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Abstract. As automated driving development progresses forward, novel
methods are required to handle the vastness of possible road situations
and to face end user’s high demands. Trying to solve the problem of
motion control involving decision making and trajectory planning it is
reasonable to take into consideration reinforcement learning as a viable
approach. In this paper, we present the promises reinforcement learning
can bring to an automated driving domain and the list of challenges
we encountered during our work. We address the issues related to the
environment definition, sample efficiency, safety and explainability.
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1 Introduction

Applying reinforcement learning (RL) methods to solve complex tasks is becom-
ing increasingly popular and progressing research constantly delivers new state-
of-the-art algorithms [15,23,30]. In some of these applications, RL-based solu-
tions exceed even the human performance [10]. However, the vast majority of the
considered problems were placed in the virtual domain, which usually takes the
form of a computer game or a simulation, while the progress in solving problems
in the real world domain is not that advanced. This immaturity is a concern for
the industry, where the application potential is significant.

One of the potential areas of reinforcement learning methods application is
behavior and trajectory planning of the automated vehicles. Due to the prob-
lem’s complexity, rules-based deterministic algorithms may not be sufficient to
achieve desirable system’s performance. Therefore, a need for data-driven meth-
ods emerges and reinforcement learning seems to be a promising approach.

As a research group involved in the development of automated vehicle tech-
nology, we present our motivation and problems behind the application of rein-
forcement learning to this area. In this paper, we refer to the publication [13],
c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12855, pp. 318–329, 2021.
https://doi.org/10.1007/978-3-030-87897-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87897-9_29&domain=pdf
http://orcid.org/0000-0001-9556-5845
http://orcid.org/0000-0002-7240-1271
http://orcid.org/0000-0001-7055-4947
http://orcid.org/0000-0002-5583-0197
https://doi.org/10.1007/978-3-030-87897-9_29


Promises and Challenges of RL Application in Motion Planning of AV 319

in which the authors outlined nine major problems of applying reinforcement
learning in a real world setting. We describe the problems we encountered and
investigated during the implementation of the behavior planning functionality
in a close to production ready system.

1.1 Our Work

In this section we present an architecture of our system involving reinforcement
learning agent in the place of behavior planning module of an automated driving
stack.

Motion Planning System. Because of the reasons described in more detail in
Sect. 3.4, we decided to create a hybrid system consisting both of reinforcement
learning and model-based algorithms. The motion planning system is fed by a
perception stack, which provides a representation of an ego car’s surroundings,
such as other road users and a road itself. The system consists of four main enti-
ties: the behavior planning module, the safety framework, the trajectory plan-
ning module and the control block. The architecture is presented in Fig. 1. In our
case, the behavior planning module, providing a car with a high-level description
of an intention, like a maneuver to execute or a speed recommendation, has a
form of an reinforcement learning agent. The returned behavior is then realized
by model-based methods responsible for trajectory planning and control, which
are under the supervision of the safety framework. The safety framework itself,
heavily based on the ideas presented in [31], along with an additional set of
deterministic rules based on traffic law, assures safety of the AI-based behavior
planning as well as the trajectory planning. The behavior planning module can
also be additionally supplied with signals from the mission planning module,
responsible for producing sub-goals necessary to follow the defined path.

Fig. 1. The motion planning architecture: the RL-based behavior planning module (in
red) and the model-based trajectory planning and control modules (in blue). (Color
figure online)

Reinforcement Learning Environment. To train a reinforcement learning agent
responsible for behavior planning we design a custom environment based on a
proprietary closed-loop simulation tool [6]. The environment consists of multiple
blocks, which we listed below.
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– Behavior decoding decodes an action (outputted from a policy neural net-
work) to a semantic value, like a maneuver to execute or a velocity set point
(see Sect. 3.3).

– Trajectory planning establishes a specific realization of a behavior and
returns a continuous trajectory to be followed by the agent.

– Control produces low-level control signals (e.g. throttle, braking, steering
wheel angle) to keep the car on its reference trajectory.

– Simulation delivers a closed-loop simulation of vehicle dynamics and road
users interactions.

– Perception simulation disturbs the perfect ground truth obtained from the
simulation using high-level sensor models (see Sect. 3.5).

– Observation encoding encodes the state of the environment to a form
easily interpretable by the policy network. The design of this transformation
is crucial for the policy to be able to generalize well in various situations (see
Sect. 3.3).

