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Abstract. Multimodal image fusion combines the complementary infor-
mation of multimodality images into a single image that preserves the
information of all the source images. This paper proposes a multimodal
image fusion method situated on image enhancement, edge detection,
multiscale sliding window, and image matting to obtain the detailed
region information of the input images. In the proposed system, firstly
the multimodality input images are rectified via a contrast enhance-
ment method through which the intensity distribution is refined for clear
vision. The spatial gradient edge detection method is utilized for sepa-
rating the edge information from the contrast-enhanced images. These
edges are then used by a multiscale sliding window method to provide
global and local activity level maps. These activity maps further generate
trimap and decision maps. Finally, by employing the improved decision
maps and fusion rule the fused image is acquired.

Keywords: Multimodal medical image · Image fusion · Multiscaling ·
Image matting

1 Introduction

Multimodality image fusion combines important information from various imag-
ing modalities to provide an improved fused image. The obtained fused image is
highly informative and is very dedicated to further processing for disease diag-
nosis and remedy [1,2]. Multimodal image fusion techniques have an extensive
variety of applications for their improved and precise illustration of informa-
tive outcomes [3,5,6]. Diversified medical modalities i.e., CT and MRI that have
allowed radiologists to analyze the important body patterns and parts positioned
in the internal human body for reports generating and clinical analysis [7–9].
Therefore, multimodal images of various modalities are needed to be merged
to produce a single image that can allow functional information. To obtain the
fused image with significant details has drawn researchers attention to multi-
modal fusion of medical images [4,10].
c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12855, pp. 57–68, 2021.
https://doi.org/10.1007/978-3-030-87897-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87897-9_6&domain=pdf
http://orcid.org/0000-0002-1775-2589
http://orcid.org/0000-0001-9990-1084
http://orcid.org/0000-0001-9133-4388
http://orcid.org/0000-0002-9073-5347
https://doi.org/10.1007/978-3-030-87897-9_6


58 S. Maqsood et al.

Image fusion normally has two core divisions, one is the spatial domain the
other is the transform domain [11]. The spatial domain technique produces the
fused image by taking pixels/sections/blocks of images deprived of alteration
[12]. Transform domain techniques merge the complementary transform coef-
ficients and apply an inverse transformation to form the image fusion. Many
research present also machine learning models [13].

The multiscale transformation fusion method has great attention in medical
image fusion. In transform domain-based technique, variational adaptive PDE
[14], contourlet transform [15], discrete wavelet transform [16], non-subsampled
contourlet transform [17], curvelet transform [18] and sparse representation [11]
methods have been employed in multimodal image fusion. In the current inter-
vals, numerous image fusion approaches have been presented i.e., multiscale and
optimization-based image fusion. Multiscale approaches give detailed images rep-
resentation, these techniques well preserve the details of the edge [2]. Multiscale
transformation and sparse representation methods have obtained a significant
interest in the transform domain and work positively in the analysis of medical
images [19]. However, these methods exhibit several limitations, i.e., undesirable
side effects such as reduced contrast and high spatial distortion, the appearance
of artifacts in the fused images.

This paper proposes a multimodal image fusion approach using contrast
enhancement and edge detection method to extract the edges from the input
images. A multiscale sliding window technique is employed for identifying the
global and local intensity alterations to produce the initial activity level maps.
These various activity level maps then create a trimap. An improved image mat-
ting method is employed for creating the final decision maps. Finally, by using
the enrich decision maps and fusion rule the fused image is formed.

The remaining paper is structured as follows. Section 2 explains the detailed
method of the proposed framework. Section 3 presents the fusion metrics. The
experiment results and discussion are presented in Sect. 4 and finally conclusion
is given in Sect. 5.

2 The Proposed Multiscaling Image Matting (MSIM)
Technique

Let, Ii is the source image with dimensions of R × S, where r = 1, 2, 3, . . . , R,
s = 1, 2, 3, . . . , S and i ∈ [1, 2] shows the CT and MR images, respectively. The
proposed MSIM fusion method is detailed in Algorithm 1.
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Algorithm 1. Proposed multimodal image fusion framework
Input Image: Ii, i ∈ [1, 2].
Output Image: Fused Image IF .
begin
Improve contrast, Ii

contrast enhancement−−−−−−−−−−−−−−→ Íi.
Compute edges, Bp and Bq

edge maps−−−−−−→ Bi.
for k = 9, l = 9 do

Compute activity maps, w, Bi
9 × 9−−−→ Ǵi.

Compute smooth activity maps, Ǵi
sum filter−−−−−−→ Gi.

