
Interactive Process Drift Detection
Framework

Denise Maria Vecino Sato1,2(B) , Jean Paul Barddal1 ,
and Edson Emilio Scalabrin1

1 Pontifical Catholic University of Paraná (PUCPR),
Imac. Conceição. 1155, 80215-901 Curitiba, Brazil

{denise.sato,jean.barddal,scalabrin}@ppgia.pucpr.br
2 Federal Institute of Paraná (IFPR), João Negrão. 1285, 80230-150 Curitiba, Brazil

denise.sato@ifpr.edu.br

Abstract. This paper presents a novel tool for detecting drifts in pro-
cess models. The tool targets the challenge of defining the better param-
eter configuration for detecting drifts by providing an interactive user
interface. Using this interface, the user can quickly change the parameters
and verify how the process evolved. The process evolution is presented in
a timeline of process models, simulating a “replay” of models over time.
One instantiation of the framework was implemented using a fixed-size
sliding window, discovering process maps using directly-follows graphs
(DFGs), and calculating nodes and edges similarities. This instantiation
was evaluated using a benchmarking dataset of simple and complex drift
patterns. The tool correctly detected 17 from the 18 change patterns,
thus confirming its potential when an adequate window size is set. The
user interface shows that replaying the process models provides a visual
understanding of the changing process. The concept drift is explained by
the similarity metrics’ differences, thus allowing drift localization.

Keywords: Process drift · Concept drift · Drift detection · Evolving
environment

1 Process Mining in Evolving Environments

Process Mining (PM) is gathering more enthusiasts in recent years. The growing
interest can be explained by the current availability of process data recorded
by the informatics systems (big data) and the increasing development of tools
to provide easy access to different PM techniques. The primary input of any
PM technique is event data, which contains information about business process
executions, and can be accessed in the form of event logs (historical information
about the process) or event streams (continuous flow of events associated with
processing instances). The event data must include at least an identifier of the
process instance (case), the event (indicating the occurrence of activity), and
the timestamp in which the event occurred.

Supported by Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior-Brasil
(CAPES)-Finance Code 001, Grant No.: 88887.321450/2019-00.

c© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12855, pp. 192–204, 2021.
https://doi.org/10.1007/978-3-030-87897-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87897-9_18&domain=pdf
http://orcid.org/0000-0003-1117-7082
http://orcid.org/0000-0001-9928-854X
http://orcid.org/0000-0002-3918-1799
https://doi.org/10.1007/978-3-030-87897-9_18


Interactive Process Drift Detection Framework 193

There are three types of PM: discovery, conformance checking, and enhance-
ment [1]. Discovery aims at learning what is happening with the processes by
automatically discovering process models from the event logs without any a pri-
ori knowledge. Conformance checking compares a discovered or designed pro-
cess model to the event log to pinpoint possible deviations. The goal is to help
business analysts to understand problems or even unexpected behavior to sup-
port improvements. In the enhancement, an existent process model is extended
(including new perspectives, e.g., performance) or improved using information
from the event logs. Business analysts can then change the process model to
reflect better reality based on the information provided by discovering or confor-
mance. Discovery, conformance checking, and enhancement are usually applied
offline by analyzing an event log, but PM techniques can also perform online
analysis.

Regardless of the type of analysis, the business processes are not static. Com-
panies and their analysts are always trying to improve the processes to minimize
costs or maximize customer satisfaction. The processes also change when there is
a new regulation or in case of unexpected events. Recently, the whole world had
to adapt roughly every process to address the COVID-19 pandemic situation.
So, it is näıve to assume that models do not change when business processes are
placed in evolving environments. Besides, most state-of-the-art PM techniques
consider the processes to be in a “steady-state”, i.e., thus assuming that an event
log contains information about a single version of the process. This assumption
does not consider the existence of process drifts.

A process drift, or concept drift in processes, occurs when the business pro-
cess changes while being analyzed [7]. The correct identification of the process
drifts is critical when conducting process analysis in evolving environments. By
detecting process drifts, the analysts should better understand the actual process
model without facing a mixed model from different versions of the process. Pro-
cess drift detection can improve reporting and diagnosis analysis, predictions,
recommendations, and operational support by assuring that a more adherent
version of the process model is considered. In online analysis, the process drift
detection can help discovery or conformance checking techniques to maintain an
up-to-dated process model, without the need to continually rediscover it.