– Reward calculation defines a numerical reward signal for the agent,
designed to promote the agent for keeping a cruising velocity and reaching
predefined lane-based goals, while maximizing comfort and safety of passen-
gers (see Sect. 3.6).

By defining the environment in such way, we are able to control the current
challenge for the agent as well as experiment with different versions of each
module.

Training Setup. Having the environment defined, we utilize standard reinforce-
ment learning algorithms, such as DQN [23], PPO [30] or SAC [15] to train the
behavior planning agent. For better generalization and more efficient training,
these algorithms were scaled up to support a distributed setup. Our best per-
forming setup is a combination of PPO algorithm and multiple state-of-the-art
methods available in the literature. In [28] we presented our previous results
with DQN algorithm, along with the more detailed description of the environ-
ment definition, including the observation and action spaces and the reward
shaping mechanism (Fig. 2).

2 Promises

Using data-driven methods over other methods in behavior and trajectory plan-
ning modules brings several promises. The most obvious one is the transfer of the
responsibility for the design of driving policy rules and actions from the group
of human experts to the computer program. This design might be done based
on a large amount of data collected with the help of a realistic virtual simula-
tion. A good example might be Waymo, a self-driving company, which states
that their systems drive 20 million miles in a simulation each day [4]. Still, the
choice between supervised learning and reinforcement learning methods is an
open question.
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Fig. 2. The architecture of the behavior planning agent training setup.

Supervised learning methods, such as e.g. behavior cloning [33], might be
more interesting due to their higher stability of the training process, but they
require human interaction in the data collection process, thus making this pro-
cess significantly slower and more expensive [1]. Furthermore, when the trained
policy is found to be unsatisfactory, the data has to be collected again. In the
case of reinforcement learning, for some algorithms, the data can be reused by
recalculating the rewards only.

The more important difference, however, is with the trained policy itself.
With supervised learning, we are limited to a single policy demonstrated by
a driver. Moreover, it is unlikely that the driver’s policy is the optimal one.
This is due to the fact that it is usually hard to decide, which action is the
best decision at a given moment, and how this action will affect the future
states. This problem is known as the credit assignment problem, and many
reinforcement learning algorithms tackle this problem by default. Yet another
problem we observed is the difference between the perception system of a human
and an automated vehicle. The drivers’ decisions are affected by human factors
such as lack of attention, cognitive distraction [21,36] or aggressiveness level [22].
That and other not listed discrepancies in perception causes the distributional
shift between learning and evaluation domain of automated vehicle. Finally, an
exploration of corner cases (accidents, dangerous or unusual situations), even
when carried out in the virtual simulation, is more efficient with reinforcement
learning methods, as humans are willing to risk less, than computer programs.
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3 Challenges

3.1 Training Off-Line from the Fixed Logs of an External Behavior
Policy

Fixed logs from driving are valuable assets in the entire learning process. Such
logs can be used in a supervised manner to train an initial policy with behavior
cloning [33], as a part of imitation learning process [34,35] or as an additional
exploration guiding for policy optimization [20].

A good example of successful logs utilization is the work [11] where the
team from Waymo used 30 million samples of car’s trajectories to train a neural
network policy, which was responsible for generating a future trajectory for a
vehicle. As the authors admitted, the model was good enough to drive a vehicle
successfully, however it was not fully competitive with the deterministic motion
planning despite using a considerable amount of data.

Besides the amount of data, the samples should be also of sufficient quality.
Erroneous actions resulting from driver’s mistakes are misleading during train-
ing. Additionally, data should include states in which a reasonable driver will
never be situated. These states provide, however, valuable inputs to the learn-
ing process as they alleviate distributional shift between the learning and the
operating domains.

3.2 Learning on the Real System from Limited Samples

The process of developing functionalities, capable of operating in the real world,
based solely on simulation is burdened with the simulation to reality (sim-to-real)
gap issue. Therefore, a logical step to close this gap is to fine-tune the policy on
public roads. In this process, a most recent driving policy is used to interact with
the target environment, explore it and collect data for the next training iteration.
The relatively slow rate of data collection, thus the limited number of samples,
and willingness of data re-usage suggest utilization of off-policy methods, such
as DQN [23] or SAC [15], which latter’s efficiency in training the physical robots
was demonstrated in [16].