Compute score maps, Gi −→ ξ1.
end for
for k = 27, l = 27 do

Compute activity maps, w, Bi
27 × 27−−−−→ H́i.

Compute smooth activity maps, H́i
sum filter−−−−−−→ Hi.

Compute score maps, Hi −→ ξ2.
end for
Compute focus maps, ξ1,2

AND−−−→ D1 and D2.

Generate trimap, D1,2
trimap−−−−→ T .

Create alpha matte, T , Ii
matting−−−−−→ α.

Obtain fused image, IF = α × Ii.
end

2.1 Preprocessing

Contrast enhancement is the most extensive method to improve the images
having low contrast. No-reference image quality assessment (NR-IQA) [20], is
employed to refine the contrast and conserve the mean brightness of the input
images Ii.

Íi
NR-IQA [20]←−−−−−−−− Ii. (1)

Ii is employed to the input images to get the contrast enhanced images Íi.
Image enhancement improved the edges of both source images. Figure 1 illus-
trates the improvement in edge information. Figure 1 (a, b) shows the source
images of CT and MR images, respectively, and their map edges are displayed
in Fig. 1 (c, d). Contrast enhancements of CT and MR images are illustrated in
(Fig. 1 (e, f)) and their corresponding gradient maps are displayed in Fig. 1 (g,
h). It is worth mentioning that after the contrast enhancement approach, there
is a prominent improvement in the edges of the source images.
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Fig. 1. The “CT and MRI” input images for edge detection after image enhancement.
(a, b) Input images, (c, d) edges of (a, b) achieved by sobel operator [21], (e, f) contrast
enhancement using No-reference image quality assessment (NR-IQA) [20], (g, h) edges
of (e, f) attained by sobel operator.

2.2 Feature Extraction

The Sobel Operator [21] is used to achieve the edges of an image by calculating
an approximation of an image gradient. At each location the result is either the
norm of this vector or corresponding gradient vector.

Firstly, the gradient is obtained in X direction by convolving the image with
the first kernel from left to right given in Eq. (2) as,

Bp =

⎡
⎣

1 0 −1
2 0 −2
1 0 −1

⎤
⎦ . (2)

Similarly, the image is convoluted with the first kernel from top to bottom
and the gradient is obtained in Y direction given in Eq. (3) as,

Bq =

⎡
⎣

1 2 1
0 0 0

−1 −2 −1

⎤
⎦ . (3)

At this point the vectors of the gradient of image are obtained. The magni-
tude of each vector Bi is calculated by using Eq. (4) to obtain the edges.

Bi =
√

(Bp)2 + (Bq)2. (4)
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2.3 Multiscaling

A multiscale sliding window method is employed to obtain various salient fea-
tures from activity maps Bi. The windows which are created for this experiment
are 9 × 9 and 27 × 27. Firstly, by applying the spatial domain filters the activity
maps are classified into a set of 9 × 9 components, as given Eq. (5) and Eq. (6):

Ǵi(r, s) =
k∑

a=−k

l∑
b=−l

w(a, b)Bi(x + a, y + b). (5)

Gi(u, v) =
∑

(r,s)εΩ

Ǵi(r, s). (6)

Each set activity is preserved in the map scores form. Moreover, the intensity
values calculated in each block (G1(u, v) and G2(u, v)) is deliberated to improve
the score maps ξ1a and ξ1b by compared with one another as in Eq. (7) and Eq.
(8).

ξ1a(r, s) =

{
1, if G1(u, v) > G2(u, v)
0, Otherwise

(7)

ξ1b (r, s) = 1 − ξ1a(r, s). (8)

Similarly, the activity map for 27 × 27 block of pixels is given as in Eq. (9)
and Eq. (10).

H́i(r, s) =
k×3∑

a=−(k×3)

l×3∑
b=−(l×3)

w(a, b)Bi(x + a, y + b). (9)

Hi(u, v) =
∑

(r,s) ε Ω

H́i(r, s). (10)

Each block size activity is also preserved in the map scores form. The intensity
levels calculated in each 27 × 27 block (H1(u, v) and H2(u, v)) is deliberated to
improve the score maps ξ2a and ξ2b by compared with one another as in Eq. (11)
and Eq. (12).

ξ2a(r, s) =

{
1, if H1(u, v) > H2(u, v)
0, Otherwise

(11)

ξ2b (r, s) = 1 − ξ2a(r, s). (12)
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The different sliding windows maps provide different features information
which refine the maps quality. The information from the input images at various
scales are selected by multiscale sliding windows technique and provide disparate
information for image fusion i.e., small window size extracts local characteristics
and large window size focuses on global intensity variations of an image. The
multiscale information of all maps (ξ1a and ξ2a) and (ξ1b and ξ2b ) are fused together
to form a single focus map, conveying the features of both scales as given in
Eq. (13).

