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Chapter 7
Comparative Analysis of Packages 
and Algorithms for the Analysis 
of Spatially Resolved Transcriptomics Data

Natalie Charitakis, Mirana Ramialison, and Hieu T. Nim

7.1  Introduction

Despite the natural stochasticity that can disrupt biological processes such as organ 
development, biological systems consistently produce the same gene expression 
pattern with sufficient robustness such that the embryo forms correctly (nearly) 
every time. Furthermore, the genes typically work together in networks, requiring a 
systems-wide transcriptomic approach to fully understand the spatial expression 
patterns. Many of these create well-defined regions of cells within developing tis-
sues that can be easily reproduced, demonstrating how the spatial location of the 
gene regulatory networks is critical for the proper formation of tissues (Exelby et al. 
2021). Determining these networks is an active study area in the emerging field of 
‘spatial biology’, and calls for specialised computational techniques, many of which 
have been developed very recently.

The merits and limitations of single-cell RNA Sequencing (scRNA-Seq) have 
been well established (Hwang et  al. 2018; Chen et  al. 2019) and the method 

Co-senior authors: Mirana Ramialison and Hieu T. Nim.

N. Charitakis 
Murdoch Children’s Research Institute, Parkville, VIC, Australia 

Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
e-mail: natalie.charitakis@mcri.edu.au 

M. Ramialison (*) · H. T. Nim (*) 
Murdoch Children’s Research Institute, Parkville, VIC, Australia 

Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia 

Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash 
University, Clayton, VIC, Australia
e-mail: mirana.ramialison@mcri.edu.au; hieu.nim@mcri.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87821-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-87821-4_7#DOI
mailto:natalie.charitakis@mcri.edu.au
mailto:mirana.ramialison@mcri.edu.au
mailto:hieu.nim@mcri.edu.au


166

successfully applied across varying organs and conditions (Karaayvaz et al. 2018; 
Regev et al. 2017; Dong et al. 2018; He et al. 2020; Ximerakis et al. 2019; Tiklová 
et al. 2019; Zhou et al. 2021). scRNA-Seq is capable of identifying rare cell popula-
tions, including in disease states and developmental stages; however, the method 
yields noisy, variable data with lots of technical variation (Chen et al. 2019). Despite 
scRNA-Seq allowing for the study of cellular heterogeneity and cell type hierarchy, 
the loss of spatial information prevents the systematic study of physiological struc-
ture/function relationships in various tissues and organs. This was part of the drive 
in the development of spatial transcriptomics (ST) (Marx 2021) (now commer-
cialised by 10x Genomics under the name Visium) and other spatially resolved tran-
scriptomics (SRT) methods. The spatially resolved gene expression pattern within 
the context of a tissue is critical to achieving a full understanding of disease states 
and tissue development and function and the ability to investigate this is achievable 
using SRT (Ståhl et al. 2016).

Spatial transcriptomics is an area that is becoming more widely used and will 
continue to expand in the upcoming years (Marx 2021). Having been featured as 
Nature’s ‘Method of the Year’ in 2020, the technology and the analytical opportuni-
ties it provides are going to keep growing rapidly (Marx 2021). As demonstrated in 
Fig.  7.1, the number of papers published on spatial transcriptomics has greatly 
increased since 2016, when the first technology named ‘spatial transcriptomics’ was 
published (Ståhl et al. 2016). Offering unprecedented spatial context to transcrip-
tomic data presents an invaluable tool for studying tissues and their cellular 
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Fig. 7.1 Number of papers returned when a search was performed using the keywords ‘Spatial 
Transcriptomics’ using the software ‘Publish or Perish’(Harzing 2016) to search PubMed and to 
manually search bioRvix, with the additional parameter of papers published from 01/01/2016 to 
16/04/2021. Papers identified by searching both databases were consolidated; note that this is not 
a comprehensive view of all papers published on the topic since 2016. Bars in light blue with a 
dotted outline indicate that not all papers for the calendar year have been included
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composition. As early as 2017, the merits of applying SRT to the discovery of spatial 
organisation of gene expression to improve transcriptional classification of cell types 
and localisation within a tissue had been discussed and even put to the test (Lein 
et al. 2017; Shah et al. 2016). The potential applications of this technology are con-
tinuously improving and expanding, as demonstrated by the integration of different 
methods to improve the resolution of current SRT methods (Moncada et al. 2020). 
The different techniques available to generate SRT data and their merits have been 
discussed (Lein et al. 2017; Crosetto et al. 2015; Asp et al. 2020; Waylen et al. 2020), 
but a review of data analysis tools is as of yet lacking. With an emphasis on obtaining 
spatially resolved data sets with single-cell resolution (Marx 2021), the method, 
aims and approaches to integrate and analyse the data generated are still in flux, with 
a clear ‘gold standard’ yet to distinguish itself. This chapter discusses some of the 
current packages and pipelines available to perform this analysis (Table 7.1).

7.2  Methods for Downstream Analysis of Spatially Resolved 
Transcriptomics Data

As identifying the spatial expression patterns of genes and how they vary across a 
tissue is a critical aim of spatial transcriptomics, many purpose-built tools for analy-
sis of this data aim to identify spatially variable genes (SVGs) (Box 7.1) (Exelby 
et al. 2021). Building on the concept of highly variable genes in scRNA-Seq analysis, 
SVGs have a pattern of expression that depends on their location in the tissue and can 
give insight into biological function (Svensson et al. 2018). A complication of ana-
lysing these spatial transcriptomics data sets is accurately accounting for the spatial 
correlation across samples (Li et al. 2021), and different methods can be employed 
to tackle this problem. Various packages have been developed in primarily R or 
Python and are currently available to identify SVGs in spatial transcriptomic data sets.

