)

Check for
updates

A Study of Direct and Indirect Encoding
in Phenotype-Genotype Relationships

Clyde Meli! ®) @ | Vitezslav Nezval!, Zuzana Kominkova Oplatkova2 s
Victor Buttigieg® ), and Anthony Spiteri Staines'

1 Department of Computer Information Systems, University of Malta, Msida, Malta
{clyde.meli, tony.spiteri-staines}@um.edu.mt, vnez@cis.um.edu.mt
2 Faculty of Applied Informatics, Department of Informatics and Artificial Intelligence,
Tomas Bata University in Zlin, Zlin, Czech Republic
oplatkova@utb.cz
3 Department of Communications and Computer Engineering, University of Malta,
Msida, Malta

victor.buttigieg@um.edu.mt

Abstract. This paper examines phenotype and genotype mappings that are bio-
logically inspired. These types of coding are used in evolutionary computation.
Direct and indirect encoding are studied. The determination of genotype and phe-
notype relationships and the connection to genetic algorithms, evolutionary pro-
gramming and biology are examined in the light of newer advances. The NEAT
and HyperNEAT algorithms are applied to the 2D Walker [41] problem of an
agent learning how to walk. Results and findings are discussed, and conclusions
are given. Indirect coding did not improve the situation. This paper shows that
indirect coding is not useful in every situation.

Keywords: Indirect encoding - Direct coding - Genotype - Phenotype - Genetic
algorithms - Evolutionary programming - Neuroevolution - NEAT - HyperNEAT

1 Introduction to Phenotype and Genotype Mappings

This paper deals with the study of the influence of direct and indirect encoding for
the artificial neural network design by evolutionary computation, i.e. neuroevolution.
Evolutionary computation meets terminology as phenotype (behaviour, physiology, the
morphology of an organism) and genotype (genetic coding of the organism). The rela-
tionship between both terms has been the subject of various investigations, including
[1-3]. Such phenotype mapping has been used to predict disease-related genes. Van
Driel et al. [1] say that phenotypes can be used to predict biological interactions, which
are the effect which two genes have on each other.

Many evolutionary computation systems, such as genetic programming (GP) work
with direct encodings (sometimes the term coding is used). Program trees representing
a computer program evaluated recursively are used as genotypes. They translate directly
into solutions. Some hybrid systems operate on graphs so there may be a problem with

© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12855, pp. 290-301, 2021.
https://doi.org/10.1007/978-3-030-87897-9_27


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87897-9_27&domain=pdf
http://orcid.org/0000-0003-3551-862X
http://orcid.org/0000-0001-8050-162X
http://orcid.org/0000-0002-8875-1348
https://doi.org/10.1007/978-3-030-87897-9_27

A Study of Direct and Indirect Encoding 291

devising direct genetic operators. In a direct encoding [4], the genotype specifies every
neuron and connection explicitly. Not all authors differentiate between direct encodings
and structural encodings like [5]. Structural encoding implies that the encoding also
holds information on connection weights. This is used when a genetic algorithm (GA)
evolves Artificial Neural Network (ANN) parameters. In such an encoding, there are
few constraints to the GA’s exploration [5].

The minimal alphabet principle in Gas [6] specifies the selection of the smallest
alphabet that permits a natural problem expression. This holds for direct encoding but
for indirect encoding the search space can be reduced [7].

1.1 Direct Encodings for ANNs

Montana [8] reviewed how GAs can be used to represent and train ANNs. The genetic
representation must include the network topology, real-valued weights associated with
every link and real-valued bias associated with every node.

Specifically, an example of a direct and structural encoding of an ANN, as found in
[8] is given in Fig. 1. Typically, the layout, such as the number of nodes in each layer
and the number of hidden layers, is fixed, and not part of the encoding.

Output Layer
eR?

wil w2 w4 w3 w5 wé

Hidden Layer
@ eR’
Input Layer
eR4

Fig. 1. ANN with one hidden layer

The ANN in Fig. 1 would be encoded as the following chromosome
(W1,W2,W3,W4,W5,W6,b1,b2,W7,W8,W9,W10,W11,W12,W13,W14,W15,W16,W17,W18,b3,b4,b5).