The complication which arises in such an approach is a risk resulting from
exploiting a deficient policy in a vulnerable environment. The application of
such a solution requires ensuring the safety of the environment influenced by the
agent. In our work, this approach is viable because the agent’s action is secured
by a deterministic trajectory planning and its safety module (discussed in Sect.
3.4).

In case of recognizing performance drops in some situations during evalua-
tion, the process enables counteracting them by involving more vehicles in those
problematic scenarios, which can be later used to improve the policy in those
cases.
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3.3 High-Dimensional Continuous State and Action Spaces

While designing state spaces for robotic applications it is reasonable to convert
raw sensor inputs to another, meaningful representation, e.g. camera images to
a set of detected objects or a lidar points cloud to a spatial map of surroundings.
That way we decrease the amount of black-box models in the motion planning
module, which significantly increases its explainability. Moreover, the specific
representation of the input data contributes to a better generalization of a neural
network and speeds up its training. We use this approach in our work, where we
represent the environment with the high-level properties of the ego vehicle (e.g.
orientation, velocity), the target vehicles, and the road model.

A reasonable action space for an automated vehicle motion planning module
must consist of at least one control signal for each of the two spatial dimensions:
longitudinal (velocity, acceleration, throttle, braking) and lateral (heading, steer-
ing angle). Another approach is to determine a set of waypoints, which describe
consecutive features of a trajectory: velocity and acceleration values sampled
along a reference path.

As mentioned in Sect. 1.1, we split the control decision component into two
modules: behavior planning and trajectory planning. The behavior planning
module is further combined with strategic and tactical planners. The former out-
puts one maneuver (e.g. follow lane, change lane left, prepare to change lane left)
from the list of the currently available maneuvers. The state of the list depends
on the state of the current situation on the road and is strictly controlled by
the safety framework. The latter produces a combination of additional guiding
signals for the trajectory planning module, such as a velocity set point or a
lane bias. The real values are discretized with a resolution found empirically,
having in mind the trade-off between the model complexity and the maneuvers’
flexibility.

3.4 Satisfying Safety Constraints

All components of a modern vehicle must meet strict safety requirements. Both
hardware and software are subject to validation accordingly to standards such as
ISO 26262 (Functional Safety) or ISO/PAS 21448 (Safety of the Intended Func-
tionality) and therefore are heavily tested before they reach an end customer.
With the advent of advanced systems, which take more and more responsibility
for control of a vehicle, safety considerations for highly automated vehicles is a
complex topic in itself.

Looking for the required performance with regards to safety it is reasonable
to refer to the human drivers. While car accidents are caused to over 1.3 million
deaths annually [27], a fatal accident rate of a single vehicle is relatively low,
reaching on average 1 fatality per 100 million miles in US [8]. Since statistics on
the road-related accidents are shaping expectations regarding maximum failure
rates of automated vehicles, a rarity of such events poses a great challenge to
companies developing such systems. Showing with reasonable confidence that a
system has a significantly lower failure rate in terms of fatal accidents through
end-to-end test drives would require billions of miles of test drives [19].
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A relative rarity and importance of severe accidents create a challenge not
only for testing and validation but also for the development of such systems.
Learning an end-to-end RL-based planning system to drive with reasonably low
severe collision rate requires modeling of reward function with trade-off between
efficiency and safety or using constrained RL [7]. However, to liberate the RL part
from the problem which could be formulated in a deterministic way, we decided
that the reinforcement learning system should not be formally responsible for
the safety aspects of driving.

Another observation may be made with respect to traffic regulations. Train-
ing an agent to be compliant with them with the use of a reward signal will
always end up in their approximations, which is unacceptable. Fortunately, it is
straightforward to design a model-based system obeying such rules by definition.

The points above suggest that end-to-end planning systems based on rein-
forcement learning present several serious issues. It seems that the desired sys-
tem should be rather a hybrid approach, composed of model-based and machine
learning modules. The interface between the reinforcement learning module and
the deterministic part of the system has to satisfy two contradicting objectives.
On the one hand, the interface has to be constrained enough to not put safety
requirements onto the reinforcement learning part. On the other, it has to be
open enough to benefit from data-driven methods in planning and assure a suf-
ficient level of policy transparency, allowing efficient and explainable learning.