Box 7.1
One key aim of analysing RNA-Seq and scRNA-Seq datasets is to identify dif-
ferentially expressed genes (DEGs) between two groups from within a group of 
highly variable genes (HVGs). DEGs are identified between two groups when 
a gene’s expression is statistically significantly different between the two groups 
present (Exelby et al. 2021). While this approach has yielded many important 
findings, it removes organisational context from the groups in question, some-
thing that can be recovered using spatial transcriptomics (Marx 2021). This new 
technology has shifted the goalposts for transcriptomics analysis, resulting in 
many bioinformatics packages dedicated to discovering spatially variable 
genes (SVGs) (Svensson et al. 2018; Li et al. 2021; Sun et al. 2019; Edsgärd 
et al. 2018; Hao et al. 2021; Zhang et al. 2018). As the name suggests, these 
genes will have amplified expression in certain regions of the tissue or sample, 
often displaying an underlying pattern (Svensson et al. 2018; Hu et al. 2020). 
Determining the best method to achieve the most biologically accurate results 
and computational efficiency is challenging, and research in this area is ongoing.
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7.2.1  Identifying Spatially Variable Genes

Among these, SpatialDE is a popular package based on Gaussian process (GP) 
regression, which can clearly identify localized gene expression patterns for data 
sets containing temporal and/or spatial annotations (Svensson et al. 2018). SpatialDE 
can recognise SVGs by creating a model with two different terms reflecting distinct 
variance present in the data set. The first term captures the non-spatial variance pres-
ent within the data, while the second aims to capture the spatially related variance 
of gene expression within the data set, with the assumption that the covariance 
between a cell’s gene expression profile decreases with an increase in distance 
between the cells (Svensson et al. 2018). A ratio calculated using these terms can 
then be used as a measure of the level of gene expression variance attributable to 
spatial location (Svensson et al. 2018). These are the key parameters used to fit the 
Gaussian model in a computationally efficient manner (Svensson et  al. 2018). 
Testing to prove whether statistically significant SVGs are present is performed by 
comparing this model to a second one which lacks the spatial covariance parameter 
that represents a data set in which spatial localisation has no effect on gene expres-
sion patterns (Svensson et al. 2018). This process is repeated for each gene, and 
after correcting for multiple testing, the SVGs can be pulled out of the data set 
(Svensson et al. 2018). SpatialDE has the capability of taking this a step further by 
creating models with different covariance functions for SVGs and comparing them, 
this is in addition to the initial 10 Gaussian kernels it tests before selecting that with 
the lowest p-value. This creates the ability to determine whether each SVGs is most 
accurately expressed as a linear, periodic or general expression model (Svensson 
et  al. 2018). However, for the data to fit certain underlying assumptions of the 
Gaussian model, two normalisation steps are performed, the first being a variance 
stabilising transformation (Svensson et al. 2018; Sun et al. 2019). It may affect the 
package’s performance as the assumptions underlying the model and the necessary 
data transformations do not truly reflect the nature of the data (Li et al. 2021). A 
further functionality of SpatialDE is that it can implement an unsupervised learning 
technique built on the Gaussian Mixture Model to apply automatic expression his-
tology (AEH), which can group together SVGs by their spatial expression pattern 
using hidden patterns learnt from the data (Svensson et al. 2018). The observation 
that SpatialDE may introduce false positives by labelling genes with low levels of 
expression as SVGs is an area which requires further investigation and can be 
improved upon in future releases of the package (Sun et al. 2019).

A package with the same goal as SpatialDE is SPARK (Spatial Pattern 
Recognition via Kernels), which employs a generalised linear spatial model (GLSM) 
with different spatial kernels to identify SVGs (Sun et al. 2019). This model was 
built on previous work to take into consideration the effects of spatial correlation 
and covariate measurement error; it was built and tested on 2D data; however, it is 
capable of being expanded to 3D data sets (Sun et  al. 2019). As in the case of 
SpatialDE, SPARK models gene expression for each gene across all spatial coordi-
nates; however, this model operates under the assumption that the spatial data is 

7 Comparative Analysis of Packages and Algorithms for the Analysis of Spatially…
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non-Gaussian (Sun et al. 2019). SPARK builds on other GLSMs by developing a 
hypothesis testing framework for the model (Sun et al. 2019). The power of this 
hypothesis testing is linked to how the spatial kernel function accurately represents 
the spatial pattern of the gene represented in the model; and as different gene expres-
sion patterns will most accurately be represented by different spatial kernel func-
tions, SPARK considers 10 different kernels (similarly to SpatialDE) based on 
commonly observed biological patterns (Sun et al. 2019). Due to the heuristic nature 
of these kernels, this process could introduce biases that lead that package to choose 
more commonly observed biological patterns. SPARK can work with large data sets 
as it employs a penalised quasi-likelihood (PQL) algorithm for parameter estima-
tion to circumvent the problem of the difficulty in solving GLSMs in short periods 
of time; this algorithm informs the parameters used in each of the spatial kernel 
functions. It further improves on the packages available at the time of publication, 
SpatialDE and Trendsceek, by not performing a normalisation step on the data, 
which decreases the power of the analysis (Sun et  al. 2019). A drawback of 
SpatialDE that SPARK corrects for is to control for type 1 errors through the Cauchy 
combination rule, thus giving it additional power when identifying SVGs (Sun et al. 
2019). The Cauchy combination rule groups the p-values generated from each spa-
tial kernel function into a single p-value while still controlling for type 1 errors, 
which results in a single p-value per gene (Sun et al. 2019). The final steps involve 
controlling for FDR across all p-values and then determining which are SVGs (Sun 
et al. 2019). While SpatialDE and SPARK share the use of parametric test statistics, 
there are a few critical differences between the packages (Sun et al. 2019). As previ-
ously mentioned, SPARK does not model normalised data, while SpatialDE can 
only approximate p-values; SpatialDE first calculates an exact p-value per gene; and 
once it obtains the initial set of statistically significant genes, SpatialDE then per-
forms additional analysis to determine their p-values (Sun et al. 2019). Furthermore, 
when validated against multiple data sets, it performed just as well or better than 
SpatialDE and Trendsceek (described in next paragraph) (Sun et al. 2019). When its 
ability to calculate true positives in two simulated data sets was tested across a total 
of six different spatial expression patterns with varying FDRs, SPARK outper-
formed Trendsceek and had better results than SpatialDE (Sun et al. 2019). While 
with certain simulated data sets, SPARK and Trendsceek performed similarly in 
computing well-calibrated p-values, but SpatialDE did not identify certain SVGs 
present (Sun et al. 2019). While the SPARK paper only tests the package’s perfor-
mance against SpatialDE and Trendsceek, it outperformed both in terms of the num-
ber of SVGs identified when validated against a spatial transcriptomics mouse 
olfactory bulb data set (Sun et  al. 2019). However, not all genes identified by 
SpatialDE overlapped with those identified by SPARK (Sun et al. 2019). Despite 
this, the newly identified SVGs are in line with markers specific to the tissue they 
were annotated in, and GO enrichment analysis adds further confidence that the 
majority of these newly identified SVGs are biologically relevant (Sun et al. 2019). 
In terms of computational efficiency, when running with 10 parallel CPU threads, 
SPARK was more computationally efficient than the same analysis run on a single-
threaded SpatialDE (although the difference in this instance is minimal) and 
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Trendsceek; its single-threaded performance is consistently less efficient than 
SpatialDE across 4 datasets of varying sizes (Sun et al. 2019).

