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Chapter 3
Transcriptome Analysis Using RNA-seq 
and scRNA-seq

Waldeyr Mendes Cordeiro Silva, Fabián Andrés Hurtado, Kelly Simi, 
Pedro Henrique Aragão Barros, Dimitri Sokolowskei, Ildinete Silva-Pereira, 
Maria Emilia Walter, and Marcelo Brigido

3.1  �High-Throughput Sequencing Techniques

Since Sanger’s technology in the 1970s, DNA sequencing has been continuously 
improved regarding both throughput and low cost. Next-generation sequencing 
(NGS), also called high-throughput or deep sequencing, constitutes a new 
breakthrough in increasing research power, a revolutionary advancement in 
molecular biology knowledge. An increasing number of biological questions may 
be addressed by NGS technologies, which provide a much larger comprehensive 
survey compared to the Sanger method, and under a system biology perspective. 
Transcriptomics has been particularly benefited by the use of these new technologies, 
also called RNA-seq, allowing a complete characterization of the whole 
transcriptome at both gene (Kvam et al. 2012) and exon (Anders et al. 2012) levels, 
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and with an additional ability to identify rare transcripts, new genes, novel splicing 
junctions, and gene fusions (Wang et  al. 2009; Katz et  al. 2010; Van Verk et  al. 
2013). More recently, single-cell sequencing had become a feasible task allowing a 
deeper and systemic view of individual cell’s transcriptomes.

This chapter first addresses a brief overview of sequencing techniques and the 
most common next-generation platforms and computational methods for RNA-seq 
data analysis. Then, we present two case studies to assess the capabilities of RNA-
seq in addressing important biological issues.

3.1.1  �Sanger’s Sequencing Technology

In 1977, Frederick Sanger and colleagues (1977) developed the DNA sequencing 
method, which in 2001 allowed the first human genome draft (Lander et al. 2001). 
This method, called dideoxy chain-termination or simply the Sanger method, is 
based on special nucleotide molecules (called ddTNP), lacking a 3′-OH at the 
deoxyribose, which blocks the DNA elongation. These special nucleotides are 
mixed in lower concentrations to the regular nucleotides and used as reagents for 
DNA polymerase reaction. Therefore, with the polymer synthesis stopped by the 
ddNTP’s inclusion, the last nucleotide can be determined. Each of the four ddNTPs 
was added separately in four different reactions. In the beginning, one of the regular 
nucleotides, most commonly dATP or dCTP, was radioactively labeled (e.g., 32P or 
35S) to achieve the radioactive signal. Usually, polyacrylamide gel electrophoresis 
was used to separate the DNA molecules, which diverged in length by a single 
nucleotide. Then the gel was dried and exposed to X-ray film.

An important modification of the method was substituting the radioactive label 
with a fluorescent dye (Smith et al. 1986). Each distinct wavelength produced by the 
fluorescent dyes linked to dideoxynucleotides corresponds to a different nucleotide, 
with the four sequencing reactions performed in the same tube. With the Sanger 
sequencing method’s automation, the performance reached up to 96 different 
reactions running in parallel capillary gel electrophoresis (Marsh et al. 1997), which 
is considered the first-generation technology. At the top of the technology, 384 
samples could be sequenced at once in a single multi-well plate. The Sanger 
method’s main sequencing devices are ABI (Applied Biosystems) and MegaBACE 
(GE Healthcare Life Sciences).

3.1.2  �Next Generation Sequencing

Regulatory mechanisms and gene expression profiles have been widely investigated 
toward the elucidation of several essential cellular processes. Hybridization-based 
technology, e.g., microarray, has been beneficial for determining global gene 
expression. However, the high background levels due to cross-hybridization, a 
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limited range of quantification, and a restricted detection of known genes are 
bottlenecks for large-scale use of this technique (Shendure 2008). RNA-seq allows 
a genome-scale transcriptome analysis, including novel genes and splice variants, 
with a wide range of quantification and reduced sequencing costs (Wang et al. 2009; 
Soon et al. 2013). These advantages make RNA-seq a better and attractive solution 
for whole-genome transcriptome analysis of several organisms, even for those with 
no sequenced reference genomes.