Process drift was one of the challenges cited in the Process Mining Manifesto
[7]. Since 2011, researchers have developed different process drift detection tools,
such as ProM ConceptDrift plugin [5,6,10], Apromore ProDrift [8,9,12–14], and
other experimental tools [3,11,15,16,18–21]. However, specific issues make it
difficult to compare the tools affecting the adoption in real scenarios.

We identified the following experimental tools for process drift detection:
Process Drift Detector Plugin (PDD) for ProM [5,6,10], Tsinghua Process Con-
cept Drift Detection (TPCDD) [21], Concept-Drift in Event Stream Frame-
work (CDESF) [3,11], Visual Drift Detection (VDD) [18,19], Dynamic Out-
lier Aggregation (DOA) [20], Online Trace Ordering for Structural Overviews
(OTOSO) [15]. These tools share the drawback of ProM and Apromore, i.e.,
drift detection accuracy is highly affected by the hyperparameter configuration.



194 D. M. V. Sato et al.

Some of them are essentially affected by the window size: TPCDD, CDESF
(the window size is defined by the time-horizon parameter, controlling model
updates), and VDD. The approaches based on clustering, i.e., TPCDD, CDESF,
VDD, DOA, and OTOSO, are also sensitive to the clustering hyperparameters.
The PDD applies an adaptive window approach aiming to solve the window size
choice, but the adaptation is limited to user-given upper and lower bounds.

This paper proposes the Interactive Process Drift Detection (IPDD) Frame-
work to provide a practical tool for process drift detection that can be easily
applied in real scenarios. Section 2 describes process drifts and explores the avail-
able tools. In Sect. 3, the new framework is described. Section 4 presents results
obtained with an instantiation of the proposed framework. Finally, Sect. 5 con-
cludes the paper and indicates next steps for IPDD enhancement.

2 Process Drift

A process drift indicates a point in time where the process changes for a reason.
The changes can be planned and documented or unexpected. A change in the
process reflects a change in its process model, meaning a new one replaces the
existing process model’s version. The new process model can affect the ongoing
process instances in different ways: sudden or gradual [5,6].

In a sudden drift, all the ongoing process instances start to emanate from the
new process model when the drift occurs. It can occur when a new regulation
should be followed or even within an epidemic situation. In a gradual drift, the
new process starts emanating process instances, but both versions coexist for
some time, indicating a gradual replacement of the model. The authors in [5,6]
also describe two different dynamics for the changes: recurring and incremental.
In the recurring drift, the current model is replaced by a new one, but the
new model is replaced by the previous one after some time. The incremental
drift represents minor incremental changes implemented during some time. The
recurring drift can indicate seasonal changes, for instance. An incremental drift
can occur in companies to minimize risks for significant changes. In each process
model transition, we can have a sudden or a gradual drift.

Process drifts can occur at different time granularities. For instance, we can
have a recurring drift that occurs every season, e.g., summer, winter, fall, and
spring; and another drift occurring at the last week of the month, e.g., for spe-
cific accounting tasks. Both drifts coexist, yet they occur at different time gran-
ularities. In [10], the authors named this situation as multi-order dynamics,
reinforcing that any drift detection mechanism should deal with different time
granularities when identifying process drifts.

A process drift can affect one or more perspectives of the model, which are
partially overlapping. The most common perspectives described in [1] are:

1. Control-flow. It represents the process model’s behavior based on the struc-
ture of activities (sequential, parallel, choice, loops).

2. Organizational. Resources related to the process activities, which can be
people, systems, departments, or others.



Interactive Process Drift Detection Framework 195

3. Data. It is related to the information relevant to the process associated with
the case, e.g., supplier, or to a specific activity, e.g., a machine.

4. Time. Time and frequency of activities.

Tools and methods form handling process drifts should consider the types
and perspectives of change and can also address different problems [5,6]:

1. Change point detection. Identify the point in time (timestamp) that the
drift occurred. The change point can be reported by the case index, the event
index, or the date/time where the change starts. Change point detection is
the most common problem addressed by the available tools.