This representation scheme degrades its performance of convergence as the network
size is enlarged [9]. It is noted that using direct encodings, it is normally not possible to
represent the ANN graphical structure geometrically [10]. This lack of geometry restricts
ANNSs from evolving brain-like structures.

1.2 Indirect Encodings for ANNs

[9] devised a genetic algorithm representation for ANNs, which represents connections
and network topology. The existence of a connection is represented by ‘1’ and its absence



292 C. Meli et al.

by a ‘0’. An extension of L-Systems [11] called Graph L-System, is used to generate
graphs. Starting from an axiom of a 2 x 2 matrix, a set of deterministic rewriting rules
are applied for edges and nodes represented by symbols. The connectivity matrix will
enlarge every generation and the last generation will contain ‘1’ and ‘0”’s representing
feed-forward network connections as an upper-right triangle; only the bold connections
are used, the rest are discarded. An example representation for the XOR problem [12] is
given in Fig. 2 where the symbol S is a starting axiom and symbols A, B, C, D stand for
nonterminal for the grammar graph generation based on Graph L-System. The details
of the concept are described in [9] including rewriting rules to final ‘1’ and ‘0”s.

For the first line, ‘01100 represents a network with the top node not having a
connection from itself, and only the next two nodes connecting to the top node.

(1) First Generation: S (4) Fourth, final Generation:
(2) Second Generation: 4 B
c D
Connectivity for
c p a a a feed-forward ANN
. ..a c a e
(3) Third Generation:
a a a a
a a a b 000000
0000000

(4) Feed-forward network equivalent

Output Layer € R!

Hidden Layer € R?
Input Layer € R?
Fig. 2. 2-2-1 XOR Network Generations (based on an example from [9])

1.3 The Evolutionary Search Space of Indirect Encodings

Pigliucci [13] quotes Hartmann et al. [7] as having determined that indirect encoding dra-
matically reduced the evolutionary search space in evolutionary computation as opposed
to the classical direct encoding. However, on a closer look, this is actually not something
that Hartmann et al. claim as fact in all cases and situations. Indeed, they only claimed
this holds for evolved digital circuits. So, further research may be required in this area
to see whether indirect encoding would be beneficial in certain cases. The importance
of this can be seen in the field of genetics, where [13] assumed that indirect encoding
was found to be beneficial in all cases by an analogy that biological systems should



A Study of Direct and Indirect Encoding 293

behave like simulated evolutionary models. On that unproven argument, it is claimed in
[13] that the old metaphors of genetic blueprints and genetic programs are misleading or
inadequate. [13] claims developmental or indirect encoding must be a promising basis
to understand evolvability and the Genotype-Phenotype (G-P) mapping problem.

Interestingly, developmental encoding itself was inspired by biological development
[14]. More recently, Clune et al. [15] showed an indirect encoding outperforming direct
encoding. On the contrary, Harding and Miller [16] showed that for lower complexity
(in the sense of Kolmogorov) encoding patterns, direct encoding sometimes performs
worse than indirect encodings.

Other studies utilising generative encodings include Clune and Lipson [17], Meli
[18], Jacob and Rozenberg [11] (using the grammar by Lindenmayer [19]) and Kitano
[9].

Kwasnicka and Paradowski [20] found that in a few generations, indirect encoding
gave excellent solutions though the evolved networks were larger than the equivalent
directly encoded ones. Da Silva et al. also demonstrated the benefit of indirect encoding
[21] where the quality of the Particle Swarm Optimisation (PSO), GA and GP-based
solutions for web services using using indirect encoding was higher than the equivalent
baseline direct encoding approach for twelve out of thirteen datasets. Also Hotz [22] in
a case study of lens shape evolution schemes showed that indirect encoding converged
faster than direct ones.

Compared to the advantages stated in the above-mentioned papers, [23] found in a
TETRIS problem that HyperNEAT, a tool for indirect encoding in ANNSs, is superior
to NEAT (a tool for direct encoding in ANNs) early in evolution, but this fizzles out
eventually and NEAT performs better. Authors showed that HyperNEAT was better for
raw but NEAT performed better for hand-designed features. The aim of this paper is
to compare direct and indirect encoding on a problem to analyse the performance of
evolution.