Nowadays, the most commonly used NGS platforms for RNA-seq research are 
Illumina, PacBio, and Nanopore. These and other novel platforms are rapidly 
becoming more popular as they profile short and longer reads at a reasonable price 
per base. The substitution of older NGS technology is fast and pioneer methods, 
such as pyrosequencing, are nowadays wholly abandoned. A comparison of current 
NGS technologies is shown in Table 3.1.

The enormous amounts of data generated by NGS create new challenges to the 
downstream bioinformatics analysis, which has to handle large sequence files while 
searching for comprehensive and useful biological information, discussed later in 
this chapter.

3.1.3  �Illumina Sequencing

Illumina sequencing uses a reversible dye-terminator technique that adds a single 
nucleotide to the DNA template in each cycle (Bentley et al. 2008). This system was 
initially developed in 2007 by Solexa and was subsequently acquired by Illumina, 
Inc. Illumina is widely used in several transcriptome studies since it reaches the 
deepest depth among NGS technologies, despite its small sequence size 
(150–300 bp).

Illumina sequencing is based on sequencing-by-synthesis. Sequencing is per-
formed in a solid slide covered by adaptors complementary to those added to the 
fragmented DNA sequences (Metzker 2010). This procedure, called bridge PCR, 
consists of amplifying bent DNA sequences attached by both ends to the solid 
surface (Fig. 3.1a). By the end of the clonal amplification, clusters of identical DNA 
sequences (Polonies) will be formed to amplify the fluorescence signals. In each 
round, one single nucleotide is added to the single-strand template sequences 
followed by fluorescence detection by a high-sensitivity CCD camera (Fig. 3.1b). 

Table 3.1  Comparison of next-generation sequencing technologies

ABI 3730xl (Sanger) Illumina PacBio Nanopore

Read length (bp) 900 75–300 5000–60000 500–2300000
Cost (US$/Mb) 500 0.01–0.063 0.013–0.933 0.021–2
Output data/run 2,88 Mb ~120 Gb 2–160 Gb 10–300 Gb
Time run (hours) 3 12–44 Up to 4 h 0.017–72

Data from Amarasinghe et al. (2020); Logsdon et al. (2020)
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As in Sanger’s technology, different fluorophore molecules are attached to each 
nucleotide; however, only one nucleotide is incorporated in each cycle. The 
fluorescence emission releases the 3′OH of the recently added nucleotide, allowing 
it to receive new monomers in the subsequent sequencing cycle.

Single-end sequencing, i.e., reads generated from a single-end adaptor, is being 
replaced by the paired-end sequencing since the accuracy of downstream analysis is 
greater with a fair price. Paired-end reads are produced from the adaptor priming 
sites in both template sequence ends, the second adaptor primer being used in a 
subsequent sequencing run (Fig. 3.1c).

3.1.4  �Pacific BioSciences Sequencing

Single-molecule real-time (SMRT) sequencing was devised by Pacific BioSciences 
(PacBio) in 2009, and it is also called PacBio sequencing (Eid et al. 2009). This 
platform uses a single DNA polymerase attached to the bottom of a picolitre well – 
zero-mode waveguides (ZMW) – which replicates a single-molecule template per 
well to produce a signal for light detection in the smallest volume. In this method, 
the template is capped by hairpin adapters at both ends of the double-stranded DNA 

Fig. 3.1  The Illumina sequencing technology. (a) Two basic steps encompass an initial priming 
and extending of the single-stranded, single-molecule template, and bridge amplification of the 
immobilized template in a solid device with immediately adjacent primers to form clusters; (b) In 
the images, the sequencing data is highlighted from two sequence clusters; (c) Paired-end 
sequencing by which reads are generated from both template strand. “A” block indicates the 
device-ligation adaptors and “SP,” sequencing primers. (Source: Metzker (2010) and http://www.
illumina.com/)
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molecule, forming a single-stranded circular DNA (called a SMRTbell). 
Consequently, the polymerase repeatedly passes over the circular template and 
sequencing it multiple times, resulting in long read lengths and, thus, providing 
higher accuracy (Rhoads and Au 2015). The PacBio platform enables simultaneous 
analysis of millions of wells per chip in a single run, providing long read lengths to 
up to 60 kb (with average read lengths of 20 kb) (Nakano et al. 2017).

