
Polynomial Algorithm for Solving
Cross-matching Puzzles

Josef Hynek(B)

Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62,
500 03 Hradec Králové, Czech Republic

josef.hynek@uhk.cz

Abstract. The aim of this paper it to analyze the cross-matching puzzle and to
propose a fast and deterministic algorithm that can solve it. Nevertheless, there is a
bigger goal than designing an algorithm for a particular problem.Wewant to show
that while AI researchers constantly look for new constraint-satisfaction problems
that could be utilized for testing various problem-solving techniques it is possible
to come up with the problem that can be solved by much simpler algorithms.
We would like to stress that there is an important misconception related to NP
class that a huge number of potential solutions to the specific problem almost
automatically implies that the relevant problem belongs to the class of NP. Such
a misunderstanding and misclassification of the particular problem leads to false
impression that there is no chance to design a simple and fast algorithm for the
problem. Therefore, various heuristics or general problem-solving techniques are
unnecessarily employed in order to solve it. And moreover, the wrong impression
that the problem is difficult is further supported. We believe that our paper can
help to raise the awareness that not all the problems with immense search spaces
are hard to be solved and the polynomial algorithm to tackle the cross-matching
puzzle that is described here is a good example of such an approach.

Keywords: Cross-matching puzzle · Efficient algorithm · Time complexity

1 Introduction

It is a very common approach that various games and puzzles are utilized in order to
demonstrate the power of specific problem-solving techniques. There is a great advantage
hidden in the fact that simple rules that can be easily understood could generate a huge
space of potential candidate solution. There are many traditional types of puzzle like,
for example, 15-puzzle (or Loyd’s puzzle), Sudoku or jigsaw puzzles, while tic-tac-
toe, Othello (reversi), checkers, chess or some specific tasks involving individual pieces
of chess (like knights or queens) are often used to present specific problem-solving
techniques or algorithms. For example, the classic 9 × 9 Sudoku is well-known and
extremely popular amongst general public. The general problem of solving N × N
Sudoku has been proved to be NP-complete [1] while there are really fast algorithms
solving Sudoku of small sizes including 9 × 9 grid (see, for example, [2]). Furthermore,

© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12855, pp. 257–266, 2021.
https://doi.org/10.1007/978-3-030-87897-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87897-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-87897-9_24


258 J. Hynek

various of these puzzles and games are also very often used by teachers and lectures in
programming courses as it is quite easy to define the problem precisely and then to show
how to tackle it algorithmically (see, for example, [3]).

On the other hand, AI researchers have always looked for new challenges and
new constraint-satisfaction or constraint-optimization problems that could be utilized
as testbeds for various approaches and techniques. If there is not at hand some real and
practical problem to be solved, it is a nice challenge to design an artificial problem
and then show the way how to solve it. On one side this approach is understandable as
there are, for example, too many papers devoted to jigsaw puzzles or the safe placement
of N-queens on the chessboard, while the newly designed problem might look not too
common, more attractive and it could also possess some specific features that make the
search for the solution somehow different or even more difficult. On the other hand,
the design of new artificial problems brings along numerous questions or even risks.
First of all, the new problem could be exactly the same one as the already known and
well described but this time it is only defined in a different way. Secondly, while the
classic problems are well-known and correctly classified as belonging to the class of
NP problems, the new problem can be easily misunderstood and misclassified as being
more difficult that it actually is. Finally, if some general problem-solving technique
is unnecessarily employed in order to solve it, it is then clearly a worthless waste of
computational resources while, at exactly the same time, the wrong impression that the
problem is difficult is further supported.

2 Problem Description

We have decided to illustrate the problem on a simple cross-matching puzzle that was
described by Kesemen and Özkul in [4] and the again in [5]. Their cross-matching
puzzles consist of three tables with the size of M × N. For the sake of simplicity, we
will consider squared tables of the size N × N in this paper but the algorithm presented
below works with the size M × N as well.

The cross-matching puzzle is represented by three tables that are shown in Fig. 1.
The table in the center is the solution table whose content is to be found. The table to the
right is the detection table and the control table is located below. We adopted the same
terminology as is used in [5]. The detection and control table represent the constraints
under which the solution is to be sought.

The easiest way to describe the cross-matching puzzle is to show how to create it. At
the beginning of this process, the solution table is filled by randomly generated symbols
(letters or numbers). Then the symbols of the i-th row of the selection table are sorted
and put into i-th row of the detection table.

