
∑

j �=i

P (j|x)
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as the probability of assigning any label to x except i. Both quantities are
combined into the class dependent likelihood ratio:

Li(x) =
P (i|x)

P (¬i|x)

=
P (i|x)∑

j �=i P (j|x)

=
P (x|i) · pi

P (x)∑
j �=i P (x|j) · pj

P (x)

=
P (x|i) · pi∑

j �=i P (x|j) · pj
,

Next, we assume each class is represented by just one prototype, i.e. Nc = N
for simplicity. Further, if we suppose equal priors pi = 1

N the likelihood ratio
simplifies to

Li(x) =
P (x|i)∑

j �=i P (x|j) . (2)

which can be used as an alternative class predictor instead of the prediction
function P (i|x) from (1). In case of, pi �= 1

N we get

Li(x) =
P (x, i)∑

j �=i P (x, j)
(3)

for the likelihood ratio.
So far, we considered P (x|i) as a probability density function. In other words,

0 ≤ P (x|i) ≤ 1 and
∑

i P (x|i) = 1. Yet, we did not make use of the normaliza-
tion condition.

Therefore, all considerations remain valid if we relax this normalization con-
dition changing to possibility functions, i.e. allowing

∑
i P (x|i) �= 1. In con-

sequence, we can apply the same arguments for the possibility function and
generalize the class dependent likelihood ratio Li(x) to this scenario.

2.2 Likelihood Ratio Based Loss Function in Relation to RSLVQ –
The Probabilistic Case

In this section we will introduce a local contrastive loss based on the class depen-
dent likelihood ratios Li(x) and relate this to the RSLVQ local loss

LossRSLV Q(x) =
∑

i

LossRSLV Q(i|x) (4)
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with class dependent local losses

LossRSLV Q(i|x) = yi(x) · ln

(
P (x|i)

P (x|i) +
∑

j �=i P (x|j)

)
(5)

as defined in [19]. We will show that this local contrastive loss includes positive
and negative reasoning, whereas the RSLVQ loss LossRSLV Q(x) only includes
positive reasoning.

Hence, in analogy to soft LVQ (SLVQ) as the initial setting for RSLVQ in
[19], we introduce the class dependent loss

Loss(i|x) = −yi(x) · ln(Li(x)) (6)

using the likelihood ratios Li(x) and consider the local loss function Loss(x) =∑
i Loss(i|x) as follows:
Without loss of generality, we assume both yi(x) and P (x|i), to be proba-

bility density functions ∀i and prove that the Loss(i|x) evaluates dissimilarities
between them. For this purpose, we calculate

Loss(i|x) = −yi(x) · ln
(Li(x)

)

= −yi(x) · ln
( P (x|i)∑

j �=i P (x|j) · yi(x)
yi(x)

)

= −yi(x) · ln
(P (x|i)

yi(x)
)

+ yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

)
.

Summing up both sides of the equation ∀i we obtain

Nc∑

i=1

Loss(i|x) =
Nc∑

i=1

−yi(x) · ln
(P (x|i)

yi(x)
)

+ yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

)

=
Nc∑

i=1

−yi(x) · ln
(P (x|i)

yi(x)
) −

Nc∑

i=1

−yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

)

yielding
Loss(x) = DKL(y(x)‖P (x)) − DKL(y(x)‖¬P (x)) (7)

as a local loss function with the Kullback-Leibler divergences DKL(y(x)‖P (x))
and DKL(y(x)‖¬P (x)). In fact, both divergences can be taken as positive and
negative reasoning functions, respectively. By means of positive and negative rea-
soning it is obvious that the local loss Loss(x) is a contrastive learning function
or contrastive loss.
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In the next step we relate the local loss Loss(x) to that of RSLVQ given in
(4). For this purpose we consider the class dependent local loss

Loss(i|x) = −yi(x) · ln
(Li(x)

)

= −yi(x) · ln
( P (x|i)∑

j �=i P (x|j) · P (x|i) +
∑

j �=i P (x|j)
P (x|i) +

∑
j �=i P (x|j)

)

= −yi(x) · ln
( P (x|i)
P (x|i) +

∑
j �=i P (x|j)

)

+yi(x) · ln
(

∑
j �=i P (x|j)

P (x|i) +
∑

j �=i P (x|j)
)

= LossRSLV Q(i|x) + yi(x) · ln
(

∑
j �=i P (x|j)

P (x|i) +
∑

j �=i P (x|j) · yi(x)
yi(x)

)

= LossRSLV Q(i|x) + yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

)

−yi(x) · ln
(P (x|i) +

∑
j �=i P (x|j)

yi(x)
)

= LossRSLV Q(i|x) + yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

)
+ yi(x) · ln yi(x)

−yi(x) · ln
(
P (x|i) +

∑

j �=i

P (x|j))

whereby we used the equalities

–
∑

i yi(x) · ln
∑

j �=i P (x|j)
y i(x) = −DKL(y(x)‖¬P (x)),

–
∑

i yi(x) · ln yi(x) = H(y(x)),
– ln

(
P (x|i) +

∑
j �=i P (x|j)) = 0,

as well as (4) to simplify. Hence, we achieve the local loss as

Loss(x) = LossRSLV Q(x) − DKL(y(x)‖¬P (x)) + H(y(x)). (8)

which relates to the RSLVQ loss according to (7)

LossRSLV Q(x) = DKL(y(x)‖P (x)) − H(y(x)). (9)

In other words, the RSLVQ loss LossRSLV Q(x), compared to our Loss(x),
includes only positive reasoning.

2.3 Generalization to the Possibilistic Case

So far, we considered yi(x) and P (x|i), ∀i, as probability density functions. In
following steps we show that the local loss Loss(x) as a contrastive learning
function, in general, holds its properties when the normalization condition for
probability densities is dropped. Accordingly, now we suppose
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– yi(x) ∈ [0, 1] and
∑Nc

i=1 yi(x) = Y for the class assignments
– P (x|i) ∈ [0, 1] and

∑Nc

i=1 P (x|i) = P for the conditional probabilities.

We emphasize that generally Y,P �= 1 is valid. To emphasize this distinction we
replace the notation Loss(i|x) by Lossg(i|x) in the following. We consider and
rewrite

Lossg(i|x) = −yi(x) · ln
( P (x|i)∑

j �=i P (x|j) · yi(x)
yi(x)

)

= −yi(x) · ln
(P (x|i)

yi(x)
)

+ yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

)

= −yi(x) · ln
(P (x|i)

yi(x)
) − (

yi(x) − P)

− [−yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

) − (
yi(x) − P)

]

= −yi(x) · ln
(P (x|i)

yi(x)
) − (

yi(x) − P (x|i))

+
∑

j �=i

P (x|j) − [−yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

)

−(
yi(x) −

∑

j �=i

P (x|j))] − P (x|i)

= [−yi(x) · ln
(P (x|i)

yi(x)
) − (

yi(x) − P (x|i))]

+ [−yi(x) · ln
(
∑

j �=i P (x|j)
yi(x)

) − (
yi(x) −

∑

j �=i

P (x|j))]

+ [−P (x|i) +
∑

j �=i

P (x|j)]

Using the relations

– DGKL(y(x)‖P (x)) =
∑

i −yi(x) · ln (P (x|i)
y i(x)

)− (
yi(x)−P (x|i)) for the gen-

eralized Kullback-Leibler divergence for the possibilitic setting known from
[3] and [23]

– DGKL(y(x)‖¬P (x)) =
∑

i −yi(x)·ln (∑
j �=i P (x|j)
y i(x)

)−(
yi(x)−∑

j �=i P (x|j))
accordingly and

– −P (x|i) +
∑

j �=i P (x|j) = −2 · P (x|i) + P,

and summing up Lossg(i|x) over all possible values of i = 1, . . . , N we finally
get

Lossg(x) = DGKL(y(x)‖P (x)) − DGKL(y(x)‖¬P (x)) + (N − 2) · P (10)

as the contrastive loss in the possibilistic setting.
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To investigate the relation between Loss(x) and LossRSLV Q(x), first we
introduce the quantities LgRSLV Q

i (x), which have to be deviating from the
RSLVQ likelihood ratios

LRSLV Q
i (x) =

P (x|i)
P (x|i) +

∑
j �=i P (x|j)

to reflect the possibilistic setting. Thus we define

LgRSLV Q
i (x) =

P (x|i)
P , (11)

where P =
∑

j P (x|j). Accordingly, we consider the class dependent local like-
lihood ratios

Lg
i (x) =

P (x|i)∑
j �=i P (x|j)

for the possibilistic case and relate them to the class dependent local losses
Lossg(i|x). We calculate

Lossg(i|x) = −yi(x) · lnLg
i (x)

= −yi(x) · ln ( P (x|i)
∑

j �=i P (x|j) · P
P

)

= −yi(x) · ln (P (x|i)
P

)
+ yi(x) · ln (

∑
j �=i P (x|j)

P
)

= −yi(x) · lnLgRSLV Q
i (x) + yi(x) · ln (

∑
j �=i P (x|j)

P · yi(x)

yi(x)

)

= LossgRSLV Q(i|x) + yi(x) · ln (
∑

j �=i P (x|j)
yi(x)

)
+ yi(x) · ln (yi(x)

P
)

= LossgRSLV Q(i|x) + yi(x) · ln (
∑

j �=i P (x|j)
yi(x)

)
+

(
yi(x) −

∑

j �=i

P (x|j))

− (
yi(x) −

∑

j �=i

P (x|j)) + yi(x) · ln (yi(x)

P
)
,

and make use of the obvious relations

–
∑

i LossgRSLV Q(i|x) = LossgRSLV Q(x),
–

∑
i yi(x)·ln (∑

j �=i P (x|j)
y i(x)

)
+

(
yi(x)−∑

j �=i P (x|j)) = −DKL(y(x)‖¬P (x)),
–

∑
i yi(x) · ln yi(x) = Hg(y(x)),

to derive

Lossg(x) = LossgRSLV Q(x) − DKL(y(x)‖¬P (x)) +Hg(y(x)) − Y + (N − 1) · P − Y · lnP,

as the desired relation. Moreover, using the equality (10) we have

LossgRSLV Q(x) = DGKL(y(x)‖P (x)) − Hg(y(x)) − P + Y · ln P (12)

in terms of the generalized Kullback-Leibler divergence. As we can see, this mod-
ified local loss LossgRSLV Q(x) for the possibilistic setting is like in the proba-
bilistic case for RSLVQ, i.e. it only takes the positive reasoning into account.



Possibilistic Classification Learning Based on Contrastive Loss 163

2.4 Discussion on Class Possibility Assignment

In the beginning, we mentioned that taking yi(x) as a class possibility assign-
ment has some disadvantages. To tackle this problem, we introduce the entropic
function

f(yi(x)) = −[yi(x) ln yi(x) +
(
1 − yi(x)

)
ln

(
1 − yi(x)

)
], (13)

which is inspired by Shannon entropy [20]. This function holds the following
properties:

– for yi(x) ∈ (0, 1
2 ): if yi(x) → 1

2 then f(yi(x)) → 1, i.e. the uncertainty
increases,

– f( 12 ) = 1, i.e. at the vertex we have the maximum uncertainty,
– for yi(x) ∈ ( 12 , 1): if yi(x) → 1 then f(yi(x)) → 0, i.e. the uncertainty

decreases.

which can be easily verified.
Using this entropic function, the local losses Lossg(i|x) are obtained as

Lossg(i|x) = −f(yi(x)) · ln(Li(x)). (14)

Comparing this equation with the SLVQ local losses in (6), we can interpret the
entropic function f(yi(x)) as a measure of fuzziness. Yet, compared to yi(x), it
is a better choice because it takes both factors yi(x) and 1− yi(x) into account
and resembles the functionality of Li(x).

Moreover, in practice it does not have any drastic changes in compare to
the corresponding yi(x) but it has the drawback not to sum up to one, i.e.∑

i f(yi(x)) �= 1. To overcome this difficulty we apply the softmax transforma-
tion known from multi-layer perceptrons to achieve a probabilistic output [6,7].
Thus, we replace the entropic function f(yi(x)) by following softmax function:

S(f(yi(x))) =
exp (f(yi(x)))∑
j exp

(
f(yj(x))

) , (15)

such that
Lossg(i|x) = −S(f(yi(x))) · ln(Li(x)) (16)

is obtained.

2.5 Specifications for Practical Use

Up to this point, we have not specified the class conditional probabilities P (x|i)
for x to be needed for calculation of P (i|x) according to the Bayes’ relation
(1). Taking the idea of stochastic neighbor embedding [8] we determine the
probabilities as P (x|i), i.e. they are defined based on proximity between the
point x and any prototype assigned to label i. Accordingly, we propose P (x|i) =
exp (−λ · d2(x,ωi)). We emphasize that P (x|i) → 0 is valid, if λ → ∞ and
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P (x|i) → 1, for the values of λ close enough to zero, i.e. it can act as a possibility
function.

Further, we should remember that P (x|i) is not a probability function. But,
in the special case λ = 1

2·σ2 it acts as a standard normal distribution function,
N (x; 0, λ). To clarify our claim we consider

Lg
i (x) =

P (x|i)∑
j �=i P (x|j)

=
exp

( − λ · d2(x,ωi)
)

∑
j �=i exp

( − λ · d2(x,ωj)
)

=
exp

( − 1
2·σ2 · d2(x,ωi)

)
∑

j �=i exp
( − 1

2·σ2 · d2(x,ωj)
) ·

√
2 · π · σ√
2 · π · σ

≡ Ni(x; 0, λ)∑
j �=i Nj(x; 0, λ)

= Li(x).

which demonstrates the appropriate choice.

3 Cost Function and Learning Step

For a machine learning model approach we consider the overall loss

L =
∑

x

Loss(x)

such that stochastic gradient descent learning can be applied for minimizing L
using the gradients of the local losses Loss(x). In our model, the parameters to
be adjusted during learning are the prototype vectors ωi(t). Hence, we get

ωi(t + 1) = ωi(t) + α(t) · ∂Loss(x)
∂ωi

(17)

as the learning update for the prototype ωi(t) given a randomly chosen train-
ing sample pair (x,y(x)). The learning rate is 0 < α(t) � 1 typically slowly
decreasing during time.

Since, the entropic function f(yi(x)) and its softmax version S(f(yi(x))) do
not depend on ωi we can conclude that the proportionalities

∂Loss(x)
∂ωj

∝ ∂Loss(i|x)
∂ωj

∝ ∂
(Li(x)

)

∂ωj
,

hold. Therefore, we can take an arbitrary choice and, hence, we continue with
the exponential-based Li(x)

ln Li(x) = −λ · d2(x,ωi) − ln

⎛

⎝
∑

j �=i

exp (−λ · d2(x,ωj))

⎞

⎠ . (18)
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for convenience. Since

∂ ln
( ∑

j �=i exp (−λ · d2(x,ωj))
)

∂ωi
= 0

is valid, which holds due to its independence of ωi, we get

∂ ln Li(x)
∂ωi

=
∂
( − λ · d2(x,ωi)

)

∂ωi

= −2 · λ · d(x,ωi) · ∂
(
d(x,ωi)

)

∂ωi
,

whereas for ∂ lnLi(x)
∂ωk

with k �= i

∂ ln Li(x)
∂ωk

=
∂
( − ln

∑
j:j �=i exp (−λ · d2(x,ωj))

)

∂ωk

= −−2 · λ · d(x,ωk) · exp
( − λ · d2(x,ωk)

)
∑

j exp
( − λ · d2(x,ωj)

) · ∂
(
d(x,ωk)

)

∂ωk

= 2 · λ · S
(
exp

( − λ · d2(x,ωk)
)) · d(x,ωk) · ∂

(
d(x,ωk)

)

∂ωk

is obtained.
A careful initial choice of λ together with an appropriate decreasing scheme

supports good convergence behavior of the learning process [11,12].

4 Conclusions

In this paper we propose a machine learning approach for possibilistic classifica-
tion learning such that fuzzy class assignments are predicted, which do not sum
up to one. Thus it is a kind of gradual multiple class learning. The approach is
based on prototype learning paradigm known to be interpretable and robust.

The mathematical framework is motivated and explained in detail. Future
work is to realize the model computationally and show successful numerical
simulations for illustrative and real world problems.

Acknowledgement. M.K. was supported by a grant of the European Social Fund
(ESF).
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Abstract. Automated visual defect detection on textile products under uncon-
strained setting is a much sought-after, and at the same time a challenging prob-
lem. In general, textile products are structurally complex and highly varied in
design, which makes the development of a generalized approach using conven-
tional image processing methods impossible. Deep supervised machine learning
models have been very successful on similar problems but cannot be applied in this
use-case due to lack of annotated data. This paper demonstrates a novel automated
approach which still leverages on the ability of deep learning models to capture
complex features on the textured and colored fabric, but in an unsupervised man-
ner. Specifically, deep autoencoders are applied to capture the complex features,
which are further processed by image processing techniques like thresholding and
blob detection, subsequently leading to detection of defects in the images.

Keywords: Fabric defect detection · Unsupervised learning · Dimensionality
reduction · Autoencoder

1 Introduction

Defects in textile industry can occur during various phases of products’ lifecycle. Such
defects have been identified into more than 70 different kinds by the textile industry [1].
They can occur either because of faulty raw-material and/or because of malfunctioning
of the machines involved in the textile production. Accordingly, various kinds of defects
can be attributed to type of raw-material, product-type and the production facility.Quality
control process in textile industry is very essential as the price of a defect ridden product
can be reduced by 45% to 65% [2]. The process is repetitive and costs unreasonable
duration per item if done manually. Certain improvements have been made in recent
years by capturing the previous “lessons learnt” in terms of machine learning models
and utilizing the learnt models to predict and correspondingly to avoid quality problems.
One such technique is predictive quality assurance (PreQA) [3], where the idea is to
learn the relationship between product features starting from design until manufacturing
and the corresponding quality related problems. The information (machine learning
model) thus learnt is later used in the product development phase to predict possible
quality related problems, and if necessary, to suggest design alternatives to overcome
the problems.
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As explained in [3], a PreQA system gathers and integrates information about the
product from both structured and unstructured data. The structured data can be for
example from enterprise resource planning (ERP) software, bill of materials (BOM)
and quality check logs. Unstructured data here is in the form of images of defective
products, taken either by the manufacturer during quality check process, or directly
by the customers during returning. Conventionally the visual defect detection has been
carried outmanually and offlinewithmany inherent restrictions in efficiency and efficacy
because of carelessness, optical illusion etc.Given that the textile products canbevisually
and structurally widely varying ranging from plain fabric to multi-colored and multi-
textured textiles, it is challenging to automate visual defect detection in textile industry. In
addition, as the sources of images can be varying, the required automated defect detection
technique must be robust with respect to view of the product, lighting conditions and
zoom level of the image. In this regard, an automated fabric defect detection systemwhich
functions in unconstrained environment is of high importance for the efficacy of the
PreQA system.With respect to analysis on unstructured data, the article [4] demonstrates
a novel image processing pipeline to obtain structured information from the images of
defective product and accordingly to enrich the solution obtained using structured data.
However, the pipeline lacked a method for automated detection of abnormalities in the
image. This article demonstrates a novel deep learning-based framework for automated
anomaly detection in images of textile products.

Given the infeasibility of composing a labeled dataset covering all possible types
of defects, we opt for an unsupervised approach based on convolutional neural network
(CNN)-based autoencoders (CAE) which is able to detect visual defects without impos-
ing restrictions on how an image has been captured. The remainder of this article is orga-
nized as follows: Sect. 2 reviews previous studies on fabric defect detection, followed by
a brief introduction to relevant machine learning algorithms (Sect. 3). Section 4 presents
the proposed framework and explains its individual components. Section 5 evaluates the
framework with respect to different criteria. Finally, Sect. 6 concludes the article with
summary and future work.

2 Previous Work

In this section, we briefly review previous work applied in related problem scenarios.
We focus on both conventional image processing and machine learning-based methods.

2.1 Image Processing Techniques

The field of automated defect detection has seen abundant research mainly focusing on
machine vision based techniques. Core image processing techniques have been histori-
cally widely studied and applied for anomaly detection in fabrics. [5] proposed Scale-
Invariant features (SIFT) between equivalent images, which are being continuously used
in image processing techniques quite often. The studies [6] and [7] have demonstrated
the application of SIFT features for defect detection in textiles and steel surfaces respec-
tively. Image processing techniques that propose usage of filters are also widely studied
for this application. One such commonly used filter for texture analysis is the Gabor filter
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used for analyzing the presence of various frequency contents in specific directions in
the image. [8] proposed a technique to automatically choose an optimal Gabor filter for a
given application from a bank of filters - the scales and orientations of which are preset.
This optimal filter is then used for isolating the defect also in textured fabrics. However,
the preset parameters in the bank of filters may not be well generalized for diversified
and outlier input fabrics. A similar study [9] proposed a strategy that involves usage
of Gabor Filter banks along with Kernelized-Principal Component Analysis (KPCA)
[10] for feature reduction followed by Median Filtering and thresholding using OTSU’s
[11] algorithm. However, as the parameters for the Gabor filter banks are chosen by
experience, they might not be representative of all possible unseen defects in the uncon-
strained environment. [12] proposed a pipeline that can be briefly compiled into three
steps; Contrast enhancement, that enhances contrast between defective regions and tex-
tured backgrounds in the fabrics; Pattern extraction, that extracts periodic patterns in
the fabric, texture and median filtering of the considered windowed regions; and finally
cluster the filtered regions to isolate the defects. While this kind of framework expects
the textile to be plain or has regular patterns, a fabric or an apparel might not always
be plain or have periodic patterns in them (especially if the framework is supposed to
function in an unconstrained environment). Hence, the suggested pipelined steps might
not perform well for fabrics that have non-uniform regions in them.

2.2 Machine Learning Techniques

The studies discussed so far attempt to detect defects by employing or developing tech-
niques from the conventional image processing field. Although sometimes they are
effective, the techniques pose difficulties while considering fabrics that were obtained
under a non-controlled environment. Along with this problem, it is also challenging to
determine the optimal parameters for processing the images through experiences, as the
fashion industry is dynamic and widely varying. Hence for techniques that involve pre-
setting parameters (e.g.: for Filters, Thresholds) as the first step of processing, certain
expertise is needed to determine optimal parameters in each case to obtain relatively
better results.

In this respect, learning based methods which learn from real-world datasets and
therefore generalize the solution, gain prominence. Because of non-availability of anno-
tated data, supervised learning methods are ruled out for the task of defect detection in
fabrics. Unsupervised ML methods which do not anticipate labelling of the data are rel-
evant for this task. The Principal Component Analysis (PCA) [13] is one such technique
that can be leveraged for defect detection. PCA, is a kind of dimensionality reduction
method, which reduces data points from a higher space to a lower space while retaining
the major portion of variance in the data. This is done by performing eigen decomposi-
tion of the covariance matrix of the multivariate dataspace, followed by using the top-k
eigenvectors to transform the data points from the original space to the reduced space.
[14] suggests a technique to leverage PCA to isolate defects. Initially PCA is used to
model the training images that are non-defective, these are portions of the image that
do not contain the defects. Post this, PCA is once again used to model the test image
that contains the defect. The PCA model of the test image is projected onto the train
images’ model and a score matrix is constructed that acts as a mask for the test image to
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isolate the defects. However, this approach requires pre-definition of the defective and
non-defective versions of the same image/fabric which might not always be possible.

Deep Learning Techniques. With recent advancements in the computer hardware and
corresponding computation speed, deep learning is gainingmore importance in computer
vision. The deep learning approaches are relatively more promising as they capture
complex non-linear relationships between the input and output variables of a system, that
might not have been possible before. In this regard, autoencoders are deep neural network
based dimensionality reduction method; they compress the given data and consequently
try to reconstruct the original representation of data from the compressed representation.
More detail about autoencoder can be found in Sect. 3. [15] utilized a Convolutional
Autoencoder (CAE) with an inception-block like layer to identify images that deviates
from the rest of the lot. They pretrain the CAE on a set of images, which makes the
process of anomaly detection restricted to the dataset and fails to generalize to the
real-world defective images. [16] proposed an approach for defect segmentation using
autoencoders that uses the Structural Similarity [17] metric for computing the per-pixel
reconstruction error. The approach was tested only on grayscale versions of non-woven
fabric textures and a dataset of nanofibrous materials. Similar to their approach, our
approach leverages on the CAE, and additionally on the image processing techniques
like thresholding algorithms and blob detections, which make it relatively robust against
uncertainties posed by unconstrained environment.

3 Background

Autoencoders are artificial neural networks that attempt to compress and reconstruct
input data in an unsupervised manner. As such, the aim of an autoencoder is to learn a
representation of the input dataset (from original space) in a reduced dimensional space.
By doing so, it generally ignores the extremities and noise in the dataset. As shown in
Fig. 1, it has two functional parts, namely the encoder and the decoder. The encoder
encodes/projects the input data onto a lower-dimensional space called latent space. The
decoder tries to generate a representation as close as possible to input data from the
reduced encoding.

Given a dataset of images represented as Rh×w×k , the encoder function maps from
the original image (x) to the latent space, ϕ: Rh×w×k → R

j and the decoder function
tries to generate a representation (x

∧

) as close as possible to original image form the latent
space vector, ψ: Rj → R

h×w×k ; where h,w, k are height, width and color specification
(channels) respectively and j is the dimensionality of the latent space. The number
of channels k can be different depending on the color space, we have chosen RGB
scheme, accordingly an image has three (k= 3) channels: red, green, and blue. Generally,
j � h × w × k, this facilitates the encoder to extract most essential and meaningful
features from the input images followed by accurate reconstruction by the decoder. The
non-essential part, which the autoencoder neglects (fails to capture) is expected to be
an anomaly in the given image. The complete process of compression and consequent
reconstruction can be given as: x

∧ = ψ(ϕ(x)) = ψ(z); where z is the latent space vector.
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Fig. 1. Autoencoder with basic components

Both encoder and decoder functions can be built using different kinds of neural
network architectures depending on the application. In general, they can be either multi-
layer perceptron (MLP) [18], or convolutional neural network (CNN) [19] or recurrent
neural network (RNN) [20]. This paper discusses the application of MLP and CNN as
encoder/decoder components for anomaly detection. AnMLP is a classical feed-forward
neural network which consists of at least three layers of nodes: an input layer, a hidden
layer and an output layer. Except for the nodes in input layer, each node is a neuron
that gets inputs from all the neurons of the previous layer, processes the weighted sum
of these inputs using nonlinear activation function, and sends this function value to all
the neurons of the next layer. This fully-connectedness of MLP make them prone to
overfitting to the data. Also, the number of trainable parameters increases drastically
with an increase in the size of the image.

CNNs are a class of neural networks, typically applied to analyzing visual data. A
CNN typically consists of three types of layers: Convolutional layers, pooling layers and
fully connected layers. Convolutional layers compile the presence of structural features
of a given image. They systematically apply different kinds of filters on to the input
image to extract feature maps corresponding to the filter. These layers stacked in a deep
model capture features hierarchically, starting from simpler features like lines in the
layers close to the input to complex features like objects and shapes in the deeper layers.
The feature maps thus obtained would be very sensitive to the position of the features in
the input image. Pooling layers, which effectively down-sample these feature maps, are
responsible for making the CNNs more robust to any change of position (translation or
rotation) of any feature in the input images. Generally, one pooling layer will be placed
after each convolutional layer, which effectively reduces the feature map generated by
convolutional layer by a factor of ‘p’, i.e. a feature map of size n ∗ n (n2 pixels) will be
reduced to n/p∗n/p (n2/p2 pixels). It preserves the spatial structure of the images using
small squares of input data called kernels. Thus, it can identify the object, its location,
as well as its relationship with other objects in an image, accurately. Because of these
qualities CNNs are proven to be very useful in computer vision applications.
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4 Automated Textile Defect Detection

The input to our approach is an image of a textile product taken in an uncontrolled setting.
We do not make any assumptions on the particular view of the product (e.g., full product,
part of the product or close-up view), the color and texture (light, dark, strips, checkered,
complex texture, etc.), the type of product (shirt, jeans, jacket, etc.) or the specific lighting
conditions. The output of our approach consists of one or multiple regions in the image,
described by bounding boxes, in which an irregularity which usually corresponds to a
defect is suspected. To keep the method simple, we assume that the object (i.e. piece of
clothing) of interest has already been to be additionally given a foreground mask for the
input image, i.e., that it is known which pixels correspond to the object of interest and
which are background pixels. Unsupervised foreground-background segmentation for
images of textile products has been demonstrated in the literature [4]. More specifically,
for all images presented in this paper, the publicly available software Remove.bg [21]
was used to perform the background removal without any manual input. Furthermore,
we resize all input images to be at most 512 pixels in either dimension, while keeping
the original aspect ratio.

The computational flow of our method is depicted in Fig. 2. The method consists
of two major steps: training of an autoencoder network to represent (and reconstruct)
patches in the original image (Fig. 2, top row) and a detection of connected regions with
high per-patch reconstruction errors (Fig. 2, bottom). In the following, we will describe
both computational steps in more detail.

More specifically, we compare two neural network architectures for the autoen-
coder: one based on basic hidden layers, such that the encoder and decoder part of the
autoencoder correspond to multilayer perceptron (MLP), and a second one based on
convolutional and deconvolutional layers in the encoder and decoder parts, respectively.
Both architectures are depicted briefly in Fig. 3. As it can be seen, the first hidden layer
of encoder part of MLP-based autoencoder (MAE) has 128 activations units (functions)
and decreasing thereafter in steps of half of the previous, the decoder part is symmetric

Fig. 2. Computational flow of the proposed defect detection method on textile products
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to the encoder part. In CAE, doubling the number of kernels ‘k’ in successive layers
leads to down-sampling (pooling) of the image in the encoder, followed by up-sampling
of the image in the decoder part. Most notably, the MAE treats the input patches as
3 · n · n - dimensional vectors (3 being number of color channels and ‘n’ is the patch
size), and the spatial ordering of pixels and presence of different color channels has no
effect on neural links in the network. Whereas the CAE treats inputs as tensors of size
3 by n by n and is explicitly sensitive to the spatial order by only considering spatially
nearby pixels or features, respectively, in its computations.

The optimal model architectures found empirically are detailed in Fig. 3, with the
following specifics pertaining to CAE:

• Encoder contains blocks of convolution, activation (PReLU [22]) and max-pooling.
• Convolutions of 3 × 3 are applied at all the convolution layers and max-pooling is
applied after convolution layer.

• Number of convolution kernels/output features is set to f for the first block and is
doubled with each block. We use f = 2.

• Decoder part is symmetric with respect to Encoder in terms of output features, only
difference is that max-pool is replaced by up-sampling.

Dimensionality reduction using either autoencoder network corresponds to training
the autoencoder on the set of extracted input patches. As our method is intended to
be fully automated, the training process must be automated, too. To this end, we train
both network architectures using the Adam optimizer [23] which autonomously adjusts
the parameter learning rates in the training process to achieve stable learning and fast
convergence. The training process is automatically terminated using an early stopping
criterion which checks if the relative improvement of the reconstruction error of the
autoencoder on the validation part of the dataset, measured using the mean squared error

Fig. 3. The two autoencoder architectures used in our experiments. compared
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(MSE), was larger than 2% in the last epoch of training. While the required number
of epochs to reach this point can vary between input images in theory, in practice it
was experienced that training was automatically terminated after around three epochs
for most input images. After training the autoencoder, we process all input patches by
the network to obtain the reconstructions corresponding to their dimensionally reduced
representations (Fig. 2, step 3).

4.1 Dimensionality Reduction Using Deep Learning

The actual anomaly detection step is applied to a grayscale image in which the value of
each pixel is equal to the mean squared error between the original patch centered around
it and that patch’s reconstruction (Fig. 2, step 4). Figure 4 shows several examples in the
second column. For easier interpretation, a color map has been applied to the error maps.
Intuitively, regions of higher reconstruction error, which consequently appear brighter
in Fig. 4, are not captured as well in the autoencoder’s learnt representation which is
usually due to the fact that they correspond to outliers compared to other image patches.

To automatically detect and localize these regions in the error map, we apply a
thresholding (Fig. 2, step 5; Fig. 4, third col.) to binarize the image and differentiate
between low and high error pixels. For the thresholding, we use Yen’s method [24]
which autonomously selects a suitable threshold based on the histogram of the error
map. We apply a slight Gaussian blur to the error map before applying the thresholding
to reduce the effects of noise. In the final step, we apply a simple blob detection method
which identifies connected regions in the thresholded error map (Fig. 2, step 6). We use
the implementation provided by the image processing library OpenCV [25]. Themethod
filters out regions/blobs which are either very small or large (area less than 300 or more
than 5000 pixels) or very elongate. The output of the blob detection is a list of key-points
defined by a center and radius (cf. Fig. 4) indicating the location and estimated scale of
the anomalies in our input images.

Extensions of the approach could perform an additional classification step in which
detected anomalies, which can be localized using the key-points, are classified as
expected anomalies (e.g. singular features of a piece of clothing like a single button vis-
ible on an image of a jeans) and actual defects, respectively. This kind of classification
is already being considered in the past work [4].

4.2 Comparison of MLP and CNN-Based Autoencoders

This subsection compares the efficacy ofMAE and CAE architectures (Fig. 3) applied to
3 different images. We employed generic architectures for both the types. The encoder
and decoder parts are symmetric. Figure 4 compares the output of the individual compu-
tational steps for the two types of neural network architectures we experimented with.
More specifically, except of the step of error map production (Fig. 2, step 2; Fig. 4, first
column), rest of the pipeline stays same for the two cases. Clearly CAE performs much
better than MAE. As explained in Subsect. 4.1, convolutions pertaining to CAE focus
computations on local neighborhood, leading to structures and relationship between
objects being captured better. As seen, in exemplar 1 of Fig. 4, unlike CAE, MAE fails
to associate the region near the collar to its surroundings. The error map in exemplar
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2 from CAE shows clear distinction of defect region from the normal region. Despite
better performance, due to the facts outlined in Sect. 3, CAE has much lesser trainable
parameters compared to MAE; CAE has 380,707 parameters, while MAE has 812,320
parameters.

5 Evaluation

As expected, and as proved by the previous section, CAE performed much better than
MAE. Therefore, we take CAE as our neural network and evaluate the complete auto-
mated pipeline with respect to diverse set of input images depicting defective or flawed
textile products. The dataset includes images showing different kinds of flaws (e.g.,
holes, stains, seam defects), different types of products (shirts, jeans, and other fab-
rics), of different color and texture as well as seen from varying views and in varying
lighting conditions. Most of the images were taken from user reviews on shopping web-
sites. To increase the variety, we however also manually added defects to few images of
non-defective pieces of clothing by means of photo manipulation.

5.1 Qualitative Analysis

Figure 5 shows the final detection results for different common types of product flaws.
For each type of flaw, three examples for drastically different situations (according to
the properties specified in the preceding paragraph) are given. The approach has shown
satisfactory performance for a variety of input image types. The model successfully
differentiates between the local textures on the fabric and the actual defect, which is
particularly evident from the defect type “Stain” and “Far” view.

For the example corresponding to “Stain” and “Close” view althoughmultiple abnor-
malities like pen, brand-tag and wrinkles are present, the defective region is clearly
highlighted, this can be attributed to the highly contrasting defect region. The approach
has worked decently also for defects which are needle-shape. This can be seen in the
“Seam/stitching defect” row (especially in the “Far” view). The approach also proved
to be effective in capturing and isolating defects for detailed views of inputs (even with
the presence of textures in the input), which can be seen in the “Detail” column of our
findings.

Along with evaluating the error-map resulted from the proposed CAE, the usage
of image processing techniques like the thresholding algorithms and the blob detection
proved to be effective in isolatingmultiple defect locations from the same piece of fabric.
This can be seen in the “Miscellaneous” row’s “Far” columnwheremultiple defects were
isolated which otherwise might have been difficult to be captured. With the application
of Blob detection technique, we were able to pin-point the exact defect location better
or provide us with a potential defective region. The defect is thus parameterized by
the circle’s (shown red in the figure) center and its radius. This kind of automated
parameterization further improves the efficacy of the PreQA approach.
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Fig. 4. Comparison of MAE and CAE for anomaly detection on images of defective textile prod-
ucts. The MAE based approach resulting in similarly looking heatmaps at first glance, however
the CAE can capture the distribution of patches better, which can be seen from the error maps in
which patterns like that of exemplar 1 or the camouflage design of exemplar 3 are hardly visible
anymore. For MLPs, more structures of the original image remain visible in the heatmap, leading
to less precise results. The gray borders in the error maps highlight regions in which it was not
possible to form patches without background pixels. These regions do not contribute to the training
set of the autoencoder.
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Fig. 5. Final detection results using the CAE for various types of flaws and products. The red
circles visualize the center and radius of the identified blobs. (Color figure online)
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5.2 Limitations

The approach demonstrated in this paper relies on anomaly detection to identify likely
defective areas in images of diverse textile products taken in uncontrolled settings. How-
ever, on its own merits, it cannot judge whether an identified anomaly corresponds to a
defect or not. For example, for the image in the second row and first column of Fig. 5,
which shows a polo shirt in full, not only the actual defect but also the brand-tag is
identified by the method because it, too, is an irregularity with respect to the rest of the
image and therefore has a high reconstruction error by the autoencoder.

Fig. 6. Not every anomaly also corresponds to a defect.

Two more such examples are depicted in Fig. 6. As depicted in the first row, the
actual defect, a small hole has been identified by the method. However, as the image
only shows part of the object and only two buttons are visible in the images, these, too,
have been considered irregular compared to the rest of the image. On the other hand,
as shown in the second row, the brand-tag is identified as an abnormality, but the actual
defect (here, color-fade) is ignored. One can argue that it might be difficult for even
naked eye to detect this defect. If we take closer look into the corresponding “Error
map”, although the defective region has been captured, but the CAE reconstruction
error is highest near brand-tag, the second is the wet region and finally the defective
region. While, in general, defects like color variations or small tears are often also used
as design elements which makes the problem of defect detection impossible to solve
with full certainty without additional contextual information, combining our anomaly
detection approach with a classification method [4] could enable a distinction between
true defects and false positives in most cases like the one from Fig. 6.

6 Conclusion and Future Work

This paper demonstrates a general method that can spot anomalies in images of textile
products. A deep CAE is leveraged in an unsupervised manner, together with image pro-
cessing techniques, for the detection of anomalies under mostly unconstrained setting.
Because of this fact, the method can be directly applied to any image of textile prod-
ucts without any preprocessing. The CAE performed much better compared to MAE.
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Evaluation of CAE based pipeline yielded in decent results for various kinds of defects,
products and views. While the approach is relatively robust against unconstrained set-
ting, it has certain inherent drawbacks as well. Mainly, the distinction between defective
and non-defective anomalies is not well considered, accordingly the method described
in this paper is not sufficient by itself.

However, when combined with the complete approach as described in [4], this dis-
tinction can be feasible. It would also result in localization as well as classification of
anomalies on any image of a textile products. Common to any other machine learning
technique, the performance of our CAE model could be further optimized empirically.
Also, further research need to be carried out towards combining other conventional
image processing techniques and deep learning methods to better distinguish between
defective and non-defective anomalies depending on the shape and other specificities of
the anomalies.
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Abstract. We propose an improvement of the Self-Organizing Map
(SOM). In our version of SOM, the neighborhood widths of the Best
Matching Units (BMUs) are computed on the basis of the data density
and scattering in the input data space. The density and scattering are
expressed by the values of the inner-cluster variances, which are obtained
after the preliminary input data clustering. The experiments conducted
on the two real datasets evaluated the proposed approach on the basis
of a comparison with the three reference data visualization methods. By
reporting the superiority of our technique over the other tested algo-
rithms, we confirmed the effectiveness and accuracy of the introduced
solution.

Keywords: Self-Organizing Map · Adaptive self-organizing map ·
clustering · Neighborhood width · Gaussian kernel · Visualization

1 Introduction

The Self-Organizing Map (SOM) [3] is a type of an artificial neural network
architecture, however, at the same time, it may be recognized as a data visual-
ization technique. The term data visualization refers in our research to a linear
or non-linear projection from an original input high-dimensional space onto a
resulting output 2- or 3-dimensional data space. Consequently, any data visu-
alization formulated in the following way can be treated as a particular case of
a dimensionality reduction problem, where the output number of dimensions is
2 or 3, typically 2. The SOM technique generates a 2-dimensional map struc-
ture. The location of points in 2-dimensional grid aims to reflect the similarities
between the corresponding samples in an input multidimensional space. There-
fore, the SOM algorithm allows for visualization of relationships between samples
in multidimensional space.

1.1 Our Proposal

We propose an adaptive rule for the determination of the neighborhood widths of
the SOM’s BMUs during the SOM’s training. The rule is formulated on the basis
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of the preliminary data clustering in the input space. After forming of the input
data clusters, the inner-cluster variances for each of the generated clusters are
calculated and utilized afterward as a basis for the SOM’s BMUs’ neighborhood
widths computation.

In our method, the neighborhood widths are determined independently for
each BMU neuron in the SOM grid. The neighborhood of BMU is mathematically
described using the Gaussian kernel function, where the radius of the Gaussian
kernel is calculated as a result of initial data clustering in the input space. This
is achieved in this way that the inner-cluster variances for each of the input data
clusters are utilized as the basis for the radius of the Gaussian kernel.

2 Related Work

The SOM visualization technique has been extensively studied, and numerous
improvements and extensions have been developed, including the Growing Hier-
archical SOM (GHSOM) [12], the asymmetric SOM [4,7,10], and the adaptive
SOM [1,5,9,11,13], to name a few. Naturally, the adaptive SOM versions are of
particular interest for the purposes of our research.

An approach allowing to gain a control over the neurons’ neighborhood
widths in SOM delivered in the paper [13] is the magnification control approach.
The issue is thoroughly studied by the authors of [13], where the three learning
rule modifications for SOM are considered, namely, the localized learning, the
winner-relaxing learning, and the concave-convex learning. The one closest to
our research is the localized learning modification leading to inserting the local
learning step size in the SOM weights update formula, in this way, affecting the
SOM’s BMUs’ neighborhood widths. The local learning step size depends on
the stimulus density of the weight vectors (prototypes) of SOM. As it is noticed
in [13], a major drawback of the approach is that one has to estimate the gener-
ally unknown data distribution corresponding to the mentioned stimulus density,
which may lead to numerical instabilities of the control mechanism [13]. Such
a drawback does not concern the proposal of the present paper, because in our
method, there is no necessity of any data distribution estimation. The second
important difference between our technique and the localized learning is that
in our method, preliminary data clustering and the resulting inner-cluster vari-
ances refer to the input samples in the SOM input space, whereas in case of the
localized learning, the local learning step size is determined on the basis of the
stimulus density of the weight vectors of SOM, i.e., on the basis of the intrinsic
SOM structural information.

In the articles [9,11], an adaptive version of the SOM technique is introduced,
in which, the frequency information about the input dataset is employed in the
adaptive training process of SOM, i.e., in the adaptive form of the SOM’s update
formula. Strictly speaking, the frequency of occurrences of data samples in the
input data space is utilized as the basis for the SOM’s BMUs’ neighborhood
widths determination. The distinction between the approach from [9,11] and
our research is that in the present paper, the information on the density and
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scattering of the input data samples in the input data space is included in the
adaptive training process of SOM, whereas in the study from [9,11], the input
data samples’ frequencies of occurrences are taken into account, when SOM is
being trained, and its lattice is being constructed.

Finally, the paper [1] proposes a Local Adaptive Receptive Fields Self-
Organizing Map (LARFSOM). Local models are built by calculating between
the output associated with the winning node and the difference vector between
the input vector and the weight vector. These models are combined by using a
weighted sum to yield the final approximate value. The topology is adapted in a
self-organizing way, and the weight vectors are adjusted in a modified unsuper-
vised learning algorithm for supervised problems.

3 Traditional SOM Method

The SOM algorithm provides a non-linear mapping from an original input high-
dimensional data space onto a resulting output 2-dimensional map of neurons.

Besides the classical algorithmic description of the SOM method, which is
well-known in the existing literature (see, e.g., [3]), an additional mathematical
scaffolding has been presented in [4].

According to [4], the results obtained by the SOM method are equivalent to
the results delivered by minimizing the following error function with respect to
the prototypes wr and ws:

e =
∑

r

∑

xi∈Vr

∑

s

hrsd
2
Euc (xi, ws) (1)

≈
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∑
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where xi, i = 1, . . . , N is the ith input sample in high-dimensional input space,
N is the total number of input samples; wr, r = 1, . . . , M and ws, s = 1, . . . , M
are the prototypes of input samples in the grid (the different indeces r and s
are used in order to compute the sum of distances between neurons within the
SOM grid, including the values of the function hrs); M is the total number
of prototypes/neurons in the grid; hrs is a neighborhood function (e.g., the
Gaussian kernel) that transforms non-linearly the neuron distances (see [3] for
other choices of neighborhood functions); dEuc (·, ·) is the Euclidean distance;
and Vr is the Voronoi region corresponding to prototype wr.

The width of the kernel hrs is adapted in each iteration of the algorithm
using the rule proposed by [5], i.e.:

σ (t) = σm

(
σf

σm

) t
Niter

, (2)
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where σm ≈ M
2 is typically assumed in the literature (e.g., in [3]), σf is the

parameter that determines the smoothing degree of the principal curve generated
by the SOM algorithm [5], and Niter is the total number of iterations during the
SOM training process.

4 A Novel Clustering-Based Adaptive SOM Method

The main proposal of this paper is a method for adaptive SOM training, which is
based on the preliminary data analysis, i.e., clustering of the input data samples
in the input data space. After the clustering process, one calculates the inner-
cluster variances for each of the generated clusters. These values represent the
density and scattering of the input data samples, which is, as we claim in our
research, the crucial information for the proper adaptation and adjustment of
the SOM’s lattice to the properties and characteristics of the input dataset.
Therefore, the inner-cluster variances are subsequently included in the SOM’s
exponential update formula (2) from the work [5], and consequently, these values
are employed in the SOM’s unsupervised training process. In our research, we
formulate an assertion that the introduced modification to (2) results in a higher
SOM’s performance and accuracy, and therefore, it can be recognized as the
traditional SOM’s enhancement.

The main idea behind the proposed method is the utilization of the informa-
tion about the data density and scattering in the input data space for improving
the training of SOM by making it adaptive and intelligent. This information is
included during the setting of the neighborhood widths of SOM’s BMUs’, in this
way, constituting a novel adaptive rule for the training of SOM, which is the
main contribution of our paper. The information about the data density and
scattering in the input data space is obtained from the measurements of the
inner-cluster variance possible to determine after a preliminary data clustering
in the input data space.

The entire proposal of the extension to the traditional NeRV method is pre-
sented completely and formally in Procedure 1.

Procedure 1. The clustering-based and density-preserving adaptive SOM
method proposed in current paper proceeds as follows:

Step 1. Perform a clustering of the analyzed dataset in the input high-
dimensional space.

Step 2. Compute the inner-cluster variance for each of the clusters according to
the following formula:

νk =
1

Nk

Nk∑

i=1

d (ck, xi) , (3)

where νk is the inner-cluster variance of the kth cluster, k = 1, . . . ,K;
K is the number of clusters; Nk is the number of data samples in the
kth cluster; d (·, ·) is a given suitable dissimilarity measure in the input
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high-dimensional space; ck is the centroid of the kth cluster; and xi are
the data samples in the input high-dimensional space.

Step 3. Assign the inner-cluster variances νk to each data sample in the input
space:

νi = νk , such that xi ∈ Ck , (4)

where νi is the inner-cluster variance of the ith data sample in the input
space, i = 1, . . . , N ; N is the total number of data samples in the input
space; Ck is the kth cluster in the input space, k = 1, . . . ,K; and the
rest of the notation has been explained previously in this paper.

Step 4. Include the inner-cluster variances νi in the exponential update for-
mula (2):

σi (νi, t) = (1 + νi) σm

(
σf

σm

) t
Niter

, (5)

where σi is the width of the Gaussian kernel used during the training of
SOM for the ith data sample in the input space and the BMU in the SOM
grid corresponding to that ith data sample.

Step 4. Minimize the error function (1) utilizing the novel form of the neighbor-
hood function hrs including the novel adaptive exponential update for-
mula (5) for σi (νi, t).

5 Experiments

In our experimental research, we aimed to verify the effectiveness of the app-
roach introduced in the current paper. All of the experiments have been carried
out in two phases, i.e., the input data visualization itself and the a posteriori
output data clustering, i.e., clustering of the visualized data, or in other words,
clustering of the data projected on the SOM grid. The data clustering within
the visualization space has been conducted using the weight vectors (prototypes)
attached to the neurons in the SOM grid. The results of the a posteriori SOM
projection clustering have served us as the basis of the comparisons between
the introduced technique and the three selected reference data visualization
methods.

The experiments have been conducted on real data in the two different
research fields: in the field of words visualization and clustering and in the field
of speakers visualization and clustering. The first part of the experimental study
has been carried out on the large dataset of high-dimensionality (Subsect. 5.3),
whereas the second part has been conducted on smaller dataset, but also of
high-dimensionality (Subsect. 5.4).

As a result, the scalability of our approach is presented, i.e., the ability
to effectively operate on datasets of significantly different size. Note that our
method does not increase essentially the computational complexity of the tradi-
tional SOM, and it adds only the computational demand of the initial cluster-
ing, which is run only once, and it is not repeated during the training of SOM.
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Hence, in case of the DBSCAN clustering algorithm, the complexity of the ini-
tial clustering is O (N log N), does not constraint the scalability property of our
technique.

As the reference methods in our empirical study, we have chosen the standard
SOM algorithm and the two modified versions of the conventional SOM, i.e., the
Time Adaptive SOM (TASOM) and the data visualization approach proposed
in [9,11], which will be called throughout this paper as the Frequency-Based
SOM (FBSOM).

In case of the speakers’ dataset, a graphical illustration of the generated
SOMs is provided, whereas in case of the “Bag of Words” dataset, no such
illustration is given, because of the high number of data samples in this dataset,
which would make such images unclear and unreadable.

5.1 Evaluation Criteria

As the basis of the comparisons between the investigated methods, i.e., as the
clustering evaluation criteria, we have used the accuracy rate [6,7] and the uncer-
tainty degree [4,7].

Hence, the following two evaluation criteria have been used:

1. Accuracy rate. This evaluation criterion determines the number of correctly
assigned samples divided by the total number of samples. Hence, for the entire
dataset, the accuracy rate is determined as follows:

q =
Nc

N
, (6)

where Nc is the number of correctly assigned samples, and N is the total
number of samples in the entire dataset.
The accuracy rate q assumes values in the interval 〈0, 1〉, and naturally, greater
values are preferred.

2. Uncertainty degree. This evaluation criterion determines the number of
overlapping samples divided by the total number of samples in a dataset. The
samples belonging to the overlapping area are determined on the basis of the
ratio of dissimilarities between them and the two nearest clusters centroids.
If this ratio is in the interval 〈0.9, 1.1〉, then the corresponding sample is said
to be in the overlapping area.
The uncertainty degree is determined as follows:

Ud =
No

N
, (7)

where No is the number of overlapping samples in the dataset, and N is the
total number of samples in the dataset.
The uncertainty degree assumes values in the interval 〈0, 1〉, and, smaller
values are desired.
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5.2 Experimental Setup

In our experimental research, we have utilized the DBSCAN clustering algo-
rithm, because of the important and significant advantages of the algorithm
from the point of view of our data analysis, i.e., the automatic clusters’ number
determination and the capability to handle the non-linearly separable data.

The output data a posteriori clustering in the SOM visualization space has
been conducted using the standard k-means clustering algorithm.

Each of the investigated methods has been run 50 times, because all of the
methods are non-deterministic, and by repeating their executions, we obtain
results, which may be recognized as more reliable. The randomness of the meth-
ods exists in both phases of our data analysis and processing, i.e., in the data
visualization and in the following data clustering.

The values of the accuracy rates and uncertainty degrees in Tables 1 and 2 are
computed as the arithmetic averages over all the executed runs of the evaluated
methods.

Feature extraction of the textual data investigated in the part of our empirical
study demonstrated in Subsect. 5.3 was carried out using the term frequency –
inverse document frequency (tf-idf ) approach.

Features of the speakers’ sound signals considered in Subsect. 5.4 have been
extracted using a method based on the Discrete Fourier Transform (DFT), which
is described in details in [8].

5.3 Words Visualization and Clustering

In the first part of our experimental research, we have utilized excerpts from the
“Bag of Words” dataset from the UCI Machine Learning Repository [2].

Our dataset consists of five text collections: Enron E-mail Collection, Neural
Information Processing Systems (NIPS) full papers, Daily KOS Blog Entries,
New York Times News Articles, PubMed Abstracts. The total number of ana-
lyzed words was approximately 10,868,000. On the visualizations generated by
the investigated methods, five clusters representing those five text collections in
the “Bag of Words” dataset were formed.

Experimental Results. The results of this part of our experiments are
reported in Table 1, where the accuracy rates and uncertainty degrees corre-
sponding to each of the evaluated methods are given.

Table 1. Accuracy rates and uncertainty degrees of the words visualization and
clustering.

q Ud

SOM & k-means 8,175,273/10,868,000 = 0.7522 2,459,195/10,868,000 = 0.2263

TASOM & k-means 8,389,009/10,868,000 = 0.7719 2,304,016/10,868,000 = 0.2120

FBSOM & k-means 9,183,460/10,868,000 = 0.8450 1,523,471/10,868,000 = 0.1402

Proposed SOM & k-means 9,262,276/10,868,000 = 0.8523 1,248,863/10,868,000 = 0.1149
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The results obtained in this part of our experiments have shown a superiority
of our approach over the other three data visualization algorithms considered as
the benchmark methods. The solution introduced in this paper produced the
highest value of the accuracy rate and the lowest value of the uncertainty degree
among all the investigated methods.

5.4 Speakers Visualization and Clustering

The speakers visualization and clustering experiment has been conducted on the
dataset of sound signals gathered independently by the author of this work.

In this part of our experiments, we considered four clusters representing four
speakers. Each speaker was represented by 40 speeches, i.e., sound signals (time
series). This kind of clustering can be regarded as the speaker recognition based
on the sound signals.

Four clusters representing four different speakers have been formed. Each
speaker has been represented by 40 10-s sound signals sampled with the 44.1
kHz frequency. Our dataset is composed of 160 sound signals. Feature extraction
was carried out according to the DFT-based algorithm, as it was written in
Subsect. 5.2. The dataset for the speakers visualization and clustering has been
collected autonomously be the author of this research.

Experimental Results. The results of this part of our experiments are
reported in Figs. 1a, 1b, 2a, 2b, and in Table 2, which has the same form as
Table 1 in Subsect. 5.3. Figures 1a, 1b, 2a, and 2b show the map structures of
four considered SOM versions. The points in the 2-dimensional space of these
SOM variants’ visualizations are the projections of the input data samples from
the input data space. In each of the figures, the clusters, generated in the out-
put data a posteriori clustering, are indicated and marked with different colors.
The colors are assigned to the clusters randomly, therefore, a given cluster may
have different colors assigned in different runs of the same algorithm. Hence,
the clusters themselves are important, and not their particular colors. Each of
Figs. 1a, 1b, 2a, and 2b presents SOM graphics for a single execution of a given
SOM version.

Table 2. Accuracy rates and uncertainty degrees of the speakers visualization and
clustering.

q Ud

SOM & k-means 134/160 = 0.8375 15/160 = 0.0938

TASOM & k-means 137/160 = 0.8563 16/160 = 0.1000

FBSOM & k-means 145/160 = 0.9063 10/160 = 0.0625

Proposed SOM & k-means 154/160 = 0.9625 5/160 = 0.0313
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SOM

(a) Conventional SOM method.

TASOM

(b) TASOM method.

Fig. 1. Results of speakers visualization and clustering using the conventional SOM
method and the TASOM method.

FBSOM

(a) FBSOM method.

Proposed SOM

(b) Proposed SOM method.

Fig. 2. Results of speakers visualization and clustering using the FBSOM method and
the proposed SOM method.

The outcome of the second part of our experiments verified and confirmed
the effectiveness and usefulness of our proposed method by indicating that it
outperforms all the other tested variants and improvements of SOM. The app-
roach developed in our work returned the higher accuracy rate than all the other
algorithms being a subject of evaluation, and furthermore, it allowed for obtain-
ing the lowest value of uncertainty degree, when compared to the reference data
visualization methods.
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6 Summary

In this paper, a novel version of SOM has been proposed. The novelty in our
extension to the traditional SOM was a concept of establishing a relationship
between the SOM’s BMUs’ neighborhood widths and the density and scattering
of the data in the input data space. In other words, the SOM’s BMUs’ neigh-
borhood widths have been determined on the basis of the information about
the data density and scattering in the input data space. Precisely speaking, the
density and scattering properties of the input data have been numerically rep-
resented and conveyed by the quantities of inner-cluster variances obtained as a
result of a preliminary input data clustering.
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W., Zadrożny, S. (eds.) Challenging Problems and Solutions in Intelligent Systems.
SCI, vol. 634, pp. 75–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-30165-5 5

https://doi.org/10.1007/s11063-019-10168-9
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1007/978-3-642-20267-4_1
https://doi.org/10.1007/978-3-642-23878-9_6
https://doi.org/10.1007/978-3-642-28942-2_22
https://doi.org/10.1007/978-3-642-28942-2_22
https://doi.org/10.1007/978-3-319-07173-2_11
https://doi.org/10.1007/978-3-642-37213-1_5
https://doi.org/10.1007/978-3-319-30165-5_5
https://doi.org/10.1007/978-3-319-30165-5_5


192 D. Olszewski

12. Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing
map: exploratory analysis of high-dimensional data. IEEE Trans. Neural Netw.
13(6), 1331–1341 (2002)

13. Villmann, T., Claussen, J.C.: Magnification control in self-organizing maps and
neural gas. Neural Comput. 18(2), 446–469 (2006)



Applying Machine Learning Techniques
to Identify Damaged Potatoes

Aleksey Osipov1(B) , Andrey Filimonov2 , and Stanislav Suvorov2

1 Financial University under the Government of the Russian Federation, Shcherbakovskaya. 38,
105187 Moscow, Russian Federation

2 Moscow Polytechnic University, Bolshaya Semyonovskaya 38, 107023 Moscow, Russian
Federation

Abstract. This paper examines the problem of detecting potatoes with mechan-
ical damage using machine learning techniques.

In this article, the authors proposed an algorithm for detecting damaged
potato tubers on a conveyor belt that is characterized by speed and accuracy of
recognition.

The distinctive features of the algorithm are combining the methods of Viola-
Jones and the convolutional networks, the application of two complementary clas-
sifiers, working in the usual gray color and inverted color. Also, the distinguishing
feature is that the identified tubers are processed by the classifiers only once,
regardless of the time in front of the video camera.

TheViola-Jonesmethodwas used to identify individual tubers on the conveyor
belt, and the convolutional networks were only used to recognize damaged tubers.
Moreover, two complementary networkswere used for classification, one ofwhich
worked in gray gradation and the other in inverted color.

The algorithmwas implemented using the OpenCV library in Python. Testing
was carried out in conditions close to the conditions of potato storage at vegetable
bases.

The percentage of properly-recognized damaged tubers was 92,1%.

Keywords: Neural networks · Identify defects · Potato classification · Fast
detection

1 Introduction

Potatoes are one of the most common crops in the world. According to the Food and
Agriculture Organization of theUnitedNations (FAO), 368million tons of potatoes from
a total area of 17.6 million hectares were harvested worldwide for 2018 [1].

At such volumes of harvest, the problem of preserving the harvest in winter becomes
especially urgent. Crop losses caused by diseases in potato production account for 22%
annually. With purchase prices for potatoes at the beginning of 2020, according to the
resource east-fruit.com $0.19–0.31/kg damage can be more than $25 billion per year!

There are mechanical damages [2] and damage caused by diseases and pests [3–5].
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In this article, the authors looked at mechanical damage, because of all the variety
of damage, the most important is mechanical damage to tubers. Organisms such as
fungi and bacteria cannot penetrate the intact peel and gain access to tuber tissues only
in mechanical damage. Therefore, infection depends on the presence of mechanical
damage, and resistance to the latter protects tubers from disease.

It should be pointed out mechanical damage leads to additional losses in the form of
increased waste when using potatoes for canteens. Therefore, potatoes with mechanical
damage very quickly lose weight due to increased evaporation from the damaged surface
and rapid breathing. According to some data, weight loss after 4 months of storage is: in
cut potatoes - up to 15%, with pulp damage - up to 12%, and in undamaged potatoes - up
to 7–10%.Mechanical damage can be divided into two groups: external (superficial) and
internal. External damage includes damage that canbedeterminedby external inspection.
These are rippings, scratches, cracks, dents, cuts, crushed tubers, etc. Internal damage:
darkening of pulp, internal cracks, damage to vascular beams [6].

Incisions and cuts of tubers during cleaning are caused mainly by incorrect
adjustment of the colter depth.

Peeling of the peel occurs when tubers slide over the surface of the working organs
in the presence of a relatively high coefficient of friction.

Damages such as dents, crushes, cracks, breaks arise from pressure on tubers at static
loads.

But the greatest amount of damage such as serious as cracks, dents, damage to
vascular beams, darkening of the pulp is caused exclusively by dynamic loads - impacting
tubers with working organs.

Besides, damage to tubersmay also occur as a result of improper storage, for example,
due to the storage under direct sunlight, potatoes are green, or, as another example, the
freezing of tubers. In this case, the flesh of the tubers gets a pinkish tint (Fig. 1).

Regular monitoring of the appearance of potatoes will allow to quickly apply
measures that exclude further damage to tubers, and, as a result, reduce the damage.

In this paper, the authors propose a fast algorithm of visual control of the appearance
of potatoes, allowing to assess the quality of the appearance of large volumes presented
for potato analysis.

Over the past decade, the successful use of convolutional neural networks (CNN)
in the field of imaging has significantly improved the performance of computer vision
tasks [7–11].

The authors of the article [7] suggested using this method to determine the market
price of potatoes. The whole process is divided into four phases. In the first stage,
the convolutional neural network divided all tubers into 6 different classes of healthy,
damaged, greening, black dot, scab, and black plaque) in the work was offered a solution
to the problem when classes intersect. In the second and third phases, defects were
localized with the help of defect activation cards (DAM). The severity of the damage
was assessed in the fourth phase.

The authors of the article [8] showed that the CNN method, and in particular
ResNet18, could work as a detector to detect potato diseases at the stage of growth,
which would allow for several pre-emptive measures to reduce crop damage. However,
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Fig. 1. Examples of various potato damage due to improper storage.

the complexity of the video-fixing system, special requirements for the quality of the
image does not allow using it in masse.

The authors of the article [9] used reverse laser scattering, which was processed by
the neural network (CNN) to detect defects in apples. The filter system, segmentation,
and selection of an area of 150 to 150 pixels were used to localize the defect. The stated
computing power of the computer and the large image at the entrance of the neural
network did not allow to make enough for high accuracy training sample (accuracy was
90%).

The authors of the article [10] for the detection of apples during the harvest pro-
posed to use the fastest modification of the convolutional neural network YOLOv3.
Experiments are underway to install this detection device on an apple-picker robot.

However, as the authors of the work [12] neural networks, designed to solve the prob-
lems of understanding high-level images are not suitable for implementation onboard
intelligent portable devices. Large cores (e.g. 7× 7 or 9× 9) or a large number of layers
[13] are required to gain acceptable susceptibility to the field. Both of these schemes lead
to a very significant slowdown of the system. To achieve acceptable image processing
time on low-productivity portable devices, most existing systems are limited to smaller
images of 41 × 41 (pixel). And the processing time of each such frame can be up to
several seconds. In a continuously moving pipeline, this is unacceptable.

In these circumstances, algorithms with a favorable ratio of speed/resources and
power [14] deserve special interest. For this reason, several hardware optimization
methods [15, 16] have recently been proposed.

The authors of the work [15] proposed to implement a deep neural network (DNN)
to use GPUs. This increases the computing capabilities of the system by an order of
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magnitude but will make it more expensive and will require additional, both in terms of
installing additional devices and providing additional power.

The authors of the work [16] to implement the algorithm of facial recognition Viola-
Jones [17] proposed to use the hardware implementation of FPGA. The DE2–115 esti-
mated board provided a performance of 4.4 frames per second for images measuring 320
× 240 pixels. These indicators far exceed the characteristics of input images of the CNN.
Taking into account the reprocessing of inputs proposed in the work [18], we can expect
a significant improvement in the existing performance of the Viola-Jones algorithm.

TheViola-Jones algorithmdescribed in [17] is nowmainly used for facial recognition
tasks. However, several articles have appeared in the press indicating the versatility of
this algorithm [19, 20].

In the work [19] automatic assessment of the yield of melons based on images of
the field of melons. The task was to solve three stages: melon recognition, extraction
of geometric features, and evaluation of individual weight. The first stage was divided
into two sub-stages. First, an area on the field, presumably containing a melon (was
implemented with the help of the Viola-Jones detector) was selected. Then, using a pre-
defined CNN system, each area of interest was classified as containing melon or not. It
is noted that the accuracy of the detector was 82% and the F1 score was 0.85.

In the work [20] with the help of a hybrid approach of the detector Viola-Jones
and multi-pattern comparison successfully identified varieties of flower anthurium. The
authors noted the high speed of the algorithm and assumed that the methodology offered
by them may be useful for other purposes of identification.

2 Description of the Method

As has been shown above, the use of convolutional neural networks to recognize sick
and damaged potatoes is not justified for rapid diagnosis in large volumes, such as when
the potato is moving on the conveyor belt.

This is due to the large number of computing operations required for the operation
of the network.

The authors propose to divide the diagnostic procedure into separate phases, allowing
to speed up the process of identifying individual tubers in a video stream and direct
analysis. Below, each of the phases will be discussed in more detail.

The first phase: identifying individual tubers in the image. Given the fact that the
potato is moving on a conveyor belt and that a normal image capture by a video camera
requires a frequency of at least 16 fps, and better than 22 fps and above, the most
appropriate method of identifying tubers is the Viola-Jones method.

Thismethod uses the so-calledHaar primitives to identify the characteristics inherent
in the objects identified.

Examples of Haar’s primitives are presented in Fig. 2.
To properly operate the algorithm and its acceleration, it was suggested to abandon

the color representation of potatoes in favor of representation in gray gradations with
subsequent binarization. Also, we looked at the image of the potato both in normal form
and inverted (Fig. 4).
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Fig. 2. Haar’s primitives

Fig. 3. Original image

Fig. 4. Image translated into gray gradations Fig. 5. Threshold binarization (Otsu method)
has been applied



198 A. Osipov et al.

Figure 5 shows that the tubers in this view are difficult to distinguish as separate
objects, but if we knew in advance the location of each tuber in the image, the damage
to the tubers themselves is very noticeable. Moreover, it is easy to calculate the area of
damage.

On this basis, the authors proposed to determine the location of tubers in the image,
not in the usual color but inverted with subsequent binarization (Figs. 7, 8).

Fig. 6. Inverted image

Fig. 7. Inverted image translated into gray
gradation

Fig. 8. Threshold binarization (Otsu method)
has been applied

Thus, by comparing the two views of tubers in Figs. 3 and 6, it is possible in one
case to easily identify the locations of tubers, and in the other case to identify tubers
with damage.

That is, at the end of Phase 1, not all images of tubers are received on the
subsequent diagnosis, but only those where there is damage.

Also, knowing the speed of the conveyor and the frequency of the video camera,
you can discard the need to re-analyze the same tuber while it is in the frame. Roughly
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speaking, the algorithm singled out the tuber in the frame once it was processed and
marked as processed. In this case, the tuber will not be called in the re-analysis frame
when the tuber is shifted. There will only be an escort. This is also an optimization
element that allows you to speed up the algorithm by several orders of magnitude.

Phase two: classification of identified tubers. In this article, the authors used a binary
classification: damaged tuber or undamaged.

Given that the light in the potato warehouse is not good, that part of the tubers can
be partially covered by other tubers, it is proposed to use not one classifier, but two.

The first classifier uses the location information of the tubers obtained during the
first phase but works with the original image presented in the gray gradations.

The second classifier uses an inverted image.
The results of both classifiers complement each other.
CNN is used as classifiers (Fig. 9).

Fig. 9. A generalized diagram of the algorithm

The algorithm was implemented using the OpenCV library in Python. Testing was
carried out in conditions close to the conditions of potato storage at vegetable bases.

The percentage of properly-recognized damaged tubers was 87%. At the same time,
the accuracy of recognition was greatly influenced by lighting and overlapping tubers
to each other.

If the lighting lamps are located directly above the conveyor belt near the recording
video camera, the accuracy of recognition increased to 91.3%.

The overlap of tubers can be partially eliminated by increasing the speed of the
conveyor. In this case, the accuracy of the recognition increased to 92.1%.

However, given the recommended speed of conveyors for the transport of root vegeta-
bles, given in Table 1, it is clear that a significant increase in the accuracy of recognition
due to the cleaning of the tuber overlap, there is no need to expect.

3 Conclusion

In this article, the authors proposed an algorithm for detecting damaged potato tubers
on a conveyor belt that is characterized by speed and accuracy of recognition.



200 A. Osipov et al.

Table 1. Recommended conveyor speeds for root vegetables.

Tape speed v, m/s, at tape width B, mm

300–500 650 800 1000 1200 1400 1600 2000

0,8 0,8 1 1 1 1 1 1

The distinctive features of the algorithm are combining the methods of Viola-Jones
and the convolutional nets, the application of two complementary classifiers, working
in the usual gray color and inverted color. Also, the distinguishing feature is that the
identified tubers are processed by the classifiers only once, regardless of the time in
front of the video camera.
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Abstract. The second sustainable development goal defined by the
United Nations focuses on achieving food security and supporting sus-
tainable agriculture. This paper focuses on one such initiative contribut-
ing to attaining this goal, namely, the identification or prediction of
disease in crops. More specifically the paper examines the automated
quantification of the severity of common rust in maize. Previous work
has focused on using standard image processing algorithms for this prob-
lem. This is the first study, to the knowledge of the authors, employing
machine learning techniques to determine the severity of common rust
disease in maize. Quantifying the severity of common rust is achieved
by counting the number of pustules on maize leaves and determining
the surface area of the leaf covered by pustules. In this study a Mask
R-CNN is used to determine this. Both the standard image processing
algorithms and the Mask R-CNN were evaluated on a real-world dataset
created from images of maize leaves grown in a greenhouse. The Mask R-
CNN was found to outperform the standard image processing algorithms
in terms of counting the number of pustules, calculation of the pustule
surface area and the average pustule size. These results were found to
be statistically significant at a 5% level of significance. One of the chal-
lenges with Mask R-CNN is finding suitable parameter values, which is
time consuming. Future work will examine automating parameter tuning
for the Mask R-CNN.