Overall, this technology is considered highly accurate and robust, even as its first 
sequencers have some drawbacks that narrow down its application. For instance, the 
limited high-throughput, higher cost, and error rate compared with those of second-
next generation sequencing (SGS) technologies (Kanzi et  al. 2020; Wang et  al. 
2020). However, in 2019, PacBio launched the Sequel II System, which asserts 
improvements in the sequencing to deal with these limitations, generating highly 
accurate (99.9%) individual long reads up to 25 kb (HiFi reads) and reduces the 
costs and time of the project, in comparison with its prior versions (Wenger et al. 
2019; Logsdon et al. 2020). These HiFi reads are generated by using the circular 
consensus sequencing (CCS) due to continuous circular sequencing (Wenger et al. 
2019; Pereira et al. 2020).

For transcriptomic analysis, the SMRT isoform sequencing (Iso-Seq) from 
PacBio increased the read length compared to other SGS technologies. This platform 
achieves full-length transcripts sequencing, improving the analysis in different 
applications, including gene annotation, isoform identification, fusion transcripts 
identification, and long non-coding RNA discovery (Weirather et al. 2015; Nattestad 
et al. 2018; Wang et al. 2019; Zhang et al. 2020a; Hu et al. 2020).

3.1.5  �Nanopore MinION Sequencing

The long-read-length sequencer MinION, the first nanopore sequencer device, was 
announced by Oxford Nanopore Technologies (ONT) in 2012 as a portable, 
compact, real-time sequencing controlled by a laptop computer device (Deamer 
et al. 2016). Since then, new nanopore platforms have quickly emerged, such as 
PromethION, which offers a greater scale of sequencing, and SmidgION, the 
smallest sequencing platform designed for use with smartphones or other mobile 
devices.

After library preparation, each strand is attached to adapters. The adaptors bind 
to a protein motor that guides the sequence to the protein pore, which processes it. 
Beginning at the 5′-end, the DNA or RNA polymer passes through the pore 
controlled by the motor protein, which unzips dsDNA and translocates a single 
strand sequence (Fig. 3.2). The translocated strand modulates the ion current flow 
through the pore membrane (Ip et al. 2015). The variation of the electrochemical 
current promoted by each different nucleotide is measured by a sensor and enables 
identification by different signal patterns. The resultant signals are stored in a 
FAST5 format file and can be finally used for base-calling, a process in which the 
nucleotides are predicted from the Raw signals and transferred to a FASTQ file. 
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Base-calling can be performed using only information from one strand (1D) or two 
strands (2D) for consensus, with information from both strands resulting in better 
base prediction (Lu et al. 2016). Currently use of neural networks in base-calling 
reached an accuracy interval between 85% and 95% with the detection of signal 
patterns (Zhang et al. 2020b).

Although sequencing full-length reads allows improvement of isoforms identifi-
cation and discovery in transcriptome sequencing, it deals with high error rates 
(Kovaka et  al. 2019). To reduce error rates before analysis, nanopore correcting 
errors can be made by a hybrid error correction strategy. This strategy uses high 
accuracy short reads to correct long-reads, self-correction methods that rely only on 
long-reads, or reference-based methods that use a reference genome for error 
correction (Zhao et al. 2019).

3.2  �Bioinformatics Pipelines for Transcriptome Projects

Illumina sequencing is the most used technique in transcriptome studies, since the 
number of sequenced reads (named raw data) allows to find out virtually the 
complete set of expressed genes (transcripts). However, longer reads allow a more 
precise definition of the transcripts. In both cases, the metaphor for reconstructing 

Fig. 3.2  Schematic view of the nanopore sequencer. MinION device process double DNA helix. 
First, the protein motor unzips DNA passing a single strand through the pore. The movement of the 
single strand promotes an ionic current flow that is measured and converted to nucleotides data by 
the base calling analysis
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the transcripts is like mounting a puzzle, where the pieces (the reads) have to be 
assembled (relative to a reference genome or not) to obtain the picture (transcripts 
in a transcriptome). After this, different analyses can be performed on these 
reconstructed transcripts, e.g., quantitative and differential expression. In a 
transcriptomic project, the tasks of reconstructing transcripts and performing 
biological analyses are performed by bioinformatics pipelines, discussed next.