An interesting approach intended for providing safety guarantees in path
planning systems with reinforcement learning elements was proposed in [31].
Authors formulate a set of safety rules that are used to derive deterministic
constraints for a path planning algorithm. The rules describe a safety envelope,
i.e. a constrained area of a state space, which guarantees the existence of collision-
free trajectories in all reasonable situations. The reasonable situations are the
ones in which road users follow traffic laws and formalized common-sense traffic
rules. Early detection of safety envelope violations, caused by a controlled agent,
allows to execute predefined emergency responses in time and avoid collisions.
Similar concepts were proposed also in [26] and [29].

The described approach can fulfill two major roles in the RL-based path
planning system: limiting the available action space and triggering execution of
emergency trajectories in unsafe situations (that may be caused by both ego’s
actions and other agents’ behaviors). The safety envelope provides transpar-
ent, testable safety constraints that protect an agent against performing unsafe
maneuvers and enforces proper responses when the constraints are violated.

This approach alone provides a certain level of protection against collisions,
but still, overall system performance in terms of avoiding unsafe situations can
be improved in a training process. Since emergency actions typically consist
of severe braking, which is sub-optimal in terms of passengers’ comfort and
driving efficiency, a properly trained agent will proactively avoid potentially
unsafe actions. An example of such behavior may be to switch a lane away from
a merge-in lane to avoid potentially unsafe situations involving slow vehicles
merging into highway traffic.
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Proactive safety behaviors emerging in an RL-based system may have partic-
ular significance in a context of a realistic sensor stack with limited performance.
Simulating typical sensors’ error patterns and occlusions in a training setup may
significantly decrease the impact of perception issues on overall system safety.
An agent trained in such environments may learn to avoid situations that are
correlated with hazardous perception errors, as well as to perform human-like
visibility-enhancement actions, such as biasing on its lane to unveil occluded
areas of the environment.

3.5 Partial Observability and Non-stationarity

In the automated driving domain, both partial observability and non-stationarity
are major issues significantly affecting the trained policy’s performance. They
are a result of different factors, from the physical world barriers to software and
hardware limitations. In this section, we summarize what type of problems we
observed during our research, what solutions we applied, or what solutions we
propose.

Occluded Objects. The first problem is occluded objects: other vehicles, pedestri-
ans, traffic signs and lights, lane markings, and other elements of infrastructure.
One possible general solution might be to involve V2V or V2X communication
[18] to exchange the information between the objects, even when they are not
visible to each other. Another option is to assume worst-case scenarios, as pro-
posed in [31] and discussed in Sect. 3.4, and act appropriately, but this might
lead to overly protective policies. We implemented this by injecting worst-case
object hypotheses on occlusion edges into perception results and allow agents to
learn avoiding potentially unsafe regions to minimize effects on driver’s comfort
or total efficiency.

Perception Issues. The second problem is the imperfection of a sensing stack. A
typically automated vehicle prototype is nowadays equipped with a combination
of multiple cameras, radars, and lidars. Each type of the sensors has its advan-
tages and disadvantages, thus the common approach is to fuse data from multiple
sources to obtain a high fidelity representation of the vehicle’s surroundings. In
practice, false positives (ghost objects), false negatives (missing objects), or sig-
nificant measurement uncertainties are still present in the fused representation.
To address these problems in simulation, sensor models can be introduced to
imitate the behavior of the real-world sensing suite. A lot of work has already
been done in the area of detailed sensor simulation [14,24]. However, due to the
detailed simulation, the proposed solutions are usually computationally expen-
sive, what significantly extends the simulation time, thus slow down the learning
process. To alleviate this issue, we propose the usage of simple, high-level sen-
sor models, which skip understanding the underlying physical principles of a
given sensor (e.g. how radar wave is reflected from an object and how it is later
tracked), and instead utilize statistical models for each common problem (ghost
objects, uncertainty, etc.; Fig. 3).
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(a) (b) (c)

Fig. 3. The high-level sensor models: a) a measurement uncertainty (in red) is being
applied to target objects (in gray); b) a ghost object (in green) is being inserted into
the sensor’s FOV; c) a missing object (in red) is being removed from the sensor’s FOV.
(Color figure online)

Intentions. The third problem is missing information about other road users’
intentions. For the same observation of a state, the consecutive states might
differ between episodes, depending on the hidden state of other drivers. One
solution might be to add a pipeline responsible for the behavior or trajectory
prediction of road users. This introduces an extra computing overhead and is a
challenging task in itself, but significantly increases the model’s explainability.
Another solution is to let a policy’s network spot the interesting connections on
its own and store them in memory blocks.