Keywords: Plant disease severity quantification · Image processing ·
Mask R-CNN

1 Introduction

One of the sustainable development goals defined by the United Nations focuses
on food security and sustainable agriculture [6]. Some of the initiatives towards
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attaining this goal include automated irrigation, precision agriculture, and auto-
mated detection of pests and plant disease. Global crop production is constantly
under threat by pests and pathogens, and a recent study quantified average
global losses of maize, wheat and rice from these biotic threats to be 22.5%,
21.5% and 30%, respectively [17]. In addition to crop disease diagnostics there is
a need to develop high-throughput methods for quantifying the severity of crop
disease symptoms, for example the area of lesions on a maize leaf caused by a
pathogen [9].

Common rust caused by the fungus Puccinia sorghi Schwein is a widespread
disease of maize in North and South America, Africa and Asia, and it can account
for significant yield losses [18]. Quantification of the severity of common rust
disease is done by counting rust (red-brown) lesions, referred to as pustules, and
measuring the lesion surface area over a time course after artificial inoculation
[2]. An example of a greenhouse maize leaf with pustules is illustrated in Fig. 1.

Fig. 1. Pustules on a maize leaf caused by common rust disease

These rust disease metrics are measured at different stages of the infection
by plant pathologists or plant breeders in maize improvement projects either:
(i) to test rust control measures such as fungicides or biological control agents;,
or (ii) to screen different varieties of maize for genetic resistance to rust [2]. The
study presented in this paper examines automating the process of quantifying the
severity of common rust in maize. In initial work a standard image processing
algorithm was used to determine the pustule count and the area covered by
pustules. This study examines the use of neural networks, namely, a Mask R-
CNN [7], for this purpose. The performance of the neural network is compared
to that of the standard image processing algorithm that was previously applied.
The Mask R-CNN was found to outperform the image processing algorithm.

The following section provides an overview of neural networks used for plant
disease diagnosis and quantification. Section 3 presents the standard image pro-
cessing algorithms used for determining the pustule count and surface area cov-
ered and Sect. 4 describes the Mask R-CNN employed. Section 5 presents the
experimental setup used to assess the performance of the approaches. A com-
parison of the performance of the standard image processing algorithms and
the Mask R-CNN is discussed in Sect. 6. Section 7 provides a summary of the
findings of the study and proposes future extensions of the work.
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2 Related Work

Deep neural networks have proven to be effective for predicting plant disease and
determining severity from images [11,23]. The research into the use of deep neural
networks can be categorised into two areas. The first involves classifying images
as having the disease or not. This is essentially a binary classification problem
with the classes being infected and not infected or a multiclass classification
problem with the classes being the different levels of severity of the disease [11].
Convolutional neural networks that have proven to be effective for this include
VGG16, VGG19, Inception-v3 and ResNet50.

The second area is image segmentation for quantifying disease severity. This
essentially involves segmenting the image into areas so as to count the spots
on a leaf. This area has not been as well researched as plant disease diagno-
sis. Deep neural networks have also been effective for this area [15,22]. More
recently Faster R-CNN and Mask R-CNN [3,16] have been used for this pur-
pose. An advantage that Mask R-CNN has over Faster R-CNN is that Faster
R-CNN is only able to generate rectangular bounding boxes for regions of inter-
est whereas Mask R-CNN can generate binary polygon masks for regions in the
feature map, which align perfectly on a pixel level. Stated differently, Mask R-
CNN is capable of performing image segmentation (more specifically instance
segmentation), whereas Faster R-CNN can only do object detection. However
Mask R-CNN is not the only neural network that has been applied to the task
of image segmentation, other neural networks such as YOLO and U-Net are
also popular choices. Mask R-CNN has however been shown in previous work
to outperform both YOLO [4,5] as well as U-Net [1,14,25]. YOLO specifically
would not be suited to the task of pustule identification as it is known to struggle
with identification of small objects as well as objects that overlap [20]. Although
Mask R-CNN has not before been applied to the task of common rust pustule
identification on Puccinia sorghi, it has performed well in similar applications
to that investigated in this paper [3], specifically it has been used for problems
such as leaf counting [24] and leaf blight phenotyping [21]. Mask R-CNN appears
to be the most suitable for the application at hand, namely, counting pustules
and the surface area covered by pustules from the images of greenhouse leaves.
The neural network produces a mask allowing for the number of pustules to be
counted as well as the surface area covered to be determined from the mask.

In this study we compare the performance of Mask R-CNN to that of the
standard image processing algorithms previously used to count the number of
pustules and determine the surface area covered by pustules on a maize leaf. The
following section presents the standard image processing algorithms used.

3 Image Processing Algorithms

The image processing pipeline, employing standard image processing algorithms,
employed to determine the pustule count and surface area covered by pustules,
is specified in Algorithm 1.
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Algorithm 1. Image Processing Pipeline
1: Divide the image into three RGB components using Algorithm 2 below.
2: Find the edges of the pustules using the Sobel edge detection algorithm [8].
3: Apply the Watershed transformation [19] to the edges of pustules and red channel

markers (identified in Step 1).
4: Fill holes with a square connectivity equal to one.
5: Discard regions of the image that are greater than 10000 pixels.
6: Label the remaining regions as pustules.

Algorithm 2 describes the process of dividing the image into the RGB com-
ponents which is the first step of the image processing pipeline. The first two
steps of Algorithm 2 prevents leaf areas that are simply chlorotic or browning
from being highlighted as pustules.

Algorithm 2. Algorithm for Dividing the Image into RGB Components
1: For the blue component, if a pixel has a value greater than 140, that pixel has its

value set to 0.
2: For the green component, if a pixel has a value greater than 130, that pixel has its

value set to 255.
3: The maximum pixel intensity value for each X,Y coordinate is calculated.
4: All pixel values less than the maximum pixel intensity value are set to zero.
5: The three channels are merged back together for subsequent processing steps.

The next section describes the Mask R-CNN employed to determine the
pustule count and surface area covered by pustules.

4 Mask R-CNN

The Matterport [10] version of Mask R-CNN is employed in this study. The
ResNet 101 convolutional neural network forms the backbone of the Mask R-
CNN. ResNet 101 is pretrained on ImageNet. The parameter values for Mask
R-CNN was determined empirically. These parameter values are listed in Table 1.

The Mask R-CNN essentially performs supervised learning. The label for
each image in the training set is comprised of:

– The coordinates for each pustule.
– The surface area of the leaf covered by the pustules.
– The size of each pustule. This is used to determine the average pustule size.

The Mask R-CNN produces a mask from which the number of pustules,
surface area covered by pustules and the average pustule size is determined. The
performance of the Mask R-CNN is assessed using the following measures:
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Table 1. Parameter Values for Mask R-CNN

Parameter Value

Number of epochs 150

Learning rate 0.00001

Ground truth instances 400

Detection instances 400

Region of interest instances 400

Non-maximal suppression threshold 0.75

– PCAcc - This measures the pustule count accuracy. This measure is calculated
by firstly taking the difference between the number of pustules specified in the
label for the training instance and the number of pustules identified by the
Mask R-CNN at the same coordinates. This value is expressed as a percentage
of the total number of pustules specified for the training instance and averaged
over all the training instances in the training set.

– SAAcc -This is a measure of the accuracy of the surface area covered by
pustules determined by the Mask R-CNN. The surface area is measured in
terms of the number of pixels. For each training instance the difference in the
number of pixels is calculated and expressed as a percentage of the surface
area specified in the label of the training instance. This percentage is then
averaged over all the training instances.

– APSAcc - This measure assesses the average pustule size accuracy. The dif-
ference in the average pustule size specified in the training instance and that
produced by the Mask R-CNN is calculated and expressed as a percentage.
This percentage is averaged over training instances.

The following section describes the experimental setup used to assess the
performance of the image processing algorithms and the Mask R-CNN.

5 Experimental Setup

This section describes the experimental setup used to evaluate the performance of
the standard image processing algorithms and the Mask R-CNN. The main aim
of the research presented is to compare the performance of the standard image
processing algorithms and Mask R-CNN. The Mann Whitney-U test has been
used to ascertain the statistical significance of the results obtained. Section 5.1
describes the dataset used to evaluate the approaches and Sect. 5.2 presents the
technical specifications of the machines used to run experiments.

5.1 Dataset of Common Rust Images

The dataset was created from maize plants grown in a greenhouse. The maize
plants were inoculated by spraying the leaves with common rust urediniospores.
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Disease symptoms were monitored over a two week period. At different stages of
infection, maize leaves were removed and scanned on a flatbed scanner at 1200
DPI. Common rust exhibits different stages of symptom development, and it was
hypothesised that it may be more difficult to quantify the severity of common
rust in one stage than another. To test this hypothesis the images were divided
into two datasets:

– Dataset 1 - This dataset contains leaves from the early stage of common rust.
– Dataset 2 - This dataset contains leaves from the later stage of common rust.

A total of 1040 images were created, with 400 images in Dataset 1 and 640
images in Dataset 2.

One of the characteristics of maize leaves is that they are longer than they
are wider. Large images can slow down the training of neural networks. To work
around this problem the individual images were sliced into 8 smaller, equal sided
images. This had the added benefit of increasing the size of the dataset without
requiring that additional scans be taken. The slices were individually inspected
and if a slice was found to not contain any pustules it was removed from the
dataset.

Manual annotation using Fiji was performed to specify “ground truth” labels
for each of the images (pustule number, pustule area). Rules for annotation
were established with the help of a domain expert. The details of the labels are
presented in Sect. 4.

For Dataset 1 320 of the 400 images were used for training and 80 for testing.
For Dataset 2 512 of the 640 images were used for training and 128 for testing.

5.2 Technical Specifications

All the algorithms were coded in Python. A multicore cluster was used to run
simulations. Approximately 144 cores were used for training and 24 cores for
testing.

6 Results and Discussion

This section firstly presents the results obtained by applying the Mask R-CNN to
Dataset 1 and Dataset 2. A comparison between the standard image processing
algorithms and the Mask R-CNN is then presented.

6.1 Mask R-CNN Performance

This section discusses the performance of the Mask R-CNN in predicting the
pustule count, surface area covered by pustules and the average pustule size.
Table 2 presents the training results and Table 3 the test results.

The neural network appears to have performed better for Dataset 1, i.e.
images from the early stage of common rust, than for Dataset 2 which contains
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Table 2. Mask R-CNN training performance

Dataset PAAcc SAAcc APSAcc

Dataset 1 74.02% 69.89% 79.68%

Dataset 2 58.54% 58.97% 69.76%

Table 3. Mask R-CNN test performance

Dataset PAAcc SAAcc APSAcc

Dataset 1 73.69% 69.12% 78.88%

Dataset 2 58.04% 58.24% 69.16%

the late stage common rust images. A potential explanation for this discrepancy
is illustrated by looking at the difference between the two datasets. Figure 2
shows a typical image taken from the Dataset 1 and Fig. 3 shows a typical image
taken from Dataset 2.

Fig. 2. Dataset 1 example Fig. 3. Dataset 2 example

The leaf in Fig. 2 not only has far less pustules, but they are also more clearly
defined and well separated. The leaf in Fig. 3 has far more pustules, in addition
to the quantity of pustules, certain pustules are starting to coalesce with other
pustules in close proximity. The coalescing of pustules can make it difficult for
even a human domain expert to correctly count the number of pustules. The
other potential issue with Fig. 3 is the presence of spores on the leaf surface
from pustules that have burst open. Even though these spores have not been
annotated as pustules during dataset creation, they add additional noise that
could affect accuracy. Future work will investigate techniques for addressing
coalescing pustules and noise.
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6.2 Qualitative Results

This subsection presents some qualitative results in the form of images with their
masks overlayed for both Dataset 1 and Dataset 2. Three example leaves from
Dataset 1 are given in Fig. 4, the ground truth annotations for these leaves are
shown in Fig. 5 and the masks produced for the leaves by the neural network
are shown in Fig. 6. Three example leaves from Dataset 2 are given in Fig. 7,
the ground truth annotations for these leaves are shown in Fig. 8 and the masks
produced for the leaves by the neural network are shown in Fig. 9.

Fig. 4. Dataset 1 example - leaf without ground truth annotations

Fig. 5. Dataset 1 example - leaf with ground truth annotations

Fig. 6. Dataset 1 example - leaf with neural network predictions

Fig. 7. Dataset 2 example - leaf without ground truth annotations
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Fig. 8. Dataset 2 example - leaf with ground truth annotations

Fig. 9. Dataset 2 example - leaf with neural network predictions

6.3 Performance Comparison

This section compares the performance of the standard image processing algo-
rithms to that of the Mask R-CNN. The performance comparison for Dataset 1
is presented in Table 4 and for Dataset 2 in Table 5.

From Table 4 and Table 5 it is evident that the Mask R-CNN has outper-
formed the standard image processing algorithms for both Dataset 1 and Dataset
2. These results were found to statistically significant a 5% level of significance.

As can be anticipated the standard image processing algorithms have
lower runtimes than the mask R-CNN. Table 6 lists the runtimes for all the
experiments.

Table 4. Performance comparison for Dataset 1

Approach PAAcc SAAcc APSAcc

Mask R-CNN 73.69% 69.12% 78.88%

Image processing algorithms 37.24% 30.71% 36.07%

Table 5. Performance comparison for Dataset 2

Approach PAAcc SAAcc APSAcc

Mask R-CNN 58.04% 58.24% 69.16%

Image processing algorithms 31.22% 16.97% 31.26%
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Table 6. Runtime comparison

Dataset Mask R-CNN Mask R-CNN Algorithms

Training Testing Algorithms

Dataset 1 4 days 10 h 21 min 12min 8 s 1 min 34 s

Dataset 2 4 days 18 h 5min 14min 34 s 1 min 35 s

The training of the Mask R-CNN can be conducted offline and the testing
runtimes are reasonable to use the model in realtime.

7 Conclusion and Future Work

The research presented in this paper compares the performance of standard
image processing algorithms and the Mask R-CNN in quantifying the severity of
common rust on maize leaves. This is the first study applying machine learning
techniques to the quantification of the severity of common rust in maize. The
study revealed that the Mask R-CNN is more effective than the standard image
processing algorithms in quantifying the severity of common rust in maize. This
result was found to be statistically significant at a 5% level of significance. As
expected the runtimes for Mask R-CNN are higher than that for the standard
image processing algorithms. However, the testing times are reasonable for real-
time use, especially given the improvement in accuracy. The study also revealed
that quantifying the severity of common rust in later stages of the disease proved
to be more challenging than quantifying the severity in early stages. It is hypoth-
esised that the possible reason for this is noise and coalescing pustules in the
late stage common rust. Future work will investigate techniques for addressing
this.

One of the challenges with Mask R-CNN is finding effective parameter val-
ues. Future work will investigate the automating the process of parameter tun-
ing. Previous work has shown the effectiveness of selection perturbative hyper-
heuristics [13] and evolutionary algorithms for parameter tuning [12], hence
future research will investigate this for Mask R-CNN.
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Abstract. The use of intelligent solutions often comes down to the use
of already trained classifiers, which is caused by one of their biggest draw-
backs. It is the accuracy or effectiveness of artificial intelligence methods,
which are algorithms called data-hungry. It means that it depends on the
number of samples in the database, and the quality of the classifier could
be better if their number is high and the samples are different. In this
paper, we propose a solution based on the idea of federated learning in
an application for intelligent systems. The proposed solution consists not
only in the division of the database among workers but also in the qual-
ity of the samples and their possible exchange. Exchanging samples for
a particular worker means labeling difficult to classify samples. These
samples are used to expand the sets using the generative adversarial
network. The mathematical model of a proposal is described, then the
experimental results are shown and discussed with the comparison to the
classic approach.

Keywords: Internet of Things · Artificial intelligence · Federated
learning · Generative adversarial network · Convolutional neural
network

1 Introduction

The last few years brought 5G networks [9,12], which is still implemented around
the world today. 5G allows using solutions in the field of the Internet of Things in
everyday life. These solutions bring benefits such as the improvement and mon-
itoring of activities or operations, and even the availability of analysis results.
The idea is that certain things can pick up signals, process, and share them with
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L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 214–223, 2021.
https://doi.org/10.1007/978-3-030-87986-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87986-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-87986-0_19


Federated Learning Model with Augmentation 215

others. The acquisition of signals is done with the help of sensors that allow
performing certain information-producing operations. With the help of techno-
logical solutions, especially machine learning said information is processed or
sent to others. Communication is a key element due to additional data from
other areas that may influence the present ones.

Information processing most often requires artificial intelligence methods that
classify information, or even make predictions. Unfortunately, the use of artifi-
cial intelligence methods involves taking over all the problems or disadvantages
associated with them. One such drawback is the training process to a certain
level of classifier effectiveness. Using methods such as artificial neural networks,
obtaining a high level of effectiveness is associated with the need for a large
amount of data in the training database [3]. In addition to requiring a large
number of samples, their diversity is important for a classifier to be trained on
different variants in terms of given classification classes. This problem is partic-
ularly acute in the case of using a specific database under test conditions and
then using the classifier in a new environment [7,14,15]. The classifier may not
be able to correctly process the new data.

One of the latest solutions which modified the approach to training artificial
intelligence methods is a collaborative way called federated learning [23]. The
idea is to divide the existing database into many workers, where each worker
trains the classifier on its part of the database. Then, the trained configuration
is sent to the server, whose purpose is to create one, general configuration based
on all received ones. This solution allows implementing Internet of Things solu-
tions using artificial neural networks, where objects collect information from the
environment and train their classifier. After some time, they send the classifier
information to the central server which generates a new configuration. The main
advantage of this solution is that each object can process its data and train clas-
sifiers with private data, and after some time it gets a more generalized version,
which is again adapted to private data.

Federated learning idea was analyzed in [10], where the main challenges
and future directions were mainly described and discussed. The authors focused
among other things on expensive communication between workers and servers,
privacy, and security. These two aspects are important from the point of practical
applications. As the future directions, there were indicated some ideas like Pareto
frontier and novel asynchronous models. In terms of security, the most important
solutions are blockchain [13]. Again in [22], the researchers described a secure
and verifiable federated learning model. The aspect of security was also described
in [2], where different attacks were shown and examined. The presented research
shows that each worker has a big impact on the aggregated model. Again, com-
munications are mainly analyzed in wireless networks [20]. The authors defined
this idea as a FEDL optimization problem, which takes into account communi-
cation delays at the communication level through the accuracy of classifiers and
computing power. In [18], the sparse ternary compression method was proposed
which was developed for federated learning requirements during transmission.
A similar optimization task was considered in [17], where the idea of federated
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learning involves edge computing. The authors proposed a solution that brings
the heavy computing operation to edge nodes.

The topic of communication and learning techniques can be also defined
as one optimization problem which involves joint learning methods, wireless
resource allocation and user selection [4]. Nowadays, collaborative learning has
many applications like mobile keyboard prediction [6], where recurrent neural
networks were used to predict the next-word in smartphones. These solutions
show the advantages of the main assumptions of the idea, i.e. keeping private
data, but using them to create a more general model (using many different users’
smartphones). The industrial application needs efficient and safe solutions, and
an example of such solutions with orthographic security was proposed in [5].
Practical application may also be subjected to various cyber-attacks not only
on the model of operation but also on devices [16]. The authors of the analysis
proposed a scheme for detecting intrusion into devices in the Internet of Things
based on the collaborative learning model. It is also an important aspect in
medical purpose, where the federated learning idea could be spread to many
hospitals, and in each of them, some devices will train a classifier with patients’
data. It is crucial to secure this data [19]. To create effective tools and secure all
the data, the researchers try to develop a new mechanism and improve existing
ones. Another aspect that modifies federated learning is to introduce adaptivity
like control algorithms which determine some aspects [21].

In this paper, we propose an alternative construction of a federated learning
mechanism, where each worker has their private database, but the samples with
the best classification results can be sent to the server for changing on other sam-
ples if certain conditions are met. The server collects the samples, that were sent
back as having the best classifier result, and in return receive a new augmented
sample via the generative adversarial network (GAN). This solution guarantees
continuous improvement in the effectiveness of individual workers.

2 Proposed Architecture

Federated learning has to train one, aggregated learning model θ which is holded
on server. A training database D is split into N (where N > 0) subsets Di which
satisfy the condition D =

⋃N
i=1 Di. Mark workers as {ξ1, ξ2, . . . , ξN}. In original

idea, each set Diis assigned to worker ξi, in our proposition, a database is split
into N + 1 subsets, so D =

⋃N+1
i=1 Di. The subset marked as DN+1 is assigned

to server.

2.1 Worker

The size of a private dataset of i-th worker can be marked as |ξi| ◦= |xi|. In the
beginning, the worker gets its database and waits to receive the initial model θ0

from the server. Then, the worker split his datasets into two subsets – training
and validating. The first subset is used to retrain the classifier with model θ0

by Tw iterations. After retraining, all samples from the validating subset are
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Fig. 1. Visualization of the operation of the proposed modification of the federated
learning concept.

evaluated by this model. The samples with the best class prediction can be sent
to the server for exchange with another sample. It is done if the accuracy of
prediction of that sample is higher than 90%, which can be defined as

lj(θ) > 0.9, (1)

where lj(·) is loss function for j-th function using θ model.
After this process, i-th worker calculate loss value of model using Di dataset

according to

Li(θ) =
1

|Di|
∑

j∈ξi

lj(θ), (2)

where lj(·) is the value of function on given data sample. Then send the model
with the value of Li(θ) to the server. And then the operations like receiving a
new model, retraining, and sending it are repeated by K rounds of federated
learning. A pseudocode of the worker’s operation is presented in Algorithm1.

2.2 Server

In the beginning, the server creates an initial model θ0 which is sent to all
workers. This model is created by training a discriminator in GAN using private
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Algorithm 1: Worker operation in federated learning.
Input: Numbers of iteration Tw, dataset Di

1 t := 0;
2 Get model θ from server;
3 Split dataset Di into subsets trainingSet and validatingSet;
4 for t < Tw do
5 Train model;
6 t + +;

7 tmp := 0;
8 sampleNumber := 0;
9 for each sample j in validatingSet do

10 Evaluate sample j using retrained model θ;
11 if tmp < li(θ) then
12 tmp = li(θ);
13 sampleNumber = j;

14 if tmp > 0.9 then
15 Send a request for exchange sample j;
16 if a request is accepted then
17 Send sample j;
18 Delete sample j from dataset Di;
19 Get a new sample and add it to dataset Di;

20 Send trained model to the server;

dataset DN+1 by Ts iterations. After training this model, a server sent generated
θ0. During waiting for all models from workers, a server trains GAN, especially
generators for new samples. The idea of that is the purpose for extending subset
DN+1 with new samples that are passed by discriminator and used for possible
exchange with workers if there is such a need. The exchange is made only when
in dataset DN+1, there are samples which has accuracy lower than 0.5 on the
discriminator with the current model

lj(θ) < 0.5. (3)

If there are no such samples, then the exchange does not take place.
After getting all models from workers in j round, the server creates a new

model θj , that is used in discriminator and resent it to all workers for the next
round of federated learning. The federated learning process can be defined as
minimizing task

min
θ

L̂(θ) =
1
N

N∑

j=1

Lj(θ), (4)

whose goal is to find the optimal model by minimizing the average value of the
loss functions of all workers. The server operation is presented in Algorithm2,
and the whole idea is visualized in Fig. 1.
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Algorithm 2: Server operation in federated learning.
Input: Numbers of federated learning round Ts, dataset DN+1

1 t := 0;
2 for t < Ts do
3 Send model θt to all workers;
4 while all models were not received from workers do
5 Train GAN;
6 Generate new samples k with GAN;
7 if lk(θ) > 0.9 then
8 Add sample k to dataset DN+1;

9 if a request for a exchange has been received then
10 tmp := 1;
11 sampleNumber := 0;
12 for each sample j in DN+1 do
13 if tmp > li(θ) then
14 tmp = li(θ);
15 sampleNumber = j;

16 if tmp < 0.5 then
17 Get a new sample and add it to DN+1;
18 Send j-th sample;
19 Delete sample j from DN+1;

20 Calculate loss value using Eq. (4);
21 Update the existing model of discriminator by averaging all on server;
22 t + +;

3 Experiments

In conducted experiments, we used a MNIST dataset [8], which contains 60000 :
10000 training to validating images for 10 different classes. All data were splitted
equal for all workers and server. We examinated proposal for 2, 3, 4 workers,
Tw ∈ {10, 15, 20} training iteration, and Ts ∈ {10, 15, 20} rounds of federated
learning. The architecture of convolutional neural network (and discriminator)
was as follows – convolutional 5 × 5 with tanh(·) as activation function, max
pooling 2×2, convolutional 5×5 with tanh(·) as activation function, max pooling
2 × 2, fully-connected with 1024 neurons and tanh(·) as activation function,
and output layer with one neuron with (1 + exp(−x))−1 as activation function.
Generator in GAN has reverse structure (max pooling was replaced with up
sampling layer). As training algorithm, stochastic gradient descent [1,11] was
chosen.

We examined third parameters – the average accuracy of the model after
Ts rounds of federated learning, the sum of exchanges from all workers, and
the number of generated samples by GAN which was added to the database.
All obtained results are presented in Table 1, 2 and 3. In the case of accuracy
measurements, the lowest value was achieved using only 2 workers (0.78 and
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0.77), and the highest by the use of 3 workers (Ts = 20) 4 workers (Ts = 10,
Ts = 20). The accuracy of the aggregated model increased with a higher number
of workers. Of course, there are cases when it was also lower (Ts = 20 for 3
workers reached only 0, 81) which is due to the random distribution of samples
to individual databases.

Table 1. Obtained results for Ts = 10 round of federated learning.

Number of workers 2 3 4

Tw 10 15 20 10 15 20 10 15 20

Average accuracy 0,83 0,78 0,81 0,83 0,84 0,85 0,83 0,87 0,88

Number of exchanges 9 9 5 6 11 17 26 31 17

Number of generated samples 20 20 20 30 30 30 40 40 40

Table 2. Obtained results for Ts = 15 round of federated learning.

Number of workers 2 3 4

Tw 10 15 20 10 15 20 10 15 20

Average accuracy 0,82 0,84 0,84 0,86 0,85 0,85 0,82 0,83 0,86

Number of exchanges 18 13 10 39 30 20 14 26 19

Number of generated samples 30 30 30 45 45 45 60 60 60

Table 3. Obtained results for Ts = 20 round of federated learning.

Number of workers 2 3 4

Tw 10 15 20 10 15 20 10 15 20

Average accuracy 0,77 0,84 0,83 0,81 0,88 0,89 0,86 0,86 0,88

Number of exchanges 12 38 23 33 31 50 50 31 44

Number of generated samples 40 40 40 60 60 60 80 80 80

The number of exchanges was very chaotic, because of the distribution of
samples in databases. In the case, when the number of federated learning rounds
Ts was higher, the exchanges were much more frequent compared to a smaller
number of Ts. In general, the exchange mechanism was in many cases very often
used. This indicates that such a mechanism is important because a large number
of exchanges also reached higher results at the accuracy level. Replacing a very
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well-classified sample with a new one makes training on a modified basis more
diverse, and even increases the generalization of the model itself. The third
parameter that was analyzed is the number of created samples by GAN on a
server. This number was limited to Ts · workers due to the small number of
exchanges. It is worth noting that the exchange took place after the full training
process of the worker, so the exchange could be as many as federated learning
round. We noticed that, in each case, GAN generated a maximum number of
samples. Some example of created ones are presented in Fig. 2.

Fig. 2. Generated samples using GAN and added to the server’s database.

Fig. 3. Comparison classic concept to proposed one. In the first row for Ts = 10,
Ts = 15, and in the second one Ts = 20.
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In Fig. 3, the comparison of the proposed method with classic federated learn-
ing is presented. Described solutions have better results on average by over 5%.
The main differences between both solutions are provided modification as aug-
mentation by GAN and exchanging mechanism. Exchanging mechanism is not
too burdensome for the algorithm itself, but only for data transfer. Generating
new samples is a more computationally complex mechanism, especially when
training GAN, and therefore it is located on the server. It is worth to notice,
that GAN is trained until some maximum number of samples would be gener-
ated. If this number is small, then this process may be short.

4 Conclusion

In this paper, we propose a modified concept of federated learning for the image
recognition task. We proposed two modifications. The first one was extending
the operation of the server which in the original version just aggregate models
and send it to workers. Here, the server has GAN, where the discriminator is
trained by workers, and the server train generator. The purpose of GAN is to
create a new, augmented sample. These samples can be sent to workers. This
idea is the second modification which is an exchange mechanism. If the worker
has very well-classified samples, it can be sent to the server, which will send back
another sample with worse classification results.

This proposal was examined on the classic database, where the achieved
results show the potential of practical application. Our solution achieved results
higher by over 5%. The exchange mechanism of samples modifies the database
by removing very well-classified samples, replacing them with worse ones, which
contributes to the generalization of the training model itself.
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Abstract. This paper explores an application of image augmentation in
reinforcement learning tasks - a popular regularization technique in the
computer vision area. The analysis is based on the model-free off-policy
algorithms. As a regularization, we consider the augmentation of the
frames that are sampled from the replay buffer of the model. Evaluated
augmentation techniques are random changes in image contrast, random
shifting, random cutting, and others. Research is done using the environ-
ments of the Atari games: Breakout, Space Invaders, Berzerk, Wizard of
Wor, Demon Attack. Using augmentations allowed us to obtain results
confirming the significant acceleration of the model’s algorithm conver-
gence. We also proposed an adaptive mechanism for selecting the type
of augmentation depending on the type of task being performed by the
agent.

Keywords: Reinforcement learning · Image augmentation · Rainbow ·
Regularization

1 Introduction

One of the best techniques that can significantly increase the generalizing prop-
erty of a machine learning model is increasing the amount of data for the training.
In practice, this approach often cannot be applied due to the limited amount of
available data. One of the ways to solve this problem is to form an extension
of the source data based on some knowledge about the problem being solved
and some known requirements for model invariance. For example in the image
classification problem, such requirement is model invariance to a wide variety
of transformations, such as reflection, resizing, adding noise, or changing color.
In speech recognition problems such properties are model invariance to adding
noise, changing the volume, and changing the speed of the audio track. This
approach is called data augmentation and it allows us to generate new data-
target pairs using the described transformations and thus obtain more data for
learning [15]. However, we should be careful about using different types of aug-
mentations, since such data transformations may affect the label of the true
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class of the object being classified. For example, vertical reflection can change
the label of a true class for images that represent numbers or letters [5].

The described augmentation methods have proven their effectiveness in the
fields of Computer Vision and speech recognition, where knowledge about model
invariance can be easily used for data augmentation. However, such techniques
weren’t studied a lot in the field of reinforcement learning. At the same time
image provides a representation of the agent’s environment state, it is often one
of the main information components received from the environment by the agent
as an observation. This work is devoted to exploring the image augmentation
influence on the quality of the off-policy model-free model in reinforcement learn-
ing. In this work, we investigate the effect of applying a simple idea of image
augmentation representing the current and subsequent state of the environment,
which are extracted from the replay buffer along with the rest of the data during
the operation of the model algorithm. It is assumed that due to the limited size
of the buffer this technique will work as regularization and will help to increase
the generalization property of the model’s algorithm.

Thus, the contribution of the work is as follows:

– studying the influence of popular Computer Vision augmentation techniques
in model-free off-policy reinforcement learning algorithms,

– conducting experiments with several Atari environments and identifying aug-
mentation techniques that affect the final quality and speed up the model’s
algorithm convergence,

– results generalization and interpretation of the augmentation effect for the
off-policy algorithms.

2 Related Works

Image augmentation is actively researched in the field of Computer Vision. Suc-
cessful attempts to solve image classification problem using image augmentation
are made in [11]. The efficiency of training data extension using simple aug-
mentation methods, such as cropping, rotating, and flipping input images is
demonstrated widely. In this work, the authors restricted data access to a small
subset of the ImageNet dataset and evaluated the results for each conversion
method. One of the most successful strategies to increase the size of training
data in the work is the traditional transformations mentioned above. This work
also experiments with generative models for creating images of various styles and
suggests a method called Neural Augmentation, which allows the neural network
to study transformations that are most suitable for classification problems. In the
article [2] a new algorithm was used to automatically search for the best image
augmentation technique for each individual dataset. The proposed automatic
augmentation selection mechanism showed high validation accuracy on the tar-
get dataset and achieved state-of-art accuracy on CIFAR-10, CIFAR-100, Svhn,
and ImageNet (without using additional data). The augmentation algorithms
obtained on the ImageNet dataset can be transferred to another algorithm and
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can be used for other datasets such as Oxford Flowers, Caltech-101, Oxford-IIT
Pets, FGVC Aircraft, and Stanford Cars.

In Reinforcement Learning (RL) the topic of augmentation has not been
studied a lot, but more interesting papers on this topic have recently appeared.
In [9] authors presented a plug-and-play method that can improve any RL algo-
rithm. Authors demonstrated how random cutout, color jitter, patch cutout,
and random convolution can allow simple algorithms to perform the same way
or even outperform complex modern methods by common criteria in terms of effi-
ciency and communication capability. It is argued that only a variety of data can
cause agents to focus on meaningful information from multidimensional obser-
vations without any changes in the training method. The results are demon-
strated in DeepMind environments, where state-of-art quality is shown for 15
environments.

The article [8] offers a simple method that can be applied to standard model-
free reinforcement learning algorithms, allowing to get more stable learning of
the model directly from images without introducing auxiliary loss functions or
doing pre-training. The approach uses augmentations commonly used in Com-
puter Vision tasks to transform input data and as a result dramatically improves
the Soft Actor-Critic algorithm’s performance, enabling it to reach state-of-the-
art performance on the DeepMind control suite. The proposed algorithm, which
they dub DrQ: Data-regularized Q, can be combined with any model-free rein-
forcement learning algorithm. It was also demonstrated by applying it to DQN
algorithm and significantly improve its data-efficiency on the Atari 100k bench-
mark.

In other work [12] the method UCB-DrAC was proposed. This new method
is used for automatically finding effective data augmentation for RL tasks. It
enables the principled use of data augmentation with actor-critic algorithms by
regularizing the policy and value functions with respect to state transformations.
It was shown that UCB-DrAC avoids the theoretical and empirical pitfalls typical
in naive applications of data augmentation in RL. The method improves training
performance by 16% and test performance by 40% on the Procgen benchmark,
relative to standard RL methods such as Proximal Policy Optimization [14].

We can also mention works in which task-oriented augmentation was carried
out [16,17]. Episodes of solving one of the tasks available to the agent were
replenished by episodes in which another goal was achieved. In our work, we
focus on studying the impact of data augmentation specifically for off-policy
algorithms, for which such research has not been conducted before.

3 Model Description

Q-Learning. Unlike classical algorithms and machine learning methods, Rein-
forcement Learning is a class of models that do not receive direct information
about object-response pairs. Instead of this the agent learns to act in some
environment in a way that maximizes some scalar value of the reward. At each
discrete step t = 0, 1, 2, ..., the environment presents an observation St to the
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agent, the agent reacts by selecting an action At, after which it receives a new
reward value from the environment Rt+1 and the next state St+1. This interac-
tion is formalized by the concept of MDP or Markov decision - making process
represented by a tuple < S,A, T, r, γ >, where S is a finite state space, A is a
finite set of actions, T (s, a, s′) = P [St+1 = s′|St = s,At = a] is a stochastic
transition function between states, r(s, a) = E[Rt+1|st = s, at = a] - reward
function, and γ ∈ [0, 1] - discount coefficient.

Reinforcement Learning uses the assumption that future rewards are dis-
counted with a coefficient of γ for each step. Then the total discounted reward
at time t is defined as

Rt =
T∑

t′=t

γt′−trt′

where T is understood as the moment when the game ends. Here it is important
to define the so-called action-value function Q∗(s, a) as the maximum expecta-
tion of the reward received for any policy π after the agent visits the state s and
performs the action a:

Q∗(s, a) = max
π

E[Rt|St = s,At = a, π]

The π policy determines the probability distribution of actions for each of
the states. The optimal Q-function, in this case, obeys the equation of Bellman.

Q∗(s, a) = Es′∼ε

[
r + γ max

a′
Q∗(s′, a′)|s, a

]

The basic idea of many reinforcement learning algorithms is to evaluate the
action-value function using the Bellman equation in an iterative algorithm:

Qi+1(s, a) = E
[
r + γ max

a′
Qi(s′, a′)|s, a

]

Such iterative algorithms converge to the optimal action-value function Qi →
Q∗ for t → ∞ In practice, this basic approach is not very applicable, since
the Q-function is evaluated separately for each sequence of steps, without any
generalization. Instead, an approximation is used to estimate the Q-function:

Q(s, a; θ) ≈ Q∗(s, a)

This can be a linear approximator function, or a non-linear approximator can
be used instead, including a neural network with θ-weights. Such a Q-neural
network can be trained by minimizing the sequence of loss functions Li(θi):

Li(θi) = Es,a∼p(.)

[
(yi − Q(s, a; θi))2

]

where yi is the value of the desired function on the iiteration:

yi = Es′∼ε

[
r + γ max

a′
Q∗(s′, a′; θi−1)|s, a

]
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The gradient of such a function will be equal to:

∇θiLi(θi) = Es,a∼p(.);s′∼ε

[(
r + γ max

a′ Q(s′, a′; θi−1) − Q(s, a; θi)

)
∇θiQ(s, a; θi)

]

Instead of calculating the total expectation in the gradient above, it is often
computationally appropriate to optimize the loss function using stochastic gra-
dient descent. If the model weights update each step and replace the expectation
with a sample from the distributions p and the emulator ε, respectively, then we
come to the familiar Q-learning algorithm [20]. This algorithm is a model-free
algorithm, as well as an off-policy - it learns using an ε-greedy strategy, choosing
an action with the maximum value of the Q-function with probability ε and
with probability 1 − ε taking a random action. This strategy allows the model
to adjust its own estimates if necessary [10].

Deep Q-Network. Deep Q-Network is a successful generalization of combining
convolutional neural networks and reinforcement learning to approximate the
Q-function for st in the t-step. In this case, the state is fed as input to the
neural network in the form of a sequence of pre-processed pixel frames. At
each step of the algorithm, depending on the current state, the agent selects
the next action using the ε-greedy strategy described above and also adds a
tuple (st, at, rt+1, st+1) to a special playback buffer called the replay buffer. The
parameters of the neural network are optimized using stochastic gradient descent
to minimize the loss of the function:

L =
(
r + γ max

a′
Qθ̂(s

′, a′) − Qθ(s, a)
)2

In this case, the gradient of the loss function is considered only for online – a
neural network that is also used to select the optimal action. The parameters θ̂
represent target, a neural network that is a periodic copy of the online network.
Target – the network is not directly optimized. Using a replay buffer and a target
network allows for greater stability of model training and leads to good results
for many reinforcement learning tasks.

Rainbow. This algorithm is an extension of the DQN algorithm described above
and uses the following 6 improvements: Double Q-Learning [18], Prioritized
replay [13], Dueling networks [19], Multi-step learning [3], Distributed RL [1],
Noisy Nets [4]. This modification of the DQN was used for research on the use
of augmentation in reinforcement learning. The described algorithm was chosen
because it exceeds the standard DQN in terms of convergence rate, and also
preserves the model-free and off-policy properties.

4 Augmentation in Reinforcement Learning

Data augmentation in Computer Vision problems is considered as a good method
not only for increasing the amount of source data but also for increasing the
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diversity of these data [15]. The most popular image augmentation techniques
are horizontal reflection, multi-pixel shifts, rotations, and other transformations.
However, not all of these types of augmentation can be applied in reinforcement
learning tasks. For example, rotation and horizontal reflection can significantly
affect the optimal action that will maximize the agent’s reward at a particular
step of the game. Therefore, for the model under study, we have chosen augmen-
tations with respect to which the model is invariant. This property means that
after the data augmentation steps the optimal action at a particular step does
not change.

4.1 Augmentation Types

Random Erase. To augment an arbitrary frame of the game a random point is
selected within the borders of the image and a rectangle is constructed from it
with side lengths distributed randomly from 0 to 20. The built shape is colored
gray.

Random Crop. The original image is expanded by 4 pixels on each side and
filled in with black. Then the resulting frame is randomly cut from the resulting
image. The size of the final frame corresponds to the size of the initial image
without expansion.

Random Contrast. Before augmentation, the regularization coefficient for con-
trast is randomly selected as a sample from the normal distribution N(1, 0.5).
Then the image contrast is changed with this coefficient. In such transformation,
the value k = 1 corresponds to the absence of changes, and k = 2 corresponds
to a double increasing of the contrast.

Random Augmentation. One of the three augmentations described above is
applied to the image with equal probability.

4.2 General Framework for Action-Value Function Regularization

In DQN-algorithm deep networks and reinforcement learning were successfully
combined by using a convolutional neural net to approximate the action-value
function Q for a given state St, which is fed as input to the network in the form
of a stack of raw pixel frames. Applying any augmentation to such frames can be
considered as some regularization of the value function. Here we can define the
general framework for such regularization by adding augmentation function f ,
which will apply some exact type of state augmentation. Generalizing, we can say,
that augmentation function f can apply to the exact state any transformation
which preserves invariance property of the model. Invariant state transformation
function can be defined:

f : S × T → S
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as a mapping that preserves the Q-values

Q(s, a) = Q(f(s, ν), a)

for all s ∈ S, a ∈ A and ν ∈ T . where ν are the parameters of f , drawn from the
set of all possible parameters T .

In DQN-algorithm a non-linear approximator can be used for Q-value func-
tion approximation, including a neural network with θ-weights. Applying a new
value-function regularization framework such Q-neural network can be trained
by minimizing the sequence of loss functions Li(θi):

Li(θi) = Es,a∈p(.)

[
(yi − Q(fi(s, ν), a; θi))2

]

where yi is the value of the desired function on the i-iteration.
The choice of a particular regularization function strongly depends on the

current problem being solved. The choice of function can be influenced by the
specifics of the game, the agent’s strategy for getting the maximum reward,
and other features. Thus, the task of selecting the f function is non-trivial and
requires additional experiments. We need to find such a function, and to choose
its parameters to minimize the loss function described above:

f̂ = argminf∈F,ν∈T L(θ̂)

where F is a family of functions with mapping f : S ×T → S that preserves the
property of model invariance.

Due to the complexity of the optimization problem for such a family of func-
tions, this problem can be simplified and reduced to the problem of finding some
approximation of a function f̂ . An important property of such an approxima-
tion function is adaptability, the ability of the function to take into account the
features of the problem being solved.

In further experiments, we consider f as one of the image augmentation
types described above. Set of all possible parameters T can be understood as
all possible values of such augmentation parameters. For example among T will
be all possible probability distributions of different augmentations for random
augmentation.

Each state of the environment can be associated with a certain frame from
the game. However, in this case, we can say little about the direction in which,
for example, the ball is moving in a Breakout game and at what speed it does
so. This raises the question of fulfilling the Markov property of the model, that
is, if only one frame is used to represent a certain state of the environment, this
property is violated. To solve this problem instead of a single frame of the game
to characterize the state, several consecutive frames are used (in our case, 4).
This allows you to get more information about the environment, and we can
draw conclusions about the direction of the ball and its speed from two frames
of the game, and about its acceleration – by three.

In all evaluated games, the source frames are reduced to the size of 84 × 84
and converted to the black and white format.
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An augmentation procedure is added to the Rainbow algorithm, which is
performed every time an image is sampled from the replay buffer. In this case, the
randomness property should be performed only for different pairs of (st, st+1).
Within each such pair, the augmentation is exactly the same for st and st+1.
This is necessary in order to preserve the integrity of each observation of the
environment, that is, the tuple (st, at, rt+1, st+1) is an integral, indivisible unit
for a reinforcement learning algorithm.

5 Experiments

5.1 Data Augmentation for Off-Policy RL

Currently, there is a lot of environments for solving RL tasks. We decided
to explore the impact of augmentation regularization using the OpenAI Gym
library, which provides APIs for simulating a large number of virtual environ-
ments, including Atari games. In this section, we compare four types of aug-
mentation for the following environments: Berzerk, Breakout, Demon Attack,
Space Invaders, Wizard of Wor. As a baseline model, we used the original Rain-
bow algorithm with the parameters specified in the original paper [6]. Table 1
reports summary results for whole 5 games. Learning curves for Berzerk and
Space Invaders environments presented in Fig. 1.

Breakout. For Breakout, several augmentations showed a result that exceeds
the result of the original algorithm. Augmentations not only increased the con-
vergence rate of the algorithm but also resulted in a higher reward after conver-
gence. The best result was shown by Random Augmentation, which increased the
model’s reward by 17%. Random Crap and Random Erase augmentations also
accelerated convergence and were able to increase the reward by 10% and 8%,
respectively. Random Contrast augmentation did not show results significantly
different from baseline.

Space Invaders. The game requires more training time compared to other
tested games, so we got significant results only after a large number of training
steps. We obtained higher reward results for all types of augmentations in this
game. The best type of augmentation is Random Erase, which increases the
model’s reward by rather 400%. In our experiment, Random Augmentation and
Random Contrast are also successful with the result of more than 250% reward
increasing. The model with Random Crop augmentation got 47% higher score
than a Baseline model.

Wizard of Wor. For Wizard of Wor the best types of augmentation were Ran-
dom Augmentation and Random Erase with 45% and 20% higher reward result.
These two augmentations also increased the convergence rate of the algorithm.
For this environment, we got worse results for Random Crop and Random Con-
trast augmentation with reward decreasing by 17% and 32%.

Berzerk. For this game, we obtained the highest reward results for Random
Crop augmentation, which increases the model’s reward after 30M training steps
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by 202%. In our experiment, Random Augmentation is also successful with a
result of more than 173% reward increasing. The model with Random Erase
on average shows the same score as a baseline model. The worse results were
provided by the model with Random Contrast augmentation with 20% reward
decreasing.

Demon Attack. For Demon Attack all augmentation types provided good
results. But here we got more acceleration of the convergence rate and less
increase of models reward in the end. The best augmentations for this game
are Random Crop and Random Augmentation with over 15% reward increasing
after 30M training steps. For these two augmentation types, we got over 160%
increasing of convergence from 10M to 20M training steps. Random Erase pro-
vided 90% increasing of convergence from 10M to 20M training steps and 6%
reward increasing in the end. For Random Contrast we got 15% increasing in
convergence and nearly the same results as a baseline model in the end.

Table 1. Final results for each type of the augmentation for five Atari games. The
column for each augmentation shows the final cumulative reward and its percentage
relative to the Rainbow without augmentations (Original).

Steps Original Random Erase Crop Contrast

Environment ×106 Score % Score % Score % Score % Score %

Berzerk 40 2527 0 7301 189 2821 12 11841 369 2298 −9

Breakout 20 353 0 389 10 370 5 368 4 338 −4

Demon Attack 40 107648 0 124237 15 115004 7 124057 15 106936 −1

Space Invaders 40 2663 0 9406 253 13253 398 3926 47 10021 276

Wizard of Wor 30 8261 0 12746 54 10196 23 6175 −25 5027 −39

5.2 Behavioral Cloning

Augmentations work fine for such tasks as classification. In the following series
of experiments, we decided to study the effects of different augmentation types
on the behavioral cloning model. The main idea of this section is to explore how
different proportions of image transformations can influence the final quality of
a model trained to copy the behavior of an expert. We took the model with the
best results for the Wizard of Wor game from the previous section. The selected
model was trained during 50 m steps using the Rainbow algorithm with Random
Augmentation regularization. We launched inference for this model and saved
10,000 state-action transitions to use it as input data for the behavioral cloning
model. The input data was augmented using the Random Augmentation method
with different proportions of Random Crop, Random Erase, Random Contrast,
and Original Data augmentations (data without changes). As a model, we took a
simple classifier with Cross-Entropy Loss. To iterate through various augmenta-
tion ratios for each of the augmentations in Random Augmentation we used dis-
cretization of [0, 33, 66, 100] followed by normalization to obtain the final discrete
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Fig. 1. Learning curves for Berzerk (left) and Space Invaders (right) environments.
The correct choice of augmentation leads to a significant improvement in the conver-
gence of the algorithm. The Crop augmentation shows superior results for Berzerk
environment, but for the Space Invaders environment, the result is almost the same as
the original Rainbow.

distribution {RandomCrop,RandomErase,RandomContrast,OriginalData}.
This distribution is used to sample an augmentation for each item of a batch
during the training process.

We tested model results with augmentation discretization above. Figure 2
shows the results for the top 30 and worst 30 sets from 256 experiments. The
trained model for each ratio set tested over 100 evaluation episodes in the Wiz-
ard of Wor environment. The best cumulative reward 8650 showed the following
augmentation ratio: contrast 33%, crop 100%, erase 100%, original 66% (nor-
malized: 0.11, 0.33, 0.33, 0.22). From these results, one can conclude that a
properly augmented model can achieve a better reward score than the original
model while testing in the environment. Also, different proportions of augmen-
tation types lead to different model quality. For example, for the Wizard of Wor
environment, we got that the higher rate of Random Contrast and low rates of
other augmentations leads to lower model quality. We also inspect the correlation
between the obtained reward score and model accuracy. For all 256 experiments
model accuracy varies not much (in the interval: 0.83 .. 0.86). Despite this, the
model reward varies a lot, so the small perturbation in model accuracy leads to
a significant difference in the reward score. Thus in our experiment, the mixture
of all discussed augmentations types with a higher proportion of Erase and Crop
Augmentations and a lower proportion of Contrast showed the best result.

Behavioral cloning experiments can be considered as a part of the search for
an approximation of an adaptable regularization function described in Sect. 4.2.
The experiment can be continued with subsequent model training using Rein-
forcement Learning algorithms and applying a new adaptable regularization
function. For example, the best augmentations distribution found in this section
can be applied to DQN from Demonstrations (DQfD) algorithm [7], where some
expert’s demonstrations produced by human or another well-trained agent also
can be used in DQN algorithm and could significantly speed up the training
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Fig. 2. Hyperparameter search for behavioral cloning on Wizard of Wor environment.
We grid search over the ratio of frames for different augmentation type in training
batch, considering the following percentages: 0%, 33%, 66%, 100%. For visibility pur-
poses, this chart shows the results only for the top 30 and worst 30 sets from 256
experiments. The trained model for each ratio set tested over 100 evaluation episodes
in the environment. The best cumulative reward 8650 showed the following augmenta-
tion ratio: contrast 33%, crop 100%, erase 100%, original 66% (normalized: 0.11, 0.33,
0.33, 0.22). The leftmost column reports validation accuracy on test data consisting of
20,000 frames.

process. Such experiments can include applying adaptable regularization func-
tion during pre-train or fine-tuning stages and will be the next step of our
research.

6 Conclusion

Data augmentation methods have proven to be effective in image analysis. In
this paper, we have applied a number of well-known augmentation techniques to
the problem of Reinforcement Learning with image-based observations. We have
developed an adaptive version of data augmentation for off-policy algorithms
that use replay buffer as temporary memory. We have shown that augmentation
improves the quality of one of the well-known state-of-the-art Rainbow algo-
rithm. We conducted an experimental study on the selection of hyperparameters
for our method of augmented data mixing. In future work, we plan to develop
this method and conduct experiments with algorithms that use demonstrations.
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Abstract. Several neural network approaches for solving differential
equations employ trial solutions with a feedforward neural network.
There are different means to incorporate the trial solution in the con-
struction, for instance one may include them directly in the cost function.
Used within the corresponding neural network, the trial solutions define
the so-called neural form. Such neural forms represent general, flexible
tools by which one may solve various differential equations. In this article
we consider time-dependent initial value problems, which requires to set
up the trial solution framework adequately.

The neural forms presented up to now in the literature for such a
setting can be considered as first order polynomials. In this work we
propose to extend the polynomial order of the neural forms. The novel
construction includes several feedforward neural networks, one for each
order. The feedforward neural networks are optimised using a stochas-
tic gradient descent method (ADAM). As a baseline model problem we
consider a simple yet stiff ordinary differential equation. In experiments
we illuminate some interesting properties of the proposed approach.

Keywords: Feedforward neural networks · Initial value problem ·
Trial solution · Differential equations

1 Introduction

Over the last decades several neural network approaches for solving differential
equations have been developed [1–3]. The application and extension of these
approaches is a topic of recent research, including work on different network
architectures like Legendre [4] and polynomial neural networks [5] as well as
computational studies [6,7].

One of the early proposed methods [8] introduced a trial solution (TS) in
order to define a cost function using one feedforward neural network. The TS is
supposed to satisfy given initial or boundary values by construction. It is also
referred to as neural form in this context [8,9]. Let us note that such neural forms
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represent a general tool that enable to solve ordinary ordinary differential equa-
tions (ODEs), partial differential equations (PDEs) and systems of ODEs/PDEs
alike. We will refer here to this approach as the trial solution method (TSM).

Later, the initial method from [8] has been extended by a TS with two feed-
forward neural networks, which allows to deal with boundary value problems for
irregular boundaries [10] and yields broader possibilities for constructing the TS
[9]. In the latter context, let us also mention [11] where an algorithm is proposed
in order to create a TS based on grammatical evolution.

A technique related to TSM that avoids the explicit construction of trial
solutions has been proposed in [12]. The given initial or boundary values from the
underlying differential equation are included in the cost function as additional
terms, so that the neural form can be set to equal the neural network output.
We will refer to this approach as modified trial solution method (mTSM).

The fact that the neural network output computation resembles a linear com-
bination of basis functions leads to a network architecture (for PDEs) presented
in [13]. In this work one hidden layer incorporates two sets of activation func-
tions, one of which is supposed to satisfy the PDE and the second dealing with
boundary conditions. The basis function coefficients are set to be the connecting
weights from the hidden layer to the output, and the sum over all basis functions
and coefficients makes up the TS.

Motivated by the construction principle of collocation methods in numerical
analysis, we propose in this paper a novel extension of the TS approach. Our
extension is based on the observation, that the neural form using one feedforward
neural network as employed in [8] may be interpreted as a first order colloca-
tion polynomial. We propose to extend the corresponding polynomial order of
the neural form. The novel construction includes several feedforward neural net-
works, one for each order. Compared to a collocation method from standard
numerics, the networks take on the role of coefficients in the collocation poly-
nomial expansion. In computational experiments we illuminate some interesting
properties of our extension.

2 Setting up the Neural Form

In this section, we first recall the TSM and its modified version mTSM, respec-
tively, compare [8,12]. Then we proceed with details on the feedforward neural
networks we employ here, followed by a description of the novel set-up.

2.1 Construction of the Neural Form

Consider an initial value problem written in a general form as

G

(
x, u(x),

d

dx
u(x)

)
= 0, u(x0) = u0, x ∈ D ⊂ R (1)

with given initial value u(x0) = u0. In order to connect G with a neural network,
several approaches introduce a TS as a differentiable function ut(x, �p), where �p
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contains the network weights. With the collocation method we discretise the
domain D by a uniform grid with n grid points xi, so that G is transformed into

G

(
xi, ut(xi, �p),

∂

∂x
ut(xi, �p)

)
= �0 (2)

Let us note that, in a slight abuse of notation, we identify Eq. (2) with the vector
of corresponding entries, since this enables to give many formula a more elegant,
compact notation.

In order to satisfy the given initial value, TSM [8] employs the TS as a sum
of two terms

ut(x, �p) = A(x) + F (x,N(x, �p)) (3)

where A(x) is supposed to match the initial condition (with the simplest choice
to be A(x) = u0), while F (x,N(x, �p)) is constructed to eliminate the impact of
N(x, �p) at x0. The choice of F (x,N(x, �p)) determines the influence of N(x, �p)
over the domain.

Since the TS as used in this work satisfies given initial values by construction,
we define the corresponding cost function incorporating Eq. (3) as

ETSM [�p] =
1
2

∥∥∥∥G

(
xi, ut(xi, �p),

∂

∂x
ut(xi, �p)

)∥∥∥∥
2

2

(4)

Let us now turn to the mTSM approach after [12]. The mTSM approach chooses
the TS to be equivalent to the neural network output directly

ut(x, �p) = N(x, �p) (5)

Since no condition is imposed by the initial value on the TS in this way, the
conditions are added to the cost function for Eq. (5):

EmTSM [�p] =
1
2

∥∥∥∥G

(
xi, ut(xi, �p),

∂

∂x
ut(xi, �p)

)∥∥∥∥
2

2

+
1
2

‖N(x0, �p) − u0‖22 (6)

2.2 Neural Network Architecture

Our neural network architecture is depicted in Fig. 1. With one hidden layer,
five hidden layer neurons, one bias neuron in the input layer and a linear output
layer neuron, the neural network output reads

N(x, �p) =
5∑

j=1

vjσ(zj) (7)

Thereby σ(zj) = 1/(1 + e−zj ) represents the sigmoid activation function with
the weighted sum zj = wjx + uj . Here, wj , uj and vj , j = 1, . . . , 5, denote
the weights which are stored in the weight vector �p. The input layer passes the
domain data x, weighted by wj and uj , to the hidden layer for processing. The
neural network output N(x, �p) is again a weighted sum of the values vjσ(zj).
With N(x, �p) given, the trial solutions and cost functions in Eqs. (4), (6), are
obtained.
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Input
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x
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1
uj
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σ5

vj

N

Fig. 1. Architecture for N(x, �p)

The cost function gradient is used to update
�p in order to find a (local) minimum in the
weight space. One training cycle is called an
epoch and consists of a full iteration over all
training data points. If an update is performed
after every single training data computation, we
call this method single batch training (SBtrain-
ing) here. An alternative proceeding, perform-
ing the weight update after a complete iteration
with all training data points, averaging the cost
function gradient, is denoted here as full batch
training (FBtraining).

For optimising the cost function we consider
here ADAM (adaptive moment estimation) [14]
which is a stochastic gradient descent method, using adaptive learning for every
weight.

2.3 The Novel Neural Form

Setting for simplicity x0 = 0 and u(0) = 1 (otherwise one may modify corre-
sponding terms in the TS), a suitable choice for the TS is

ut(x, �p) = 1 + N(x, �p) · x (8)

as mentioned in [8]. Compared to a first order polynomial q1(x) = a0 +a1x with
a0 = 1 one may find similarities in the structure. Motivated by the expansion of
an m-th order collocation function polynomial [15]

qm(x) = a0 +
m∑

k=1

akxk (9)

we are lead to set up our collocation-based TS approach for TSM:

uC
t (x,Pm) = 1 +

m∑
k=1

Nk(x, �pk)xk (10)

The weight vector is denoted by �pk and we define the matrix Pm of m weight
vectors Pm = (�p1, . . . , �pm).

Let us observe, that the neural nets take on the roles of coefficient functions
for the monomials xk. We conjecture at this point that this construction makes
sense since in this way several possible multipliers (not only x as in (8)) are
included for neural form construction, which may contribute to total accuracy.
Let us remark that the new trial solution construction (10) fulfills the initial
condition.
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Let us stress that the proposed ansatz (10) includes m neural networks, where
Nk(x, �pk) represents the k-th neural network

Nk(x, �pk) =
5∑

j=1

vj,kσ(wj,kx + uj,k) (11)

The corresponding cost function is then given as in Eq. (4).
We extend the mTSM method in a similar way as we obtained the TSM

extension in Eq. (10):

uC
t (x,Pm) = N1(x, �p1) +

m∑
k=2

Nk(x, �pk)xk−1 (12)

The first neural network N1(x, �p1) is set to learn the initial condition in the same
way as stated in Eq. (6).

From now on we will refer to the number of neural networks in the neural
form as the trial solution order (TSo).

3 Experiments and Results

We will perform experiments on the well known initial value problem

u′(x) − λu(x) = 0, u(0) = 1 (13)

with λ∈R, λ < 0, which has the exact solution u(x) = eλx. The Eq. (13) involves
a damping mechanism, making this a simple model for stiff phenomena [16].

The numerical error Δu shown in subsequent diagrams is defined as the l1-
norm of the difference between the exact solution and the corresponding trial
solution

Δu =
∥∥u(xi) − uC

t (xi,Pm)
∥∥
1

If we do not say otherwise, the fixed computational parameters in the subsequent
experiments are: 1 input layer bias, 1 hidden layer with 5 sigmoid neurons, 1e5
training epochs, 10 training data, the ODE parameter λ = −5, x∈ [0,2] and the
weight initialisation values which are �p init

const = −10 and �p init
rnd = [−10.5, −9.5].

Weight initialisation with �p init
const applies to all corresponding neural networks

so that they use the same initial values. In contrast, increasing the TSo for the
initialisation with �p init

rnd works systematically. For TSo = 1, a set of random
weights for the neural network is generated. For TSo = 2 (now with two neural
networks), the first neural network is again initialised with the generated weights
from TSo = 1, while for neural network number two, a new set of weights is gen-
erated. This holds for all TSo for higher orders, subsequently, in all experiments.
The diagrams only display every hundredth data point. ADAM parameters are
fixed as well with, as employed in [14], α = 1e−3, β1 = 9e−1, β2 = 9.99e−1 and
ε = 1e−8.
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Weight Initialisation. Let us comment in some more detail on weight initial-
isation. The weight initialisation plays an important role and determines the
starting point for gradient descent. Poorly chosen, the optimisation method may
fail to find a suitable local minimum.

The initial neural network weights are commonly chosen as small random
values [17]. Let us note that this is sometimes considered as a computational
characteristic of the stochastic gradient descent optimisation. Another option is
to choose the initialisation to be constant. This method is not commonly used
for the optimisation of neural networks since random weight initialisation may
lead to better results. However, constant initialisation returns reliably results
of reasonable quality if the computational parameters in the network remain
unchanged. As previous experiments have documented [7,8,12], both TSM and
mTSM are able to solve differential equations up to a certain degree of accuracy.

Table 1. Results for five different real-
isations during optimisation (mTSM,
TSo = 2)

No Δu(�p init
rnd ) Δu(�p init

const)

1 5.7148e−6 2.6653e−6
2 7.5397e−6 2.6653e−6
3 3.7249e−5 2.6653e−6
4 1.1894e−5 2.6653e−6
5 7.7956e−6 2.6653e−6

However, an example illustrating the
accuracy of five computations with ran-
dom weights �p init

rnd respectively constant
weights �p init

const shows that the quality of
approximations may vary considerably,
see Table 1. As observed in many exper-
iments, even a small discrepancy in the
initialisation with several sets of random
weights in the same range, may lead to
a significant difference in accuracy. On
the other hand, the network initialisation
with constant values very often gives reli-
able results by the proposed novel approach. This motivates us to study in detail
the effects of constant network initialisations.

3.1 Experiment 1: Number of Training Epochs

The first experiment shows for different TSo how the numerical error Δu behaves
depending on the number of training epochs.

0 2 4 6 8 10

Number of epochs 10 4

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

0 2 4 6 8 10
Number of epochs 10 4

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Fig. 2. Experiment 1 Number of Training Epochs, (blue) TSo = 1, (orange) TSo =
2, (yellow) TSo = 3, (purple) TSo = 4, (green) TSo = 5 (Color figure online)
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In Fig. 2a with TSM and �p init
const results for TSo = 1 (blue) do not provide any

approximation, independent of the batch training method selected. With a sec-
ond neural network for TSo = 2 (orange) in the trial solution, Δu approximately
lowers by one order of magnitude so that we now obtain a solution which can be
considered to rank at the lower end of reliability. However, the most interesting
result in Fig. 2a is TSo = 5 (green) with the best accuracy at the end of the
optimisation process but with the drawback of occurring oscillations. These may
arise by the chosen optimisation method.

For mTSM with SBtraining and �p init
const, already TSo = 1 converges to a

solution accuracy that can be considered reliable. However, we observe within
Fig. 2b that only the transition from TSo = 1 (blue) to TSO = 2 (orange) affects
Δu with increasing accuracy, while heavy oscillations start to occur.

In the not documented results with �p init
rnd , TSo has only minor influence on

the accuracy. Especially FBtraining for mTSM shows the same trend for both
initialisation methods with only minor differences in the last epochs.

Let us note that the displayed results show the best approximations using
constant or random initialisation. This means, we obtain the best results for
TSM with FBtraining, TSo = 5 (green) and for mTSM with SBtraining, TSo≥2,
respectively.

Concluding this experiment, we were able to get better results with �p init
const over

�p init
rnd . Increasing the TSo to at least order five seems to be a good option for TSM

and FBtraining, whereas further TSo may provide even better approximations.
For mTSM we can not observe benefits for TSo above order 2.

Moreover, we see especially that the increase in the order of the trial solution
in (10) appears to have a similar impact on solution accuracy as the discretisation
order in classical numerical analysis.

3.2 Experiment 2: Domain Size Variation

Investigating the methods concerning different domain sizes provides infor-
mation on the reliability of computations on larger domains. The domains in this
experiment read as D = [0, xend] and we directly compare in this experiment
�p init

const with �p init
rnd .

In Figs. 3a, 3b we observe TSM from around xend = 3.5 to incrementally
plateau to unreliable approximations. Increasing TSo improves Δu on small
domains and shifts the observable step-like accuracy degeneration towards larger
domains. However, even with TSo = 5 (green) the results starting from domain
size xend = 3.5 towards larger sizes are unreliable. Previous to the first plateau
higher TSo provide significant better Δu for �p init

const, while there are only minor
changes for �p init

rnd for the TSM method. This holds for both SBtraining and
FBtraining, and one can say that in this experiment TSM works better with
�p init

rnd , even without increasing TSo.
Turning to the mTSM extension, we observe in Fig. 3c with SBtraining the

existence of a certain point from where different TSo return equal values, where
FBtraining returns (close to) equal results for all the investigated domain sizes.
However, we see some evidence for the use of TSo = 2 (orange) over TSo = 1
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Fig. 3. Experiment 2 Domain Size Variation, (blue) TSo = 1, (orange) TSo = 2,
(yellow) TSo = 3, (purple) TSo = 4, (green) TSo = 5

(blue) to show an overall good performance. A further increase of TSo is not
necessary with this approach, confirming results from Experiment 3.1.

Let us also note that, with mTSM we find that a small domain seems to
favour �p init

const which then provides better results than �p init
rnd .

3.3 Experiment 3: Number of Training Data Variation

The behaviour of numerical methods highly depend on the chosen amount of
grid points, so that in this experiment we analogously investigate the influence of
the amount of training data. In every computation, the domain D is discretised
by equidistant grid points.

As in the previous experiments, the TSo shows a major influence on the
results with TSM, and the best approximations are provided by �p init

const with TSo
= 5 (green) as seen in Fig. 4a. An interesting behaviour (observed also in a
different context in Fig. 2a) is the equivalence between TSo = 3 (yellow) and
TSo = 4 (purple). Both converge to almost exactly the same Δu, where one
may assume a saturation for the TSo. However, another increase in the order
decreases the numerical error again by one order of accuracy.

Turning to mTSM in Fig. 4b we again find a major increase in accuracy after
a transition from TSo = 1 (blue) to TSo = 2. For ntD = 50, values for TSo ≥
2 converge to the same results as provided by TSM with TSo = 5.
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Fig. 4. Experiment 3 Number of Training Data Variation, (blue) TSo = 1, (orange)
TSo = 2, (yellow) TSo = 3, (purple) TSo = 4, (green) TSo = 5

Concluding this experiment, we again find evidence that increasing TSo in the
proposed approach provides an improved accuracy for �p init

const. However, increas-
ing ntD seems not to improve the accuracy from a certain point on, unlike for
numerical methods. But one could argue, that the analogy between the number
of grid points for numerical methods here is the number of epochs.

4 Conclusion and Future Work

The proposed trial solution approach merging collocation polynomial basis func-
tions with neural networks shows benefits over the previous trial solution con-
structions.

We have studied in detail the constant weight initialisation which seems to
have some benefits for both the proposed TSM and mTSM extensions, depending
on the batch learning methods. For the TSM collocation method this effect is
more significant than observed for the mTSM extension.

Focusing on the mTSM collocation approach, using two neural networks, one
for learning the initial value and one multiplied by x, seems to have some advan-
tages. Considering approximation quality as most imperative, we find mTSM
with TSo = 2 to provide the overall best results for the investigated initial value
problem.

Future research may include work on other collocation functions and compu-
tational parameters. Especially with mTSM we still see space for improvement.
Let us also note that the proposed method uses more than one neural network,
so that there is the possibility to use very different computational parameter
setups for each neural network.
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Abstract. The paper demonstrates how to realize neural vector quan-
tizers by means of quantum computing approaches. Particularly, we con-
sider self-organizing maps and the neural gas vector quantizer for unsu-
pervised learning as well as generalized learning vector quantization for
classification learning. We show how quantum computing concepts can
be adopted for these algorithms. The respective mathematical framework
is explained in detail.

1 Introduction

Machine learning usually is a complex and time consuming task for many appli-
cations, e.g. in molecular genetics, speech processing, or geo- and astrophysics.
Thus, the development of specific hardware as well as of computational alterna-
tives are still challenging. One area contributing to both aspects is quantum com-
puting based on the fundamental theory and realization of quantum phenomena
[8]. Although the mathematical concepts of quantum computing are well-known
[17,22], realizations of machine learning algorithms by quantum routines fre-
quently is non-trivial [18]. Several approaches for supervised and unsupervised
machine learning models and neural networks are known including quantum vari-
ants of k-means [12,32], quantum support vector machines (qSVM) [20], Hop-
field and recurrent neural networks [3,19] and other. For an overview regarding
supervised methods we refer to [26]. One disadvantage of quantum computing for
machine learning are the limited hardware resources, which are currently avail-
able [18]. Thus hybrid approaches gain attraction integrating quantum routines
into machine learning algorithms (some times denoted as quantum-enhanced
machine learning [6]) or providing machine learning based parameter adapta-
tion for the quantum approach [23].