3.2.1  �Pipelines

A bioinformatics pipeline or workflow is a computational system composed of a 
sequence of programs sequentially executed. The output data from one software is 
the input data for the following software (Wercelens et  al. 2019). In general, 
transcriptome bioinformatics pipelines have the following steps, which can be 
combined according to the raw input data and the objectives of each project:

•	 Quality control of raw data: This initial step allows visualization, analysis, and 
filtering (cleaning) the data. Usually, this process takes two sub-steps as follows: 
clipping and trimming. In the clipping step, adapters (primers) attached to the 
ends of the sequenced reads (or even the whole read) are removed. In the 
trimming step, low-quality sequences in the reads are filtered. The filtering 
guarantees a reliable dataset of quality reads to be used in the following phases 
of the pipeline.

•	 Assembly: in the absence of a reference genome or transcriptome, it is necessary 
to assembly one. For that, overlapping reads (the end of a read is similar to the 
beginning of another read) are joined in groups of reads (called contig), allowing 
to construct of one larger sequence (called consensus), which is a predicted 
(fragment of) transcript. The complete set of transcripts is the predicted 
transcriptome (Fig. 3.3).

•	 Mapping: The filtered reads can be aligned to the transcriptome’s reference 
genome to find the actively expressed exons or transcripts. The amount of reads 
mapping to a single exon/transcript is proportional to its expression.

•	 Analysis: The whole set of (fragments of) transcripts obtained from the mapping 
or the assembling step allows to obtain relevant biological information, e.g.

	 (a)	 quantitative analysis: among others, coverage analysis shows the abundance 
of genes expressed in one RNA-seq sample, more precisely, the number of 
reads mapped in a certain region of the chromosome.

	 (b)	 differential expression: allows to analyze the differences and variability of 
gene expression between samples along distinct genomic regions.

	 (c)	 annotation: assigns a biological function to each transcript.

Designing a particular pipeline mainly depends on the transcriptome project’s 
objectives and other information, such as the sequencing platform employed (since 
the sequencing techniques may cause specific errors in the raw data). It also depends 
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on the availability of a reference genome or transcriptome in the mapping step and 
the analysis step’s accuracy and biases. Two generic bioinformatics pipelines for 
transcriptomes are discussed next.

Pipeline 1  The organisms of interest have already been sequenced, preferably with 
high coverage, well-annotated genes, and other relevant biological characteristics. 
The reads are usually short (about 150–300  bp), typically produced by Illumina 
sequencing platforms. This pipeline would be composed of a minimum of three 
steps (Fig. 3.3a): quality control, mapping, and quantitative analysis.

Pipeline 2  The organism of interest has not been sequenced before. The reads are 
usually long (up to 40 kb), heavily produced by the PacBio sequencing platform. 
This pipeline would be composed of a minimum of three steps (Fig. 3.3b): quality 
control, assembly, and annotation. The assembly phase constructs one consensus 
sequence for each group of reads presenting similar extremities. This approach 
heavily depends on sequencing quality, and the multiplatform approach improves 
the final assembled transcriptome. Finally, the annotation phase assigns biological 
functions to the consensus sequences.

A bioinformatics pipeline is usually implemented using command lines (e.g., 
GNU/Linux terminal) mainly because it is a fast, relatively simple, and reliable way 
to control and manipulate large amounts of datasets. Programming languages such 
as Shell Script, Python, R, and Perl might also help implement a pipeline and resolve 
minor tasks by scripting. The pipeline’s files/data can be organized in directories or 
database management systems, relational databases (e.g., MySQL, Oracle), or 
NoSQL databases (e.g., MongoDB, Neo4J) to store, retrieve, and manage the data. 

Fig. 3.3  Examples of pipelines for transcriptome analysis: (a) Pipelines for short reads, with a 
well-characterized reference genome, and two types of analyses  – coverage statistics and 
differential expression. (b) Pipeline for longer reads, with no reference genome, and annotation 
(biological function, gene categories, and ontologies)
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Most software used in pipelines are free, open-source, publicly available, and some 
of the most common ones are described next.