Trendsceek is one of the earlier packages developed to identify SVGs using a 
non-parametric approach (Edsgärd et al. 2018). Trendsceek individually assesses 
each gene and normalises its expression through a log10 transformation (Edsgärd 
et al. 2018). It relies on a marked point process to model gene expression and cell 
location and later will test the null hypothesis by generating four non-parametric 
test statistics (Edsgärd et al. 2018). These four test statistics yield four p-values and 
a gene with a minimum of 1 p-value ≤ 0.05 after adjustment for multiple testing 
using the Benjamini-Hochberg method is determined to be an SVG (Edsgärd et al. 
2018). A key difference that separates Trendsceek from SpatialDE and SPARK is its 
computing of non-parametric test statistics, meaning it lacks an underlying genera-
tive model. Trendsceek was tested against simulated data sets, and it demonstrated 
very low power to identify SVGs when they were present if less than 5% of cells in 
the data set had varying levels of expression (Edsgärd et al. 2018). This implies that 
as SRT datasets continue to increase in size, Trendsceek will not be able to distin-
guish SVGs present in a very small subset of cells within a tissue. When Trendsceek’s 
performance in identifying SVGs across two spatial transcriptomics data sets is 
compared to SpatialDE and SPARK, it identified fewer SVGs, with numbers almost 
10 times lower than the other packages (Sun et al. 2019). When compared to differ-
ent packages in other studies, Trendsceek struggled to identify SVGs in real datas-
ets, while other packages were able to (Sun et al. 2019).

Each new package developed aims to address the shortcomings of those already 
published; for example, BOOST-GP claims that many popular substitutes such as 
SpatialDE, SPARK and Trendsceek do not account for the substantial proportion of 
zero counts present in the data set and the effect the sparsity of the data can have 
analysis (Li et al. 2021). Therefore, BOOST-GP puts forth a new Bayesian hierar-
chical model aimed at accounting for the considerable number of zero counts pres-
ent in spatial data sets, that other packages published up to this point had neglected 
(Li et al. 2021). A key difference to other packages is that BOOST-GP employs a 
negative binomial distribution when modelling count data, which should account 
for its observed over- dispersion (Li et al. 2021). This resembles the methods used 
by popular bulk RNA-Seq analysis packages rather than other spatial transcrip-
tomics packages explored thus far (Li et al. 2021). BOOST-GP’s performance was 
compared to that of SpatialDE’s, SPARK and Trendsceek when there were false 
zeros present in the data, and BOOST-GP was clearly most adept at handling this 
complication, even if it still presented significant difficulties in retrieving a good 
Matthews correlation coefficient (used to determine the tool’s accuracy) on a syn-
thetic data set (Li et al. 2021). Furthermore, depending on the spatial pattern of the 
expression of the gene, the accuracy of BOOST-GP can differ slightly (Li et  al. 
2021). Alternatively, when the tool was tested on two real data sets, it was found that 
SPARK identified more SVGs than BOOST-GP; however, SpatialDE discovered the 
least (Li et al. 2021). In the analysis of human breast cancer data, despite identifying 
fewer SVGs than SPARK, BOOST-GP was able to identify novel, biologically rel-
evant terms in the GO analysis, adding to its value in the analysis of SRT data  
(Li et al. 2021).
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As larger datasets become increasingly common, packages must be created to 
efficiently analyse the vast amounts of data generated by SRT experiments. One of 
the newer packages is SOMDE (Hao et al. 2021). Built-in python, SOMDE aims to 
identify SVGs in large-scale datasets (Hao et al. 2021). By using a self-organising 
map (SOM) neural network and a Gaussian process to model the data, it can identify 
SVGs in large datasets much faster than SpatialDE, SPARK or Trendsceek (Hao 
et al. 2021). This is achieved as the data is organised into different nodes by the 
SOM neural network, the Gaussian process is used at the level of the nodes to iden-
tify the SVGs present in the data (Hao et al. 2021). The organisation of data into 
nodes minimises the sample space while preserving the original spatial organisation 
and expression data (Hao et al. 2021). The next stage which uses a Gaussian process 
identifies the SVGs from the reduced sample space (Hao et al. 2021). As seen in 
packages such as SpatialDE and BOOST-GP, the Gaussian process is a popular 
method for identifying SVGs (Svensson et al. 2018; Li et al. 2021). SOMDE also 
uses a log ratio test similar to that employed by SpatialDE to test the statistical sig-
nificance of the spatial expression variability of each gene (He et al. 2020). When 
SOMDE was applied to discover the SVGs of five different data sets, it was able to 
do so without significant increase in computational time as the size of the data set 
increased, yielding results in under 5 min for the largest data set with over 20,000 
data sites (Hao et al. 2021). It also demonstrated a faster running time compared to 
Giotto and SpatialDE on three differently sized data sets used for validation (Hao 
et al. 2021). Despite this, the package lacks validation on a data set of single-cell 
resolution (Hao et al. 2021). When its performance was compared to scGCO and 
SpatialDE on a simulated data set, SOMDE consistently outperformed scGCO but 
only had an improved performance compared to SpatialDE when a high dropout 
rate is incorporated into the data set (Hao et al. 2021). When its performance was 
compared to real data sets, most of the SVGs identified by SOMDE overlap with 
those identified by packages like scGCO, SPARK and SpatialDE (Hao et al. 2021).