An important subset of quantum approaches deals with supervised and unsu-
pervised learning methods based on the nearest neighbor or nearest prototype
principle closely related to classical vector quantization approaches based on
the winner-takes-all rule (WTA). To this group of algorithms belong the a-fore
mentioned q-means as quantum counterpart to classical k-means, vector quan-
tization by means of the Schrödinger equation [9,11] as well as other distance
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based methods [1,2]. Supervised approaches are the already referenced qSVM
as well as the quantum-inspired learning vector quantizer (QuI-LVQ) [30]. Both
approaches make use of the underlying Hilbert-space theory in quantum comput-
ing, which relates kernels to quantum states from a mathematical perspective
[25,29]. However, in QuI-LVQ the data vectors are mapped in to the Hilbert
space of quantum bits (qubits) without entanglement and, hence, quantum par-
allelism due to qubit entanglement is not realized.

In the present contribution we consider quantum-hybrid neural vector quan-
tizers including self-organizing maps (SOM), neural gas for unsupervised learn-
ing and learning vector quantization for supervised (classification) learning
[13,14,16] and the respective possibilities for quantum computing realization
For this purpose, data vectors as well as prototypes have to be transformed such
that they represent quantum states and can be stored in a quantum register of
quantum bits (qubits). We show that different mathematical description schemes
are possible to establish respective quantum-hybrid computing solutions. Exem-
plary numerical simulations for classification learning are given.

2 Basic Notation and Concepts in Quantum Computing

A qubit is the counterpart to a classical bit defined by its state |ψ〉 = α1 |0〉 +
α2 |1〉 with amplitudes αk ∈ C such that |α1|2 + |α2|2 = 1 is valid and the basis
is B1 = {|0〉 , |1〉}. The basis states are frequently identified with the vectors
|0〉 = (1, 0)T and |1〉 = (0, 1)T such that the qubit state space is isomorphic to
C

2 ∼= H, i.e. being a Hilbert space H. The notation |ψ〉 is called Dirac’s bra-
vector. Accordingly, |ψ〉 = (α1, α2)

T is valid and the corresponding ket-vector is
〈ψ| = (α1, α2). The inner product in H for states |ψ〉 and |ϕ〉 = β1 |0〉 + β2 |1〉
is given by the combination of the bra- and ket-vectors according to 〈ψ|ϕ〉 =
α∗
1β1 + α∗

2β2.
The tensor product state

|ψ〉 = |ψ1〉 ⊗ . . . ⊗ |ψN 〉 ∈ H
⊗N (1)

= |ψ1ψ2 . . . ψN−1ψN 〉

represents N unentangeled qubits making use of the common shorthand notation
of |a〉 ⊗ |b〉 = |ab〉. Note, that the tensor product does not commute but is bi-
linear (fulfils associativity and the distributive law). Note that H

⊗N also is an
Hilbert space.

Generally, a state |ψ〉 ∈ H
⊗N can be written as

|ψ〉 = α1 |000 . . . 00〉 + α2 |000 . . . 01〉 + · · · + α2n |111 . . . 11〉 (2)

=
n=2N∑

k=1

αk |k〉
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where
∑n=2N

k=1 |αk|2 = 1 holds and |k〉 refers to the kth element of the so-called
computational basis

Bn = {|000 . . . 00〉 , |000 . . . 01〉 , . . . , |111 . . . 11〉}
and k − 1 is the value taking the sequence of zeros and ones in the kth basis
element in binary representation. The vector α = (α1, . . . , αn)T is denoted as
amplitude vector of |ψ〉. The respective density matrix ρ (|ψ〉) = |ψ〉 ⊗ |ψ〉 =
|ψ〉 〈ψ| is explicitly given as the Hermitean rank-one-matrix

ρ (|ψ〉) =
n∑

k,j=1

α∗
kαj |k〉 〈j|

based on the computational basis Bn. For such a pure state, the density matrix is
idempotent, ρ (|ψ〉) · ρ (|ψ〉) = ρ (|ψ〉) and its von-Neumann-entropy S (ρ (|ψ〉))
satisfies

S (ρ (|ψ〉)) = −
∑

j

λj · log (λj) = 0

with λi are the eigen values of the density matrix.
If we consider two pure states |ψ〉 and |ϕ〉 with occurrence probabilities pψ

and pϕ, respectively, such that pψ + pϕ = 1 is satisfied, then the density matrix
of the respective mixed state

ρmixed (|ψ〉 , |ϕ〉) = pψ · ρ (|ψ〉) + pϕ · ρ (|ϕ〉) (3)

has a von-Neumann-entropy S (ρmixed) > 0. Thus the von-Neumann-entropy
S (ρ) quantifies the deviation of the respective state from a pure state [22].
Generally, the decomposition ρmixed = |ψ〉 〈ψ| of a density matrix regarding a
mixed state |ζ〉 by means of a state amplitude vector |ψ〉 is not available. In this
case, the qubits of the system |ζ〉 are said to be entangled.

The space MH⊗N of density matrices can be equipped with the Frobenius-
inner-product (FIP)

〈ρ1,ρ2〉F = tr (ρ∗
1 · ρ2) (4)

implying the Frobenius norm

‖ρ‖
F

=
√

tr (ρ∗ · ρ) (5)

such that MH⊗N also is a Hilbert space. Immediately, it follows that
tr (ρ∗ · ρ) = 1 iff ρ is a pure state whereas tr (ρ∗ · ρ) < 1 iff ρ is a mixed state.

3 Protype-Based Machine Learning Models – Neural
Vector Quantization

Neural vector quantization models require data x ∈ X ⊆ R
n and a set W =

{w1, . . . ,wM} ⊂ R
n of prototype vectors, which should represent the data [4].

Further, a (differentiable) dissimilarity measure d (x,wk) is supposed, frequently
chosen to be the squared Euclidean metric.
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3.1 Unsupervised Neural Vector Quantization

Unsupervised neural vector quantization is mainly influenced by the pioneering
self-organizing map (SOM) model introduced by T. Kohonen [14]. The SOM
assumes an external neural grid A ⊂ R

nA with nodes identified by their coordi-
nates r ∈ R

nA . More formally, A is assumed to be a discrete topological structure
which can be embedded into R

nA . The prototypes are formally assigned to these
nodes by a mapping wk 
→ wr assuming the |A| = M for the cardinality of A.
Further, we assume a dissimilarity measure dA (r, r′) for A. Frequently, the grid
A is taken as a two-dimensional rectangular lattice and the grid dissimilarity
dA (r, r′) = (r − r′)2 is the squared Euclidean distance.

SOM training takes place as stochastic learning: For a given data vector
x ∈ X the best matching prototype ws is determined by the winner-take-all
(WTA) rule

s = argminr∈Ad (x,wr) (6)

and the prototype update is given by

Δwr = −ε · hA (r, r′, σ) · ∂d (x,wr)
∂wr

(7)

with learning rate 0 < ε � 1. The so-called neighborhood function

hA (r, r′, σ) = exp
(

−dA (r, r′)
2σ2

)

realizes in (7) a neighborhood-cooperative learning. In case of the squared
Euclidean distance the update (7) reads as

wr ←− (1 − ε · hA (r, r′, σ))wr + ε · hA (r, r′, σ) · x (8)

constituting a convex sum for wr and x with the shift parameter ςSOM =
ε · hA (r, r′, σ) ∈ (0, 1). Unfortunately, the SOM-dynamic does not follows a
gradient descent scheme of any cost function [7]. Therefore, Heskes suggested
the alternative winner determination rule

s = argminr∈A

∑

r′
hA (r, r′, σ) · d (x,wr′)

as the local sensoric response [10]. Another alternative is to throw away the
neural grid assumption but keeping a neighborhood cooperativeness. Let

rkk (x,W ) =
∑

wl∈W

H (d (x,wk) − d (x,wl))

be the winning rank of the prototype where H (z) is the Heaviside function
yielding the value one for z > 0 and being zero elsewhere. Then the prototype
dynamic is given as

Δwk = −ε · hW (rkk (x,W )) · ∂d (x,wk)
∂wk

(9)
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with the redefined neighborhood function

hW (rkk (x,W ) , σ) = exp
(

− rkk (x,W )
σ

)

based on the winning ranks. It realizes a prototype dynamic of a diffusing gas
if the prototypes are interpreted as gas particles [16]. As for the SOM, the
Euclidean update is obtained as

wk ←− (1 − ε · hW (rkk (x,W ) , σ))wk + ε · hW (rkk (x,W ) , σ) · x (10)

realizing also a convex sum for wk and x with the shift parameter ςNG = ε ·
hW (rkk (x,W ) , σ) ∈ (0, 1).

Generally, NG performance much better than standard c-means and is insen-
sitive with respect to initialization. Further, it should be emphasized that both,
the prototype adaptation for SOM and NG, can be interpreted as an prototype
attraction scheme in case of the squared Euclidean distance for d (x,wk).

3.2 Supervised Classification Learning by Neural Vector Quantizers

Based on the SOM, T. Kohonen suggested a classifier model approximating a
Bayes classification system known a learning vector quantization [13], if the data
have to be assigned to classes C = {1, . . . , NC}. For this purpose, training data
x ∈ X are equipped with class labels c (x) ∈ C. Analogously, the prototypes are
assigned to the classes c (wk) ∈ C such that at least one prototype is responsible
for each class. We partition the set W into subsets Wc = {wk ∈ W |c (wk) = c}
of class-responsible prototypes. The approximated classification accuracy can be
optimized by a stochastic gradient descent learning dynamic according to

Δw± = −ε · Ψf

(
w±) · ∂d (x,w±)

∂wk
(11)

with

Ψf

(
w±)

=
∂f (μ (x))

∂μ (x)
· ∂μ (x)
∂d± (x)

where f is a non-negative monotonically increasing sigmoid function, frequently
chosen as sgdθ (z) = 1/ (1 + exp (θz)). The function

μ (x) =
d+ (x) − d− (x)
d− (x) + d+ (x)

(12)

is the classifier function yielding negative values for correct classification. Here,
d+ (x) is the distance of the best matching correct prototype wk ∈ Wc for
the data sample x with given class label c (x), i.e. rkk (x,Wc) = 0, denoted
as w+ whereas d− (x) is the distance of matching prototype w− among all
other prototypes wk ∈ W \ Wc, i.e. rkl (x,W \ Wc) = 0. Thus Ψf (w+) > 0
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whereas Ψf (w−) < 0 is valid.This adaptation scheme is known as generalized
LVQ (GLVQ, [21]). In case of the squared Euclidean distance, the updates (11)
read as

w+ ←− (
1 − ε · Ψf

(
w+

)) · w+ + ε · Ψf

(
w+

) · x (13)

and
w− ←− (

1 + ε · ∣∣Ψf

(
w−)∣∣) · w− − ε · ∣∣Ψf

(
w−)∣∣ · x (14)

realizing an attraction-repulsing-scheme (ARS) with attraction for w+ and
repulsion for w−.

The better f approximates the Heaviside function the better the classifica-
tion accuracy is approximated by the underlying cost function [21]. Further, we
remark that only the attraction scheme for w+ realizes a convex sum for w+ and
x with the shift parameter ς+GLV Q = ε·Ψf (w+) ∈ (0, 1). whereas for the repulsion
1 + ς+GLV Q > 1 is valid for the shift parameter ς−

GLV Q = ε · |Ψf (w−)| ∈ (0, 1).
A probabilistic variant of LVQ was proposed in [28] based on cross-entropy

learning, which is also able to handle multiple class assignments.

4 Quantum-Hybrid Vector Quantization

Quantum-hybrid vector quantization (QhVQ) is proposed to be a (neural) vector
quantization model which is at least partially motivated or realized by quantum
computing algorithms. For this purpose we have to distinguish four main steps,
which should be considered for quantum algorithms

1. data preprocessing such that data as well as prototypes represent quantum
states

2. dissimilarity calculations
3. winner determination
4. prototype updates

We will explain them in the next subsections.

4.1 Data Preprocessing for Quantum State Generation

If we suppose data x ∈ X ⊆ R
n with n = 2N and a random set W =

{w1, . . . ,wM} ⊂ R
n as usual, the simple normalization x 
→ x̂ and wk 
→ ŵk

with ‖x̂‖2 = ‖ŵk‖2 = 1 can be taken where the coefficients αj of x̂ and βj of
ŵk fulfill the requirements

∑
j |αj |2 =

∑
j |βj |2 = 1. We identify these (squared)

coefficients as amplitudes of the quantum states |ξ〉 and |ωk〉 with N qubits and
computational basis Bn, respectively, representing pure states. This procedure
is known as amplitude encoding. We denote the corresponding density matrices
by ρx and ρk = ρwk

both belonging to the matrix space MH⊗N . The mapping
Φ : X −→ MH⊗N is denoted as the data-encoding feature map. As mentioned in
[24], it can be realized by a quantum circuit U (|ξ〉) (unitary transformation).

Another possibility is to take X ⊆ R
N with vector entries xj of x as scalars

and apply the Pauli-X-rotation gate RX (xj) = exp
(−i · xj

2 · σX

)
to each, where



252 T. A. Villmann Engelsberger

σX =
(

0 1
1 0

)
is the Pauli-X-matrix [22]. The resulting N qubits |ξj〉 form a

state vector using the tensor product according to |ξ〉 = ξ1 ⊗ . . . ⊗ ξN ∈ H
⊗N .

This procedure is known as angle encoding. Of course, |ξ〉 again can be identified
with a density matrix ρx ∈ MH⊗N . In the same manner, the density matrices ρk

can be generated for the original prototypes wk ∈ R
N .

Regardless from the particular realization, we can interpret the mappings
Φ : X −→ MH⊗N and Φ : X −→ H

⊗N as feature codings into the Hilbert spaces
H

⊗N and MH⊗N , respectively [25,30]. As pointed out in [24], MH⊗N and H
⊗N are

isomorphic and we can see these mapping as kernel mappings into a reproducing
kernel Hilbert space (RKHS, [27]). According to [24], the respective kernel is
given as κΦ (x,w) = |〈ρx,ρw〉

F
|2 using the FIP (4), which is also denoted as the

Hilbert-Schmidt-inner-product in this context.
Generally speaking, data encoding is a crucial aspect for quantum-hybrid

machine learning classifier systems and, therefore has to be handled carefully
keeping in mind the particular context [15].

4.2 Dissimilarity Calculations

Assuming quantum states given by the amplitude vectors |ξ〉 , |ωk〉 ∈ H
⊗N ,

i.e. supposing pure states, their distance is given as dH⊗N (|ξ〉 , |ωk〉) =√
2 − 2 · 〈ξ|ωk〉. Hence,the distance dH⊗N (|ξ〉 , |ωk〉) it is completely determined

by the inner product 〈ξ|ωk〉. Yet, the calculation of the inner product 〈ξ|ωk〉
can be realized by quantum circuit, which is the controlled SWAP-gate (cSWAP)
schematically depicted in Fig. 1.

Fig. 1. Quantum circuit diagram of a cSWAP-gate.

In fact, the probability of the ancilla qubit to be in state |0〉 is pa (|0〉) =
1
2

(
1 − |〈ξ|ωk〉|2

)
[17]. Thus we get the distance

dH⊗N (|ξ〉 , |ωk〉) =
√

2 − 2 ·
√

2 · pa (|0〉) − 1 (15)

for this setting.
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If we choose the density matrix representation, the distance between states
is obtained as dM

H⊗N
(ρx,ρw) =

√
2 − 2 · 〈ρx,ρw〉

F
. This procedure also works

for density matrices ρw representing mixed states.

4.3 Winner Determination

The winner determination requires first to calculate all distances dM
H⊗N

(ρx,ρk)
or dH⊗N (|ξ〉 , |ωk〉). We assume that we collect them in a database D. Then the
quantum Grover-algorithm allows to realize the minimum search as a quantum
circuit [9]. Yet, an appropriate database coding is demanded, which, in fact,
might be non-trivial to realize.

4.4 Prototype Update

For prototype update we focus on the density matrix representation. In this
view, the convex updates (8), (10), and (13) for SOM, NG and GLVQ can be
realized by means of the mixed state density calculation (3). Particularly, we get

ρw ←− (1 + ς) · ρw + ς · ρx (16)

as the new density matrix representing in general a mixed state. Depending on
the considered algorithm the choices ςSOM , ςNG, or ς+GLV Q have to be made
for ς.

Unfortunately and as already mentioned, the repulsion update for GLVQ
(14) is not a convex scheme and, hence, is not consistent with the quantum
approach in this version. A heuristic could be to apply an attraction scheme for
ρw− according to ρw− ←− (1 + ς) · ρw− + ς · ρ−x. It is a heuristic, because this
update would not longer be the gradient of the cost function.

5 Experiments

In this section we give preliminary experimental results. In particular, We con-
sidered the application of a quantum-hybrid GLVQ (Qh-GGLVQ) for the well-
known IRIS data set. Compared to the usual GLVQ, the distance calculation
were realized using an (ideal) cSWAP-test simulating a real quantum computer.
Thus the distance is estimated via (15). The original data as well as the ini-
tial prototype settings were transformed into a quantum state representation
by amplitude encoding. The quanWe show numerical experiments for quantum-
hybrid GLVQ (QhGLVQ).

The prototype adaptation in QhGLVQ was realized as vector shifts of the
amplitude prototype vectors. As pointed out in Sect. 3.2, vector shift operations
are crucial because, in general, those shifts do not preserve the normalization.
Hence, a renormalization after update is required to ensure the updated proto-
type to represent an quantum state. However, because of the small learning rate
in stochastic gradient descent learning, the norm deviations after the update are
small, as depicted in Fig. 2.
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Fig. 2. Norm deviation of the prototypes after update.

As we can observe, the norm deiviations are roughly constant showing that
the process is stable.

The distance calculation by means of the cSWAP is a probabilistic proce-
dure, i.e. a repeated cSWAP-test and evaluating the respective statistics for the
probabilistic outcome to estimate the inner product precisely. Mathematically,
it can be seen as a Bernoulli-process such that we can give apriori information
about the expected deviation of the estimated distance in dependence on the
number of trials for the statistics. The confidence interval Iα can be estimated
by

Iα =
[
Qβ

(
1 − α

2
, p0N, 1 − p0 +

1
N

)
, Qβ

(
1 − α

2
, Np0 +

1
N

, (1 − p0) N

)]

according to [5] where Qβ is the quantile of the β-distribution. An approximation
Îα = [pl, pu] is given by

pl,u =
1

1 + c2α
N

·
(

p0 +
c2α
N

± C ·
√

p0 · (1 − p0)
N

+
c2α

4 · N2

)

where cα = Φ−1
(
1 − α

2

)
is the α-quantile of the standard normal distribution

[31].
The resulting learning curves for 100 runs for the IRIS data, the accuracy

curves, are depicted in Fig. 3.
As expected, the achieved accurracies are comparable to standard classifiers.

After the initialization phase, the adaptation seems to be not changing before
it starts to improving significantly after 30 epochs. This behavior is also known
for standard GLVQ.



Quantum-Hybrid Neural Vector Quantization 255

Fig. 3. Accuracy learning curves for IRIS-training.

6 Conclusions

In this contribution we considered the mathematical framework to describe neu-
ral vector quantizers by quantum computing paradigms. We have shown that
dissimilarity calculations as well as winner determination can be realized by
quantum algorithms which are the cSWAP-evaluation and the Grover algorithm,
respectively. Yet, prototype adaptation using quantum computing concepts in
neural vector quantization is more crucial. It turns out that prototype repul-
sion as used in GLVQ is incompatible with quantum computing. The attraction
update, however, is consistent with quantum computing if the density matrix
representation of quantum states is used, i.e. density representation of data.
Thus, the successful neural vector quantizers SOM and NG can be adapted for
quantum computing whereas GLVQ is not that easy to realize.

Future work will include full quantum computing simulations. A remaining
difficult task, however, is to develop respective quantum circuites as well as
realization of these concept on quantum computing hardware.
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Abstract. In this paper, we presented a novel model that combines
Convolution Neural Network (CNN) and Long Short-term Memory Neu-
ral Network (LSTM) for better and accurate stock price prediction. We
then developed a model called stock sequence array convolutional LSTM
(SACLSTM) that builds both a sequence array of the historical data and
leading indicators (i.e., futures and options). This built array is then
considered as the input data of the CNN model, thus specific feature
vectors via convolutional and pooling layers are then extracted for being
the input vector of the LSTM model. Based on this flowchart, the stock
price can be better predicted, that can be seen from the conducted exper-
iments in 10 stocks data from USA and Taiwan stock markets. Results
also indicated that the designed model is better than the existing models.

Keywords: Convolution neural network · Long short-term memory
neural network · Stock price prediction · Leading indicators

1 Introduction

Financing is a term that refers to the economic operation process, which includes
several financial products, i.e., stock, saving, and bonds, among others. To obtain
good benefits from those items, many prediction models have been investigated
[14], particular in the stock markets. In stock market, several factors should
be considered to influence the stock prices, i.e., economic structure, political
issue, economic tread, industry development, and economic cycles, among others.
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Several generic models i.e., statistical analysis, logistic regression, optimization
model, and artificial intelligence. As the rapid growth of computer techniques,
artificial neural network (ANN) has been employed into many domains and appli-
cations [9,20]. ANN is an simulation model that is to mimic the behaviors of
human brain for decision making. ANN is a non-liner system which is to process
the distributed information parallelly based on the concept of weighted neurons
[5]. After several iterations, the weight of each neuron can be adjusted as an
optimized value, thus achieving good performance for further prediction. In gen-
eral, ANN can be considered as the characteristics with distributed processing,
self-learning, distributed memory, and even self organization, which is able to
process the large-scale and parallel procedures. In general, if several abilities
used in ANN can be adapted in the progress for decision making, thus a better
predictive model can thus be obtained and maintained. For instance, it is very
useful to build the ANN model used in the financial market or time-series appli-
cations particular in predicting the short-term closing price of the stock. Besides
of the generic ANN model, the deep neural network (DNN) [7] has also become
a very hot issue in recent decades since it is used to make a better prediction
results regarding the depth of the neural networks (i.e., the number of layers
in the DNN model). Many ANN-extended models such as convolutional neural
network (CNN), lstm long short term memory (LSTM), and residual neural net-
work (ResNet) are respectively presented and discussed in recent years since they
have achieved good performance compared to the generic ANN model. In CNN,
it uses convolutional units and unit of pooling to process the neural network
models [13]. For the LSTM model [4], it uses both the recurrent unit [16] and
long-short term memory unit [11] to process the neural network models. Several
well-known models such as deep multilayer perceptron (MLP), [18], Restricted
Boltzmann Machine (RBM) [3], and autoencoder (AE) [2] are respectively pre-
sented to enhance the capability of the ANN model to process more complex
and complicated data.

Multilayer neural network considers to map the features into the values,
which is normally based on selection operation manually. First, the signal is con-
sidered as the input of the deep learning model. The features are then extracted
and the expected value is then considered as the output afterward. The well-
known CNN and LSTM models adapt this procedure in the network develop-
ment. CNN is widely used in many domains and applications since it can solve
the limitations of generic deep network (e.g., the number of parameters is huge
for the training step). CNN considers the local receptive fields and shared weights
to reduce the number of parameters used in the network. The local receptive field
is the input data of the network model that is represented as a multi-dimensional
vector. Neurons of the next layer is connected to the input neurons. In addition,
weight sharing shows N × N hidden layer neurons are then connected to the
input layer, and the parameters of neurons in the hidden layers are not differ-
ent, which indicates that the corresponding hidden layer neurons of different
windows share the same settings of the parameters. Based on the capability
of CNN model, many studies used CNN to make the prediction of stock task
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[10]. Recurrent neural network (RNN) is mainly used to process the sequence
data particular in solving the problem in natural language process (NLP) since
the meaning of a specific word in a sentence could be different based on the
words in prefix or postfix positions. LSTM is a varied extension of RNN, which
applies to solve the issues regarding gradient disappearance and explosion while
the training step of long sequence. LSTM has better performance compared to
the ordinary RNN model, and LSTM has achieved good results regarding the
financial-market applications [8]. Siripurapu [15] considered stock candlestick
chart as an input image used in the input layer in LSTM. Hoseinzade and Hara-
tizadeh [12] mapped the historical data of the market to its future volatility.
To avoid the overfitting issue in neural network model, Di Persio and Honchar
presented a modified CNN by using one-dimensional input to make a better
prediction [6]. This model uses the history of closing price without considering
the other variable (e.g., technical indicators) for the prediction task. Gunduz
et al. [10] presented another CNN-based model by adapting the technical indi-
cators of each sample to solve the above limitation. Di Persio and Honchar used
the historical data of the closing price of the S&P 500 index as the input for
CNN, MLP and LSTM, respectively and the results showed that the LSTM and
CNN have achieved good performance than that of the MLP. Zhang and Tan
[19] developed a model that can predict the future returns of stock rankings.
Azzouni and Pujolle [1] applied the LSTM for several tasks including classifica-
tion, prediction of time series, processing, and learning from experience. Ghosh
et al. [8] developed a model that can forecast and analyze the future growth of
the company by LSTM. In this paper, we then consider the CNN and LSTM to
make the stock price prediction. The major contributions are stated below.

1. As long as the various factors considering in the stock market, it is important
to collect the sufficient indicators as the reference in the developed model.
In the developed model, the CNN and LSTM is considered together, and
the leading indicators of the stock and the historical data are the considered
together as the input in the developed model to predict the stock price.

2. Two-dimensional vector is then established to simulate the image data as the
input in the designed prediction model, thus the higher prediction results can
thus be achieved by the developed model.

3. Experimental results showed that the developed model obtains good perfor-
mance compared to the existing models.

The reminding of this manuscript is stated below. Second section shows
the data preprocessing and environment setting regarding the designed model.
Section 3 shows the experimental results of the developed model compared to
the existing models. In Sect. 4, the conclusion of the developed model is then
provided and the further works are discussed and studied.
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2 Data Preprocessing and Environment Setting

Several settings include data sets, network parameters, evaluation models, and
baseline approaches are then discussed and studied in this section. The optimized
model designed in this paper is also studied and developed in the following
subsections.

2.1 Dataset

The datasets used in the designed model is 10 stocks from 2 markets, which
are MSFT, AMZN, AAPL, FB, and IBM from American market, and DJO,
IJO, CDA, DVO, and CFO are from Taiwan market. Each sample includes some
variables (e.g., futures, options, and historical data) used in the developed model.

2.2 Optimization Framework

In the designed model, the information of stock index vector in 30 days is then
collected as the input image. An illustrated example is then indicated in Fig. 1.
In Fig. 1, the x-axis is the data the of the continuous cycle of the input image,
and y-axis shows the index of the historical data of stocks along with the dates
in the input layer of the image data.

Fig. 1. An used example of the input layer in the designed model.

The width sequence of a sliding window of pre-determined herein stock index
is set as 39 days in the evaluation process. Each window produces an input image.
To get the next image of the current window, the sliding window can be moved
to the next date. Thus, the designed model will obtain a series of images as the
input data. Two adjacent images showed that their sliding window is not the
same way to place the day.
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Fig. 2. A framework to improve the forecasting accuracy of stock prices.

As mentioned before, the designed model combines both CNN and LSTM
together to improve the performance. The features od CNN model [10,15] are
the extracted and converted into the images of the input data in the network.
Different to the operations used in LSTM and the pooling mechanism, the devel-
oped model considers more technical operations (i.e., dropout and norm in the
DNNs). The reason to adapt the dropout is because it can be used to avoid
much data required in the learning process. For the training step, the designed
model samples the parameters of the weight layer randomly based on the prob-
ability model. Also, the sub-network is considered as the target network for the
updating progress. If a network has n parameters, thus the size of the subnets is
calculated as 2n. Moreover, if the number of n is extremely huge, thus the updat-
ing process of the subnet for each iteration would no update repeatly because the
overfitting issue is considered to be avoided in the training step by the current
network. The designed also convert the vector of stock index value for 30 days
into the image data, which is then used in the input layer. Thus, the result for the
stock forecasting is then produced, and the main framework is then illustrated
in Fig. 2.

Figure 3 shows the procedure of the designed model in this paper, in which
we can see that the stock data is basically divided into two datasets for the
further processing, e.g., training and testing datasets. The designed model then
produces a trading strategy, and the detailed algorithm in then described in
Algorithm 1.
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Fig. 3. The flowchart of the developed model in this paper.

Algorithm 1. The developed model
Require: b is the data of training; c is the data of testing; I is the number of iteration;

B is batch size; Algorithm SGD is named Adam.
Ensure: the train model n; evaluation result accuracy
1: Initialize algorithm
2: b ← Initialize algorithm
3: P ← (split b in equal parts of B)
4: for each round t = 1, 2, ..., z do
5: {verify, train} ← {Pt, P − Pt}
6: (tf, vf) ← (generate feature of train and verify)
7: nt ← modelFit(Adam, tf)
8: rt ← modelEvaluate(nt, vf)
9: end for

10: n ← bestModel
11: c ← n
12: accuracy ← modelEvaluate(n, test)
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3 Experimental Results

Since this paper investigates several classification tasks for the stock prediction,
thus several parameters should be considered in the designed model. Here, we
present a summary organized in Table 1 to show the settings of the parameters
used in this paper.

Table 1. The numbers of levels evaluated in different parameter settings

Parameters Levels

Epochs 200, 300, . . . , 700

Learning rate 0.1, 0.01, 0.001, 0.00001

Activation functions relu/tanh

LSTM layers 1, 2, 3

Number of hidden layer neurons 64, 128, . . . , 512

The number of hidden layer 3, 4, 5

Experiments are then conducted to evaluate the performance of the designed
model compared to the existing works regarding stock prediction based on the
trading signals. In the experiments, the leading indicators (e.g., options and
futures) and market classification are then considered. Moreover, the 10 finan-
cial stocks, 4 classification models (e.g., SVM, NN, CNNpred, and the developed
model (named Model in the experiments)), and 3 attributes (options, historical
data, and futures) are then considered in the experiments. Figure 4 shows the
results for prediction, and from the results, it can be seen that the algorithms pro-
duce good performance by considering all the indices, and the accuracy is accept-
able to be applied into the real-world stock markets. In general, the designed
model has achieved the best results compared to the other approaches in the
experiments.

To show that this combined model has achieved good performance, it then
compares with the existing two models by CNN [17] and LSTM. 3 different time
windows (e.g., 1, 3 and 7 days) are then used in the experiments, and we can
observe the prediction performance regarding varied time slots. The results are
then stated in Table 2. From the results, we can see that the developed model
has achieved the best performance among 3 time slits, and the developed model
combing CNN and LSTM outperforms the existing two models.
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Fig. 4. The results of prediction accuracy for 4 models by using three indices.
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Table 2. Prediction accuracy in different time windows

Stocks CNN LSTM Model

1 day 3 days 7 days 1 day 3 days 7 days 1 day 3 days 7 days

CDA 0.78 0.734 0.731 0.904 0.889 0.818 0.911 0.870 0.859

CFO 0.791 0.773 0.677 0.874 0.846 0.814 0.877 0.826 0.795

IJO 0.840 0.740 0.719 0.894 0.826 0.762 0.913 0.866 0.836

DJO 0.800 0.763 0.719 0.874 0.821 0.755 0.936 0.900 0.828

DVO 0.880 0.842 0.736 0.910 0.875 0.790 0.951 0.929 0.890

MSFT 0.785 0.770 0.768 0.855 0.824 0.798 0.927 0.915 0.904

FB 0.886 0.746 0.734 0.886 0.862 0.794 0.905 0.896 0.879

IBM 0.815 0.725 0.583 0.857 0.857 0.786 0.893 0.879 0.877

AAPL 0.861 0.733 0.710 0.860 0.821 0.778 0.910 0.882 0.892

AMZN 0.818 0.764 0.795 0.852 0.833 0.805 0.905 0.888 0.883

4 Conclusion

Since the characteristics of nonlinear and noise of price in stock markets showed
that it is not an easy task to forecast the trends of financial market, and more
variables should be considered to make better prediction, thus the developed
model considers many indices such as historical data, options, and futures to
achieve better results. The stock sequence array used in LSTM is also considered
in the designed model for further prediction improvement. For the developed
model, the convolutional layer is first considered to discover the useful features
used in the financial market, and the classification model is then adapted to
predict and classify the stocks by LSTM network. From the experiments, we
can see that the designed model combining CNN and LSTM can obtain better
results compared to the traditional standalone CNN and LSTM models for stock
prediction. The designed model also integrates the data into a matrix, which can
be used to avoid scatter and useless data kept in the designed model, and the
convolutional model can also be used to discover high-quality features in the
developed model. In addition, the useful and meaningful leading indicators are
considered in the designed model for better accuracy improvement. In general,
the developed model has achieved effectiveness and efficiency for stock price
predication. In the future works, we will consider to develop a model by utilizing
the designed model to figure out the rise or fall point in the stock market, which
is possible to make an expert system for the valuable investment.
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Abstract. In this paper we apply a specific type ANNs - convolutional neural
networks (CNNs) - to the problem of finding start and endpoints of trends, which
are the optimal points for entering and leaving the market.We aim to explore long-
term trends, which last several months, not days. The key distinction of our model
is that its labels are fully based on expert opinion data. Despite the various models
based solely on stockprice data, somemarket experts still argue that traders are able
to see hidden opportunities. The labelling was done via the GUI interface, which
means that the experts worked directly with images, not numerical data. This fact
makes CNN the natural choice of algorithm. The proposed framework requires the
sequential interaction of three CNN submodels, which identify the presence of a
changepoint in a window, locate it and finally recognize the type of new tendency
- upward, downward or flat. These submodels have certain pitfalls, therefore the
calibration of their hyperparameters is the main direction of further research. The
research addresses such issues as imbalanced datasets and contradicting labels, as
well as the need for specific quality metrics to keep up with practical applicability.
This is the reduced version of the research, full text will be submitted to arxiv.org.

Keywords: CNN · Stock market trends · Expert opinion · Image recognition

1 Introduction

An ability to identify stock market trends has obvious advantages for investors. Buying
stock on an upward trend (as well as selling it in case of downward movement) results in
profit, which makes predicting stock markets a highly attractive topic both for investors
and researchers. Despite the long history, this field, as stated in [1] is still a promising
area of research mostly because of the arising opportunities of artificial intelligence.

Modern machine learning technologies are presented by a number of various algo-
rithms, but in general, there are three main classes of models used for the prediction of
stockmarkets - artificial neural networks (ANNs), support vectormachines (SVM/SVRs)
and various decision tree ensembles (e.g., Random forests). As of 2017, the hegemony of
ANNs and SVM/SVRs has been observed - the articles based on these models accounted
for 86% of articles researched in [1]. Among twenty scientific papers on stock market
forecasting published in the period between 2018 and early 2021, at least eight studies
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[2–9] exploited ANNs as the only main algorithm, another two used ANN in the ensem-
ble (or stack) with other algorithms of equal importance [10, 11]. In four studies ANNs
were used to compare performance with other algorithms, chosen as main [12–15].

It should be noted, that despite the common main method, different researches have
sufficient variations in model structure, problem formalization, and features and labels
accordingly. Models also may be applied to different markets, assets and prediction
horizons. A certain variation also exists in the selection of performance measures which
should ensure the comparability of models.

The absolute majority of researches, which apply ANNs as the main algorithm (or
part of an ensemble or stack) to stock market forecasting [2, 3, 6–10] are concentrated
on predicting the direction of the stock market, thereby solving a classification problem
(“direction type” studies). Fewer predict prices [4, 11, 15] by solving a regression prob-
lem (“price type” studies). In all cases the ground truth variable is extracted from the
historical price series.

All the “price type” studies and most of the “direction type” studies focus on daily
basis predictions and only in three papers the time horizon varies from one week [2, 7]
to one month [10].

Another important difference between the suggestedmodels is the choice of features.
Though all of the researches used market data (e.g., prices, volumes and the values
derived from them - technical analysis indicators, correlations, volatilities and returns)
as input variables, in some studies they were supplemented by text features [7, 11] or
fundamental macroeconomic variables [6, 10].

In this paper we apply a specific type of ANNs - convolutional neural networks
(CNNs) - to the problem of finding start and endpoints of trends. CNNs have appeared
and developed largely due to the increased need in solving computer vision problems. In
2011 the AlexNet convolutional network [16] led to a breakthrough in the field of image
classification. Subsequently, CNNs were used not only in the problem of classification,
but also in image detection (for example, the YOLO methodology [17], as well as the
RCNN, Fast-RCNN, and Faster-RCNN algorithms [18]), therefore their application to
stock market forecasting is less common compared to the traditional fully connected
networks. Here we consider a mathematical model based on a convolutional neural
network,which is used not for the classical problemof image classification and detection,
but for recognizing the state of the financial market (upward trend, downward trend, or
flat) and predicting future moments of a trend reversal.

Among the reviewed recent papers on stock market forecasting, only three have
applied CNNs. [2] suggests an integrated framework, which fuses market and trading
information for price movement prediction. CNN is used to extract trading features
from the transaction number matrix, the buying volume matrix, and the selling volume
matrix of investors, clustered by their trading behaviour profile. The output of CNN
is concatenated with the market information weighted by stock correlation and then
is fed into another deep neural network algorithm to obtain predictions for the several
following trading days.

[6] apply CNN to capture correlations among different variables for extracting com-
bined features from a diverse set of input data from five major U.S. stock market indices,
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aswell as fundamentalmacroeconomic variables (e.g., currency rates, commodity prices,
etc.) to predict next-day price movements.

[13] address the problemof stock preselection for portfolio optimization. The authors
consider the performance of five machine learning algorithms - random forest, support
vector regression (SVR) and three neural networks (LSTM neural network, deep mul-
tilayer perceptron and CNN) - inputting past 60 days’ daily returns to predict the next
day’s return.

Unlike the majority of other researchers, we aim to explore long-term trends, which
last several months, not days. The start and endpoints of such trends accordingly are the
optimal points for entering and leaving themarket. Despite the various technical analysis
algorithms and econometrics studies based solely on stock data, somemarket experts still
argue that traders are able to see opportunities of making money (i.e., detecting trends
or turning points) that cannot be formally expressed. Thus, using computer science
algorithms to learn from successful traders’ decisions (and not only stock data) is likely
to improve financial market models.

The key distinction of our model is that its ground truth vector is fully based on
expert opinion data, provided by one major investment company. The basis for building
amathematicalmodel is the historical data of the financialmarket, divided by experts into
markup windows, each of which corresponds to some unchanged market state. Unlike
other researchers, we do not use a mathematical formula to define a trend, instead, it is
definedby an expect as a potentially profitable (or unprofitable) pattern in price dynamics.
The major difficulty of this approach is that it is exposed to subjective judgements of the
experts. On the other hand, if the experts are successful traders in a certain investment
company, it gives the employer the chance to ‘digitalize’ their exceptional skills and
obtain a machine learning algorithm no one else on the market can employ.

The labelling of market states was performed in a specially designed graphical inter-
face, where the experts marked certain consequent periods as “Trend”, “Flat” or N/A.
They worked directly with images, not numerical data. This fact makes CNN the natural
choice for the case, as we need to extract implicit patterns from images which is exactly
the original mission of CNN.

The model requires only raw historical price data as input. From one point of view,
it can be considered a limitation, since we ignore fundamental factors and news feed.
On the other hand, it makes the model unpretentious in production, since stock data is
easily obtainable and can be downloaded into the company’s informational systems or
directly fed into the model via API. Besides, the concept of using prices as only input
features corresponds with the hypothesis of market efficiency (EMH) in the sense that
prices reflect all the available market information [19].

Technically we are solving a classification problem (it is a “direction type” research),
but the standard qualitymetrics (accuracy,AUCandF1-Score) turn out to be inapplicable
because of imbalanced datasets and contradicting labels. For these reasons, the returns
of simulated trading are used as the main performance indicator. This study is related to
[20], that shares the same dataset but introduces a different prediction algorithm.
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2 The Proposed Framework

The initial markup contained three types of windows - trend, flat or unknown state.
Approximately 90%of identified trends andflats last from40 to 600 business days,which
is in line with medium- and long-term trends. Initially, the task was set as recognizing
the point of a change in the market state (the transition from trend to flat and vice versa,
regardless of the trend direction) with a minimum time lag - for example, identifying the
beginning of a 200-day trend 20 days after its start. However, as the study progressed,
it also became necessary to distinguish between the direction of trend (upward and
downward) to be able to assess the returns and compare various modifications of the
model.

The practical purposes of the study impose several restrictions. First, the constructed
model must be universal, that is, it must not be limited to a specific asset, market or
time period. Another significant issue is the exclusion of future data in calculations.
Violation of this condition, as well as a significant increase in time lag in changepoint
identification, makes the simulation results inapplicable in practice.

2.1 Model Structure

The Submodels. The proposed framework for predicting future changepoints in the
market state includes three components.

• ChangePoints_classifier (abbreviated to ChP-c), the classification model that deter-
mines the presence or absence of the changepoint at a certain time interval. For the
output the model returns the value 1 (“The trend changed at the specified interval”)
and 0 (“The trend did not change at the specified interval”).

• ChangePoints_regression (abbreviated toChP-r), the regressionmodel that determines
the position of the last changepoint at a certain time interval, provided that at least
one change of state has occurred. The position is determined by a real number in the
range from 0 to 1 (proportion of the width of the time interval), where 0 means that
the last changepoint was recorded at the beginning of the period, and 1 - at the end.
Knowing the start date and the width of the time interval, we can convert the value
obtained from the ChP-r model to a specific date.

• Trend_or_Flat (abbreviated as TF), the classification model that determines the type
of trend observed in a given markup window. For the output the model returns the
value 1 (“Upward trend”), -1 (“Downward trend”) or 0 (“No trend, flat”).

It was mentioned above that one of the practical requirements for the model is
to ensure its universality (that is, the independence of a specific financial instrument,
and, in particular, of the range of changes in its prices or trading volumes in any time
interval). It is also unacceptable to “look into the future”, which makes it impossible
to normalize quantitative indicators with, for example, annual or monthly highs and
lows - they are unknown at the time of calculation. One of the possible options for
constructing a mathematical model under such conditions is to interpret the quotes of a
financial instrument not as a set of quantitative indicators, but as an image, for example,
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a chart with Japanese candlesticks and corresponding labels. Image detection assumes
recognition of both the type of object (classification problem) and determination of the
boundaries of its location on a snapshot containing several types of objects of different
sizes (regression problem). In our case, the problem of detection can be interpreted as
determining the type of trend and its boundaries (beginning and end) in the time window
which plays the role of a snapshot. Thus, the input data in all three submodels (ChP-c,
ChP-r, TF) are matrices of digitalized images corresponding to the quotes charts on
certain time intervals - data slices.

The Interaction of Submodels. The interaction of submodels in real-time simulation
(that is when new information about quotes arrives every day) is shown in Fig. 1. The
ChP-cmodel,which is responsible for determining the presence of changepoints in a slice
with a width of n working days (for example, n_days= 25 corresponds to approximately
5 weeks, and n_days = 75 to 15 weeks), is fed a digital image - a quote chart for the
selected data slice. To reduce the computation time, data slices can be taken not every
day, but with a skip step (for example, skip= 5 days), which gives a non-critical error. If
the ChP-c model detects the presence of a changepoint in the window (value 1), then the
ChP-r model is activated, which determines exactly where in this data slice the last trend
started (win_srt). If the ChP-c model returns the value 0 (there was no trend change),
then the trend start point (win_srt) is set to the value determined from the previous slice
(if it is absent, then win_srt is equal to the beginning of the quotes history). By default,
the end of the trend (win_end) is the current date on which the ChP-c model is launched.
A digital chart of stock quotes taken for the dates between win_srt and win_end is
transmitted to the TF model, which determines the type of trend (uptrend/downtrend or
flat) and the corresponding recommendation - to open and hold a long/short position or
close the position.

2.2 Data Preparation

The dataset to explore consists of 1389 files labelled by 2 experts. The data contains
quotes of 700 stocks included in the S&P index, covering the period from 2005–01-28
to 2017–09-13. Each file contains on average around 2600 daily quotes (Date, Open,
High, Low, Close) for a certain period and stockname, labelled by a certain expert.

Image Processing. As noted above, the input data in all three submodels (ChP-c, ChP-r,
TF) are matrices of digital images corresponding to the quotes charts on certain time
intervals - data slices. One of the most common chart types that accounts for all price
data (open price, close price, high and low) is the Japanese candlestick chart.

Logarithms. During the markup, the experts used the logarithmic scale, which gives a
slightly different visual effect, therefore, in this study, all the quotes were replaced by
their natural logarithms.

Duplicates, Contradictions and Imbalanced Datasets. Different experts could have
marked the same “data points”, but their markup does not always coincide. In our case,
the number of duplicates with the same “Type” field value is 1,246,726 (37.8%) “data
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Fig. 1. The interaction of submodels.

points”. The opposite situation (expert opinions for the same “data point” does not
coincide) leads to contradictions. The number of such records is 397,321, which is
approximately 24%of 1,660,441 - the number of unique “data points”. Reasons, possible
options for dealingwith contradictions, their advantages and disadvantages are discussed
[20] which uses the same dataset.

It shouldbenoted that the problemof duplicates and contradictions ismore significant
for themodels that determine the changepoints (ChP-c andChP-r) than for the TFmodel:
almost for every “data point” labelled as changepoint, there exists a “no changepoint”
label obtained from another expert. Within the framework of this study, we corrected
only technical blots, which eliminated 8% of contradictions.

Another issue is that the dataset is imbalanced. In theChP-cmodel,most observations
do not contain changepoints and the imbalance increases from 3:1 to 10:1 as n_days,
the width of the data slice, decreases from 75 to 25. As for the TF model, more than half
of the windows in both train and test set are labelled as flat, and there are about 2 times
more upward trends than downward.

Ideally, the proportion of classes in the binary classification model should be close
to 1:1, since as the imbalance increases, observations of the majority class begin to
“suppress” observations of the minority class. In this study, we modified the standard
loss function of CNN to deal with the imbalanced classes.

Train and Test Samples. To assess the generalizing ability of the model, the data array
is traditionally divided into training and test samples. We considered three possible
options: standard random split (inapplicable), split by source and split by date. Our final
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choice is to use 70% of older data as a train set and the remaining 30% as a test set. The
threshold date separating the test and training samples is set to October 17, 2014.

3 The General Scheme for CNN

The general scheme for building a CNN includes several stages. At each stage, it is
necessary to fix some parameters (more precisely, hyperparameters), on which the result
of training will largely depend. The actual machine learning algorithm is implemented
in Python 3.5/3.6 using the CNTK library from Microsoft (v.2.5.1) [21], Pandas 0.22.0,
Numpy 1.14.2 and Matplotlib 2.2.2.

3.1 Extracting Features and Labels

At this stage, it is necessary to fix the following data preprocessing settings:

• image characteristics: resolution, number of channels. In the present study, colour
images with a resolution of dpi= 10 were used to train the ChP-c and ChP-r models.
For the TFmodel, which had a smaller sample size, the 20 dpi and 60 dpi options were
also tested. It did not reveal any significant quality benefits but resulted in increased
data volume and processing time.

• the procedure for dealing with duplicates and contradictions.
• the width of the data slice (n_days) and the step (skip) with which they are taken -
for the models that determine the changepoints (ChP-c and ChP-r). In the designed
models, the options n_days= 25 and n_days= 75 were used, which is slightly longer
than monthly and quarterly intervals. The skip step is a technical hyperparameter that
limits the size of the resulting sample (reaches several gigabytes) and, accordingly,
the time of its generation (can take tens of hours).

The generated sets of features and labels are saved in a special text format CTF,
compatible with the CNTK library.

3.2 CNN Structure

The convolutional neural network model can have three types of layers (convolutional,
pooling and fully connected), characterized by different sets of hyperparameters. A
multidimensional array containing input variables (features) is fed as the input of the
neural network. For the output the network returns labels.

Figure 2 presents the final structure of the ChP-c model. The total number of param-
eters (weights) of the model in eight blocks is 32 117. The parameters f (filter size), n
(number of filters), s (stride) depend on the original resolution of images. The ChP-r
structure is similar except for the output layer – it uses linear activation function instead
of sigmoid. TFmodels have two first convolutional layers instead of three and, of course,
a different fully-connected layer with a vector output which is fed into softmax operator.
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Fig. 2. The final structure of the ChP-c model.

3.3 CNN Training

The choice of model hyperparameters can have a decisive influence on the simulation
result, however, the problem of finding the optimal combination of hyperparameters is
nontrivial and requires a series of experiments. For simplemodels, automated procedures
are suitable - full or randomized search on a grid composed of all possible combinations
of hyperparameters. For more complex models, gridsearch is usually associated with
technical difficulties, since running one cycle can take several hours or even days. In
such situations, heuristics obtained as a result of similar studies and logical analysis of
pitfalls of each experiment play an important role. Within the framework of this study, it
was revealed that the choice of the type of the loss function and the learning rate α had
a decisive influence on the learning outcome. Variations of other parameters either did
not have any significant effect or influenced only the duration and resource intensity of
the learning process.

3.4 CNN Validation

The CNN validation procedure is similar to other machine learning models and is deter-
mined by the type of problem. Nevertheless, it should be kept in mind, that the final
prediction of the model is formed as a result of the interaction of all three submod-
els (ChP-c, ChP-r and TF). Another reason why standard quality metrics are not quite
applicable is the time factor: even if the data is taken with a skip = 5 days, a shift in
predictions means only a slight delay in the model, and, therefore, a slight decrease in
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the financial result. This leads to the conclusion that in our case, from the practical point
of view, the main quality criterion is the returns obtained as a result simulation.

4 The Results

4.1 Submodel Results

ChangePoints_classifier. The train and test data set for the ChP-c models have around
90 thousand and 40 thousand of observations accordingly (the exact number depends
on n_days and skip parameters). In total 24 more or less successful ChP-c models
were trained (we do not consider experiments with the absolutely unfortunate choice
of hyperparameters). They differ in the n_days parameter (25 and 75), dataset choice
(labelled by both expert or only one to exclude contradictions), loss functionmodification
and the number of iterations. The quality metrics of the two best models, calculated on
the test set, are summarized in Table 1. The F-score in parentheses contains the values
of the F-score metric for the minority class - F-scorey = 1.

Table 1. The best ChP-c models.

Model id ChP-c_4 (n_days = 25) ChP-c_6 (n_days = 75)

Accuracy 81.92% 66.42%

AUC 54.90% 56.43%

F-score 83% (24%) 64% (28%)

False negatives 85% 76%

False positives 11% 17%

Despite all the efforts made to deal with the imbalanced dataset, both models have
the same pitfall: they often miss real changepoints (give false negative predictions) -
that is they ignore the minority class. Let us keep in mind, however, that because of the
contradictions issue, the metrics based on ground truth may be inaccurate.

ChangePoints_regression. In total 19 ChP-r models were trained. They differ in the
n_days parameter, skip parameter, dataset choice, loss function modification, number
of iterations, number of layers and other hyperparameters. The values of the n_days
parameter were chosen in compatibility with the corresponding ChP-c models. The
sample size can be adjusted by reducing the skip to 2 or 5 days to give around 100
thousand and 50 thousand observations on train and test accordingly. The quality metrics
of the two best models on the test set are summarized in Table 2.

Despite the fact that the distribution of labels was uniform in the range from 0 to
1 and numerous experiments with different loss functions, the predictions of ChP-r
models are inevitably concentrated in the middle of the time segment (0.5), which gives
the average absolute error around 22–25% of the window slice width. This corresponds
to approximately 17 business days for n_days= 75 or 6 business days for n_days= 25.
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Table 2. The best ChP-r models.

Model id ChP-r_13 (n_days = 25) ChP-r_15 (n_days = 75)

R2 0.133 0.112

MAE 21.66% 22.59%

Same as for ChP-c, additional research is required. A change in one hyperparameter
may sufficiently change the result as it happened to the TF model, but this is the process
of trial and error.

TF model. The dataset for the TF model uses the markup windows initially selected
by the experts. The train and test data sets for TF models have around 10 thousand
and 5 thousand of observations accordingly. In total, more than three dozen models
were trained. However, the first twenty models consistently predicted the majority class
(0 (“No trend, flat”)), which automatically ensured accuracy around 60%. Only after
switching to the lower resolution and changing the learning rate α = 0.001, a leap in
quality was obtained. The results for dpi = 20 and dpi = 10 of the last 12 models were
almost equal but the TF model with dpi = 10 as less resource-intensive.

The selected model best determines flats (89% of correctly recognized observations
of this class) and the uptrend (recall 95%). The situation is relatively worse with the
downward trend: in 25% of cases the TF_19 (dpi= 10) mistakenly recognizes it as flat.
For reference, we note that the TF model with dpi = 20 recognizes flats and upwards
a little better (93% and 92%, respectively), but in 37% of cases it mistakenly took a
downward trend for a flat.

4.2 Simulation Results

The final stage of the proposed framework is a real-time simulation. This requires the
development of quality metrics focused on financial results.

Specific Metrics. Recalling that the direction of the trend can be determined by the
slope of the regression line, we can calculate the profit earned during the time in position
(i.e., during trends) and a couple of other metrics (see Table 3).

To compare models, the last two indicators - YearProfit and YearProfit_avg - are
the most informative, because they are independent of the length of the time period and
the number of stocks in the pipeline. The main pitfall of YearProfit and YearProfit_avg
metrics is that they are not normalized, but we can compare our results with the results
of alternative trading simulations.

Results. The trading simulation was performed for n_days = 25 (ChP-c_4, ChP-r_15,
TF_19 submodels) and n_days = 75 (ChP-c_6, ChP-r_13, TF_19 submodels). In both
cases, the experiment was run for the entire test dataset (that is, data for dates between
October 17, 2014, and May 13, 2017) for all 700 stocks with skip = 5.



Applying Convolutional Neural Networks 279

Table 3. The proposed quality metrics.

Indicator Description

Profit The sum of all profits earned while in position (for all the stocks)

Days_in The total number of business days in position (for all the stocks)

Times_in The number of times the position was opened (for all the stocks)

DayProfit The profit per one day in position, %: DayProfit = Profit/ Days_in

YearProfit dayProfit scaled per annum, %: YearProfit = DayProfit*250, where 250 is the
average number of business days in a year

YearProfit_avg The average annual profit, including the days not in position, %:
YearProfit_avg = Profit/number of data points *250

The comparison with the results of the “average” expert indicate the need to refine
the models. Even though positions are opened about 6 times more often (increases
transaction costs), the final profit on them is several times less. In the case of n_days =
75 the final results are slightly higher. 85% of downwards are still recognized as flats,
but the share of unrecognized upwards is 49%, which allows one to earn a little more on
this trend in comparison with the case n_days= 25. Because most of the trends marked
by experts are long-term and medium-term, we can conclude that using a wider data
slice (n_days = 75) is more preferable to correctly identify the changepoints in market
trends.

If we drill down into the P&L report of the trading simulation for n_days = 75, we
can notice, that it is short positions that cause losses. While, on average, the model lets
us earn when we buy on the upward trend, it generates negative returns when we enter
the market and sell at the beginning of the downward trend. This fact encourages us
to refuse from short positions at all as non-efficient and concentrate only on traditional
deals when one buys expecting the price will rise. Excluding short deals results in an
increase in YearProfit_avg from 1.05% to 2.2% for n_days = 75 case (see Table 4).

To decrease the number of unnecessary deals we can opt for a slightly different
interpretation of the model signals. We will ignore flat signals which often are incorrect,
that is, we will open the position at the first signal of the upward trend and close it only
when we receive the first downward signal. This modification decreases the number of
deals from 3365 to 1120, while YearProfit_avg reaches 4.76% and brings us closer to the
“average expert” baseline - 5,83% (short positions excluded). Finally, we can compare
our result with the buy-and-hold strategy, which assumes that we buy stock on the very
first day and stay in position all the time. Surprisingly, it earns more than the “average
expert” in terms of YearProfit_avg indicator - 9.22%, but uses money less effectively:
the “average expert” stays in position 5 times less and therefore has the higher YearProfit
indicator -24,8%. In conclusion we may say, that while the suggested model definitely
allows to earn on increasing market it still does not outperform the alternatitives, though
some additional benefit may be gained from effectively using the time not in position,
e.g. switching between the stocks in portfolio.
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Table 4. The simulation results (short position excluded)

Metrics
(short positions excluded)

n_days = 75

Model Model (flat ignored) Expert Buy and hold

Profit (%) 3928 8414 10324 16302

Days_in 117723 369128 104056 442115

Times_in 3365 1120 655 699

YearProfit (%) 8.34 5.7 24.8 9.22

YearProfit_avg (%) 2.22 4.75 5.83 9.22

5 Conclusions

The paper illustrates the application of CNNs, traditionally used for image detection
and recognition, to the problem of long-term market trend prediction. Unlike in the
traditional approaches, the labels (trend or flat) are not derived from prices but filled
manually by experts who worked with stock data as with images. The task is quite
challenging since we actually try to ‘digitalize’ successful traders’ skills and we can only
compare the performance of the model with the performance of the experts themselves.
The comparison with the results of other researchers would be inadequate since we use
a completely different source for ground truth.

The main reason for the unsatisfactory accuracy of the predictions is the shortcom-
ings of the ChP-c and ChP-r submodels described in the sections above. They, in turn,
can be caused by inconsistencies in the original data markup. We should also consider
the imbalance in the class of downward trends, which led to a relatively lower accuracy
of their recognition by the TF model. In general, however, the proposed CNN frame-
work for the prediction of changepoints in long-term market trends allows us to learn
from successful traders’ decisions and evaluate the model performance, although the
submodels require additional exploring of errors and calibration.

Improving the prediction quality of the ChP-c, ChP-r and TF models is the main
direction of further research. One of the options is to use a pretrained network (for
example, Alexnet [16] or YOLO [17]) and adapt it for ChP-c and ChP-r labels by chang-
ing the fully connected output layer. We also consider a radically different model design
with gradient boosting algorithm XGBoost, which currently performs comparatively
better, but too, requires additional research.
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Abstract. This paper extends the evolving fuzzy-rule-based algorithm
denoted Extreme Value evolving Predictor (EVeP) to deal with multi-
variate time series. EVeP offers a statistically well-founded approach to
the online definition of the fuzzy granules at the antecedent and conse-
quent parts of evolving fuzzy rules. The interplay established by these
granules is used to formulate a regularized multitask learning problem
which employs a sparse graph of the structural relationship promoted by
the rules. With this multitask strategy, the Takagi-Sugeno consequent
terms of the rules are then properly determined. In this extended ver-
sion, called Extreme Value evolving Predictor in Multiple Time Series
Learning (EVeP MTSL), we propose an approach that resorts to the
similarity degree among the time series. The similarity is calculated by
the distance correlation statistical measure extracted from a sliding win-
dow of data points belonging to the multiple time series. Noticing that
each fuzzy rule is part of a specific time series predictor, the new unified
model called EVeP MTSL updates the sparse graph by composing the
relationship established by each pair of fuzzy rules (already provided by
EVeP) with the similarity degree of their corresponding time series. We
are then exploring not only the current interplay of the multiple rules
that compose each evolving predictor, but also the current correlation
of the multiple time series being simultaneously predicted. Two com-
putational experiments reveal the superior performance of EVeP MTSL
when compared with other contenders devoted to online multivariate
time series prediction.

Keywords: Evolving fuzzy-rule-based systems · Online learning ·
Extreme Value Theory · Multitask learning · Multivariate time series
prediction

1 Introduction

In recent years, many methods for time series prediction have emerged in
both the statistical and computational intelligence communities. However, the
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problem of multivariate time series prediction, which aims to simultaneously
forecast the values of multiple time series in dynamical interaction along time,
has received less attention. One of the few attempts in the evolving systems lit-
erature is the integrated multi-model framework (IMMF) [12]. IMMF is imple-
mented by training a neural network to assign relative weights to predictions
from models at three different data granularity levels: global, local, and trans-
ductive. The ensemble of the fuzzy set-based evolving modeling (E-FBeM) [4] is
another example, where an extension of [11] is developed to deal with multivari-
ate time series employing an ensemble approach.

Besides these solutions guided by evolving fuzzy-rule-based (eFRB) systems,
others are based on different architectures. An online echo state network based
on square root cubature Kalman filters, for example, is proposed in [9] and is
referred to as SCKF-γESN. SCKF-γESN can learn the training data one-by-one
or chunk-by-chunk and incorporate an outlier detection feature to improve the
forecasting accuracy and robustness. Based on the extreme learning machine
principle, which presents a simple structure and good performance, an improved
Levenberg–Marquardt algorithm is introduced in [14]. A kernel recursive least
squares (KRLS) algorithm designed to multivariate chaotic time series is pro-
posed in [10], by combining approximate linear dependency, dynamic adjust-
ment, coherence criterion and quantization. Founded on the kernel extreme learn-
ing machine, in [6] it is proposed an improved version with adaptive forgetting
factor introduced into the objective function, which can be adjusted iteratively
and adaptively according to the system changes.

In this work, we propose an extension of the eFRB algorithm denoted
Extreme Value evolving Predictor (EVeP) [1] to multivariate time series pre-
diction. By jointly employing the similarity degree among the time series (calcu-
lated online taking a sliding window of time series data points) and the degree
of intersection among the information granules belonging to the multiple time
series, a more general formulation is conceived to promote information sharing
not only among the existing rules, but also among the prediction models for the
time series involved. The resulting regularization structure is then employed to
obtain the Takagi-Sugeno (TS) consequent parameters of the fuzzy rules that
compose the multiple evolving predictors.

The remaining sections of the paper are organized as follows: Sect. 2 reviews
the main aspects of EVeP, necessary to properly introduce the formal definition
of the EVeP MTSL in Sect. 3. In Sect. 4, two computational experiments are
considered in order to compare the performance of EVeP MTSL with its original
version for single time series prediction and also with several state-of-the-art
algorithms. Section 5 is devoted to concluding remarks and further steps of the
research.

2 The Extreme Value Evolving Predictor (EVeP)

Founded on the Extreme Value Theory [5], the Extreme Value evolving Predictor
(EVeP) [1] resorts to a statistically consistent approach for the definition of the
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fuzzy rules in eFRB systems. It employs fuzzy granules that are statistically
guaranteed to be the limiting distributions of the relative proximity among the
data points that support the rules. The expression for the membership function
μi(z[t]) of a data point z[t], available at time instant t, for the rule Ri with center
zi
0, is given by the Weibull distribution Ψ i(||zi

0−z[t]||, κi, λi), defined by Eq. (1):

μi(z[t]) = Ψ i(||zi
0 − z[t]||, κi, λi) = exp

⎡
⎣−

(
||zi

0 − z[t]||
λi

)κi⎤
⎦, (1)

where ||zi
0−z[t]|| is the distance from z[t] to center zi

0, and κi, λi are, respectively,
the Weibull shape and scale parameters obtained automatically by EVeP by
fitting the distribution to the smallest pairwise distance mi = ||zi

0 − zj
s ||, j =

1, . . . , c, j �= i, s = 1, . . . , N∗, thus taken into account the relative proximity to
all the data points of the other rules. N∗ is the sliding window size, i.e., the
maximum number of samples kept by each rule.

To define the structural relationship among the rules, [1] introduced a low-
cost approach reflecting the pairwise intersection of the fuzzy granules. As illus-
trated by Fig. 1 for a two-dimensional case, the connection degree of a rule Ri2 to
a rule Ri1 is defined according to the maximum firing degree of Ri1 calculated at
two distance levels: the distance d(zi1

0 ,zi2
0 ) to the center of fuzzy rule Ri2 , and

the distance to the closest point belonging to the curve of Eq. (2), calculated
for i = i2, which is given by d(zi1

0 ,zi2
0 ) − di2 . In Eq. (2), σ is a user-defined

parameter representing the granularity of the model.

Ψ i(di, κi, λi) = σ (2)

Fig. 1. Illustration of how to obtain the degree of relationship between a rule Ri2 and
a rule Ri1 (adapted from [1])
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The final value of the connection degree of rule Ri2 to rule Ri1 is calculated
by Eq. (3), which is a composition of the degree of relationship for the input and
output variables:

q(Ri1 , Ri2) = max( max(Ψ i1
x (d(xi1

0 ,xi2
0 )), Ψ i1

x (d(xi1
0 ,xi2

0 ) − di2
x )),

max(Ψ i1
y (d(xi1

0 ,xi2
0 )), Ψ i1

y (d(yi1
0 , yi2

0 ) − di2
y )))

(3)

The similarity measure s(Ri1 , Ri2) between two rules Ri1 and Ri2 is then
calculated as the maximum value of the connection degrees q(Ri1 , Ri2) and
q(Ri2 , Ri1), according to Eq. (4):

s(Ri1 , Ri2) = max(q(Ri1 , Ri2), q(Ri2 , Ri1)). (4)

To calculate the parameters θi, i = 1, . . . , c, of the TS consequent part of the
rules, EVeP resorts to the benefits of the information sharing among the rules by
means of a multitask learning (MTL) approach, employing a generalization of the
Sparse Structure-Regularized Learning with Least Squares Loss (Least SRMTL)
[3,15] to represent the structural dependencies among the rules. Considering the
training data set {xi[t] , yi[t]}Ni

t=1, where Ni is the quantity of data points assigned
to the ith rule Ri, xi[t] ∈ R

n, yi[t] ∈ R, then the matricial form of the input-
output dataset associated with the ith rule is expressed by:

Xi =

⎡
⎢⎢⎢⎢⎢⎣

1 xi[1]
T

1 xi[2]
T

...
...

1 xi[Ni]T

⎤
⎥⎥⎥⎥⎥⎦

, yi =

⎡
⎢⎢⎢⎢⎣

yi[1]

yi[2]

...
yi[Ni]

⎤
⎥⎥⎥⎥⎦

. (5)

The final optimization problem to calculate the matrix of parameters Θ =
[θ1,θi, . . . ,θc] is represented by Eq. (6):

Θ∗ = arg min
Θ

c∑
i=1

||Xiθi − yi||22 + Ω(Θ), (6)

where ||·||22 is the squared l2-norm and Ω(Θ) is a regularization term that encodes
the structural dependencies among the learning tasks, to be presented in Sect. 3.

3 The Extreme Value Evolving Predictor in Multiple
Time Series Learning (EVeP MTSL)

The fundamental idea of the Extreme Value Evolving Predictor in Multiple Time
Series Learning (EVeP MTSL) is to extend the original EVeP [1] to deal with
multivariate time series by taking advantage of their joint learning at the calcu-
lation of the TS consequent parameters. Instead of training a separated model
for each time series, as conducted in EVeP, EVeP MTSL employs the degree
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of similarity among these time series to train a unique model that generates
individual predictions for each time series.

The general operation of EVeP MTSL follows the same principles of its pre-
decessor EVeP [1]. The creation and removal of rules are executed independently
for each time series, as well as the incremental updates in their antecedents. The
prediction mechanism is also kept individualized for each series. What changes
in this extended version is the training strategy of the parameters of the conse-
quent part of the rules. We introduce a unified and regularized model that, by
reflecting the interconnections among all the time series’ rules, benefits from the
joint learning in a generalized approach.

To calculate the similarity among the time series, we use the distance correla-
tion measure [13], which is dynamically calculated based on a sliding window of
data points and taking all pairs of time series. Let Y w

k and Y w
l , w = t−N∗, . . . , t

be the last N∗ values of the time series Yk and Yl. The distance correlation mea-
sure γ(Y w

k , Y w
l ) between Y w

k and Y w
l is calculated by Eq. (7):

γ(Y w
k , Y w

l ) =
dCov(Y w

k , Y w
l )√

dV ar(Y w
k ) dV ar(Y w

l )
, w = t − N∗, . . . , t (7)

where dCov refers to the distance covariance and dV ar refers to the distance
variance. Details about these computations can be found on [13]. The distance
covariance measure was chosen to calculate the similarity degree among the time
series because it measures both linear and nonlinear dependencies between two
random variables. It comes in contrast to Pearson’s correlation, for example,
which can only detect linear dependencies.

The similarity between two rules Ri
k and Rj

l associated with the prediction
models for time series Yk and Yl, for any k and l, is calculated according to Eq.
(8), which considers the similarity measure between the rules, given by Eq. (4),
weighted by the distance correlation between their respective time series, given
by Eq. (7).

s′(Ri
k, Rj

l ) = s(Ri
k, Rj

l ) γ(Y w
k , Y w

l ), w = t − N∗, . . . , t (8)

Let Xi
k be the input variables of rule Ri

k of time series k, yi
k be the corre-

sponding output variables and θi
k be the parameters of the consequent part of

the ith rule Ri
k of the prediction model for time series k. The final optimization

problem to obtain the consequent parameters Θ∗ is given by Eq. (9):

Θ∗ = arg min
Θ

p∑
k=1

ck∑
i=1

(||Xi
kθi

k −yi
k||22 +ρ

p∑
l=k+1

cl∑
j=1

s′(Ri
k,Rj

l )>η

s′(Ri
k, Rj

l )||θi
k −θj

l ||22),

(9)
where p is the number of time series and ck is the number of rules that compose
the prediction model for time series k.
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The first term, ||Xi
kθi

k −yi
k||22, seeks to minimize the joint error produced by

the prediction models for every time series. The second term, s′(Ri
k, Rj

l )||θi
k −

θj
l ||22, which corresponds to the regularization term Ω(Θ) of Eq. (6), forces the

corresponding models at the consequent part of rules Ri
k and Rj

l to exhibit a
similar behavior [1] whenever the similarity measure s′(Ri

k, Rj
l ) exceeds the con-

nection threshold parameter η. The user-defined parameter ρ controls the influ-
ence of the regularization term in the calculation of the matrix of TS parameters
Θ. When compared to what would happen in the single-task learning approach
(ρ = 0), the larger the relation, the more intense the reduction in the Euclidean
distance involving θi

k and θj
l [1].