Frameworks to manage workflows are also available, such as Snakemake (Köster 
and Rahmann 2012) and Common Workflow Language (CWL) (https://www.
commonwl.org/v1.0). They provide a reliable way to standardize the syntax and 
semantics for program evoking and create robust and reproducible workflows.

3.2.2  �Bioinformatics Software

3.2.2.1  �Software for Quality Control

The overall quality of the output sequencing data must be assessed to eliminate bad 
quality, poorly sequenced, or ambiguous raw data that could negatively impact 
further analysis. Thus, filtering (or cleaning) strategies capable of clipping and 
trimming are essential to guarantee the reliability of transcriptomics data and ensure 
obtaining relevant and trustworthy biological information. The sequenced reads are 
stored using FASTQ format, gathering the nucleotides sequences of each read and 
their corresponding quality scores.

Some tools are used to assess and visualize the overall quality of data, such as 
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc), a popular 
java-based quality control check program. Other tools to perform filtering steps like 
FASTX-Toolkit (http://hannonlabcshledu/fastx_toolkit) provide options for 
performing both clipping and trimming. Other commonly used tools are Cutadapt 
(Martin 2011) for clipping, PRINSEQ (Schmieder and Edwards 2011), and 
Trimmomatic (Bolger et al. 2014) for trimming. Fastp (Chen et al. 2018) is an ultra-
fast all-in-one quality control, and data-filtering tool that can be an alternative to 
multiple and insufficiently fast software for quality control. They all present several 
options, such as minimum size for a read, minimum quality score, and polyadenylation 
removal.

3.2.2.2  �Software for Mapping

The mapping phase’s main objective is to find where each filtered short read corre-
sponds in a reference genome/transcriptome (Fig. 3.4).

There are many programs capable of performing the mapping process. In gen-
eral, these software are computationally intensive (to process and store data), and 
mapping techniques use indices to accelerate the search procedure and reduce the 
memory cost associated with finding the location of reads to the reference genome.

Bowtie (Langmead et al. 2009) is a fast short aligner that tolerates a small num-
ber of mismatches. Bowtie first concatenates all the reference genome in one single 
string and performs the Burrows-Wheeler transformation (BWT) to generate one 
index to this reference genome. Next, character by character of each read is mapped 
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until the entire sequence is aligned. If a read cannot find a perfect alignment location, 
the program backtracks one character, substitutes this character, and the process is 
repeated until the alignment is completed. The maximum number of character 
substitutions is a parameter in Bowtie. The rapid improvement of throughput and 
increase of read length of sequencing technologies required the development of 
Bowtie2 (Langmead and Salzberg 2012), a gapped supported alignment tool that 
performs a faster and more sensitive mapping for reads longer than 50 bp.

TopHat (Trapnell et al. 2009) can identify exons splicing sites by mapping RNA-
seq reads against a reference genome. First, the Bowtie mapping program is 
employed to map the short unspliced reads to the reference genome. The reads that 
are not initially mapped are not filtered out but are just set apart. After the main 
alignment, each unmapped reads are split into shorter fragments and then aligned 
individually and independently to identify splice junctions between exons. TopHat2 
(Kim et  al. 2013) is an updated version of TopHat with an overall accuracy 
improvement and better alignment procedure.

The Spliced Transcripts Alignment to a Reference (STAR) (Dobin et al. 2013) 
represents a significant mapping alignment algorithm for RNA-seq data. STAR 
aligns non-contiguous (exons) sequences straight to a reference genome by two 
main steps. First, in the seed searching phase, a maximal mappable prefix (MMP) is 
employed to correctly map the reads against the reference genome even if the read 
contains a splice junction. Later, the algorithm attaches the seeds previously aligned 
and constructs alignments of all read sequences. Finally, using a defined local 
alignment score system, a seed combination is called the best alignment for a read 
if it has the highest score.