We can see in Fig. 2a that the first row of the solution table containing the letters
{D,M,I,B,E} was transformed into the sorted set {B,D,E,I,M} that is placed in the first
rowof the detection table. The sameprinciple is applied to the creation of the control table
and that is why the first column of the solution table comprising symbols {D,E,L,F,N}
was converted into {D,E,F,L,N} in the first column of the control table. As soon as the
detection as well as the control table are filled in, all the symbols in the solution table are
erased and the puzzle is ready to be solved (Fig. 2b). In order to not confuse the reader,



Polynomial Algorithm for Solving Cross-matching Puzzles 259

we have utilised exactly the same example (assignment of letters) as it was presented
in [5] and this puzzle will be used throughout this paper to show how to solve it by the
algorithm we are going to propose here.

Fig. 1. The cross-matching puzzle tables.

Fig. 2. The process of cross-matching puzzle generation – a) formation of the detection and
control table, b) created cross-matching puzzle.

The aim of the puzzle is to re-construct the original solution table by using the clues
given by the content of the detection and control tables. Should S be a N × N matrix
representing the solution table, it is obvious that the sought symbol Sij has to be present
in the i-th row of the detection table and the j-th column of the control table. More
specifically, if we convert the symbols of the i-th row of the detection table into a set
of symbols and label it as Di and if we do the same with the j-th column of the control



260 J. Hynek

table and label it as Cj, it is clear that the symbol we are looking for must lie in the
intersection of these two sets. Formally written:

Sij ∈ Di ∩ Cj (1)

Based on this formula, it is evident that if the puzzle consists of N2 symbols that
are different from each other, the cardinality of the intersection (1) is always equal
to one and the solution of the puzzle is absolutely straightforward. Should there be a
repeated occurrence of some symbols there, the cardinality of the intersection (1) is
greater than one and there is more than one candidate symbol for the placement into the
given position. Then we have to wait for the other positions to be filled in order to get a
clue which symbol should be selected there.

Finally, the random generation of symbols during the process of the puzzle creation
does not guarantee that there is a unique solution of the puzzle. There must be at least
one but depending on the frequency of the letters and their specific position there might
very easily exist multiple solutions. We will address this issue later when discussing the
functioning and performance of our algorithm.

Of course, the puzzle can be solved using backtracking when the positions of the
solution table are consecutively assigned starting from right-top corner and trying all
the possibilities from the appropriate row in the detection table while checking the
constraints given by the relevant column in the control table. This algorithm provides
the exact solution but its time complexity is O(NN). Therefore, due to the combinatorial
explosion it can be used for small instances of the cross-matching puzzles only. Kesemen
and Özkul in [5] accepted this fact as an argument that the solution of the puzzle belongs
toNP-class andhence a genetic algorithm (or another stochastic searchmethod) is needed
to tackle it. We are not going to give more details on their approach using multi-layer
genetic algorithm here as the details can be found in their paper and we will directly
skip to their so called intelligent genetic algorithm [5].

Their main improvement there is based on their observation that it is possible to fix
some elements of the solution table because in some cases the intersection of the relevant
row and the column provides only one symbol to be placed there. Using this simple
idea they were able to generate partial solutions to the cross-matching puzzle where
some positions were fixed (the wanted symbol has been found) and the other positions
were assigned randomly using the remaining available symbols. This approach has been
utilized to generate the initial population of individuals and thus all of these individuals
presented partial solutions where the “already known” positions were fixed.

The only remaining concern for Kesemen and Özkul [5] was to make sure that
the genetic operators employed there (crossover and mutation) would not damage the
already fixed parts of the partial solution represented by chromosomes. They managed
to solve this obstacle easily and as they significantly reduced the size of the search space
(because of the already fixed positions) their intelligent genetic algorithm works rather
nicely. However, they still reported that the algorithm needed nearly 6 s to solve 10 ×
10 cross-matching puzzle and larger instances were not attempted.



Polynomial Algorithm for Solving Cross-matching Puzzles 261

Their paper raised our curiosity and the certain similarity of cross-matching puzzles
with Sudoku inspired us to analyze the problem in order to devise a heuristic algorithm
that would be capable of solving it quickly. We have realized that such an algorithm
exists, it is really fast and very simple.

