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Abstract. Nowadays, computer vision techniques have become popular in sev-
eral domains (e.g., agriculture, industry, medicine, and others). Their success
derives from the advances in computational resources and the large volume of
complex data (i.e., images). These factors led to an increase in the use of convo-
lutional neural networks. However, such deep learning architectures do not appro-
priately explore the relationships between the data (e.g., images) and their respec-
tive structure. To better gather and encodes these affinity connections into a deep
neural network, we can use the so-called graph neural networks (GNNs). These
graph-based networks also present drawbacks. The high number of relationships
in a graph can be considered a bottleneck regarding the available resources and
scalability. Hence, to mitigate this issue, we propose to use GNNs automatically
tuned, defining their well-suited connections according to a given image context,
which improves their efficiency and efficacy. We performed experiments consid-
ering different types of state-of-the-art deep features aggregated with the GNNs.
The results demonstrate that our proposed method can achieve equal accuracy
(statistically) to GNNs with complete and random connections. Moreover, we
decreased the number of edges to a great extent (up to 96%), testifying to our
method’s effectiveness.

Keywords: Deep learning · Convolutional neural network · Graph neural
network · Graph pruning · Computer vision

1 Introduction

Computer vision has been used widely in different contexts like agriculture, medicine,
industrial, etc. Part of this success is due to the massive volume of complex data gener-
ated daily by these domains. Moreover, with advances in computational resources (e.g.,
GPUs), it was possible to process (e.g., classify) all these data in an efficient way [2].

A powerful computer vision technique that was boosted by the recent advances
was the so-called Convolutional Neural Network (CNN). Although CNNs present good
results, they are incapable of gathering and harnessing the relationship between the
data. These bonds between the data can considerably improve the effectiveness of the
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classification process. Then, to reach this important property, it is possible to use GNNs
[21] aggregated with CNNs.

As well-known, a graph structure can be highly affected by factors like the number
of nodes and edges. This behavior leads to a significant drawback when using GNNs
to image classification. The higher the number of edges, the higher the memory foot-
print and the cost to generate a suitable learning model. The cost of training a GNN is
proportional to the number of edges. Moreover, we cannot generate a random or com-
plete graph regarding image classification since it neglects semantic connections and
impacts the accuracy of the model. A typical approach to solve this problem and build
an appropriate graph is the brute force policy (e.g., grid-search). The problem with this
strategy is a high computational cost. Some works tried to consider a priori graph (e.g.,
knowledge graph) to specific domains to solve this issue [4,5,14] but, unfortunately, in
dynamic and real scenarios is almost impossible to obtain such a priori structure.

Thus, to mitigate these drawbacks, in this paper, we propose to use GNNs automat-
ically tuned, defining their well-suited connections according to a given image context,
improving their efficiency and efficacy. To do that, we based our approach according
to the similarity between the graph nodes (i.e., images). Despite its simplicity, our app-
roach achieved notable results. It significantly reduced memory footprint when using
GNNs aggregated with CNNs and obtained good accuracy compared with random and
complete graphs. Also, we achieve better representativeness of the semantic between
an image and its objects to define the global classification context. It is worth men-
tioning that the literature works [6,10,13] tried to apply similar approaches, however
disregarding GNNs aggregated with CNNs to define the global image context.

In summary, our main contributions are: i) we proposed an approach capable of
tuning and reaching a well-suited GNN structure to improve the effectiveness of image
classification context; ii) our approach also diminishes the computational cost of GNNs
aggregated with CNNs; iii) through our tuning policy we provide greater structural
semantics to the learning model; iv) since our tuning process is based on similarity, our
approach can be straightforwardly extended using several literature practices that use
the same concept (e.g., different distances, indexes, pruning policies, among others).