2. Change localization. Report the process model region which has changed,
e.g., between activities A and B. This problem partially overlaps with “unravel
process evolution”, however, ProM and Apromore addressed this challenge
without providing the process evolution. This problem is more about local
changes and not the global picture of the drift.

3. Change characterization. Specify the type of change and in which perspec-
tive it occurred. This problem is less explored because few methods detect
different process drifts or consider different perspectives.

4. Unravel process evolution. Relate and explore the former discoveries,
putting everything together to understand the process’s evolution over time.
We did not identify any tool that explored this problem.

We focus on problems 1, 2, and 4. We propose IPDD, a framework for detect-
ing change points and visually presenting its localization and process model evo-
lution. IPDD deals with sudden drifts in the control-flow perspective. Incremen-
tal, recurring drifts, or multi-order dynamics are addressed by the user interface,
allowing to check the detected drifts with different parameters.

2.1 Process Drift Detection Tools

Process drift detection tools can be divided into two categories: academic and
experimental tools. We did not find any commercial tool with a process drift
detection mechanism. We only report the tools that provide the source code or
an executable interface due to space limitations.

The first identified tool for process drift detection is the Concept Drift plugin
in ProM1. Different approaches have been implemented in this plugin [5,6,10]
to address change point detection for sudden and gradual drifts and multi-order
dynamics. The user can also search for change localization by selecting a pair of
activities; in this case, the tool checks if there is a change between the selected
activities. The user has to select many options for using the plugin: log configu-
ration (join logs, split the log or not), feature to be compared (global or local),
parameters of the feature, window strategy (fixed or adaptive, sliding over traces
or time periods) with parameters, type of drift to detect (gradual or sudden),
1 ProM is an open source framework that provides a big set of tools for the discovery

and analysis of process models from event logs: http://www.processmining.org.

http://www.processmining.org


196 D. M. V. Sato et al.

and the statistical test applied along its parameters. The user is required to set
many configurations before even know if there is potential drift in the event log.
Furthermore, the two types of drifts detected (sudden and gradual) must be sep-
arately checked. The plugin is designed for offline analysis, and it is not working
if any global feature is selected, thus raising an exception. The results are highly
sensitive to the parameters chosen, and there is no user-friendly interface to
compare the results from different configurations. It is not possible to obtain the
accuracy of the method, e.g., F-score, for synthetic logs in the plugin’s interface.

Apromore2 is another academic tool that provides a plugin for concept
drift detection reporting change points, change characterization, and localiza-
tion (ProDrift). ProDrift has different approaches implemented [8,9,12–14] and
can detect drifts from a stream of traces (based on runs, which is an abstraction
for the traces) or event streams. The tool can detect sudden and gradual drifts
from event streams in an integrated way, i.e., the user does not have to specify
the type of drift to be detected. ProDrift also has different types of parameters:
approach (runs or events), windowing strategy (fixed or adaptive), and window
size. The event-based approach includes a noise filter threshold, drift detection
sensitivity, characterization (on/off), characterization method (activity-based or
fragment-based), and characterization noise filter threshold. The accuracy of
the detection method is highly sensitive to the chosen parameter values. An
advantage of Apromore is that it has default values for each parameter. Yet, a
drawback is that it is not possible to quickly check the differences in the process
model before and after a detected change point. The adaptive window approach
uses an initial window size value as input, but the plugin applies an algorithm
to initialize it if the user does not specify. However, this initial size definition is
not explained in the papers supporting the implementation [8,9,12–14].

The identified experimental tools for process drift detection are: Process
Drift Detector Plugin for ProM [16], Tsinghua Process Concept Drift Detec-
tion (TPCDD) [21], Concept-Drift in Event Stream Framework (CDESF) [3,11],
Visual Drift Detection (VDD) [18,19], Dynamic Outlier Aggregation (DOA) [20],
Online Trace Ordering for Structural Overviews (OTOSO) [15]. These tools share
the drawback of ProM and Apromore, i.e., drift detection accuracy is highly
affected by the hyperparameter configuration. Some of them are essentially
affected by the window size: TPCDD, CDESF (the window size is defined by the
time-horizon parameter, controlling model updates), and VDD. The approaches
based on clustering, i.e., TPCDD, CDESF, VDD, DOA, and OTOSO, are also
sensitive to the clustering hyperparameters. The Process Drift Detector Plugin
for ProM applies an adaptive window approach aiming to solve the window size
choice, but the adaptation is limited to user-given upper and lower bounds.