2 Indirect Encoding

Encodings in evolutionary programming are typically binary, real-valued, graph-based,
computer code [24]. The selected representation affects the effectiveness of a genetic
algorithm [25] and probably even other binary-coded evolutionary computation. Direct
encoding is claimed to be ineffective [14]. Indirect encoding can vary. One form, develop-
mental encoding, employs gene reuse. Used in evolutionary computation, this is referred
to as embryogeny. This is called Artificial Embryogeny [14]. Some exciting research in
indirect encoding involves ANNs. An ANN is represented as a binary tree with grammar
rules generating the ANN as seen in [9].

In GP, one finds the use of indirect encodings like Cartesian GP (CGP) [26] and
Grammatical Evolution [27]. They can also help in “encoding neutrality”. Neutrality is
defined as a situation when small genotype mutations (neutral mutations) do not have
an effect on the fitness of the expressed phenotype. Miorandi et al. [28] explain that
a neutral mutation gives a substantial advantage for state space exploration. This can
potentially increase the evolvability of a population providing further robustness.

Indirect encoding representation can allow optimisation to occur without restrictions,
since “functional constraints are subsequently enforced during the decoding step” [21].



294 C. Meli et al.

An issue which Ronald [29] finds with the developmental form of indirect encoding
used mainly in hybrid systems is that some of these encodings do not address the entire
search space. On the other hand, an alternate representation may address the entire search
space, as the Millipede [18] representation does by combining or folding several points
in the search space into one. Similarly, Della Croce et al. [30] in their GA, which solves
the Traveling Salesperson Problem (TSP) employ a lookahead representation based on
Falkenauer and Bouffoix’s Linear Order Crossover (LOX). Another GP representation
uses a block-oriented representation instead of the usual direct one [31]. It describes
how a block diagram is built rather than the directly coded structure.

3 Summary of Research on Indirect Encoding
Research on indirect encoding has been summarized in two tables, Table 1 involving

evolutionary computation with neural networks and Table 2 which involved the use of
other evolutionary computation techniques.

Table 1. Research involving indirect encoding with ANN or other neural networks

Paper Indirect coding used

Clune et al. [15] Evolution of Compositional Pattern Producing Networks
(CPPNs) via Hypercube-based NeuroEvolution of
Augmenting Technologies (HyperNEAT) algorithm. The
latter outperformed direct encodings in three problem
domains

Clune et al. [32] Comparison of HyperNEAT and FT-NEAT algorithms, the
former outperformed the latter in a quadruped problem

D‘Ambrosio and Stanley [33] Multiagent HyperNEAT outperformed multiagent Sarsa(\)

Gillespie et al. [23] HyperNEAT and NEAT comparison in TETRIS, NEAT
overtakes HyperNEAT eventually

Hussain and Browse [5] Evolving Neural Networks using Attribute Grammars
Kitano [9] Artificial Neural Network (ANN) with GA and Graph
L-System

Kwasnicka and Paradowski [20] | Neural Network with Direct and Indirect encoding, the latter
does not reach the global optimum but gives good ANNs in
few generations compared to direct encoding




A Study of Direct and Indirect Encoding 295

Table 2. Research involving indirect encoding with other evolutionary computation techniques

Paper Indirect coding used

Aickelin [35] Indirect GA with a hill climber algorithm

Aickelin and Dowsland [36] Indirect GA with a heuristic decoder and hybrid
crossover operator

Brucherseifer et al. [31] GP with block-oriented encoding

da Silva et al. [21] PSO, GA and GP with four indirect representations

Haj-Rachid et al. [37] GA comparisons of Indirect and Direct coding. Best

direct encoding performance with PMX crossover
and Inversion Mutation. Best indirect encoding
performance with OX crossover with inversion

mutation

Hartmann et al. [7] Cartesian Genetic Programming using a symbolic
netlist representation

Hotz [22] Evolution strategies with indirect coding

Jacob and Rozenberg [11] Genetic L-System Programming (GLP) Paradigm
for development of L-Systems