In the previous paragraphs, we mentioned memory blocks as a solution for
partial observability and non-stationarity of the environment. The obvious solu-
tion is to use modules such as LSTM [17] cells, but they lack interpretability.
Frame stacking or putting historical data into the observation seems to be more
suitable for safety-critical systems, however, in order to achieve satisfying poli-
cies, they might need to generate their own signals (e.g. information about a long-
term decision taken in the past) and pass them between consecutive timesteps.
Ideally, to achieve high interpretability, these signals have to be identified and
defined by a human in advance. This, however, limits the capabilities being pos-
sible to be trained by the policy.

3.6 Unspecified and Multi-objective Reward Functions

Designing a reward function is another challenge that determines the success
of the implemented solution. Drivers while making their decisions, take into
account many aspects, which should be identified and represented during the
reward function design.

Therefore, the reward function should be a compromise between pro-active
safety assurance, performance on reaching destination targets, efficiency (time,
fuel), comfort, and a general impact on a traffic flow. However, reward hacking
[9] is a known problem in reinforcement learning, which causes an agent to not
behave as expected, even though it achieves high rewards. We observed this
in our work multiple times, e.g. when the agent was performing too frequent
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changes of its current maneuver. It is important to remember that the reward
function designer must adequately prioritize and balance the individual parts of
the reward signal or use meta-learning techniques.

3.7 Explainability

Explainability is a crucial requirement when working with safety-critical sys-
tems such as automated vehicles. In case of a system failure, whether in a form
of an accident or a dangerous situation, a testing team must have a tool to
understand why the situation happened, which decision was wrong, and what
signals attributed most to this decision. Fortunately, the topic is being exten-
sively researched recently and a good survey on available methods was presented
in [25], as well as open-source tools [2,5] were released.

In this paper, we focus on neural network-based policies, where the input
signals are high-level signals outputted from other systems (perception, local-
ization). This is in contrast to end-to-end methods (e.g. [12]), where the input
data is usually raw data and its interpretation is rather an uneasy task. In our
situation, the input signals are labeled, and we can use simple methods such as
e.g. Integrated Gradients [32] to calculate each input neuron’s attributation to
the output signal and provide meaningful insight on the policy’s motivation.

With this methodology, we can navigate through a complete episode and
investigate, what caused a problematic decision at any given time step, and how
the decision would change, if we change the observation. We found this approach
successful for some tasks and open-sourced our initial version of the tool [3]. We,
however, encountered the problem with understanding neurons’ state in LSTM
cells. As mentioned in Sect. 3.5, there is a need for more explainable memory
blocks.

4 Summary

In this paper, we presented the promises we see standing behind the application
of the reinforcement learning method in motion planning. We also listed the
challenges we faced during our research on the behavior planning module and
described our solutions for these issues. Based on our observations, we believe
that the current state of the research allows us to successfully deploy reinforce-
ment learning in real-world automated driving. However, some work has to be
done yet to e.g., ensure better explainability of an artificial agent and to pro-
vide an easier comparison between different versions and methods of the trained
agent. As a consequence of the unpredictability of RL agents, we presented our
method of satisfying safety constraints, but this approach still requires exhaus-
tive testing in an operating domain. Additionally, the formulation of reward
function remains an open research topic. As an active research group, we will
continue our research towards more challenging traffic scenarios such as occurring
on urban roads. Our future research will also be devoted to the explainability
problem of RL agents.



328 N. Pankiewicz et al.

References

1. Autonomous Vehicle Data Annotation Market Analysis. https://www.
researchandmarkets.com/reports/4985697/autonomous-vehicle-data-annotation-
market-analysis

2. Captum. Model Interpretability for PyTorch. https://captum.ai/
3. GitHub - iamhatesz/rld: A development tool for evaluation and interpretability of

reinforcement learning agents. https://github.com/iamhatesz/rld
4. Off road, but not offline: How simulation helps advance our Waymo Driver. https://

blog.waymo.com/2020/04/off-road-but-not-offline-simulation27.html
5. sicara/tf-explain: Interpretability Methods for tf.keras models with Tensorflow 2.x.

https://github.com/sicara/tf-explain
6. Traffic AI – Simteract. http://simteract.com/traffic-ai/
7. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization.

CoRR abs/1705.10528 (2017). http://arxiv.org/abs/1705.10528
8. Administration, F.H.: Highway statistics, 2018. Technical report, Washington, DC:

US Department of Transportation (2019)
9. Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, D.:
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