
Active Learning Strategies
and Convolutional Neural Networks

for Mammogram Classification

João Marcelo Tozato(B) , Pedro Henrique Bugatti ,
and Priscila Tiemi Maeda Saito

Department of Computing, Federal University of Technology - Parana,
1640 Alberto Carazzai Ave, Cornelio Procopio, Parana, Brazil

tozato@alunos.utfpr.edu.br, {pbugatti,psaito}@utfpr.edu.br

Abstract. Deep learning has been used successfully in a variety of appli-
cations due to the large data availability and the growth in computing
power. However, some domains present a shortage of both samples and
labels, for instance, the medical area. In this work, we propose machine
learning approaches that include traditional supervised classifiers and
active learning methods for the breast lesion domain, in order to aid breast
cancer diagnosis. We propose the introduction of active learning strategies
in this process, to sort out the most informative samples in the dataset.
The active learning process reduces the burden of the dataset annotation,
while also improving the robustness of our models. Hence, we achieved
considerable gains with fewer labeled training images, minimizing the spe-
cialist’s annotation effort. The validation of our proposed methodology is
done on a public breast lesion-related dataset and our results show con-
siderable accuracy gains over the traditional supervised learning approach
and reductions of up to 68% in the labeled training sets.
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1 Introduction

The usage of deep learning for classification or segmentation tasks has become
extremely efficient in a variety of application domains, such as medical problems.
For instance, in hemorrhage detection in CT scans [6], segmentation of MRI scan
images of the brain [1], breast cancer detection [9], amongst other applications.

According to the American Institute for Cancer Research [4], breast cancer is
the most common type and the fifth major cause of death in women worldwide.
Hence, applying intelligent systems in this scenario can assist in the decision
process of the professional in charge of the diagnosis. Furthermore, the early
diagnosis of this disease can reduce its mortality rate.

Despite some efforts found in the literature [10,14,18], most of these consider
learning approaches that require a substantial amount of labeled data and do
not take into account some mandatory restrictions of medical applications (e.g.
mostly related to computational time and resources).
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In addition, there are other challenges related to data acquisition and labeling
processes. The gathering of mass-related breast lesion images is not trivial due
to the maintenance of patients’ privacy, availability of data by hospitals, among
others. Moreover, generally, there is the requirement of sample labeling by one or
more specialists (e.g. considering radiologists with different levels of experience)
to ensure that the correct labels are assigned. It also impacts and contributes
to the lower availability of labeled samples. The data labeling process requires
time and effort from the specialist and is highly susceptible to errors.

Therefore, this paper addresses the study, development and validation of
active learning strategies, in order to compare them to the traditional super-
vised learning approach. Active learning strategies have been widely used and
successful in several other application domains. Such strategies allow for obtain-
ing a reduced set of the most informative samples to the learning process of pat-
tern classifiers. More effective and efficient classifiers can be obtained, achieving
higher accuracies faster and minimizing the effort of the expert in the labeling
process.

2 Background

The active learning approach considers the usage of the classifier in the selection
of the most informative samples from a designated dataset. This method is
advantageous on tasks that require hundreds or even thousands of labeled data
(such as images), mainly by reducing the burden of annotating the whole dataset,
which demands plenty of time and effort from a specialist in a given domain to
execute the labeling of these samples [3].

It is an iterative process that makes use of a selection strategy to gradually
obtain a fixed number of samples and incorporate them in the training dataset
of the learning algorithm. In such way, by using the active learning approach, it
is possible to create robust classification models with far less labeled instances
and hence reducing the cost of the data labeling process.

At each iteration of the active learning process, a fixed number of samples
(for our methodology twice the number of existing classes) is selected by the
selection strategy and then gradually incorporated into the training set. New
instances of the classifier are obtained and evaluated in the test set. Each active
learning method used in this work to select the most informative samples is
related to the uncertainty criterion [16].

There are different active learning strategies in the literature, one of them is
based on Entropy (EN) [17], which can be understood as the degree of uncer-
tainty of a variable, prioritizing samples that have a greater value for this mea-
sure. It calculates this according to the Eq. 1, where y is the probability of a
given label for a sample x.

EN(x) = −
∑

pi(y|x) log pi(y|x) (1)

In the technique called Least Confidence (LC) [11], the model selects the sample
that presents a lower confidence for the most probable class. Equation 2 shows
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the inner working of this technique, where y′ is the highest probability given by
the model for a sample x. Thus, a lower value for the probability of the most
probable class leads to a higher chance of this sample being selected, due to the
low confidence assigned to it.