Meli [18] Genetic Algorithm (GA) with Millipede encoding

Thangavelautham and D’Eleuterio [38] | Artificial Neural Tissue (ANT) GP architecture with
introns

3.1 Basic Processing of HyperNEAT

HyperNEAT is also known as Hypercube-based NEAT [10], where NEAT stands for
NeuroEvolution of Augmented Topologies. The main idea in HyperNEAT is that it
is possible to learn relationships when the solution is represented indirectly. It is a
generative description of the connectivity of the ANN rather than searching for and
tuning the connection weights of the ANN itself. Such approach is very important for
evolution of large scale neural networks with huge amount of nodes a and many more
of connections.

HyperNEAT uses Compositional Pattern Producing Networks (CPPNs) which can
produce augmented structures including possibility to use any activation functions via
evolutionary process of genetic algorithm. Figure 3 briefly shows the steps involved in
the HyperNEAT algorithm.



296 C. Meli et al.

Process 3
Location of VO

Generate ANN

using CPPN
Repeat
Process 1

until solution found
[T | choosea substate

configuration R

Process 4
Evaluate ANN
performance
Process 2
Create Initial
solution
found?

Node Layout

Population of
CPPNs

no

~—

SETTTTYER
Process 5

Reproduce
CPPNs using
NEAT algorithm

Fig. 3. HyperNEAT processing

4 Experiment

The experiment compared two direct and indirect encoding algorithms used for ANNS.
The direct algorithm chosen was the NEAT algorithm [34], and the indirect algorithm
used was HyperNEAT [10]. Recall that NEAT is used to evolve dense ANN network
nodes and connections specifically. It uses a direct encoding because of the difficulty
in obtaining extensive knowledge of how such encoding will be used and, such indirect
search can be biased [34]. HyperNEAT extends the NEAT algorithm. It utilizes Com-
positional Pattern Producing Networks (CPPNs) to evolve ANNs using principles from
the NEAT algorithm. These algorithms were preferred due to the availability of easily
usable software, SharpNEAT'.

4.1 Experimental Parameters

The open-source SharpNEAT neuroevolution C#NET implementation was compiled
and used unmodified to compare the two algorithms, NEAT and HyperNEAT, applied
to the 2D Walker problem [41]. Settings were taken from [39], which compared the
two algorithms applied to the T-Maze learning problem [39, 40] used HypersharpNEAT
instead of SharpNEAT. The 2D Walker problem was chosen as it was the only problem
available in SharpNEAT using both NEAT and HyperNEAT algorithms. The problem
was investigated by [41], who used their implementation of NEAT, Covariance Matrix
Adaptation Evolution Strategy (CMAES) and other deep reinforcement learning algo-
rithms. The 2D Walker task involves an agent learning how to walk. [32] investigated a
similar quadruped gait problem and concluded that HyperNEAT performed better than
FT-NEAT, a directly encoded algorithm. They used the ODE physics simulator with
a small population of 150, 1000 generations and 50 runs. The fitness function for 2D
Walker is the mean hip position (if it is positive, otherwise 0) over five trials squared.
Every run consisted of 500 generations, the population size was 500, and 10% elitism
was used. 50% of sexual offspring were not mutated. The asexual offspring “had 0.94

I Available at https://sharpneat.sourceforge.io/.


https://sharpneat.sourceforge.io/

A Study of Direct and Indirect Encoding 297

probability of link weight mutation, 0.03 chance of link addition, and 0.02 chance of
node addition” [39]. Initial connections proportion was set to 0.05. Mutate connection
weights was set to 0.89, mutate delete connection to 0.025. Connection weight range
was five.

4.2 Results

Figure 4 below shows the results of running the NEAT and HyperNEAT algorithms
using the SharpNEAT application for 500 generations, charting mean fitness.