Di(r, s)
AND←−−− ξi

b(r, s), ξ
i
b(r, s). (13)

After that the trimap is generated. It roughly divides the input images
into following regions i.e., definite focused, definite defocused and the unknown
regions. The trimap T is processed by using D1, D2 as in Eq. (14).

T
Trimap←−−−− Di. (14)

The trimap (T ), source images (I1, I2) are combined to construct an alpha
matte (α) by using the closed-form matting technique [22], as in Eq. (15).

α
Alpha Matte←−−−−−−−− T, Ii. (15)

where α is a value between [0, 1], which means that these pixels are mixed
by the focused and defocused pixels. α(r, s) = 1 or 0 means that the point (r, s)
of the source image Ai is in the focus or defocus, respectively. Finally, the fused
image is formed by calculating the weighted sum of the source image with alpha
matte performed as a weight map as in Eq. (16).

IF (r, s) =
∑

n=1:i

α(r, s) × Ii(r, s). (16)

3 Objective Evaluation Metrics

To assess the superiority and the effectiveness of the proposed MSIM system
with others image fusion algorithms, five most commonly metrics are used for
quantitative analysis, i.e., Mutual Information (MI) [23], Entropy (EN) [24],
Feature Mutual Information (FMI) [25], Spatial Structural Similarity (SSS) [26],
and Visual Information Fidelity (VIF) [27]. For these metrics, the bold value
exhibits the higher result. These metrics are defined as follows.

3.1 Mutual Information (MI)

MI [23] calculates the mutual information between two discrete variables and is
defined as,
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MI =
n∑

x=1

n∑
y=1

Hij(x, y)log2
Hij(x, y)

Hi(x)Hj(y)
, (17)

where Hij (x, y) shows the combined probability density distribution of the
grayscale image in i and j. Hi(x) and Hj(y) shows the probability density dis-
tribution of the grayscale image in i and j, respectively. It calculates the sum
of common information among source images and the fused image. Highest MI
value reveals that the fused image has more information than the source images.

3.2 Entropy (EN)

The EN [24] is expressed as,

EN(x) = −
N−1∑
x=0

Hi(x)log2Hi(x), (18)

where N is the number of gray level, which is fixed to 256 in this test, and
Hi(x) is the normalized histogram of fused image i.

3.3 Feature Mutual Information (FMI)

FMI [25] is determined as,

FMIi,j
y =

1
N

N∑
x=1

Ix(y, i)
Sx(y)Sx(i)

+
Ix(y, j)

Sx(y) + Sx(j)
, (19)

where N shows sliding windows number, Sx(y) is the entropy of nth window
in an image y, Ix(y, i) is the regional common information between nth window
of image y and i. Similarly, Ix(y, j) is the regional mutual information between
the nth window of image y and j. FMIi,j

y computes the source images edge
information. Greater value of FMIi,j

y shows the better fused image quality.

3.4 Spatial Structural Similarity (SSS) QAB/F

QAB/F SSS [26] is presented by Xydeas and Petrovic. This metric decides the
quantity of transmitted information of edges from input images into the fused
image. QAB/F for the two source images can be stated as follow:

QAB/F =
∑m

l=1

∑n
w=1(Q

AB(p, q)WA(p, q) + QBF (p, q)WB(p, q))∑m
l=1

∑n
w=1(WA(p, q) + WB(p, q))

, (20)

where QAB/F (p, q) denotes the information moves from source image A into
the fused image F for the pixel location (p, q) and WB(p, q)) is the weight for a
pixel location (p, q). The pixel with higher gradient value influences more to the
QAB/F than the lower gradient value. Thus WA(p, q) = [Grad(x, y)]T . Where T
is a constant.
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3.5 Visual Information Fidelity (VIF)

VIF [27] is developed on human visual system. VIF evaluates the performance
of fusion between the source image and the fused image by calculating the data
common among them. In most possibility, a standard source image is hard to
achieve. To estimate the fusion performance in this experiment an adapted model
of VIF, is determined between the source images and the fused result by aver-
aging the values of VIF.