LC(x) = 1 − p(y′|x) (2)

Equation 3 shows the Margin Sampling (MS) [15] technique, which takes into
account not only the most likely label, as in the previous strategy, but it is
based on the smallest difference between the first and second most likely labels
for sample selection, where y′ and y′′ represent the highest probabilities for a
sample x.

MS(x) = p(y′′|x) − p(y′|x) (3)

3 Proposed Methodology

Initially, according to the first step of our pipeline (Fig. 1) we obtained and
organized our dataset as described in Subsect. 4.1. Our methodology consists in
two key approaches (traditional supervised learning and active learning, respec-
tively) as shown in Steps 3 and 4 of the pipeline. Both approaches depend on
the extraction of deep features through the use of CNNs (according to Step 2),
which are acquired by removing the classification layers of a CNN model and
getting the output of a given layer. In the present work we consider the last layer
before the fully connected layers for this process.

For the feature extraction process we apply the Transfer Learning strategy,
which allowed the initialization of our network’s weights based on the weights of
another neural network that was already trained on the ImageNet dataset [5].
The parameters of the old network are reused for the inference process of this
new network, therefore reducing the computational cost to train neural networks
from scratch.

We have also applied normalization to our input data. It is a technique that
aims to adjust the mean and standard deviation of the input data values of a
given neural network on a common scale, such as close to zero and one, respec-
tively. It becomes especially important when using pre-trained neural networks,
due to the fact that the model only knows how to work with data of the type
that it has seen before. If the inputs of the new network using these parameters,
do not share these normalization statistics, the results will not be as expected.

The fourth step of our methodology consisted in using active learning strate-
gies alongside with traditional classifiers. Active learning strategies allow the
selection of the most informative samples for the learning process. Therefore,
we can reduce the amount of annotated images required for classification tasks
while achieving significant or equivalent results when compared to the supervised
approach, which requires a completely annotated training set.

We performed comparisons between the active learning strategies and the
random sample selection at each iteration. In addition, we also compared the
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Fig. 1. Pipeline of the proposed methodology.

traditional supervised learning approach (which require a fully annotated train-
ing set) and the active learning strategy.

4 Experiments

4.1 Dataset

We used in this work the public dataset called MAMMOSET [12], which contains
images regarding to three types of lesions: mass, calcification and normal (with
no kind of lesion). For this work we have considered exclusively the subset of
mass-related lesions, which are divided into malignant or benign. Figure 2 shows
samples of the two distinct classes of the dataset.

The subset contains 1381 images in total and are distributed in the following
manner: the training and test set are composed of 568 and 67 images for the
malignant class and 671 and 75 images for the benign class, respectively.

4.2 Scenarios

Our training set is divided into 10 mutually exclusive stratified splits so that the
percentage of each class samples is preserved. Each split has its own validation
set, which is used to check the performance and model’s biases during its training
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Fig. 2. Examples of images from the MAMMOSET dataset: (a) malignant sample, (b)
benign sample.

in that split. At the end of the training of a given split, we start the inference
process in a fixed test set that is the same throughout the process for each split.
The traditional supervised learning and active learning experiments were con-
ducted using the deep features extracted from the CNN architectures (DenseNet-
121, DenseNet161, EfficientNetB3, EfficientNetB4 ResNet34 and ResNet50) in
conjunction with traditional classifiers such as k-Nearest Neighbors (k-NN) [13],
Naive Bayes (NB) [7], Random Forest (RF) [2] and Support Vector Machines
(SVM) [8]. The images of the dataset were resized to 224 x 224 pixels before
being used as input to the CNNs. For every network considered in the feature
extraction process, we have not updated its weights, these architectures were just
used as fixed feature extractors. Table 1 shows the dimensionality of each feature
map of the CNNs used in the feature extraction process. The hyper-parameters
chosen for the classifiers are the standard as provided in their literature.

Table 1. Description of the deep feature extractors with respect to their feature map
dimensionality.

Extractor Feature dimensionality

DenseNet121 1024

DenseNet161 1664

EfficientNetB3 1536

EfficientNetB4 1792

ResNet34 512

ResNet50 2048

5 Results and Discussion

Initially, we show the results obtained by the traditional learning approach
(Fig. 3), considering the deep features extracted from each of the CNN architec-
tures and the supervised classifiers (k-NN, NB, RF and SVM, respectively). We
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Fig. 3. Mean accuracies obtained by the traditional learning approach considering the
deep features extracted from each architecture (DenseNet121, DenseNet161, Efficient-
NetB3, EfficientNetB4, ResNet34 and ResNet50) and the supervised classifiers: (a)
k-NN, (b) NB, (c) RF and (d) SVM.

can notice that, in general, the deep features obtained from the EfficientNetB3
architecture presented higher accuracy values in relation to the other architec-
tures for all classifiers. The EfficientNetB3 architecture achieved the highest
accuracy (up to 66.98 ± 3.43) with the SVM classifier. It is important to note
that these experiments requires all samples from the dataset labeled.