NEAT and HyperNEAT compared on 2D

1.5
v
g 1
c
i
'S
c
S 05
=
o ¢
R B T e O e AR o O o O e R e IR e R o TR e AR e R e R o e R R e R e O e K e A o K o B B o |
NS OO N VOO NTT OO NS OO NS O
T AT AT AT AN AN AN AN AN OO
Generation

e HY DErNEAT e NEAT

Fig. 4. NEAT vs HyperNEAT algorithm results

Interestingly, NEAT performed well on the task. It can be seen how the Hyper-
NEAT algorithm using indirect coding does not manage to get good mean fitness values.
Indeed all values are smaller than 0.3. On the other hand, the NEAT algorithm manages
to get close to 1.3 mean fitness. By generation 200 the mean fitness for HyperNEAT is
0.239891, whereas the equivalent for NEAT is 0.96752. The largest mean fitness reached
by HyperNEAT is 0.264622 at generation 396. This is never reached again by the algo-
rithm. The largest mean fitness reached by NEAT is that of 1.333688, at generation
493.

Table 3 shows the mean and maximum fitnesses reached in the last generation 500
averaged across runs for NEAT and HyperNEAT.

The Mann-Whitney U test was performed across the final generation runs for mean
fitness since the data is not normally distributed. This showed that the difference is
significant (U = 0; z-score is 5.39649, p-value is <.00001 and the result is significant
at p < 0.05).



298 C. Meli et al.

Table 3. Evaluation of mean and average of runs (Mean and Maximum fitnesses at Generation
500 for NEAT and HyperNEAT)

Mean NEAT Mean Max NEAT Max
HyperNEAT HyperNEAT
Mean 1.1381 0.2925 2.5640 0.4874
Std Dev 0.4296 0.0701 1.6208 0.0588

The results clearly ascertain how indirect coding in the Walker problem does not
help. Indeed, it appears to have stifled the evolution. Some other tests were made to see
if HyperNEAT could be improved, e.g. using the larger number of generations used by
[32] or interspecies crossover, however there was no improvement.

5 Conclusion

Most current research into indirect encoding involves GP, GAs or ANNSs. This paper has
covered the issues involving indirect coding which are important aspects of evolution-
ary computation. We looked at differences involving indirect and direct representation.
Significant progress has been made in the theoretical and practical developments. More
research is needed involving indirect coding with neural networks and other evolutionary
computation techniques, resulting in better representations.

These negative results do not show that indirect encoding is better than direct coding
for the 2D Walker problem. This shows an example where indirect encoding is hard to
apply successfully and is less effective, reminiscent of [23].

Further research should clarify whether indirect encoding is better than direct encod-
ing in some areas, as well as which categories of problems might be convenient for either
type of encoding. It definitely cannot be claimed that indirect coding is always better.
This will also ascertain the veracity of Pigliucci’s claim that “old metaphors of genetic
blueprints and genetic programmes are misleading or inadequate” [13].

Acknowledgments. This work was supported by financial support of research project NPU I
No. MSMT-7778/2014 by the Ministry of Education of the Czech Republic, by the European
Regional Development Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089 and by
resources of A.L. Lab research group at Faculty of Applied Informatics, Tomas Bata University in
Zlin (ailab.fai.utb.cz).

References

1. Van Driel, M.A., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.: A text-mining
analysis of the human phenome. Eur. J. Hum. Genet. 14, 535 (2006)

2. Meli, C.: Using a GA to determine genotype and phenotype relationships. In: European
Simulation and Modelling Conference 2007. Westin Dragonara, St Julians (2007)



10.

11.

12.

13.

14.

15.

17.

18.

20.

21.

22.

A Study of Direct and Indirect Encoding 299

. Fogel, D.B.: Phenotypes, genotypes, and operators in evolutionary computation. In: Proceed-

ings of the 1995 IEEE International Conference on Evolutionary Computation (ICEC 1995),
pp. 193-198 (1995)

Galushkin, A.L.: Neural Networks Theory. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-48125-6

. Hussain, T.S., Browse, R.A.: Evolving neural networks using attribute grammars. In: 2000

IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks.
Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation
and Neural Networks (Cat. No. 00), pp. 37-42 (2000). https://doi.org/10.1109/ECNN.2000.
886217

. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley (1989)
Hartmann, M., Haddow, P.C., Lehre, P.K.: The genotypic complexity of evolved fault-tolerant
and noise-robust circuits. Biosystems. 87, 224-232 (2007)

. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In:

IICAL pp. 762-767 (1989)

Kitano, H.: Designing neural networks using genetic algorithms with graph generation system.
Complex Syst. 4, 461-476 (1990)

Gauci, J., Stanley, K.O.: Autonomous evolution of topographic regularities in artificial neural
networks. Neural Comput. 22, 1860-1898 (2010)

Jacob, C.: Genetic L-system programming. In: Davidor, Y., Schwefel, H.-P., Ménner, R. (eds.)
PPSN 1994. LNCS, vol. 866, pp. 333-343. Springer, Heidelberg (1994). https://doi.org/10.
1007/3-540-58484-6_277

Zhao, Y., Deng, B., Wang, Z.: Analysis and study of perceptron to solve XOR problem. In:
The 2nd International Workshop on Autonomous Decentralized System, 2002, pp. 168-173
(2002) https://doi.org/10.1109/IWADS.2002.1194667

Pigliucci, M.: Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 557-566 (2010)

Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life. 9, 93—130
(2003)

Clune, J., Stanley, K.O., Pennock, R.T., Ofria, C.: On the performance of indirect encoding
across the continuum of regularity. IEEE Trans. Evol. Comput. 15, 346-367 (2011)

. Harding, S., Miller, J.F.: A comparison between developmental and direct encodings.

Presented at the GECCO 2006 (Updated version) (2006)

Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding inspired
by developmental biology. In: ECAL, pp. 141-148 (2011)

Meli, C.: Millipede, an extended representation for genetic algorithms. In: International
Journal of Computer Theory and Engineering. IACSIT PRESS, Rome, Italy (2013)

. Lindenmayer, A.: Mathematical models for cellular interactions in development. I. Filaments

with one-sided inputs. J. Theor. Biol. 18, 280-299 (1968)

Kwasnicka, H., Paradowski, M.: Efficiency aspects of neural network architecture evolution
using direct and indirect encoding. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson,
D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 405-408. Springer,
Vienna (2005). https://doi.org/10.1007/3-211-27389-1_98

da Silva, A.S., Mei, Y., Ma, H., Zhang, M.: Evolutionary computation for automatic web
service composition: an indirect representation approach. J. Heuristics. 24, 425-456 (2018)
Hotz, P.E.: Comparing direct and developmental encoding schemes in artificial evolution: a
case study in evolving lens shapes. In: Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No. 04TH8753), vol. 1, pp. 752-757 (2004). https://doi.org/10.1109/
CEC.2004.1330934


https://doi.org/10.1007/978-3-540-48125-6
https://doi.org/10.1109/ECNN.2000.886217
https://doi.org/10.1007/3-540-58484-6_277
https://doi.org/10.1109/IWADS.2002.1194667
https://doi.org/10.1007/3-211-27389-1_98
https://doi.org/10.1109/CEC.2004.1330934

300

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

C. Meli et al.

Gillespie, L.E., Gonzalez, G.R., Schrum, J.: Comparing direct and indirect encodings using
both raw and hand-designed features in tetris. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 179-186. Association for Computing Machinery, Berlin (2017).
https://doi.org/10.1145/3071178.3071195

Kicinger, R., Arciszewski, T., De Jong, K.: Evolutionary computation and structural design:
a survey of the state-of-the-art. Comput. Struct. 83, 1943—-1978 (2005)

Caruana, R.A., Schaffer, J.D.: Representation and hidden bias: Gray vs. binary coding
for genetic algorithms. In: Machine Learning Proceedings 1988, pp. 153-161. Elsevier,
Amsterdam (1988)

Miller, J.E., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon,
W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121-132.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2_9

Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary
language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS,
vol. 1391, pp. 83-96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930
Miorandi, D., Yamamoto, L., De Pellegrini, F.: A survey of evolutionary and embryogenic
approaches to autonomic networking. Comput. Netw. 54, 944-959 (2010). https://doi.org/10.
1016/j.comnet.2009.08.021