3.1 Numerical Example

Suppose the existence of three (p = 3) time series with c1 = c2 = 2 and c3 = 1,
and distance correlation measures currently estimated as γ(Y w

1 , Y w
2 ) = 0.86,

γ(Y w
1 , Y w

3 ) = 0.67 and γ(Y w
2 , Y w

3 ) = 0.49, w = t − N∗, . . . , t. Let the similarity
matrix S, calculated by obtaining s(Ri

k, Rj
l ) for each pair of rules of the three

time series, be given by Eq. (11):

S =

⎡
⎢⎢⎢⎢⎣

s(R1
1, R

1
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1, R
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⎤
⎥⎥⎥⎥⎦

(10)

=

⎡
⎢⎢⎢⎢⎣

1 0.38 0.17 0.48 0.17
0.38 1 0.13 0.24 0.36
0.17 0.13 1 0.86 0.85
0.48 0.24 0.86 1 0.47
0.17 0.36 0.85 0.47 1

⎤
⎥⎥⎥⎥⎦

The final similarity matrix S′, which takes into account the similarity
s′(Ri

k, Rj
l ) calculated among all pairs of rules and also the distance correlation

among their corresponding time series, is given by Eq. (12):

S′ =

⎡
⎢⎢⎢⎢⎣

s′(R1
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⎥⎥⎥⎥⎦

(11)

=

⎡
⎢⎢⎢⎢⎣

1 0.38 0.15 0.41 0.11
0.38 1 0.11 0.21 0.24
0.15 0.11 1 0.86 0.42
0.41 0.21 0.86 1 0.23
0.11 0.24 0.42 0.23 1

⎤
⎥⎥⎥⎥⎦
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Table 1. Wind speed prediction for eolian farms

Model Rank RMSE #< #> Rules

EVeP MTSL 1.733 0.0438 0 6 2.80

EVeP [1] 3.267 0.0447 0 4 7.67

ePL-KRLS [2] 3.800 0.0459 0 3 1.78

FBeM MTL [2] 4.067 0.0457 1 3 2.96

ePL [2] 4.533 0.0507 1 1 2.66

eTS [2] 5.733 0.0616 2 1 4.33

eTS-KRLS [2] 6.467 0.0507 4 1 3.47

eTS+ [2] 6.600 0.0509 4 1 4.50

eTS-LS-SVM [2] 8.800 0.0769 8 0 6.20

Considering a threshold η = 0.25, the resulting regularization term of Eq. (9)
is given by Eq. (12):

p∑
k=1

ck∑
i=1

p∑
l=k+1

cl∑
j=1

s′(Ri
k,Rj

l )>η

s′(Ri
k, Rj

l )||θi
k − θj

l ||22 = 0.38||θ1
1 − θ2

1||22

+ 0.41||θ1
1 − θ2

2||22 + 0.86||θ1
2 − θ2

2||22 + 0.42||θ1
2 − θ1

3||22.

(12)

4 Computational Experiments

4.1 Wind Speed Prediction for Eolian Farms

This experiment [1,2] consists of predicting the wind speed at the three largest
wind farms in the United States. For each wind farm, five well-distributed tur-
bines were evaluated on an hourly time window basis during 2012. The data
were taken from maps.nrel.gov/wind-prospector.

We compared statistically the RMSE obtained by the evolving algorithms
employing the Friedman test [8], with p = 0.05 as the threshold. Whenever
the null hypothesis is rejected, the Finner posthoc test is applied [7] with the
same threshold to statistically support the advantage of an algorithm over the
other. Table 1 presents the resulting statistical comparison. The table provides
information on the rank of each algorithm, the average RMSE (RMSE), the
number of algorithms statistically better than the evaluated algorithm (#<),
the number of algorithms statistically worse than the evaluated algorithm (#>)
and also the average number of rules along the time series (Rules). After the
hyperparameter optimization applied taking historical data of the previous year
(2011) in the interval [0, 0.1] for σ, [1, 100] for δ, [1, 24] for N∗, [10−2, 103] for
ρ and [0, 0.9] for η, the user-defined parameters were set to σ = 0.04, δ = 56,

http://www.maps.nrel.gov/wind-prospector
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N∗ = 23, ρ = 0.6467 and η = 0.3162. The user-defined parameters for the other
contenders were the same as reported in [1,2].

The rows of Table 1 are sorted by the rank. EVeP MTSL was able to obtain
the best rank, being statistically superior to the last six algorithms (column #>).
There is no algorithm statistically better than EVeP MTSL (column #<). One
may note that EVeP MTSL was able to obtain a better performance than its
predecessor EVeP using a significantly reduced number of rules in average, which
evidences the compactness of EVeP MTSL. As there is a joint-learning involving
rules belonging to the prediction models for all time series, a reduction in the
number of rules seems to be promoted.

Figure 2 presents the performance of EVeP MTSL for site 9773 of Roscoe
Wind Farm according to the number of turbines—represented by their corre-
sponding time series—considered into the model. Two cases were simulated:
first, new turbines were incrementally included in the model considering its sim-
ilarity to turbine 9773, from the highest to the lowest values; in the second case,
the turbines were added from the lowest to the highest similarities.

The left graph of Fig. 2 shows the evolution of the RMSE according to the
number of turbines. For the two scenarios, one may note a significant drop in
the prediction error when the first turbines were added, until reaching 4 to 6
turbines, when the performance stabilizes. The RMSE retakes its downward
trajectory only after the more similar turbines were added at the end of the
simulation for the second case study.

When comparing the two strategies (adding the turbines incrementally in
ascending and descending degrees of similarity), one can conclude that including
the more similar turbines first tends to anticipate the achievement of maximum
performance.

From the right graph of Fig. 2, one can see that the execution time per
turbine dropped until reaching the number of six turbines. This initial drop
results from predicting all the time series in a unique regularization framework
rather than multiple separated formulations. However, after six turbines, the
cost of considering several connections among the rules of all the time series

Fig. 2. Performance of EVeP MTSL for site 9773 according to the number of turbines
considered
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influences the total execution time, worsening the performance as more turbines
were added. The fact that the execution time is slightly shorter for the second
scenario results from fewer connections among the rules of time series that are
not as similar as the ones considered in the first scenario. In the end, both
execution times converged to a similar value, as expected.

4.2 PM2.5 Time Series of Beijing

PM2.5 refers to the particles in the atmosphere with an aerodynamic equivalent
diameter of less than 2.5 mm [6]. Their presence in the air is directly related to
pollution. The concentration of PM2.5 was found to be inversely proportional to
the change of wind speed. This experiment, extended from [6], aims to forecast
PM2.5 values according to Beijing’s historic PM2.5 time series and wind speed.

We used 960 samples of PM2.5 (μg/m3) and wind speed (m/s) of 40 days
in Beijing from November 22 to December 31, 2014. The time delay was set to
τ1 = τ2 = 1h and the embedding dimension as m1 = m2 = 5. The first 720 data
points were used for training and the last 240 for testing, as prescribed in [6].

Table 2 presents the results. After the hyperparameter optimization applied
for the training dataset in the interval [0, 0.5] for σ, [1, 200] for δ, [1, 30] for N∗,
[10−2, 103] for ρ and [0, 0.9] for η, the user-defined parameters of EVeP were set
to σ = 0.3787, δ = 166, N∗ = 28 and ρ = 1.6322. The user-defined parameters
of EVeP MTSL considering the same intervals were set to σ = 0.4056, δ = 94,
N∗ = 23, ρ = 4.0371, and η = 0.069. The user-defined parameters for the other
contenders were the same as reported in [6].

Table 2. PM2.5 Beijing

Evolving system No. of rules (AVG.) RMSE

KB-IELM – 30.5964

NOS-KELM – 30.9982

ALD-KOS-ELM – 29.9865

FF-OSKELM – 29.4089

AFF-OSKELM – 29.4013

EVeP 27.41 30.4535

EVeP MTSL 19.67 29.4765

As one may note, EVeP MTSL outperformed once again its predecessor EVeP
using a significantly reduced number of rules. Besides, it could obtain a very
competitive performance considering contenders of robust architectures beyond
the eFRB systems (for more details, see [6]). Figure 3 presents the prediction
provided by EVeP MTSL.
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Fig. 3. Prediction of EVeP MTSL for the PM2.5 Beijing time series

5 Concluding Remarks

This paper presents an extension of the eFRB algorithm denoted Extreme Value
evolving Predictor (EVeP) for multivariate time series, named Extreme Value
evolving Predictor in Multiple Time Series Learning (EVeP MTSL). In this app-
roach, we employed the similarity degree among the time series, calculated by the
distance correlation statistical measure and updated at each new data point, and
the degree of intersection among the rules that compose the multiple time series
prediction models. The joint incorporation of time series correlation and rules
similarity characterizes a generalized multitask learning formulation to calculate
the parameters at the consequent part of the rules.

The two computational experiments conducted showed that EVeP MTSL
obtained better performance than its predecessor using fewer rules. Besides,
EVeP MTSL outperformed most of its contenders belonging to both the eFRB
class of algorithms and other online and robust architectures.

As future work, we intend to adapt the proposed technique to perform mul-
tiple steps ahead prediction.
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Abstract. One of the limiting factors in training data-driven, rare-event
prediction algorithms is the scarcity of the events of interest resulting in
an extreme imbalance in the data. There have been many methods intro-
duced in the literature for overcoming this issue; simple data manipula-
tion through undersampling and oversampling, utilizing cost-sensitive
learning algorithms, or by generating synthetic data points following
the distribution of the existing data. While synthetic data generation
has recently received a great deal of attention, there are real challenges
involved in doing so for high-dimensional data such as multivariate time
series. In this study, we explore the usefulness of the conditional genera-
tive adversarial network (CGAN) as a means to perform data-informed
oversampling in order to balance a large dataset of multivariate time
series. We utilize a flare forecasting benchmark dataset, named SWAN-
SF, and design two verification methods to both quantitatively and qual-
itatively evaluate the similarity between the generated minority and the
ground-truth samples. We further assess the quality of the generated
samples by training a classical, supervised machine learning algorithm
on synthetic data, and testing the trained model on the unseen, real data.
The results show that the classifier trained on the data augmented with
the synthetic multivariate time series achieves a significant improvement
compared with the case where no augmentation is used. The popular flare
forecasting evaluation metrics, TSS and HSS, report 20-fold and 5-fold
improvements, respectively, indicating the remarkable statistical similar-
ities, and the usefulness of CGAN-based data generation for complicated
tasks such as flare forecasting.

Keywords: Multivariate time series · Class imbalance · Generative
adversarial network · Flare forecasting

1 Introduction

In February 2010, NASA launched the Solar Dynamics Observatory, the first
mission of NASA’s Living with a Star program, which is a long term project
dedicated to the study of the Sun and its impacts on human life [1]. The SDO
mission is an invaluable instrument for researching solar activity, which can
produce damaging space weather. This space weather activity can have drastic
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impacts on space and air travel, power grids, GPS, and communications satellites
[2]. For example, in March of 1989, geomagnetically induced currents, produced
when charged particles from a coronal mass ejection impacted the earth’s atmo-
sphere, caused power blackouts and direct costs of tens of millions of dollars to
the electric utility “Hydro-Qubec” [3]. If a similar event would have happened
during the summer months, it is estimated that it would likely have produced
widespread blackouts in the northeastern United States, causing an economic
impact in the billions of dollars [3].

A solar flare is an event occurring in the solar corona that is characterized by
a sudden orders-of-magnitude brightening in Extreme Ultra-Violet (EUV) and
X-ray, and for large events, gamma-ray emissions, from a small area on the Sun,
lasting from minutes to a few hours [4,5]. The classification system for solar flares
are on a logarithmic scale and uses the letters A, B, C, M or X, according to the
peak X-ray flux. In a typical binary classification strategy, M and X classes are
identified as the positive class while no flare occurrence and flares of A, B and
C classes are identified as the negative class.

The goal of this project is to generate synthetic data, especially for multi-
variate time series of magnetic filed parameters leading up to solar flares. As
discussed in [6,7], the extreme class-imbalance between positive and negative
classes in the solar flare data, and the improper treatment of said extreme imbal-
ance between classes, can result in unrealistic and unreliable analyses, with little
practical value in flare forecasting, flare classification, and flare clustering. There-
fore, solving the issue of insufficient positive class of flare data is an important
problem for current research in this domain. As such, this project is dedicating
to generate realistic flare data based on real data, in order to provide a balanced
training dataset for use in such problems.

2 Related Work

Although remedies such as oversampling, undersampling, and cost-sensitive
learning, have been considered to tackle this problem [8,9], these methods can
only provide limited improvements since they do not introduce or utilize any
new data. The development of generative modeling provides an attractive alter-
native and potentially more domain-specific approach for data augmentation.
For example, the Generative Adversarial Network can be trained to learn data
distributions of the minority classes, thereby generating synthetic data for con-
structing a balanced and larger dataset to train more unbiased and powerful
classifiers.

2.1 Generative Adversarial Network (GAN)

First proposed in [10], the Generative Adversarial Network (GAN) tries to learn
an implicit density of real samples. The GAN trains the two components in
an adversarial way. First, the generator is used to sample initial inputs from a
latent space, which is used to produce data similar to real data. Next step, both
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generated samples and real data are used as inputs of a discriminator, and the
discriminator assigns the label of samples after processing inputs with a neural
network. Eventually, the predicted labels are used to calculate errors with a
defined objective function, and the result is used for adjusting the whole model.
This mechanism can help a generator gradually generate better realistic samples
under the supervision of real samples, and this process keeps running until the
discriminator cannot distinguish real data and synthetic samples.

There have been various types of GANs proposed as an extension of the
vanilla GAN to deal with different demands. For instance, in the computer vision
domain, the Deep Convolutional GAN [11] has been applied to learn reusable
feature representations and generate synthetic images by utilizing convolutional
neural networks as the generator and discriminator. The Wasserstein GAN [12]
commits to improve the stability of learning and provide a meaningful learning
curve. The Info GAN [13] incorporates the representation learning by encoding
features into the latent vector. The Conditional GAN (CGAN) [14] is dedicated
to improving the quality of generated samples and controlling the classes of
synthetic samples by utilizing conditional information. Finally, the advantage of
controlling the mode of generated samples makes CGAN become the most appro-
priate framework in our study since our goal is to generate synthetic samples of
multiple minority classes for tackling the class imbalance issue.

2.2 Time Series Generation

There are already several projects in different domains that have worked on gen-
erating time series data utilizing the Generative Adversarial Network. In [15],
the RGAN was utilized to generate medical time series data implemented with
Long Short-Term Memory (LSTM) network. The motivation of their work was
to develop a privacy-preserving method of generating synthetic medical data
for machine learning modeling since actual patient data is sensitive to privacy
issues. In [16], the use of a C-RNN-GAN was proposed as a method to generate
musical data. This method differs from [15], in that it applied a unidirectional
LSTM for the generator and a bidirectional LSTM for the discriminator. Then,
in [17], the TimeGAN was proposed that combines the versatility of the unsu-
pervised GAN approach with the control over conditional temporal dynamics.
This method has two more autoencoding components, including an embedding
function and a recovery function trained jointly with generator and discrimina-
tor components. This structure enables the model can learn to encode features,
generate representations and iterate across time simultaneously.

2.3 Multivariate Time Series Dataset

The data primarily used in this project is a benchmark dataset, named as
Space Weather ANalytics for Solar Flares (SWAN-SF), recently released by
[18]. SWAN-SF is a comprehensive, multivariate time series (MVTS) dataset
extracted from solar photospheric vector magnetograms in HMI Active Region
Patch (HARP) data made available as the Spaceweather HMI Active Region
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Fig. 1. This is the framework of the CGAN model, including components of the gener-
ator (G) and the discriminator (D). Each component is processed by the combination
of the LSTM layer and the Dense layer. The inputs of the generator are random input
vectors concatenated with conditional vectors. The inputs of the discriminator are
either synthetic or real multivariate time series with conditional vectors. The binary
cross-entropy is the criterion for optimizing the model.

Patch (SHARP) series [19,20]. The SWAN-SF is made up of five temporally
non-overlapping partitions covering the period from May 2010 through August
2018 [21]. Each partition contains approximately an equal number of X- and
M-class flares, and there is a total of 6,234 flare records and 324,952 no-flare
records. Comparing the amount of two kinds of data, we can find an extremely
imbalanced issue in this dataset. As mentioned previously, [7] showed that the
extreme class imbalance between positive and negative classes in the solar flare
data, and the improper treatment of said extreme imbalance can result in unre-
alistic and unreliable analyses. Furthermore, each flare record is a multivariate
time series with 60 time steps, and each time step has 51 magnetic field parame-
ters. This work will focus on four parameters, including TOTUSJH, ABSNJZH,
SAVNCPP, and TOTBSQ, as a representative subset of the full 51 field param-
eters (for the definition of parameters see Table 1 in [21]). This is because many
of the parameters are highly correlated, leading most studying flare forecasting
to utilize some subset of the full set.

3 Methodology

We decide to use the Conditional Generative Adversarial Network (CGAN) in
this study for several reasons. First, the advantage of controlling the mode of
generated samples allows us to generate samples of minority classes to tackle
the class imbalance issue. Second, CGAN can provide a stable and faster train-
ing compared to the vanilla GAN. Moreover, the SWAN-SF dataset is labelled,
therefore it can provide conditional information for us to train CGAN models.
LSTM network is utilized as the basic components in both the generator and
the discriminator illustrated in Fig. 1 since we are processing time series data.

The ultimate goal of a generator G is to generate an output with similar
characteristics as the real data. As seen in Fig. 1, the model takes in a random
input vector Zn, which is a tensor with the shape of [batch size, sequence length,
latent dim]. In this study, the shape is [32, 60, 3] for 32 multivariate time series
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in a batch, each of length 60 and latent dimensions 3. Moreover, the condi-
tional vector, namely Cn, has the shape of [32, 60, 2] since it is encoded in
one-hot representation with labels of binary classes. Finally, we concatenate Zn

and Cn, obtaining a tensor of shape [32, 60, 5] as the final input of the gener-
ator. After going through the calculations of LSTM layer and Dense layer, the
outputs, regarded as synthetic samples, have the same shape as the real data,
i.e., [32, 60, 4] where 4 stands for four magnetic field parameters mentioned in
Sect. 2.3.

The task of a discriminator D is to classify inputs as either being real or
synthetic samples generated by the generator. In Fig. 1, it can be seen that the
discriminator takes two forms of multivariate time series (MVTS) as the input:
the real and the generated MVTS samples. To simplify the representation for
our discussion about the discriminator, we denote Xn as a uniform set of inputs.
Through feeding Cn into D, the discriminator not only produces judgments about
whether the data is synthetic or real but also evaluates the correspondence of
the synthetic sample to its conditional information. Finally, the binary cross-
entropy loss calculated between the prediction and the ground truth is used to
update the parameters of both the generator and the discriminator with the
back-propagation algorithm.

So far, we have comprehended the structures and functionalities of the gen-
erator and discriminator. Next, we will define the objective function used for
optimizing the discriminator and the generator. In our framework, the objective
function is divided into two parts, including the generator loss and the discrim-
inator loss. First, the discriminator loss which is calculated as the cross-entropy
between the ground-truth and outputs of a discriminator, is defined as:

LossD(Xn|Cn, yn) = −CE
(
D(Xn|Cn), yn

)
(1)

In this equation, Xn is the set of inputs of the discriminator, and Cn is
the conditional vector. D(Xn|Cn) returns the probability of Xn being a real or
synthetic sample by taking Xn and Cn as inputs. Note that Xn in this equation
is composed of two different types of data sources:

Xn =

{
Xn if inputs are real samples,

G(Zn|Cn) if inputs are synthetic samples.
(2)

Correspondingly, the yn takes two different values, dependent upon the source
of the sample in Xn,

yn =

{
1 if inputs are real samples,

0 if inputs are synthetic samples.
(3)

The generator loss is also formulated with cross entropy as below:

LossG(Zn|Cn) = −CE
(

D
(
G(Zn|Cn)|Cn

)
,1

)
(4)
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where the input G(Zn|Cn) is the synthetic samples, and its corresponding pre-
dictions are D

(
G(Zn|Cn)|Cn

)
. In calculating the loss of the generator, the label

of a synthetic sample is held constant as 1 s, since the goal of the generator is
to generate realistic-enough samples such that the discriminator can no longer
distinguish them from the real samples.

4 Experiments

Despite the model that can be optimized according to the objective function
defined in Sect. 3, the loss cannot objectively reflect the convergence of the train-
ing progress or the quality of generated samples [12]. To determine when to stop
training models is a well-known and up in the air question in the GAN study.
Unlike many image-based GAN projects, such as deepfake [22] and GauGAN
[23], the visual verification of synthetic time series as outputs does not give us
much evidence as to whether the generated data are realistic or not. In this
section, we present three types of evaluation methods, in both qualitative and
quantitative metrics, to verify the effectiveness and correctness of the CGAN
model.

4.1 Experimental Settings

We have implemented our model using the TensorFlow 2.0 library [24], and
the code can be found at our repository for the project1. After we explored
various settings based on the defined objective function, we found that using the
Adam Optimizer for the generator and the Gradient Descent Optimizer for the
discriminator produced our best results. Moreover, we concluded our parameter
settings of the learning rate to 0.1, the LSTM hidden size to 100, and the batch
size to 32. The model is trained with 300 epochs, and intermediate models are
saved every five epochs. In Sects. 4.2 and 4.3, we utilize 1, 254 real flare samples
in partition 1 of SWAN-SF and 1, 254 synthetic samples generated by the CGAN
model in our evaluations. In Sect. 4.4 though, we utilize the entire partition 1,
including 1, 254 real flares and 72, 238 no-flare samples, and generate 70, 984
synthetic flare samples to balance the training dataset. More details regarding
the experimental setup will be presented in that section.

4.2 Evaluation Using the Distributions of Statistical Features

To provide a statistical evaluation for our model, we utilize the statistical features
extracted from the time series data, including the mean, median, and standard
deviation statistics. For visualization, we construct frequency distributions of
these values for both the real input data and the synthetic data produced through
binning the values into 20 equal-width bins. It is our assumption that if the
distributions of the statistic values for both the real data and generated data are
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Fig. 2. Columns (A) and (B) show the distributions of three features, including mean,
median, and standard deviation, of TOTUSJH at two intermediate epochs with a bin
size of 20. Red bars stand for the real data, and blue bars stand for the synthetic data.
Specifically, (A) is the result of the model at the 50th epoch, and (B) is the result of the
model at the 250th epoch. Column (C) shows the distributions of KL divergence scores
calculated by comparing distributions of synthetic samples and real samples across all
intermediate models divided into six groups. (Color figure online)

similar, then the generated samples should be similar enough to perform well for
our final task of producing minority class samples for model training.

We have conducted statistical feature evaluation on all the physical param-
eters, but for brevity, we present only the results of TOTUSJH. The columns
(A) and (B) in Fig. 2 show the distributions of three features evaluated based
on two intermediate models saved in the training process. (A) is resulted after
training 50 epochs, which is the last model of the first group (1–50 epoch), and
(B) is resulted after training 250 epochs, which is the last model of the fifth
group (201–250 epoch). From (A) to (B), it can be found that the generator can
gradually produce time series which have similar statistic attributes to the real
data. Additionally, we calculate the Kullback–Leibler (KL) divergence between
distributions of real data and generated samples with all features at different
epochs. We observe, as shown in column (C) of Fig. 2, that the KL divergences
of all three features are decreasing as training progresses, which means that the
two distributions are getting more and more similar as the model evolves. We
found that models between the 201–250 epochs achieve the best performance,
with lower KL divergence for the mean, median, and standard deviation value
distributions. We also see that the variance between the results produced by

1 https://bitbucket.org/gsudmlab/mvts-gann.

https://bitbucket.org/gsudmlab/mvts-gann
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intermediary models trends downward until we surpass the 250 epoch mark.
This is regarded as the first criterion of the model selection in this study.

4.3 Evaluation Using Adversarial Accuracy

The Adversarial Accuracy, as formulated in Eq. 5, is put forward by Yale [25],
which is used for comparing the similarity of two sets of data samples.

AATS =
1
2
(
1
n

n∑
i=1

1(dTS(i) > dTT (i)) +
1
n

n∑
i=1

1(dST (i) > dSS(i))) (5)

In the definition, the variable T stands for the set of real data, and the vari-
able S stands for the set of synthetic data. For calculating 1(dTS(i) > dTT (i)),
each real sample from T are compared with all synthetic data points in S to cal-
culate the shortest distance dTS(i), and compared with all the other real data
points in T to calculate the shortest distance dTT (i). The most straightforward
distance metric is the Euclidean distance which is our choice in this study as
well. The shortest distance generally means the highest similarity between two
data points. If dTS(i) > dTT (i), it means no synthetic data point can be found
that is more similar to the current real data point than other real data points.
Otherwise, a synthetic data point, which is more similar to the current real data
point, can be found. The dTS(i) < dTT (i) indicates a realistic samples is gener-
ated. The second part, 1(dST (i) > dSS(i)), is implemented in a similar manner,
except that here each synthetic sample will be compared with not only all the
real samples but also all the other synthetic samples. Overall, the best balance
result of Adversarial Accuracy should equal 0.5, which implies the generator can
generate realistic samples.

Fig. 3. The box plots show the distributions of Adversarial Accuracy of three features,
including mean, median, and standard deviation, of TOTUSJH evaluated with all
intermediate models by divided into six groups.

In our experiments, each time series is represented by extracting statistical
attributes of the mean, median, and standard deviation. Then, we utilize each
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attribute to calculate the Adversarial Accuracy among all samples using Eq. 5
with all intermediate models. Figure 3 shows the results of the three statistical
features of TOTUSJH. Through observing the box plots, we find that the models
between 201 to 250 epochs can achieve 0.55 in mean, 0.60 in median, and 0.68 in
standard deviation on average, which shows that the CGAN model can gener-
ate synthetic samples by maintaining a good balance between underfitting and
overfitting with real samples. Moreover, the Adversarial Accuracy results have a
consistent conclusion with the KL divergence experiment in Sect. 4.2 regarding
the model selection.

4.4 Evaluation Using SVM Classifiers

In this section, we evaluate how well the generated data remedy the class-
imbalance issue in classification of flaring and non-flaring instances of SWAN-SF.
First, we train the generator on partition 1 of SWAN-SF, with the four mag-
netic field parameters mentioned in Sect. 2.3. The outputs of the generator are
the synthetic multivariate time series most similar to the actual multivariate
time series of flares. Then, we move to train two classifiers: one on the highly
imbalanced real data without any change, and the other, on the data that is
made balanced by adding synthetic samples. Of course, the synthetic samples
are only used for the purpose of training, and the validation and test sets are
made entirely of real data. We consider the former as the baseline. The only
difference between the two classification strategies is that they are trained with
different training datasets.

Both classifiers are trained on partition 1 and evaluated on partitions 2, 3,
and 5. Partition 4 is used for tuning hyperparameters. We choose the SVM
as the standard classifier for both classification tasks with the same settings
that conclude the hyperparameters C and γ to 0.25 and 0.25. For preprocessing
of SWAN-SF, we linearly transform all five partitions to the range [−1, 1] for
training the CGAN model and SVM classifiers.

Considering the flare forecasting problem that we approach is in fact a rare-
event classification task, choosing a proper evaluation is important. From years
of exploration, domain experts have come to agree on the effectiveness of two
metrics, namely the true skill statistic (TSS) [26] and the updated Heidke skill
score (HSS2) [27] as shown in Eq. 6 and Eq. 7.

TSS =
tp

tp + fn
− fp

fp + tn
(6)

HSS2 =
2 · ((tp · tn) − (fn · fp))

(tp + fn) · (fn + tn) + (fp + tn) · (tp + fp)
(7)

As the forecasting results reported in Fig. 4, we observe that the performance
of the classifier trained on the training dataset balanced using our generated
synthetic samples is remarkably higher than that of the baseline classifier, by
both metrics, TSS and HSS2. This observation confirms that the model gen-
erally performs best when classes in the training dataset are roughly equal in
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Fig. 4. This is the evaluation of flare forecasting based on SVM classifiers. The Base-
line experiment (Left) is trained on partition 1 (imbalanced) of SWAN-SF, and the
CGAN experiment (Right) is trained on the balanced partition 1 by adding synthetic
samples generated by the CGAN model. Both experiments are evaluated on the same
test dataset: partitions 2, 3, and 5 of SWAN-SF. From the results, we find notable
improvements in terms of TSS and HSS. This experiment shows the CGAN can be
considered as an effective remedy for tackling the class imbalance issue.

size. Specifically, the CGAN classifier results in an over 20-fold improvement
compared to the baseline experiment in terms of TSS (an increase from 0.04 in
average to 0.81). Moreover, the HSS2 improves an over 5-fold improvement from
0.08 to 0.45. The experiment results show that the CGAN model can successfully
capture statistical features of real MVTS samples by learning the data distri-
bution and, therefore, generating realistic MVTS samples. Overall, the CGAN
model can be regarded as an effective remedy for tackling the class imbalance
issue.

5 Conclusion and Future Work

In this project, we utilized the conditional generative adversarial network
(CGAN) to overcome the class imbalance issue with a multivariate time series
dataset. We generated synthetic samples and evaluated them by conducting two
sets of experiments: First, experiments based on the data distributions of sta-
tistical features and the Adversarial Accuracy verified that synthetic samples
are indeed similar to the real data. Next, our classification experiment showed
that generating synthetic samples of the minority class in order to balance the
training dataset can remarkably boost the performance of classification mod-
els. Therefore, we concluded that the CGAN method can be considered as an
effective remedy for tackling the class imbalance issue in flare forecasting.

Of course, this study is only the first attempt towards generating a reliable
synthetic dataset with meaningful physical features. There are still many aspects
to be improved upon, such as incorporating an advanced loss function of Wasser-
stein GAN, introducing the representation learning of Info GAN, or exploring
more complex structures of the generator and the discriminator.As our future
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work, we plan to compare the presented approach with other class-imbalance
remedies including simple oversampling and undersampling strategies, in order
to provide more insights into the effectiveness of the CGAN approach. Further-
more, exploring and interpreting the meaning of synthetic samples from the
astrophysics point of view is also a worthwhile topic that we wish to investigate
in the future.
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Abstract. One of the greatest challenges facing researchers of machine
learning algorithms nowadays is the desire to minimize the training time
of these algorithms. One of the most promising and unexplored struc-
tures of the neural network is the Restricted Boltzmann Machine. In
this paper, we propose to use the BBTADD algorithm for RBM train-
ing. The performance of the algorithm has been illustrated on one of the
most popular data sets.

Keywords: Restricted Boltzmann Machines · Drift detectors · Neural
networks

1 Introduction

It is not hard to see that the development of machine learning techniques is
hardly related to the size of analyzed data. If we take a look on a state of the art
of modern neural networks we can find that there were trained for a relatively
very long time. The authors of AlexNet trained their network five to six days
[19], and VGG - two to three weeks [31]. Of course, nowadays computers and
software allow to train those network significantly faster, however, the number of
the stored data is still increasing. According to [11] over 70% of data are useless,
but currently, only 2% of stored data are analyzed. It means that there is about
20% gap of data that are sored; they carry on some useful information, but still
are unanalyzed. It shows that if we want to create more accurate models, we will
be forced to create deeper architectures and analyzed more data. To minimize
the cost of those analyses we should enhance infrastructure, using GPU, or TPU,
but it is also important to propose a new algorithm that can significantly reduce
the time of model training [2].

If we are aware that we have to analyze a huge amount of data, and we
can assume that part of those data is redundant, it seems reasonable to try to
choose only part of them, let’s say the most important data elements. Most neural
networks are trained with the epoch based approach. The data elements for the
training set are subsequently put to the input of the neural network to obtain

This work was supported by the Polish National Science Centre under grant no.
2017/27/B/ST6/02852.

c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 308–317, 2021.
https://doi.org/10.1007/978-3-030-87986-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87986-0_27&domain=pdf
http://orcid.org/0000-0001-7182-1349
http://orcid.org/0000-0001-6960-9525
https://doi.org/10.1007/978-3-030-87986-0_27


The Streaming Approach to Training Restricted Boltzmann Machines 309

prediction, and in a back phase, the weights are updated. As a consequence,
many data elements (e.g. those correctly classified) will be processed contributing
only to insignificant changes in the neural network. It seems to be a lack of
time. On the other hand, we cannot permanently delete those elements from the
training set. During the initial epochs of training, the neural network adjusts
its parameters to cover the general concept of the considered issue. When the
network starts to stabilize then more detailed information is needed to obtain
the best accuracy of the model. Most often this is done by decreasing a learning
rate after some time of training. It is known that during the training of neural
networks importance of particular data elements can be changed.

Based on the above-mentioned reasons, our goal is to propose an approach
to training a neural network, that will be able to: 1) automatically select the
essential data elements, 2) detect a moment when the importance of the data is
changing, 3) reduces the time of training (understood as the ratio of the model
accuracy to the number of processed elements).

The various approaches can be used to train various types of neural networks,
as they are designed for different issues. To mention only the most vivid exam-
ples, convolutional neural networks (CNN) are most often applied to images
[20], natural language processing and classification [27], recurrent neural net-
works [24], [34] are a good choice for speech recognition, and autoencoders to
feature extraction. One of the most promising models is Restricted Boltzmann
Machines (RBM). This is a type of the two-layer neural network, where each
neuron in the visible layer is connected to every neuron in a hidden layer, but
there are no connections between neurons in the same layer. The special feature
of these networks is that the signal is sent back and forth between the layers.
RBMs can be seen as a special type of autoencoders. It finds much applica-
tion, e.g. in recommender systems [30], and is the base to create more complex
structures like Deep Belief Networks [18].

In this paper, we are trying to apply the fast approach to neural network
training (previously applied to CNN [5] and autoencoders [7]) to work with
RBMs. To present the effectiveness of the proposed algorithm, the simulations
were carried on the real-world dataset. The rest of the paper is organized as
follows. In Sect. 2, the related work about the application of RMBs and tech-
niques to detect changes in data, are presented. Section 3 presents details about
proposed algorithm. Simulation results are depicted in Sect. 4, and the paper is
concluded in Sect. 5.

2 Related Works

Since RBMs have been proposed some time ago [32], they seem to be one of the
most promising structures of neural networks, which still focus the attention of
many scientists [13]. They are developed in many ways. In [29] the authors con-
cidering the application of dropout during training of RBMs. In [26] the authors
investigate the importance of temperature in Boltzmann-related distribution for
Deep Boltzmann Machines. On the other hand, they found many applications. In
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[8] the authors used RBMs for intrusion detection in the context of smart cities.
The application to detect malicious attacks can be found in [21]. Authors of [23]
found it useful for simulating complex wavefunctions in quantum many-body
physics. A recent overview of RBMs is presented in [33].

Data streams are possible infinite sequences of data which distributions can
change over time. Researchers from many years are trying to find the best method
to detect the moment of changes in a coming data. For this purpose, a few tech-
niques have been proposed, see e.g. [9]. One of the most popular is the Drift
Detection Method (DDM) [10] that monitors the correctness of classification
by the current model. Treating observations as a result of Bernoulli trials, the
authors propose a statistical test to inform about the warning or alarm states.
Another approach is a procedure based on the ADWIN algorithm [1] and the
Page-Hinkley test [25]. In [4], the authors proposed the WSTD algorithm, which
applied the Wilcoxon rank-sum statistical test to improve false positive detec-
tion. The method based on a random forest algorithm, and depending decision on
the measures of features importances has been proposed in [6]. The application
of various diversity measures to drift detection is investigated in [22].

It should also be noted that several authors tried to merge the fields of deep
learning and data stream mining. In [3] the authors combined the evolving deep
neural network with the Least Squares Support Vector Machine. Deep neural
networks were also successfully applied in semi-supervised learning tasks in the
context of streaming data. In [28] the idea was to train the Deep Belief Network
in an unsupervised manner based on the unlabeled data from the stream. Then,
few available labeled elements were used to occasionally fine-tune the model to
the current data concept. In [14] and [15] the authors proposed to apply the RBM
as a concept drift detector. It was demonstrated that the properly learned RBM
can be used to monitor possible changes in the underlying data distribution.
This method was further analyzed from the resource-awareness perspective in
[17] and missing data perspective in [16].

3 The BBTADD Algorithm for RBMs

The main idea of this paper is mainly based on the BBTADD algorithm proposed
in [5], which is a combination of the boosting technique with drift detectors. For
convenience let us introduce some notations.

Let D be a set of d-dimensional feature vectors Xi for i = 1, . . . , n, i.e.

D = {Xi|i = 1, . . . , n,Xi ∈ A}, (1)

where A is a d-dimensional feature space. To each data element, a new factor
has been added to model a probability of drawing (pod) from the training data.

D′ = {(Xi, wi)|Xi ∈ D,wi ∈ (0, 1)}. (2)

Now we can create a possibly infinite stream of data S by subsequent drawing
data element concerning a probability distribution given by pod {wi}ni=1

St = (Y1, . . . , Yt|Yi = (Xji , wji), 1 ≤ i ≤ t, 1 ≤ ji ≤ n), (3)

where t is the number of the elements coming from the stream.
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3.1 Background of RBMs

As it was mentioned in Sect. 1, the RBM is a type of neural network consisting
of two layers. The first one, a visible layer, is consists the same number of the
neuron as the dimension of data elements. They are designed to process binary
data. The number of neurons in a hidden layer M can be chosen by the user
(see Fig. 1). The weights connecting neurons of opposite layers allow sending
a signal in both ways (from visible to the hidden layer and from hidden to
visible layer). Let us denote the weight between the i-th neuron of the visible
layer with the j-th neuron of the hidden layer by ci,j . Then the operation of the
RBM can be partitioned into two-phase. The first phase, where the visible values
v = [v(1), ..., v(d)] are given, then values of hidden neurons h = [h(1), ..., h(M)]
are established with probability equal to

Fig. 1. The schema of the RBM

P (h(j) = 1|v) = σ(
d∑

i=1

ci,jv
(i) + bj), (4)

and the second (reconstruction) phase, where the values of visible neurons v̂ =
[v̂(1), ..., v̂(M)] are established with probability equal to

P (v̂(i) = 1|h) = σ(
M∑

j=1

ci,jh
(j) + ai), (5)

where σ is a sigmoid function, and ai and bj are related to the bias in neurons
of the visible and hidden layer, respectively.

The RBMs is energy-based model [13] and the energy function is given as
follows.

E(v,h) = −
d∑

i=1

v(i)ai −
M∑

j=1

h(j)bj −
d∑

i=1

M∑

j=1

v(i)h(j)ci,j (6)
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Then the probability that the RBM is in a given state is given by the Boltz-
mann distribution

P (v,h) =
exp (−E(v,h))∑

v∈A

∑
h∈{0,1}M

exp (−E(v, h))
. (7)

The RBM can be trained by minimizing the negative log-likelihood

C(v) = − log (P (v)), (8)

what can be done in a mini-batch manner with the application of the stochas-
tic gradient descent method. Then the weights are updated according to the
formulas

ci,j := ci,j − η(Erecon[v(i)h(j)] − Edata[v(i)h(j)]), (9)

ai := ai − η(Erecon[v(i)] − Edata[v(i)]), (10)
bj := aj − η(Erecon[h(j)] − Edata[h(j)]), (11)

for i = 1, . . . , d and j = 1, . . . ,M , where η > 0 is the learning rate and Erecon is
an estimator of the expected value with respect to the current model obtained
by contrastive divergence [12] and is Edata an estimator of expected value with
respect to the current mini-batch. More details about training RBM can be found
in [13]. In this paper we merge Formulas (9)–(11) with the procedure proposed
in [5].

3.2 Streaming Approach

For the network to be trained only on the most difficult to reproduce data (i.e.
those for which RBM is capable of high energy), instead of training the model on
mini-batches created from consecutive data, the elements are each time sampled
from the training set. The sampling depends on the weights wi, i = 1, ..., n. Let
us denote the size of the mini-batch as N . To set the initial values of the weights
wi, during the first two epochs, the data were processed in the epoch-based
approach. Then the values of the weights are established based on the value of
cost function

v′
i = tanh(C(Xi))/Mi, (12)

where Mi indicates the number of times the i-th data element was drawn. Big
values of the cost function indicate a higher value of weight. To ensure that
weights define a probability distribution they have to be normalized.

vi =

{
v′
i/Z, for xi ∈ B

vi/Z, for xi ∈ D\B
(13)

where Z is a normalization factor, given as

Z =
∑

{v′
i|Xi∈D}

v′
i. (14)
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The mini-batches are subsequently processed until a stopping criterion is
fulfilled. As this approach may result in a constant sampling of the same data,
there should be used a method that will be able to detect when it needs to
re-initiate the sampling.

One of the best tools for this is the CUSUM algorithm, given by the following
formula

{
Cus0 = 0,

Cusi = max(0, Cusi−1 + C(Bi−1) − C(Bi) − α),
(15)

for i = 1, 2, . . . , where C(Bi) is an average of the cost function for the data
elements from the i-th mini-bath and α is a fixed parameter. In the case that
Cusi exceeds the value of the threshold λ, then the change is detected, and
weights wi have to be re-initialized to equal values.

The BBTADD (Boosting-Based Training Algorithm with Drift Detector)
algorithm for RBM is presented in Algorithm 1.

Input: S - data stream, N - batch size, α, λ
1 CuSum = 0 ;
2 Collect a new batch B from the stream S;
3 for every data element in B do
4 Increase counter of drawn of the current element;
5 Train the network on current element;
6 Compute cost function for a current data element;
7 Update wi according to (12)

8 for every data element in D do
9 Update pods according to (13)

10 Compute cost function on a validation set;
11 Update CuSum according to (15);
12 if CuSum > λ then
13 Reinitialize pod’s values;
14 Return to line 1 ;

15 else
16 Return to line 2 ;

Algorithm 1: The BBATDD for RBM algorithm.

4 Experimental Results

To demonstrate the usefulness of the proposed method, the application to denois-
ing images was investigating. The simulations were carried out on one of the
most popular real datasets, e.g. the MNIST data set. The dataset consists of
images of hand-drawn numbers. The dataset is split into train and test sets, with
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60 000 and 10 000 data elements, respectively. The training of the network was
compared to the RBM trained with the traditional, epoch-based approach.

The processed images have a resolution 28 × 28, so each image can be seen
as a vector of length equal to 784. As its coefficients take values from 0 to
255, they have to be preprocessed to adjust data to RBM. In this paper, each
coefficient higher than zero was set to 1. In consequence, we obtained more raw
data. Examples of the original and preprocessed images are depicted in Fig. 2

Fig. 2. Examples of original (left-hand side) and preprocessed images (right-hand side)

Then the noise was added to the images. For this purpose, the value of the
coefficients for each pixel has been changed from 0 to 1 with a probability equal
to 0.25. The data prepared in this way was fed to the RBM input. Next, the
model was trained using the BBTADD for the RBM algorithm. The network
consisted of 784 neurons in the visible layer and 256 neurons in the hidden layer.
It was trained by 46 789 batches (each with 128 elements), which corresponds to
100 epochs. A sample of effects for images from the test set is depicted in Fig. 3.
The presented result seems to be satisfactory.

Finally, the averaged values of the cost function calculated for successive
batches for the proposed and epochal approaches were compared. As it is pre-
sented in Fig. 4, the averaged value of the cost function for the proposed approach
decreases faster compared to the epochal approach. Moreover, changes between
its values for subsequent mini-batches seem to be more stable.
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Fig. 3. Examples of input (left-hand side) and output images (right-hand side)

Fig. 4. The averaged cost function computed on the test set for subsequent batches

5 Conclusions

In this paper, we explored the possibility of the application of a streaming
approach to training Restricted Boltzmann’s Machines. For this purpose, the
CUSUM drift detector, which is one of the most popular techniques in data
stream analysis, was used. As a result, we obtained the algorithm that allows us
to minimalize the cost function faster than the classic approach. On the other
hand, this algorithm requires additional calculations related to the sampling of
data from the training set. Further work can be directed to relaxing the compu-
tational burden of the presented approach.
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Abstract. Many algorithms have been proposed for detection possible deviations
and/or narrow changes in the data. A key problem is verification whether the char-
acteristics of information sources have changed. If the change occurred then we
would like to know the essence of this change and when or where it happened.
Nowadays, well-known methods of mathematical statistics have been success-
fully applied to address this problem. Recently, a new approach based on non-
parametric regression estimation has been proposed. The idea based on Parzen
kernel has been studied in depth. This article presents an alternative approach for
detecting abrupt change in data based on nonparametric orthogonal series esti-
mation. The proposed method is validated in experiments on noisy data.

Keywords: Abrupt change detection · Nonparametric regression · Orthogonal
series estimation

1 Introduction

In practice we are often interested in determining whether stored or transmitted data
are genuine, or reliable. It is important to be convinced that information sources did not
change their characteristics in time, for instance. We are very interested in determining
the essence of the changes, if they have occurred, as well as determining where and
when they have arisen. Statistical tests or model-building strategies are usually caused
by an incomplete mathematical description of the processes generating the data, espe-
cially observed in the presence of an additive random noise.

In our paper, we focus on abrupt, narrow changes, called jumps or edges. The aim
is to detect a significant aberration in the data observed so far.
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The response to the detected change depends obviously on the problem at hand.
In many cases, they can indicate a problem that requires an urgent response and alert.
Examples of such important problems include: abnormalities in physiological parame-
ters of hospital patients, abrupt changes in the stock market, changes in geological phe-
nomena, especially in seismology, and in several industrial processes. Jump increase in
the network traffic, various sensor data, can precede probable hacker attack. This may
indicate a general network insecurity and system risks.

But there are many tasks where finding sudden changes is needed to achieve the
desired result. For instance narrow changes of light in the pictures or videos may be
applied in pattern recognition systems, detecting edge curves in satellite photos can
help in e.g. water resources exploration, or in cartography in preparing maps of certain
areas, etc.

2 A Brief Survey on the Used Methodologies

There are known and successfully applied the several algorithms developed to detect
abnormalities or deviations in the data. The brief review of the edge detection tech-
niques in image processing can be found in, e.g., [2,66]. The authors described the
methods of abrupt change detection via classical gradient-based operations involving
first order derivatives such as Sobel, Prewitt, Robert's [43] and Canny [3]. The distri-
bution of intensity values in the neighborhood of given pixels determines the probable
edges. The algorithms using second order derivatives such as the Laplacian and Gaus-
sian filtering for detecting of zero-crossings also allow edge detection in images [40].

The natural approach is to model the data via densities or distributions [9]. The sig-
nificant features of the process or object could be compared using different sample sets
by using mathematical statistics and the representative templates like means and/or lin-
ear regression. This comparison may result in detection of change in certain parameters.

More general criteria applying mean square error method are also often used to
detect changes. Many statistical tests like the Kolmogorov-Smirnov test or Wilcoxon
test have been exploited, for instance (see [6]). The main idea is to compute a scalar
function of the data (so-called test statistics) and compare the values to determine
whether a significant change (defined before) has occurred. The Kullback-Leibler dis-
tance [37] (also named relative entropy) is one of the most common distribution distance
measures. The application of the Kulback-Leibler divergence one may find in e.g. [16].
A compromise between Hoteling (parametric detector) and non-parametric Kulback-
Leibler divergence was also presented in [16] using, among others, the Mahalanobis
distance and Gaussian mixture of distributions.

The enumerated methods are efficient when the data volumes are not very large.
They are usable off-line. They are not applicable directly for data streams. One way
of detecting change is to compare likelihood between the subsequent examples using
adjacent sliding time-windows, for previous elements in the stream and the further ones.
The point p could be estimated when we observe a decreasing likelihood.

Several interesting approaches concerning various regression models for stream
data mining are studied in [11–13,30,32,42,56–59].

The objects and/or processes in general can be described mathematically as a func-
tion R(.) of the d-dimensional vector of random variable X. Then the methods based
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on regression function analysis can be applied. An abrupt change of the function R(.)
value at point p may be recognized as a jump discontinuity of the function. In one
dimensional case (d = 1) it may be observed as a steep change in function value. The
main problem is to determine the point p at which this occurs. In case d > 1 the change
location (edge) takes form of a curve in d-dimensional space (across which R has jump
discontinuity). It is more difficult to establish it and the calculation requires much more
computational effort.

This article concerns techniques useful in the wide range of fields such as classi-
fication, computer vision, diagnostics etc. (see e.g. [4,7,25–28,36,48,49,63,64,67,69,
70]). The approach based on regression analysis is developed as an attractive tool also
in classification and modelling of objects (e.g. [38,39]), forecasting of phenomena (e.g.,
[5,14,35,46]) and entire methodology of machine learning like neural networks, fuzzy
sets, genetic algorithms (e.g. [8,31,41,60,61]). Nonparametric approach to analysis and
modelling of various systems one may found e.g. in [10,29,47,50,53–55].

In this paper, we focus our attention on the challenge of abrupt change detection
(also called edge detection problem) by presenting a new original approach.

3 Algorithm for Abrupt Change Detection Using Orthogonal
Series

The goal of this paper is to introduce a new method of edge detection derived from the
nonparametric approach based on orthogonal series. Algorithms use the estimates of
unknown functions and their derivatives from the set of noisy measurements.

We consider model of the object in the form:

yi = R(xi)+ εi, i= 1, ...,n (1)

where xi is assumed to be the d-dimensional vectors of deterministic input, xi ∈ Rd , yi
is the scalar random output, and εi is a measurement noise with zero mean and bounded
variance. R(.) is assumed to be completely unknown function.

We investigate the fixed-design problem (see, e.g., [15]) which means that the exper-
imenter decides on the input values set. The domain area D (the space where function
R is defined) is partitioned into n disjunctive nonempty sub-spaces Di and the measure-
ments xi are chosen from Di, i.e.: xi ∈ Di. For instance, in one-dimensional case let the
D= [0,1], then ∪Di = [0,1], Di∩Dj = /0 for i �= j, the points xi are chosen from Di, i.e.:
xi ∈ Di.

The set of input values xi (independent variable in the model (1) are chosen by the
experimenter in the phase of recording data e.g., equidistant samples of ECG signal in
time domain, or stock exchange information, or internet activity of the web/ftp server
logs, etc. These data points should provide a balanced representation of function R in
the domain D. The maximum diameter of set Di should tend to zero if n tends to infinity
(compare convergence conditions in, e.g., [17,18,22]).

We start with estimator R̂n (x) of function R(.) at point x based on the set of mea-
surements yi, i= 1, ...,n.
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The orthogonal series based algorithm is defined in one-dimensional case by:

R̂n(x) =
N

∑
k=0

gk(x) · âk (2)

where

âk =
n

∑
i=1

yi

∫
Qi

gk(u)du (3)

and gk,k= 0, ...,N is an orthogonal series (for more discussion of the orthogonal series
refer to the next paragraph). Equations (2) and (3) can be rewritten in compact formula

R̂n(x) =
N

∑
k=0

gk(x)
n

∑
i=1

yi

∫
Qi

gk(u)du (4)

Equation (4) can be presented in the form

R̂n(x) =
n

∑
i=1

yi
N

∑
k=0

[∫
Qi

gk(u)du
]
·gk(x) (5)

Equation (5) describes an estimate of function R(·) at point x defined as the weighted
sum of observations yi.

The most known and commonly used in function recovery related problems is the
trigonometric Fourier orthonormal system. The Hermite orthogonal system approach
can be also applied in regression estimation (see, e.g., [24]), and/or the orthonormal
systems constructed by orthonormalizing piecewise polynomials, see, [34]. For more
information on orthogonal series theory and applications see e.g. [1,33,52,65,68,71].
In this work, the proposed algorithm uses the Fourier cosine orthogonal series (see, sim-
ulation example). Recently have been also studied another nonparametric algorithms
applying the weights defined using the Parzen kernel, see, e.g. [20,21,44,45].

The main idea of the paper is to deduce the dynamics of changes from the course
of the first derivative estimated from sample. The more rapidly the change occurs - the
higher the first derivative (or speed). Using only the first derivative we need the appro-
priate thresholding strategy to detect jumps in function R, however, applying simul-
taneously the second derivative can help to determine edges directly by detecting the
zero-crossing point.

The algorithm for estimating the first derivative is based on differentiation of the
functions gk(x) in expansion (5):

R̂′
n(x) =

n

∑
i=1

yi
N

∑
k=0

[∫
Qi

gk(u)du
]
·g′

k(x) (6)

Subsequently, the estimate of m–th derivative of the regression function in point x can
be defined as follows:

R̂(m)
n (x) =

n

∑
i=1

yi
N

∑
k=0

[∫
Qi

gk(u)du
]
·g(m)k (x) (7)
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The nonparametric approach in application to estimation of unknown functions and
their derivatives by the Parzen kernel methods was previously proposed and studied in,
e.g., [19,23].

4 Simulation Tests

Next we present simulation results of detection of the abrupt change points for trial
one-dimensional case. The function chosen for testing has three discontinuities (simi-
lar to this proposed by Romani et al. in [51] and not detailed here). As an example the
orthogonal trigonometric Fourier cosine series were applied in the estimation algorithm.
The set of measurements has n= 500 sample points artificially generated with additive
noise. Next, the function and its first derivative estimates were calculated using algo-
rithm (6). Figure 1 presents three diagrams where different numbers N of Fourier series
components were used. The red marked points, signing the local maxima of the first
derivative, significantly of higher amplitude than neighboring ones, are the detected
jumps in function R()̇. The yellow marked point in upper diagram indicates the false
detection because of the too small number (N = 20) of components in series. Next two
diagrams show the proper points detected. Such result strictly relates with known Gibbs
phenomenon: when the approximated function has the discontinuity at the point p in the
Fourier series, the high frequency components arise, so the corresponding Fourier coef-
ficients take larger absolute values in this region. A suitable thresholding strategy could
be used to detect point p.

5 Conclusions

This paper considers the important problem of detection the sudden change occurred in
the function, and where or when it arise. The proposed algorithm is derived from the
orthogonal series nonparametric regression estimation techniques, with fixed-design of
unknown functions. Furthermore, our algorithm can scale up and it does not require the
samples to be uniformly spaced. The algorithm based on trigonometric cosine Fourier
series is presented in detail. The detection algorithm uses the first derivative estimates.
Simulation results showed in diagrams confirmed utility and of the proposed approach
in practical cases. From the presented Figs. 1 one may observe that the potential effec-
tiveness of the method improves when the Fourier series is longer i.e. when the number
N of its components is greater. The extension of the edge detection algorithm to multi-
variate case is planned in future works.
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Number of measurement points n=500, number of Fourier components N=20

Number of measurement points n=500, number of Fourier components N=30

Number of measurement points n=500, number of Fourier components N=50

Fig. 1. Simulation example: trial function jumps edge detection with respect to Fourier series
components number (Color figure online)
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41. Oded, K., Hallin, C.A., Perel, N., Bendet, D.: Decision-making enhancement in a big data
environment: application of the k-means algorithm to mixed data. J. Artif. Intell. Soft Com-
put. Res. 9(4), 293–302 (2019)

42. Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in
stream data mining? Information Sciences, Elsevier Science Inc., vol. 381, No. C, pp. 46–54
(2017)

43. Pratt, W.K.: Digital Image Processing, 4th edn. John Wiley Inc., New York (2007)
44. Qiu, P.: Nonparametric estimation of jump surface. Indian J. Stat. Ser. A 59(2), 268–294

(1997)
45. Qiu, P.: Jump surface estimation, edge detection, and image restoration. J. Am. Stat. Assoc.

102, 745–756 (2007)
46. Rahman, M.W., Zohra, F.T., Gavrilova, M.L.: Score level and rank level fusion for Kinect-

based multi-modal biometric system. J. Artif. Intell. Soft Comput. Res. 9(3), 167–176 (2019)
47. Rafajłowicz, E., Schwabe, R.: Halton and Hammersley sequences in multivariate nonpara-

metric regression. Stat. Probab. Lett. 76(8), 803–812 (2006)
48. Rafajłowicz, E., Wnuk, M., Rafajłowicz, W.: Local detection of defects from image

sequences. Int. J. Appl. Math. Comput. Sci. 18(4), 581–592 (2008)
49. Rafajłowicz, E., Rafajłowicz, W.: Testing (non-)linearity of distributed-parameter systems

from a video sequence. Asian J. Control 12(2), Special Issue, 146–158 (2010)
50. Rafajłowicz, W.: Nonparametric estimation of continuously parametrized families of proba-

bility density functions - Computational aspects. Wrocław University of Science and Tech-
nology, Wrocław, Preprint of the Department of Engineering Informatics (2020)

51. Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on RBF interpolation.
J. Comput. Appl. Math. 349, 532–547 (2019)

52. Rutkowski, L.: Orthogonal series estimates of a regression function with applications in sys-
tem identification. In: Grossmann, W., Pflug, G.C., Wertz, W. (eds.) Probability and Statisti-
cal Inference. Springer, Dordrecht, p. n/a, (1982). https://doi.org/10.1007/978-94-009-7840-
9 32

53. Rutkowski, L.: Application of multiple Fourier-series to identification of multivariable non-
stationary systems. Int. J. Syst. Sci. 20(10), 1993–2002 (1989)

54. Rutkowski, L., Rafajłowicz, E.: On optimal global rate of convergence of some nonparamet-
ric identification procedures. IEEE Trans. Autom. Control 34(10), 1089–1091 (1989)

55. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a wide class
of disturbances. IEEE Trans. Inf. Theory 37(1), 214–216 (1991)

56. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams
based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

57. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams
based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)

58. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining
data streams. Inf. Sci. 266, 1–15 (2014)

59. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining
based on the misclassification error. IEEE Trans. Neural Net. Learn. Syst. 26(5), 1048–1059
(2015)

60. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R., Rutkowski, L.: A
content-based recommendation system using neuro-fuzzy approach. In: International Con-
ference on Fuzzy Systems: FUZZ-IEEE, pp. 1–8 (2018)

61. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R.: Towards interpretabil-
ity of the movie recommender based on a neuro-fuzzy approach. In: Rutkowski, L., Scherer,
R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018.
LNCS (LNAI), vol. 10842, pp. 752–762. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91262-2 66

https://doi.org/10.1007/978-94-009-7840-9_32
https://doi.org/10.1007/978-94-009-7840-9_32
https://doi.org/10.1007/978-3-319-91262-2_66
https://doi.org/10.1007/978-3-319-91262-2_66


Abrupt Change Detection by the Nonparametric Approach 327

62. Rutkowski, L., Jaworski, M., Duda, P.: Stream Data Mining: Algorithms and Their
Probabilistic Properties. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-
13962-9

63. Rutkowski, T., Łapa, K., Nielek, R.: On explainable fuzzy recommenders and their perfor-
mance evaluation. Int. J. Appl. Math. Comput. Sci. 29(3), 595–610 (2019)

64. Rutkowski, T., Łapa, K., Jaworski, M., Nielek, R., Rutkowska, D.: On explainable flexible
fuzzy recommender and its performance evaluation using the Akaike information criterion.
In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1142, pp. 717–724.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36808-1 78

65. Sansone, G.: Orthogonal Functions. Interscience (1959)
66. Singh, S., Singh, R.: Comparison of various edge detection techniques. In: 2nd International

Conference on Computing for Sustainable Global Development, pp. 393–396 (2015)
67. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal con-

trollers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 91–100. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38610-7 9
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Abstract. In this article, the recommendation system for processing
signals was presented. It contains a database and two fuzzy modules com-
posed within the system. Based on the contextual knowledge provided
by the user, collected database, and fuzzy rules, the system suggests pro-
cessing methods and features. The article presents an evaluation of the
proposed system on a two-stage gearbox dataset. The system results are
a list of recommended processing methods and extracted features, which
allow for a more accurate data classification.
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1 Introduction

In the age of information, making decisions is a difficult task. The number of
choices is overwhelming, and it would take a long time to analyze all the possi-
ble options. To facilitate decision-making, engineers developed recommendation
algorithms based on soft computing methods. Examples include recommendation
of films [1–3] or products in e-commerce [4,5].
A similar problem often arises in Structural Health Monitoring (SHM), in which
engineering structures are subjected to continuous monitoring over extended
periods of time. The common approach requires the acquisition of large numbers
of time-domain signals (e.g., vibration signatures, waveforms, etc.), then perform
a processing chain including preprocessing with various filtration or domain-
changing techniques, feature extraction, and finally, setup of a classifier that
can provide autonomous decisions. Expert knowledge is required to choose and
configure methods correctly at each stage of this processing chain: This research
aims to automate the method-selection procedures based on a set of historical
processing chains.
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2 System Concept

The basic idea of the system involves decision-making based on an extensive
database of historical information containing similar objects and results of their
monitoring. In other words: the system proposes solutions that are likely to work
because they worked before on similar objects.

The schematics of the recommendation system is presented in Fig. 1, where it
is composed of 5 main blocks: the category and sub-category of monitored struc-
ture surveys, the list of context information surveys, structure selector blocks and
signal processing, feature selection blocks, and the database. The brown arrows
indicate the flow of information from surveys to specific blocks. The numbers in
Fig. 1 indicate a sequence of actions performed by the system.

A series of context information parameters define each monitoring object.
Utilizing this information, a measure of similarity is calculated between the ana-
lyzed structure and those stored in the database. As a result, the list of structures
with the highest similarity is selected. The system returns final results as a list
of recommended signal processing methods and features based on the signal
processing and features information from stored structures.

Fig. 1. Block diagram of system
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2.1 Structure Selectors

The block diagram of the structure selector is shown in Fig. 2. The completed
survey provided the context information in a vector form. Based on the category,
a single fuzzy system is selected with three categorized embedding dimensions:

– Embedding 1 - Variation of operational parameters,
– Embedding 2 - Method of conducting the experiment.
– Embedding 3 - Type of problem (Condition classification, Novelty detection,

Prediction),

The structures’ data for the selected category and sub-category was acquired
from the database as presented in Fig. 1. For each object from the database,
the Euclidean similarity measure is calculated. The described operation allows
to narrow down the number of considered structures. Afterward, the sub-system
assigns an embedding category. The smallest distance in one of the three embed-
ding dimensions is calculated. For this purpose, the modified Manhattan simi-
larity measure was applied:

Eman1D = max(exp(−|e1 − e1si|), exp(−|e2 − e2si|), exp(−|e3 − e3si|)) (1)

Where Eman1D is Manhattan similarity measure for single dimention,
e1, e2, e3 are values of 3 embeddings calculated by fuzzy logic system and
e1si, e2si, e3si are values of 3 embeddings for i-th structure aquired from database.

The system selects up to 5 structures with the highest similarity measure
greater than 0.5.

2.2 Signal Processing and Feature Selectors

Signal processing chains filter purpose is the proposition of signal processing
methods and types of features that permit an effective diagnosis. The block
diagram of the system is presented in Fig. 2. As a result of the completed survey,
the context information is quantitatively encoded in a vector. A single fuzzy
system is selected to assign a weight for each signal processing chain based on
the category. Thus the utility value is calculated, which can be express by the
equation:

U = (
n∏

i=1

wi)
1
n (2)

where wi is the weight factor of a method from the filter, n is the number of
methods in the signal processing chain. As a result of the filtration, the number
of signal processing chains is reduced.

In the next part of the algorithm, the probability of selecting a chain under
the condition of success diagnose is calculated.

P (ci) =
Ei

Nc
(3)
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Fig. 2. Block diagram of system selector and signal processing methods filtering.

where ci is i-th signal processing chain, Ei is the similarity value for i-th signal
processing chain, and Nc is the number of signal processing chains. Each signal
processing chain contains an attribute called the success of diagnosing, which
quantitatively describes chain effectiveness in diagnose. By utilizing this infor-
mation and the utility value, the probability of success (si) under the condition
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of the selection signal processing chain is given by

P (si|ci) =
di
Nc

∗ Ui (4)

Where di is success diagnose value of i-th chain, Nc is number of signal
processing chains and Ui is utility value.
The probability of selecting a chain can be expressed by introducing the Bayes
theorem.

P (ci|si) =
P (ci) ∗ P (si|ci)∑Nc

j=1 P (cj) ∗ P (sj |cj)
(5)

For situations where none of the structures fulfill similarity requirements,
the system filters all processing chains and assign utility values by applying
the Formula (2). Next, another fuzzy-based model proposes features to extract
from each processing chain. The probability of selecting a chain is calculated by
applying expressions (4) and (5) where P (ci) = P (cj) = 0.5.

Filtered processing chains are sorted in decreasing order of probability, and
presented to the user.

3 System Data

3.1 Context Information Surveys

The context information is provided by means of surveys filled by an experi-
enced operator. The diagnostic problem classes used for vibrodiagnostics cate-
gory include:

1. Variability of operational parameters
– speed variability: What is the speed variation?
• Integer number from 0 to 4
– load variability: What is the load variation?
• Integer number from 0 to 4
– speed order: By what order of magnitude the speed changes?
• Real number from 0 to 10.
– load order: By what order of magnitude the load change? Answer:
• Real number from 0 to 3.

2. Method of experimenting
– A vector including determination of sensor bandwidth and flags for the

presence of speed information, type, direction, and location of sensors.
3. Type of problem

– struct labels: Are there labels for structure states?
• Integer number from 0 to 4
– problem type: What is the type of problem?
• Integer number from 0 to 4
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3.2 Fuzzy Logic System for Structure Selector

The fuzzy system configuration for structure selector is presented in Fig. 3a. The
architecture of each system is a fuzzy tree. The single branch is designated to
evaluate the value of a single embedding.

Figure 3b presents detailed block diagram of the developed embedding
branches.

Fig. 3. Block diagram of: (a) structure selector model; (b) one of its branches.

The branch labeled Variability is a fuzzy tree composed of 2 Fuzzy sub-
systems. The first combines information about load with the speed variation to
form a hidden variable called difficulty. The second combines the calculated hid-
den variable with load and speed order to determine embedding value labeled
as variability. The branches for Experiment and Problem work in a similar
way.

3.3 Fuzzy Logic System for Signal Processing Filter

The fuzzy system configuration for signal processing and feature selectors are
presented in Fig. 4. Each system is a parallel fuzzy tree where a single branch is
designated to recommend a single processing method or feature. Each branch is
Mamdani based fuzzy system.
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Fig. 4. Block diagram of signal processing filter.

4 System Evaluation

This section contains the system’s proof of concept. A dataset has been devel-
oped for this purpose, where all structures belonged to subcategory gears which
was prepared for various parallel gearboxes. The database contains 28 one-stage
gearboxes operating in different conditions states. The total number of measure-
ments gathered in the database was 11680.

The prepared dataset allows the recommendation of processing algorithms
for other parallel gearboxes. This case is described in the following subsections.
However, hypothetical suggestions for different structure classes as pumps or
fans would be less effective as the system currently uses only data for gears.
Expanding the system with data from other monitored objects will increase its
generalization capabilities, i.e., it will allow it to provide sound recommendations
for different types of machines as well.

4.1 Test Structures

For the system evaluation, the dataset was obtained for a two-stage gearbox,
which schematics is presented in Fig. 5(a). The vibration signals were acquired
for multiple faults as missing tooth, root crack, spalling, and chipping tip with
five different levels of severity. The dataset was first presented in work [6].

The inputs vector for analyzed gearbox and 3 vectors for similar structures
are stored in Table 1.

4.2 Two Stage Gearbox Recommendation Results

The recommendation system result is a list of signal processing chains and corre-
sponding features. The list is presented in the Table 2. The system recommended
three different processing chains. To validate obtained results, a processing chain
was selected at random from the database.

The first chain is dedicated to the calculation of 3 features from the enve-
lope spectrum. In literature [7], the envelope analysis is convenient for detecting
cyclostationary components generated by faulty rolling-element bearings and
gears meshing.
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Fig. 5. Two-stage gearbox picture (left) and kinematic diagram (right) [6].

Table 1. Context information.

Question tag Gearbox Similar database objects Randomly selected object

speed variability 1 1 0 1 2

load variability 0 0 0 0 0

speed order 0 0.0071 0 0.02 0.4

load order 0 0 0 0 0

speed information 0 0 0 0 1

sensors bandwidth 20 25 25 25 40

sensors location 1 0 0 0 0

sensors direction 0 1 1 1 1

sensors type 0 0 0 0 0

struct labels 1 1 1 3 3

problem type 1 0 0 1 1

Similarity value – 0.6775 0.6769 0.6527 0.4698

The second one is the frequency spectrum analysis, which is fundamental in
terms of time signals.

The last of the proposed chains was developed for the velocity signal extrac-
tion. Such an analysis allows the detection of shaft damage, manifested in low
frequencies [8].

The features were utilized for a similar structure, where they revealed good
class separability.

The two processing chains presented in Table 2 were applied to data acquired
from the structure under investigation. The normalized results are shown in
Fig. 6. Figure 6(a) contains results for the recommended chains. Figure 6(b) pro-
vides comparison for a non-recommended processing. Every point corresponds
to a single measurement. The attached legend presents the labels containing
information about the structure state.
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Table 2. Signal processing algorithms and features recommended for two stage gearbox
and one signal processing chain selected at random from the database.

Signal processing methods chain Features

Recommended by system

A: linear detrending - signal
envelope - linear detrending -
spectrum

peak-to-RMS-A, Kurtosis-A,
Skewness-A

B: linear detrending - spectrum RMS-B, Skewness-B

C: linear detrending - highpass
filtration (10 Hz cutoff) -
integration - spectrum

RMS-C

Non-recommended by system

D: linear detrending -
demodulation - spectrum

peak-to-RMS-D, Kurtosis-D,
Shannon entropy-D

Fig. 6. (a) Three selected features obtained from recommended chains; (b) Three fea-
tures obtained from a not-recommended chain.

The data processing routines recommended by the system allowed for a good
separability of all the classes. In contrast, the non-recommended processing algo-
rithms resulted in significant overlap of the state classes, leading to a higher
misclassification rate. It appears that, while the system is not yet tested in a
blind trial and comparison with the capabilities of the human expert, its current
results are already far better than random guessing. They thus can be used as
a starting point for further optimization.

The results presented by the system are selected based on the previous results
for historical data. The proposed processing chains and features gained the high-
est probability value for the most similar gearboxes stored in the database. The
global minimum of the optimization criterion, i.e., the best possible separation of
classes, is unlikely because the system is incapable of proposing an entirely new
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processing chain and is restricted to working based only on historical capabilities
of the processing methods.