Segemehl (Hoffmann et al. 2009, 2014) maps short reads to reference genomes, 
detecting mismatches, insertions, and deletions. Moreover, Segemehl can deal with 
different read lengths and can map primer or polyadenylation contaminated reads 
correctly. Segemehl matching method is based on enhanced suffix arrays, supporting 
the SAM format and queries with gzipped reads to save disk and memory space and 
allowing both bisulfite sequencing and split read mappings.

Minimap2 (Li 2018) is a fast RNA-seq aligner that maps long-reads against a 
reference database. Minimap deals with long noisy reads at high error rates generated 
from both ONT and PacBio sequencing. In aligning spliced sequences, it recovers 
insertions and deletions and predicts correct splice junctions for correct alignment.

Fig. 3.4  Short reads mapped to a reference genome. Reads are aligned to a reference genome and 
the accumulation of data brings in evidence expressed exons and splice junctions

W. M. C. Silva et al.
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There are many other computational methods to map short reads to a reference 
genome, as shown in Table 3.2.

3.2.2.3  �Software for Assembling

Mapping approaches for transcriptome reconstruction can be particularly tricky 
since correctly assigning reads to a reference genome are usually computational 
demanding, prone to errors by splice junctions, sequencing inaccuracy, absence, or 
unfinished reference sequences. Contrarily, assembly (or de novo assembly) 
approaches do not require any reference genome, the desired feature, especially 
when genomic sequences are not available or do not attend minimum quality 
demands.

The assembly tools algorithms usually aim to group reads with similar extremi-
ties, i.e., the overlapping of one read’s end to another indicates that both probably 
belong to the same transcript (Fig. 3.5). These similar extremities enable the recon-
struction of larger regions of the transcripts. As said before, each of these groups is 
called a contig. The sequence resulting from the overlapping reads in one contig, 
called consensus, is a predicted (fragment of) transcript.

Short reads sequencing usually have greater accuracy than long reads; however, 
short reads often align in multiple regions, causing problems to find correct isoforms. 
Thus, long reads sequencing can improve the discovery and identification of 
isoforms, but it is less accurate due to base-calling errors. When possible, the 
mixture of long reads and Illumina short reads are the best strategy for assembling 
complete and accurate transcriptomes (Kovaka et al. 2019).

Trinity (Grabherr et  al. 2011) software package represents a major de novo 
assembly method composed of three modular components: Inchworm, Chrysalis, 
and Butterfly. Initially, the inchworm algorithm decomposes and selects from all 
reads the most common k-mer (k = 25) as the seed promotes contig assembly based 
on greedy extension (k−1)-mer overlaps. Chrysalis clusters and connects Inchworm 
contigs in components that could be originated from alternative splicing or related 

Table 3.2  Mapping software and their websites

Mapping softwares Website/repository

Bowtie1/Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

Minimap2 https://github.com/lh3/minimap2
Segemehl https://www.bioinf.uni-leipzig.de/Software/

segemehl/
STAR https://github.com/alexdobin/STAR
TopHat2 http://ccb.jhu.edu/software/tophat/index.shtml
NextGenMap http://cibiv.github.io/NextGenMap/
Kallisto https://pachterlab.github.io/kallisto/
HPG Aligner https://github.com/opencb/hpg-aligner

3  Transcriptome Analysis Using RNA-seq and scRNA-seq

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/lh3/minimap2
https://www.bioinf.uni-leipzig.de/Software/segemehl/
https://www.bioinf.uni-leipzig.de/Software/segemehl/
https://github.com/alexdobin/STAR
http://ccb.jhu.edu/software/tophat/index.shtml
http://cibiv.github.io/NextGenMap/
https://pachterlab.github.io/kallisto/
https://github.com/opencb/hpg-aligner


84

genes. If contigs overlap k−1 bases between themselves and reads span the splicing 
junction among different contigs, then highly structured de Bruijn graphs are built 
for each component. Finally, the Butterfly component integrates de Bruijn graphs 
produced in the Chrysalis stage to their corresponding RNA-seq read, allowing the 
reconstruction of the transcriptome sequences similar to the original transcripts.