Other methods have been developed to identify SVGs that differ from those pre-
sented thus far. One of these methods has been implemented in a python package 
called scGCO, which employs graph cut algorithms to identify SVGs (Zhang et al. 
2018). scGCO first produces a graph by performing a Delaunay triangulation in 
which only true cell neighbours are connected by edges, allowing an accurate rep-
resentation of cellular interactions in a sparse graph which is not memory intensive 
(Zhang et al. 2018). Subsequently, Voronoi diagrams are created which have previ-
ously been used to model cells (Zhang et al. 2018). Using a Markov random field 
(MRF) model and adapting methods traditionally used in object identification in 
images, scGCO can classify cells into two categories which provide efficient, low 
polynomial time computing and a result which is globally optimal (Zhang et  al. 
2018). Much like SpatialDE, scGCO employs Gaussian Mixture modelling but uses 
it to classify each gene’s expression to ensure more accurate classification of cell 
types based on their gene expression (Svensson et al. 2018; Zhang et al. 2018). The 
performance of SVG was tested against a spatial transcriptomics data set obtained 
from a mouse olfactory bulb and compared to results obtained from the same data 
by SpatialDE (Zhang et al. 2018). A more comprehensive review of scGCO against 
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different packages would be beneficial to obtain a holistic understanding of its 
improved performance in SVG detection. scGCO successfully identified over 1,000 
additional SVGs compared to SpatialDE, and at an FDR cut-off of 0.01 rather than 
0.05 (Zhang et  al. 2018). The majority of SVGs identified by scGCO were also 
identified by SpatialDE, and each formed its own spatial pattern. These results were 
consistent when validation was repeated across replicate mouse olfactory bulb data 
(Zhang et al. 2018). However, while scGCO yielded a smaller number of unrepro-
ducible SVGs across the different replicate data sets than SpatialDE, ~35% of iden-
tified SVGs were still unreproducible (an 11% reduction from SpatialDE) (Zhang 
et al. 2018). If replicate data sets are available for studies, then this is something that 
should be investigated further across all packages, resulting in the exclusion of non-
reproducible SVGs for a more accurate final subset of SVGs. Additionally, when 
comparing between regions of the mouse olfactory bulb, scGCO was more adept at 
identifying SVGs than SpatialDE, while neither method entirely recovered all 
marker genes reported in the study which published the data set (Zhang et al. 2018). 
Additional validation was performed using data from breast cancer biopsies, with 
scGCO having a similar improved performed compared to SpatialDE when 
employed on the mouse olfactory bulb data set. Furthermore, the SVGs identified 
by SpatialDE within the breast cancer data set did not maintain consistent clustering 
pattern (Zhang et al. 2018). scGCO’s performance on other spatial transcriptomics 
data sets was equally as robust (Zhang et al. 2018). scGCO also performed better in 
terms of computational time and memory required than SpatialDE and Trendsceek 
when used to analyse a simulated data set with up to a million cells.

7.2.2  Identifying Spatially Variable Genes and More

As evidenced by the packages reviewed so far, GPs are a popular method for analys-
ing spatial transcriptomics data as they can model its spatial dependence. To this 
end, as new packages are developed, many are built on alternative GP regression 
models, such as GPcounts (BinTayyash et al. 2020). GPcounts can be used to model 
either spatial or temporal large-scale scRNA-Seq data through modelling count data 
using a negative binomial (NB) likelihood (BinTayyash et al. 2020). The NB likeli-
hood model should more accurately capture the distribution of gene expression data 
compared to Gaussian likelihood model as it accounts for possible heteroscedastic 
noise and the presence of many zero-counts but requires UMI normalisation to be 
applied (BinTayyash et al. 2020). Furthermore, GPcounts evaluates its performance 
across different simulated data sets when it implements different underlying likeli-
hood models to determine under which conditions each yields the best results 
(BinTayyash et al. 2020). Subsequently, it can be observed that employing an NB 
likelihood was effective in producing accurately identified SVGs in the package 
BOOST-GP (Li et al. 2021). However, GPcounts’s primary aim is not to identify 
SVGs, it is also able to identify differentially expressed genes (DEGs), perform 
pseudotime inference and then identify branching genes and discover temporal 
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trajectories, widening its scope compared to most packages (BinTayyash et  al. 
2020). The GP model is stochastic and non-parametric, and there is a choice of 
kernel to find one that most accurately models the data, similarly to the step 
employed by SpatialDE (Svensson et  al. 2018), and this is determined by the 
Bayesian Inference Criterion (BinTayyash et al. 2020). Using SpatialDE as a bench-
mark, GPcounts builds on and alters many of the steps implemented by SpatialDE 
(BinTayyash et al. 2020). This applies from the testing procedures used to deter-
mine SVGs and DEGs p-values to the type of normalisation applied to the data 
(BinTayyash et al. 2020). GPcounts has also implemented the additional step of a 
built-in check during its kernel function hyperparameter estimation to minimise the 
problems of getting stuck in a local optimum by restarting the optimisation as this 
is suspected (BinTayyash et al. 2020). This is so far one of the only optimisation-
based methods that has implemented this kind of self-check and could give GPcounts 
a distinct advantage in the accurate identification of SVGs. An improved assessment 
of GPcounts performance when detecting DEGs would be to evaluate the package 
on published data sets in addition to the simulated data (BinTayyash et al. 2020). 
When evaluated for its identification of SVGs, GPcounts did use a real mouse olfac-
tory bulb data set and compared its performance to SpatialDE, SPARK and 
Trendsceek (BinTayyash et al. 2020). GPcounts identifies the most SVGs out of any 
of the packages, with the vast majority of identified SVGs at a 5% FDR overlapping 
with those identified by SpatialDE and SPARK (BinTayyash et  al. 2020). The 
unique SVGs identified by GPcounts have spatial patterns that match those depicted 
in the Allen Brain Atlas, indicating a high confidence in these findings (BinTayyash 
et  al. 2020). GPcounts also identified 90% of the biologically important marker 
genes expressed in the dataset, although SPARK had a similar performance as it 
identified 80% (BinTayyash et al. 2020), while SpatialDE identified only 30% of the 
marker genes (BinTayyash et al. 2020).