5 Summary and Conclusions

In this paper, the fuzzy-based recommendation system for context-aware signal
processing method choice was presented. The system structure was implemented
for testing purposes with a database containing information about gearbox mon-
itoring. The system was evaluated on a dataset obtained from a two-stage gear-
box, for which it proposed the processing recommendations. The analysis of the
results reveals that the recommendation is useful for damage classification algo-
rithms development because it allows building a decision space with clearly sepa-
rable clusters representing different faults. The system was tested on a condition
monitoring data, parallel gearbox in particular, but its general principle allow it
to be used for any typical condition monitoring or SHM scenario. However, the
database must contain many similar structures like the one under monitoring.
It is thus rather a population-based approach than a system for solving novel
problems.
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Centre for Research and Development in Poland under the research project no.
LIDER/3/0005/L-9/17/NCBR/2018.
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Abstract. In this paper, we propose the Convolutional Restricted
Boltzmann Machine (CRBM) as a tool for detecting concept drift in
time-varying data streams. Recently, it was demonstrated that the
Restricted Boltzmann Machine (RBM) can be successfully applied to
this task. A properly learned RBM contains information about the data
probability distribution. Trained on one part of the stream it can be used
to detect possible changes in the incoming data. In this work we replace
the fully-connected layer in the standard RBM with the convolutional
layer, composing the CRBM. We show that it is more suitable for the
drift detection task regarding the image data. Preliminary experimen-
tal results demonstrate the usefulness of the CRBM as a tool for drift
detection in data streams with such type of data.

Keywords: Convolutional Restricted Boltzmann Machine · Data
stream mining · Concept drift detection

1 Introduction

Data stream mining attracts attention of many machine learning researchers
around the world [2,4,7,10,18,24,25,27–32]. Data streams are potentially infinite
sequences of data, which often are fed into the system with very high rates.
Therefore, the properly designed data stream mining algorithms should take into
account the limited amounts of resources like memory or computational power
[3,11,20,37]. In the literature, there can be found many valuable data stream
mining algorithms based on some standard machine learning approaches, e.g. the
decision trees [5,18,33], neural networks [25,26,34] or ensemble methods [21,27].

The data stream can be denoted as an ordered sequence of data elements

S = (s1, s2, . . . ), (1)
c© Springer Nature Switzerland AG 2021
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In this paper, each data element is a D-dimensional binary vector

sn = [sn,1, . . . , sn,D] ∈ {0; 1}D (2)

If we consider image data, then this vector is formed into a 2-dimensional
array. It is very common that the distribution of data elements in the stream
change over time [6,8,9,12,35,36,38]. It is commonly known in the literature
under the name ‘concept drift’. Then, the algorithm should be either equipped
with a special mechanism allowing it to deal with possible changes or an external
drift detector should be applied. In this paper, we consider the latter approach
and we focus on applying the Restricted Boltzmann Machine as a concept drift
detector. The idea was presented in [16]. It was extended in [19] to make the
method more resource-aware. In [17] the mechanisms for dealing with missing
and incomplete data were introduced. In this paper, we continue this research
direction by replacing the RBM with the Convolutional Restricted Boltzmann
Machine (CRBM), which is better suited for image data.

The rest of the paper is organized as follows. The RBM is briefly recalled
in Sect. 2. In Sect. 3 the CRBM is described. In Sect. 4 the idea of data stream
monitoring using properly trained RBM or CRBM is presented. Preliminary
results obtained for the CRBM as a drift detector as well as its comparison with
the standard RBM are demonstrated in Sect. 5. Conclusions are drawn in Sect. 6.

2 The Restricted Boltzmann Machine

The RBM [15] is a neural network consisting of two layers of neurons. The visible
layer contains D neurons v = [v1, . . . , vD] and the hidden layer is formed by H
neurons h = [h1, . . . , hH ]. There are no inter-layer connections in the RBM. The
probability distribution of states (v,h) is defined using the energy function

P (v,h) =
exp (−E(v,h))

Z
, (3)

where Z is a normalization constant called partition function. The energy for a
state of neurons (v,h) takes the following value

E(v,h) = −
D∑

i=1

viai −
H∑

j=1

hjbj −
D∑

i=1

H∑

j=1

vihjwij . (4)

Here wij , ai and bj denote RBM weights, visible layer biases, and hidden layer
biases, respectively. The RBM is usually trained using minibatches of data. Let
St denote the t-th minibatch of size B

St = (sBt+1, . . . , sBt+B) , t = 0, 1, . . . . (5)

Then, the cost function, which is the negative log-likelihood in the case of the
RBM, for minibatch St can be calculated as follows

C(St) = − log P (St) = − 1
B

B∑

n=1

∑

h

log P (sBt+n,h). (6)
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The gradient of the cost function with respect to weight wij is given by (the
derivations can be found in e.g. [1,13])

∂C(St)
∂wij

=
∑

v,h

P (v,h)vihj − 1
B

B∑

n=1

∑

h

P (h|v = sBt+n)vihj . (7)

Because the first term on the right-hand side is intractable, the gradient can
be only approximated, using for example the Contrastive Divergence (CD) algo-
rithm [14]. In this paper, we propose to replace the RBM with the Convolutional
RBM [23] to create a concept drift detector more suitable for image data.

3 The Convolutional Restricted Boltzmann Machine

In this paper, we attempt to apply the same idea of using the RBM as a drift
detector to image data. To this end, we replaced the RBM with the Convolu-
tional RBM [23], as the convolutional layers turned out to be more relevant for
processing images. The CRBM differs from the standard RBM in several details.
First of all, the input units are formed into a 2-dimensional array. Therefore, the
visible units vi,j have two indices, i, jin{1, . . . , d} (without using the generality
we assume that the images have the shape of square). In this case, the total num-
ber of visible neurons is D = d2. The hidden layer consists of K groups, where
each group is a 2-dimensional layer of (h × h) neurons. Summarizing, there are
totally H = Kh2 hidden neurons hk

m,n, m,n ∈ {1, . . . , h}. The number K cor-
responds to the number of filters. Each filter is of size W × W and the relation
between the filter, visible layer, and hidden layer sizes are given as follows

W = d − h + 1. (8)

Let wk
r,s denote the (r, s)-th element of the k-th filter. The weights of each filter

are shared across all the hidden neurons belonging to the same group. Moreover,
each group of hidden neurons has its own bias bk. There is also one bias value
a shared among all the visible units. Having all the above notations introduced,
we can now write down the formula for the energy of the CRBM

E(v,h) = −a

d∑

i,j=1

vi,j−
K∑

k=1

bk

h∑

i,j=1

hk
i,j−

K∑

k=1

h∑

i,j=1

W∑

r,s=1

vi+r−1,j+s−1h
k
i,jw

k
r,s. (9)

Obviously, Formula (3) also applied in the case of the CRBM to calculate the
probability of state (v,h). Analogously to the case of the standard RBM, the
energy function allows us to analytically derive the conditional probabilities of
visible and hidden units states

P (hk
i,j = 1|v) = σ

(
W∑

r,s=1

vi+r−1,j+s−1w
k
r,s + bk

)
(10)

P (hk
i,j = 1|v) = σ

(
K∑

k=1

W∑

r,s=1

hk
i−r+1,j−r+1w

k
r,s + a

)
(11)
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4 Changes Detection with the CRBM

The idea of applying the CRBM as a tool for concept drift detection is analogous
to the one presented for the standard RBM [18]. First, we have to choose the eval-
uation measure. The most natural is the log-likelihood itself. However, because
of the partition function Z the exact computation of it would be intractable.
Therefore, we decided to apply a reconstruction error instead, which is defined
as follows. Let vij , i, j,∈ {1, . . . , d} be initial data element passed to the visible
layer of the CRBM. Then we apply Formula (10) to compute the probabilities
for all hidden units and sample the states of these units according to it

hk
i,j ∼ P (hk

i,j = 1|v), i, j ∈ {1, . . . , h}, k ∈ {1, . . . , K}. (12)

Then we calculate the reconstructed version ṽi,j , i, j ∈ {1, . . . , d} of the input
data element using the conditional probabilities given by (11)

ṽi,j = P (vi,j = 1|h), i, j,∈ {1, . . . , d} (13)

Then the reconstruction error for data element v is calculated as a square root
of squared error between the original and reconstructed values

R(v) =

√√√√
d∑

i,j=1

(vi,j − ṽi,j)
2
. (14)

It is worth averaging the reconstruction error over the batch of data elements.
Then the obtained value has a lower variance. For the t-th minibatch of data
given St by (6) the average reconstruction error is given by

R(St) =
1
B

B∑

m=1

R(st∗B+m) (15)

To monitor the possible changes of data distribution in the data stream first
we have to train the CRBM on a part of the stream. The learning should be
long enough to ensure that the CRBM is trained properly. Then the learning
is stopped and the CRBM is used to check to values of reconstruction error
of the incoming data. If it is kept on the same level, then it means that the
distribution of data does not change with a high probability. When the drift
occurs, the monitored value of reconstruction error increases. It may increase
suddenly or gradually, depending on the type of the detected drift.
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5 Experimental Results

In this section, the preliminary results of applying the CRBM as a drift detec-
tor are presented. The numerical simulations were carried out on the MNIST
dataset [22], which consists of 60000 gray-scale images of handwritten digits.
Each image is of size 28 × 28 pixels (hence d = 28). Since we need data streams
with concept drifts in our experiments, we prepared synthetically two datasets
for our purposes based on the original MNIST data. First, we created two sets
corresponding to different digits: S1, consisting of digits 0, 2, 4, 7, and S2, con-
sisting of digits 1, 3, 5, 6, 8, 9. Then, based on sets S1 and S2 two datasets with
artificially imputed sudden and gradual concept drifts were created

Ss = (Ss,1, Ss,2, . . . ) , (16)

Sg = (Sg,1, Sg,2, . . . ) (17)

The dataset Ss contains a sudden concept drift and is constructed as follows: the
data element Ss,i is taken from S1 if i < 30000 and from S2 if i ≥ 30000. In the
case of the dataset Sg, in which the gradual drift is introduced, the procedure
of selecting elements goes as follows: Sg,i is taken from S1 if i < 30000 and from
S2 if i ≥ 40000. In the interval i ∈ [30000; 40000) the data element Sg,i is drawn
from S1 with probability 40000−i

10000 and from S2 with probability i−30000
10000 .

The CRBM is created with the following parameters: d = 28, h = 18, W = 11
and K = 5. The training process is conducted with minibatches of size B =
20. The learning rate was set to η = 0.05. The stochastic gradient descent
procedure with momentum was applied with the friction parameter γ = 0.8. For
comparison, we run also the simulations using the standard RBM, with D = 784
and H = 200. The same learning parameters and procedure were applied. In
both experiments learning of the RBM and the RBM took place for the first
25000 data elements. Then, the neural model was used only to monitor incoming
data. The results obtained for data streams with the sudden and gradual drift
are demonstrated in Fig. 1 and Fig. 2, respectively. Both networks provide similar
order of values of the reconstruction error, although the CRBM is slightly better.
However, the most important observation is that in the case of the CRBM the
changes of values for data before and after the drift are more vivid. Therefore,
the CRBM can potentially provide a stronger signal to trigger a data stream
mining algorithm to rebuild the current model.
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Fig. 1. Reconstruction error of the RBM and the CRBM for the data stream Ss with
sudden concept drift at the 30000-th data element .

Fig. 2. Reconstruction error of the RBM and the CRBM for the data stream Sg with
gradual concept drift for data elements from 30000 to 40000.
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6 Conclusions

In this paper, we proposed to use the Convolutional Restricted Boltzmann
Machine (CRBM) in the task of concept drift detection for time-varying data
streams. It was demonstrated that the properly trained CRBM, similarly to the
standard RBM, can be successfully applied to this task. We presented that the
CRBM is more valuable as a drift detection tool concerning the image data.
This statement was verified experimentally in preliminary experimental results
conducted on a simple MNIST dataset, artificially modified into a streaming
version.
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Abstract. This work presents the Intf-HybridMem architecture, a pro-
posal for page migration in hybrid memories using fuzzy systems to sup-
port decision making. The fuzzy approach is explored to model the uncer-
tainties of the data access profile and the characteristics of the memory
modules. Additionally, the Intf-HybridMem evaluation was carried out,
identifying the limit of its accuracy when comparing with the Oracle
mechanism.

Keywords: Fuzzy decision making · Decision support · Hybrid
memory

1 Introduction

Main limitations concerned with static energy consumption and restriction on
reducing the size of memory cells are related to the traditional memory applied
on computational systems which are based on DRAM technology. In such con-
text, several research efforts have been applied to the development of new mem-
ory technologies.

The non-volatile memories (NVM) emerge as an alternative to DRAM tech-
nology. NVM would be a promise to overcome DRAM restriction in order to
achieve high memory capacity demand. In addition, they unable to achieve a
lower energy consumption in actual use conditions. However, NVM also have
some limitations, such as the low endurance of the material, which makes them
up and the difficulty of reaching the same access rates like DRAM.
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Considering this limitation, NVM can be combined with DRAM in a new
hybrid configuration exploring the best characteristics of each technology. There-
fore, it is necessary to choose, at each moment, which memory module should be
used. This decision must consider the data profile, such as frequency of access
and the type of operations. Thus, algorithms are developed to manage data in
hybrid memories to explore the memory modules better.

This work aims to the evaluation of the Intf-HybridMem architecture, which
considers the interval-valued fuzzy sets as the logical support to decision mak-
ing in the management of hybrid memories. This architecture seeks to explore
the uncertainty resulting from the acquisition and storage of information about
memory operations.

2 Preliminaries

In this section, studies of main characterization of updated memory technologies
and foundations underlying interval-valued inference fuzzy systems are reported.

2.1 Memory Technologies

NVMs are classified according to their functional properties concerning to pro-
gramming and erasing operations [14]. New techniques have considered the NVM
architecture because of its advantages over traditional DRAM and SRAM mem-
ories. Moreover, there are emerging memories in the literature, such as PCM
(Phase Change Memory Random-Access Memory), MRAM (Magnetoresistive
RAM), STT-MRAM (Spin-Transfer Torque Magnetic RAM), RRAM (Resistive
RAM), FRAM (Ferromagnetic RAM) and DWM (Domain Wall Memory).

Several types of memory optimizations have been focused on hardware or
software optimizations, both also can be combined in new memory arquitec-
tural alternatives. Several works take advantage of new memory technologies to
replace DRAM as main memory and improve life time [23], performance [11],
energy consumption and performance [29], also including works which turn their
attention to energy optimization [26].

NVM technologies have been proposed as an alternative to mitigate the dis-
advantages of traditional DRAM and SRAM memories. In this scenario, hybrid
architectures have been used to combine desirable characteristics of volatile and
NVM. However, according to results on [3], there are significant performance
issues caused by the interference data migration between DRAM and NVM and
a the lack of effective migration policies. Researchers have proposed the use of
NVM to address DRAM limitations, becoming relevant the data management in
hybrid memories to deal with multiple parameters in volatile and NVM. In this
case, it is meaningful to investigate related work of data management strategies
in hybrid memories.

Several approaches are considering the hybrid memories see, e.g., DRAM and
PCM [1], DRAM and a generic NVM [12] or combining STT-RAM and PCM
[13]. Other works take advantage of cache approach to deal with the high cost of
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read/write operation in NVM and consequently to deal with this cost in hybrid
memories that uses NVM ([7,16]). Moreover, Fuzzy Logic for decision support
in cache memories is presented in ([5,18]).

2.2 Fuzzy Logic Foundations

The theory of Interval-valued fuzzy logic (IT2FL) arise in 1975 with different
names and motivations, introduced by Zadeh in [28] as Interval-valued fuzzy
sets, a particular case of type-2 fuzzy sets (T2FS) as well as other ones, which
provided simultaneous but independent researches, as in [22] and [9] works. For
further details see [4,19,24].

The inherent uncertainties related to the antecedent and consequent mem-
bership functions in the logical approach of IT2FL enable the manipulation of
imprecise terms throughout its fuzzy inference system [10] and the imprecision
(non-specificity) reflecting by the length of the interval membership degree. Such
intervals can model uncertainty about the degrees, forms, or parameters of the
membership functions. It also provides a potential strategy for the treatment
of uncertainties in information models based on multiple-criteria obtained from
distinct specialists and/or extracted from simulators.

Let L([0, 1]) be the set of all closed real intervals in the unitary interval
[0, 1] i.e., L([0, 1]) = {[a, b] : 0 ≤ a ≤ b ≤ 1} and χ be a nonempty uni-
verse set. An interval-valued fuzzy set (IT2FS) A on χ is a function A : χ →
L([0, 1]) [19,21,24] such that, for each X = [x1, x2] ∈ L([0, 1], the projections
lL([0,1]), rL([0,1]) : L([0, 1])→U are defined as lL([0,1])(X) = lL([0,1])([x1, x2]) = x1

and rL([0,1])(X) = rL([0,1])([x1, x2]) = x2, respectively. And thus, the bounds of
X ∈ L([0, 1]) are X and X, respectively. Among different relations on IT2FS,
we consider the component wise Kulisch-Miranker order, also called the product
order given as follows: X ≤L([0,1]) Y ⇔ X ≤ Y ∧ X ≤ Y , ∀X,Y ∈ L([0, 1]).

Thus, 0 = [0, 0] ≤L([0,1]) X ≤L([0,1]) 1 = [1, 1],∀X ∈ L([0, 1]), and the set
L([0, 1]) equipped with the product order is characterized as a bounded lattice,
taking 0 as its bottom, 1 as the top, and the infimum and supremum given as
follows X ∧ Y = [min(X,Y ),min(X,Y )] and X ∨ Y = [max(X,Y ),max(X,Y )],
respectively. So,IT2FS are a particular case of T2FS [6,15]. In addition, the
corresponding complement of an interval X is given as XC = [1−A(x), 1−A(x).

In a system based on IT2FL, one can estimate input and output functions
by using heuristic and interval techniques. In the following, its main blocks pre-
sented in Fig. 1 are described:

1 Fuzzification Interface, associating an input value with an interval function
and not simply with a single value of χ. By inserting into the mechanism of
inference, we model the uncertainty regarding the input membership function
and, for each IT2FS A(x), an input vector x = (x1, x2, . . . , xn) ∈ χn when
n ∈ N

∗ is related to a pair of vectors in (Ln([0, 1])n given as follows:

〈(A(x1), A(x2), . . . , A(xn)), (A(x1), A(x2), . . . , A(xn))〉.
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2 Rule Base (RB), composing rules to classify linguistic variables (LVs) accord-
ing to the IT2FS;

3 Logic Decision Unity, executing inference operations between the input data
and the rules defined in the RB to obtain performance by the system action;

4 Defuzzification: Considering two main stages of IT2FS:
(i) Type Reducer, selecting the best fuzzy set representing the IT2FS which
satisfy the following premise: When all uncertainties disappear, the result of
System Based on interval-valued fuzzy rules (SBFR2) is reduced to a System
Based on Fuzzy Rules (SBFR1) [27];
(ii) CoA-Method, obtaining a crisp output as the average of limit points of
IT2FS B, given as 1/2 ·

(
B(x) + B(x)

)
,∀x ∈ χ, applying KM algorithm.

3 Intf-HybridMem : Architecture Proposal

The Intf-HybridMem is an architecture proposed for the management of hybrid
main memory systems using a fuzzy-based approach. This proposal is organized
into two main components: (i) Hardware-Based Data Acquisition and a (ii) Fuzzy
Based Migration Policy.

This proposal considers a hybrid memory composed of two memory modules:
a DRAM and an NVM module. This is a general approach that can admit
different sizes of memories and any type of NVM. Based on NVM constraints
related to endurance and energy consumption, executions dealing with multiples
write operations are not recommended. Thus, it is desirable to store on NVM
only pages with a high read rate, and keep all other pages on DRAM.

So, the strategy of Intf-HybridMem for managing hybrid memories is by
migrating pages between memory modules. Based on the access patterns of each
page, the Intf-HybridMem can perform two types of page migration: (i) Pro-
motion, as page migration from NVM to DRAM, and (ii) Demotion, as page
migration from DRAM to NVM. For deciding which pages migrate each time, a
fuzzy system is applied.

3.1 Hardware Based Data Acquisition

The Intf-HybridMem architecture (Fig. 1) integrates Access Updater, as a com-
ponent (Hardware Core) for storing the page accesses in a buffer and also, peri-
odically sending this information to Intf-HybridMem. Also, this module assigns
to DMA the selected pages to be migrated.

Access Updater Module. This module is composed of three components:
(i) a Buffer, (ii) a mechanism to update the Buffer, and an (iii) interface to
periodically call Intf-HybridMem Migration Policy module. The Buffer preserves
values from data access, meaning the volume of data read or write and the
recency of each page access. Once memory access occurs, the Access Updater
intercepts it updating the Buffer. This module stores the page address whenever
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Fig. 1. The Intf-HybridMem architecture.

it is not already stored, increasing its read or write counters according to the
type of memory accesses.

Access Updater requests to Intf-HybridMem Migration Policy (Software
Core), located in the operating system, to recommend page migrations. Thus,
the Access Updater sends all the information stored in the buffer to the Intf-
HybridMem Migration Policy module and receives a list of migrations recommen-
dations. Lastly, the Access Updater, based on these recommendations, assigns
to Direct Memory Access (DMA) the migration of the pages in the memory.

3.2 Fuzzy Modeling of Migration Policy

Intf-HybridMem Migration Policy verifies the priority of each page be switched
from one to another memory, taking into account a Rule Base acting on the three
steps: Fuzzification, Inference, and Defuzzification. So, Intf-HybridMem returns
as output the priority of each page, considering the Juzzy [25] module.

Membership Functions. During the study of variables considering the opin-
ions of experts, each one of the linguistic variables was associated with four dis-
tinct FS, using the trapezoidal graphical representation to corresponding mem-
bership functions. A setting reading related to the memory environment is per-
formed to measure attributes as Recency of Access (RA), Read Frequency (RF),
and Write Frequency (WF). The reading values are applied to the standard
scale, considering the interval [0, 10] obtaining their membership degrees as fol-
lows:

RA = pi(LA)/MaxDistance (1)
RF = hi(RC)/MaxR (2)
WF = pi(WC)/MaxW (3)

Following parameters are considered: pi denoting the page(i) of the memory
environment; LA indicating the executed memory instructions count after the
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last access on the same page; RC denoting the read operation count on the page;
WC denoting the write operation count on the page; MaxDistance represent-
ing the instruction count executed after least recently accessed page; MaxW
representing the highest number of write operations among pages; and MaxR
indicating the highest number of read operations among pages.

The linguistic terms (LT) defining FS related to the variables RA, RF, WF
and Promotion are stated as follows: “Low”, “Medium” and “High” (best case),
in [0, 10], as graphically represented in Fig. 2(a), 2(b), 2(c) and 2(d), respectively

(a–1) (a–2)

(b–1) (b–2)

Fig. 2. Membership functions (MFs) of T2FS, representing linguistic values low,
medium and high, of the (a) RA, (b) RF, (c) WF and (d) Promotion attributes.

Fuzzification. At this stage, the input values are mapped to the fuzzy domain.

Rule Base. In Intf-HybridMem Migration Policy component, the development
of the RB, presented in Table 1, was based on the expertise of specialists. RB
should be easily understandable and editable since there is no difficulty in adding
new rules whether other input variables are desired to be manipulated. Three
factors are considered in its construction: (i) LV as name FS, turning the model-
ing closer to the real-world system; (ii) Type “AND” connections are taken into
account to create the relationship among the input variables; (iii) Type fuzzy
implications performing the affirmative modus in inference scheme, related to
the generalized modus ponens (GMP): “if X is A, then Y is B”.
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Table 1. Rule base of Intf-HybridMem.

Attr Rule

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

RA L L L L L L L L L M M M M M M M M M H H H H H H H H H

RF L L L M M M H H H L L L M M M H H H L L L M M M H H H

WF L M H L M H L M H L M H L M H L M H L M H L M H L M H

PR L M H L H H L M H L M H L M H L M H L L M L L M L L M

Inference. In the inference process, the composition operators are performed
over FS relating the antecedents of rules to implications using the generalized
modus ponens operator:
(i) It performs the application of fuzzy operators when input data consist of
three values resulting from fuzzification, applying the fuzzy implication I(x, y) =
MAX(1 − x, y). The “AND” fuzzy operator aggregates the main rules and, the
method MIN (minimum) returning the related fuzzification values;
(ii) Implication Fuzzy Method Application, performs a combination of the value
obtained in the fuzzy operator applied and the values of FS output rule, using
the method MIN (minimum) on these combinations;
(iii) Aggregation Fuzzy Method Application, resulting composition of the fuzzy
output of each rule by using the method MAX (maximum), thus creating a single
fuzzy region to be analyzed by the next Fuzzy process module.

Defuzzification. In this step, the region transformation results in a discrete
value (related to promotion) applying the center of the area. This method calcu-
lates the centroid (u) of the area consisting of the output of the fuzzy inference
system (connecting of all contribution rules) according to the following equation:
u =

∑N
i=1 uiμOUT (ui)/

∑N
i=1 μOUT (ui).

4 Intf-HybridMem : Evaluation

In this section is discussed the accuracy evaluation of Intf-HybridMem architec-
ture proposal. In this evaluation is considered: (i) the achieved number of reads
and writes characteristic of each benchmark; (ii) Oracle Mechanism to define
the best R/W ratio possible for a migration mechanism and (iii) the R/W ratio
obtained by Intf-HybridMem proposed architecture.

4.1 Oracle Mechanism

Oracle is a mechanism which aims to make migrations based on the knowledge of
future instructions. Thus, this mechanism can anticipate which pages will have
more reads or more writes and positioning them in the appropriate memory
module. Although a near-optimal approximation, the oracle can help to define
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the limit of the migration mechanism for hybrid architectures, mainly considering
two phases: (i) Oracle Eye (OE); and (ii) Oracle Predictor (OP).

The first phase, OE, works offline, analyzing instruction intervals of memory
accesses. For each interval, the oracle keeps in its memory the pages with the
highest writes/reads (W/R) and reads/writes (R/W) ratio. The second part,
OP, works online, performing the migrations based on the pages stored in the
oracle’s memory in the OE step. For each instruction interval, the OP reads the
pages previously stored on the oracle’s memory and performs the migration if
the R/W and W/R ratios are greater than a threshold. Whether they are greater
than the threshold, and if the pages are already in memory, then the pages can
be migrated. Pages with the highest ratio of R/W are migrated from DRAM to
NVM and those with the highest W/R ratio are migrated from NVM to DRAM.
The algorithms and the complete evaluation of the Oracle were presented in [17].

4.2 Tests and Results

Tests performed to evaluate our architecture used an in-house simulator to model
the hybrid main memory and the Access Updater. Based on the above migration
policy, we implemented a fuzzy decision system based on interval-valued fuzzy
sets, as described in Sect. 3.2. Considering input for the tests, traces of memory
accesses were collected by running benchmarks from Mibench [8], over GEM5
[2] and NVMain simulators [20]. We selected a subset of evaluation benchmarks,
considering their different natures: basicmath, FFT, qsort and typeset.

Since the main migration objective is to perform more read operations on
NVM, the performance was measured by analyzing the R/W ratio on NVM. A
high value for the R/W ratio on NVM means that the architecture was able to
place the more read pages on NVM correctly. So, Fig. 3 shows the comparison
between three R/W ratios: (i) The total, which represents the original proportion

basicmath fft qsort typeset
Benchmark

0

0.5

1

1.5

2

2.5

R
ea

d/
W

rit
e 

ra
tio

Total Intf-HybridMem Oracle

Fig. 3. Read/Write ratio comparison: Total & Intf-HybridMem & Oracle.
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of reads and writes of each benchmark before the migration mechanism, (ii) the
Fuzzy R/W ratio, which provides the result of the Intf-HybridMem Migration
Policy, and (iii) the Oracle result.

When comparing the parameters, Total and Oracle in Fig. 3, it is possible
to observe the potential of the benchmark to be explored by migration tech-
niques. For the benchmarks basicmath and FFT, the Oracle results are slightly
superior to the Total, representing a small potential for migration techniques.
Regarding qsort, it presents no potential for migration techniques. The typeset
benchmark was the one that presented the most potential.

Analyzing the results related to the Fuzzy and Total parameters, the basic-
math presented no gain by comparing them. Since this benchmark has a small
potential for migration techniques, this result is expected. For the benchmarks
FFT and qsort, the results were inferior to Total, because of the low potential
of the benchmarks and the cost added by the migration mechanism. Regarding
typeset, due to the large potential of the benchmark, the Fuzzy approach could
achieve 51.9% of its potential.

5 Conclusions

In this paper, the Intf-HybridMem data management proposal for hybrid mem-
ories based on fuzzy systems is presented. The proposal is conceived as two
modules: the Hardware-Based Data Acquisition and the Fuzzy Based Migration
Policy. Tests were conducted to evaluate the performance of the proposed migra-
tion policy, comparing it to the performance limit of the Oracle mechanism. Main
results show that for the benchmark typeset it was possible to achieve 51.9% of
the performance limit defined by the Oracle mechanism. For the benchmarks
basicmath, FFT and qsort, which have low limit of performance, the Fuzzy app-
roach could not achieve positive results.

It is shown that the proposed architecture for page migration in hybrid mem-
ories using fuzzy systems for decision making is an approach that still allows
for improvements to the page migration technique in the Intf-HybridMem. As
future work, we intend to make adjustments in fuzzy rules and on the mem-
bership functions to achieve better results even in the benchmarks with a low
limit of performance. Ongoing work considers the fuzzy system qualification, by
applying through the application of penalty function on consensus methods.
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Abstract. Data clustering is one of the most important methods used to discover
naturally occurring structures in datasets. One of the most popular clustering
algorithms is the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN). This algorithm can discover clusters of arbitrary shapes in datasets
and thus it has been widely applied in many different applications. However, the
DBSCAN requires two input parameters, i.e. the radius of the neighborhood (eps)
and the minimum number of points required to form a dense region (MinPts).
The right choice of the two parameters is a fundamental issue. In this paper, a
new method is proposed to determine the radius parameter. In this approach the
distances between each element in the dataset and its k-th nearest neighbor are
used, and then in these distances abrupt changes in values are identified. The
performance of the new approach has been demonstrated for several different
datasets.

Keywords: Clustering algorithms · DBSCAN · Data mining

1 Introduction

Clustering refers to grouping objects into meaningful clusters so that the elements of
a cluster are similar, whereas they are dissimilar in different clusters. Data clustering
is a very useful technique used in many fields, such as biology, spatial data analy-
sis, business, and others. Moreover, clustering methods can be used during the process
of designing various neural networks [1,2], fuzzy and rule systems [7,9,20,29], and
creating some algorithms for the identification of classes [12]. A variety of large col-
lections of data brings a great challenge for clustering algorithms, so a lots of new
different clustering algorithms and their configurations are being intensively devel-
oped, e.g. [11,13,14]. It should be noted that there is no clustering algorithm which
creates the right clusters for all datasets. Moreover, the same algorithm can also pro-
duce different results depending on the input parameters applied. Therefore, cluster
validation should be also used to assess the results of data clustering. So far, a number
of authors have proposed different cluster validity indices or modifications of existing
ones, e.g., [10,23,26,27]. Generally, clustering algorithms can be divided into four cat-
egories including partitioning, hierarchical, grid-based, and density-based clustering.
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For example, the well-known partitioning algorithms are, e.g. K-means, Partitioning
Around Medoids (PAM) [4,32] and Expectation Maximization (EM) [18], whereas
the hierarchical clustering includes agglomerative and divisive approaches, e.g. the
Single-linkage, Complete-linkage or Average-linkage or DIvisive ANAlysis Clustering
(DIANA) [19,22]. Then, the grid-based approach includes methods such as e.g. the Sta-
tistical Information Grid-based (STING) or Wavelet-based Clustering (WaveCluster)
[21,25,30]. The next category of clustering algorithms is the density-based approach.
The Density-Based Spatial Clustering of Application with Noise (DBSCAN) is the most
well-known density-based algorithm [8]. However, it is seldom used to cluster multi-
dimensional data, but now the original DBSCAN has also many various extensions,
e.g. [3,5,6,17,24,31]. This algorithm requires two input parameters, i.e. the eps and
MinPts. Determination of these parameters is very difficult, but the right choice of those
parameters is a fundamental issue. In literature, some methods have been proposed to
determine these parameters, e.g. [16].

In this paper, a new approach to determining the eps parameter is proposed. It is
based on an analysis of abrupt changes in the distances between each element of the
dataset and its k-th nearest neighbor. This paper is organized as follows: Sect. 2 presents
a detailed description of the DBSCAN clustering algorithm. In Sect. 3 the new method
to determine the eps radius is outlined while Sect. 4 illustrates experimental results
obtained on datasets. Finally, Sect. 5 presents conclusions.

2 The Description of the DBSCAN Algorithm

In this section, the basic concept of the DBSCAN algorithm is described. As mentioned
above, it is a very popular algorithm because it can find clusters of arbitrary shapes
and requires only two input parameters, i.e. the eps (the radius of the neighborhood)
and the MinPts (the minimum number of points required to form a dense region). To
understand the basic concept of the algorithm several terms should be explained. Let us
denote a dataset by X , where point p ∈ X . The eps is usually determined by the user
and the right choice of this parameter is a key issue for this algorithm. The MinPts is
the minimal number of neighboring points belonging to a so-called core point.

Definition 1. The eps-neighborhood of point p ∈ X is called Neps(p) and is defined
as follows: Neps (p) = {q ∈ X |dist(p,q) ≤ eps}, where dist(p,q) is a distance function
between p and q.

When a number of points belonging to the eps-neighborhood of p is greater or
equal to the MinPts, p is called the core point.

Definition 2. Point p is directly density-reachable from point qwith respect to epsilon
and the MinPts when q is a core point and p belongs to the eps-neighborhood of q.

When point p is directly density-reachable from point q and a number of points
belonging to the eps-neighborhood of p is smaller than theMinPts, p is called a border
point.

Definition 3. Point p is a noise if it is neither a core point nor a border point.
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Definition 4. Point p is density-reachable from point q with respect to the eps and the
MinPts when there is a chain of points p1, p2, ..., pn, p1 = q, pn = p, so that pi+1 is
directly density-reachable from pi

Definition 5. Point p is density-connected to a point q with respect to the eps and the
MinPts when there is point o, so that p and q are density-reachable from point o.

Definition 6. Cluster C with respect to the eps and the MinPts is a non-empty subset
of X, where the following conditions are satisfied:

1. ∀p,q: if p ∈ C and q is density-reachable from p with respect to the eps and the
MinPts, then q ∈C.

2. ∀p,q ∈C: p is density-connected to q with respect to the eps and the MinPts.

The DBSCAN algorithm creates clusters according to Definition 6. At first, point p
is selected randomly and if |Neps(p)| ≥ MinPts, then point p will be the core point and
will be marked as a new cluster. Next, the new cluster is expanded by the points which
are density-reachable from p. This process is repeated until no more cluster are found.
On the other hand, if |Neps(p)| < MinPts, then point p will be considered as a new
noise. However, this point can be included in another cluster if it is density-reachable
from some core point.

3 The New Approach to Determining the Radius
of the Neighborhood

The right choice of the eps (the radius of the neighborhood) is a key issue for the
right performance of the DBSCAN algorithm. It is a very difficult task and usually, a
distance function is used to solve this problem. This distance function is denoted by
the kdist and it calculates distances between each element of the X dataset and its k-th
nearest neighbor. The number of the nearest neighbors is the k parameter. For instance,
Fig. 1 shows an example of a 2-dimensional dataset consisting of four clusters. The
clusters contain 138, 119, 127, and 116 elements, respectively. First, the kdist function
is used to determine all distances between each element of the X dataset and its k-th

Fig. 1. An example of a 2-dimensional dataset consisting of four clusters.
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Fig. 2. Sorted values of the kdist function with respect to k = 4 for the example dataset.

nearest neighbors. Next, the results are sorted in an ascending order. Figure 2 presents
the sorted results for the k=4. It can be observed that there is a sharp change of the
distances along the distance curves, i.e. values of the distances increase significantly.
This place is called the “knee” and it can be used to determine the right value of the
eps parameter of the DBSCAN algorithm. However, even when the “knee” is found
correctly, the determination of the eps parameter is still difficult.
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Fig. 3. Sorted values of the kdist function with respect to k= 4 and ten identical intervals between
the sstart and sstop points.

A new approach is proposed to solve this problem. This method is a modification of
the approach presented in the article [28] and it consists of a few steps. Let us denote
a set of all the sorted values of kdist function by Sdist for the X dataset. As mentioned
above, the eps parameter depends on the “knee” occurring in the sorted distances (in
an ascending order) for the given k parameter. It should be noted that in Fig. 2 the
values of the kdist function increase very abruptly when they are to the right of the
“knee”. This means that there are elements of the dataset located outside clusters and
they can be interpreted as noise. Moreover, the “knee” usually appears at the end of the
sorted values of the kdist function and its size depends on the properties of the dataset.
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Fig. 4. Ten identical intervals between the sstart and sstop points: a1, ...,a10.

Among the sorted values, it is possible to define a range, which indicates the knee more
precisely. It can be determined by the sstart and sstop values which are calculated as
follows:

sstart = |Sdist |− |X |
sstop = |Sdist |

(1)

where |Sdist | is the number of the elements of Sdist and |X | is the number of the elements
of the X dataset. Furthermore, the sstop− sstart range is divided into ten equal parts, i.e.:
a1, a2, ... a10. The size of such part is n= |X |/10. For example, Fig. 3 shows the sorted
values of the kdist function with respect to k = 4 and ten identical intervals between
the sstart and sstop points. Moreover, in Fig. 4 the ten identical intervals between the
sstart and sstop points are presented more precisely. Next, for the first seven intervals,
the arithmetic means are calculated which is expressed as follows:

vi =
kdist (xi)+ kdist (xi+n)

2
(2)

where i = 1, ...,7, n is a constant value and it equals the number of kdist(xi) values
occurring in each part, i.e.: a1, ...,a10. xi is the parameter of kdist(xi) function (see
Fig. 4) and so x1 equals the component x of the sstart point located at the start of the a1
interval. Furthermore, x2 is equal to x1+ n, x3 is equal to x2+ n, and so on. However,
for intervals a8, a9 and a10, the arithmetic means are calculated as follows:

v j =
kdist (x j)+ kdist (x10)

2
(3)

where j = 8,9 and 10. x10 equals component x of the sstop point located at the end
of the a10 interval. In Fig. 5 the average values of all the intervals are presented. These
average values (see Eq. (2) and Eq. (3)) are used to calculate the eps parameter. It should
be noted that the “knee” can be analyzed by these calculated average values. First, two
factors v7:1 and v8:7 are computed and they can be expressed as follows:

v7:1 =
v7 − v1

2
v8:7 =

v8 − v7
2

(4)
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Fig. 5. Average values calculated for all intervals (i.e. a1, ...,a10).

These factors play a key role in the analysis of the “knee”. For instance, when the
values of kdist increase very slowly in a1, ...,a7, average value v7:1 does not change
significantly, either. It means that the “knee” can be quite wide. Furthermore, if the
values of the kdist function increase abruptly in a8, ...,a10, then average values v8:7 will
have a large value. Thus, these factors can be used to calculate the eps parameter and it
can be expressed as follows:

eps= v8−7 − v7−1 (5)

It should be noted that v8−7 is close to the right value of the eps parameter. However,
the v7−1 is very important because it shows how the distances increase in the “knee”
and it is used to correct the value of v8−7 (see Eq. (5)).

In the next section, the results of the experimental study is presented to confirm the
effectiveness of this new approach.

4 Experimental Study

In this section, several experiments have been conducted on 2-dimensional artificial
datasets using the original DBSCAN algorithm. It should be noted that this algorithm
can recognize clusters with arbitrary shapes. In these conducted experiments are used
artificial datasets that include clusters of various sizes and shapes. Moreover, parameter
k (i.e. MinPts) is equal to 4 in all the experiments and the visual inspection is used for
the evaluation of the accuracy of the DBSCAN algorithm. The described new method
is used to automatically determine the eps parameter.

It can be noted that the DBSCAN algorithm is rarely used to cluster multidimen-
sional data due to the so-called “curse o f dimensionality”. However, different modifi-
cations of this algorithm have been proposed to solve the problem (e.g. [5]).

4.1 Datasets

Nine 2-dimensional datasets are used in the experiments and they are called Data 1,
Data 2,Data 3,Data 4,Data 5,Data 6,Data 7,Data 8 andData 9, respectively. Table 1
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Fig. 6. Examples of 2-dimensional artificial datasets: (a) Data 1, (b) Data 2, (c) Data 3, (d)
Data 4, (e) Data 5, (f) Data 6, (g) Data 7, (h) Data 8 and (i) Data 9.

shows a detailed description of these datasets. It should be noted that they contain var-
ied numbers of elements and clusters (from 2 to 8 clusters). Moreover, the shapes and
sizes of the clusters are also different. In Fig. 6, these datasets are presented. It can be
observed that the distances between the clusters are very different, some of the clus-
ters are very close and others quite far. For instance, in Data 3 the elements create five
clusters with different sizes, Data 7 contains elements which create Gaussian, square,
triangle, and wave shapes, and Data 8 is so-called the spirals problem, where points are
on two entangled spirals.
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Table 1. A detailed description of the artificial datasets

Datasets No. of elements Clusters

Data 1 1000 3

Data 2 1200 4

Data 3 1800 5

Data 4 2300 7

Data 5 700 6

Data 6 700 3

Data 7 900 4

Data 8 700 2

Data 9 2400 8

4.2 Experiments

In this section, the evaluation of the performance of the new method to automatically
specify the eps parameter is presented. As mentioned above, the eps parameter is very
important because the DBSCAN algorithm bases on this parameter to create the right
clusters. It is usually determined by visual inspection of the sorted values of the kdist
function. On the other hand, the new method described in Sect. 3 allows us to deter-
mine this parameter in an automatic way. The second parameter of the DBSCAN, i.e.
the MinPts is also important but it is often chosen experimentally. In all the conducted
experiments the MinPts equals 4. Such a choice of the parameter guarantees the cre-
ation of various clusters with different numbers of elements. In these experiments the
2-dimensional artificial datasets are used, i.e.: Data 1, Data 2, Data 3, Data 4, Data 5,
Data 6, Data 7, Data 8 and Data 9 sets. Thus, when the eps parameter is specified by
the new method, the DBSCAN is used to cluster the artificial datasets. Figure 7 shows
the results of theDBSCAN algorithm, where each cluster is marked with different signs.
It should be noted that despite the fact that the differences of distances and shapes
between clusters are significant, all the datasets are clustered correctly by the clustering
algorithm. Moreover, the data elements classified as the noise are marked with a circle,
and their number is small in all the datasets.
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Fig. 7. Results of the DBSCAN clustering algorithm for 2-dimensional datasets: (a) Data 1, (b)
Data 2, (c) Data 3, (d) Data 4, (e) Data 5, (f) Data 6, (g) Data 7, (h) Data 8 and (i) Data 9

5 Conclusions

In this paper, a new method is proposed to determine the eps parameter of the DBSCAN
algorithm. This method bases on the kdist function, which computes the distance
between each element of a dataset and its kth nearest neighbor. Furthermore, the calcu-
lated distances are sorted in an ascending order to find out the knee. Next, the distances
creating the knee are divided into several intervals and they are used to calculate the
mean values (see Eq. (4)). This makes it possible to calculate the right value of the eps
parameter. In the conducted experiments, several 2-dimensional datasets were used,
where the number of clusters, sizes, and shapes varied within a wide range. From the
perspective of the conducted experiments, this method for computing eps is very useful.
All the presented results confirm a high efficiency of the newly proposed approach.
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Abstract. The paper examines the problem of lifetime optimization in
Wireless Sensor Networks with an application of a distributed ε-Learning
Automaton. The scheme aims to find a global activity schedule maxi-
mizing the network’s lifetime while monitoring some target areas with
a given measure of requested coverage ratio. The proposed algorithm
possesses all the advantages of a localized algorithm, i.e., using only lim-
ited knowledge about neighbors, the ability to self-organize in such a
way as to prolong the lifetime, and, at the same time, preserving the
required coverage ratio of the target field. We present the preliminary
results of an experimental study comparing the proposed solution with
two centralized algorithms providing an exact (Integer Linear Program-
ming (ILP)) and approximated solution (Genetic Algorithm (GA)) of
the studied problem.

Keywords: Learning automata · Self-organization · Wireless Sensor
Networks · Maximum lifetime coverage problem

1 Introduction

Wireless Sensor Networks (WSNs) combine a large number of tiny computer-
communication devices called sensors deployed in some areas, which study a
local environment, collect data depending on an application and send them via
a particular node (called a sink) to an external world for further processing.

In many applications, e.g., monitoring remote and challenging access targets,
sensors are equipped with single-use batteries that can not be recharged. From
the point of view of Quality of Service (QoS) of such a WSNs, its operational
lifetime is one of the most critical issues. There are two ways of deploying sen-
sors to cover a target area completely, i.e., controlled deployment and random
deployment. Several papers are studying optimal design patterns to assign the
smallest number of sensors under the cost limitation in an area and satisfy the
coverage and connectivity requirements.

However, in most cases, sensors are randomly distributed over the monitoring
area in environments where human access is limited or impossible. Therefore,
c© Springer Nature Switzerland AG 2021
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batteries of sensors cannot be usually rechargeable or renewable. Such scenarios
can be executed in deserts, forests, wilderness, mountain terrains, etc. Exhaus-
tion of battery charge implies the change in the topology of WSN, quality of its
work, and reduction of its lifetime. Therefore, energy-efficient management is an
intrinsically important task in WSN.

With a fully connected WSN, the information about events sensed by each
sensor node will be transferred to their destination (sink) in an energy-efficient
multi-hop manner. Typically, sensors have four types of radio states: transmit,
receive, idle, and sleep. We denote transmit, receive, and idle states as active
states because each of these states consumes more energy than the sleep state.

When in an active mode, a sensor can carry out its entire operations, such as
sensing, computation, and communication. To maintain these operations, sensors
need to consume a relatively large amount of energy. In contrast, a sensor in a
sleep mode uses only a tiny amount of energy and can be awoken in a scheduled
working interval for entire operations. Since a subset of sensors in the area can
already cover the target area completely, the other sensors can be scheduled to
be in the sleep mode to save energy.

A group of sensors monitoring some areas is usually redundant, i.e., more
than one sensor can cover monitored targets, and forms of redundancy can be
different. Exploiting this redundancy in a WSN and finding out the possible
scheduling sequence of sensors is crucial to maximizing the network’s lifetime. By
solving this coverage problem, one can indirectly also solve the maximization of
the WSN lifetime. Therefore, scheduling schemes to properly alternate between
active and sleep states, i.e., node wake-up scheduling protocols, are a promising
method of maximizing the network lifetime.

This paper proposes an approach to the coverage/lifetime optimization based
on a multi-agent interpretation of the problem. In the proposed scheduling mech-
anism, each sensor node is equipped with a learning automaton, which helps the
node select its proper state (active or sleep) during the operation of the network.

The structure of the paper is as follows. Section 2 presents a review of
the related work in the literature. Section 3 describes the problem of cover-
age/lifetime optimization in WSNs. In Sect. 4, we present the proposed app-
roach of ε-LA optimization, and in Sect. 5, we detail the results of conducted
experiments. The last section concludes the paper.

2 State of the Art

Several algorithms exist to solve the problem of coverage/lifetime maximization,
in which sensing coverage and network connectivity are two fundamental issues.
Centralized schemes assume the availability of complete information. The solu-
tion is usually delivered in the form of a schedule of activities of all sensors
during the entire lifetime. Alternatively, in distributed schemes, a solution is
found based on only partial information about the network. Because these prob-
lems are known to be NP-complete, centralized algorithms are oriented either
on delivery of exact solutions for specific cases or applying heuristics and meta-
heuristics to find approximate solutions.
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For example, in [5] authors proposed a solution for the problem of target
coverage in a directional sensor network, where the sensor nodes can turn around
their center. In the proposed algorithm, the sensor nodes are grouped in cover
sets to avoid the redundant sensing direction, the obtained cover sets are joint,
and they are actives alternatively for monitoring all targets.

An offline and centralized algorithm that allows the division of a set of sensor
nodes into several subsets that are activated successively was proposed in [13].
Each subset monitors all targets. To evaluate the efficiency of the proposed algo-
rithm, the authors compared the network lifetime obtained with the proposed
solution to the maximum lifetime target coverage (MLTC ) algorithm. Simulation
results indicated that the network lifetime obtained by executing the proposed
converges to MLTC.

Several nature-inspired algorithms applied to optimization problems in WSN
have appeared in the literature in recent years. The two major groups of
nature-inspired methods are swarm intelligence techniques, e.g., particle-swarm
optimization [3,4,6], ant colony optimization [11]; and evolutionary computing
including genetic algorithms [1,16] and memetic algorithms [7]. Another large
class of scheduling methods is based on the concepts of learning [2,8,12] and
cellular automata [14].

For example, in [9] authors applied a GA-based meta-heuristic to solve the
target coverage problem presented as a maximum network lifetime problem
(MLP). The proposed scheme groups the sensor nodes of the network into subsets
covering all targets. The subsets are formed by selecting the minimum number
of sensor nodes with the maximum remaining energy.

Closer to our work, in [10] authors proposed a scheduling method based on
integrating a learning automaton in each sensor node, which helps to decide its
state (sleep or active mode). They employed the Variable Structure Stochastic
Automata (VSSA) in which the state transition probabilities are not fixed. The
state transitions or the action probabilities themselves are updated at every time
instant using a suitable scheme. Authors compared their solution with MC-MIP
and MCMCC schemes achieving better results and fewer cover redundancies.

3 Sensor Networks and Coverage and Lifetime Problems

Let us consider a sensor network S = {s1, s2, ..., sN} consisting of N sensors
randomly deployed over a two-dimensional rectangular area of size W × H m2,
where M targets (or Points of Interests (POIs)) are uniformly distributed with
a step g. A sensor si can be defined as a point of coordinates (xj , yj) in two-
dimensional area, with a given sensing range Ri

s and a non-rechargeable battery
of capacity bi. We assume that all sensor nodes possess the same sensing range
and battery capacity.

Each sensor can work in one of two modes: an active mode when a battery
is turned on, and a unit of its energy is consumed, and POIs in its sensing range
are monitored; a sleep mode when a battery is turned off, and POIs in its sensing
range are not monitored. Let us denote the mode of the i-th sensor during the
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j-th time interval as αj
i , where αj

i ∈ {0, 1}. The value of αj
i equal to 1 means

that the i-th sensor αi during the j-th time interval is in active mode. Otherwise,
it is in sleep mode.

It is further assumed that turning on/off batteries is taken in discrete
moments t. It is also assumed that there exists some QoS measure evaluat-
ing the performance of WSN. As such, a measure of coverage can be defined as
a ratio of POIs covered by active sensors to the whole number M of POIs.

In this paper, we focus on the problem of point coverage. A common definition
of this problem is to cover (monitor) some stationary or moving target points
in the sensor network area using as few sensor nodes as possible. The coverage
requirement is given by a coverage degree k and a coverage ratio q, which means
that at least k sensors cover at least a qth part of all targets. A point coverage
problem with a k coverage degree is called a k-coverage problem in the literature.
Further, we assume k = 1. Coverage of a target area at j-th period tj can be
denoted as Coveragej :

Coveragej =
|M |obsj

|M | . (1)

At a given moment, this ratio should not be lower than some predefined value
of q (0 < q ≤ 1). Preserving complete area coverage is a desirable objective, but,
sometimes, to achieve just a high coverage ratio may be of more practical interest.

A lifetime of WSN can be defined as a number of subsequent time intervals
tj in the schedule during which the coverage of the target area is within δ range
from a given coverage ratio q, as follows:

Lifetimeq =
Tmax∑

j=1

j|abs(Coveragej − q) ≤ δ. (2)

Naturally, a specific point within the target area may be concurrently sensed
by several sensors. While this type of deployment can be beneficial in improving
the quality or reliability of the data observed, this also introduces data redun-
dancy, which results in wasted energy [15].

In this paper, we consider the Maximum Lifetime Coverage Problem (MLCP)
as a scheduling problem applied to WSN, solving the point coverage problem
regarding prolongation of the lifetimes of WSNs. Our objective is to prolong the
lifetime of WSN by minimizing the number of redundant sensors during each
time interval to minimize energy consumption.

4 Automata-Based Approach to the WSN Lifetime
Optimization

In this section, firstly, we describe the concept of the Learning Automata (LA).
Further, we propose an adapted ε-LA approach to solve the MLCP in WSNs.

An automaton is a self-operating mechanism that responds to a sequence
of instructions in a certain way to achieve a particular goal. The automaton
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either responds to a predetermined set of rules or adapts to the environmental
dynamics in which it operates.

The learning process is based on a learning loop involving the LA and random
environment. A typical LA has a finite set of d actions and acts in a deterministic
environment receiving reward c = (c1, c2, ..., cd), where ck stands for a reward
obtained for its action αk. Whenever an automaton generates an action, the
environment sends it a payoff in a deterministic way. The automaton remembers
its last H actions and corresponding payoffs. The payoff (corresponding to the
action) provided to the LA helps it choose the subsequent action.

The proposed scheme involving the LA mentioned above consists of two
phases. During the learning phase, each node si randomly selects one of its
actions (0 - sleep or 1 - active) and shares this information with ni immedi-
ate neighbors (sensors sharing the same subset of POIs). Once action selection
is completed, each node will receive some reward revi(), which depends on its
decision and the decisions of its neighbors (see Eq. (3)) from the environment.
This process repeats for H rounds, allowing us to fill the automatons’ mem-
ory slots with corresponding action-payoff information. By repeating the above
process, through a series of interactions, the LA finally attempts to learn the
environment’s optimal action. As the next action each sensor chooses the best
(most profitable) action from the last H games (rounds) with the probability
1 - ε (0 < ε ≤ 1), and with probability 1/d any of its d actions. In our case d = 2
(0 - sleep or 1 - active). In the proposed method, the network operation phase
lasts until all nodes with an active state run out of battery power.

In order to minimize the number of redundant active nodes covering the same
subset of POIs, the following reward function was designed (Eq. (3)):

revi(αi, αn1 , αn2 , ..., αni
) =

⎧
⎪⎨

⎪⎩

revoff+
i if (qi

curr − q) ≥ 0 and αi = 0
revoff−

i if (qi
curr − q) < 0 and αi = 0

revon
i if αi = 1

(3)

where:

– revoff+
i = Coff+

rev ,
– revoff−

i = Coff−
rev − mi(q − qi

curr),

– revon
i = Con

rev

(
C × mi

mi+
∑

i xni
×mi

ni

+ (1 − C)(1 −
∑

i xni

ni+1 )
)

,

where:
• s1, s2, ..., sn – a set of sensors;
• αi, αn1 , αn2 , ..., αni

– decisions of agent Ai and its neighbors;
• mi – number of POIs in the sensing range of sensor si;
• mi

0 – number of POIs in the sensing range of sensor si, not shared with
neighboring sensors;

• mi
1,m

i
2, ...,m

i
ni

– number of POIs in the sensing range of sensor si, shared
with the ni-th active neighbor sensor;

• ni – number of neighbors (sensors) of sensor si;
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• xni
– number of sensor’s si active neighbors (sensors sharing the same

subset of POIs);
• qi

curr – coverage of POIs in sensor’s si local neighborhood;
• q – requested level of coverage;
• Coff−

rev = 1.5, Coff+
rev = 1.25, Con

rev = 1.0, C = 0.5 – model constants.

We can see from Eq. (3) that an agent (automaton) Ai can receive a reward
even if it is inactive state (αi = 0) and saves its own battery. It happens when
some neighbor sensors are active Moreover, shared POIs are covered by them,
and when some are not covered POIs does not exceed a specific threshold value
related to a predefined coverage parameter q.

On the other hand, agent Ai receives a reward when it spends its battery
energy, but this reward can be lowered when other neighbor sensors are also
active and cover a shared subset of POIs. Model constants of the model were
experimentally selected to ensure that sensors stay in their inactive (sleep) state
whenever neighboring sensors cover a shared subset of POIs.

The purpose of each agent is to maximize its total reward, which corre-
sponds to finding a local trade-off between the requested level of the coverage
and expending battery power. This way of behavior of agents is in line with this
work’s primary goal: finding a global trade-off between the requested level of
QoS and minimization of battery expenditure to maximize the lifetime of the
WSN.

This process is visualized in Fig. 1. After the initial learning phase, each
automaton selects the best action guaranteeing the highest payoff from the envi-
ronment. Due to the formulation of the reward function, sensors self-organize in
a way to ensure the requested level of coverage and minimal redundancy in tar-
get coverage. Once a group of sensors completely drain the battery, the network
needs to reorganize in order to restore the requested level of coverage.

5 Experimental Study

In this section, we present the results of an experimental study of the proposed
algorithm. The study was conducted in two steps. Firstly, several experiments
were conducted in order to estimate the best values for the parameters of the
ε-LA algorithm.

All the results in this section are based on averaging of 20 runs of different
initial network states for five random sensor deployments. Sets of sensors com-
posed of N = {10, 20, 30, 40} were deployed over the target field containing a
total of M = {5, 10, 20, 30} targets. The requested level of POI coverage was set
to a value of q = 0.9 with δ = 0.05.

Figure 2(a) shows the relation between the averaged network lifetime and a
length of ε-LA memory slot (H), while Fig. 2(b) show the effect of the ε parameter
on the network’s time of operation. As can be seen, the network lifetime increases
with the length of automata memory up to a value of H = 7 and then starts
to decrease slowly. In the case of the ε parameter, responsible for introducing
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Fig. 1. Illustration of the LA-based WSN scheduling scheme consisting of a learning
phase and an operation phase. Sample run for a total of N = 40 sensors deployed over
the field containing M = 25 targets. The requested level of POI coverage was set to a
value of q = 0.9 with δ = 0.05: a) Target coverage vs. round, b) Number of active and
alive sensors vs. round.

an element of randomness to the model, the best results can be achieved for
relatively small values of ε. Based on these results, in the following experiments
we used values of H = 7 and ε = 0.002.

The next step was a comparison of the proposed decentralized, self-organizing
approach with two centralized solutions employed in order to find a reference
solution for the studied problem: the ILP algorithm to seek an exact solution;
and the GA to reach an approximated solution in a reasonable time formulated
as Non-Disjoint Set Covers (NDSC) maximization problem. The results of that
comparison are presented in Table 1.
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Fig. 2. Averaged results of the network lifetime vs H (a) and ε (b) for N =
{10, 20, 30, 40} sensors and M = {5, 10, 20, 30} targets.

The main drawback of centralized algorithms is that a schedule of sensors’
activities must be found outside the network and delivered before starting oper-
ation. It requires gathering information about the platform at a single location,
which may be unrealistic for large-scale distributed systems, significantly when
system parameters may continuously change.

As a result, it requires an arbitrarily large number of buffers and may induce
huge latencies; it suffers from scalability issues, a single point of failure, and a
lack of robustness. The latter is particularly relevant in sensor networks since
sensor nodes are often deployed in hostile environments and are liable to failures.

Therefore, distributed algorithms are becoming more and more popular
because they assume the reactivity of sensors in real–time and are scalable in
contrast to centralized solutions. A distributed algorithmic framework enables
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Table 1. Averaged results for network lifetime and solution convergence time for mul-
tiple WSNs computed with the ILP, GA and ε-LA schemes.

Problem instance WSN lifetime (Convergence Time [s])
ILP GA ε-LA

{N = 10,M = 5} 22.5 [1.21] 22.2 [0.84] 21.4 [-]
{N = 10,M = 10} 19.3 [2.11] 19.1 [1.11] 18.5 [-]
{N = 20,M = 10} 34.2 [4.23] 33.7 [2.54] 31.2 [-]
{N = 20,M = 20} 36.4 [14.71] 35.2 [3.27] 32.8 [-]
{N = 30,M = 20} 40.8 [34.79] 39.7 [4.11] 37.5 [-]
{N = 30,M = 30} 46.8 [381.54] 45.8 [4.83] 42.6 [-]
{N = 40,M = 30} 56.7 [1453.38] 54.1 [5.75] 49.8 [-]

sensors to manage their sleep/activity cycles based on specific coverage goals.
Thus, a localized algorithm solves the lifetime optimization problem by combin-
ing multiple local solutions directly, yielding a globally feasible working schedule.
In our experiment, within a small WSN, the overall performance decrease was no
worse than 8% in comparison with the exact solution found by the ILP method.

6 Conclusion

A localized algorithm based on the ε-LA concept to solve MLCP in WSN was
proposed. It possesses all the advantages of a localized algorithm, i.e., it uses
only limited knowledge about the neighboring sensors of the WSN, and it can
self-reorganize in such a way as to preserve a required coverage ratio and prolong
the lifetime of the WSN.

The experimental study results show that despite its simplicity and limited
local information, it can achieve similar results (an average 8 % gap) as central-
ized algorithms in terms of lifetime metric without a need to compute a solution
before starting the operation of the network.

Future work will include developing and studying additional localized func-
tions based on local knowledge of neighboring nodes to find better solutions to
the problem. Additional study of the relation between the experimental parame-
ters (density of sensors and targets, ε-LA settings, variable range of sensors, and
battery levels) and the achieved coverage and lifetime results will follow.
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Abstract. Today’s world is one where the number of publicly stored
information and private data is growing exponentially, thus so is the
need for more precise and more efficient data protection methods. Data
privacy is the field that studies data protection methods as well as pri-
vacy models, tools and measures to establish when data is well protected
and compliant with privacy requirements. Masking methods are used to
perturb a database to permit data analysis while ensuring privacy.

This work provides a tool towards privacy as a service. Selecting an
appropriate masking method and an appropriate parameterisation is an
heuristic process. Our work makes use of genetic algorithms to find a
good combination of masking methods and parameters. To do so, a num-
ber of solutions (masking methods, parameters) are applied and evalu-
ated, the effectiveness of each solution is measured and well performing
solutions are passed on to future generations. Effectiveness of a solution
is in terms of information loss and disclosure risk.

Keywords: Data privacy · Disclosure risk · Information loss · Genetic
algorithms

1 Introduction

The level of stored data is continuously growing. About 2.5 quintillion bytes
of data were created each day in 2018 [19], and that number is doubling every
40 months [5]. This data includes private and confidential information.

Data privacy [10,14,26,27] is the field that studies techniques and methods
so that disclosure of sensitive information does not take place. Different privacy
models (computational definitions of privacy) have been defined. Privacy for
reidentification and k-anonymity are two of them that focus on database releases
and avoiding intruders to identify someone in the database. That is, they focus
on what is known as identity disclosure. Other privacy models include differential
privacy (to avoid disclosure from functions computed from databases), integral
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privacy [23,24] (with a similar aim), secure multiparty computation (different
organizations computing together a function of their different databases).

When a business or administration has a database and needs to share it
(completely or parts of it) for its analysis, avoiding identity disclosure is a must.
The difficulty of protecting data is that the removal or encryption of unique
traits such as social security numbers and personal ID is not enough as the
identity of individuals can be determined by combination of a few variables. For
example, Sweeney [25] showed that gender, 5-digit zip code, and date of birth
identified 87% of the population of the United States. Masking methods have
been developed to provide solutions that avoid disclosure risk.

In the last 20 years, a large number of masking methods have been proposed.
There are methods for all kind of databases (numerical, categorical) including
NoSQL databases (graphs and social networks, textual documents). Informally,
a masking method introduces some noise into the database with the goal that the
resulting database protects the data and is still useful. That is, there is low risk
and low information loss. There are a large number of methods in the literature
because, up to now, there is no method that beats the other ones. While there
are methods that are generally better (e.g., microaggregation [6,9] and rank
swapping [20]), performance depends on the data to be protected. Therefore,
in real practice, different methods and different parameterisations need to be
considered and evaluated. So, evaluation needs to consider three elements:

– (i) the masking method itself (which method and with which parameters),
– (ii) the information loss a method causes into the data,
– (iii) the disclosure risk of the resulting data.

A good masking method is the one that results in a good trade-off between pri-
vacy and utility. Data masking can be a difficult process, trying to mask the data
in such a way that there is a low risk of revelling confidential information while
maintaining usability creates a large search space of possible masking techniques
to use as well as possible parameters for these techniques. This is typically done
heuristically and by an experienced data protector.

In this paper we propose the use of genetic algorithms to automate this
process. By applying a genetic algorithm we can search this space in an efficient
manner in order to find a solution that balances information loss and disclosure
risk. So, genetic algorithms can help on building Privacy as a Service (PasS).

We use genetic algorithms (GA) in two different aspects related to data
masking. First, on the selection and combination of masking methods (and their
parameters). That is, we consider a database X and then its transformation by
means of three masking methods ρ1, ρ2, and ρ3 obtaining the protected database
X ′ = ρ3(ρ2(ρ1(X))). Selection and parameterisation of ρi is achieved by means of
GA. Second, we consider genetic algorithms to give an upper bound in disclosure
risk assessment. GA are used to find the best parameters for an intruder, which
will give an estimation of the upper bound of the risk.
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1.1 Related Work

Genetic algorithms have been used in data privacy in two main contexts. First,
in relation to the masking process. They have been used to mask data them-
selves as in [15,28], where the authors use genetic algorithms to find a good
modification of the data. That is, each chromosome in the population represents
a masked database. Second, genetic algorithms have been used in relation to
some of the parameters of a masking method. For example, on finding a good
parameter (a transition matrix) in PRAM [16–18], or a good partition of vari-
ables in microaggregation [3]. In contrast, in this work we use genetic algorithms
to combine different masking methods and find their corresponding parameters.

We also consider genetic algorithms to find the optimal parameters for record
linkage and, thus, to find an upper bound of disclosure risk. Up to our knowledge,
genetic algorithms have not been used for this purpose.

1.2 Contribution

As stated above, data protection is currently heuristic and needs and experienced
data protector. This work contributes in the field of data privacy providing
a tool towards privacy as a service. The ultimate goal is to automatise the
process of masking a file by means of selecting the best configuration (masking
methods/parameters). Using genetic algorithms we can explore a larger search
space than the one that can be considered by a single data protector. This
includes more parameters as well as combination of methods. Our approach can
outperform usual approaches at the cost of higher computational power.

We also introduce GA for disclosure risk assessment in data privacy. In this
case, the goal is to obtain an estimation of the risk of the best performing
intruder. To that end, we use a weighted distance and by means of genetic
algorithms we optimise the weights so that the attack is as effective as possible.

1.3 Structure of the Paper

In Sect. 2 we introduce our approach and the metrics used. In Sect. 3 we describe
how we validated the system and some of the experiments carried out. The paper
finishes with some conclusions and lines for future work.

2 Approach and Metrics

As explained in the introduction, we have developed a system that, by means
of genetic algorithms, finds a good trade-off disclosure risk-information loss.
Therefore, the approach consists on protecting the data and then evaluating
the resulting data set in terms of disclosure risk and information loss. In the
remaining part of this section we review the data masking process and the metrics
used for evaluating disclosure risk and information loss.
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2.1 On Masking Data: The Genetic Algorithm Approach

Our approach is to use genetic algorithms to search through possible configu-
rations of masking techniques in order to find a satisfactory one. Firstly the
algorithm creates an initial random population of configurations for the mask-
ing techniques including the order in which they are applied. The given dataset
is then masked using each configuration. The resulting masked dataset is then
measured for disclosure risk (DR) and information loss (IL). These indices are
combined to assign an overall assessment of the masked file, the fitness in GA.

A second generation is then created using the configurations that had the
highest fitness from the first generation. This second generation is created using
a combination of genetic operators. Crossover – selecting two parents that had
a high fitness and then producing a child by combing their traits. Mutation – a
configuration with a high scoring fitness is selected and then altered randomly
to introduce new traits. Finally asexual recombination/elitism – highest scoring
configurations immediately progress to the next generation. The fitness of the
second generation is then assessed and the process is repeated.

Here, for possible configurations we understand the consecutive application
of three masking methods. As briefly discussed in the introduction, our approach
looks for a configuration of three good masking methods ρi and given the original
file X computes the masked file X ′ = ρ3(ρ2(ρ1(X))).

Masking Methods and Configurations. For continuous data we use:

– Noise addition, which as the name suggests is the addition of noise to the
dataset in the form [4] X ′ = X + e where X is the original data and e is a
randomly generated variable following a certain distribution;

– Microaggregation [6], which consists of building small micro clusters of records
and replacing the original records with an average value representative of the
entire cluster. The parameter that controls this method is the size of the
cluster; finally

– Rank swapping, this consists of defining a rank of similar entries around
each entry and then randomly choosing an entry within the rank to swap
with [20,21]. The parameter that controls this masking method is the size of
the rank.

The configurations for Continuous data contained 4 traits. That is, the chromo-
somes are defined by 4 elements. They are the three parameter of each of the
three methods above and the order in which these methods are applied to the
particular dataset. More particularly, these traits are as follows: a that defines
the normal distribution N(0, a) to be used to produce e in Noise addition, the
minimum size k of micro clusters for Microaggregation, and p the percentage of
the rank that is possible to swap an entry with in Rank swapping, and finally
the order in which the masking techniques are to be applied.

For Categorical data, two masking techniques were utilised. Once again
Microaggregation and a masking technique known as PRAM (multivariate Post-
Randomization Method). PRAM consists of changing the categories on some
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categorical variables for certain records to different ones according to prescribed
Markov matrices [7,12]. Each matrix contains the swapping probabilities for all
the possible pairs of categories of a single variable. For PRAM, the parameter P
is the probability that a category is not modified in the masking process. Then, if
there are nc possible categories, the probability of swapping the original category
by any other one is (1 − P )/(nc − 1).

Configurations used for Categorical data contained 3 traits. They are the two
parameters of the methods and the order in which these methods are applied.
More particularly, we have the minimum number k of entries in micro clusters
for Microaggregation, the value to generate the Markov matrix which prescribes
the swapping probabilities for all possible categories, and finally the order in
which the masking techniques are to be applied.

Parameters of the Genetic Operators. Implementation of the system is
naturally by means of chromosomes that codify each configuration and repre-
sent a possible solution. There was 30 Chromosomes created for each generation.
In the initial population all 30 were created randomly. All subsequent genera-
tions were created through the three genetic operators: Asexual Recombination,
Mutation and Crossover. One third of the population was formed from Asex-
ual Combination by picking the top 10 fittest Chromosomes from the previous
generation and passing them onto the next generation. A further 33.3% of the
population was formed by Mutation when the same top 10 fittest chromosomes
were selected and randomly mutated (altered) in order to introduce new traits
into the new population. Each chromosome had 4 traits associated with it and
one was selected to be randomly changed. In this way each of the mutated chro-
mosomes were altered by a factor of 0.25. The final 10 members (33.3%) of the
generation was formed by means of Crossover. Two members of the previous
population were selected according to a probability associated with their fitness
(i.e. the fitter the chromosome then the higher the chance of being selected). As
mentioned previously these two parent chromosomes each had four traits. For
each trait there was an equal probability (0.5) it was selected from either parent
and passed on to form a child chromosome.