Trans-ABySS (Transcriptome Assembly By Short Sequences) (Robertson et al. 
2010) is a de novo assembly tool designed to reconstruct paired-end short reads 
from transcriptome data. Trans-AbySS derived from ABySS (Simpson et al. 2009), 
a short-read genomic data assembler. Trans-AbySS employees de Bruijn graph 
approach promoting data assembly with standard k-mers (k = 32) promoting a good 
balance between assembling frequent and rare transcripts. Trans-ABySS single-
processor version is useful for assembling genomes of up to 100 Mbases. In contrast, 
the parallel version (implemented using MPI) can be assembled larger genomes, 
benefiting from multi-threaded processing.

MaSuRca (Zimin et al. 2013) process hybrid assembly, using “super-reads” from 
short-reads to de novo assemble reads and construct synthetic long reads with a low 
error rate and combining with long reads from Nanopore/Pacbio. Its assembly 
permits work with long reads and short reads at the same time, overcoming high 
error rates from long-reads sequencing (Table 3.3).

3.2.2.4  �Software for Analysis

In transcriptome projects, quantitative analysis, differential expression, and tran-
script annotation are extensively used. Many suitable tools for these analyses are 
available in R language, which provides a wide variety of statistical and graphical 

Fig. 3.5  Reads that contain overlapping extremities indicate that they are parts of the same tran-
script. Multiple reads overlapping each other creates a longer fragment called contig that repre-
sents a specific locus of consensus sequence

W. M. C. Silva et al.
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resources. R is highly extensible, allowing us to output well-designed publication-
quality plots, including effective data handling and storage facility and a collection 
of intermediate tools for data analysis. Bioconductor (https://www.bioconductor.
org) is a (mostly) R packages repository that provides open-source tools to analyze 
biological high-throughput data. Similarly, there are many Python-based resources 
as Biopython (https://biopython.org), a set of freely available tools for biological 
computation written in Python.

Quantitative Analysis
The transcript coverage is the number of reads “covering” (or the number of mapped 
reads in) a transcript. The greater the number, the more abundant is the expressed 
gene in an RNA-seq sample (Fig. 3.6). The RNASeqMap library (Leśniewska and 
Okoniewski 2011), for instance, provides classes and functions to analyze the RNA-
sequencing data using the coverage profiles in multiple samples at a time.

Differential Expression
The differential expression refers to the study of the variability of genetic expres-
sion between samples. One important objective of RNA-seq projects is to identify 
the differentially expressed genes in two or more conditions (Rapaport et al. 2013). 
These genes are selected based on parameters, usually based on p-values generated 
by statistical modeling. The expression level is measured by the number of reads 
mapping to the transcript, such as transcripts per million (TPM), which is expected 
to correlate directly with its abundance level. This measure is different from gene 
probe-based methods, e.g., microarrays. In RNA-seq, the expression of a transcript 
is limited by the sequencing depth. It depends on the expression levels of other 
transcripts, in contrast to array-based methods, in which probe intensities are 
independent of each other. That one and other technical differences have motivated 
many statistical algorithms, with different approaches for normalization and 

Table 3.3  Assembly software and their websites

Assembly Website/repository

BWA https://github.com/lh3/bwa
Cufflinks http://cole-trapnell-lab.github.io/cufflinks/
MaSuRca https://github.com/alekseyzimin/masurca
SPAdes http://cab.spbu.ru/software/spades/
StringTie2 https://github.com/skovaka/stringtie2
Trans-ABySS https://github.com/bcgsc/transabyss
Trinity https://github.com/trinityrnaseq/trinityrnaseq/

wiki
SOAPdenovo https://github.com/aquaskyline/

SOAPdenovo-Trans
Oases https://github.com/dzerbino/oases
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differential expression detection. For example, Poisson or negative binomial 
distributions to model the gene count data and various normalization procedures are 
common approaches.

Cufflinks (Trapnell et al. 2010) may be used to measure global de novo transcript 
isoform expression. It assembles transcripts, estimates their abundances, and 
determines differential expression (Trapnell et  al. 2013) in RNA-seq samples. 
Moreover, Cufflinks accepts reads aligned by other mappers and assembles the 
alignments to a parsimonious set of transcripts. It then estimates the relative 
abundances of these transcripts based on how many reads support each one, 
considering biases in library preparation protocols.