4 Results and Discussion

4.1 Experimental Setup

In this section, the proposed image fusion approach is compared both subjec-
tively and objectively with three image fusion methods, i.e., Guided Filtering
based fusion (GFF) [28], Laplacian Pyramid (LP) [29] and Convolutional Neural
Network (CNN) [30]. All the aforementioned approaches are implemented based
upon the codes available by the authors. The medical image fusion datasets are
acquired from [31] and the dimensions of the source images standardized as 256
× 256 pixels. The experiments were performed on a laptop Intel(R) Core i7 2.59
GHz processor with 16 GB RAM using MATLAB R2020b. The proposed MSIM
method is analyzed by performing both qualitative and quantitative evaluation
processes.

Fig. 2. Source images “Med-1” and the fused images acquired by different fusion algo-
rithms. (a, b) Source images. (c)–(f) Fused images acquired using GFF [28], LP [29],
CNN [30] and proposed method respectively.

4.2 Fusion Results

Three sets of multimodal images are used in this experiment. Figures 2(a, b),
3(a, b), 4(a, b) displayed the source images and the fused results achieved by
GFF, LP, CNN, and the proposed method are displayed in Figs. 2(c)–(f), 3(c)–
(f), 4(c)–(f) respectively. The source CT image provides the information about
bone structures and hard tissues and MRI source image provides soft tissue
information. Figures 2(c), 3(c), 4(c) shows the results obtained by GFF, which
is unable to fully preserved the information in the fused image because of over
enhances the structural features and fail to identify salient brain structures. Fig-
ures 2(d), 3(d), 4(d) displayed the results acquired by LP. This approach also
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Fig. 3. Source images “Med-2” and the fused images acquired by different fusion algo-
rithms. (a, b) Source images. (c)–(f) Fused images acquired using GFF [28], LP [29],
CNN [30] and proposed method respectively.

Fig. 4. Source images “Med-3” and the fused images acquired by different fusion algo-
rithms. (a, b) Source images. (c)–(f) Fused images acquired using GFF [28], LP [29],
CNN [30] and proposed method respectively.

Table 1. The quantitative evaluation of different fusion algorithms. Bold values show
the highest result.

Images Fusion methods MI [23] EN [24] FMI [25] SSS [26] VIF [27]

Med-1 GFF [28] 3.4313 6.7971 0.9032 0.7849 0.4864
LP [29] 2.5508 6.2724 0.7412 0.6321 0.4141
CNN [30] 3.5248 6.7541 0.7712 0.7992 0.8991
Proposed MSIM 3.8554 6.9324 0.9539 0.8013 0.9342

Med-2 GFF [28] 3.8595 5.8459 0.8596 0.5919 0.4295
LP [29] 3.5908 5.6692 0.8568 0.6571 0.4352
CNN [30] 4.2014 7.8421 0.7458 0.6969 0.8015
Proposed MSIM 4.6387 8.0138 0.8759 0.7132 0.8583

Med-3 GFF [28] 3.4514 4.4081 0.9047 0.6470 0.4961
LP [29] 3.4733 4.6547 0.7690 0.6391 0.9255
CNN [30] 4.2540 5.1748 0.8421 0.7441 0.9408
Proposed MSIM 4.5982 5.7483 0.9641 0.7949 0.9822

failed to detect the structural details information in the fused image and suffers
from undesirable artifacts. Figures 2(e), 3(e), 4(e) shows the results obtained by
CNN, which provides slightly better results than the remaining methods, but still
shows the lack of sharpness and distorted regions. The results of the proposed
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method are displayed in Figs. 2(f), 3(f), 4(f) which provides high contrast, clear
information and fully preserved the details in the fused image. Table 1 illustrates
that the proposed MSIM method also exhibits superior performance quantita-
tively than the other algorithms. The top value of evaluation metrics shows in
the bold highlighted.

5 Conclusions

In this paper, a constructive multimodality image fusion approach is proposed
using the Sobel operator and sliding window method to detect the salient pixels
of each input image. The input images are firstly pre-processed using the no ref-
erence image quality assessment (NR-IQA) contrast enhancement method and
their gradients are computed using the Sobel operator. Afterward, the multiscale
sliding window method is proposed for the perfect creation of trimap. Then an
image matting method is employed to get the accurate region for the decision
maps, and the fused images. More importantly, the closed-form matting method
is adept to construct full use of the spatial connections between the nearby pixels
for weight estimation. The proposed method achieved the highest mutual infor-
mation, entropy, feature mutual information, spatial structural similarity, and
visual information fidelity of 4.638, 8.013, 0.964, 0.801, and 0.982 respectively.
Experimental results demonstrate that the proposed image fusion approach well
preserves the complementary information of various source images and achieves
superior fusion performance both subjectively and objectively when compared
with other image fusion algorithms.
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