The remaining issue for the available tools is hyperparameter setup. The
choice of the window size is critical in any drift detection approach because a
small window size may lead to false positives, and a large one may lead to false

2 Apromore is a collaborative business process analytics platform with distinct edi-
tions. The ProDrift is an experimental plugin: https://apromore.org/platform/
tools/.

https://apromore.org/platform/tools/
https://apromore.org/platform/tools/


Interactive Process Drift Detection Framework 197

negatives making it challenging to pinpoint the exact location of the drift [9].
Hyperparameter tuning is essential for providing a tool for detecting drifts in
real-world scenarios. The current tools do not provide accuracy metrics neither
reveal process evolution, turning the hyperparameter tuning an arduous task.
By default, the tools focus on reporting the change points and leaving the user
to understand the process model’s change by splitting the log and applying
discovery techniques in all the resulted sub-logs. Our proposal (IPDD) fills this
gap by providing an interactive process drift detection tool, easy to use, and a
reduced number of parameters. The interface allows the user to quickly verify
the detection results by visualizing the process models over time.

3 Interactive Process Drift Detection Framework

The proposed framework (IPDD) aims at overcoming the reported issues of the
available tools: a not so user-friendly interface, the difficulty in comparing results
obtained by different parameter configurations (not allowing hyperparameter
tuning), complex configuration, and not reporting the accuracy metrics in a
common manner. Figure 1 shows an overview of the proposed framework.

Fig. 1. Overview of interactive process drift detection framework.

The definition of the parameters’ values is challenging when starting a process
drift analysis because the user has to determine a priori what will be a “good”
parameter for each situation. We propose to solve this issue by providing an
interactive and easy user interface, leaving the user free to test different param-
eters quickly. The commercial tools for process discovery (e.g., Disco) inspired



198 D. M. V. Sato et al.

this format, as they usually present a simplified version of the process model in
which the user can navigate by zooming in or out to understand the process. The
goal is to allow the user to navigate between different granularities of change and
inspect the process evolution. The hyperparameter tuning is allowed by the user
interface, which provides the process evolution for each tested parameter config-
uration. The user can also verify the chosen parameters’ accuracy by checking
the evaluation module.

3.1 Windowing Strategy

An event log in XES format3 can be uploaded into the IPDD. Next, by applying
a windowing strategy, the events are split into separated windows. The window
strategy can consider the event log as time series of traces, i.e., a stream of traces,
by ordering the traces by the first event’s timestamp. The windows can also be
defined based on events, sorted by their timestamp, i.e., time series of events.
The size of the window can be fixed or adaptive. Using fixed-size windows,
the user must specify the size as the number of traces or event or as a time
window, e.g., hours, days. The windows can be overlapping or non-overlapping,
continuous, or non-continuous. All of the identified options can be implemented
in the windowing strategy step of the framework. The window slots containing
a set of traces/events are forward to the next step, named process discovery.

3.2 Process Discovery

For each window slot provided in the first step, IPDD applies a process discovery
algorithm to derive a process model. Several algorithms have been proposed for
process discovery, and any discovery technique has its own representational bias,
i.e., the process model that can be discovered [1]. The resulted process models
can be declarative or imperative, and several notations are available [1]. Another
option is to use a DFG, also named process map, for simplicity and scalability.
This option simplifies the mined process models but still shows relevant insights
about the process paths with metrics.

The discovery algorithm’s choice is related to the resulted process model, its
ability to filter noise, its performance, etc. In the process discovery step, any
implemented discovery algorithm can be called, like a black-box. The derived
models are forward to the next step. An advantage of using the process model is
that the framework can quickly show the process changes over time to the user.

3.3 Model-to-Model Comparison

In the previous step, IPDD derives a process model for each window slot. Com-
paring models from adjacent windows allow identifying differences. Any differ-
ence can be a potential drift, and the type of change that can be detected is
related to the metric chosen for this comparison. There are several metrics for
3 See www.xes-standard.org for detailed information about the standard.

www.xes-standard.org


Interactive Process Drift Detection Framework 199

comparing process models [4], and they are related to the notation of the process
model mined. In this step, IPDD calculates the implemented similarity metrics
between adjacent models.