Certain frameworks have been developed with a particular SRT technology in 
mind, in combination with addressing an area of data analysis the developers deem 
lacking. One of these is the STUtility workflow created in R and based and built on 
the Seurat analysis tool (Bergenstråhle et al. 2020a). Aiming to develop a package 
that allows the user to visualise multiple experiments in conjunction to create a 3D 
view of tissue, STUtility builds on well-established methods of analysis (moulded 
by those established for scRNA-Seq analysis) to focus on novel data visualization 
(Bergenstråhle et al. 2020a). Highlighting the importance of data normalisation and 
transformation to deconvolute technical noise from meaningful biological insight, 
the package uses a regularized negative binomial regression model successfully 
implemented in Seurat for normalisation (Bergenstråhle et al. 2020a). The image 
processing capabilities of STUtility focus on the alignment, automatic or manual, of 
multiple samples in addition to the removal of background noise (Bergenstråhle 
et al. 2020a). The removal of background noise – called masking in the study – is an 
integral part of image processing and allows the inside and outside of the tissue to 
be defined as well as decreasing the images’ storage requirements (Bergenstråhle 
et al. 2020a). To automatically align multiple samples, the package identifies a ref-
erence image, then uses an iterative closest point (ICP) algorithm to align the 
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remaining samples to the reference, which can then be reconstructed into a 3D tis-
sue model (Bergenstråhle et al. 2020a). While this method of creating a 3D model 
is not one which yields the most precise cell segmentation, this trade-off yields 
greater computational efficiency and still gives a faithful reconstruction of tissue 
morphology (Bergenstråhle et  al. 2020a). Implementation of k-means clustering 
algorithms allows the package to clearly define the boundaries of the tissue 
(Bergenstråhle et al. 2020a). For the sequencing data, STUtility leans heavily on the 
functions created by the package Seurat (Bergenstråhle et al. 2020a). A decomposi-
tion of the normalised gene data called non-negative matrix factorization (NMF) is 
used to choose gene drivers and create a low dimensional representation of the data 
to be used in defining clusters and nearest neighbours (Bergenstråhle et al. 2020a). 
To obtain genes whose expression demonstrates spatial patterns, a connection net-
work is created for each spot which allows the package to calculate the spatial-lag 
of each gene across spots. This is one of the inputs – the other being the normalised 
counts – used to calculate spatial correlation across the sample (Bergenstråhle et al. 
2020a). Its ability to visualise spatial distinct features is clearly demonstrated in 
determining the spatial relation of gene expression to tissue areas (e.g., a tumour). 
STUtility is also able to identify SVGs using neighbourhood networks, but its accu-
racy in performing this function is not compared to other packages (Bergenstråhle 
et al. 2020a). Other capabilities were tested on a variety of human and mouse tissues 
(Bergenstråhle et al. 2020a). For both mouse brain and human breast cancer tissue 
samples, spatial gene expression patterns can be clearly identified (Bergenstråhle 
et al. 2020a). STUtility allows for the manual alignment of multiple images; how-
ever, a comparison as to the accuracy of this method compared to the automatic 
alignment is not offered and depending on the expertise of the user may vary signifi-
cantly (Bergenstråhle et al. 2020a). Furthermore, while its implementation of neigh-
bourhood networks offers a promising method to define subsections within a tissue 
and the heterogeneity within, as would be beneficial during the study of tumours, to 
see how well this correlates to the heterogeneity of the actual tissues of the sample 
is not reported (Bergenstråhle et al. 2020a; Palla et al. 2021).

7.2.3  Assigning Lost Transcripts

Other packages have been developed with the aim of addressing gaps in analysis 
that have not been adequately accounted for; one such package is Sparcle 
(Prabhakaran et  al. 2021). When attempting to obtain an accurate gene counts 
matrix from image-based spatial transcriptomics techniques, often many transcripts 
are not assigned to cells after segmentation is performed, leading to a loss of data 
(Prabhakaran et al. 2021). Sparcle aims to recapture the data from these ‘dangling’ 
transcripts (Prabhakaran et al. 2021). Developed to be used in conjunction with data 
from any smFISH technology, Sparcle can build a probabilistic model which allows 
assignment of these dangling transcripts to the appropriate neighbouring cells using 
a maximum likelihood estimation (MLE). The MLE considers the dangling mRNA’s 
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distance to other transcripts, nearby cells and genes’ covariance when calculating 
which nearby cell the transcript should most accurately be assigned to (Prabhakaran 
et al. 2021). Similar to other packages, Sparcle assumes that the most accurate rep-
resentation of gene expression can be modelled using a multivariate Gaussian dis-
tribution (Svensson et al. 2018; Prabhakaran et al. 2021). Sparcle can employ two 
clustering methods when it first groups the cells in the chosen field of vision (FOV) 
by cell type based on a global count matrix: DPMM and Phenograph. Phenograph 
is an algorithm developed to cluster cell phenotypes in high-dimensions single-cell 
data and was originally applied to data from acute myeloid leukemia (Levine et al. 
2015). Dirichlet process mixture model (DPMM) is a stochastic process which can 
feature all the individual Gaussian distributions for the expression of each gene and 
allows Sparcle to model all these distributions (Neal 2000). While having the addi-
tional flexibility to employ either algorithm at the clustering step, during its valida-
tion, Sparcle reports data based on the Phenograph algorithm but not on the 
performance when using DPMM, nor does it specify in which instance one method 
should be favoured over another (Prabhakaran et al. 2021). When used to assign 
dangling transcripts to a MERFISH data set, Sparcle was able to assign 68% or 
almost 2 million missed transcripts, and validation with scRNA-Seq data confirmed 
that the proportion of cell types assigned post use of Sparcle more closely matched 
the scRNA-Seq data (Prabhakaran et al. 2021). Validation against other neuronal 
data sets returned similarly desirable results. Despite this, there are limitations to 
the use of Sparcle. For example, when the programme draws an area around each 
dangling transcript that should mimic the size of a cell, the size of this area is opti-
mised to the size of an average neuronal cell, meaning the package might not be 
well suited to non-neuronal data (Prabhakaran et  al. 2021). Sparcle can run on 
approximately 80 cells in under 10 min with impressive mRNA recovery over three 
iterations; however, additional data on how this would scale with larger data sets is 
lacking, potentially causing computational bottlenecks in bigger data sets 
(Prabhakaran et al. 2021). It claims to improve on packages that remove the cell 
segmentation step entirely, such as Baysor and SSAM, by removing the need for a 
priori knowledge of the data set and not assuming that the cellular mRNA can be 
modelled by a uniform distribution (Prabhakaran et al. 2021). However, some fur-
ther improvements could be made to enhance the performance, such as staining 
cellular membranes to better understand the size of neighbouring cells rather than 
estimating based on an area around the nucleus and calculating an estimate of the 
prior distribution of a gene’s localised transcripts (Prabhakaran et al. 2021).