Then, we performed experiments considering the active learning approach
with the features extracted from the EfficientNetB3 architecture, in order to
reduce the need to annotate all samples in the dataset. The reason for choos-
ing this particular architecture is mainly due to its consistency and overall high
accuracies presented in the supervised learning experiment. Figure 4 presents the
mean accuracies obtained by the selection strategies (EN, LC, MS and RAN-
DOM) along the iterations of the learning process, considering each of the super-
vised classifiers (k-NN, NB, RF and SVM, respectively).
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Fig. 4. Mean accuracies obtained by the active learning approach considering the selec-
tion strategies (EN, LC, MS and RANDOM), features extracted from the Efficient-
NetB3 architecture and the supervised classifiers: (a) k-NN, (b) NB, (c) RF and (d)
SVM.

It is possible to note that the active learning approach achieves better results
with a reduced labeled training dataset, when comparing to the traditional super-
vised learning approach, which requires the dataset to be completely labeled. The
active learning strategies allow a significant reduction (up to 44%, 68%, 61%,
60%) in the labeled training set required to reach accuracies equivalent to those
obtained by the traditional supervised approach, considering the k-NN, NB, RF
and SVM classifiers, respectively.

Table 2 shows the computational times for each combination of active learning
strategy and classifier. We can verify that, as a more complex classifier, the SVM
model presented classification times much higher than the others. Moreover, the
random strategy (RANDOM) achieved smaller selection times, since it does not
have a specific criterion for the selection of the samples that will integrate the
training dataset.
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Table 2. Total selection and classification times in seconds obtained by the active
learning approach considering the selection strategies (EN, LC, MS and RANDOM),
features extracted from the EfficientNetB3 architecture and the supervised classifiers
(k-NN, NB, RF and SVM).

Strategy Classifier Selection time Classification time

EN k-NN 1.002e+00 1.477e-01

LC 8.151e-01 1.101e-01

MS 8.132e-01 1.103e-01

RANDOM 1.619e-02 4.839e-02

EN NB 9.541e-02 3.975e-02

LC 5.920e-02 2.184e-02

MS 6.288e-02 2.509e-02

RANDOM 2.500e-02 1.145e-02

EN RF 2.273e-02 1.181e-01

LC 1.303e-02 8.439e-02

MS 1.565e-02 9.341e-02

RANDOM 2.785e-02 9.621e-02

EN SVM 6.496e-01 3.309e+00

LC 5.404e-01 2.652e+00

MS 7.282e-01 3.657e+00

RANDOM 1.288e-02 2.666e+00

6 Conclusion

In the present work, we conduct extensive experiments following the proposed
methodology in order to assist in the diagnosis of breast cancer lesions. We
compared the results obtained from two main different approaches to this image
classification task: supervised learning and active learning strategies alongside
with traditional classifiers. Regarding the active learning approach, we were able
to verify that, in contrast to the supervised approach, which requires the whole
labeled dataset for its learning process, the selection strategies provide a way to
create representative training sets and achieve high accuracies for this particular
classification task.

We also explored the significance of using active learning strategies with
CNNs on image classification tasks, exhibiting that it is possible to reach expres-
sive results with a reduced labeled dataset, specially when comparing to tradi-
tional supervised learning. The results obtained in the carried out experiments
show the benefits of the usage of active learning strategies in the development
process of a classifier, since in this medical context is not common that all the
available images are annotated. Then, by selecting the most informative samples
for the model’s learning there is a reduction in both time and effort required for
the labeling process of a dataset by a specialist.
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18. Valério, L.M., Alves, D.H., Cruz, L.F., Bugatti, P.H., de Oliveira, C., Saito, P.T.:
Deepmammo: deep transfer learning for lesion classification of mammographic
images. In: 2019 IEEE 32nd International Symposium on Computer-Based Medical
Systems (CBMS), pp. 447–452. IEEE (2019)

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.wcrf.org/dietandcancer/breast-cancer
https://www.wcrf.org/dietandcancer/breast-cancer
https://doi.org/10.1155/2018/8243764
https://doi.org/10.1155/2018/8243764
https://doi.org/10.5120/ijca2017914696
https://doi.org/10.1007/3-540-44816-0_31

	Active Learning Strategies and Convolutional Neural Networks for Mammogram Classification
	1 Introduction
	2 Background
	3 Proposed Methodology
	4 Experiments
	4.1 Dataset
	4.2 Scenarios

	5 Results and Discussion
	6 Conclusion
	References