The metric should be adherent to the process model derived by the chosen
discovery algorithm. There is no limitation about the number of metrics that
can be included, and the user can select one or more of the available metrics.
IPDD implements a timeout mechanism for avoiding freezing the user interface
when calculating the metrics. If the timeout is reached, only the finished metric
results are shown. The result of this stage is reporting each metric’s value. If a
metric has a value bounded in the [0, 1] interval, with one indicating that the two
models are similar, a potential drift can be considered when this metric value is
below one. Any metric with a value indicating dissimilarity triggers an update
in the user interface, marking the window as a potential drift.

We choose to use a model-to-model comparison instead of trace comparison
scheme, e.g., applying statistical or clustering approaches, because we can iden-
tify drifts that affect the process model. The chosen process model notation can
provide the detection of different drifts. For instance, if we choose to generate a
model with the frequencies annotated in the path between activities, IPDD can
implement a metric for comparing these frequencies. In this example, IPDD can
handle control-flow drifts that do not affect the structure of the process model
but affects the routing of cases. It is also possible to localize the drift in the
process model by checking the similarity metrics’ differences.

3.4 Evaluation

IPDD receives the real drift position as trace/event indexes or date/time values.
It can then calculate an accuracy metric to measure if the windows reported
as potential drifts include the real drifts. We identified two metrics for measur-
ing the accuracy of concept drift in process models: F-score and mean delay,
reported in [8–10,12–14,16,21]. IPDD reports a drift by indicating the window
that renders a model dissimilar to the one obtained in the previous window, so
the F-score can be applied to evaluate the accuracy of the detected drifts.

The F-score represents the harmonic mean of recall and precision, calculated
based on the true positives (TP), false positives (FP), and false negatives (FN).
It is critical to define that a TP should consider an interval of indexes because the
detection mechanism cannot detect the drift by the time it has occurred. In other
words, if the real drift initiates in the i-th trace, a TP occurs when the detection
method reports a drift in the interval [i, i + et], where et indicates an error
tolerance and should be configured. The FPs and FNs should also be consistent
with the definition of the TP. The mean delay represents the distance between
the occurrence of the real drift and the drift flagged. This distance relates to the
windowing strategy adopted. For instance, if the instantiation used a window
over traces, this distance is the difference between the trace index of the real
drift and the detected one.



200 D. M. V. Sato et al.

4 Results

We implemented a prototype to validate the IPDD and its user interface4. This
prototype is an instantiation of the framework that encompasses the following:

1. Windowing strategy. Non-overlapping and continuous windows of traces
(ordered as time series, based on the first activity’s timestamp). The windows
have a fixed size of traces defined by the user.

2. Process discovery. We applied the Pm4Py5 framework to discover the DFG,
with the frequencies of activities and paths.

3. Model-to-model comparison. We calculated the node similarity (NS) and
edge similarity (ES) scores between two consecutive process maps (P and Q).
NS is calculated using Eq. 1 [2], where np and nq are the number of activities in
process maps P and Q, respectively, and ncs indicates the number of common
activities between P and Q. ES is calculated using Eq. 2, which is similar to
NS, however using: ep is the number of edges in P , eq is the number of edges
in Q, and ecs indicates the number of common edges in both P and Q.

NS = 2 ∗ ncs/(np + nq) (1)

ES = 2 ∗ ecs/(ep + eq) (2)

The prototype calculates both metrics, and if one or both is less than zero,
IPDD marks the current window as a drift.

4. Evaluation. There is no evaluation metric already implemented, but we have
the F-score metric defined to measure the detected drifts’ accuracy. Because
of the window strategy choice, a TP represents a window reported as a drift
containing a trace inputted as a real drift. An FP should be counted when a
window reporting a drift does not contain any of the traces inputted as real
drifts. Finally, an FN should be incremented when a window that does not
report a drift contains any traces inputted as real drifts.