2 Background

In [18] the authors presented the seminal work regarding GNNs. They discussed issues
about the traditional neural networks handling information between their features. Their
work has guided many other GNNs approaches [7,8,16]. Indeed, GNNs were motivated
by CNNs due to their ability to extract spatial features in many scales and build expres-
sive representations [22]. In [3] the authors introduced convolutional filter usage in
GNNs, generalizing the concept of CNNs applied to Euclidean spaces to non-Euclidean
ones. Equation 1 formally defines the convolution operation on graphs.

gθ� ≈
K

∑
k=0

θ′Tk(Lsym)s (1)

where s ∈ Rn is a graph signal, gθ is a spectral filter, the symbol � is the convolutional
operator, Tk refers to the Chebyshev polynomials, θ′ ∈ RK is a vector of Chebyshev
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coefficients, and Lsym represents the normalized Laplacian graph Lsym := D− 1
2 LD− 1

2 ,
considering the value for Laplacian Graph as L := D−A, A = [ai j] as the adjacency
matrix non-negative and D = diag(d1,d2, ...,dn) as the degree matrix of A where di =
∑ jai j is the degree of vertex i [13].

In [12] it was proposed a graph convolutional network (GCN) as defined by Eq. 2.
The authors simplified the model limiting nearest neighbors value in the convolution to
k = 1, and approximating the largest eigenvalue (λmax) of Lsym by 2.

gθ � s= θ(I+D− 1
2AD− 1

2 )s, (2)

where θ is considered the remained Chebyshev coefficient. The next process consists in
applying a normalization trick to the convolution matrix (see Eq. 3):

I+D− 1
2AD− 1

2 → ˜D− 1
2 ˜A˜D− 1

2 , (3)

where ˜A= A+ I and ˜D= ∑ j˜Ai j.
Finally, the GCN itself can be described in Eq. 4.

H(l+1) = σ(˜D− 1
2 ˜A˜D− 1

2H(l)Θ(l)) (4)

where H(l) is the matrix of activations for the l-th layer, while H(0) = X ,Θ(l) ∈ Ra× f is
considered as the trainable weight matrix in the layer l, and σ the activation function
(i.e., ReLU(.) = max(0, .)) [13].

Although very promising, the work of [12] presents some issues regarding the mem-
ory footprint, and it is applied to text classification (i.e., the graph structure is intrinsi-
cally defined). Moreover, it assumes that the edges have equal relevance to generate the
learning model. Hence, it neglects that in real scenarios, each connection can show a
different contribution. Besides, in [13] it is described that GCNs lose their represen-
tation power when several convolutional layers are added to the architecture, and the
performance complexity is prohibitive.

We believe that our approach can cope with these issues since we consider different
relevant levels to edges according to the image context. Besides, through this relevance,
we can remove useless edges (i.e., not contribute to gather and harness the semantic
relationship between an image and its objects). In [6] the authors proposed a technique
based on sharing network information to define the importance of a given edge in a tree
structure regarding traditional data. However, to the best of our knowledge, our work is
the first to consider a relevance mechanism in GNNs aggregated with CNNs to define
the global context of images (complex data).

3 Proposed Approach

To define the well-suited connections for the GNNs according to a given image context,
we present the proposed approach pipeline, as illustrated in Fig. 1. In the first step, we
obtain the objects (bounding boxes) from the images of the dataset. After that, in Step 2,
features of the bounding boxes are extracted through pre-trained CNNs (e.g., ImageNet
transfer learning). In Step 3 the bounding boxes belonging to the same image become
nodes in a complete subgraph.
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Fig. 1. Pipeline of the proposed approach.

Next, for each image is built a subgraph G(V,E), where V represents the bounding
boxes of the images and E their relations. Each bounding box from a given image is
connected with their respective siblings (i.e., remaining bounding boxes from the same
image). Then, in Step 4, an affinity matrix is generated to describe the entire graph
(composed of several subgraphs). It is easy to see that the entire graph comprises several
subgraphs, and the number of subgraphs is equal to the number of images in the dataset.

In Step 5, we automatically fine-tune the generated graph, defining their well-suited
connections according to a given image context. To do so, we compute the relevance of
each vertex according to the mean distance regarding its incident vertices. It is worth
mentioning that we assign for each edge a relevance based on the dissimilarity between
its nodes. The vertex’s relevance is used as a threshold (τ) to suppress useless incident
edges. Equation 5 formally defines the threshold setting. Figure 2 illustrates an example
of the complete graph (left graph), and it is respectively fine-tuned one (right), obtained
after applying our proposed approach suppressing edges according to the automatic
threshold.

τ = ∑l−1
k=0w(n

′
k,n

′′
k )

l
(5)

where l represents the number of edges, k is an iterator, r(v′
k,v

′′
k ) is a function to obtain

the relevance of the edge connecting vertices v′
k and v′′

k .
After, in Step 6, our approach creates the affinity matrix of the fine-tuned graph.