7.2.4  Estimation of Cell Type Composition

Identifying SVGs was the primary focus of the initial packages developed, but it is 
important to note that packages with alternative aims are increasingly being pub-
lished. For example, SpatialDWLS was created to improve the identification of dif-
ferent cell types at locations in the data sets which do not have single-cell resolution 
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(Dong and Yuan 2021). This is termed cell type deconvolution (Dong and Yuan 
2021). Other published packages have been developed for this aim, but SpatialDWLS 
claims to improve on the results of these packages (Dong and Yuan 2021). How 
SpatialDWLS performs cell type deconvolution can be summarised in two steps: the 
first uses a cell type enrichment analysis method to identify which kinds of cells 
have a high probability of being at each location, and the second uses an extension 
of the dampened weighted least squares (DWLS) method to pinpoint the precise 
composition of cell types at the specified location (Dong and Yuan 2021). Firstly, 
signature genes can either be supplied by the user to be identified by differential 
expression analysis (Dong and Yuan 2021). Building on the previously developed 
DWLS method for scRNA-Seq data, this was extended to SRT data by incorporat-
ing the signature genes step (Dong and Yuan 2021). Furthermore, SpatialDWLS 
builds on clustering and gene marker identification used in Giotto (Dong and Yuan 
2021; Dries et al. 2019). This would imply that any shortcoming with Giotto’s per-
formance in these areas would be transferred to SpatialDWLS. When evaluated on 
a simulated spatial transcriptomics dataset, SpatialDWLS outperformed RCTD and 
stereoscope in terms of having a lower Root Mean Square Error (RMSE) and in 
terms of computational time (Dong and Yuan 2021). However, when its perfor-
mance was tested against a real mouse brain Visium data set, SpatialDWLS’s per-
formance was not benchmarked against the other three packages, thus making its 
performance on real data unclear (Dong and Yuan 2021). Despite this, the authors 
reported that the spatial location of the cell types assigned by SpatialDWLS was 
consistent with those reported in the Allen Mouse Brain Atlas (Dong and Yuan 
2021). An interesting application of this package was to identify the change of cell 
type organisation in a spatial-temporal context throughout embryonic heart devel-
opment (Dong and Yuan 2021). In addition to quantifying an increase in ventricular 
cardiomyocytes and smooth muscle cells as time went on, by calculating the assor-
tativity coefficient (here used as a measure of whether neighbouring cells were of 
the same type) the study was able to determine that spatial organisation of the devel-
oping heart becomes increasingly defined in terms of neighbourhoods of cell types 
during development (Dong and Yuan 2021).

Assigning cell types to a spatial transcriptomics dataset can be approached more 
than one way. By incorporating a priori knowledge to a probabilistic likelihood 
function, FICT (FISH Iterative Cell Type assignment) can blend expression and 
spatial information to assign cell type to spatial transcriptomics data sets (Teng 
et  al. 2021). This is achieved by creating a generative mixture model using a 
reduced dimensions representation of expression levels through a denoising auto-
encoder and assigning each cell as cell type defined by its neighbourhood (repre-
sented in an undirected graph); the parameters of this model can be learnt by an 
expectation maximization approach, which is an iterative process (Teng et  al. 
2021). Finally, the cell can be classified by a posterior distribution of the model 
(Teng et al. 2021). During this process, the problem of over-reliance on expression 
data needs to be addressed, which occurs because in a dataset it is likely that there 
are more genes being expressed than cell types present (Teng et al. 2021). To cir-
cumvent this problem, a named power factor acts as a weight term to balance the 
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dimensionally reduced expression component with the spatial component (Teng 
et al. 2021). The package was validated using three simulated and real data sets and 
compared to the results of GMM, scanpy, Seurat and smfishHmrf (Teng et  al. 
2021). Across all three simulated data sets, FICT has the highest median accuracy, 
reaching a high of approximately 0.89 in one of the simulated data sets (Teng et al. 
2021). When evaluated on a real MERFISH mouse hypothalamus data set, the 
ground truth of the location of different cell types is unavailable, so clustering 
results obtained from different animals are compared using the Adjusted Rand 
Index. When comparing across this metric, FICT is more consistent in applying 
clusters to the majority of the paired animals, indicating its superior performance 
in assigning cell type clusters (Teng et al. 2021). FICT has the potential to identify 
novel subclusters within the data set (Teng et al. 2021). However, FICT’s perfor-
mance drops when applied to data sets with smaller numbers of cells, although this 
is observed across all packages validated (Teng et  al. 2021). Furthermore, its 
decreased performance was still in line with packages with similar functions, and 
as spatial transcriptomics data sets become larger, this should not interfere with 
FICT being applied in future (Moncada et al. 2020). However, despite its greater 
accuracy when applied to larger datasets, FICT’s runtime in these instances could 
still be improved (Moncada et al. 2020).