Figure 2 shows a snapshot of the prototype. After setting the window size, the
prototype mine the models and calculate the similarity metrics between adjacent
models (NS and ES). The window with a similarity metric value below one is
marked in red, indicating a drift. The user can check the process mined for this
window and verify the metric value and the differences. In Fig. 2 (displayed in
the lower-left corner), the edges from activity “Assess eligibility” to “Send accep-
tance pack” and to “Send home insurance” are included, indicating what has
changed in the model. In this example, the activities “Prepare acceptance pack”
and “Check if home insurance quote is requested” are optional after the drift; the
new edges allow skipping both activities after performing “Assess eligibility”.

To validate the tool’s usage, we apply the drift detection in some of the logs
publicized in [9]. The dataset contains 72 logs with different change patterns
4 Available at https://github.com/denisesato/InteractiveProcessDriftDetectionFW.
5 PM4Py is a python open source PM platform: https://pm4py.fit.fraunhofer.de/.

https://github.com/denisesato/InteractiveProcessDriftDetectionFW
https://pm4py.fit.fraunhofer.de/


Interactive Process Drift Detection Framework 201

Fig. 2. Snapshot of the prototype implementation.

Table 1. Experiments description.

Change pattern Category Drifts
detected?

Metric that detects
the drifts

cb: make fragment skippable/non-skippable O Yes ES

cd: synchronize two fragments R Yes ES

cf: make two fragments conditional/sequential R Yes ES

cm: move fragment into/out of the conditional
branch

I Yes ES

cp: duplicate fragment I Yes ES

fr: change branching frequency O No -

lp: make two fragments loopable/not-loopable O Yes ES

pl: make two fragments parallel/sequential R Yes ES

pm: move fragment into/out of parallel branch I Yes ES

re: add/remove fragment I Yes NS and ES

rp: substitute fragment I Yes NS

sw: swap two fragments I Yes ES

IOR IOR Yes NS and ES

IRO IRO Yes NS and ES

OIR OIR Yes NS and ES

ORI ORI Yes NS and ES

RIO RIO Yes ES

ROI ROI Yes NS



202 D. M. V. Sato et al.

and inter-drift distances (distance between each injected drift). The authors use
a business process for assessing loan applications containing 15 activities and
different control-flow structures as the base model. Next, they injected different
types of control-flow changes, simulating sudden recurring drifts (9 drifts in each
log). The base model was changed using 12 simple change patterns (described
in [17]) and 6 complex patterns (the composition of 3 simple patterns). Each
change pattern is injected using 4 inter-drift distances (250, 500, 750, and 1,000).
We select all change patterns with the inter-distance of 500 to validate IPDD
(Table 1). For the change patterns lp and re, we used the files named 2.5k as these
files contain inter-drift distance of 500. Each pattern is categorized as Insertion
(I), Resequentialization (R), and Optionalization (O). For the complex pattern,
the authors randomly apply one pattern from each category in a nested way.

Table 1 shows that the implemented instantiation for IPDD correctly detects
drifts for 17 out of the 18 patterns using NS and ES. The detection is possible
when configuring a window size equal to the inter-drift distance (500). The fr
pattern is not detectable because there is no structural difference between the
models; the drift only changes the frequencies in one branch of the process. The
choice of the window size is still an issue. If the window size is configured with
a value higher than the inter-drift distance, the drift will not be detected.

5 Conclusion

IPDD has been validated by a prototype implementation that demonstrates its
use for detecting sudden drifts in the control-flow perspective. The main con-
tribution of the novel approach is the interactive user interface, which provides
the user with a tool for quickly checking different values for window sizes. The
drift can be visually checked by analyzing the process models from adjacent
windows and the metrics’ value describing the detected differences. The imple-
mented metrics (NS and ES) can detect 17 (from 18) change patterns in the
public dataset. The window size choice is still a challenge, but the interactive
user interface provides an easy way of testing different values. We plan to extend
IPDD by including new instantiations implementing the defined evaluation met-
ric (F-score) and a similarity metric related to the frequencies between activities.