Finally, in Step 7, this matrix is the input to train a GNN, generating a learning model.
In this paper, we create an instance of our proposed approach to calculate the edge’s

relevance through the well-known Euclidean distance. However, our approach can be
straightforwardly extended to different kinds of distance functions, as well as tuning
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Fig. 2. Illustration of the tuning process in a fully connected graph

mechanisms. Algorithms 1 and 2 detail our proposed approach and the tuning mecha-
nism considered in the present paper.

An important property of our proposed approach is that we do not need to know the
bounding boxes labels to predict the global context of the image. As aforementioned in
Sect. 2, an a priori knowledge graph is costly and tiresome to obtain. Hence, a complete
graph is easier to build. However, it also demands a high computational cost and can
link incoherent objects, confusing the learning model.

Algorithm 1: Proposed approach

input : set of images S , a given CNN C
output : learning modelM
auxiliaries: sets of extracted features Zi, training sets Z′, testing sets Z′′, a vanilla GNN

G , a fine-tuned GNN GΩ

for each S j, j = 1,2, ..., |S | do
B ←boundingBoxes(Sk);
for each Bi, i= 1,2, ...|B | do

Z ← Z ∪ deepFeatures(Bi, C );

Split Z;
Z′ ← random training samples from Z;
Z′′ ← random testing samples from Z\Z′;
G ← completeGraph(Z′,Z′′);
GΩ ← fineTunedGraph(G .graph);

4 Experiments

This section discusses the scenarios of the experiments, describes the image dataset
used in the experiments, and presents the discussion about the obtained results compar-
ing our proposed approach against complete and random graphs, respectively.
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Algorithm 2: Tuning mechanism
input : an undirected graph G
output : fine-tuned undirected graph GΩ

auxiliaries: V : set of vertices from the input graph, A : list of edges incident to vertex v, τ:
threshold to suppress irrelevant edges

for each v ∈V do
A ← getIncidentEdges(v)
τ ← calculateMeanDistance(A)
foreach a ∈ A do

if edgeRelevance(a) > τ then
removeEdge(a)

4.1 Scenarios

To obtain the best hyperparameters to the GCN we executed a grid-search strategy [1].
To do so, we defined the number of hidden layers (16, 64, 256), epochs (2000), learning
rate (0.001, 0.005, 0.01, 0.05), and dropout (0.3, 0.5, 0.8, 0.9). These possibilities of
hyperparameters resulted in 384 experiments.

We combined the GNN with different CNN architectures. Then, we used Efficient-
NetB7 [20], InceptionV3 [19], ResNet50 [9] and VGG19 [17]. Finally, to corroborate
the effectiveness of our approach we compared it against a fully connected and random
graphs. As optimizer we used ADAM [11].

To perform the experiments, we used a computer with Intel Core i7 from the 6th
generation with 8 cores, 16 threads, and 3.40GHz; 32 GB of RAM and an Nvidia
GeForce RTX 2080Ti GPU, with 4352 CUDA cores. The experiments were executed
in GPU mode.

4.2 Dataset Description

For the experiments, the MIT67 [15] dataset was chosen because it provides the require-
ments for the development of this work, as the: images, bounding boxes of each image,
and global classes (image classes).

The MIT67 is a dataset to solve indoor scene recognition, including 67 different
classes. However, because some classes have few examples, annotation errors, missing
data, or images without bounding boxes, data cleaning was required, which resulted
in the exclusion of the following classes: auditorium, bowling, elevator, jewelry shop,
locker room, hospital room, restaurant kitchen, subway, laboratory wet, movie the-
ater, museum, nursery, operating room, waiting room. Thus, obtaining 53 classes, 2607
images, and 50.8 68 bounding boxes, that were divided into the training (80% of the
data) and test (20%) sets in a random and stratified way.

Table 1 shows the distribution of images/objects by class and bounding boxes by
image. It is possible to note that the dataset is unbalanced, having a high number of
samples for some classes, such as: “kitchen” (308 images, 7511 bounding boxes), “bed-
room” (350, 5112); and low numbers for others like “cloister” (16, 159) and “winecel-
lar” (16, 222).
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Table 1. MIT67 dataset distribution.