2.2 On Computing Metrics to Evaluate Risk and Information Loss

In order to assess the masked data we need to take two measurements, disclosure
risk and information loss. Disclosure risk (DR) is the probability that a record
in the original file can be identified in the masked dataset. Information loss (IL)
is the loss of structure and validity of the data from the original dataset. We
measure slightly differently Continuous and Categorical data.

Disclosure Risk Assessment. In both continuous and categorical data disclo-
sure risk is measured using Distance based record linkage. Distance is computed
between every record in the original dataset and each record in the masked
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dataset using the Euclidean distance (for Continuous data) and common ele-
ments (for Categorical data). Given a masked record (i.e., a record in file X ′), if
the record (among those in the original file X) with the shortest distance is the
original record then the record is said to be reidentified. The number of reidenti-
fied records over the total number of records gives a probability of disclosure risk
between 0–1 [8,11,22]. In this work we use a weighted version of the Euclidean
distance. That is,

d(x, x′) =

√
√
√
√

m∑

i=1

wi(xi − x′
i)

2

where x and x′ are records in the original and masked files (i.e., x ∈ X and
x′ ∈ X ′) both in a m-dimensional space (where each dimension is one of the
variable, attribute or feature) and wi is the weight of the ith variable.

Our system attempts to adjust the weights attached to each variable in the
Euclidean distance formula in order to find an optimum weighting that detects
the maximum number of records. Selecting the optimum weights in this way, we
try to find an upper bound of the risk. That is, the risk of intruders that are
optimal in their attacks. There are different alternatives to find this optimum [1,
2]. In this project, we use genetic algorithms for this purpose. Using genetic
algorithms does not ensure to find a global optimum of the solution but rather
a local optimum. That is, we will find an estimation of the risk of the worst-case
scenario but it is not necessarily the worst case because GA are suboptimal.

Information Loss Assessment. We consider two alternative approaches for
assessing information loss. One is based on statistics. Different statistics are used
for categorical and continuous data.

Information loss is measured in Categorical data through the comparison
of contingency tables. A sample is taken from the original dataset as well as
the masked dataset, contingency tables are then computed and a distance is
computed using the number of differences between them. This is then denoted
CTBIL (Contingency Table Based Information Loss measure) [8].

Information loss is measured for Continuous Data by calculating the Mean
square error between the original dataset and the masked dataset. The Mean
Square error measures the average squared difference between the values in orig-
inal dataset and the masked dataset [8]. That is, (1/n)

∑n
i=1(xi − x′

i) where n
is the number of records, x ∈ X and x′ ∈ X ′.

In addition to assessing information loss by means of statistics, we can also
use machine learning techniques for the same purpose (the user of the system
selects the appropriate measure). Machine learning-based information loss is
computed by means of creating a model that predicts the values of a given
dataset. More particularly, a model is created for the original dataset and then
another model is created for the masked dataset. Both these models are com-
pared to values in the original dataset to see how accurate there predictions are.
The difference in accuracy between the Original model and the masked model
is the measure of information loss [13]. This way of computing information loss
is illustrated in Fig. 1.
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Fig. 1. Computation of information loss based on machine learning.

Quality Assessment and Fitness Function. In order to Evaluate the quality
of each configuration the measurements are combined by adding them together
and dividing by two. That is, we compute (DL+IL)/2 that gives a single fitness
value that can be utilised by the genetic algorithm. Because there is a random
factor to masking techniques each configuration masks the dataset three times
and an average score of information loss and disclosure risk is calculated.

In order to then evaluate a population and understand how the genetic algo-
rithm is progressing the program runs three tasks. It measures average popula-
tion fitness, it tracks the fittest configuration in the population and graphs the
information loss and disclosure risk values for every configuration in the popu-
lation. By displaying this information it is possible to track progress and see if
a satisfactory solution has been found.

Figure 2 represents the results of a generation. Each square represents a chro-
mosome, that is, a protected database obtained applying some masking tech-
niques. Each chromosome (each protected database) is evaluated against disclo-
sure risk and information loss as explained above. In Fig. 2, the optimum solution
is at (0,0) – i.e., no disclosure risk and no information loss – and we can see a
good performing configuration by its position relative to (0,0) as the generations
progress all the points move closer to (0,0) as their fitness improves.

3 Validation and Experiments

In this section we describe the experiments done to validate the system. We
describe the datasets used, the experiments and some of the results obtained.
The goal of the experiments was to validate the system and provide, given an
original file to be masked, a good masked file. Good in terms of good trade-off
between information loss and disclosure risk.

3.1 Datasets

We have used two major datasets in this project. One consisting of continuous
data and another consisting of categorical data. Firstly the continuous Census
dataset created in the European CASC project [29]. The dataset was obtained
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Fig. 2. Example of the result of a simulation.

using the Data Extraction System of the U.S. Census Bureau, it contains 149,642
records composed by 13 variables. A small section of it was used in these exper-
iments consisting of 1081 rows and 13 variables for runtime purposes. For the
categorical experiments a dataset based upon Car Evaluations was obtained from
the UCI machine learning repository [30]. It contains 1728 rows each contains 6
variables and all rows were used in these experiments.

3.2 Experiments

As discussed previously the measures of success that are monitored are informa-
tion loss, disclosure risk and the overall fitness value produced by the two.

Figure 3 (left) is an example of four generations running for numerical data
(i.e., Census dataset) using the Mean Square Error as a measure of information
loss. We can observe a quick drop from 0.2675 to 0.23126 in one generation and
then to 0.18036 in Generation 3, after there is a decrease in population fitness
by a small margin from Generation 3 to Generation 4. This highlights two key
factors worth discussing. Firstly, the initial very large jump in fitness because
the initial population is random while subsequent generations are selected from
previous good solutions. Secondly, there is no guarantee that the average popu-
lation fitness will improve from one generation to another (both stagnation and
decrements are possible). What is important is the trend across multiple gen-
erations. This is the usual behaviour in genetic algorithms. Another key factor
to note from the generation analytics is the progression of the fittest chromo-
some. Note how it takes a number of generations to incrementally increase. The
fittest chromosome will always be much slower to increase than the average pop-
ulation fitness. However because of Asexual Recombination, where the top ten
fittest chromosomes automatically progress to the next generation, the fittest
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Fig. 3. Masking numerical data (left) using Mean Square Error as a measure of infor-
mation loss, and (right) using machine learning as a measure of information loss.

chromosome is always guaranteed to be just as fit and never lower than the
previous generation.

There are three more key factors worth discussing. Firstly dots in the graph
seems to be arranged into rows with significant gaps on the Y–Axis. The Y-axis
is the percentage of identified rows (and, thus, not real values are possible). Sec-
ondly, it seems that points are clumping together. Due to the use of Asexual
Recombination 10 dots of the new generation are the same as previous gen-
erations and as such will appear directly on top of the dot from the previous
generation. In addition, the Genetic Operator Mutation alters slightly the best
performing 10 solutions in an attempt to produce a fitter chromosome. These
new solutions are usually near to the one being modified. Finally there are a
few dots that are complete outliers and are not close to any other dots. This is
due to the Genetic Operator Sexual Recombination: two previous solutions are
combined generating a completely different solution. In some cases these outliers
provide a jump in fitness and become one of the fittest chromosomes. In this case,
a cluster will then form around this dot as the generations progress. Neverthe-
less, often, these outliers are one of the least fit chromosomes and simply stay
as stray dots in the graph.

In the case of categorical data, our system provides solutions that have a
similar behaviour to the ones described above for numerical data. E.g., an initial
big jump, slower improvement after a few iterations, clustered solutions, etc.

Figure 3 (right) is an example of Numerical data (i.e., Census dataset) using
the Machine Learning as a measure of information loss. Here we use the weighted
Euclidean distance, and information loss measures based on machine learning
algorithms. It is relevant to underline that the use of GA to determine the
weights of the Euclidean distance permits to improve in some cases the number
of reidentifications. That is, we establish a larger disclosure risk than the one
we could establish with just the standard distance. More particularly, in three
datasets of 30 protected ones, more reidentifications were obtained than with
the standard distance.



390 N. Hendrick and V. Torra

4 Conclusions and Future Work

We have shown that GA provide a valuable tool to find a good configuration
(masking methods, parameters): information loss is low while risk is also low.
GA permit to consider a larger space of configurations (large number of param-
eters, combination of methods). The project is, therefore, helpful in the goal of
providing privacy as a service.

The solution is based on different measures of information loss (some based
on some statistics, the mean square error and counts in contingency tables, and
other based on machine learning) and disclosure risk. The system is general
enough so that it is possible to incorporate other information loss measures
(other types of statistics, other machine learning algorithms).

Acknowledgements. This work was designed and implemented as a final year project
of the first author at Maynooth University. This work was partially supported by the
Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

References

1. Abril, D., Navarro-Arribas, G., Torra, V.: Improving record linkage with supervised
learning for disclosure risk assessment. Inf. Fusion 13(4), 274–284 (2012)

2. Abril, D., Navarro-Arribas, G., Torra, V.: Supervised learning using a symmetric
bilinear form for record linkage. Inf. Fusion 26, 144–153 (2015)

3. Balasch-Masoliver, J., Muntés-Mulero, V., Nin, J.: Using genetic algorithms for
attribute grouping in multivariate microaggregation. Int. Data Anal. 18, 819–836
(2014)

4. Brand, R.: Microdata protection through noise addition. In: Domingo-Ferrer, J.
(ed.) Inference Control in Statistical Databases. LNCS, vol. 2316, pp. 97–116.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47804-3 8

5. Brynjolfsson, A.M.: Big Data: The Management Revolution, The Harvard Business
Review 4, (2012). Accessed March 12, 2020 https://wiki.uib.no/info310/images/
4/4c/McAfeeBrynjolfsson2012-BigData-TheManagementRevolution-HBR.pdf

6. Defays, D., Nanopoulos, P.: Panels of enterprises and confidentiality: the small
aggregates method. In: Proceedings of the 1992 Symposium on Design and Analysis
of Longitudinal Surveys, Statistics Canada, pp. 195–204 (1993)

7. De Wolf, P.P., Van Gelder, I.: An empirical evaluation of PRAM. Discussion paper
04012. Statistics Netherlands, Voorburg/Heerlen (2004)

8. Domingo-Ferrer, J., Mateo-Sanz, J.M., Torra, V.: Comparing SDC methods for
microdata on the basis of information loss and disclosure risk. In: Pre-proceedings
of ETK-NTTS 2001, vol. 2, pp. 807–826 (2001) Eurostat

9. Domingo-Ferrer, J., Torra, V.: Ordinal, Continuous and heterogeneous k-
anonymity through microaggregation. Data Min. Knowl. Disc. 11(2), 195–212
(2005)
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Abstract. Solution encoding describes the way decision variables are
represented. In the case of permutation problems, the classical encoding
should ensure that there are no duplicates. During crossover operations,
repairs may be carried out to correct or avoid repetitions. The use of
indirect encoding aims to define bijections between the classical per-
mutation and a different representation of the decision variables. These
encodings are not sensitive to duplicates. However, they lead to a loss of
genetic properties during crossbreeding. This paper proposes a study of
the impact of this loss both in the space of decision variables and in that
of fitness values. We consider two indirect encoding: the Lehmer code
and the Inversion table.

Keywords: Genetic algorithm · Permutation problems · TSP ·
Encoding · Lehmer code · Inversion table

1 Introduction

Permutation-based optimization problems are widely studied in the literature
because of their hardness and the diversity of their application fields. They are
particularly used in the domain of network device deployment, scheduling or
transportation. Solving such problems consists of finding a permutation that
minimizes/maximizes some criteria.

Many efficient methods exist for solving permutation problems. This paper
focuses on Genetic Algorithms (GAs) which are powerful stochastic optimiza-
tion techniques. They are inspired by Darwin’s theory of evolution and natural
selection. GAs help with the exploration of a search space in order to find an
optimal or a near optimal solution for a given problem. In GAs, a possible solu-
tion to the optimization problem is referred to as an individual. Generally, the
algorithm starts with a randomly generated set of individuals (population). This
population evolves throughout generations towards good solutions. At each gen-
eration of the genetic process, each individual in the population is evaluated
based on objective function(s). This leads to the computation of a fitness value
c© Springer Nature Switzerland AG 2021
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which represents how good the solution is. Thereafter, individuals are selected to
become parents according to their fitness values. Parents generate new individu-
als (offspring) using recombination operators, especially crossover and mutation
operators. Offspring inherit some features from their parents. This process is
iteratively repeated until a stop criterion is met.

When dealing with permutation problems, one should ensure that there are
no duplicates in the permutation. This can be easily verified when generating the
initial solutions. However, over generations, genetic operators such as crossover
and mutation can duplicate alleles (values). There are mainly two approaches to
avoid these repetitions. The first is to use mutation and crossover operators (e.g.
OX, UX, or PMX [6]) which repair individuals containing duplicates. Another
method consists of using a solution encoding (indirect encoding) which toler-
ates duplicates and defines a bijection between this indirect encoding and the
permutation. The Lehmer code and the Inversion table are examples of indirect
encoding. However, it should be noted that part of parents’ genetic properties
can be lost when generating offspring if the indirect encoding is used [9]. This
paper studies the transmission of genetic properties. This study focuses on both
decision variables and objective function domains. We consider a single objective
traveling salesman problem (TSP) as an example of a permutation optimization
problem. The TSP is a classical combinatorial optimization problem, where the
goal is to find the shortest possible tour through a set of n vertices such that
each vertex is visited exactly once except for the starting vertex.

The remainder of this paper is organized as follows. A brief overview of related
works is introduced in Sect. 2. Section 3 describes direct and indirect encodings
as well as their associated operators. Section 4 presents our experiments and
results regarding the transmissions from parents to offspring and the fitness
improvement. Finally, conclusions are given in Sect. 5.

2 Related Work

Initially proposed by Holland and Goldberg, genetic algorithms (GAs) have
quickly evolved to solve multi-objective problems. Since Holland introduced
the main mechanisms of GAs [7], many authors explained that choosing the
most suitable representation/encoding is one of the major issues [1–5,8,9,11,12].
Among these authors, Goldberg [4] studied the behavior of representations and
crossover-based GAs. He explained, in the schemata principle, how this repre-
sentation - crossover combination should allow the transmission of meaningful
building blocks from parents to offspring. Recently, Mohammed Ali et al.[9] show
the impact of the choice of the couple encoding - crossover operator on the res-
olution of the permutation problems. They compare the characteristics related
to the transmission of the properties between the parents and the offspring.

Djerid et al. [3] considered permutation encoding and crossover in a way sim-
ilar to the classical schema theory [4]. They explain that encoding and crossover
should be adapted according to which properties of the parents should be inher-
ited by offspring. Pesko [12] presents an evolution algorithm for solving small
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(up to 32 nodes) constrained TSP. This new differential evolution algorithm with
only two parameters (the population size and the number of the generations)
uses the Lehmer code to encode solutions. In [11], Üçoluk proposes an inversion
sequence as the representation of a permutation. This method is used for solving
TSP and is compared to the well-known PMX crossover method. It is observed
that Üçoluk’s method outperforms PMX in convergence rate by a factor which
can be as high as 11.1, on a cost of obtaining slightly worse solutions on average.
Bekiroğlu [1] uses new alternatives of encoding types such as Quaternary encod-
ing and octal encoding. He examined how they contribute to the efficiency and
robustness of the genetic algorithm. He concluded that it is not possible to claim
that one of the encoding types is exactly dominant over the others in all aspects
such as convergence, finding the optimum solution, and the number of iteration.
In [5], a GA is proposed to optimize the weight of steel truss structures. The
obtained results proved the effectiveness of the genetic algorithm in relation to
the classical genetic algorithm. In this case, the set of design variables consists
of the collection of profiles manufactured in steel mills. Obviously, this set of
profiles is discrete. The most effective type of encoding in such case is value
encoding.

In [14], Rosa et al. discuss the teachers’ placement (in elementary school)
problem based on genetic algorithms by finding a chromosome that represents
the possibility of teachers placement solution, composing a population, and find-
ing the recommended combination of two selected mutations operators and two
selected crossover operators to achieve optimal results. Another work that stud-
ies the choice in selection, crossover, and mutation operators and their impact
on the performance of a genetic algorithm is [10]. The authors present a novel
framework for an adaptive and modular genetic algorithm (AMGA) to discover
the optimal combination of the operators in each stage of the GA to avoid pre-
mature convergence.

This paper completes the previous works. It focuses on the impact of encoding
solutions thanks to Lehmer code and inversion table. It studies how genetic
characteristics are inherited from parents.

3 Encoding and Recombination Operators

Encoding refers to the way decision variables are represented. When using genetic
algorithms, it allows to define the genotype in the optimization process. One can
use a traditional encoding (which is also referred to as direct encoding) or an
indirect representation of the decision variables (indirect encoding). The choice
of the encoding should take into consideration the problem and the operators
to use (crossover and mutation). This mapping between the set of permutations
and the set of their encoding could be used to translate any problem represented
by permutations into an equivalent problem represented by another code. This
may simplify some of those problems.
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3.1 Classical Permutation

A permutation π = π1π2 . . . πn is an arrangement of the numbers 1, 2, . . . , n for
some positive n. Each permutation is represented by a unique number which
represents its order among the n! possible permutations enumerated following a
lexicographic order. The classical permutation allows an easy representation of
solutions. However, it can generate duplicates during the crossover and mutation
steps. To deal with this issue, specific operators are defined in the literature. We
can list PMX, OX, UX for the crossover, and Swap, Scramble, and Inversion
for the mutation [6]. Quite often, these operators repair to non-viable solutions
(those with duplicates). To avoid these repair phases, it is possible to use indirect
encodings which are not sensitive to duplicates. In the following, we define two
indirect encoding methods: the Lehmer code and the Inversion table.

3.2 Lehmer Code

The Lehmer code associates a unique code L(π) to each permutation π =
π1π2 . . . πn. L(π) = l1l2 . . . ln with li the number of elements that are smaller
than πi and that appear to the right of πi in the permutation.

li = Card{j|j > i & πj < πi} (1)

For example, the Lehmer code of the permutation "5 2 1 4 3" is "4 1 0 1 0".
The elements li in the Lehmer code satisfies the condition 0 ≤ li ≤ n − i, ∀i.

3.3 Inversion Table

The inversion table of a permutation π = π1π2 . . . πn is T (π) = t1t2 . . . tn with
ti the number of elements that are greater than i and appearing to the left of i
in the permutation.

ti = Card{j|i < j & j < πi} (2)

For example the inversion table of the permutation "5 2 1 4 3" is "2 1 2 1 0".
Here t3 = 2 because there are two elements (5 and 2) that are greater than 1 and
placed at lower positions in the permutation (to the left of 1). By definition, ti in
the Inversion table always satisfy the condition 0 ≤ ti ≤ n − i, ∀i.

The use of an indirect representation requires coding and decoding oper-
ations. Figure 1 illustrates these steps. First, the parents are represented as a
classic permutation (Fig. 1(a)). Then, they are coded using the Lehmer code
(Fig. 1(b)) before applying the crossover operator and generating offspring
(Fig. 1(c)). These offspring are then decoded to be presented as a classical
permutation (Fig. 1(d)). The process is the same for the Inversion table (see
Fig. 2(a) to 2(d)). It is important to note here that the offspring illustrated in
Fig. 1(d) (or Fig. 2(d)) have alleles that are not inherited from their parents. For
example, for the offspring of Fig. 1(d), the sequences “4 1 3” and “1 3 2” are
not inherited from any parent. This problem can be rephrased as: the sequences
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Fig. 1. Lehmer code Fig. 2. Inversion table

“1 4 3” and “3 1 2” of the parents (Fig. 1(a)) are lost during the recombination
process (without a mutation having been carried out). This paper focuses on
studying the impact of the loss of these genetic characteristics over generations.

4 Experiments and Results

Our goal is, first, to study the transmission of characteristics from parents to
offspring. For this, we use metrics that focus on the similarities between solutions
(Sect. 4.1). Then, we evaluate the quality of the results of each encoding with
respect to the objective function (Sect. 4.2). For this study, we considered the
eil51 problem (a traveling salesman problem instance of 51 cities proposed in
the TSPLIB [15]). The experiment parameters used are summarized in Table 1.

The results presented in this section correspond to the averages of 10 inde-
pendent runs.

Table 1. Experiment parameters

Encoding Crossover Mutation Population size Nb. of generations

Classical Permutation PMX Swap

Lehmer code 2-point BitFlip 200 300

Inversion table 2-point BitFlip

4.1 Assessment of Transmissions from Parents to Offspring

The goal is to evaluate the transmission of the genetic characteristics from par-
ents to offspring in order to observe the impact of the encoding. For this purpose,
several indicators are used: the Hamming distance, the edge based indicator and
the position based indicator.
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Hamming Distance. Measures the similarity between two solutions with
respect to the decision variables. Given two permutations say π and π′, the
Hamming distance HD(π, π′) is equal to the number of positions in which π
differs from π′ (Eq. 3). It can be used to assess diversity.

HD(π, π′) =
n∑

i=1

xi where xi =
{

1 if πi �= π′
i

0 otherwise
(3)

Figure 3 shows the performance of the Hamming distance between parents and
offspring over generations. It considers the maximum value of the Hamming dis-
tance between each solution and its two parents. We observe that this metric
gradually decreases over the generations because the genetic algorithm will tend
to exploit the neighborhood of the best solutions. However, due to the appear-
ance of new alleles (as shown in Fig. 1 and 2), the Lehmer code and the Inversion
table show higher HD values than the classical permutation.

Fig. 3. Hamming distance Fig. 4. Edge based indicator

Fig. 5. Position based indicator
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Edge Based Indicator. (EBI) [3] counts the edges which are present both in
parent and in offspring. It is defined by Eq. 4.

EBI =
NET × 100

2n
(4)

Where NET =
∑n

i=1

∑n
j=1, �=i NE(vi, vj), such that vi and vj are two con-

secutive values inside a given chromosome.

NE(vi, vj) =

⎧
⎨

⎩

2 if vi and vj are consecutive in both parents and offspring
1 if vi and vj are consecutive in one parent and offspring
0 Otherwise

(5)
In the case of a vehicle routing problem (aka TSP), the EBI estimates the propor-
tion of consecutive cities that will be traveled in the same order for parents and
children. The greater this value, the better the hereditary transmission occurs
between parents and children. Figure 4 shows that, even though not all parent
genes are correctly copied in children when using the Lehmer code and Inversion
table, these two indirect encodings obtain high values of EBI (slightly lower than
the classic permutation).

Position Based Indicator. The PBI [3] is a metric that looks at the position
of cities among parents and children. The idea is that if, for example, the fact
that a city appears in 3rd position in the tour leads to a good result, then this
position should be found in children too. The weaker this indicator, the more
the positions are respected. The PBI is calculated using Eq. 6.

PBI =

∑2
i=1

∑2
j=1 PBij

4
× 6

n(n + 1)(2n + 1)
(6)

where PBij is the euclidean distance, with

PBij =

√√√√
n∑

k=1

(POj(k) − PPi(k))2

PPi(k) is the position of k in the parent i, i ∈ {1, 2}, and POj(k) is the position
of k in the Offspring j, j ∈ {1, 2}.
Figure 5 illustrates the variation of the PBI according to the three proposed
encodings. In terms of the PBI values for the case of permutation, it increases to
reach of the value zero with small perturbations, this means that, at some point,
starting from around the generation 100, there is no distance between the per-
mutations representing the parents and the offspring. The other two encodings
have much faster growth but to a limit different than null. This can be explained
by the diversity of individuals in these cases, since the distance from the parent
is low but not zero.
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4.2 Assessment of Fitness Improvement

In this section, we study the evolution of the fitness value over generations and
compare the performance of the different types of encoding. This is done using
a method, inspired by the set of experimentation introduced by Portman and
Vignier in [13]. They classify solutions, for each generation, in five classes based
on the fitness values. The classes represent five equal intervals of values such
that the overall interval is bounded by the minimal and maximal values of the
objective function at each generation so that all the values are represented. This
means, at each generation, the intervals that define the classes depend on the
values in this specific generation. Solutions for the first class are better than the
ones in the second, and so on, so the last class is the worst.

At each generation, the solutions will be distributed in each quintile called
class 1 to class 5. For a good execution of the optimization process, the number
of solutions in class 1 should increase over the generations. This class would
therefore become predominant over the others. However, if almost all the solu-
tions were found in a single class, this could show a premature convergence and
a possible trap due to a local optimum.

Figure 6 shows that for the classical permutation, around the 100th gener-
ation, almost all the solutions are in class 1. The other classes are barely rep-
resented. There is therefore a problem of diversity within the population. This
is corroborated by the Hamming distance indicator of the classical permutation
(see Fig. 3) where it was observed that parents and children were almost identical
after the 100th generation.

Fig. 6. Classification using the classical permutation encoding

Figure 7 and Fig. 8 show that for the indirect encoding (Lehmer code and
Inversion table), greater diversity is observed because the solutions of class 1
correspond to the majority, but the proportions of the solutions in the other
classes are not negligible. This helps alleviate the pressure from elitism.
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Fig. 7. Classification using the Lehmer
code

Fig. 8. Classification using Inversion
table

5 Conclusions

This paper studies the transmission of genetic characters in an optimization pro-
cess. It presents three encodings. The first, called direct encoding is the classical
permutation. The other two are referred to as indirect encodings: the Lehmer
code and the Inversion tables. Indirect coding has the advantage of not being
sensitive to the appearance of duplicates during crossover operations. However,
there is a partial loss of the genetic properties between parents and children.
The study of the impact of these encodings was made both in the space of deci-
sion variables (thanks to the Hamming distance, EBI, PBI) and in the space of
fitness values (distribution of solutions in quintiles). The results show that indi-
rect encoding makes it possible to preserve diversity within populations without
losing quality in terms of the objective function (the solutions in class 1 are the
majority and the population remains diverse).
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Abstract. This paper deals with the problem of selecting the popula-
tion size for the population-based algorithm with dynamic selection of
operators (OPn). This research was undertaken to check how popula-
tion size changes affect the optimization of problems in which both the
parameters of the solution and its structure should be selected. Moreover,
variants in which the size of the population changes dynamically were
considered. The simulations were performed for a small selection/variety
of examples of control problems in which the structures and parameters
of controllers based on PID systems had to be selected.

Keywords: Population-based algorithms · Evolutionary algorithms ·
Operators selection · Population size

1 Introduction

Choosing a population-based algorithm for a given problem can be very dif-
ficult [39]. This is due to the fact that there are currently over 200 different
population-based algorithms [5], each of which has its own variations and hybrid
versions (see e.g. [10,11]). It also has to do with the fact that more and more
problems are considered to be solved by applying population algorithms (see e.g.
[24,25,34,43]) which include among others regression, control or classification
problems (see e.g. [4,13,29,30,41]). Of course, this is related to the entire field of
artificial intelligence, which, by expanding its applicability and implementation
(see e.g. [2,3,17,33]), creates more and more applications for the optimization
algorithms under consideration. Moreover, each of population-based algorithms
may work differently for a given simulation problem or a given group of problems,
which is due to the more No Free Lunch Theorem [40]. Therefore, it is not known
which mechanisms (operators) of the given algorithms work best for a problem
under consideration. This is especially important because the area of application
of population-based algorithms is constantly expanding (see e.g. [15,16,37,42]).

Notwithstanding, there are solutions in the literature in which mecha-
nisms from different algorithms may operate simultaneously, e.g. the previ-
ously mentioned hybrid algorithms (see e.g. [1,9,22]). Moreover, there are papers
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presenting approaches in which the operation of operators can be dynamically
controlled. In such approaches, the selection of the optimal operator adapts to
the needs in a given iteration or given state of search of the algorithm and may
change over time (see e.g. [20,21]). As a result, algorithms of this type work
more universally and can be applied to numerous types of problems. Of course,
there is a great likelihood of standard population algorithms that give better
results; however, it is not possible to test all algorithms for a given problem,
thus choosing universal methods seems to be justified.

The above mentioned universal approaches do not remove all issues related
to population-based algorithms. It is also important to choose the size of the
population (see e.g. [6,27]). On the one hand, more complex algorithms with
larger population sizes are developed, reducing the chances of getting stuck in a
local minimum (see e.g. [12]). On the other hand, less complex micro-algorithms
with a small population size are created, which allows for obtaining similar, and
even better results when the number of algorithm’s iterations is increased (see
e.g. [36]). Reducing the computational cost of the algorithm is important as it
increases the applicability of population-based algorithms. This is also confirmed
by the use of surrogate models of simulation problems (see e.g. [18]). A solution
to the above issue may be algorithms in which the size of the population or
sub-population is dynamically changed during the operation of the algorithm
(see e.g. [8,26,28]).

In this paper, a decision was made to investigate the impact of using differ-
ent population sizes on the population-based algorithm with dynamic selection
of operators (OPn [20]). Moreover, the mechanism in which the population size
increases and decreases, and vice versa: decreases and increases, is also investi-
gated. This has not yet been taken up in the literature. In addition, different
variants related to the population size were considered, including variants where
the population size changes according to the iteration of the algorithm. Find-
ing the optimal approach to the population size for an algorithm with dynamic
operator selection could bring benefits in both reducing computational costs
and improving the accuracy of the solutions found. The developed approach was
tested for the control problems where both the parameters and the structure of
PID controllers have to be selected.

The structure of this paper is as follows: in Sect. 2 the proposed solution is
presented, in Sect. 3 the simulations are described, and in Sect. 4 the conclusions
are drawn.

2 Proposed Solution

This section describes an algorithm that allows for the automatic selection of
operators, parameters, and the structure of solutions obtained by using the algo-
rithm and coded in the population’s individuals. The method allows us to apply
mechanisms for managing the population size which are considered in this paper.
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2.1 Operator Population-Based Algorithm with n Operators (OPn)

The OPn is based on a mechanism similar to that derived from the PSO [14],
which means that beside parameters vector xd (where d = 1, ...,D and D stands
for the number of parameters), it uses a velocity vector vd, and a vector that
stores the best set of parameters x′

d. The main difference, however, is the intro-
duction of an additional binary operators vector which decides which operators
should be used to modify the xd parameters - oj (where j = 1, ..., J and J stands
for the number of operators). In the proposed solution, control problems were
considered as example simulation problems for which it would be possible not
only to select parameters, but also to select the PID controller structure. To
make it possible, each individual has been extended with an additional binary
structure vector that determines which controller element is reduced - bc (where
c = 1, ..., C and C stands for the number of structure elements that can be
reduced - the structure of the controller may depend on the simulation problem,
hence the value of C may vary). The complete structure of an OPn’s individual
is shown in Fig. 1.

Fig. 1. Individual structure for an OPn with its parameters and structure selection.

In the first step of the algorithm, N individuals are initialized and evaluated.
The vectors x and v are initialized randomly according to the ranges resulting
from simulation problems, the vector x′ is set to x, the vectors o and b are
randomly initialized from the set {0, 1}. After the evaluation, the best parameters
found are stored as vector x∗. Then, the main iterative loop of the algorithm
begins, in which for each individual Xch (ch = 1, ..., N) the following steps are
performed:

– Vectors v and x are updated as follows:
⎧
⎨

⎩

vd := w · vd +
J∑

j=1

oj · opj (xd, x
∗
d, x

′
d,x

p
d)

xd := xd + vd,

(1)

where w is the inertia weight, opj are the functions related to operators from
different algorithms (for the details see [20]), x∗ is the vector of the best found-
so-far parameters, xp are the vectors of the parameters from the individuals
selected in relation to the used operators (for the details see [20]).
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– Vector x values are narrowed to the search space according to the problem
under consideration.

– Vectors o and b are updated as follows:
{

oj := (oj + 1) %2 if rnd < mo

bc := (bc + 1) %2 if rnd < mb,
(2)

where there is a random number from the range rnd ∈ 〈0, 1〉, and where
mo ∈ 〈0, 1〉, and mb ∈ 〈0, 1〉 are mutation probabilities.

– The individual is evaluated according to a fitness function related to the
simulation problem under consideration.

– If the individual fitness function value is superior to the value of the fitness
function for its x′ vector, then the x′ is updated: x′ = x.

– If the individual fitness function value is superior to the value of the fitness
function for best found parameter vector x∗, then x∗ is updated: x∗ = x.

After all individuals have been updated, the iteration is complete. Then, the stop
condition is checked (e.g. reaching a certain number of iterations). If the stop
condition is not met, the algorithm starts another iteration. Otherwise, the best
found solution, represented by the found parameters vector x∗, is presented.

2.2 OPn and Population Management Approach

In addition to adjusting the OPn algorithm to the selection of the structure and
parameters of PID controllers, the mechanisms which allowed us to dynamically
change the size of the population during the operation of the algorithm were
also included. After each iteration of the algorithm (see Sect. 2.1), the number of
individuals for a given iteration is determined according to the following formula:

N = int
(

NA + (NB − NA) · |2 · itercur − itermax|
itermax

)

, (3)

where int(·) is a function that returns the integer part of a floating number, NA

is an initial and final number of individuals, NB is the number of individuals
when the algorithm reaches half of its iterations, itercur is the current iteration
and itermax is the number of iterations. The above formula makes it possible
for a number of individuals to change smoothly from NA to NB , and then back
to NA, so that the number of individuals in the population, depending on the
iteration, may look as shown in Fig. 2.

A change in the number of individuals means that individuals must be added
to or removed from the population during the algorithm operation. If the cur-
rent number of individuals is greater than that determined with (3), the worst
individuals from the population are sequentially removed. However, when new
individuals must be added to the population, they are created with the use of
a mechanism based on a crossover from the genetic algorithm: for two parents
selected using the roulette wheel method, one new individual is added to the
population, and its parameters are determined as follows:
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Fig. 2. Examples of changes in the number of individuals using (3).

Xnew =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xd = xp
d + rnd · (xq

d − xp
d) , d = 1, ...,D

vd = vp
d + rnd · (vq

d − vp
d) , d = 1, ...,D

x′
d = xd, d = 1, ...,D

oj = op
j for rnd < pc or else oj = oq

j , j = 1, ..., J

bc = bp
c for rnd < pc or else bc = bq

c , c = 1, ..., C,

(4)

where p and q indexes indicate the parameters of the parents, pc ∈ 〈0, 1〉 stands
for crossover probability, and Xnew stands for a new individual. The notation
used in formula (4) allows us to refer to all components of the created individual
Xnew (see Fig. 1).

The described approach will allow us, for example, to use more individuals
in the early and final stages of the algorithm, or vice versa. Moreover, by using
the values NA and NB shown in the example in Fig. 2, the average number of
individuals will be comparable to the cases with a fixed number of individuals.

3 Simulations

In the paper a few approaches to population management were considered: when
the population size is static (N = 100, N = 60, N = 20), when it is variable
as described in Sect. 2.2 (N : LHL, NA = 20, NB = 100 - see Fig. 2; N : HLH,
NA = 100, NB = 20) and when it is constant but the number of iterations
is increased five times (N : 20E) and thus the complexity is identical to the
algorithm with the number of individuals N = 100. With fixed population sizes,
it can check how different algorithms deal with the selection of structure and
parameters in control systems and how the OPn operates in this comparison.
The considered variable size of the population has the same complexity as the
case when N = 60, which will allow to check whether this approach makes
it possible to improve the algorithm’s operation in relation to this case. On
the other hand, increasing the number of iterations with a small population
might verify whether the use of the micro version of the OPn algorithm has any
potential for the considered simulation problems.
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3.1 Simulation Problems

The three control problems described in this section were considered and a cas-
cade PID controller with the possibility of reducing its elements was used as a
control system for these problems.

PID Controller with a Dynamic Structure. In the simulations, the control
problems with the use of PID controllers with a dynamic structure were consid-
ered. A typical implementation mechanism for a PID algorithm can be written
as follows:

u(t) = Kp · e(t) + Ki ·
∫ t

0

e(t)dt · Kd · de(t)
dt

, (5)

where e (·) is the offset, u (·) is the PID output, Kp, Ki and Kd are proportional,
integral and derivative coefficients respectively. The considered PID controller
has been expanded by four binary values b1, ..., b4 ∈ {0, 1} allowing for the
reduction of its elements:

u(t) = b1 ·
(

b2 · Kp · e(t) + b3 · Ki ·
∫ t

0

e(t)dt + b4 · Kd · de(t)
dt

)

. (6)

In addition, a cascade connection of a number of PID controllers was used,
which allows for using and processing more signals and providing a better control
accuracy (see e.g. [19]). In such a case, the binary parameters b enabling the
automatic reduction of redundant elements of the structure are marked with
successive index numbers.

Water Tank Test (WTT). The first problem goal is to maintain the desired
water level h∗ in the tank by changing the water inflow gin. The WTT model is
defined as follows [31]:

ḣ =
1
A

(
qin + qex − qem − s ·

√
2gh

)
, (7)

where A is a surface area, qex is an external water inflow, qem is an additional
emergency water outflow, s is a water outflow, and g = 9.81 m/s2 is the gravita-
tional acceleration. The proposed controller structure for this problem is shown
in Fig. 3a.

Mass Spring Damper (MSD). In the mass spring damper problem the aim
is to maintain the desired position s∗ of mass m1 by managing the control force
F . The mass is connected via a spring to the mass m2, and then by another
spring to the constant point y. The MSD model is defined as follows [19]:

{
s1 = v1 · t + 1

2 · a1 · t2 v1 = a1 · t a1 = k·(s2−s1)−v1·y
m1

s2 = v2 · t + 1
2 · a2 · t2 v2 = a2 · t a2 = k·(F−s2)−v2·y

m2
,

(8)
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a) b) c)

Fig. 3. Proposed cascade PID structures for control problems under consideration:
a) WTT, b) MSD, and c) DCM. The structures enable automatic reduction of redun-
dant elements of PID blocks, and thus the entire signals. The design draws on the
authors’ experience (see e.g. [19]).

where s1 and s2 are the positions of masses m1 and m2, k is the stiffness constant
for both masses. The proposed controller structure for this problem is shown in
Fig. 3b.

DC Motor (DCM). In the last problem the goal is to maintain the desired
motor speed ω∗ by managing the input voltage V . The DCM model is defined
as follows [7]:

{
ω̇ = Kt·i−b·ω

J

i̇ = −R·i+V −Ke·ω
L ,

(9)

where ω is the motor speed, J is the moment of inertia of the rotor, b is the
viscous friction constant, L is the electric inductance, R is the electric resistance,
T = Kt · i is the motor torque (where i is the armature current and Kt is the
motor torque constant), and e = Ke · ω̇ is the counter-electromotive force (Ke

is the electromotive force constant). The proposed controller structure for this
problem is shown in Fig. 3c.

Fitness Function. To evaluate the controller, three control criteria with the
goal of minimization were used (see Table 1). The first criterion (ACC) is con-
cerned with the accuracy of operation, so the difference between the setpoint and
the actual signal (offset) is minimized. The second criterion (OVS) concerns the
overshoot, thus minimizing the maximum difference between the actual and the
set signal. The purpose of the last criterion (OSC) is to minimize the oscillation
of the control system, and thus to reduce the sum of differences between suc-
cessive values of the control signal (this criterion also reduces the control force).
The listed criteria have been aggregated to a single fitness function as follows (a
lower value is better):

FF = ACC · w1 + OV S · w2 + OSC · w3, (10)

where w stands for the weights of components that might differ for each simula-
tion problem (see Table 2). It is worth noting that the above function does not
take into account the complexity of the controller structure. Thanks to this, the
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Table 1. Fitness function criteria for the simulation problems under consideration

Problem Criterion

ACC OVS OSC

WTT
∑T

i=1

|h∗(ti)−h(ti)|
T

max
i=1,...,T

{h (ti) − h∗ (ti)} ∑ T
i=2

|qin(ti)−qin(ti−1)|
T−1

MSD
∑T

i=1

|s∗(ti)−s1(ti)|
T

max
i=1,...,T

{s1 (ti) − s∗ (ti)} ∑ T
i=2

|F (ti)−F(ti−1)|
T−1

DCM
∑T

i=1

|ω∗(ti)−ω(ti)|
T

max
i=1,...,T

{ω (ti) − ω∗ (ti)} ∑ T
i=2

|V (ti)−V (ti−1)|
T−1

optimization of parameters will not strive to obtain the simplest structure, but
to obtain the structure best suited to the given problem. In a case where simpler
structures are needed, an additional criterion for assessing the complexity of the
structure should be included.

3.2 Simulation Parameters

In the simulations, the parameters of the problems were assumed according to
the literature: WTT [31], MSD [19], and DCM [7]. The other parameters related
to the simulation problems are shown in Table 2. The OPn method uses 16
operators derived from various population algorithms (the details can be found
in [21], where these operators were used in a different method). The OPn method
was compared with known population algorithms, modified with the mechanisms
that allow us to select both the parameters and the structure (an additional vec-
tor b was introduced in the algorithms: GA [38], DE [32], GWO [23], FWA [35],
and PSO [14]). The number of iterations of all algorithms was set to 500 and
the results of each simulation case were repeated 100 times and averaged. The
parameters of the OPn algorithm were set as follows: mo = 0.1, mb = 0.1, and
pc = 0.5.

Table 2. Parameters related to the simulation problems.

Parameters MSD DCM WTT

FF weight w1 1.000 1.000 10.000

FF weight w2 0.010 0.010 0.010

FF weight w3 0.001 0.001 0.001

Individual parameters D = 15, C = 20 D = 15, C = 20 D = 12, C = 15

Control signal u = F u = V u = qin

3.3 Simulation Results

The results of the comparison of the OPn with other algorithms is shown in
Table 3 and Fig. 4. The comparison of population management approaches in
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the OPn algorithm is shown in Table 4 and Fig. 5. In addition, the examples of
obtained controllers are shown in Fig. 6.

3.4 Simulation Conclusions

The conclusions from the simulations performed can be summarized as follows:

– Regardless of the simulation problem and the population size, the OPn algo-
rithm allowed us to obtain the best results in the problem of selecting the
structure and parameters of the control system (see Table 3).

– Some algorithms performed much worse with a small population size (see e.g.
GA and PSO for N = 20 in Table 3).

– Some algorithms could not cope with the simultaneous selection of structure
and parameters (see e.g. FWA and PSO for MSD, and N = 100 in Table 3).

Table 3. Comparison of FF values of the OPn with other algorithms and different
population size N . The best values are shown in bold.

Prb. → MSD DCM WTT

Alg. ↓ N = 100 N = 60 N = 20 N = 100 N = 60 N = 20 N = 100 N = 60 N = 20

OPn 0.042 0.044 0.046 0.020 0.021 0.024 0.717 0.729 0.777

GA 0.090 0.879 3.588 0.022 0.024 0.114 0.900 1.004 1.256

DE 0.070 0.078 0.575 0.047 0.046 0.051 0.797 0.795 0.897

GWO 0.100 0.121 0.127 0.031 0.036 0.057 0.837 0.852 0.891

FWA 3.681 4.570 5.022 0.042 0.038 0.050 0.881 0.901 0.914

PSO 1.204 3.974 6.539 0.023 0.026 0.164 1.117 1.217 1.518

Fig. 4. Dependence of the number of individuals and normalized FF values averaged for
all algorithms. NAVG stands for average fitness function values normalized individually
for each problem.

Fig. 5. Dependence of the population management and the number of evaluations for
the OPn algorithm. NAVGP stands for NAVG averaged for all problems.
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Table 4. Comparison of the population management approaches in the OPn algorithm.
NAVG stands for the normalized for each problem average fitness function values. The
best values are shown in bold.

Prb. ↓ N = 100 N = 60 N = 20 N = LHL N = HLH N = 20E

MSD 0.04219 0.04400 0.04571 0.04127 0.04409 0.04858

DCM 0.02008 0.02131 0.02382 0.02173 0.02058 0.02090

WTT 0.71664 0.72941 0.77747 0.72127 0.72096 0.72618

NAVG 0.04187 0.30443 0.86945 0.17276 0.19726 0.45836

Fig. 6. Examples of obtained controllers. The reduced PID elements have been removed
from the structure and grayed out in case of reducing whole PID block.

– Increasing the population benefited the MSD problem linearly and exponen-
tially for the WTT (see Fig. 4). For the DCM problem, using a population
size greater than 60 had no significant improvement.

– The approach with a small number of individuals but increasing the number
of iterations of the algorithms did not bring any benefit and at the same time
only worked comparably to N = 100 in the case of the DCM problem (see
Fig. 5 and Table 4).

– In the case of a variable number of individuals, the individual nature of the
problems can be seen (sometimes LHL works better and sometimes HLH
works better - see Table 4).

– Comparing LHL and HLH versus N = 60 (a similar computational cost),
LHL and HLH give much better results (see Table 4 and Fig. 5).

– For the MSD problem, the strategy of LHL with a variable number of individ-
uals gave better results than using a more complex approach when N = 100
(see Table 4).

– The structures of the obtained controllers were reduced and the control error
was minimized (see the differences between the set and the real signal in
Fig. 6).
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4 Conclusions

Selecting an appropriate number of individuals in a population has a key impact
on the operation of population-based algorithms, which also translates into the
results of the OPn algorithm. Increasing the population size may have a different
effect on the operation of the algorithm depending on the simulation problem,
and above certain limits it may not bring significant benefits if the computational
complexity is being increased. In this paper it was shown that the choice of a
strategy in which the number of individuals in the population for the OPn is
dynamically changed brings significant benefits and allows us to obtain better
results than in the case of variants with a static number of individuals and
a similar computational complexity. The benefits of the proposed population
size change mechanism may be significant, especially for the problems where
parameters and structure need to be selected.
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Abstract. This paper proposes an enhanced variant of the novel and
popular Harris Hawks Optimisation (HHO) method. The original HHO
algorithm was studied in many research projects, and a lot of hybrid
(cooperative) variants of HHO was proposed. In this research study, an
advanced HHO algorithm with an archive of the old solutions is proposed
(HHOA). The proposed method is experimentally compared with the
original HHO algorithm on a set of 22 real-world problems (CEC 2011).
The results illustrate the superiority of HHOA because it outperforms
HHO significantly in 20 out of 22 problems, and it is never significantly
worse. Four well-known nature-based algorithms were employed to com-
pare the efficiency of the proposed algorithm. HHOA achieves the best
results in overall statistical comparison. A more detailed comparison
shows that HHOA achieves the best results in half real-world problems,
and it is never the worst-performing method. A newly employed archive
of old solutions significantly increases the performance of the original
HHO algorithm.

Keywords: Swarm algorithm · Harris Hawks Optimisation ·
Real-world problems · Archive · Experimental comparison

1 Introduction

In this paper, a new variant of the nature-based optimisation method is proposed
to tackle the global optimisation problem. There are a lot of methods to solve the
global optimisation problem, where methods inspired by biological systems from
nature (bio-inspired, nature-based, swarm-intelligence, etc.) are very popular
and efficient in the last decades. These methods use a set of solutions called
population or swarm, which is developed by typical processes to achieve the
best solution of the task.

The efficiency of the various nature-based methods varies significantly, espe-
cially when various problems are solved (results of the comprehensive study
illustrate the difference of these methods when solving artificial and real-world
problems [3]). The main idea of newly proposed nature-inspired methods should
be an application to some real-world optimisation problem. Therefore, a compar-
ison of well-known optimisation methods (including nature-based), especially on
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real-world problems, is very helpful for researchers who need to apply an existing
method to their scientific optimisation task.

The rest of the paper is organised as follows. Section 2 introduces the original
HHO algorithm, describes the main idea of the newly proposed HHOA variant,
and contains a brief characterisation of four well-known nature-inspired meth-
ods for comparison. In Sect. 3, settings of the experimental comparison are intro-
duced. Section 4 illustrates numerical and graphical results from the comparison.
Section 5 concludes the experimental paper.

2 Harris Hawks Optimisation

In 2019, Heidari et al. introduced an idea of a model where Harris’s hawk preys
rabbits to achieve the best amount of feed [5]. The Harris hawk optimisation
(HHO) algorithm employs three phases - exploration, a transition from explo-
ration to exploitation, and the exploitation phase. In the exploration phase, the
solutions are updated using the random solution or the best solution from the
population (controlled by control parameter q). Then, when the energy of the
rabbits (prey) is low (the energy is estimated by variable E), the HHO algorithm
is transferred from the exploration to the exploitation phase. The energy E is
naturally dependent on the current step (generation) of the algorithm.

Algorithm 1. HHO algorithm
initialise population P = {x1,x2, . . . ,xN}
while stopping condition not reached do

evaluate the population P
update the best solution and position
for i = 1, 2, . . . , N do

update initial energy and jump strength
if |E| ≥ 1 then

use exploration phase (1)
else if |E| < 1 then

if r ≥ 0.5 & |E| ≥ 0.5 then
update location by soft besiege (2)

else if r ≥ 0.5 & |E| < 0.5 then
update location by hard besiege (3)

else if r < 0.5 & |E| ≥ 0.5 then
update location by soft besiege and progressively (4)

else if r < 0.5 & |E| < 0.5 then
update location by hard besiege progressively (5)

end if
end if

end for
end while
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In the exploration phase, a new position of the hawk is updated using the
formula:

xt+1 =
{
xrand − rand(xrand − 2 rand xt) if q ≥ 0.5;
(xbest − xavg) − rand(a + rand(b − a)) if q < 0.5.

(1)

where xt+1 is the new position of the hawk, xt is the current position of the
hawk, xrand is randomly selected hawk from the population, xbest is the best
(rabbit’s) position, xavg is the average of coordinates from the whole population,
and a and b are the minimal and maximal coordinates (bounds) of the search
space.

When HHO is transferred to exploitation phase, it uses four different formulas
to update hawk positions (based on rules from Algorithm1):

xt+1 = (xbest − xt) − E |(2(1 − rand))xbest − xt| (2)

or

xt+1 = xbest − E |xbest − xt| (3)

or

xt+1 =
{
y = xbest − E|(2(1 − rand))xbest − xt| if f(y) < f(xt);
z = y + rand(1,D) × LS if f(z) < f(xt).

(4)

or

xt+1 =
{
y = xbest − E|(2(1 − rand))xbest − xavg| if f(y) < f(xt);
z = y + rand(1,D) × LS if f(z) < f(xt).

(5)

where xt+1 is the new position of the hawk, xt is the current position of the hawk,
xbest is the best (rabbit’s) position, xavg is the average of coordinates from the
whole population, D is the dimensionality of the search space (problem), and
LF represents Lèvy flight function (details are available in the original HHO
paper [5]).

The behavior of HHO phases, i.e. transferring from exploration to exploita-
tion using the control parameters illustrates Fig. 1.

The popularity of the original HHO algorithm illustrates the study, which
summarises a lot of hybrid HHO variants from literature [1]. There are more
than 60 research works from scientific databases published in two years what is
a very promising result for the newly proposed optimisation method.

2.1 Archive of the Old Solutions - HHOA

The original HHO algorithm uses five different approaches to update coordinates
of the hawks in the population (Eq. (1)–(5)). In each case of update, when the
new position is better than the old one, the old solution is replaced by the new
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Fig. 1. An illustration of the stages of the HHO algorithm [5]

one. This idea is very efficient when the population is located in the area of the
global minima of the function. In other cases, where the population occupies
rather local minimum areas, the old-good (historical) positions can help to leave
the population from the local minima of the function.

Based on this fact, an archive A for the old-good solutions is introduced for
HHO to increase efficiency in the problems with many local minima. The idea of
the archive is very simple. In the situations of HHO, when the old solution has
to be replaced by a better new position, the old solution is located to archive
A. The newly proposed HHO with archive A is called HHOA. At the beginning
of HHOA, the archive is set to empty of size N and the old-good solutions
are inserted gradually to the empty positions. When the archive is full, newly
outperformed old-good solutions are located to randomly selected positions of A.
Therefore, more current old solutions are kept for some parts of the population
update.

The solutions from A are employed in selected update phases of HHOA.
At first, randomly selected individual from population xrand in the exploration
phase is in HHOA selected from the union of population and archive (P

⋃
A).

Thus, when the archive of size N is full, it is probability 0.5 that the individual
is from the population and 0.5 that it is from the archive. Next, the individual of
the average coordinates from the population xavg in both phases of the original
HHO is computed only from coordinates of population. In HHOA, the xavg is
computed as the mean of coordinates from the union of population and archive
(P

⋃
A). Thus, it promises more diversity when the population is trapped in the

area of local minimum.
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2.2 Nature-Inspired Algorithms in Comparison

Four different nature-inspired optimisation algorithms were selected for a more
comprehensive comparison of the newly proposed HHOA.

The bat algorithm (Bat hereafter) uses parameter settings that follow the
original publication [8]. Maximal and minimal frequencies are set up fmax =
2, fmin = 0, the local-search loudness parameter is initialised Ai = 1.2 for each
bat-individual and then reduced if a new bat position is better than the old
one using coefficient α = 0.9. The emission rate parameter is initialised for each
bat-individual ri = 0.1 and increased by parameter γ = 0.9 in the case of a
successful offspring.

In 2014, the firefly algorithm (FFL in the experiments), was introduced as
the model of real fireflies [9]. The control parameters are set to recommended
values, randomisation parameter α = 0.5, light absorption coefficient γ = 1, and
attractiveness is updated using its initial and minimal values β0 = 1, βmin = 0.2.

In 2015, Kiran introduced an interesting idea of a tree-seed model (TSA) [6].
In this algorithm, a set of trees is represented by the population, which pro-
duces a bigger set of seeds. For each tree, only the best seed from the current
generation is selected to compare with the tree if a better position is achieved.
In 2020, a novel TSA variant using all better seeds and Eigen coordinate sys-
tem was introduced, and it achieves substantially better results on real-world
problems [2].

In 2015, Wang et al. proposed the elephant herd optimisation algorithm
(labelled EHO) inspired by the hierarchical behaviour of elephants in elephants
herd [7]. In the EHO model, elephants are structured into several clans controlled
by female leaders, and some male elephants live separately from the clans. In
this experiment, the recommended values of EHO control parameters are used -
elitism parameter is 2, number of clans is 5, and parameters for a new clan center
computation are α = 0.5 and β = 0.1.

3 Experimental Settings

All six nature-inspired optimisation methods are applied to the set of 22 real-
world problems of the CEC 2011 competition in the Special Session on Real-
Parameter Numerical optimisation [4]. The true solution to these problems is
unknown. The functions differ in the computational complexity and the dimen-
sionality of the search space (from D = 1 to D = 240). For each algorithm
and problem, 25 independent runs were performed. The run of the algorithm is
stopped when the prescribed number of function evaluation MaxFES = 150000
is reached. The partial results reaching one third and two-thirds of MaxFES
were also mentioned. The solution of the problem is a point of the population
with the smallest function value.

The population size of all algorithms is set to N = 30. It is clear that the
population size is a crucial parameter significantly influencing the performance
of evolutionary algorithms, nevertheless tuning of its value for each algorithm is
computationally expensive.
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Table 1. The mean ranks from the Friedman tests.

Alg. FES = 50000 FES = 100000 FES = 150000

HHOA 1.7 1.6 1.6

TSA 2.4 2.3 2.1

EHA 3.4 3.3 3.4

HHO 3.5 3.6 3.7

FFL 4.9 5.0 5.1

BAT 5.1 5.1 5.2

The remaining control parameters of all methods in comparison follow the
recommendation of the authors. All the algorithms are implemented in Matlab
2020b, where statistical analysis is also assessed. All computations were carried
out on a standard PC with Windows 7, Intel(R) Core(TM)i7-4790 CPU 3.6 GHz,
16 GB RAM. Source code of the algorithms in comparison are available from
Mathworks.

4 Results and Discussion

The first insight into the performance of the six employed algorithms (HHO,
HHOA, EHA, TSA, FFL and BAT) on real-world problems provides the Fried-
man test. The test is based on the median values of the problems for all algo-
rithms. Finally, mean ranks for each algorithm, including all real-world problems,
are provided in Table 1 where lower mean rank represents a method with better
overall performance. It is obvious, the order of the algorithms does not differ
during the three stages, and the best performing is proposed HHOA. On second
and third position are TSA and EHA, followed by the original HHO. BAT is the
worst performing method in comparison.

More details provide Table 2, where results of the Kruskal-Wallis tests are
depicted. A significance level is in column p-level, and it is clear that the zero
hypotheses are rejected for all real-world problems. In this case, algorithms are
ranked from the best performing to the worst performing, where the first, second,
third, and last algorithm is specified. For a better overview, the total number of
these positions are in Table 3. The proposed HHOA achieves the best results in
11 out of 22 problems, followed by TSA with seven wins. The original HHO and
EHA are able to be the best in one task. On the other side, FFL and BAT are
the poorest methods with the ten worst results out of 22.

Further, the proposed HHOA is compared with each of five counterparts
using the Wilcoxon rank-sum test. The count of the significantly better results
of HHOA (‘+’), cases where the results are similar (≈), and number of HHOA

failures (‘–’) are illustrated in Table 4.
HHOA significantly outperforms HHO in 20 problems, and it is never worse

(the results are similar for T03 and T11.6). It is significantly better than EHA
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Table 2. The absolute ransk from the Kruskal-Wallis tests.

Fun p-value 1st 2nd 3rd Last

T01 1.92E–25 TSA HHOA HHO BAT

T02 1.69E–27 HHOA EHA HHO BAT

T03 1.41E–28 HHO HHO HHO FFL

T04 1.30E–26 HHOA TSA EHA BAT

T05 7.25E–23 HHOA TSA EHA FFL

T06 9.60E–25 HHOA TSA EHA BAT

T07 4.64E–28 HHOA HHOA EHA BAT

T08 4.30E–27 TSA HHOA EHA FFL

T09 5.14E–27 TSA HHOA HHO FFL

T10 9.82E–28 HHOA HHO BAT TSA

T11.1 3.12E–28 HHOA TSA EHA BAT

T11.2 1.21E–23 TSA HHOA EHA BAT

T11.3 1.14E–12 EHA TSA HHOA HHO

T11.4 4.68E–27 TSA HHOA EHA BAT

T11.5 1.14E–26 HHO HHOA TSA FFL

T11.6 2.20E–28 TSA HHOA EHA FFL

T11.7 2.00E–28 HHOA TSA HHO FFL

T11.8 5.10E–28 HHOA TSA HHO FFL

T11.9 2.37E–28 HHOA TSA HHO FFL

T11.10 4.10E–27 HHOA TSA HHO BAT

T12 5.26E–27 TSA HHOA EHA BAT

T13 2.64E–14 HHOA BAT TSA FFL

Table 3. Total count of positions from the Kruskal-Wallis tests.

Posit HHOA TSA EHA HHO BAT FFL

1st 11 7 1 1 0 0

2nd 8 10 1 1 1 0

3rd 1 2 10 7 1 0

Last 0 1 0 1 10 10

in 19 cases and worse in the case of the T11.4 problem. HHOA outperforms TSA
in 12 problems, and it is worse in six (T01, T09, T10, T11.5, T11.7, T13). FFL
performs worse than HHOA in 21 problems, and it is similar in T11.4. HHOA is
better in 20 problems and performs similarly in the case of T03 and T11.4.

An ability to converge to a solution is illustrated in Fig. 2 where are the
convergence plots for six selected problems. The minimum function value of the
best solution in the population is recorded in 17 stages of the search process for
each algorithm. It is obvious that the proposed HHOA converges fast, and it is
able to find positions with better (lower) function values even in problems where
other methods get stuck (T02, T05, T11.2).
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Table 4. The number of HHOAs’ wins, equal results, and loses from the Wilcoxon
tests.

HHOA vs.→ HHO EHA TSA FFL BAT

+/ ≈ /− 20/2/0 19/2/1 12/4/6 21/1/0 20/2/0

50T20T

70T60T

21T2.11T

Fig. 2. Convergence of the algorithms in comparison.
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5 Conclusion

Provided results from the comparison of the proposed HHOA method with five
well-known nature-inspired methods show the superiority of the new advanced
algorithm. The only difference between HHOA and the original HHO is in the
archive of the old-good solutions, which is used in two rules of position update.
On the other side, even the archive is substantially helpful, the HHOA is outper-
formed in some problems, especially by the TSA algorithm. The archive for store
the old solution to be removed is possible to employ in any of the population-
based optimisation methods. Future research will be focused on studying the
archive in other optimisation methods and increasing the performance of the
proposed HHOA algorithm.
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Abstract. Classification is the process of predicting the class of objects.
It is a type of Supervised Machine Learning, where predefined labels are
assigned to objects, based on predetermined criteria. The article presents
the idea of the Multiobjective Evolutionary Algorithm (MEA) that sup-
ports solving this problem. The proposed MEA uses two optimization
criteria: the number of correctly assigned objects and the total distance
between objects within the classes. In the process of multiobjective opti-
mization, the algorithm minimizes the number of incorrectly assigned
objects and maximizes the consistency of members within classes. The
algorithm was tested on a few benchmarks and used to classify cosmic
particles, based on their traces detected in Water Cherenkov Detectors
(WCD). The results of the experiments suggest that the proposed algo-
rithm takes advantage of the standard single-objective evolutionary algo-
rithm in solving this problem. The algorithm can be also used for solving
similar optimization problems.

Keywords: Classification · Evolutionary Algorithm · Multiobjective
optimization

1 Introduction

Classification is a problem, where objects (observations) are grouped based on
particular criteria. It is a difficult problem of Supervised Machine Learning
(learning with a teacher). As an example of pattern recognition, the classifi-
cation solves the identification problem of which of the set of categories the new
object belongs to. Decisions are made based on a set of training data containing
objects, whose category membership is known. It is a very important tool in the
real world, where big sets of data are used to make decisions in government, eco-
nomics, medicine, and more. While humans make classifications every day (e.g.
“red” or “blue”), classification in supervised machine learning requires comput-
ers and complex algorithms. In machine learning, classification is about teaching
computers to do the same. We try to build algorithms that learn how to assign
class labels to all objects in a set. More information about classification can be
found in publications [4,10].

c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 424–433, 2021.
https://doi.org/10.1007/978-3-030-87986-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87986-0_38&domain=pdf
http://orcid.org/0000-0002-2937-7886
https://doi.org/10.1007/978-3-030-87986-0_38


Multiobjective Evolutionary Algorithm for Classifying Cosmic Particles 425

Evolutionary Algorithms (EA) are optimization methods, that are inspired
by the process of evolution in nature. They simulate the process of natural selec-
tion in computer software. The group of EA includes the Genetic Algorithms
(GA), Evolutionary Programming (EP), and Evolutionary Strategies (ES). All
these methods use the same concepts such as population, selection, reproduc-
tion, and mutation, taken from biology. They process a population of individuals
in iterations called generations. The process of evolution includes fitness evalu-
ation, reproduction, and mutation. New generations should be better fitted to
the environment than their ancestors. The algorithm is terminated when a pre-
defined criterion is met. Possible solutions to the problem (called individuals
or chromosomes) are coded and represented by binary strings, real numbers, or
other composite data structures. Each individual in the population has a cal-
culated numerical value (fitness function), which describes the quality of this
individual, that determines his ability to act as a parent for the next generation.
Environmental pressure causes natural selection (“the survival of the fittest”
rule). Individuals well-adapted to the environment are more likely to survive
and pass on their genetic material to their descendants in the next generation.
This increases the fitness of the entire population. Evolutionary Algorithms are
usually used to solve sophisticated optimization problems in large search spaces,
for which no other specialized techniques exist. They usually don’t search for the
global optimum but provide a near-optimum solution in an acceptable period.
More information about Evolutionary Algorithms can be found in publications
[5,8].

Classification can be formulated as a multi-objective optimization problem.
We proposed an Evolutionary Algorithm with a two-objective function that is
superior to an algorithm with a single-objective function.

Ultra-High Energy Cosmic Rays (UHECRs) are cosmic rays with an energy
greater than 1 EeV (1018 electronvolts). It consists of sub-atomic particles trav-
eling nearly at the speed of light. The origin of the UHECRs and their produc-
tion mechanism is unknown. In Earth’s atmosphere, particles interact with air
particles and produce an “air shower”. The surface detectors (for example in
the Pierre Auger Observatory) can detect, identify and separate neutrino-origin
air showers from air showers induced by regular cosmic rays for a large zenith
angle. The Water Cherenkov Detector (WCD) contains 12 m3 of water and three
photomultipliers (PMT), which receive Cherenkov’s light, emitted by particles
passing through the water. Each detector is equipped with its own electronics
based on an FPGA chip from the Cyclone R© V E family, and communications
systems powered by solar energy. Signals from PMTs are digitized by 40 MHz
10-bit Analog to Digital Converters (ADCs) and sent to a Central Data Acquisi-
tion System (CDAS). CDAS combine information and identifies physical events,
from the high-level trigger (T3) [1]. The limitations of software for this system
are the number of programmable logic, I/O, memory resources, and power con-
sumption. Software running in the FPGA must comply with these requirements.
The ultra-high energy cosmic ray particles are very rare but they can be simu-
lated in CORSIKA program. CORSIKA (COsmic Ray SImulations for KAscade)
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[3] is a computer program that simulates the air shower, initiated by a particle
of cosmic ray, i.e. protons or neutrinos. The data simulated in CORSIKA air
showers are the input for the OffLine program [2]. It generates the ADC traces
(signal waveforms) as a response of the Water Cherenkov Detector. Neutrinos,
due to a very small cross-section for interactions, can generate showers initiated
deeply into the atmosphere. Protons, with a much larger cross-section first inter-
act usually shortly after entering the atmosphere. The simulations of air showers
in CORSIKA and calculations in OffLine program showed that showers gener-
ated by protons (“old” showers) give relatively short ADC traces, while ADC
traces generated by neutrinos (“young” showers) are spread in time. The timing
of shower fronts directly observed as profiles of registered traces in the surface
detectors is one of the fundamental criteria allowing identification of neutrino-
induces showers. Figure 1 present an examples of ADC traces for protons and
neutrinos.

Fig. 1. Examples of ADC traces for protons and neutrinos

2 Problem Formulation

In machine learning, classification is defined as a process of supervised learning,
in which the computer program learns from the training data, and then uses this
knowledge to classify new objects or observations. The general aim of classifica-
tion is to separate the objects into classes, using only training data. If the output
label has two possible values, the problem is named binary classification. If there
are more than two classes, the problem is referred to as multiclass classification.
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A classification problem can be formally defined as the task of assigning
the label y of a k − dimensional input vector x, where x ∈ X ⊆ Rk and
y ∈ Y = {C1, C2, ..., CQ}. This task is realized by using a classification rule or
function Y = f(X), able to assign the label of new objects. In the supervised
learning, we are given a training set of N objects, represented by D, from which f
will be adjusted, D = {(xi, yi), i = 1, ..., N}. The k-nearest neighbors algorithm
is often used to classify objects in a variety of machine learning tasks.

The k − nearest neighbors algorithm [6,7] is a supervised classification
method that uses proximity as a measure for ‘sameness’. The algorithm takes a
bunch of labeled objects and uses them to learn how to label other objects. To
label a new object, it looks at the labeled objects closest to that new object (its
nearest neighbors). The geometric distance is usually used to determine which
object is the nearest. After checking with k the number of the nearest neighbors,
it assigns a label based on which label the most neighbors have.

The classification can be formulated as a multi-objective optimization prob-
lem, where two different functions are optimized:

– the number of correctly classified objects,
– the total distance of class members from their class centers.

⎧
⎨

⎩

max f1(x)
min f2(x)
x ∈ X

(1)

where:
x = [x1, x2, x3, ..., xn] ∈ � (2)

is an n-dimensional vector of the decision variables in search area X,
f1(x) - is a function of the number of correctly classified objects,
f2(x) - is a function of the total distance of class members from their class
centers.

3 The Multobjective Evolutionary Algorithm for Solving
Classification Problem

There aremanypublications ondifferentmethods of solving the classificationprob-
lem, for example, k-means or Genetic Algorithms, but these methods do not work
well for multiobjective optimization in sophisticated, multidimensional spaces.
The proposed Multiobjective Evolutionary Algorithm (MEA) seeks for optimal
placement of class centers, maximizes the number of correctly assigned objects,
and minimizes the total distance of class members from their class centers.

In the proposed MEA the individuals’ genes (potential solutions to the prob-
lem) are encoded by the means of real numbers and represent the coordinates of
class centers. The algorithm uses the tournament selection method. The fitness
function is computed for every individual based on its genotype. The value of
the individual’s fitness function is a real number, where the integer part is the
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number of incorrectly classified objects (inverted number of correctly classified
objects) and the fractional part is the total distance between class members from
their class centers divided by a constant. This constant is set depending on the
task during the initial experiments.

The algorithms’ parameters used in the experiments:

– the genes of individuals are coded by real numbers and represent the coordi-
nates of class centers,

– the probability of crossover = 0.8,
– the probability of mutation = 0.1,
– the number of individuals in all populations = 25,
– the algorithms were stopped after a predefined number of generations.

4 Computational Experiments

The goal of experiments is to check the suitability of the proposed Multiobjective
Evolutionary Algorithm in solving classification problems in a sophisticated,
multi-dimensional environment. The experiments were divided into two stages.
In the first stage, the effectiveness of the proposed algorithm was examined. The
set of data from “The Fundamental Clustering Problems Suite” (FCPS) [18]
has been used as a benchmark. For the experiment, two-dimensional tasks with
from 400 to 4096 objects and 2 to 3 classes were selected. All tasks from selected
benchmarks were solved by a k-means algorithm (we used the k-means method
from the “rattle” library in R programming language [14]), proposed algorithm
(MEA) and simple genetic algorithm (SGA) - an algorithm proposed in [8],
and modified by me to solve a classification problem. During experiments two
different fitness functions were used in SGA: the number of correctly classified
objects (SGA1) and the total distance of class members from their class centers
(SGA2). Each algorithm has been run a few times.

In Table 1 there are the best results obtained by each algorithm in the tests.

Table 1. The best results obtained by each algorithm in the tests.