References

1. van der Aalst, W.M.: Process Mining: Data Science in Action. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. Akkiraju, R., Ivan, A.: Discovering business process similarities: an empirical study
with SAP best practice business processes. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 515–526. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-5 35

3. Barbon Junior, S., Tavares, G.M., da Costa, V.G.T., Ceravolo, P., Damiani, E.:
A framework for human-in-the-loop monitoring of concept-drift detection in event
log stream. In: WWW 2018: Companion Proceedings of the The Web Conference
2018, vol. 2, pp. 319–326. Association for Computing Machinery (ACM) (2018)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-17358-5_35


Interactive Process Drift Detection Framework 203

4. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Comput. Ind. 63(2), 148–167 (2012)

5. Bose, R.P.J.C., van der Aalst, W.M., Žliobaite, I., Pechenizkiy, M.: Dealing with
concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1),
154–171 (2014)

6. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling
concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21640-4 30

7. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

8. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual
drifts in business processes from execution traces. IEEE Trans. Knowl. Data Eng.
29(10), 2140–2154 (2017)

9. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business
process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.)
BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23063-4 27

10. Martjushev, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Change point detection and
dealing with gradual and multi-order dynamics in process mining. In: International
Conference on Business Informatics Research, pp. 1–15 (2015)

11. Mora, D., Ceravolo, P., Damiani, E., Tavares, G.M.: The CDESF toolkit: an intro-
duction. In: ICPM Doctoral Consortium and Tool Demonstration Track 2020, vol.
2703, pp. 47–50 (2020). CEUR-WS.org

12. Ostovar, A., Leemans, S.J.J., Rosa, M.L.: Robust drift characterization from event
streams of business processes. ACM Trans. Knowl. Discovery from Data 14(3),
1–57 (2020)

13. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M.: Characterizing drift
from event streams of business processes. In: Dubois, E., Pohl, K. (eds.) CAiSE
2017. LNCS, vol. 10253, pp. 210–228. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59536-8 14

14. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.:
Detecting drift from event streams of unpredictable business processes. In: Comyn-
Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016.
LNCS, vol. 9974, pp. 330–346. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46397-1 26

15. Richter, F., Maldonado, A., Zellner, L., Seidl, T.: OTOSO: online trace ordering
for structural overviews. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP,
vol. 406, pp. 218–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72693-5 17

16. Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using
graph metrics on process graphs. In: Proceedings of the 9th Conference on Subject-
oriented Business Process Management, S-BPM ONE 2017, vol. Part F1271 (2017)

17. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438–466 (2008). ISSN 0169023X

18. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Comprehensive pro-
cess drift detection with visual analytics. In: Laender, A.H.F., Pernici, B., Lim,
E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 119–135. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33223-5 11

https://doi.org/10.1007/978-3-642-21640-4_30
https://doi.org/10.1007/978-3-642-21640-4_30
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-319-23063-4_27
https://doi.org/10.1007/978-3-319-23063-4_27
http://www.CEUR-WS.org
https://doi.org/10.1007/978-3-319-59536-8_14
https://doi.org/10.1007/978-3-319-59536-8_14
https://doi.org/10.1007/978-3-319-46397-1_26
https://doi.org/10.1007/978-3-319-46397-1_26
https://doi.org/10.1007/978-3-030-72693-5_17
https://doi.org/10.1007/978-3-030-72693-5_17
https://doi.org/10.1007/978-3-030-33223-5_11


204 D. M. V. Sato et al.

19. Yeshchenko, A., Mendling, J., Ciccio, C.D., Polyvyanyy, A.: VDD: a visual drift
detection system for process mining. In: ICPM Doctoral Consortium and Tool
Demonstration Track 2020 (2020). CEUR-WS.org

20. Zellner, L., Richter, F., Sontheim, J., Maldonado, A., Seidl, T.: Concept drift
detection on streaming data with dynamic outlier aggregation. In: Leemans, S.,
Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 206–217. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72693-5 16

21. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs.
In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 524–542. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69462-7 33

http://www.CEUR-WS.org
https://doi.org/10.1007/978-3-030-72693-5_16
https://doi.org/10.1007/978-3-319-69462-7_33

	Interactive Process Drift Detection Framework
	1 Process Mining in Evolving Environments
	2 Process Drift
	2.1 Process Drift Detection Tools

	3 Interactive Process Drift Detection Framework
	3.1 Windowing Strategy
	3.2 Process Discovery
	3.3 Model-to-Model Comparison
	3.4 Evaluation

	4 Results
	5 Conclusion
	References