Analysis Mean Std Min Median Max

Images per class 49.2 68.1 16 19 350

Objects per class 959.8 1311.7 159 475 7511

Objects per image 18.8 12.7 1 17 95

4.3 Results

To perform the experiments, we trained GCNs aggregated with the four CNNs archi-
tectures cited in Sect. 4.1. Tables 2 and 3 show the obtained results regarding the fully
connected graph against our approach, respectively. We calculated metrics considering
the efficacy, such as accuracy, precision, recall, and F1, to analyze the results. We also
show the total number of edges generated and the dimensionality of the feature vectors
used to represent the nodes.

Table 2. Results for top 1 performance for fully connected graph on MIT67 dataset.

Fully connected graph on MIT67 dataset

Architecture Accuracy Precision Recall F1 Edges (105) Dimension

EfficientNetB7 69.90 58.68 58.30 56.33 13.95 2560

InceptionV3 63.47 55.67 56.10 52.61 13.95 2048

ResNet50 64.89 56.57 52.69 52.22 13.95 2048

VGG19 57.81 47.90 44.80 42.98 13.95 512

Analyzing Tables 2 and 3 we can see that our approach statistically ties with the
vanilla graph (fully connected graph). Moreover, our approach decreased to a great
extent the number of edges of the graph.

For instance, the fully connected graph and our approach presented 13.95× 105

and 7.13× 105, respectively, regarding the ResNet50. Thus, our approach reduced the
memory footprint up to 96%. We observed this same behavior when analyzing the other
CNNs aggregated with our GNN. According to the results, our approach with Efficient-
NetB7, InceptionV3, and VGG19 achieved reductions of up to 73%, 83%, and 51%,
respectively.

To better visualize all the considered metrics, in Figs. 3 (a) and (b), we generated
the radar plots with the obtained results regarding the fully connected graph and our
approach, respectively. It is clear to note that our approach accomplished a considerable
edge reduction while maintaining efficacy.

We also performed experiments considering random connections. To create the ran-
dom edges and obtain a fair comparison, we used the same number of edges obtained by
our approach. It is important because using a higher or lower number of random edges,
when compared with ours, could lead to a false degeneration of the graph or a false
improvement (higher computational cost). Thus, our approach can also answer which
is the best number of edges to reach a suitable trade-off between efficacy and efficiency.
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Table 3. Results for top 1 performance considering our approach on MIT67 dataset.

Our approach on MIT67 dataset

Architecture Accuracy Precision Recall F1 Edges (105) Dimension

EfficientNetB7 67.58 58.18 57.37 57.37 8.08 2560

InceptionV3 59.10 50.94 48.07 47.49 7.62 2048

ResNet50 58.21 46.93 42.67 42.50 7.13 2048

VGG19 53.33 45.17 42.06 40.91 9.26 512

Fig. 3. Radar plot using different CNN architectures; (a) Fully connected graph; (b) Pruned graph.

The experiment regarding the random edges achieved an accuracy of up to 60%
with InceptionV3. The same behavior, where our approach presented the best results,
was observed regarding the other CNNs. This testifies that our approach effectively
defines the edges’ relevance, capturing the semantic relationship between the objects of
an image to define its global context.

Thus, considering the obtained results, we can argue that our proposed approach
was capable of automatically tunning the GNN graph structure aggregated with a given
CNN, defining well-suited connections according to a given context, improving the
entire process.

5 Conclusions

In this paper, we proposed an approach capable of automatically fine-tuning a given
GNN. To do so, it defines the well-suited connections according to a given image con-
text, improving the effectiveness of the entire process. Our approach was based on the
similarity between the graph nodes (i.e., images).

Despite its simplicity, it reached considerable results. It not only successfully
reduced the memory footprint when using GNNs aggregated with CNNs, but also main-
tained good accuracies when compared with random and complete graphs. This testifies
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that our approach achieved better representativeness of the semantic between an image
and its objects to define the global classification context. Our results showed that the
fine-tuned GNN reached up to 96% regarding the memory footprint while maintaining
the accuracy.

For future works, we intend to explore other image datasets. We also aim to extend
our approach regarding different distances and detection mechanisms for edge rele-
vance.
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