3 Proposed Solution

It is a well-known fact that a huge number of potential solutions to the specific problem
does not automatically mean that the relevant problem is hard to be solved and that
it belongs to the class of NP [6]. For example, the problem of computing the shortest
path between two vertices in a complete graph with positive edge weights can be solved
in polynomial time despite the fact that there are exponentially many possible paths
between two vertices in a complete graph. The same applies to the minimal spanning
tree problem and many others. The trick is that there is no need to asses all potential
candidate solutions. Utilizing the specific features of the problem we can design an
efficient algorithm that finds the optimal solution without having to traverse the whole
search space. Therefore, if the representation of the candidate solutions is wrongly
designed causing that the search space is even bigger than it is necessary (as it was
discussed, for example, in [7]) and then a brute-force approach to check the whole
search space is employed, it cannot be taken as a proof that the problem is impossible
to be solved efficiently by a polynomial algorithm.

It was exactly the argument concerning the huge search-space of the cross-matching
puzzle that attracted our interest. Moreover, as Kesemen and Özkul [5] realized, the
search-space could be rather easily narrowed by the fixation of the symbols that were
unique for the particular position within the solution table. Therefore, the first step of
the algorithm we would like to present here is also the calculation of the intersections
between the relevant row and the relevant column using the formula (1) above. Taking
step by step the symbols from the row of the detection table and browsing for them
within the control table, we will reach the stage depicted in Fig. 3.

Using the example presented above we can see that there are fifteen positions in the
solution table where the cardinality of the just executed intersection is one and these
cells are ready to be fixed. Nevertheless, we can see that there are several more places in
the table, where the cardinality of the intersection is higher than one but some symbols
appear repeatedly there.

For example, the content of the cell on the second row and the second column is
{C,C,M}which can be simplified to {C,M}, because only these two symbols are eligible
to stand here. Similarly, the content of the cell on the fourth row and the second column
is {K,K,K} which without any doubt can be simplified to {K} only. This repeated occur-
rence of some symbols is due to the procedure that was used to perform the intersection
operation and we can either tailor it or simply check the output for uniqueness of the
symbols contained within each cell. Then we reach the situation depicted in Fig. 4. There
are N2 cells, the intersection can be done in O(N2), the uniqueness of each cell in O(N2)
and therefore the overall time of reaching the initial stage of the algorithm shown in
Fig. 4 is O(N4).



262 J. Hynek

Fig. 3. The puzzle after the application of the intersection operator.

Now it is the right time to fix all the positions where the set containing only one
candidate symbol exists. Whenever a symbol is fixed in cell Sij we have to delete this
symbol from the i-th row in the detection table as well as from the j-th column in the
control table. Keeping in our mind that some symbols occur there multiple times it is
necessary to make sure that only one symbol is deleted from the respective row and
column each time. There are N2 cells and therefore the fixation including the removal
of the fixed symbol from the row and the column can be done in O(N3).

Fig. 4. The puzzle after the application of the intersection operator including the uniqueness of
symbols in individual cells.

We can see in Fig. 5 that in our illustrative example nearly all the positions within
the solution table are fixed right now (21 out of 25). Moreover, we can see that the
rest of the puzzle will be solved quickly using the same process based on the row and
column intersections that will be performed only for the positions that are unfixed yet.



Polynomial Algorithm for Solving Cross-matching Puzzles 263

Naturally, symbol D will occupy the top left corner position in the solution table as the
result ofintersection between {D} and {D,E,M}, the next position has to be M, because
{D,E,M} ∩ {C,M} = {M}, etc. Therefore, in this specific case it is clear that after the
second cycle of computing the intersections and fixing the positions where only one
candidate symbol exists, the algorithm will reach the solution in Fig. 6.

Fig. 5. The puzzle after the fixation of the already known positions.

Of course, depending on the size of the cross-matching puzzle and the number of
symbols utilised there could be more cycles needed. If at the end of the cycle all the
positions of the solution table are known (it means fixed), we have reached the solution
and the program can terminate. The other option is to check the content of the detection
or the control table, because at this stage of the computation both of them must be
empty (all the symbols were placed and thus deleted from these tables). Secondly, for
each cycle we calculate the number of symbols that were fixed within the cycle (Fixed).
Positive value of Fixed indicates that at least one symbol was fixed and removed from
the detection and control table and we can safely continue with another cycle. If there
is an unique (single) solution to the cross-matching puzzle, our algorithm finds it and
terminates.