RCTD is another package created with the final aim of identifying cell types in 
a spatial transcriptomics data set (Cable et al. 2020). While identifying SVGs is 
extremely informative, it is important to understand how the role of underlying cell 
types contributes to a gene’s spatially variable expression patterns (Cable et  al. 
2020). Robust Cell Type Decomposition (RCTD) makes use of annotated scRNA- 
Seq data to create cell type profiles for expected cell populations in the data, then 
labels spatial transcriptomics pixels with cell types using a supervised learning 
method (Cable et al. 2020). As one of the major hurdles in this analysis is the fact 
that the current spatial transcriptomics data sets can contain multiple cell types 
within a single pixel, RCTD can also fit a statistical model to determine multiple 
cell types present within a pixel and normalise across platform effects between the 
scRNA-Seq and SRT datasets (Cable et al. 2020). To achieve this, RCTD first cre-
ates a spatial map of cell types and estimates the number of different cell types in 
each pixel where the gene counts are assumed to have a Poisson distribution (Cable 
et al. 2020). This should circumvent the problem introduced by the current unsu-
pervised learning methods that overlook clustering cells that co-localise transcrip-
tionally as well as spatially (Cable et al. 2020). Using this approach, RCTD was 
able to classify cells across platforms with almost 90% accuracy. However, as with 
any supervised learning approach, the cell types one can detect using this tool are 
limited to how accurately and fully the reference data set is annotated, which may 
present difficulties. Also, while the study tested RCTD using references and data 
sets generated by many different kinds of scRNA-Seq and SRT technology, the 
effects that specific platforms may have on cell type assignment is still 
undetermined.
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7.2.5  Spot-by-Spot Clustering

A common step in the analysis of many kinds of omics data sets is to perform clus-
tering, and this is prevalent when analysing SRT data. This section will discuss 
techniques that cluster spots on an SRT array, which may contain multiple cell 
types, based on the overall gene expression profile of the spot (Bergenstråhle et al. 
2020b). Despite being common, this is not a straightforward step. Understanding 
the results after different iterations can prove difficult, as does choosing the correct 
hyperparameters (Bergenstråhle et al. 2020b). This is further confounded as each 
barcode is associated with multiple cells (Bergenstråhle et al. 2020b). To address 
these issues, an R package called SpatialCPie was developed which focuses on clus-
tering spots on the array based on the gene expression profile to allow annotation of 
regions of the tissue (Bergenstråhle et al. 2020b). SpatialCPie allows the user to 
choose which algorithm to implement and clusters the data at different resolutions 
from the start (Bergenstråhle et al. 2020b). The user is then free to choose which 
conformations of clusters created at which resolution most accurately represent 
their data. By creating a cluster graph and an array plot, SpatialCPie gives the user 
varied insight into how different resolutions affect the clustering outcomes 
(Bergenstråhle et al. 2020b). The cluster graph displays how the different clusters 
relate to one another across different resolutions, and conveys the origins of new 
clusters as they emerge at higher resolutions (Bergenstråhle et al. 2020b). The edges 
of the graph link the percentage of spots in new clusters that descend from different 
lower resolution clusters (Bergenstråhle et  al. 2020b). The second visualisation 
method is the array plot, which represents the SRT array, but each spot is depicted 
as a pie cart that shows how similar the gene expression is between cluster centroids 
and spatial regions (Bergenstråhle et al. 2020b). SpatialCPie offers the novel, to the 
best of the authors’ knowledge, option to choose a particular region of the dataset 
for further sub-clustering which may be appropriate depending on the tissue of 
interest (Bergenstråhle et al. 2020b). While SpatialCPie only compares itself to ST 
viewer – in a limited capacity – its overall performance is promising (Bergenstråhle 
et al. 2020b). However, additional validation of its performance compared to other 
similar packages such as ST viewer would be beneficial to understand its accuracy.

7.2.6  Pipelines

As the area of SRT continues to expand, pipelines, rather than just analysis pack-
ages, will become more commonplace. One of the first available pipelines written in 
R is Giotto, which is a platform that can be used on both transcriptomics and pro-
teomics data; it is divided into a data analysis and visualisation module (Dries et al. 
2019). With a focus on being user-friendly and reproducible, Giotto does provide 
the opportunity for more complex spatial analysis using HMRF models (Dries et al. 
2019). As a foundation, Giotto creates a neighbourhood network of cells and a 
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spatial grid for downstream analysis which includes ligand- receptor identification, 
gene expression pattern analysis and determining preferential cell neighbours (Dries 
et al. 2019). Giotto is tested on ten different data sets obtained with varying tech-
nologies and from varied tissues to examine its performance across a range of 
benchmarks (Dries et al. 2019). The initial steps in the analysis are similar to those 
performed in scRNA-Seq analysis, but Giotto does offer three different algorithms 
for identifying marker genes, one of which (Gini) was specifically developed for the 
pipeline, which differ in their strength in identifying particular kinds of marker 
genes (Dries et  al. 2019). The Scran method evaluates the markers between two 
groups of cells by running t-test (default) and then determining marker genes (Lun 
et al. 2016). Mast identifies marker genes between two cell groups by employing a 
hurdle model (Finak et al. 2015). The Gini algorithms score marker genes within a 
cluster based on Gini coefficients, which were developed to identify rare cell types 
from an adapted model implemented in the social sciences (Jiang et al. 2016). All of 
these algorithms were developed to score marker genes between clusters in single-
cell data sets. When evaluated, Gini discovered the most marker genes for the 12 
cell types when compared to Mast and Scran; however, when identifying the top 20 
markers using each method, Gini had the lowest sensitivity but highest specificity in 
both the endothelial and oligodendrocyte populations (Dries et al. 2019). The sensi-
tivity and specificity of each algorithm vary slightly across the different cell popula-
tions they investigated when evaluated against a sequential fluorescence in situ 
hybridization (seqFISH+) somatosensory cortex dataset, and this is important when 
deciding which algorithm to employ; furthermore, this needs to be tested against 
data sets generated from different biological material and technologies to best 
understand the true limitations of each algorithm (Dries et al. 2019). Giotto also has 
analysis pipelines designed specifically for SRT data sets with lower resolution 
(Dries et al. 2019). By using one of three algorithms to provide an enrichment score 
between a location’s expression pattern and a cell’s gene signature, it is possible to 
assign a cell type to a location which contains more than one cell (Dries et al. 2019). 
Once again, the availability of multiple algorithms at this step which require differ-
ent inputs allows Giotto to be flexibly implemented on a number of different datas-
ets (Dries et  al. 2019). These three enrichment algorithms were validated on a 
simulated dataset similar to one generated using seqFISH+ with the hypergeometric 
algorithms having the lowest AUC score (0.8) and both PAGE and RANK scoring 
similarly well when predicting cell type at a particular location (Dries et al. 2019). 
When applied to real data sets, the two best scoring algorithms RANK and PAGE 
performed well and should be used when employing the Giotto pipeline (Dries et al. 
2019). To analyse spatial patterns of gene expression, Giotto creates a spatial net-
work to represent the data using a Delaunay triangulation network, which is the 
same as the method employed by scGCO (Zhang et al. 2018; Dries et al. 2019). 
While the option is available to alternatively construct a spatial network with two 
different methods offering the user greater control on downstream parameters, the 
analysis results appear insensitive to these adjustments (Dries et  al. 2019). To 
uncover SVGs, Giotto introduces two new methods, BinSpect-kmeans and BinSpect 
rank, as well as incorporated methods from SpatialDE, Trendsceek and SPARK 
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(Dries et al. 2019). When evaluated, each of the methods identified unique SVGs, 
with 103 genes being identified by all five methods (Dries et al. 2019).