Problem name Lsun TwoDiamonds WingNut EngyTime

Number of objects 400 800 1070 4096

Number of clusters 3 2 2 2

Number of dimensions 2 2 2 2

The number of
correctly assigned
objects

k-means 391 800 981 4010

SGA1 400 800 1016 3954

SGA2 338 800 833 2536

MEA 400 800 1016 3953
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Figure 2, 3, 4, 5 shows the distribution of objects in search space and the
location of class centers obtained for each benchmark, using k-means, SGA1,

Fig. 2. The distribution of objects in search space and known a priori classifications
in problem Lsun

Fig. 3. The distribution of objects in search space and known a priori classifications
in problem TwoDiamonds
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SGA2, and MEA algorithms respectively. Classes C1, C2 and C3 represent known
a priori distribution of objects. In the EngyTime task “Errors” is a class of
objects that have not been correctly classified by the k-means algorithm.

Fig. 4. The distribution of objects in search space and known a priori classifications
in problem WingNut

Fig. 5. The distribution of objects in search space and known a priori classifications
in problem EngyTime
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The construction of the fitness function causes the number of correctly clas-
sified objects a basic objective function. The total distance of class members
from their class centers is the secondary objective function, that only matters
if the number of correctly classified objects is equal. This construction makes it
possible to find one of many equal quality solutions (the Pareto front), optimal
in terms of the number of correctly classified objects, that at the same time min-
imizes the total distance of class members from their class centers. The SGA1
algorithm has a satisfactory result in terms of the number of correctly classified
objects, but the location of the class’s center is outside the area of distribution
of objects from this class, e.g. in the Lsun or TwoDiamonds task. The position
of class centers in MEA better represents the distribution of class objects, e.g.
in the Lsun, WingNut, or EngyTime task.

The ability of the proposed system to classify cosmic particles based on its
traces has been tested in the second stage of experiments. Data from simulations
in CORSIKA and OffLine programs has been used as a task. The data set
consists of 1242 particles including 621 neutrinos and 621 protons. The data
are simulated traces of particles, that hit the Earth atmosphere in zenith angles
– 80o, 85o, and 89o, and energies 3 ∗ 108, 3 ∗ 109, 3 ∗ 109, and 1010 GeV. The
distances from the point of the first interaction of a particle with air nuclei to the
detector are dependent on the type of particle. Traces, where first interactions of
protons are very close to the detector, were rejected because the probability of
this situation is very low. Moreover, this kind of interaction may include also the
electromagnetic part of the shower and can disturbs classification. Only traces
with a maximum ADC value of less than 200 were selected because the remaining
particles are well detected by traditional triggers. This set of test data makes
particle classification very difficult, but this range (not accessible to traditional
triggers) may be very important for classification.

The task was solved by a k-means algorithm, proposed Multiobjective Evo-
lutionary Algorithm (MEA), and simple genetic algorithm with two different
fitness functions: the number of correctly classified objects (SGA1) and the total
distance of class members from their class centers (SGA2). Each algorithm has
been run a few times. In Table 2 there are the best results obtained by each
algorithm.

Table 2. The results of cosmic particles’ classification, obtained by algorithms.

The number of correctly assigned
objects

The percent of correctly assigned
objects

k-means 639 51,4

SGA1 751 60.4

SGA2 621 50.0

MEA 827 66.5
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5 Conclusions

The proposed Multiobjective Evolutionary Algorithm was able to find a solution
for all tested problems in the first stage of experiments.

The total distance of class members from their class centers, as a fitness
function (algorithm SGA2) has performed much worse than the others, except
for the easy to optimize TwoDiamonds task.

In three out of four tasks from the benchmarks, the number of objects cor-
rectly classified by the proposed algorithm is equal to the algorithm with the
number of correctly classified objects as a fitness function (SGA1). However, in
MEA the distribution of class centers better illustrates the location of areas,
where members of these classes are placed.

In Lsun and WinGnut tasks the proposed algorithm (MEA) correctly clas-
sified more objects than k-means. The class center distribution is more like a
natural human classification.

Tests on data from CORSIKA and OffLine showed that MEA compared to
SGA1, SGA2, and k-means classify more objects correctly. This may be due to
a very large number of dimensions in the simulation data and the complexity of
the solved problem.

Only traces with a low maximum signal were selected from a simulation in
CORSIKA and OffLine for tests. Standard triggers used in Water Cherenkov
Detectors are not capable of detecting particles with these signal values. Experi-
ments show that the proposed algorithm can better classify cosmic particles with
these signal values than other tested algorithms.

The proposed algorithm can be used to build a system consisting of fuzzy
logic and an evolutionary algorithm. An example of such a system has been
presented in publication [12]. The Fuzzy Logic Controller (FLC) can be used
to improve the performance of the proposed algorithm [13]. In further work,
these approaches will be tested. Different methods of artificial intelligence, such
as Artificial Neural Networks [15,16] or Fuzzy Logic [17] were used to classify
cosmic particles based on their traces. Future work will try to implement the
proposed system to FPGA, test in the real-world, and compare results with
traditional triggers and other methods of artificial intelligence.

The proposed algorithm can be an efficient tool for solving classification
problems. It could be used for solving a very wide range of similar problems.
The other way of using it is medicine, e.g. for classification of hypertension [11]
or obesity [9].
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Abstract. Many researchers today are using meta-heuristics to treat the class of
problems known in the literature as Job Shop Scheduling Problem (JSSP) due to
its complexity since it consists of combinatorial problems and it is an NP-Hard
computational problem. JSSPs are a resource allocation issue and, to solve its
instances, meta-heuristics as Genetic Algorithm (GA) are widely used. Although
the GAs present good results in the literature, it is very common for these methods
that they are stagnant in solutions that are local optima during their iterations
and that have difficulty in adequately exploring the search space. To circumvent
these situations, we propose in this work the use of an operator specialized in
conducting the GA population to a good exploration: the Genetic Improvement
based on Frequency Analysis (GIFA). GIFA makes it possible to manipulate the
genetic material of individuals by adding characteristics that are believed to be
important, with the proposal of directing some individuals who are lost in the
search space to a more favorable subspace without breaking the diversity of the
population. The proposed GIFA is evaluated considering two different situations
in well-established benchmarks in the specialized JSSP literature and proved to
be competitive and robust compared to the methods that represent the state of the
art.

Keywords: Evolutionary Algorithm · Genetic Algorithm · Genetic
improvement · Job Shop Scheduling Problem · Combinatorial optimization

1 Introduction

Combinatorial optimization problems (COPs) consist of situations in which it is neces-
sary to determine, through permutations of elements of a finite set, the configuration of
parameters that is more advantageous [26]. Due to its high degree of applicability, many
researchers have been using COPs in different contexts. As an example, applications in
the logistics [29], vehicle routing [15], railway transport control [22], among other cur-
rent problems [10]. In particular, one of the most addressed COPs in the literature is
production scheduling [27], which, according to Groover [12], is part of the Production
c© Springer Nature Switzerland AG 2021
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Planning and Control activities and is responsible for determining the design of opera-
tions that will be carried out, such as: the environment in which products are processed,
what resources are used and what is the start and end time for each production order.

Academic research and the development of solution methodologies have focused on
a limited number of classic production scheduling problems, one of the most researched
is the variation known as Job Shop Scheduling Problem (JSSP) [14], in which a finite
set of jobs must be processed by a finite set of machines. In this category of problems,
the objective is usually to determine a configuration in the order of processing of a
set of jobs, or tasks, to minimize, for example, the time of using resources [39]. In
this case, several performance measures are useful to evaluate how satisfactory a given
configuration is for a JSSP, with makespan [38], which corresponds to the total time
needed to finish the production of a set of jobs, one of the most used.

Belonging to the well-known class of problems NP-Hard, JSSP presents itself as a
computational challenge, since it is not a trivial task to develop an approach to deter-
mine exact solutions that represent a configuration with an adequate performance mea-
sure, within a reasonable time, even considering small and moderate cases [35]. From
this need, algorithms that present approximate results in a feasible computational time
were developed and applied to JSSP. The main methods used are those composed of
meta-heuristics [23], mainly by the Evolutionary Algorithm (EA) known as Genetic
Algorithm (GA) [21,24,31–33]. Even so, the JSSP consists of a class of problems that
remain open [6] and with many instances still unsolved in the well-known benchmarks
of the area [9]. This is because the existing methods do not have the necessary efficiency
to guarantee their practical use.

More specifically, it is possible to highlight some disadvantages in the use of GA in
solving COPs [4,8]. In detail, it is common for this set of techniques that they become
stagnant [30], during their iterations, in solutions that are local minimums, which con-
figures the phenomenon known as premature convergence [41]. Also, GAs may require
high computational time [20] to obtain good solutions to this type of problem. There-
fore, for complex problems, GA needs to be assimilated to specific problem routines to
make the approach effective. Hybridization can be a deeply effective way to improve the
performance of these techniques. The most common form of hybridization is the addi-
tion of GAs to local search strategies and the incorporation of domain-specific knowl-
edge in the search process [28]. In the latter, there are genetic improvement operators
through manipulations in specific genes on a chromosome. These have as main objec-
tive to provide to individuals who are not able to stand out in a population the reinforce-
ment coming from one or more individuals who have been successful in the adaptation
process. In other words, these operators direct the worst individuals in a population to
areas known to be good in the search space.

The authors do Amaral and Hruschka JR [2,3] present an operator in this line of rea-
soning, entitled transgenic operator and that simulates the process of genetic improve-
ment. To conduct such a procedure, in one of the stages of the GA, the population of
the same is replicated to four parallel sub-populations and, in each of these four popu-
lations, the best individuals transfer up to 4 genes, based on historical information, to
selected individuals. Then, only the best individuals among the four sub-populations
remains. Viana, Morandin Junior and Contreras [33] proposed an adaptation of the
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transgenic operator do Amaral and Hruschka JR [3] to solve a JSSP with GA. The
authors propose the identification of relevance in the genes used in the transgenic pro-
cess through a pre-processing process. However, such preprocessing is computationally
time-consuming and may not be viable in large JSSPs.

In this work, we propose a new population guidance operator for GAs: the Genetic
Improvement based on Frequency Analysis (GIFA) Operator. Our method consists of
a new way to determine the genetic relevance based on the frequency analysis of the
genes of individuals who have good fitness values in the population. We also propose
the construction of a representative individual that represents this group of good indi-
viduals and that it is used in the process of genetic manipulation to guide the worst
individuals towards good solutions and, possibly, that these become positive highlights
in the population.

This work is divided into five sections. Specifically, in Sect. 2, we describe the JSSP
basis. We present, in Sect. 3, the details about the proposed GIFA operator and the
requirements that an GA needs to satisfy to use it. Experimental results on different
GAs using GIFA and the advancement in the state of the art of JSSPs are presented in
Sect. 4. The work is finished in Sect. 5 with conclusions about the developments carried
out and future projections for improving the method and possible applications.

2 Formulation of Job Shop Scheduling Problem

We can define JSSP as a COP that has a set of N jobs that must be processed on a
set of M machines. Also, each job has a script that determines the order in which it
must pass through the machines for its process to be completed. Each job processing
per machine represents an operation and the objective of a JSSP can be interpreted as
being the challenge of determining the optimal sequencing of operations with one or
more performance measures as a guide. The components of this problem follow some
restrictions [39]:

– Each job can be processed on a single machine at a time;
– Each machine can process only one job at a time;
– Operations are considered non-preemptive, i.e., cannot be interrupted,
– Configuration times are included in processing times and are independent of

sequencing decisions.

In this work, we adopted makespan (MKS) as a performance measure. The MKS is
the total time that a JSSP instance takes to complete the processing of a set of jobs on a
set of machines taking into account a given operation sequence.

Mathematically, let’s assume the following components of a JSSP:

– J = {J1,J2, ...,JN} is the set of jobs;
– M = {m1,m2, ...,mM} is the set of machines;
– O = (O1,O2, ...,ON·M) is a operation sequence that sets the priority order for pro-

cessing the set of jobs in the set of machines
– Ti(O) represents the time taken by the job Ji to be processed by all machines in its

script according to the operation sequence defined in O.
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Then, according to [7], the MKS can be defined as the total time that all jobs take
to be processed according to a given operation sequence, as presented in Eq. (1).

MKS = max
i

Ti(O). (1)

3 A New Genetic Improvement Operator Based on Frequency
Analysis for GA Applied to JSSP

In this section, we will present in detail how the proposed method works. We will spec-
ify the idea of determining genetic relevance by analyzing the frequency of genes that
represent good characteristics in individuals with adequate fitness values in the popula-
tion and, with that, we intend to obtain innovation with the following three topics:

– A new strategy for defining genetic relevance in GAs chromosomes;
– A new genetic improvement operator that is versatile and can be used in GAs varia-

tions,
– Improving the state of the art of JSSP benchmark results.

3.1 Genetic Representation

Our operator was developed to operate in all GA-like methods with minor modifica-
tions. In the meantime, we are going to conduct its fundamentation on a specific encod-
ing. In this case, we will use the “coding by operation order” [5]. In this representation
[32], the feasible space of a JSSP instance defined by N jobs and M machines is formed
by chromosomes c ∈ N

N·M , such that exactly M coordinates of c are equal to i (repre-
senting the job index i), for every i ∈ {1,2, ...,N}.

This encoding determines in chromosome the operation priority with respect to
machine allocation. For example [31], let’s assume c = (2,1,2,2,1,1) as being a feasi-
ble solution in a JSSP instance with dimension 2×3 (N = 2 and M = 3). Thus, accord-
ing to the operations defined in c, the following actions must be carried out in parallel
or if the previous action has already been done.:

– 1st) Job 2 must be processed by the 1st machine of its script.
– 2nd) Job 1 must be processed by the 1st machine of its script.
– 3rd) Job 2 must be processed by the 2nd machine of its script.
– 4th) Job 2 must be processed by the 3rd machine of its script.
– 5th) Job 1 must be processed by the 2nd machine of its script.
– 6th) Job 1 must be processed by the 3rd machine of its script.

3.2 Fitness Function

The encoding used makes it natural to define the fitness function of the problem as the
makespan of a JSSP instance given according to the stipulated operation sequence. That
is, the fitness function [33] used is given according to Eq. (2):

F : O −→ R

O �−→ F(O) := max
i

Ti(O), (2)
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in which O is the set of all possible operation sequences for the defined JSSP instance.
In this way, for this fitness function, the MKS of the JSSP instance is calculated

according to a given operation sequence, then the meta-heuristic must look for an oper-
ation sequence in which the MKS is as small as possible and, consequently, the set of
jobs must be processed by the set of machines taking the shortest possible time.

3.3 Proposed Genetic Improvement Based on Frequency Analysis Operator

In this work, we propose a new genetic improvement operator for evolutionary algo-
rithms: the GIFA operator. The operator is based on a frequency analysis matrix cal-
culated during the iterations of each GA. GIFA aims to calculate which genes on a
chromosome can direct individuals with poor fitness values to better solutions and bet-
ter search spaces. GIFA has two main stages: the first being defined by the making of
the representative individual, that is, an individual that is determined by the configura-
tion of the most frequent genes in the best individuals in the population; and the second
stage consists of the use of the representative individual in the transgenic process, that
is, the genetic manipulation through the insertion of specific genes of the representative
individual in genes of the worst individuals in the population. Below, we present these
steps in detail.

Stage 1: Composition of the Representative Individual. Initially, a portion of the
population that presents the best fitness values is selected. Specifically, we select NTop

individuals who are considered good examples of solutions in the population. Then, for
each index job i, a frequency vector �vi ∈ R

N·M is associated, in which the number of
its occurrences is stored in each coordinate where the product i appears exactly at the
position of this coordinate on the chromosomes selected for comparison. In Fig. 1, an
example of the calculation of the frequency vectors�vi is presented when considering 4
individuals c1,c2,c3, and c4 with the best values of fitness in a 3 × 2 dimension JSSP
instance.

Once the vector�vi has been made for every job index i, a chromosome whose coor-
dinates are determined by the job with the highest frequency in this coordinate is defined
as a representative individual. That is, each gene (coordinate) of the representative indi-
vidual is defined as the job index that is most present in this coordinate in the best indi-
viduals in the population. It is also possible to establish an order of genetic relevance
according to the frequency vectors�vi. That is, it is possible to define which genes of the
representative individual are more suitable to be transferred in the process of genetic
improvement. Such relevance is also defined according to the frequency that the prod-
ucts present in each coordinate of the best individuals so that the genes that present the
same job in many good individuals can categorize a “trend” that leads to good fitness
values. Therefore, these genes must be considered to be relevant, since they describe a
positive characteristic in several individuals that stand out in the population. Mathemat-
ically, the representative individual and its genetic relevance are made according to the
following procedure:
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Fig. 1. Calculating the frequency vectors (�vi) of the three jobs in each coordinate of the four best
chromosomes in the population.

1. Let c be the representative individual and w a vector that designates a score for each
of its coordinates, initially null. In the following items, the coordinates of c and w
are made.

2. We define I1 as being argmax
i

{�vi,1}. That is, I1 is the index of the job that has the

highest frequency in the first coordinate of the exemplary individuals. Therefore, the
first coordinate of the representative individual is defined as I1. Mathematically,

c1 := I1.

In addition, a w1 score defined as the maximum frequency shown in the first coordi-
nate of the best individuals is associated with the first coordinate of c. That is,

w1 := max
i

{�vi,1} =�vI1,1.

3. Assign the value 2 to j.
4. We define I j as being argmax

i
{�vi, j}, that is, I j is the most frequent product index in

the j coordinate in the NTop individuals. However, in order to guarantee the feasibil-
ity of the representative individual, it is necessary to establish two more restrictions:
4.1 If the product I j is not in M coordinates of c, then it is defined as I j the j-th

coordinate of the representative individual. That is,

c j := I j.

In this case, the respective score is associated with the j -th coordinate of the
representative individual as the maximum possible value presented in the j -th
coordinate of the best individuals. That is,

w j := max
i

{�vi, j} =�vIj , j.
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4.2 Otherwise, to guarantee the feasibility of c, the frequencies of the index job I j

are disregarded, since it is already arranged in M coordinates of c and, therefore,
does not can occupy any more of its coordinates. To do so, we must cancel its
respective frequency vector, that is,

�vIj :=�0.

To make a new attempt, we must return to item 4.
5. If j �= N ·M then j := j+1 and we must return to item 4. Otherwise, the procedure

is finished and we have the representative individual pair and its respective genetic
score (c,w).

Note that it is not necessary to project the representative individual in the feasible space
of the problem since due to its construction and the item 4 above, it is already feasible.
In Fig. 2, an example of the calculation of the representative individual (c) and the
relevance of its genes (w) in a JSSP instance of dimension 4×3 is presented, taking as
best individuals the NTop = 5 individuals with the lowest fitness values available in the
population.

Fig. 2. Computation of the representative individual (c) and its genetic relevance (w).

Stage 2: Use of the Representative Individual in Genetic Improvement. Once the
representative individual and the relevance of each of its genes have been calculated,
then it is proposed that its most relevant genes be transferred to the worst individuals in



A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 441

the population, thus simulating a mechanism for genetic improvement, or transgenics.
For this, we take PWorst := {x1,x2, . . . ,xNWorst} as the set of the worst NWorst individu-
als in a population. Subsequently, the most significant, or most relevant, NGenes genes
of the representative individual are transferred to all individuals in the PWorst maintain-
ing their original positions. This procedure can generate infeasible solutions. Thus, it
is necessary to conduct a correction, or projection, process on the individuals result-
ing from this operation. For this, we carry out the projection through the Hamming
distance [37] modifying only the genes that were not received from the representa-
tive individual. In this way, the individuals generated in this procedure are projected
on the feasible set of the problem, giving rise to the genetically improved individuals
PImproved = {x̂1, x̂2, . . . , x̂NWorst}.

It is also necessary to establish how many genes will be transferred from the rep-
resentative individual to the individuals of PWorst. For this, we will follow a procedure
similar to that of Viana, Morandin Junior, and Contreras [33], which empirically deter-
mine that the adequate amount of genes used in the genetic improvement process is
given by the root of the number of coordinates of the chromosome. Thus, the process
remains advantageous and does not cause early convergence in the population. Thus, in
this work, NGenes is defined as round

(√
N ·M

)
. In Fig. 3, an example of the determina-

tion of the most significant genes of a representative individual c when it is given the
scores of his genes w while addressing a JSSP with dimension 4×3.

Fig. 3. Determination of the most significant genes of a representative individual.

Assuming NWorst = 3 and PWorst = {x1,x2,x3} as the set of the worst 3 individuals
in a population, the improvement process is shown in Fig. 4 genetic that transfers the
NGenes best genes from the representative individual c of Fig. 4 to all individuals in the
set PWorst.

The genetic improvement procedure must be performed after the standard operators
of the GA, or the GA-like method used, and right after the generation of a new popu-
lation. Thus, the set PWorst must be formed by individuals from the new population of
the method. Besides, after the application of the genetic improvement, the evaluation
of improvement or worsening of the affected individuals is made, so that the genetic
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Fig. 4. Genetic improvement proposed. The genes highlighted on a black background are the most
relevant, while the genes highlighted with the red sectioned circle are those that need correction.

changes made will only be saved in individuals who have obtained an improvement
in fitness. That is, only individuals who have gained an advantage in the process of
genetic improvement will be substituted in the population; the other individuals should
be discarded and replaced by new individuals generated randomly.

3.4 Scheme of Use for Proposed Operators: Algorithm Structure

The proposed genetic improvement strategy was developed to be as versatile as possible
in the sense that it can be attached to any GA-like method. Thus, the proposed operator
must be used after the execution of the original operators of the method considered in
order to guide solutions that were not able to stand out through the traditional strategies
defined in the method. In other words, to use the proposed operator in a given GA-like
method, we must obey the following steps:

1. Define the initial parameters and specifics of the chosen GA-like method.
2. Execute the operators that make up the GA-like method. These being, for example,

the operators of crossover, mutation, local search, creation of new population, etc.
3. At the end of an iteration involving the traditional operators of the selected GA-like

method, we will make a sub-population PWorst with the worst NWorst individuals in
the current population.

4. At the same time, we will select the best NTop individuals in the population to make
up the representative individual.
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5. Build the representative individual using the strategy described in Stage 1 of the
Sect. 3.3.

6. Determine a relevance scale to the genes of the representative individual.
7. Conduct the genetic improvement of the PWorst individuals using the most relevant

NGenes genes of the representative individual.
8. Replace in the current population of the method all individuals who obtained an

improvement in the fitness value in the process of genetic improvement and return
in the execution of the original operators of the considered GA-like method. Those
who have not improved should be replaced by new individuals randomly generated
according to Levy’s exponential distribution, following the procedure of Al-Obaidi
and Hussein [1].

In Fig. 5, we present a flowchart that illustrates the sequence of steps of the proposed
genetic improvement process.

Fig. 5. Flow chart of our proposed Genetic Improvement operator for Genetic Algorithm.

4 Implementation and Experimental Results

4.1 Experimental Environment

For the conduction of the experiments, we considered two different situations: in the
first, we evaluated the impact that the proposed operator causes on five GA-like meth-
ods, all of which were obtained using the framework of Viana, Morandin Junior and
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Contreras [32], in three JSSP instances of varying complexity; in the second, we com-
pare with recent methods in the literature the ability of the proposed operator to look for
good solutions in 43 instances of JSSP that make up the area benchmark, with 3 from
Fisher and Thompson (FT) [11] and 40 from Lawrence (LA) [19]. In detail, in this sec-
ond situation, we consider relevant and recent methods which deal with the JSSP with
the same specific instances and, when existing, presented in papers published in the
last three years. In all, we consider for comparison the following methods: mXLSGA
[32], NGPSO [40], SSS [13], GA-CPG-GT [18], DWPA [34], GWO [16], IPB-GA [17]
and aLSGA [4]. The proposed algorithm is coded in MATLAB and we performed the
evaluations on a computer with 2.4 GHz Intel(R) Core i7 CPU and 16 GB of RAM.

4.2 Results and Comparison with Other Algorithms

For the first testing situation, we will consider five variations of the Viana, Morandin
Junior and Contreras [32] framework: a basic GA (GA), GA with Search Area Adapta-
tion (GSA) [36], GA with Local Search (LSGA) [25], GA with Elite Local Search and
agent adjustment (aLSGA) [4], and GA with multi-crossover and massive local search
(mXLSGA) [32]. In each of these versions, we added the proposed genetic enhance-
ment operator, GIFA, and conducted our evaluations on three JSSP instances: FT 06,
with a dimension of 6 × 6, and the best-known solution (BKS) equal to 55; LA 01,
with a dimension of 10 × 5, and BKS equal to 666; and LA 16, with a dimension of
10 × 10, and BKS equal to 945. Thus, each GA-like method considered has a version
with the proposed operator, represented by the acronym GIFA together with its stan-
dard acronym. Our main purpose in this situation is to evaluate the impact of using
GIFA in each of the GA-like methods, so we kept the best possible configuration of
each of the methods available in the original works, with the exception that everyone
had 100 individuals in their populations and run for 100 generations. In addition, we
added to each of them the configuration referring to GIFA, which is defined as follows:
NTop = NWorst = 10. In this case, the best value, the worst value, the mean, and the stan-
dard deviation (SD) of the makespan values calculated at 35 independent executions of
each method on the three JSSP instances considered are presented in Table 1.

Looking at Table 1, we noticed that the operator made all methods more stable,
reducing the magnitude of the worst makespan value found, the mean and standard
deviation of all of them in all situations where it was possible to have improvement.
However, in the most complex instance, the LA 16, our operator was able to improve
the best makespan value only in the case of the aLSGA technique. This serves as an
indication that the proposed operator brings a considerable increase in the stability of
the method, but the ability to explore the search space still has a strong dependence on
the original technique used. This is because our GIFA guides the population towards
guiding individuals with bad makespan values in regions where individuals with good
fitness values are known to increase local exploration and, therefore, find good solu-
tions, but it is up to the base technique to indicate good search regions.

Thus, the second situation considered should serve as an experiment in this sense,
so that we can evaluate the ability of the proposed operator to increase the search and
exploration power of a given technique. For this, we will add the proposed GIFA oper-
ator in a technique already known to be effective in finding good solutions in the JSSP



A New Genetic Improvement Operator Based on Frequency Analysis for GA to JSSP 445

Table 1. GA-like methods statistics for 35 executions of each method.

Instance Method Best Worst Average SD

FT 06 GA 55 57 55.45 0.85

GIFA-GA 55 56 55.14 0.21

GSA 55 55 55 0

GIFA-GSA 55 55 55 0

LSGA 55 59 57.68 1.43

GIFA-LSGA 55 56 55.84 0.73

aLSGA 55 55 55 0

GIFA-aLSGA 55 55 55 0

mXLSGA 55 55 55 0

GIFA-mXLSGA 55 55 55 0

LA 01 GA 666 712 679.02 9.98

GIFA-GA 666 678 669.37 5.17

GSA 666 715 677.8 13.61

GIFA-GSA 666 687 672.34 7.43

LSGA 666 726 697 16.65

GIFA-LSGA 666 707 688.67 15.59

aLSGA 666 666 666 0

GIFA-aLSGA 666 666 666 0

mXLSGA 666 666 666 0

GIFA-mXLSGA 666 666 666 0

LA 16 GA 982 1100 1045.6 26.40

GIFA-GA 982 1061 1022.89 20.51

GSA 994 1110 1046.77 26.37

GIFA-GSA 994 1021 1017.38 15.49

LSGA 1016 1148 1084.25 32.27

GIFA-LSGA 1016 1077 1037.11 26.62

aLSGA 959 985 980.51 4.48

GIFA-aLSGA 956 982 975.12 2.36

mXLSGA 945 982 972.25 13.30

GIFA-mXLSGA 945 979 959.93 6.37

instances that make up the benchmark today: the mXLSGA [32]. In this case, we will
evaluate GIFA-mXLSGA at 40 instances LA and 3 FT instances. In Table 2, we pre-
sented the results derived from 10 independent executions of our method on the LA
and FT instance tests. The columns indicate, respectively, the instance that was tested,
the instance size (number of Jobs × number of Machines), the optimal solution of each
instance, the results achieved by each method considering all the executions (best solu-
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tion found and error percentage (Eq. (3)), and the mean of the error with respect to each
benchmark (MErr).

E% = 100× Best−BKS
BKS

, (3)

in which E% is the relative error, “BKS” is the best known Solution and “Best” is the
best value obtained by executing the algorithm 10 times for each instance.

Analyzing Table 2, we can verify that the GIFA operator was able to improve
the search capability of the mXLSGA method. Specifically, considering only the LA
instances, the use of the proposed operator was able to reduce the magnitude of the
average relative error by 0.12, which corresponds to a reduction of 19.67% of its value.
In other words, the GIFA operator made the mXLSGA method able to find the best-
known makespan in 72.5% of LA instances, obtaining an average relative error of 0.49,
the lowest of all methods. Concerning FT instances, the proposed GIFA operator did
not compromise the search capability of mXLSGA, causing the best-known solutions
to be found in all instances. In summary, we can highlight some points when analyzing
the results referring to Table 2:

– There was no worsening of the results in any instance with the use of the proposed
operator;

– The GIFA-mXLSGA method obtained the lowest E%;
– The proposed operator made mXLSGA able to find the BKS in the LA 22 instance,
– The proposed operator improved the results of mXLSGA by 7 LA instances.

With the results of the two situations considered, we note that the proposed method
is effective in increasing the stability and efficiency of finding good solutions for GA-
like methods.

5 Conclusion

The objective of this work was to develop a new GA-like method operator to min-
imize the makespan in JSSP instances. The proposed technique was a new genetic
improvement operator based on a new frequency analysis strategy to detect relevance
in genes, titled GIFA operator. To evaluate the proposed approach, experiments were
conducted in 43 JSSP instances of varying complexity. The instances used were FT
[11] and LA [19]. The results obtained were compared with other approaches in related
works: mXLSGA [32], NGPSO [40], SSS [13], GA-CPG-GT [18], DWPA [34], GWO
[16], IPB-GA [17] and aLSGA [4].

We evaluate the potential of the proposed operator in two analysis situations. In
the first, we involved the use of GIFA in five different GA-like methods, which were
simulated by the framework of Viana, Morandin Junior and Contreras [32], and in all
cases, the operator increased the stability of the technique considered improving the
mean and standard deviation of the solutions found in three instances of JSSP. In the
second, the performance of the GIFA used in the mXLSGA [32] was compared with
methods that make up the state of the art in the specialized literature and we note that
the use of the proposed operator was effective in increasing the search capacity of the
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Table 2. Comparison of computational results between mXLSGA and other algorithms. The
symbol “-” means “no evaluated in that instance”.

Instance Size BKS GIFA-mXLSGA mXLSGA NGPSO SSS GA-CPG-GT DWPA GWO IPB-GA aLSGA

Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E% Best E%

LA01 10×5 666 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00

LA02 10×5 655 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00 655 0.00

LA03 10×5 597 597 0.00 597 0.00 597 0.00 597 0.00 597 0.00 614 2.84 597 0.00 599 0.33 606 1.50

LA04 10×5 590 590 0.00 590 0.00 590 0.00 590 0.00 590 0.00 598 1.35 590 0.00 590 0.00 593 0.50

LA05 10×5 593 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00

LA06 15×5 926 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00

LA07 15×5 890 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00

LA08 15×5 863 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00

LA09 15×5 951 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00

LA10 15×5 958 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00

LA11 20×5 1222 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1222 0.00

LA12 20×5 1039 1039 0.00 1039 0.00 1039 0.00 – – 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00

LA13 20×5 1150 1150 0.00 1150 0.00 1150 0.00 – – 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00

LA14 20×5 1292 1292 0.00 1292 0.00 1292 0.00 – – 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00

LA15 20×5 1207 1207 0.00 1207 0.00 1207 0.00 – – 1207 0.00 1273 5.46 1207 0.00 1207 0.00 1207 0.00

LA16 10×10 945 945 0.00 945 0.00 945 0.00 947 0.21 946 0.10 993 5.07 956 1.16 946 0.10 946 0.10

LA17 10×10 784 784 0.00 784 0.00 794 1.27 – – 784 0.00 793 1.14 790 0.76 784 0.00 784 0.00

LA18 10×10 848 848 0.00 848 0.00 848 0.00 – – 848 0.00 861 1.53 859 1.29 853 0.58 848 0.00

LA19 10×10 842 842 0.00 842 0.00 842 0.00 – – 842 0.00 888 5.46 845 0.35 866 2.85 852 1.18

LA20 10×10 902 902 0.00 902 0.00 908 0.66 – – 907 0.55 934 3.54 937 3.88 913 1.21 907 0.55

LA21 15×10 1046 1052 0.57 1059 1.24 1183 13.09 1076 2.86 1090 4.20 1105 5.64 1090 4.20 1081 3.34 1068 2.10

LA22 15×10 927 927 0.00 935 0.86 927 0.00 – – 954 2.91 989 6.68 970 4.63 970 4.63 956 3.12

LA23 15×10 1032 1032 0.00 1032 0.00 1032 0.00 – – 1032 0.00 1051 1.84 1032 0.00 1032 0.00 1032 0.00

LA24 15×10 935 940 0.53 946 1.17 968 3.52 – – 974 4.17 988 5.66 982 5.02 1002 7.16 966 3.31

LA25 15×10 977 984 0.71 986 0.92 977 0.00 – – 999 2.25 1039 6.34 1008 3.17 1023 4.70 1002 2.55

LA26 20×10 1218 1218 0.00 1218 0.00 1218 0.00 – – 1237 1.55 1303 6.97 1239 1.72 1273 4.51 1223 0.41

LA27 20×10 1235 1261 2.10 1269 2.75 1394 12.87 1256 1.70 1313 6.31 1346 8.98 1290 4.45 1317 6.63 1281 3.72

LA28 20×10 1216 1239 1.89 1239 1.89 1216 0.00 – – 1280 5.26 1291 6.16 1263 3.86 1288 5.92 1245 2.38

LA29 20×10 1152 1190 3.29 1201 4.25 1280 11.11 – – 1247 8.24 1275 10.67 1244 7.98 1233 7.03 1230 6.77

LA30 20×10 1355 1355 0.00 1355 0.00 1355 0.00 – – 1367 0.88 1389 2.50 1355 0.00 1377 1.62 1355 0.00

LA31 30×10 1784 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1784 0.00

LA32 30×10 1850 1850 0.00 1850 0.00 1850 0.00 – – 1850 0.00 1850 0.00 1850 0.00 1851 0.05 1850 0.00

LA33 30×10 1719 1719 0.00 1719 0.00 1719 0.00 – – 1719 0.00 1719 0.00 1719 0.00 1719 0.00 1719 0.00

LA34 30×10 1721 1721 0.00 1721 0.00 1721 0.00 – – 1725 0.23 1788 3.89 1721 0.00 1749 1.62 1721 0.00

LA35 30×10 1888 1888 0.00 1888 0.00 1888 0.00 – – 1888 0.00 1947 3.125 1888 0.00 1888 0.00 1888 0.00

LA36 15×15 1268 1295 2.12 1295 2.12 1408 11.04 1304 2.83 1308 3.15 1388 9.46 1311 3.39 1334 5.20 – –

LA37 15×15 1397 1407 0.71 1415 1.28 1515 8.44 – – 1489 6.58 1486 6.37 – – 1467 5.01 – –

LA38 15×15 1196 1246 4.18 1246 4.18 1196 0.00 – – 1275 6.60 1339 11.95 – – 1278 6.85 – –

LA39 15×15 1233 1258 2.02 1258 2.02 1662 34.79 – – 1290 4.62 1334 8.19 – – 1296 5.10 – –

LA40 15×15 1222 1243 1.71 1243 1.71 1222 0.00 1252 2.45 1252 2.45 1347 10.22 – – 1284 5.07 – –

MErr 0.49 0.61 2.42 0.59 1.50 3.52 1.27 1.99 0.80

FT06 6×6 55 55 0.00 55 0.00 55 0.00 55 0.00 55 0.00 – – 55 0.00 55 0.00 55 0.00

FT10 10×10 930 930 0.00 930 0.00 930 0.00 936 0.64 935 0.53 – – 940 1.07 960 3.22 930 0.00

FT20 20×5 1165 1165 0.00 1165 0.00 1210 3.86 1165 0.00 1180 1.28 – – 1178 1.11 1192 2.31 1165 0.00

MErr 0.00 0.00 1.28 0.21 0.60 – 0.73 1.84 0.00

mXLSGA, since GIFA-mXLSGA was the method with the lowest average relative error
among all the techniques considered. Thus, we conclude that the proposed operator
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was able to achieve the stipulated objective since it statistically directed the GA-like
methods evaluated for search spaces with better solutions.

In future works, we will make use of deep learning techniques to detect rele-
vance during GAs iterations through reinforcement learning approaches, which should
make the methodology more robust and accurate. Also, we will add assessments about
processing time measurements and expand the methodology to a greater number of
instances and benchmarks.
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Abstract. Many MCDA methods have been developed to support the
decision-maker in solving complex decision-making problems. Most of
them suppose the use of monotonic criteria, such as profit or cost. These
methods do not consider the possibility of occurring local extremes in
the space of the decision-making problem. Therefore, the question arises
about how MCDA methods work when a decision problem consists of
non-monotonic criteria.

We present a short comparative analysis for four popular MCDA
methods, i.e., TOPSIS, VIKOR, PROMETHEE II and COMET. For
this purpose, we have used simulations for two different decision-making
models. In each case, sets of decision alternatives are generated, then
evaluated by the model and selected MCDA methods. The obtained
results create rankings from which rank similarity coefficients are cal-
culated. The conducted research shows that the COMET method works
better in such conditions than the others, and the VIKOR method does
the least well in this task.

Keywords: MCDA · TOPSIS · VIKOR · PROMETHEE II · COMET

1 Introduction

In multi-criteria decision-making problems, we are most often faced with cost
or profit criteria, which are monotonic [17]. In reality, however, these criteria
may be non-monotonic [10], for example, the patient’s temperature during the
illness. A complete lack of fever and a too-high fever may be unfavourable to
the patient, which means no or too violent an immune response from the body.
Therefore, moderate fever is the most appropriate condition. This non-monotonic
characteristic is also true in many technical cases, where too low or too high, a
machine setting can be detrimental to its performance [5].

The consequence of non-monotonic criteria is that reference points (ideal
solutions) occur inside the model space to be searched, not at the end of the
c© Springer Nature Switzerland AG 2021
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model. Thus, one or more local extremes may occur in the model being identified
[9]. Multi-criteria decision-making analysis (MCDA) methods are very often used
to assess a set of alternatives, also for uncertain environment [7]. In most cases,
MCDA methods work linearly, so it is an interesting challenge to see how they
work with such examples [3,6].

In our preliminary research, we will focus on selected popular MCDA meth-
ods. For this purpose, the following methods have been indicated: TOPSIS [1],
VIKOR [16], PROMETHEE II [4] and COMET [13]. These approaches have
been successfully applied to complex decision-making problems on many occa-
sions, thus proving their usefulness [18]. However, the research question is to
what extent they are suitable for problems involving non-monotonic criteria.

In this paper, an initial comparative study will be presented. Based on two
simple numerical examples, the problem described in this paper will be pre-
sented, and the subsequent simulation experiments will be performed. In order
to be able to illustrate the problem, the problem will be dealt with by examples
with two criteria. One example will contain a single extremity and the other
three extremes. In each case, we will have to deal with non-monotonic criteria.
Once the problem has been presented for individual cases, we will also present
comparative studies using the ranking similarity coefficients that the individual
methods for our examples return.

The rest of the paper is organised as follow. Section 2 presents the meth-
ods used in the paper, i.e., the MCDA methods’ parameters and the similarity
coefficients. Section 3 presents two numerical examples comparing the accuracy
of the methods for determining rankings. Section 4 presents the results of the
conducted simulation experiments. The conclusions are presented in Sect. 5.

2 Preliminaries

2.1 The MCDA Methods

As the methods used are popular, their complete algorithms will not be presented
in this paper. However, it is necessary to state the parameters in solving the
problems in Sect. 3.

In this paper, the TOPSIS method was used as described in [15]. The equal
criterion weights method was applied as weights, which is a very popular app-
roach in the literature [18]. The input data were normalized using the vector
method (1):

rij =
xij√∑m
j=1 x

2
ij

(1)

where i the alternative number, j the criterion number, xij the attribute values
before normalization and rij the attribute values after normalization.

For the VIKOR method, the algorithm presented in [16] was used. In this
method, the parameter v is used as a weight for maximum group utility strategy,
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whereas 1−v is the weight of the individual regret. These strategies are compro-
mised by using v = 0.5. Despite using the same criteria weights as in TOPSIS,
we use the min-max normalization method (2) which gives better results in this
method [12].

rij =
xij − minj (xij)

maxj (xij) − minj (xij)
(2)

From the established European decision support methods, the Promethee II
method was used, where the algorithm used in [16] was applied. In this method,
The min-max normalization and equal criteria weights were used. Additionally,
the preference function P has to be selected, where the usual generalized criterion
(3) was used in the paper [11].

P (d) =
{

0 d ≤ 0
1 d > 0 (3)

As far as the COMET method is concerned, the most important parameter
is establishing characteristic values. From these values, the characteristic objects
are determined, which are then used to determine the fuzzy decision model. In
both examples, the same set of characteristic values is used in the form of (4)
and (4) respectively:

C1 = {0, 0.1, 0.2, 0.5, 0.65, 0.8, 0.9, 1} (4)

C2 = {0, 0.1, 0.2, 0.35, 0.5, 0.75, 1} (5)

More information on the algorithm of the COMET method used in this article
can be found in [13].

2.2 Spearman’s Rank Correlation Coefficient

For a sample of size N , rank values xi and yi are defined as (6). In this approach,
the positions at the top of both rankings are more important. The weight of
significance is calculated for each comparison. The element that determines the
main difference to the Spearman’s rank correlation coefficient examines whether
the differences appeared and not where they appeared [2,8].

rw = 1 − 6
∑N

i=1 (xi − yi)
2 ((N − xi + 1) + (N − yi + 1))

N4 + N3 − N2 − N
(6)

2.3 Rank Similarity Coefficient

It is an asymmetric measure (7). The weight of a given comparison is determined
based on the significance of the position in the first ranking, which is used as a
reference ranking during the calculation [14].

WS = 1 −
N∑
i=1

2−xi
|xi − yi|

max(|xi − 1|, |xi − N |) (7)
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3 Comparative Study Case

This section presents a selection of two research cases, respectively, for one and
three local extremes. The cases will be described step by step in order to explain
the research challenge better.

3.1 Model with One Local Extreme

The first example will present an example with a single extreme for a two-criteria
problem. As a reference for testing the accuracy of the obtained results, a simple
function is used in the following form (8). Figure 1 shows the appearance of the
function. The optimum value is located at point (0.2, 0.2).

f(x, y) =
0.2

0.1 + 4(x − 0.2)2 + 2(y − 0.2)2
(8)

Fig. 1. Graphical representation of decision function with a single extremum.

A random selection of a set of decision alternatives is made to investigate
the differences between the methods. In this way, a set of ten alternatives is
determined, whose values are presented in Table 1 and visualised in Fig. 2.
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Table 1. Comparison of obtained rankings for function with single extreme for a sample
set of 10 alternatives.

Alternatives Criteria Rankings

Ai C1 C2 Reference Comet Vikor Topsis Promethee II

A1 0.504672 0.358569 8 8 10 8 9.5

A2 0.437299 0.090519 5 6 8 2 5.5

A3 0.457243 0.541148 9 9 9 10 9.5

A4 0.358303 0.185391 3 3 7 3 6

A5 0.258697 0.632220 7 7 4 9 8

A6 0.218545 0.559389 6 5 1 7 5.5

A7 0.380028 0.036177 4 4 3 1 1

A8 0.320918 0.206607 2 2 6 4 3

A9 0.796291 0.025905 10 10 2 6 7

A10 0.277296 0.298313 1 1 5 5 3

This sample set is intended to show how the simulations in Sect. 4 are run. In
Fig. 2, we can see exactly how the points are distributed in space and the func-
tions’ values, which explains why linear methods may have difficulty in deter-
mining the correct rankings.

Fig. 2. Graphical representation of the sample set of ten assessed alternatives for func-
tion with single extreme.
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Also, Table 1 contains the values of all the rankings together with the refer-
ence ranking determined with the help of function (8). This table is used to cal-
culate the similarity values of these rankings, which were respectively: COMET
(rw = 0.9879, WS = 0.990625), VIKOR (rw = −0.0457, WS = 0.5307),
TOPSIS (rw = 0.5923, WS = 0.6589), and Promethee II (rw = 0.7645,
WS = 0.7655). The best match was obtained with COMET, followed by
Promethee II, TOPSIS and VIKOR; however, this example is more extensively
tested in Sect. 4.

3.2 Model with Three Local Extreme

This example presents an example with three extremes. A previous function is
modified to the following form (9) as a reference for testing the accuracy of the
obtained results. Figure 3 shows the shape of the reference function. The extreme
value are located at points (0.2, 0.2), (0.5, 0.5), and (0.8, 0.2).

f(x, y) =
0.2

0.1 + 4(x − 0.2)2 + 2(y − 0.2)2
+

0.3
0.1 + 6(x − 0.5)2 + 3(y − 0.5)2

+
0.2

0.1 + 20(x − 0.8)2 + 5(y − 0.2)2
(9)

Fig. 3. Graphical representation of functions with a single extremums.
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Table 2. Comparison of obtained rankings for function with three extrema for a
sample set of 10 alternatives.

Alternatives Criteria Rankings

Ai C1 C2 Reference Comet Vikor Topsis Promethee II

A1 0.596255 0.608955 2 2 8 9 7

A2 0.585894 0.084457 8 5 6 5 5

A3 0.402663 0.005038 5 7 2 3 1

A4 0.798733 0.459945 4 3 9 8 8.5

A5 0.013192 0.692212 10 10 3 6 6

A6 0.882442 0.263445 3 4 7 7 8.5

A7 0.518293 0.066079 7 6 4 4 3.5

A8 0.682992 0.796625 9 9 10 10 10

A9 0.130060 0.250560 1 1 5 2 3.5

A10 0.007649 0.261115 6 8 1 1 2

As in the previous example, a random selection of a set of decision alternatives
is made to investigate the methods’ differences. Table 2 presents the selected set
of alternatives with their attributes C1 and C2 and all available rankings. Figure 4
is visualised the set of data, where we can see why the rankings are so different.

Fig. 4. Graphical representation of the sample set of ten assessed alternatives for func-
tion with three extrema.
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This table is used to calculate the similarity values of these rankings,
which were respectively: COMET (rw = 0.8942, WS = 0.9500), VIKOR
(rw = −0.2066, WS = 0.4264), TOPSIS (rw = 0.1074, WS = 0.5782), and
Promethee II (rw = 0.0384, WS = 0.5154). It is worth referring to the values
we obtained in Sect. 3.1. As far as the matching order of the analysed MCDA
methods itself is concerned, it is similar. The difference is because the TOPSIS
method has slightly better matching in this example than Promethe II.

Without exception, all results deteriorated, but the COMET method still
seems to have the best fit. However, more extensive simulation studies would
need to be carried out to draw any firm conclusions, which will be presented in
the next section.

4 Simulations

The short simulation section is presented to answer the research question to what
extent the MCDA methods studied are suitable for analysed problems involving
non-monotonic criteria. For both examples in Sect. 3, 4000 sets of alternatives
are generated to show a reliable distribution of rw and WS coefficients.

Figure 5 shows the similarity coefficients of the rankings for the example
with one local extreme. The coefficient rw indicates the best fit for the COMET
method, while VIKOR obtained the worst results. The Promethee II and TOP-
SIS methods are very similar with one slight advantage for Promethee II. Very
similar results were obtained with the WS distribution.

Fig. 5. Distribution of the coefficient rw and WS for 4000 random sets of alternatives
for functions with one extremum.

Figure 6 shows the similarity coefficients of the rankings for the example
with three local extremes. The coefficient rw still indicates the best fit for the
COMET method, while VIKOR obtained the worst results. The deterioration
of the results is significant for the TOPSIS and Promethee II methods, whose
similarity distribution of rankings starts to resemble more the distribution for
the VIKOR method. The results for the WS coefficient lead us to the same
conclusions.
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The occurrence of non-monotonic criteria and consequently, local extremes
represents a significant challenge for classical MCDA methods, whose results do
not correspond satisfactorily with the reference values.

Fig. 6. Distribution of the coefficient rw and WS for 4000 random sets of alternatives
for functions with three extrema.

5 Conclusions

In this work, a problem related to decision problems taken in non-monotonic
decision criteria is presented. In such cases, local extremes occur inside the iden-
tified model and not at its edge. Hence the problem with a correct representation
of the decision maker’s preferences by linear MCDA methods.

Our preliminary research used three linear MCDA methods, i.e., TOPSIS,
PROMETHEE II, and VIKOR Besides, the COMEt method was involved, which
has good properties for identifying non-linear decision models. Two examples are
given to illustrate the problem, and then it is shown that linear methods perform
worse in the cases studied, as indicated by a short computer simulation. More
extensive simulation experiments should be carried out to confirm this problem’s
existence on the broader MCDA problems as a further direction of work.
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Abstract. Virtual reality (VR) is a powerful modern medium. The
advent of low-cost head-mounted display (HMD) devices made this tech-
nology accessible at large and featured VR with possibilities to monitor
interactions and user’s motion. However, due to lack of real-time feedback
mechanism at present, the level of intelligence for virtual environments is
still not sufficient to assist the experience and make group or individual
assessments towards VR based applications. In this paper, we present
our findings related to the problem of real-time feedback that focus on
behavioral data by employing the novel feedback mechanism. Virtual-
world coordinates, motions and interactions are tracked and captured
in real-time while the user experiences particular application. Captured
data is investigated to target the issue of complementing VR applica-
tions with features derived from real-time behavioral analysis. In our
experiment, we also use collected data and provide a methodology to
predict virtual-location by the nonlinear auto-regressive neural network
with exogenous inputs (NARX). Results suggest employed neural net-
work model is suitable for performing prediction which can be used to
obtain a virtual environment with adaptive intelligence.

Keywords: Virtual reality · Intelligent virtual environment · Artificial
neural networks · Real-time communication · Human-computer
interaction

1 Introduction

Virtual Reality (VR) is a high-end human computer interface that can be defined
with four essential elements: a virtual world, immersion, sensory feedback, and
interactivity [1]. Furthermore, accurate information about real-world position
and orientation tracking of the user has become a prominent feature of this
technology. These features have become easily accessible with the advent of
low-cost head-mounted display (HMD) devices in the last decade. Virtual envi-
ronments (VE) formed by VR technology have proven effective in many scien-
tific, industrial and medical applications. VR is also a powerful modern medium
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for immersive data visualization and interaction. Although VR based applica-
tions can attract even non-expert users, only a few research efforts were able
to target the issue of advancing those applications with features derived from
real-time human behavior analysis in VE and perform predictions accordingly.
Besides that, analysis of performed activities and subjective feedback towards
VR based applications are studied typically by post-experience oriented surveys.
Eventually, it has become possible to alter this set of metrics with behavioral
and psycho-physiological data to advance studies. However, psycho-physiological
data requires additional properties and advance techniques in order to obtain
fully objective measures [2]. The other affordable family of metrics is related
to users’ behavior inside VE such as location, motion and interactions of users,
which is actually the main focus of this work [3].

Users’ behavioral data-sets have also great potential for social scientists with
an interest in the objective measured data in VE [4]. Human-computer inter-
action, namely multi-modal interactions to some degree: mouse clicks, buttons,
visual and auditory signals etc. are transformed to head rotation, hand move-
ment, speech and eye gaze in VE [5,6]. Most experiments in applied and social
psychology research as well as other domain areas across a range of psycholog-
ical topics face challenges to find the balance between control and ecological
validity, and only few of them allow multi-modal interaction in realistic condi-
tions [7]. Conversely, VE that are designed to study the behavior can allow users
to respond in a manner that is more natural. Although recent advances in VR
technology allow to trace multi-modal interactions, collecting multiple aspects of
behavioral data at once remains a challenging problem. Therefore, the research
in novel VR technology still requires unique considerations such as the availabil-
ity of sophisticated, practical tools and protocols to measure VR outcomes with
examples and data-sets [8].

In this work, we employ the novel feedback mechanism that is capable of
real-time communicating in both ways between the game engine and third party
software with the motivation of creating intelligent VE. As an outcome of the
presented work associated with user’s motions and interactions may allow real-
time proactive qualities to design adaptive user interfaces and advanced recom-
mendation systems [9]. Furthermore, applied computational intelligence methods
can be used to make behavioral assessments towards other related studies. The
main contribution of the present paper as follows: First, we provide a firm moti-
vation of this work with an intelligence derived from users’ behavior aspects
while discussing the feedback mechanism in VR based applications. Then, we
present a designed VE and the game play therein. Next, the reader is introduced
to technical details including system configuration and software management
to give better understanding of real-time data communication and collection.
In the following section, we investigate collected data-sets with survey results
towards behavioral learning. We also describe preferred computational intelli-
gence method and the process of implementation to perform predictions. Finally,
we report and address the conclusion as a result of data analysis and employed
network models linked to human behavior and outline some related items for
future research.
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The structure of the paper is as follows. In Sect. 2, the reader is introduced to
the feedback mechanism and aspects of enabled intelligent VE thereof. Our novel
developments towards assessment of behavioral patterns are also explained in
this section. Analysis of behavioral data in VE and primary results of performed
models based on user’s behavior in the application are addressed in Sect. 3.
Finally, conclusions are drawn in Sect. 4.

1.1 Related Work

The idea of creating a real-time feedback mechanism to accommodate an intel-
ligence is a recurrent interest to facilitate the broad adoption of VR technol-
ogy. The advent of low-cost HMD devices has expanded the interest consider-
ably. One of early tailor-made solutions was employed to accomplish a real-time
motion tracking system. Real- time VR feedback is achieved by using a point
light display while placing retro-reflective markers on the novice participants’
joint centers [10]. A Few years later, an online VR based application that was
introduced [11] to monitor and collect the user’s behavior by built-in feedback
mechanism, but that is not applicable for HMD devices. A feedback mechanism
is described through a gaming-oriented VR application in [12] consists of addi-
tional hardware components to achieve a real-time haptic feedback. However,
the designed architecture is not able communicate with third party software and
compatible only with 32-bits applications. Finally, a recent research towards
comparative study of several input technologies for VR based applications also
present a solution that provides a one way communication and frequency to
collect the interactions and location of user in VE [13].

Fig. 1. Workflow of the complete feedback mechanism.
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2 The Framework for Intelligent Virtual Environment

It is apparent that a complete behavioral analysis inside the VE is one of the
most recurrent interests for researchers but also requires a significant amount of
time and effort. In order to enable assessments towards user’s behavior in VR
based applications through available HMD devices, a real-time feedback mech-
anism that is capable of acquiring meaningful data is required. Accurate and
meaningful data-sets may provide better understanding to study the behavioral
aspects besides conducted traditional survey techniques. Additionally, replicabil-
ity of VR based experiments in may advance behavioral studies. Consequently,
understanding the behavior in VE allows to draw conclusions for creating more
compelling and efficient applications.

We addressed mentioned issues by designing an architecture with the basis of
the feedback mechanism implementation that can be described as follows: The
game engine is employed as the visualization platform while the user experiences
VE with interactive equipment. Motion capture is achieved using present HMD
technology which provides access to user movement data. User Datagram Pro-
tocol (UDP) [14] serves as a communication plugin between the game engine
and software environment that makes real-time data communication, simulation
and feedback possible. To proceed with behavioral modeling, the data related
to the user is sent out to data preprocessing layer (e.g., Python) and then to an
electronic database to store and apply statistical and computational intelligence
methods. Behavioral learning is occurring between the HMD device and data
preprocessing layer. The workflow to illustrate the complete feedback mecha-
nism is depicted in Fig. 1.

Appropriate access to behavioral data is a crucial requirement for better
understanding of users’ behavior in VR. Therefore, further efforts were devoted
to demonstrate collecting data and making automatic and semi-automatic anal-
ysis of the collected data by utilizing the feedback mechanism. We used the
gaming-oriented VR application to acquire necessary data with assessment
of user experiences. Screenshots while the feedback mechanism is working is
depicted in Fig. 2.

In what follows, we outline each stage of the implementation in a separate
subsection.

2.1 Software Management and System Configuration

Efficient real-time rendering of the objects must be ensured for VR based appli-
cations. Thus, the following important considerations are in effect when mod-
eling all objects were progressed by using Autodesk Maya software. Then, we
moved to the next stage to assembly created models based on the dynamics
of physical world in the game engine. Whereas, existing objects such as leaves,
coins, landscape materials, etc. in VE are presented. The application is created
by well-known game engine Unreal Engine 4 (UE4) which is a commonly used
and powerful solution for VR development purposes [15]. UE4’s Blueprint visual
scripting system is one of the reasons to prefer UE4 to other real-time visualiza-
tion engines since it allows for rapid prototyping [16].
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(a) The game level is situated in the hill-top virtual environment

(b) The user experiences the application with timer and score

Fig. 2. Screenshots from VR based application.

A mix of Blueprint and C++ code allowed us to create a UDP interface to
communicate between a number of third party software and the game engine in
real-time. In practise, the Blueprint system with UDP socket allowed Python
made script to be in charge of capturing and processing the data before accom-
modating into data storage. Every four bytes marked as a single input of data
that is sent from VR based applications by UDP packet. A script executes the
function to send captured information to the designated column of database and
added time variables. The data is managed through relational database man-
agement system-SQL for the purpose; facilitate user behavior data-sets to reach.
The data is transformed into numeric values to be stored in the database. To
avoid problems with Blueprint multi-threading for VR based applications, the
implementation uses a custom class variable to transfer data between threads to
avoid a racing condition in requesting/getting new data from the UDP socket.
With this approach, reliable communication via a UDP socket at sufficiently high
sampling rates upwards of fs = 1kHz is achieved. Nevertheless, UDP plugin as
well as exported modules can also be reused in any project.
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2.2 Observation of Behavior in Immersive Environment

VR based applications are often delivered with the interaction that may also
allow an evaluation of the engagement of participants [17]. According to Paliokas
et Al., the observation of behavior in VE is the ability of capturing behavioral
data-sets on concrete items and events under particular conditions [18]. There-
fore, available sensor information (e.g. HMD devices, motion trackers, additional
controller etc.), virtual-location, locomotion attempts and performance indica-
tors (e.g. rewarding points) should be able to compose elements of metrics to
make behavioral observation.

Fig. 3. Total amount of collected items per second by participants during the first try.

From the user perspective, interactions linked to the gamification based
engagement (e.g. joyful learning, serious games) are of curiosity driven exper-
imental nature [19]. Once the motivation is obtained, an accomplishment of
attentional aspects should be matters of given objects and tasks. However, users
may have challenges to exhibit interactions, teleportation and physical move-
ments at once. Hence, investigation of users’ experiences through traditional
survey methods should be complemented by exploring all of these dynamics.
The experiment to collect behavioral data-sets, demonstrate data preprocessing
and storage in real-time by employing the feedback mechanism, is carried out by
particular implementation-Swedbank Experience which is a gaming-oriented VR
application that is explained with details in our earlier work [20]. Aggregated
data reveals that participants were able to collect items at most in the end (9
out of 20 participants) of given time is depicted in Fig. 3.
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3 System Identification and Modeling

A thorough study of the users’ behavior including interactions inside VE and
emotional states can compose desired intelligence. The intelligence derived by
proposed feedback mechanism can be utilized at least by two major use cases
at present: adaptive virtual learning environments to increase learning efficiency
and user experience; user behavior modeling to reduce cost of visualization (e.g.
computational power for Big Data visualization).

Featuring elements of behavioral metrics data-sets such as head motion and
distances between HMD device and controllers can already be used to identify,
differ and authenticate users at present. The uniqueness derived from behav-
ioral data may advance authentication methods to customize the experience
efficiently in VE [21]. Meanwhile, several studies have already been introduced
through visualizations Big Data conducted with VR based applications to relief
present difficulties and to engage users efficiently with provided data [22,23].
The ability to predict user’s virtual-location is one of the key issue that can lead
to a coherent solution. The prediction might allow to preload only the necessary
part from Big Data sets. Dynamic models would also benefit particularly VR
based applications to ensure a seamless immersive experience possibly with less
computational power. Furthermore, dynamic user interface and mechanics can
be modelled by analysing the users’ visual attention in VE.

Collected data-sets referred to position degrees contain also location informa-
tion. Location of the user is provided through (x,y, z) coordinates in immersive
environment and a sample of collected data sets in time series depicted in Fig. 4.
The user behavior, A, is translated by some (xt,yt, zt) ∈ R

(x,y, z) �−→ (x + xt,y + yt, z + zt). (1)

Suppose A = Hi is translated xt units in the x direction and yt units in the y
direction. The transformed primitive is A primitive of the form

Hi =
{

(x,y, z) ∈ W|fi(x,y, z) ≤ 0
}

(2)

is transformed to [24]{
(x,y, z) ∈ W|fi(x + xt,y + yt, z + zt) ≤ 0

}
. (3)

Accordingly, since collected data enables investigation into position defined
(x,y, z) coordinates is given by described equations above, authors focus on
performing predictions of user’s location in the application by meaning using
measured movement values to predict next values.

3.1 Dynamic Predictive Modeling of User Behavior

This section describes the process that can perform any other user behavior
prediction since the approach is general to employ prediction models. The process
of implementation as follows:
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Fig. 4. An example data of position degree changes are aggregated through x and y
coordinates while the user experiences VR based application in two minutes.

1. Data Communication and Collection: UDP protocol is in charge of sending
the real-time data while the user experiences the application.

2. Data Processing: Besides virtual-location information, sensors of HMD device
may indicate to noisy and unreliable data. Thus, rare outliers of sensor data
is excluded for scaling purposes to train the model.

3. Model Training: Filtered data is divided into 70% training data, 15% val-
idation and 15% test data. The model has been trained using Levenberg-
Marquardt algorithm which is often the fastest back-propagation function
and commonly used [25].

4. Performance Comparison and Validation of Trained Model: Once accurate
results are accomplished, test data which is not introduced to these models
are set for validation purposes.

Further analysis towards the experiment in this work is devoted to investigate
the location of participants in VE. The location data of users can also be traced
to explore dynamic changes of location as (Δx,Δy,Δz) coordinates. Collected
data of first and second attempts indicates that motions are increased signifi-
cantly through (x,y) coordinates in second time. Primary component analysis
(PCA) towards virtual-coordinates of the participants in both times is depicted
with the maximum two variance directions (PC1, PC2) in Fig. 5.

3.2 System Identification Using Artificial Neural Networks

ANN based prediction has been developed since it was explored because of ANN
approximation and generalization property. ANN, with the ability to approxi-
mate a large class of nonlinear (NL) functions, provide a feasible uniform struc-
ture for NL system representation that is usually described with differential equa-
tions (continuous- time model) or difference equations (discrete-time model).
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Fig. 5. PCA is applied for (x,y, z) coordinates in VE while participants experience
VR based application.

NARX Model. The model is built up with the wavelet network to create
input and output non- linearity estimator. An important class of discrete-time
nonlinear systems is NARX model is formalized by [26].

y(t) = f(u(t − nu), . . . ,u(t − 1);u(t); y(t − ny), . . . ,y(t − 1)) (4)

where u(t) and y(t) represent input and output of the network at time (t,nu,ny)
are the input and output order, and the function f is a nonlinear function. When
the function f can be approximated by a Multilayer Perceptron, the resulting
system is called a NARX network.

3.3 Process of Model Implementation and Prediction Performances

Virtual-world position of the user based on (x,y, z) coordinates is used to per-
form predictions by NARX neural network. The position is measured by the
game engine unit (uu) and (1uu = 1 cm). Increasing the input delay by one
(time-shift between inputs and outputs) corresponds to (1 s). The amount of
regressors are 3 for NARX models respectively. Mean Absolute Error and Mean
Square Error are two preferred parameters to present results of trained network
models. Used data-sets consists of 18 participants virtual-coordinates with one
second intervals. First, we randomly selected data of two participants for vali-
dation purposes. Next, we used rest of data to train the model. In order obtain
5-step ahead prediction for all time instances, we have created a third order
NARX model of making one step ahead prediction.

The dimension of input matrix is (9×117) for each participant and by
merging data from 16 participants, the dimension of input matrix becomes
(9×1872), while the dimension of the output matrix is (3×1872). After data
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processing, we followed the same order in cycle for 5 times to get 5-step ahead
predictions. In following, the model is given the input record from two partic-
ipants and performs 5-step ahead predictions; we compare model predictions
against the observed output. Results of MAE and MSE to assess the performed
predictions are presented Table 1. Approximately over 120 s of data translates
to 2160 samples with 3 elements resulting MSE of 0.71 for (x,y, z) coordinates
with up 5-step ahead is considered to be remarkable results. Finally, results of
NARX model with test data is drawn in Fig. 6.

Table 1. Results of the NARX model compared with input delays.

NARX (t− 1) (t− 2) (t− 3) (t− 4) (t− 5)

MSE 0.0127 0.023 0.039 0.051 0.709

MAE 0.068 0.097 0.129 0.141 0.454

Results of prediction performances reveal that sufficient behavioral model-
ing is prospective and also depends the availability of affordable and practical
feedback mechanism. The mechanism is capable to measure and capture VR
outcomes with examples and data-sets and is able to communicate with third
party software in real-time. In other words, the desired intelligence in VE can
be only obtained by assessment of user experiences towards reliable, meaningful
and accurate behavioral data-sets.

Fig. 6. Prediction performance of NARX Model.
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4 Conclusions

In this paper, an approach to obtain intelligent virtual environments with assess-
ment of user experiences is introduced. First, the novel feedback mechanism
with the firm motivation to enable real -time human behavior analysis in VE
is presented. Next, captured data -sets are investigated towards Virtual -world
measures to perform predictions as the outcome of presented work. Prediction
results with MSE of 0.039 for t − 3 and 0.79 for t − 5 between measured and
predicted data imply the great potential of affordable feedback mechanism to
advance the research in novel VR technology. Since the present application is
envisioned to be used for real -time applications to adapt virtual environments
based on assessment of user experiences, further development efforts also should
be exhibited to run models simultaneously in order to feed output of collected
information to employed model. In addition, presented approach may allow to
immerse participants into multiple scenarios and support redirection techniques
in VR based applications. In the future, the feedback mechanism may help to
motion tracking method to capture whole body motion to exploit for user iden-
tification and user behavioral analysis in large population. While the location
prediction may help to reduce computational power, application of similar frame-
work for head movement data can complement efficient region -of- interest (ROI)
based VR based application (e.g. VR streaming) [27].
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Abstract. Artificial intelligence methods are successfully applied in
many areas where a prediction or classification is needed. An example
may also be the forecasting of an athlete’s performance, investigated in
this article. Powerlifting is a sport of widespread popularity - more and
more training people are serious about the competition and prepare pro-
fessionally for it. This paper aims to present and analyze the athlete’s
deadlift score prediction system based on the previous results and the
historical data of other lifters. At first, we use the parametrics to choose
an athlete with the results similar to the investigated lifter. We propose
the artificial neural network application for smoothing empirical hazard
and cumulative distribution functions designated for the failed deadlift
attempts. We decided to involve quasi-RBF neural networks – involving
the sigmoid function and nonlinear least squares learning algorithm. As
a result we get the prediction whether the athlete’s deadlift attempt will
be valid or not.

Keywords: Artificial neural networks · Performance prediction ·
Artificial intelligence in sport

1 Introduction

1.1 Powerlifting

Powerlifting is a sport discipline consisting of three lifts: squat, bench press, and
deadlift. The athlete’s goal is to perform each of these exercises with the greatest
possible external load [1]. The weight is placed on the bar with which the lifter
does a squat, presses it on a flat bench and picks it from the ground (deadlift). By
entering the competition, the athlete declares the weight category that she or he
wants to compete in. There are also age groups and gender division to make the
rivalry fair. Lifter’s weight is always checked by the committee. Before a contest.
During a competition, the athlete makes three attempts of each exercise. At
first, the lifter declares the barbell weight to let the staff know how to load it,
and – when it is her or his turn – goes to the platform. The attempt (meaning
a single lift) can be valid or not – it is decided by three referees. If at least two
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of them state the technical correctness of the lift, the attempt is passed. The
competitor’s score is determined by her or his weight and the sum of the weight
from the heaviest valid attempts of each lift. Obviously, making a good decision
while declaring the appropriate barbell weight before each attempt is crucial for
all powerlifters taking part in various competitions.

1.2 Related Works

Nowadays, there is a growing interest in sport, including powerlifting. It is caused
by the popularization of physical activities in free time, resulting from health
awareness improvement. As a consequence, more and more research concerns
the sports disciplines, training loads, injury risk [3] and athletes results analysis.
Maximization of an athlete’s performance is becoming an interesting subject for
many researchers, especially for the artificial intelligence specialists. The sport
results prediction problem is often solved by artificial neural networks applica-
tion. Bunker et al. analyzed this issue in relation to both team and individual
disciplines [2]. Zhao et al. conducted the research on wrestlers [14]. The main
goal was the athlete’s performance prediction and it was achieved with the use
of an improved radial basis neural network. The players’ performance prediction
was also investigated by Saikia et al. [11]. The analysis subject was the ath-
letes’ classification into groups diversified in terms of their predicted results. The
researchers trained a multilayer perceptron using the combined bowling rate data
and successfully predicted future results. Another interesting example of artificial
intelligence application to sports is swim velocity profile identification. Santos
Coelho et al. conducted research on time series forecasting related to breast-
stroke and crawl style swimmers [12]. The identification problem was solved
with a radial basis function neural network using the Gustafson-Kessel cluster-
ing algorithm. One of the newest proposals is the application of gravitational-
double layer extreme learning machine in powerlifting analysis [4]. V. H. Chau
et al. investigated the relationship between the weight, age and results of female
powerlifters, using the performance prediction model. The research on a simi-
lar model (but concerning male lifters) was also conducted with the use of an
improved artificial bee colony algorithm to optimize the kernel extreme learning
machine network [5].