Ronald, S.: Robust encodings in genetic algorithms: a survey of encoding issues. Presented
at the (1997). https://doi.org/10.1109/ICEC.1997.592265

Della Croce, F., Tadei, R., Volta, G.: A Genetic algorithm for the job shop problem. Comput.
Oper. Res. 22, 15-24 (1995). https://doi.org/10.1016/0305-0548(93)E0015-L

Brucherseifer, E., Bechtel, P., Freyer, S., Marenbach, P.: An indirect block-oriented rep-
resentation for genetic programming. In: Miller, J., Tomassini, M., Lanzi, PL., Ryan, C.,
Tettamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 268-279.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45355-5_21

Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped
gaits with the HyperNEAT generative encoding. In: 2009 IEEE Congress on Evolutionary
Computation, pp. 2764-2771 (2009). https://doi.org/10.1109/CEC.2009.4983289

D’ Ambrosio, D.B., Stanley, K.O.: Scalable multiagent learning through indirect encoding of
policy geometry. Evol. Intell. 6, 1-26 (2013). https://doi.org/10.1007/s12065-012-0086-3
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.
Evol. Comput. 10, 99-127 (2002). https://doi.org/10.1162/106365602320169811

Aickelin, U.: An indirect genetic algorithm for set covering problems. J. Oper. Res. Soc. 53,
1118-1126 (2002)

Aickelin, U., Dowsland, K.: An indirect genetic algorithm for a nurse scheduling problem.
Comput. Oper. Res. 31, 761-778 (2008). https://doi.org/10.1016/S0305-0548(03)00034-0
Haj-Rachid, M., Ramdane-Cherif, W., Chatonnay, P., Bloch, C.: Comparing the performance
of genetic operators for the vehicle routing problem. IFAC Proc. 43, 313-319 (2010). https://
doi.org/10.3182/20100908-3-PT-3007.00068

Thangavelautham, J., D’Eleuterio, G.M.T.: A coarse-coding framework for a gene-regulatory-
based artificial neural tissue. In: Capcarrere, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G.,
Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 67-77. Springer, Heidelberg
(2005). https://doi.org/10.1007/11553090_8

Risi, S., Stanley, K.O.: Indirectly encoding neural plasticity as a pattern of local rules. In:
Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010.
LNCS (LNAI), vol. 6226, pp. 533-543. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15193-4_50


https://doi.org/10.1145/3071178.3071195
https://doi.org/10.1007/978-3-540-46239-2_9
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1016/j.comnet.2009.08.021
https://doi.org/10.1109/ICEC.1997.592265
https://doi.org/10.1016/0305-0548(93)E0015-L
https://doi.org/10.1007/3-540-45355-5_21
https://doi.org/10.1109/CEC.2009.4983289
https://doi.org/10.1007/s12065-012-0086-3
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1016/S0305-0548(03)00034-0
https://doi.org/10.3182/20100908-3-PT-3007.00068
https://doi.org/10.1007/11553090_8
https://doi.org/10.1007/978-3-642-15193-4_50

A Study of Direct and Indirect Encoding 301

40. Soltoggio, A., Bullinaria, J.A., Mattiussi, C., Diirr, P., Floreano, D.: Evolutionary advantages

41.

of neuromodulated plasticity in dynamic, reward-based scenarios. In: Proceedings of the 11th
International Conference on Artificial Life (Alife XI), pp. 569-576. MIT Press (2008)
Zhang, S., Zaiane, O.R.: Comparing deep reinforcement learning and evolutionary methods
in continuous control (2017). https://arxiv.org/abs/1712.00006


https://arxiv.org/abs/1712.00006

	A Study of Direct and Indirect Encoding in Phenotype-Genotype Relationships
	1 Introduction to Phenotype and Genotype Mappings
	1.1 Direct Encodings for ANNs
	1.2 Indirect Encodings for ANNs
	1.3 The Evolutionary Search Space of Indirect Encodings

	2 Indirect Encoding
	3 Summary of Research on Indirect Encoding
	3.1 Basic Processing of HyperNEAT

	4 Experiment
	4.1 Experimental Parameters
	4.2 Results

	5 Conclusion
	References