As the field of SRT continues to expand, so will the analytical tools available. As 
an increasing number of downstream analysis packages are published for SVG 
identification amongst other analyses, pipelines and frameworks will become 
increasingly complex in the scope of their abilities. A new framework developed to 
combine and encompass all aspects of analysis for spatial-omics technology is 
Squidpy (Palla et al. 2021). While not built specifically for the analysis of SRT data, 
the Squidpy framework developed in Python brings common tools for analysis and 
visualisation to any spatial-omics data and takes advantage of the additional infor-
mation available to improve exploration (Palla et al. 2021). Offering a broader and 
more modular approach than Giotto, Squidpy offers the opportunity for other pack-
ages to be easily integrated into its pre-existing framework to expand its capabilities 
(Palla et al. 2021). Squidpy will store the image data in an Image Container and 
create a neighbourhood graph of spatial coordinates so that it can be used on a wide 
array of technologies (Palla et al. 2021). A feature of Squidpy that adds additional 
analytical opportunity is its in-built image analysis tools (Palla et al. 2021). While 
the packages discussed so far require an image as part of the input for analysis, none 
extend so far as to allow the user to investigate the data contained in this image to 
the same extent as Squidpy, which is the capability that differentiates it most from 
Giotto (Palla et al. 2021). The first step in the investigation of cellular neighbour-
hoods and spatial patterns is the construction of a spatial graph (Palla et al. 2021). 
When compared to similar processes in Giotto, Squidpy had a more efficient run 
time when constructing both a spatial graph and calculating neighbourhood enrich-
ment, although for data sets with a smaller number of observations the difference 
was not great (Palla et al. 2021). Despite offering an interesting perspective on the 
direction of spatial-omics analysis frameworks and pipeline and reporting limited 
but promising results with regards to its ability to reproduce results about cellular 
neighbourhoods, Squidpy does not report its performance in accurately discovering 
SVGs nor does it quantify how its results relate to those reported in the previous 
studies (Palla et al. 2021).

7.2.7  Discussion

Despite being a relatively novel technology, SRT – often alongside scRNA-Seq or 
other techniques – has already been successfully applied to identify gene expression 
changes in a variety of tissues and disease states. One example was its application 
in mouse brains to understand spatially DEGs involved in early-stage Alzheimer’s 
disease (Navarro et al. 2020). Different SRT methods are best suited to studying 
different cell types within a tissue to distinguish differences between them in dis-
ease states, such as comparing the dopamine neurons from two regions in Parkinson’s 
patients (Aguila et al. 2018). To further demonstrate how this technology can be 
applied to an array of conditions and diseases, Modlin and colleagues successfully 
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actioned it as part of an investigation into the organisation of cellular subtypes that 
contribute to the antimicrobial capabilities of human leprosy granulomas (Ma 
et al. 2020).

This clear increase in the popularity of SRT has prompted the recent develop-
ment of many different packages and pipelines for the downstream data analysis of 
SRT data sets. While it seems that certain studies are still reliant on packages devel-
oped for scRNA-Seq data adapted to included SRT analysis such as Seurat (Ortiz 
et al. 2019), the variety of purpose-built available tools will likely replace these. A 
package for easily identifying SVGs seems to be the most popular aim, and even the 
pipelines developed so far have centred around this same purpose (Svensson et al. 
2018; Li et al. 2021; Sun et al. 2019; Edsgärd et al. 2018; Hao et al. 2021; Zhang 
et al. 2018; Palla et al. 2021; Dries et al. 2019). However, the scope of developing 
packages continues to expand to further improve the capabilities of analysis, such as 
Sparcle, which was developed to be used in conjunction with other packages.

Of all the packages discussed, SpatialDE seems to be the most popular, followed 
by SPARK, Trendsceek and Giotto in terms of being used as benchmarks by which 
to validate new packages. SpatialDE indicated a tendency to label genes with very 
low expression as SVGs (Sun et al. 2019), and certain discrepancies in performance 
compared to other packages tested on real data sets. This alongside the potential 
introduction of false positives indicates an area of improvement for this popular 
package. A current limitation of the validation of package performance is that most 
commonly two data sets (Ståhl et al. 2016), obtained using the same Visium method, 
are used which will surely introduce inherent bias to the benchmarking process. It 
would be beneficial to understand the package’s performance across datasets from 
different tissues (instead of exclusively olfactory bulb and breast) generated using a 
different technology.

To most comprehensively establish the relative performance of all packages, a 
review should be conducted which benchmarks all packages simultaneously against 
the same datasets, generated by different SRT methods in different tissues and a 
standard method for validation established. More packages that are modular and can 
be integrated alongside one another to expand the scope of analysis are critical and 
will help advance the field and uptake of this technology. Additionally, the further 
development of user-friendly pipelines will also make analysing SRT results more 
accessible. As the array of available tools for analysis of SRT data becomes greater, 
the results from studies employing the technology will improve and the scope of 
biological problems that can be addressed will simultaneously expand.
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