The modeling personalization problem can be solved with the use of neu-
ral networks. Kasabov et al. proposed spiking neural networks application for
personalized modeling, classification and prediction of spatio-temporal patterns
with a case study on stroke [8]. He noticed that this type of neural networks can
be successfully used for prediction in many research ranges, including engineer-
ing, bioinformatics, neuroinformatics, medicine or economics. In fact, spiking
neural networks can be also applied for stroke risk prediction [6]. In the neu-
ral network personalization process, a specialized dataset is needed [10]. It can
be significantly smaller than the dataset used for pretraining. Hence, the data
must represent the reality well, therefore a correctly selected dataset is crucial
for proper neural network personalization.
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1.3 Artificial Neural Networks

Artificial neural networks are computational tools that simulate the decision
making process in the central nervous system. They consist of neurons’ models,
organized in layers. The input layer transfers the data to the hidden (inter-
connected) layers, where the input values are processing and the output layer.
Each of the neurons is connected to the previous layer through the synaptic
weights that can change adaptively. In other words, a weighted sum of input
values is converted by a transfer function, for example, a sigmoid function can
be employed:

f(Σ) =
1

1 + e−Σ
(1)

where f(Σ) represents the weighted sum of input signals.
The training process consists of modifying the weight values with the use of

the selected learning method. The idea of its supervised learning is to compare
the model’s prediction against already known target data. If some differences
appear, the weights’ adjustment is needed in order to decrease the error value.
This process runs repeatedly until the error value is satisfactorily low, which
means that the network is trained. The weights values are held as constant and
used with the dataset on which the research will be conducted.

Artificial neural networks are often chosen for data mining (extracting pat-
terns from datasets in order to get some useful knowledge) if the relationships
among the input data are nonlinear, especially for classification [9]. It is a rea-
sonable choice also when only incomplete information about the investigated
phenomenon is available. The application of this flexible technique is relatively
easy and it can be widely used for many statistical models approximation.

Artificial neural networks with radial basis function contain three layers:
input, hidden, and output. The hidden layer is specific due to involving radial
basis function – mainly Gaussian function:

φ(X) = exp(−‖X − C‖2
σ

) (2)

where X represents inputs, C – center vector, and σ – width. Therefore, the radial
basis function value (φ) is influenced only by the distance between input and
center. The hidden node’s output value will increase as this distance decreases
(unless the basis function is not symmetrical). Apart from the mentioned func-
tion, unipolar and bipolar sigmoid functions, hyperbolic tangent function, or
conic section function are used in this type of neural networks as well. The
radial basis neural network key parameters also include the number of the hid-
den node – often set experimentally [13]. An important advantage of radial basis
neural networks (compared to the multilayer perceptron) is their ability to solve
the local minima problem during the learning process.



478 W. Rafaj�lowicz and J. Marsza�lek

2 Methods

2.1 Dataset

The information on 34 male powerlifters was collected from the Open Powerlift-
ing website [15] (the access is completely open). The data includes the athlete’s
weight and his deadlift score in various competitions, for example, World Pow-
erlifting Championships, World Classic Powerlifting Cup, or World Games.

For each attempt we take the following information:

– current lifter’s weight,
– declared barbell weight,
– whether the attempt was valid or not.

The fragment of the dataset is shown in Table 1. 1 means that the attempt
was valid and 0 stands for the failure.

Table 1. The illustrative fragment of data set

Name Competition 1 ...

Weight 1st try 2nd try 3rd try ...

Michael Tuchscherer 125 305 1 327,5 1 332,5 1 ...

Tony Cliffe 78,8 190 1 205 1 220 1 ...

Viktor Samuelsson 88,8 200 1 210 1 220 0 ...

Mohamed Bouafia 99,6 315 1 325 1 327,5 1 ...

Richard Hozjan 80,9 220 1 230 1 240 1 ...

The processing of all data and the results, as well as graphs generation, was
performed using Matlab.

2.2 Algorithm

Before making a prediction, it is necessary to prepare the data. We have to
investigate the data in order to find a lifter with results similar to the investigated
athlete and designate relevant functions. The following algorithm was developed
for the research:

1. Choose an athlete with a small amount of data (competition results) – lifter
A.

2. Select the last competition’s results for lifter A.
3. Find the most similar athlete to A using the parametrics – lifter B.
4. For lifter B designate:

– hazard function for the valid attempts,
– empirical distribution function for the failed attempts.
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5. Smooth both designated functions using the quasi-radial basis neural network
(with the sigmoid function).

6. Predict whether the attempt will be valid for the control data and compare
the prediction with the actual data.

The described procedure can be repeated for another lifter or for the same one.

2.3 Selection of Similar Athlete

In order to find similarities between two lifters, each of them described by
dataset, a method of measuring distance has to be proposed. Clearly in space
consisting of competition results no addition can be defined. Therefore it is
impossible to define strictly metrics in said space. Only parametric – often called
distance – can be defined.

The best way to compare two lifters is to organize direct competition between
them. Obviously it is not possible, we can only compare their results in data.
This idea can be used to define distance.

The distance is loosely based on pair-wise comparison proposed in [7]. For two
athletes A and B with respective n and m results, the distance (or dissimilarity)
d(A,B) is calculated in the following way:

1. A counter S = 0 is created.
2. A cartesian product of results for A and B is calculated

{A1, A2, ..., An} × {B1, B2, ..., Bm} (3)

3. Every pair of results Ai Bj is treated as a mini-competition between A and
B.

4. If the best valid lift for Ai is better than the best valid one for Bj then 1 is
added to S, otherwise −1 is added.

5. The result is calculated by formula:

d(A,B) = | S

m · n
| (4)

Let us check requirements for the parametric are fulfilled:

1. d(A,B) ≥ 0 is obvious from the use of absolute value,
2. d(A,A) = 0 because of getting every pair Ai Aj and Aj Ai with mutually

canceling of the result so S = 0,
3. d(A,B) = d(B,A) for the same reason.

2.4 Empirical Hazard and Cumulative Distribution Functions

The data for each athlete can be divided into two separate groups: successful
and unsuccessful attempts.

The hazard function is defined as:

H(x) = P (X > x) = 1 − F (x). (5)
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In a powerlifting setting, it gives us the probability that an athlete would lift
a certain, declared weight.

The cumulative distribution function for unsuccessful attempts gives us the
probability that the athlete would fail with a specified weight. In Fig. 1 the
values of hazard function and cumulative distribution function are shown as
small circles (hazard function of success) and crosses (cumulative distribution
function for failures).

150 200 250 300 350 400
Weight
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Success hazard
Success curve
Failure CDF
Failure curve

Fig. 1. Hazard and CDF functions (points) and respective curves.

2.5 Generalisation by Sigmoid RBF’s

The hazard function for successes and the cumulative distribution function for
failures are in the form of some number of points dependent on a number of
data. It would be easier to use some sort of curve. It would give us the ability
to get values for any chosen value, even when no nearby point is present.

The typical shape of the curves suggests using the sum of sigmoids with
some weights to form a quasi-RBF artificial neural network with one input and
functions more suitable to represent cumulative distribution function than the
typical one used for distributions.

The following function was used with the additional parameters bi and ci:

s(x) = s0 +
n∑

i=1

ai

1 + exp(−(x − bi)/ci)
(6)
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where ai stands for the weights. As a result, we obtain a good curve with the tra-
ditional nonlinear least squares learning algorithm. In Fig. 1 the curves represent
the result of the learning process.

2.6 Prediction

In order to make a prediction, we must decide whether the probability of suc-
cess given by the hazard function outweighs the probability of failure given by
the cumulative distribution function. The simplest solution is to compare both
probabilities and decide which one is higher. In some cases, it would be useful
to require that the probability of success is higher than the probability of failure
plus some additional overhead.

The model made for selected similar athlete and smoothed by quasi-RBF is
used to predict results.

The examples of the results are shown in Table 2. In case of 297 kg we cannot
make the prediction because the difference between the probabilities values is
too small. We decide on a safe solution and we do not make a decision.

Table 2. Predictions for different weights.

Weight p success p failure Prediction

250 0.9617 0 Success – 1

290 0.5247 0.1883 Success – 1

297 0.3767 0.3341 No prediction – 0

305 0.2317 0.5097 Failure – 0

355 0 0.99 Failure – 0

3 Experiment Procedure

The distance between two athletes can be calculated using the procedure outlined
in Sect. 2.3.

In the Fig. 2 we can see how similar or dissimilar are all the athletes in our
sample data. For each athlete, we can find the best similar data and test the
prediction for each of his results. We can compare those predictions with the
real results. Since we want to use larger sets of data to predict results for the
athletes who do not pose such record, we need to remove cases when the record
length for the athlete that we make prediction for is longer than the record used
to make predictions. Due to the symmetry shown in Sect. 2.3 this would occur
in half of the cases. We should also disregard the cases when we cannot find
suitable data to make the prediction.

The results of the research would be discussed in the next section.
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4 Results

All athletes were investigated in the way described in Sect. 3. The summary of
conducted experiments is in Table 3.

Fig. 2. Parametrics values between athletes. Darker color – smaller distance. Number
on axis signify each athlete.

Table 3. Predictions for different weights.

General correct prediction rate 66.4%

Number of predictions 382

Total number of athletes 34

Number of rejected athletes 2

The distribution of prediction quality is shown in Fig. 3.
We can clearly note that – for any athlete – none of the predictions is below

50% accuracy.1

1 This should be the minimal requirement in any success/failure prediction.
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Fig. 3. The histogram of the amount of good predictions.

5 Summary

In this paper, we have presented the feasibility to make predictions for pow-
erlifting results. The proposed system is based on quasi-RBF artificial neural
networks (using a sigmoid function), using simple parametrics (distance) to find
similar data among the available.

More detailed research is needed, particularly taking into account the weight
of an athlete before each analyzed competition. This would require creating a
better measure of distance and also a more complicated network for predictions.
Also processing a larger dataset would prove beneficial.

We note that thanks to the proposed solution’s simplicity, it can be suc-
cessfully applied to mobile devices and provide the lifter’s (legal) support in
making decisions during the competition as an auxiliary tool. We can see the
wide opportunities for further development in this field.
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Abstract. We propose a new method of learning descriptors for con-
structing classifiers of functional data. These descriptors are moments of
a curve derivative, but their learning is based solely on samples of the
curve itself. Furthermore, the derivative itself is not directly estimated.
This is possible due to the trick of using simultaneously two different
bases of a functional space.

The advantage of extracting features from the derivative instead of
from a curve itself is in raising their sensitivities to a shape of a curve.
As expected, this may result in better classification accuracy. The sim-
ulation experiments that are based on an augmented real data support
this claim, but it is not unconditional. Namely, noticeable improvements
can be obtained when an appropriate classifier is selected.

Keywords: Functional data classification · Shape sensitive
descriptors · Learning derivatives · Orthogonal expansion

1 Introduction

In recent several years, one can observe a growing interest of researchers to ana-
lyze and classify functional data (see monographs and survey papers cited in the
next section). Clearly, important contributions in this direction are much earlier
(see, e.g., [1,10] for reviews on classifying electrocardiogram (ECG) signals and
[3,7] for electroencephalogram (EEG) signals classification and features selection
[4,5] as well as [2] for the survey on the analysis of electromyography signals).

The renewed interest has its origin in growing possibilities of acquiring large
number of samples from new sensors and storing them on cloud databases. An
example of this kind is provided at the end of the paper, where curves from
accelerometers are classified. Their distinctive feature is that they are repetitive,
but in a stochastic sense, i.e., their underlying probability distributions remain
the same for each class, although they are unknown. As the result, curves differ
more by shape than by amplitudes. Therefore, our aim is to derive descriptors of
curves that are based on curves’ derivatives, without having an access to them
directly.

c© Springer Nature Switzerland AG 2021
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The paper is organized as follows. In the next section, we justify using curve
descriptors that are based on moments of its derivative instead of the curve
itself. The main result of this section is the derivation of a relationship between
these two kinds of moments. This relationship is crucial for Sect. 3 to construct
an algorithm for learning the derivative descriptor, without having access to
samples of the derivative curve. In Sect. 3 also an interplay between learning
these descriptors and learning a classifier is described. Finally, in Sect. 4, the
extensive results of testing the proposed approach on an augmented real data
are summarized. They aimed to investigate an influence of a classifier on possible
improvements of the classification accuracy.

2 Descriptors Based on the Derivative Moments

Our derivations are based on the notion of square root velocity (SRV) of differ-
entiable functions X(t), Y(t), t ∈ [0, T ] that can be interpreted as signals, curves
etc., defined on a finite time interval of the length T > 0. For those t ∈ [0, T ] for
which the derivative X′(t) is not zero, the SRV of X, denoted further as q(X, t)
is defined as follows

q(X, t) =
X′(t)

√|X′(t)| , t ∈ [0, T ] (1)

or, equivalently,
q(X, t) = sgn(X′(t))

√
|X′(t)|. (2)

From (1) it is clear that the SRV description of X is invariant in a scale and a
vertical position, i.e., for any c > 0 and any β ∈ R:

q(cX, t) = q(X, t), q(β + X, t) = q(X, t), t ∈ [0, T ]. (3)

Let X′ and Y′ be square-integrable on [0, T ], X′, Y′ ∈ L2(0, T ). Then, from
(2) we immediately obtain:

∫ T

0

q4(X − Y, t) dt =
∫ T

0

[X′(t) − Y′(t)]2 dt. (4)

Strictly speaking, the squared right hand side of (4) is not a distance measure,
since X − Y that differ by a constant yield zero in (4).

However, this expression suggests that the derivatives of X, Y, . . . can be
useful in classifying curves in a shape-sensitive way. In particular, moments of
X′, Y′, . . . with respect to a selected basis in L2(0, T ) are worthwhile candidates
for descriptors of X, Y, . . . when one attempts to classify them. We shall follow
this line of reasoning.
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2.1 Modeling Random Curves

The main difficulty is in learning such descriptors from samples of X, Y, . . .
instead of X′, Y′, . . . that are frequently not directly available. In this respect we
shall follow [13,14], where the approach to nonparametric estimation of deriva-
tives from noisy observations of X(t) can be found. However, we emphasise that
in our case X(t) is a random element of L2(0, T ), which implies a different model
of random errors than the one used in [13]. Furthermore, the estimation of X′

is only an intermediate step, since our goal is to learn the moments of X′ with
respect to a selected orthonormal basis.

We refer the reader to [6,8,9,16,19] for more details on shape-sensitive
description of random curves.

Let vk(t), t ∈ [0, T ], k = 1, 2, . . . be a selected orthogonal and complete
sequence in L2(0, T ) with elements that are also normalized to 1 with respect
to the standard norm ||vk||2 =< vk, vk >, where < X, Y >=

∫ T

0
X(t)Y(t) dt.

Then, X ∈ L2(0, T ) has the representation:

X(t) =
K∑

k=1

ak vk(t) + RK(t) , t ∈ [0, T ], (5)

where

RK(t)
def
=

∞∑

k=(K+1)

βk vk(t) (6)

and the coefficients are given by ak =< X, vk >, k = 1, 2, . . . , K, βk =<
X, vk >, k = (K + 1), (K + 2), . . ., while the convergence is understood the L2

norm sense.
Collections of coefficients ak’s and βk’s are both random, but they play dif-

ferent roles in our derivations. Namely, ak’s are regarded as descriptors that are
informative for curves classification, while βk’s are interpreted as coefficients of
non-informative error RK .

Denote by E the expectation with respect to ak’s and βk’s. Although their
distributions are not known, the following assumptions are made:

E[βk] = 0, E[βk βj ] = 0, k �= j k, j = (K + 1), (K + 2), . . . , (7)

γ(K)
def
= E||RK ||2 → 0, as K → ∞, (8)

E(a2
k) < ∞, E(ak βl) = 0, k = 1, 2 . . . ,K, l = (K + 1), (K + 2), . . . (9)

Assumption (8) implicitly imposes constraints on the variability of the residual
curve RK(t), t ∈ [0, T ] for large K.
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For simplicity, 1 ≤ K ≤ ∞ is assumed to be fixed and known. In practice, one
should select K so as to minimize an estimate of the classification error plus a
penalty term for too complicated model, such as in the AIC, BIC etc. criterions.

2.2 The Relationship Between Descriptors of a Curve and Its
Derivative

In the next section, we provide details of learning moments of X′ from equidistant
observations of X only. Here, we outline a general idea. If vk’s are differentiable
and the series (5) and (6) is term-by-term differentiable, then,

X′(t) =
K∑

k=1

ak v′
k(t) + R′

K(t), t ∈ [0, T ], (10)

On the other hand, for wk, k = 1, 2, . . . being an orthonormal and complete
sequence in L2(0, T ), X′ ∈ L2(0, T ) has the representation

X′(t) =
K∑

k=1

bk wk(t) + rK(t), bk = <X′, wk> (11)

rK(t) =
∞∑

k=(K+1

ηk wk(t), ηk = <X′, wk>, k = (K + 1). . . . (12)

For sufficiently large K, according to (8), we approximate X′ in (10) by the first
summand, which yields, after substituting it into (11),

bk =
K∑

j=1

aj <wk, v′
j>, k = 1, 2, . . . , K. (13)

Observe that these formulas are exact, if <wk, R′
K >= 0, k = 1, 2, . . ., but this

is not postulated here.
Summarizing, moments bk’s of X′ with respect to basis wk’s can be expressed

as linear combinations of moments ak’s that are estimable from observations of
X itself, assuming that for each k = 1, 2, . . . , K

at least one <wk, v′
j> �= 0, j = 1, 2, . . . , K. (14)

Additionally, elements <wk, v′
j> of K × K transformation matrix, say B, are

either known or they can be approximated to any desired accuracy by quadrature
formulas.
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3 Learning Classifiers Based on Curves’ Derivative
Descriptors

Suppose, for simplicity of formulas only, that random curves like X are drawn
from two classes, labelled by I and II, that are formed as follows: firstly, vector
ā

def
= [a1, a2, . . . , aK ]tr is drawn from a cumulative distribution function (c.d.f.),

which is either FI or FII . These c.d.f.’s are not known. We do not impose any
special restrictions on them, except for the existence of the second moments of
ak’s and (9). In this way, a large class of classification problems for informative
part of X can be stated. The second step in modeling X is to draw βk’s. Their
distributions are also unknown and only conditions (7), (8) and (9) are assumed
to hold. Finally, X is formed according to (5) and (6). Thus, X may come from
class I or II, depending whether ā was according to c.d.f. FI or FII . The existence
of a priori probabilities 0 < pI < 1, 0 < pII < 1, pI + pII = 1 that X is from
class I or II is postulated, but they are unknown. Their estimation by fractions
in the learning sequence is a simple task, unless an essential class imbalance does
not appear, which is excluded in this paper.

3.1 Learning Sequence

A learning sequence that we have at our disposal is of the form:

LN
def
= {(x̄(1), j1), (x̄(2), j2), . . . , (x̄(N), jN )}, (15)

where jn ∈ {I, II} are correct class labels (provided by an expert), while x̄(n)

are equidistant, in [0, T ], samples from curves X(n), taken at time instants ti,
i = 1, 2, . . . , m, n = 1, 2, . . . , N . Samples forming x̄(n)’s have the following
form:

x
(n)
i = X(n)(ti) = v̄tr(ti) ā(n) + RK(ti), i = 1, 2, . . . , m, (16)

where ā(n) are drawn either according to FJ or FII , while

v̄tr(t)
def
= [v1(t), v2(t), . . . vK(t)]. (17)

Analogously, new X to be classified is represented only by x̄ with elements

xi = X(ti) = v̄tr(ti) ā + RK(ti), i = 1, 2, . . . , m, (18)

Problem Formulation. Using learning sequence LN , derive a classifier that clas-
sifies X, represented only by x̄, to class I or II. This classifier should be shape
sensitive in the sense that, for a preselected orthonormal and complete sequence
wk’s, the classifier decision is based on learning descriptors bk =< X′, wk >,
k = 1, 2, . . . , K, which are directly not available.
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Fig. 1. Examples of curves to be classified

Fig. 2. Descriptors of curves to be classified, stacked together, and displayed as images.
Upper panel – classic DCT descriptors, lower panel – descriptors based on learning
derivatives.

3.2 Learning Descriptors

Model of observations (18) and (16) suggest that for estimating primary descrip-
tors ā and ā(n)’s one may use the method of minimizing the least squares error
(LSE) in the nonparametric setting with deterministic regressors ti’s (see [12]).
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However, in this case the ordinary (unweighted) LSE approach is not recom-
mended, since RK(ti)’s are correlated for moderate K.

Thus, ā is estimated in more classic way as

ˆ̄a = Δm

m∑

i=1

xi v̄(ti) = Δm V̄ x̄, Δm
def
= T/m, (19)

where V̄ is K × m matrix composed of the columns: v̄(ti)’s. It is not difficult to
show that ˆ̄a is asymptotically (as m → ∞) unbised for ā. It is more tedious to
bound the variances of ˆ̄ak’s by ζ(K)/m2, where ζ(K) > 0 depends on K in a
polynomial way.

Transforming samples of the learning curves in the same way as in (19), we
obtain the learning sequence, denoted as AN , composed of the classic descriptors:

AN = {(ˆ̄a(n), jn), n = 1, 2, . . . , N}, ˆ̄a(n) = Δm V̄ x̄(n), (20)

where jn’s are joined at the original order.
Using the plug-in idea and (13), we can learn derivative-sensitive descriptors

as follows:

b̂k =
K∑

j=1

âj <wk, v′
j>, k = 1, 2, . . . , K (21)

and they are also asymptotically unbised and with finite variances that can be
reduced faster sampling (m larger).

Transforming the Learning Sequence. Elements of LN are transformed into
descriptors in the same way as in (21), providing learning sequence BN , say,
of the form:

BN = {(ˆ̄b(n), jn), n = 1, 2, . . . , N}, ˆ̄b(n) = Δm B V̄ x̄(n), (22)

while labels jn’s are rewritten from LN , accordingly.
Summarizing, original learning sequence LN , with usually long sequences of

samples x̄(n), was transformed into learning sequence BN with descriptors for
derivatives. Furthermore, this transformation is linear in x̄(n), which allows for
speeding up computations.

At this stage, it suffices to select a proper classifier, to learn and test it using
BN and to apply it for newly coming sample x̄, after transforming it to ˆ̄b =
Δm B V̄ x̄. For brevity, the obtained classifier will be denoted as CLname[BN ; x̄]
or CLname[AN ; x̄], when the learning is based on standard descriptors, for the
sake of comparisons. For example, the support vector machine (SVM) classifier
that was trained on BN is denoted as SV M [BN ; x̄] and its output is I or II class
label.

As we shall see in the next section, this obvious route of building a classifier
may lead to moderate or essential improvements of the classification accuracy,
depending on the choice of a classifier.
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4 Testing and Comparisons on Augmented Acceleration
Data

Operators’ cabins of large working machines are frequently subject to relatively
high, repetitive accelerations. Benchmark data of this kind are freely available
from [17], while in [18] their detailed description is provided.

The benchmark consists from N = 43 learning curves, each containing m =
1K samples (see Fig. 1, where examples of curves are shown, after a low-pass
filtering). Labels, either I or II, were attached to each curve, corresponding to
lighter or heavier working conditions. Notice that curves in Fig. 1 differ mainly
by shape rather than in amplitude.

As orthogonal systems in L2(0, T ), we have selected the cosine series as vk’s
and the sine series as wk’s. Descriptors ˆ̄a(n)’s were computed according to (20)
for K = 16. For illustration purposes, these N = 43 vectors were stacked into
43 × 16 matrix that is displayed in Fig. 2 – upper panel (dark places correspond
to lower values of the descriptors).

Descriptors of derivatives ˆ̄b(n)’s were computed according to (22). They are
analogously visualized in Fig. 2 – lower panel. By a visual inspection of these
two panels, we conclude that the variability of ˆ̄b(n)’s is much larger than ˆ̄a(n)’s.
Thus, one may hope that the classification accuracy will also be larger.

Data Augmentation. Unfortunately, the learning sequence of the length N = 43
is far too short for learning and comparisons. Therefore, we augmented the
original data as follows: each estimated ˆ̄a(n)’s was repeated 1000 by adding to
it the Gaussian perturbations with zero mean and dispersions 0.02 and keeping
the same label. This augmentation corresponds to about 11% perturbations
amplitudes. Notice that it suffices to add perturbations to ˆ̄a(n)’s, instead adding
them to original samples, since ˆ̄a(n)’s depend on them linearly. In this way, we
have obtained the augmented learning sequence ANe

of the length Ne = 43000.
Each descriptor from this sequence was transformed by (22), which led to the
augmented learning sequence of the derivatives descriptors BNe

.
The next step was to learn the logistic regression classifier twice in order to

obtain: LogR(ANe
; x̄) and LogR(BNe

; x̄) and their characteristics, such as accu-
racy, precision, recall etc. These characteristics are collected as pairs, separated
by |, in the LogR column in Table 1.

In the same way, the following classifiers were learned and validated:

LogR – the logistic regression classifier,
SVM – the support vector machine,
DecT – the decision tree classifier,
gbTr – the gradient boosted trees,
RFor – the random forests classifier,
5NN – the 5 nearest neighbors classifier.

The results are summarized in Table 1. Notice that the result on the left hand
side in each cell of this table is intentionally the same as in [15], for the sake of
comparisons.



Shape Sensitive Classification of Curves 493

Table 1. An account on testing the popular classifiers when the cosine moments (the
left result) and the shape sensitive descriptors (the right result) are used for learning
them. Abbreviations: Cohen – the Cohen κ coefficient, MCC – the Matthews Correla-
tion Coefficient. For the abbreviations of the classifiers’ names – see the text.

Classifier LogR SVM DecT gbTr RFor 5NN

Accuracy 0.91|0.97 0.94|0.96 0.84|0.86 0.92|0.90 0.91|0.92 0.90|0.92

Cohen 0.76|0.91 0.82|0.88 0.60|0.65 0.77|0.72 0.72|0.77 0.70|0.73

MCC 0.76|0.91 0.82|0.88 0.61|0.66 0.77|0.72 0.72|0.78 0.71|0.75

Precision 0.96|0.99 0.94|0.95 0.93|0.95 0.94|0.93 0.92|0.93 0.90|0.90

Recall 0.92|0.97 0.98|0.99 0.86|0.87 0.96|0.94 0.96|0.98 0.98|0.99

Specificity 0.88|0.95 0.80|0.83 0.60|0.85 0.79|0.77 0.72|0.75 0.65|0.65

F1 score 0.94|0.98 0.96|0.97 0.89|0.91 0.95|0.94 0.94|0.95 0.94|0.95

The analysis of this table leads to the following conclusions:

– when the LogR classifier is used together with descriptors based on derivatives
bk’s, it provides a noticeable increase of the accuracy and other indicators (the
Cohen and MCC) in comparison to applying the LogR classifier to classic
descriptors ak’s,

– also the SVM classifier performs better on bk’s than on ak’s, but the improve-
ments are less spectacular,

– only slight improvements, but pertaining all of the indicators, are visible when
the decision trees, random forests and 5 NN classifiers are applied,

– somewhat unexpectedly to the authors, the gradient boosted trees classifier
provided a slightly worse results when applied to bk’s descriptors, in other
words, the gbTr was not able to take advantages from the derivative based
descriptors.

5 Conclusions

The new way of learning descriptors of functional data is proposed and investi-
gated from the view-point of the classification accuracy. Its essence is in learning
descriptors of a curve derivative, without estimating it directly. Extensive simula-
tions indicate that using these descriptors one may expect a better classification
accuracy, but the improvement is essential when simultaneously an appropriate
classifier of these descriptors is used. In the case study of accelerometer data,
the proper choice was the logistic regression classifier, followed by the SVM.

The results are promising, but further efforts are necessary to reveal an influ-
ence of a kind of functional data on the choice of the classifier.

One of possible directions of generalizations of the proposed approach is to
allow curves having derivatives with a finite number of jumps. Before learning
their descriptors, it would be necessary to smooth samples in a jump-preserving
way, as it was proposed in [11].



494 W. Rafaj�lowicz and E. Rafaj�lowicz

Acknowledgments. The authors express their thanks to Professor P. Moczko and
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Abstract. This article presents and formally describes an ontology-
based approach to domain context formation for time series analysis.
Considered the logical representation of the ontology using the descrip-
tive logic ALCHI(D). Also described the experimental results that con-
firm the correctness and effectiveness of the proposed approach.

Keywords: Predictive analytics · Ontology · Time series · Context

1 Introduction

The activities of any modern organization often require urgent management deci-
sions. The decision-maker must know the domain and have the skills in various
decision support systems and tools for working with knowledge. Data mining
techniques are required to automate and speed up the state evaluation of some
complex system. These techniques are focused on working with dynamic data of
a concrete system considering the domain context. The context allows consider-
ing the specific and limitations of the domain in analyzing data represented by
time series.

The context allows using of additional domain-dependent knowledge in the
process of describing the system behavior. Usually, the description of the system
behavior is represented as qualitative assessments of its state. The same dataset
in different domains (in different contexts) will have different models and analysis
results.

2 The State of the Art

Forecasting methods, with all conventions and limitations, are the development
of descriptive analytics mechanisms. Any model of real-world objects works only
under conditions of restrictions and agreements. Also, the following conclusion
can be drawn for a forecast – the future state of the control objects cannot be
predicted 100%. However, there is a task to build the most accurate forecast in
the given conditions.
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The development of methods for intellectual analysis of enterprise processes
in integration with knowledge engineering methods is dictated by various needs.
Data mining methods are not able to works with such components of processes
than not implemented in models.

The works [1–3] describe that the hybridization of analyzing methods and the
usage of context can improve the quality and efficiency of the analysis. Ontolo-
gies are used to formed the context in the presented works. The ontologies are
used for: improving the accuracy of search engines requests in the predictive
analytic [1]; creation of relations [2] between time series of social networks mes-
sages and features of a domain: company structure, names of employees, etc.;
detecting changes in a group of related time series [3].

The works [4,5] presented the approach to the process mining based on the
analysis of a set of time series. However, these works do not consider the features
of the domain. This fact reduces the accuracy of process discovery. The analyzed
process can be more complex than the vision through a time series model.

Thus, methods for modeling time series need a component that stores addi-
tional knowledge about the modeled process. Especially in tasks of analytic and
forecasting of time series. The proposed approach is based on the hypothesis
about the possibility of applying modeling methods and intelligent analysis of
time series extracted from various information systems to detect hidden informa-
tion processes specific to a specific domain. Knowledge engineering methods are
used for the detection and validation of information processes with the domain
features.

3 Contextual Time Series Forecasting

The scheme of analysis of dynamic data with the context considering presents
in Fig. 1.

The framework of the forecasting system uses the entire set of modeled
objects O. The decision-maker (DM) initiates the entire procedure: forms a
request for managing of interest objects, sets goals.

Two functions formulated to study the dynamics of the behavior of domain
objects:

1. Function for converting object data to numeric representation num(O) →
Onum. The implementations of this function can be following: obtaining the
values of the numerical attributes of an object, obtaining the number of
objects of the same type included as a property in the parent object. Another
implementation option is periodically obtaining the indicator values.

2. The function of converting data about an object into a representation of the
object behavior rule(O) → Orule. For simplicity, we can represent patterns
by a list of “IF-THEN” rules. orulei = {A,C}, where A is a set of antecedents,
C is a set of consequencies.

The information aggregation block is used for the comparison of the numer-
ical and meaningful indicators:

aggr(Onum, Orule) → {onumi , Ôrule}, (1)
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Fig. 1. Analyzing dynamic data with the context considering

where Ôrule is a subset of the behavior rules for a numeric attribute onumi .
Time series models for predictive analytics can be built using different meth-

ods: statistical, neural network, fuzzy. A large number of existing time series
models suggest that there is no best and universal way. In studies [6–8] it is
noted that a separate time series model may not give a correct forecast, and a
combination and teams of models can improve the quality of the forecast. The
proposed scheme defines choosing the model. Extracted from the domain infor-
mation helps to select the model. As selection criteria we can use: presence of
a tendency; presence of a periodic component; length of time series; presence of
outliers and the need for preliminary smoothing; the degree of uncertainty about
the representation of levels, trends, and lengths of time series intervals.

Then selection function can be defined as follows:

SelectModel(onumi , Ôrule, TS) → {onumi , Ôrule, T̂ S}, (2)

where TS is a set of available time series models; T̂ S is a set of selected models.
The time series model works like a converting function of the values attribute

onumi into a set of time series points:

TSi(onumi ) → {y1, y2, ..., yn}, (3)

where TSi is a time series model represents an attribute value into a time-
dependent value – tsi.

The time series model in the classical sense does not use additional informa-
tion. They use only the history of the time series. The main task is to create
a time series model that considers the constraints and conventions of the time
series behavior. The behavior extracted from the context of the object’s func-
tioning. Let’s describe the information extracted from the context that affects
the modeling:



An Approach to Contextual Time Series Analysis 499

1. Time series baseline ybase.
2. The main tendency of time series tendbase.
3. Max-min value limitations of the levels of the time series bound =

(ymin, ymax).
4. The rate of change of trends (inertia) of the time series tendΔ.
5. Range of acceptable values that are not anomalous accept = (yaccept

min , yaccept
max ).

The specified information categorized by the following types. The first class
defines time series behavior. This class includes the following items: time series
baseline, the primary tendency. You can create a crude time series model that
used information only from the context, not analyzing the time series. The sec-
ond class that describes the modeling result and is used to evaluate predicted
values: min-max values restrictions, the rate of tendency change, the interval of
acceptable values. Also, defining information can be used to validate predicted
values.

The formal definition of both classes is:

Def = {ybase, tendbase},

Desc = {bound, tendΔ, accept, ybase, tendbase}
(4)

The time series model onumi can define as a combination of the following
components:

{onumi , Ôrule, T̂ S, ˆDef, ˆDesc}, (5)

where T̂ S is a set of selected time series models. T̂ S is used for modeling and fore-
casting of numerical attribute representation Onum of control object with using
additional components ˆDef , ˆDesc, formed as Extract(Ôrule) → ( ˆDef, ˆDesc).

New components ˆDef , ˆDesc of the time series model work with the following
expression:

yDef = α ∗ ybase + β ∗ ytendbase
, (6)

where α, β are the weight coefficients of the model components. The context
Ôrule determines these values.

The expression shows that the model built only from information extracted
from the context does not use the values of the original numeric representation
of the time series. The proposed model of time series contain a representation
with weights:

ymodel = wDef ∗ yDef + (1 − wDef ) ∗ y, (7)

where wDef is a weight of model values of the time series. In this case, the result
of another model can be used as y. Forecast values are weighted in the same
way.

The Decs model component is used for the validation modeling and forecast-
ing results. It helps evaluate the difference between the context-oriented model
and the model obtained from the numerical representation of the time series in
modeling and forecasting:
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Errvalid =
∑n

i=1 isV alid(desci)
n ∗ |Desc| , (8)

where the function isV alid(desci) has a range [0, 1] and helps to check the con-
straints.

4 Forming a Context for Time Series Analysis
and Forecasting

The context for analysis and forecasting of time series can be represented as
an ontology. This ontology contains a description of domain objects, their prop-
erties, and restrictions on values of properties. The ontology can also contain
logical rules and additional entities for prescriptive analytics. Also, the ontology
contains a description of the methods of analysis and forecasting of time series.
This description is used to select methods depending on properties: tendency,
seasonality, frequency, length of the time series, etc.

The ontology for context formation for the analysis and forecasting of time
series is formally presented as the following expression:

Domain = 〈O,M,A,R〉, (9)

where O is a component for describing the domain specifications; M is a com-
ponent for describing the characteristics of methods of analysis and forecasting
of time series; A is a component for prescriptive analytics; R is a set of relations
between ontology components.

The O and M components are described in this article. The A component is
described in the work [9].

The ALCHI(D) extension of the descriptive logic [10] is used for the logical
representation of the Domain ontology (Eq. 9):

Domain = {TBox,ABox},

where TBox is set of terminological axioms; ABox is a set of assertional axioms.
Let’s consider the TBox of the Domain ontology in more detail.

M � � Om � � Onum � � TS � � Def � � Desc � � Interval � �
Interval ≡ � � ∃hasName.String � ∀hasName.String � ∃hasMinV alue.Integer�
� ∀hasMinV alue.Integer � ∃hasMaxV alue.Integer � ∀hasMaxV alue.Integer

M ≡ � � ∃hasName.String � ∀hasName.String � ∃hasTendency.Boolean�
� ∀hasTendency.Boolean � ∃hasPeriod.Boolean � ∀hasPeriod.Boolean�
� ∃hasSeason.Boolean � ∀hasSeason.Boolean � ∃hasSmooth.Boolean�
� ∀hasSmooth.Boolean � ∃hasFuzzy.Boolean � ∀hasFuzzy.Boolean�
� ∃length.Interval � ∀length.Interval
Om ≡ � � ∃hasName.String � ∀hasName.String � ∀hasProperty.Onum

Def ≡ � � ∃hasName.String � ∀hasName.String � ∃hasBase.Integer�
� ∀hasBase.Integer � ∃hasTendBase.Integer � ∀hasTendBase.Integer
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Onum ≡ � � ∃hasName.String � ∀hasName.String � ∃hasDef.Def �
� ∀hasDef.Def � ∀hasTS.TS

Desc ≡ � � ∃hasName.String � ∀hasName.String � ∃hasBase.Integer�
� ∀hasBase.Integer � ∃hasTendBase.Integer � ∀hasTendBase.Integer�
� ∃hasTendDelta.Integer � ∀hasTendDelta.Integer � ∃hasBound.Interval�
� ∀hasBound.Interval � ∃hasAccept.Interval � ∀hasAccept.Interval

TS ≡ � � ∃hasName.String � ∀hasName.String � ∃hasDef.Def �
� ∀hasDef.Def,

where Interval is a concept representing an integer interval; hasName is a func-
tional role for “has a name” axiom; hasMinV alue and hasMaxV alue are func-
tional roles for “has a minimal value” and “has a maximal value” axioms; String
is a string data type; Integer is an integer data type; M is a concept representing
some method for analyzing or forecasting a time series; hasTendency is a func-
tional role for “has the ability to work with tendencies” axiom; hasPeriod is a
functional role for “has the ability to work with periodicity” axiom; hasSeason is
a functional role for “has the ability to work with seasonality” axiom; hasSmooth
is a functional role for “has the ability to use smoothing” axiom; hasFuzzy is a
functional role for “has the ability to use fuzzy values” axiom; length is a func-
tional role for “has an acceptable interval of time series length” axiom; Boolean is
a boolean data type; Om is a concept representing some control object; hasDef
is a functional role for “has a time series behavior” axiom; hasProperty is a
functional role for “has a property” axiom; Def is a concept representing a
time series behavior; hasBase is a functional role for “has a time series base-
line” axiom; hasTendBase is a functional role for “has a main tendency” axiom;
Onum is a concept representing a control object property; hasDesc is a func-
tional role for “has a modeling result description” axiom; hasTS is a functional
role for “has a time series” axiom; Desc is a concept representing a modeling
result description; hasTendDelta is a functional role for “has a rate of change
of trends” axiom; hasBound is a functional role for “has a range of acceptable
values” axiom; TS is a concept representing a time series of values of control
object property.

5 An Experiment on Contextual Time Series Forecasting

This experiment demonstrates the principle of the proposed methods. The prob-
lem area is the planning of the production capacity of an aircraft enterprise.
The problems of extraction and forecasting of time series of production processes
were described earlier in work [11]. The production process is represented by
the dynamics of indicators of enterprise resources and production load. It is sig-
nificant how much work a particular department can perform for the production
planning process. This information is represented by the data about downtime of
equipment stored in information systems of enterprise. For example, such a task
can be determined as the need for additional capacity, considering the current
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production plan. We analyze in detail how the methods work according to the
scheme shown in Fig. 1 and describe the performed actions and the results.

Let’s build the description of the context in the form of the following fragment
of the ontology: object department, object property operationalTime, the time
series of property values otTS :

bound : Interval accept : Interval otDesc : Desc otDef : Def

otTS : TS operationalT ime : Onum department : Om

(otTS, otDesc) : hasDesc (operationalT ime, otTS) : hasTS

(operationalT ime, otDef) : hasDef (department, operationalT ime) : hasProperty

The enterprise equipment was connected to the monitoring system. The oper-
ational time of each machine can be observed. The experiment shows analyze the
quantitative indicator represented by the time series of the useful operating time
of the department equipment. The time series is formed as one of the output
datasets of block 1.

Block 3.1 of the scheme requires the construction of time series models. A
set of models to be able to choose the best one for a particular time series. The
following methods used as an example for forecasting: Holt time series model,
Holt-Winters time series model, F-Transform method with the “If-Then” rule
base.

In the ontology, the Holt time series model are declared as follows:

tsLength : Interval holt : M

(tsLength, 5) : hasMinV alue (tsLength,MAX) : hasMaxV alue

(holt, true) : hasTendency (holt, false) : hasPeriod (holt, false) : hasSeason

(holt, true) : hasSmooth (holt, false) : hasFuzzy (holt, tsLength) : length

The forecast contains 3 points. The small length of the series requires a small
forecast horizon. Forecast tested on known values of the series.

Figure 2 shows forecasts on test interval by described methods without using
the context. Also, the figure shows a forecast estimate on the SMAPE criterion
(the lower, the better) [12].

According to the expression (7) we can build the following forecasts (Fig. 3).
Forecasts apply context information by block 4. Let’s represent the components
of the model (4) used for the forecast:

(bound, 0) : hasMinV alue (bound, 100) : hasMaxV alue (accept, 50) : hasMinV alue

(accept, 60) : hasMaxV alue (otDesc, 50) : hasBase (otDesc, 0) : hasTendBase

(otDesc, 5) : hasTendDelta (otDesc, bound) : hasBound (otDesc, accept) : hasAccept

(otDef, 50) : hasBase (otDef, 0) : hasTendBase

The value of the model parameter wDef is set to 0.3. Then the weight of the
model forecast in contrast with the forecast by context is greater.

Based on the values of the given context model components, the following
actions are performed:
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– select the models by restrictions on seasonality, frequency. All proposed mod-
els satisfy this requirement.

– then select the models that satisfy the expression (8). The following mod-
els were chosen to build the forecast: Holt, Holt-Winters. The F-transform
method is not suitable because it does not satisfy the requirement: the fore-
cast values are within acceptable boundaries (50, 60) with the obtained value
of the last point at 47.81.

The control object analytical description based on the modeling result (block
5): the operational time of the equipment in the department for the nearest
predicted points will decrease, but it will retain acceptable values, as indicated in
the context. This prediction will be true if the operational time of the equipment
keeps the stability tendency.

All previously selected models that combined with information from the con-
text (by the expression 7) are suitable for predicting future values. The leading
model will be the Holt-Winters model. For example, if the context will change
and production volumes increase or equipment is modified to eliminate emer-
gency downtime, then the model components can take the following form:

(bound, 0) : hasMinV alue (bound, 100) : hasMaxV alue (accept, 50) : hasMinV alue

(accept, 60) : hasMaxV alue (otDesc, 50) : hasBase (otDesc, 1) : hasTendBase

(otDesc, 5) : hasTendDelta (otDesc, bound) : hasBound (otDesc, accept) : hasAccept

(otDef, 50) : hasBase (otDef, 1) : hasTendBase

The forecast for these conditions show on the Fig. 4.
This forecast is given as an example to demonstrate the change in forecast

results. The models must be re-selected due to the context change.

Fig. 2. Forecast of % of operational time of department

The Holt-Winters model does not pass the test there is a downward trend
(Eq. 8) although it shows the best estimate for SMAPE. Therefore, it is excluded
from the final forecasting in such a context.
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Fig. 3. Forecast of % of operational time of department with using of contextual
information

Fig. 4. Forecast of % of operational time of department with using of contextual
information

The experiments show that the context information can improve the fore-
cast quality while time series modeling. Also, allow excluding models with high
quality but not match the expectations of the decision-maker.

6 Conclusion

The main aim of the proposed models is to exclusion the limitations of time
series forecasting methods. In case when those methods analyzed only the history
of changes in the researched parameters. The presented experiments show the
possibility of context usage in the time series modeling processes. The advantage
of the proposed approach is the ability to use existing methods for time series
modeling. The set of model parameters extracted from context can be expanded
to improve the forecasting accuracy for a more detailed selection of models,
setting their limitations, and adjusting the forecast.
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Simulation Analysis of Tunnel Vision
Effect in Crowd Evacuation
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Abstract. Excessive cognitive demands, fear, or stress narrow evacuees’
functional fields of view (FFV) in disaster evacuation situations. This
tunnel vision hypothesis leads to a new model of evacuee behavior devi-
ating significantly from the previously accepted understanding, and pos-
sibly altering conventional evacuation protocol designs. In this study, we
analyze the impacts of narrowed vision of evacuees on crowd evacua-
tion efficiency through simulated evacuations. The simulated room to be
evacuated included multiple exits, of which only one was correct, as well
as a single visual sign designating the correct exit, and an agent found
the correct exit via this sign if it was within their FFV. We designed an
evacuation decision model for the simulated agents based on herd behav-
ior, including cognitive biases frequently observed during evacuations, to
which evacuees were assumed to be subject.

Keywords: Tunnel vision · Herd behavior · Evacuation decision model

1 Introduction

Mackworth (1965) introduced the concept of tunnel vision, a narrowing of the
human FFV owing to excessive cognitive demand, stress, or fear [7]; numerous
studies on the subject have since been conducted [1–3,6]. In tunnel vision, human
cognitive resources focus on the center of the visual field, resulting in a loss object
perception outside of this focus, especially in the peripheral vision. Furthermore,
tunnel vision has been shown to occur during violent crimes and emergency
situations, and to affect operators of complex systems and vehicle drivers; its
effects are known to lead to loss of life or damage to property in some cases.

Although several conditions common in disaster evacuation situations are
understood to cause tunnel vision, prior research on crowd evacuation has rarely
focused on the human FFV. Most crowd evacuation studies using experiments
or simulations have assumed the FFV of an agent arbitrary or implicitly, or
simply considered the range at which an agent could perceive objects as their
FFV. As yet, few studies have explored the human FFV based on physiological
or psychological factors.

The FFV of an evacuee is crucial in crowd evacuations for two reasons. (1)
The FFV of any agent bounds other agents considered in models of herd behav-
ior among evacuees, affecting the behavior of the crowd as a whole. (2) Visual
c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 506–518, 2021.
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information such as exit signs or evacuation route signs are commonly used to
efficiently guide crowd evacuations, and agents are able to recognize such signs
only within their FFV.

Presenting a simulation analysis of evacuation behaviors among people
appearing in a video clip captured during the Great East Japan Earthquake,
Tsurushima (2020) introduced the tunnel vision hypothesis that the human FFV
during emergency evacuation situations narrows to an angle of 20◦ toward the
heading direction, with a relatively long range [14]. While numerous studies on
crowd evacuation have adopted a wide visual field, such as 120◦ or 360◦, the
tunnel vision hypothesis introduced a much narrower visual field, restricted to
20◦. The significant difference in visual range and scope between the predictions
of the tunnel vision hypothesis and the conventional assumptions may alter pre-
viously accepted research results on crowd evacuation. The impact of the tunnel
vision hypothesis may be crucial, especially for research on emergency evacuation
protocol design using visual communication for critical information.

This study analyzes the impact of tunnel vision effects on crowd evacuation
using two simple simulation problems. Both problem scenarios concern an envi-
ronment with two exits, one being designated by a visual sign. The objective of
both problems was to maximize the number of agents reaching a correct exit des-
ignated by a visual sign, by varying the position of the sign within the simulated
environment. Exit choice decisions in crowd evacuations are highly complex;
aside from visual signs, herd behaviors among evacuees also affect individuals’
decisions by propagating both correct and incorrect information within a crowd.
Thus, directing a crowd to a correct exit can prove challenging. We investigated
the impact of tunnel vision on crowd exit choice decisions by comparing simu-
lated agents with tunnel vision and with normal (wider) vision.

2 Related Works

Several studies of psychological and cognitive factors on evacuation behavior
have been conducted using virtual reality (VR) devices. Tucker et al. (2018)
investigated the impact of hazard levels on evacuees’ anxiety and exit route deci-
sions using VR, and showed that evacuees tended significantly to select a major
exit rather than peripheral exits under highly hazardous conditions [15]. Meng
and Zhang (2014) conducted evacuation experiments simulating a hotel fire inci-
dent using VR, analyzing simulations with and without conditions of virtual fire,
and found that evacuees required more time to find evacuation signs and exits
in simulated fire emergency conditions [9]. New approaches using shared virtual
spaces with multiple subjects have recently emerged. Mousaid et al. (2018) con-
ducted VR evacuation experiments in settings with four exits, of which one was
randomly selected as correct, in which a subset of the subjects knew the correct
exit in advance. They analyzed evacuation behaviors under stressful emergency
conditions and under non-stressful conditions, and showed that a higher number
of collisions occurred under high-stress conditions, and a majority of partici-
pants moved as a herd in the same direction [10]. VR evacuation experiments
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Fig. 1. Room1 (top) and Room 2 (bottom) (Color figure online)

have shown promise in investigations of cognitive factors in evacuations; how-
ever, to the best of our knowledge, as yet no prior studies have been conducted
using VR concerning the visual fields of evacuees.

Li et al. (2019) introduced a visibility function and investigated the effects
of several factors on evacuation efficiency, such as psychological tension, vision
radius, and pedestrian density. They found that vision radius and initial density
affected evacuation time, and that vision radius decreased with increasing evac-
uation time [5]. The authors did not restrict the angular width of the evacuees’
visual fields, assuming instead that they could acquire information within 360◦.
Similar assumptions have been adopted in numerous studies [16–18]. Some stud-
ies have been conducted employing visual field widths other than 360◦, such as
60◦ [8] and 90◦ [11]; however, their reasons for choosing these assumptions were
not clearly stated.

3 Problem

Three hundred simulated agents (ai ∈ A) were randomly distributed in a square
room with XY coordinates x ∈ [−65, 65] and y ∈ [−20, 20], and agents were
required to evacuate through either of two exits B = {b+, b−}. The coordinates
of an exit b are denoted by (bx, by). We investigated two layouts according to
the location of the exits. Room 1 had two exits on the north (blue) and south
(green) sides of the western edge of the room (Fig. 1 – top). Agents were initially
allocated to xi ∈ [−32, 65] and faced west. Room 2 had two exits on the east
(blue) and west (green) edges of the room (Fig. 1 – bottom). Agents were initially
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Algorithm 1. Agent i’s action (Xi = 0)
1: M ← {aj ∈ Vi|ηj = moving}; N ← {aj ∈ Vi|ηj = not moving}
2: if |M | > |N | then
3: if ∃m∀n|{aj ∈ Vi|πj = βm}| ≥ |{ak ∈ Vi|πk = βn}| then πi ← βm end if
4: if πi = undecided then
5: Δx(t) ← Δx(t − 1); Δy(t) ← Δy(t − 1)
6: else
7: b ← πi; Gx ← bx; Gy ← by

8: Solve P with respect to Δx(t) and Δy(t) for given Gx and Gy

9: end if
10: ηi ← moving; Give (Δx(t), Δy(t)) to the SFM to obtain the new position
11: else
12: ηi ← not moving
13: end if

allocated to xi ∈ [−48, 48] and randomly faced either east or west. Symbols A©
to Y© in Fig. 1 indicate candidate positions for a visual sign employed in visual
sign simulations (VSS), as discussed in Sect. 5.2.

An agent was required to choose one of two exits to evacuate the room. One
was the correct exit (b+), leading to safe evacuation, and the other (b−) lead
to an improper route, considered an evacuation failure. Thus, the agents had
to select the correct exit to evacuate successfully. In our examples, the correct
exits were the north and east exit for Rooms 1 and 2, respectively (both exits
are indicated in blue in Fig. 1).

A visual sign κ was present (a small blue cross in Fig. 1), designating the
correct exit from the room. An agent could identify the correct exit via this visual
sign if it was within their visual field (Vi ⊂ {A∪{κ}}). However, it was uncertain
whether an agent with the correct information could always choose the correct
exit, because they were also subject to herd behavior biases that could lead them
to the incorrect exit. Two additional variables specified the current statuses of
each agent, including a movement status ηi(t) ∈ {moving, not moving}, and a
current decision πi(t) ∈ {B ∪ {undecided}}.

Using these problems, we investigated two crucial factors affecting the effi-
ciency of crowd evacuations, including varying positions of a visual sign and
varying widths of the FFV of agents. The impacts of these factors were evalu-
ated in terms of the number of agents that chose the correct exit.

4 Agent Model

The agents in our simulations incorporated an evacuation decision model (EDM)
[12,13] and a social force model (SFM) [4]. The EDM represented the herd
behavior of agents during evacuations, and SFM represented physical factors
affecting evacuations.

In the EDM, an agent ai has a mental state Xi ∈ {0, 1}, making decisions
intentionally when Xi = 1 and unintentionally by following the behaviors of
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Algorithm 2. Agent i’s action (Xi = 1)
1: if κ ∈ Vi then
2: πi ← b+

3: else if πi = undecided then
4: Randomly select b ∈ B and πi ← b
5: end if
6: if πi = undecided then
7: Δx(t) ← Δx(t − 1); Δy(t) ← Δy(t − 1)
8: else
9: b ← πi; Gx ← bx; Gy ← by

10: Solve P with respect to Δx(t) and Δy(t) for given Gx and Gy

11: end if
12: ηi ← moving; Give (Δx(t), Δy(t)) to the SFM to obtain the new position

others in the agent’s vicinity when Xi = 0. The transition probabilities between
Xi = 0 and Xi = 1 are P (Xi = 0 → Xi = 1) = s2i (s

2
i + θ2i )−1 and P (Xi =

1 → Xi = 0) = ε, where si denotes a local estimation of the stimulus in the
environment associated with ai, θi denotes a response threshold, and ε denotes
a constant probability common to all agents. The local estimation of stimulus in
the environment is si(t+1) = max{si(t)+δ−α(1−R)F, 0}, where δ denotes an
increase in the stimulus per unit time and α a scale factor of the stimulus. The
variable R denotes the risk-perception function R(r) of the objective risk r in the
environment. We let R(r) = (1 + e−g(r−μi))−1, where g denotes the activation
gain affecting the shape of a sigmoid function, and μi denotes agent i’s risk
perception, representing individuals’ varying sensitivities to risk. The term F
denotes an evacuation progress function indicating a local observation of the total
evacuation progress from the viewpoint of agent i. We let F (n) = 1−n/Nmax (if
n < Nmax) or 0 (otherwise), where n denotes the number of agents in a vicinity
Vi and Nmax the maximum possible number of agents in a given vicinity. The
agents estimate the total progress of the evacuation using n/Nmax, which is the
population density of their vicinities.

In this simulation, we assumed the FFV of an agent as their vicinity. Thus,
the range associated with the FFV of ai (Vi) could affect (1) the estimation of
the evacuation progress F , (2) agents moving in herd behavior patterns, and (3)
the visual field within which an agent can recognize the visual sign κ.

Agent i executes Algorithm 1 if their mental state is Xi = 0 and Algorithm 2 if
Xi = 1. Algorithm 1 represents herd behavior such that an agent selects the exit
chosen by the greatest number of agents in their vicinity. Algorithm2 represents
intentional behavior pattern in which an agent chooses the designated exit if
the sign is within their visual field or randomly selects an exit otherwise. A
vector (Δx(t),Δy(t)), representing the difference between the current location
and the location of an agent’s next step is calculated by solving Problem P:
min (x(t)+Δx(t)−Gx)2+(y(t)+Δy(t)−Gy)2, subject to Δx(t)2+Δy(t)2 = 1.0.

To calculate the new coordinates of an agent, we considered physical fac-
tors in the environment. Based on the desired vector (Δx(t),Δy(t)) (line 10 in
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Fig. 2. Baseline histogram for Room1
(Color figure online)

Fig. 3. Baseline histogram for Room2
(Color figure online)

Fig. 4. VSS histogram for Room1
(Color figure online)

Fig. 5. VSS histogram for Room2
(Color figure online)

Algorithm 1, and Line 12 in Algorithm2), the SFM [4] was used to process the
calculation. The parameter values used in the experiments were ε = 0.5, δ = 1.0,
α = 0.5, Nmax = 10, g = 1.0, d = 5, Δr = 0.5, and θi, μi ∼ U(0, 100).

5 Experiment

We conducted experiments to explore efficient evacuation protocols through the
simulation problem presented in Sect. 3. The problem aimed to maximize the
number of agents selecting the correct exit (O) by varying the position of the
visual sign (κ). The mean of the objective values Ō was adopted as the evaluation
value for each sample position.

The FFV (Vi) of ai was assumed to be a fan shape with a radius of d and
an angle of ω toward each agent’s heading direction. In this experiment, we
investigated two types of Vi, including Large (V L) and Tunnel (V T ). The values
of d and ω for V L and V T were 10 120◦ and 10 20◦, respectively.

5.1 Baseline

Prior to the experiment, we conducted baseline simulations (BS) without using
a visual sign. Figure 2 depicts the histograms of 500 BSs with V L and V T for
Room1 and Fig. 3 for Room2. The red dashed lines show the mean number of
agents selecting the north exit (Ō). Agents simply selected one of the two exits
randomly in the BS; thus, the theoretical value of Ō was 150. Samples were
distributed around Ō; however, variances differed in each histogram. Samples
far from Ō indicate an occurrence of exit choice pattern symmetry breaking
caused by herd behaviors.

In comparison with Fig. 2 and 3, we may observe from the data shown that
Room1 had larger variances than Room2. At the beginning of the simulations,
all the agents flowed together in the same direction in Room1, and the flow
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Large V L

Tunnel V T

Fig. 6. Kernel density of Room1 for V L

(top) and V T (bottom). (Color figure
online)

Large V L

Tunnel V T

Fig. 7. Kernel density of Room2 for V L

(top) and V T (bottom). (Color figure
online)

subsequently split into two directions, whereas, in Room2, agents formed two
flows in opposite directions. The results of BS are summarized in the row labeled
Base in Table 2 in the appendix.

We also investigated the impact of evacuation information by providing infor-
mation about the correct exit to a portion of the agents. In this setting, informed
agents always selected the correct exit whenever X = 1. The ratio of informed
agents and the resulting Ō values are summarized in Table 1 and presented in
Fig. 12 and 13 for Room1 and Room2.

Table 1. Ratio of informed agents and Ō

Ratio (%) 10 20 30 40 50 60 70 80 90

Room1 V L 197.86 239.12 264.56 282.12 288.66 294.23 296.40 298.26 299.24

V T 199.56 230.16 250.91 265.69 274.70 282.75 288.27 292.56 296.35

Room2 V L 201.32 243.30 268.41 282.33 287.20 291.58 294.38 297.04 298.62

V T 190.72 217.92 240.91 259.28 270.18 279.57 286.15 291.40 295.84

5.2 Visual Sign Simulation

We conducted VSS using one visual sign κ for Room1 and Room2. Five hundred
positions of κ were randomly generated over x ∈ [−65, 65] and y ∈ [−25, 25]. To
estimate the value of Ō, 10 simulations for each position were conducted.

Figure 4 shows histograms of VSS results for Room1 with V L and V T ; the
red dashed lines show the values of Ō. Figure 5 shows the same information for
Room2. Comparing the histograms from VSS and BS, we note that the presence
of a single visual sign reduced variances of the results significantly. In contrast,
as the mean increased in VSS, the differences were negligible, implying that the
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Fig. 8. Histogram of O for A© to Y© for
Room1 with V L. (Color figure online)

Fig. 9. Histogram of O for A© to Y© for
Room1 with V T . (Color figure online)

effects were sensitive to the position of κ. The results of these simulations are
summarized in the row labeled Rand in Table 2 in the appendix.

Figure 6 depicts heatmaps of the Kernel density of O in Room1 for V L and
V T , from top to bottom, respectively. The Kernel density was calculated as
Ô = max{0, Ō − 150}. The north exit, denoted by κ, is presented in blue,
and the south exit in green. Light-colored regions represent positions of κ with
high Ō values, indicating efficient evacuation. The same applies to Fig. 7, which
belongs to Room2.

Heatmaps in Fig. 6 and 7 illustrate that the value of O changed significantly
depending on location; the results were sensitive to changes in the positions of
κ. If the position of κ was carefully adjusted, κ was able to guide numerous
evacuees to the correct exit. However, the effect of κ could be negligible if it was
improperly positioned in ineffective locations. In all the cases, the most effective
position of κ was in front of the exit not designated by κ (green exits in Fig. 6
and 7). The efficient range of κ positions was not broad, especially in V T .

We also conducted VSS with κ positions at A© to Y© , as shown in in Fig. 1.
Simulations were conducted 250 times for each position with V L and V T . His-
tograms of the results are presented in Fig. 8 and 9 for Room1 and in Fig. 10
and 11 for Room2; the means and standard deviations of the results are summa-
rized in the columns labeled μ and δ in Table 2 in the Appendix. We analyzed
significant differences in Ō between the results of VSS and BS using Welch’s
T-test. The P values of the t-test are also summarized in the columns labeled p
in Table 2. P values with significant differences (P < 0.05) are indicated in italic
letters in Table 2, and in blue color in Fig. 8, 9, 10 and 11. The darker the blue,
the larger the mean value Ō. Note that histograms in black show insignificant
results in Fig. 8, 9, 10 and 11.

We also evaluated the results of VSS in comparison with simulations with
informed agents (Table 1). Results are presented in Fig. 12 and 13 for Room1
and Room2, respectively. The x-axis shows the ratio (%) of informed agents,
and the y-axis shows Ō values. The results with V L are shown in blue, and
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Fig. 10. Histogram of O for A© to Y© for
Room2 with V L. (Color figure online)

Fig. 11. Histogram of O for A© to Y© for
Room2 with V T . (Color figure online)

V T in red. Positions with Ō > 200 in VSS are indicated on the left (V T ) and
right (V L) by corresponding letters. For example, the maximum value of Ō with
V L in Room1 was 293.6 (at U© ), which was estimated to be equivalent to the
result of conditions where 58.9 % of agents were informed (the column labeled
% in Table 2). The position U© also reached a maximum Ō value (283.8) in the
simulation with V T , equivalent to the results with 61.8 % of agents informed.
This value is almost equal to that with V L (58.9 %). However, except for U© ,
these values in V T (the column labeled % in Table 2) are significantly smaller
than those in V L. This implies that the impacts of κ were almost equivalent
in V L and V T if the position was carefully selected. Otherwise, the effect of κ
significantly dropped in V T . The same applies to Room2; however, the values in
the column labeled % were smaller than those in Room1.

Fig. 12. Ō values for ratio of informed
agents and κ positions for Room1.
(Color figure online)

Fig. 13. Ō values for ratio of informed
agents and κ positions for Room2.
(Color figure online)
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6 Discussion and Conclusion

In this study, we have assumed that excessive mental stresses or cognitive
demands in evacuation situations limit human cognitive resources, leading to a
narrowed visual field, which can be considered a reasonable assumption regard-
ing tunnel vision under evacuation situations [6,7]. V L had an area six times
larger than V T , implying significant impacts of both herd behaviors and visual
sign recognition. While the broad area of V L was efficient for visual sign recog-
nition, it also strengthened the effects of herd behavior, decreasing the entropy
in exit choice decisions (large standard deviations of V L in Table 2), leading to
an increase in incorrect exit selections. Compared with V L, tunnel vision V T

decreased the mean number of evacuees who chose the correct exit in most posi-
tions from A© to Y© ; the standard deviations also decreased in most positions.
There were some cases where all evacuees chose the incorrect exit in V L; these
were rare in V T . Because a large variance renders control difficult in general, this
variance reduction in tunnel vision may easily control the evacuee behavior dis-
tribution. For example, in exploring an optimal position of visual signs through
black-box optimization, large variances in V L make estimations of mean values
in each candidate point difficult, requiring many attempts in a trial-and-error
method. Reduction in variances in V T may lead to a decrease in the number of
iterations required for optimization. However, this does not immediately mean
that efficient positions for visual evacuation signs may be easily obtained.

VSS experiments in Room1 and Room2 showed that the results of visual
sign positionings depended on both the FFV of evacuees and the exit layout in
the room to be evacuated. Our experience with VSS implies that controlling the
flow of evacuees is a key factor, but we expect it to be challenging in general.
Assigning a visual sign at U© in Room1 produced surprisingly good results,
such as 293.6 and 283.8 for V L and V T , respectively. This is a result of using
just one visual sign; increasing these values by introducing more signs may be
difficult. One factor accounting for this good result is that one of the evacuees’
movement directions within the crowd flow tend to connect on this point, which
could affect many other evacuees. However, this value dropped significantly with
slight changes in the position of the sign, especially in the case of V T . Moreover,
some positions had insignificant effects (p ≥ 0.05), meaning they showed no dif-
ference to the baseline. Our experiments in this study reveal the extremely high
sensitivity of the tunnel vision effect to visual sign location optimization. This
finding implies that tunnel vision effects may be expected to present severe diffi-
culties and significant design challenges in terms of optimizing visual evacuation
sign positions within buildings.

In this study, we concentrated on maximizing the number of agents choosing
the correct exit, ignoring another crucial objective, that of minimizing evacua-
tion time. The evacuation time in VSS, baseline, and simulations with informed
agents is summarized in Table 3 The optimum positions in VSS ( U© and k© for
Room1 and Room2) resulted in longer evacuation times because agents moved
to the incorrect exit first and changed their headings to the correct exit later.
This pattern of movement may be considered unnecessary and unpreferable in
evacuations; however, these issues are left for future work.
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Appendix

Table 2. Columns labeled μ and δ denote mean and standard deviations of Ō. Columns
labeled p denote p values of T test with BS. Columns labeled % denote the ratio of
informed agents with equivalent impact to the visual sign positioning at the position
corresponding to the row name.

Room1 Room2

Large(V L) Tunnel(V T ) Large(V L) Tunnel(V T )

μ δ p % μ δ p % μ δ p % μ δ p %

Base 148.0 50.4 – – 145.3 103.4 – – 149.6 33.5 – – 146.5 86.2 – –

Rand 161.1 24.1 – – 175.1 50.2 – – 160.0 16.8 – – 173.0 33.6 – –

A 152.7 102.1 0.45 0.6 143.9 50.1 0.30 0.0 152.5 91.6 0.52 0.5 146.3 35.1 0.36 0.0

B 154.8 106.7 0.31 1.0 152.5 49.7 0.18 0.5 161.0 90.0 0.04 2.2 153.1 32.4 0.07 0.8

C 166.3 99.7 0.00 3.4 151.3 51.3 0.33 0.3 149.8 84.0 0.83 0.0 149.2 33.4 0.86 0.0

D 167.6 98.6 0.00 3.7 146.9 49.5 0.84 0.0 168.1 87.3 0.00 3.5 152.1 32.5 0.16 0.5

E 164.7 98.3 0.01 3.1 154.0 51.2 0.08 0.8 156.3 81.9 0.15 1.2 153.4 33.8 0.06 0.8

F 154.3 102.3 0.32 0.9 149.2 53.7 0.69 0.0 192.8 71.9 0.00 8.3 160.5 36.0 0.00 2.6

G 177.8 95.7 0.00 5.8 151.9 48.2 0.23 0.4 205.1 66.6 0.00 10.9 167.1 34.1 0.00 4.2

H 199.4 85.6 0.00 10.4 154.5 49.2 0.05 0.9 202.7 65.6 0.00 10.3 165.2 34.7 0.00 3.7

I 194.0 84.4 0.00 9.2 160.9 48.4 0.00 2.2 236.6 35.5 0.00 18.4 176.8 29.6 0.00 6.6

J 187.8 88.8 0.00 7.9 160.6 47.1 0.00 2.2 207.0 60.4 0.00 11.4 169.9 29.6 0.00 4.9

K 164.5 100.6 0.01 3.0 151.8 50.5 0.25 0.4 275.7 13.6 0.00 35.3 219.4 16.9 0.00 20.6

L 193.0 91.7 0.00 9.0 160.6 48.4 0.00 2.1 262.0 21.3 0.00 27.5 191.6 24.0 0.00 10.3

M 234.6 70.2 0.00 18.9 174.3 46.3 0.00 4.9 248.8 28.6 0.00 22.2 179.6 27.4 0.00 7.3

N 223.5 72.7 0.00 16.2 170.5 46.5 0.00 4.1 204.3 60.1 0.00 10.7 170.5 32.4 0.00 5.1

O 206.3 75.2 0.00 12.1 172.1 45.8 0.00 4.5 205.1 43.6 0.00 16.2 167.9 30.4 0.00 4.4

P 201.2 68.1 0.00 10.8 154.6 47.1 0.04 0.9 186.1 70.6 0.00 7.0 167.3 35.7 0.00 4.3

Q 265.0 37.8 0.00 30.2 170.2 41.3 0.00 4.1 205.1 66.6 0.00 10.9 167.1 34.1 0.00 4.2

R 276.5 29.2 0.00 36.8 182.4 39.9 0.00 6.5 208.1 62.7 0.00 11.6 171.0 33.8 0.00 5.2

S 252.4 52.4 0.00 25.2 180.0 34.6 0.00 6.1 236.6 35.5 0.00 18.4 176.8 29.6 0.00 6.6

T 211.4 84.9 0.00 13.3 178.8 40.7 0.00 5.8 198.6 63.7 0.00 9.5 169.3 32.6 0.00 4.7

U 293.6 5.2 0.00 58.9 283.8 6.1 0.00 61.8 151.4 88.3 0.64 0.3 150.7 33.7 0.43 0.2

V 290.6 17.3 0.00 53.5 257.2 32.5 0.00 34.2 154.8 89.7 0.29 0.9 153.8 33.7 0.05 0.9

W 265.7 55.1 0.00 30.6 214.2 61.2 0.00 14.8 156.9 87.5 0.15 1.3 150.8 33.0 0.39 0.2

X 205.6 106.5 0.00 11.9 192.4 60.3 0.00 8.6 166.5 86.0 0.00 3.2 154.5 33.1 0.02 1.1

Y 176.0 112.9 0.00 5.4 175.5 63.2 0.00 5.1 166.6 83.2 0.00 3.2 152.1 32.5 0.17 0.5

Table 3. Evacuation time of VSS ( U© and K© for Room1 and Room2), baseline, and
100% informed agent simulation. Means and standard deviations are provided in the
columns labeled μ and δ.

(V T ) (V L)

VSS Baseline 100% VSS Baseline 100%

μ δ μ δ μ δ μ δ μ δ μ δ

Room1 193.14 10.48 168.93 9.88 170.56 10.20 148.73 8.68 143.27 4.88 146.13 3.29

Room2 232.80 19.95 169.23 12.49 176.10 8.21 196.94 32.91 147.14 19.04 167.91 9.80
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