However, there are situations (especially when the cross-matching puzzle has been
generated randomly) that there are several solutions there. In Fig. 7a) we can see the
assignment that leads to multiple solution. Utilising the algorithm described above we
will reach after two cycles the situation depicted in Fig. 7b). From this stage of calculation
no further improvement is possible because the intersection in all four corners always
contains two symbols {A,C}. Nevertheless, as no further symbol can be fixed, the value
of the above defined indicator Fixed is equal to zero and algorithm terminates as well.
The output here is a partial solution as one described in Fig. 7b) and in this particular
case it indicates that there are two solutions to the cross-matching puzzle depending
whether the symbol A or symbol C is selected for the upper left corner in the solution
table. However, it is easy to find a solution (or even to generate all the solutions) as
whenever we select the particular symbol from the set, this symbol is deleted from the



264 J. Hynek

relevant row as well as the relevant column and the maximum number of choices to be
made is less or equal to (N2-N)/2, where N is the size of the puzzle. We can see that in
our example from Fig. 7 only one decision is needed in order to obtain one of the two
existing solutions.

Fig. 6. The solution of the cross-matching puzzle.

Fig. 7. The cross-matching puzzle with two different solutions.

We can conclude that we have designed a simple fast polynomial deterministic
algorithm that solves cross-matching puzzle efficiently. If there is a unique solution
to the puzzle, our algorithm will find it. If there are multiple solutions the algorithm
will reach the stage when all the positions that could be determined are fixed and the
remaining cells are assigned the relevant set of possible symbols. The solution is then
to be find by making the choices for these cells one-by-one and by deleting the chosen
(and therefore fixed) symbols from the detection and decision tables. Once again, this
process will terminate when all the symbols are fixed. The pseudocode of our algorithm
is given in Table 1.



Polynomial Algorithm for Solving Cross-matching Puzzles 265

Table 1. Cross-matching puzzle algorithm.

4 Conclusion

The deterministic algorithm for solving the cross-matching puzzle was presented in
this paper. The algorithm works in polynomial time and therefore even large instances
of the cross-matching puzzle can be tackled and solved. If there is a unique solution
only, this solution is found deterministically. Should there be multiple solutions, the
algorithm presented here will terminate at the situation where all the symbols that could
be fixed unambiguously were placed in the respective position while there are the sets
of the candidate symbols amongst which is it necessary to make the choice elsewhere.
Therefore, even in this situation a solution to the cross-matching puzzle (or all of them)
can be easily found.

Nevertheless, the main aim of this paper was not to design an algorithm for a
specific problem. We wanted to show that while AI researchers constantly look for
new constraint-satisfaction problems that could be utilized for testing various problem-
solving techniques it is possible to come up with the problem that can be solved by much



266 J. Hynek

simpler algorithms.Moreover, it is important to repeat that one of the topmisconceptions
related to NP class is that a huge number of potential solutions to the specific problem
does not automatically mean that the relevant problem inevitably belongs to the class
of NP. Such a misunderstanding and misclassification of the particular problem leads to
false impression that there is no chance to design a simple and fast algorithm for such
a problem. Consequently, various heuristics or general problem-solving techniques are
unnecessarily employed in order to solve it and the wrong impression that the problem is
difficult is further supported. There are toomany problems in the class of NP anyway and
so there is no need to waste our effort as well as unnecessary computational resources
on problems that could be solved using polynomial deterministic algorithms.

References

1. Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application
to puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86, 1052–1060 (2003)

2. Chatterjee, S., Paladhi, S., Chakraborty, R.: A Comparative Study on the performance
characteristics of Sudoku solving algorithms. IOSR J. Comput. Eng. 1, 69–77 (2014)

3. Slabý, A., Ševčíková, A.: Chess as amotivational tool in education. In: 29thAnnual Conference
of theEuropeanAssociation for Education inElectrical and InformationEngineering, EAEEIE,
pp. 1–6 (2019)

4. Kesemen, O., Özkul, E.: Solving crossmatching puzzles using multi-layer genetic algorithms.
In: First International Conference on Analysis and Applied Mathematics, 18–21 Oct 2012
Gumushane (2012)

5. Kesemen, O., Özkul, E.: Solving cross-matching puzzles using intelligent genetic algorithms.
Artif. Intell. Rev. 49(2), 211–225 (2016)

6. Mann, Z.A.: The top eight misconceptions about NP-hardness. Computer 50, 72–79 (2017)
7. Hynek, J.: Genetic algorithms for the N-queens problem. In: Arabnia, H.R., Mun, Y. (Eds.):

Proceedings of the 2008 International Conference on Genetic and Evolutionary Methods,
pp. 64–68. CSREA Press (2008)


	Polynomial Algorithm for Solving Cross-matching Puzzles
	1 Introduction
	2 Problem Description
	3 Proposed Solution
	4 Conclusion
	References