Some articles discuss and compare statistical methods to compute differential 
expression. In a review, Kvam et  al. (2012) compared four statistical methods – 
edgeR, DESeq, baySeq, and a method with a two-stage Poisson model (TSPM). 
Rapaport et  al. (2013) describe an extensive evaluation of common methods  – 
Cuffdiff (Trapnell et al. 2013), edgeR (Robinson et al. 2010), DESeq (Anders and 
Huber 2010), PoissonSeq (Li et al. 2012), baySeq (Hardcastle and Kelly 2010), and 
limma (Smyth 2004) adapted for RNA-seq use, using the Sequencing Quality 
Control (SEQC) benchmark dataset and ENCODE data.

Splice Junctions
Splice junctions are nucleotide sequences at the exon–intron boundary in the pre-
messenger RNA of eukaryotes removed during the RNA splicing. This process can 
generate many processed transcripts from a single gene. Computationally, the 
problem is to recognize, given a sequence of DNA, the boundaries between exons 
(the parts of the DNA sequence retained after splicing) and introns (the parts of the 
DNA sequence that are spliced out). This problem consists of two subtasks: 
recognizing exon/intron boundaries (called EI sites) and recognizing intron/exon 
boundaries (IE sites). IE borders are called “acceptor sites,” while EI borders are 
called “donor sites.” The recognition and quantification of splice variants are among 
the advances of RNA-seq over microarray to measure differential gene expression. 

Fig. 3.6  Read coverage of transcripts relative to a reference genome. Each red bar plotted indi-
cates a locus alignment coverage. The arcs represent splicing junctions between exons. Finally, the 
arc numbers are the observed numbers of reads across the junction. (Source: https://training.gal-
axyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html)
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The splice junctions help to delineate and quantify the transcript model, as observed 
in Fig. 3.6.

Tophat (Trapnell et al. 2009) identifies splice junctions, producing the junctions.
bed file, where the field score is used to indicate coverage depth. The identified 
splice junctions can be displayed in browsers (e.g., UCSC genome browser (Kuhn 
et al. 2013)) using.bed files encoding splice junctions. Junction files should be in the 
standard.bed format. Pasta (Patterned Alignments for Splicing and Transcriptome 
Analysis) (Tang and Riva 2013) is a splice junction detection algorithm designed for 
RNA-seq data, based on a highly accurate alignment strategy on a combination of 
heuristic and statistical methods to identify exon–intron junctions with high 
accuracy.

Annotation
The annotation step aims to assign a biological function for each transcript, identi-
fying genes and finding more information, e.g., biological categories and ontolo-
gies. The annotation process is characteristic of novel transcriptomes since reference 
genomes and transcriptomes are typically associated with curated gene annotation.

The annotation methods can be organized into two classes:

•	 Pairwise comparison of every transcript against a file with known transcripts and 
their corresponding annotation. This can be done by comparing the nucleotides 
or the translated nucleotides.

•	 Ab initio gene prediction, where the presence of structural features and motifs of 
known genes are used to infer function.

The pairwise sequence comparison (or pairwise alignment), where a query 
sequence (transcript of the organism of interest) is compared with annotated 
sequences datasets, relies on an algorithm that computes an alignment among two 
transcripts. The hypothesis is based on Darwin’s evolution theory, which claims that 
living organisms evolved from ancestor organisms. Therefore, if two transcripts 
have similar sequences, they may be homologs and probably share the same 
biological functions. This means that biological function may be inferred from 
similar sequences. Important pairwise algorithms, which produce alignments 
between pairs of sequences, are Smith-Waterman (Smith and Waterman 1981) and 
BLAST (Altschul et al. 1990).

Similar to the assembly step, the main difficulty in the annotation is due to the 
transcript length. The resulting genes may be fragmented, causing loss of 
information. Since alignment programs are error-tolerant, it is reasonable to expect 
that the annotation for transcripts (predicted from reads generated by high-through-
put sequencers) is correct if functions of genes of other organisms have been found 
correctly.

In contrast, finding genes ab initio is not so error robust since sequencing errors 
can lead to incorrect gene prediction. In particular, sequencing errors introducing a 
stop codon can result in an incorrectly predicted gene.

3  Transcriptome Analysis Using RNA-seq and scRNA-seq
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3.3  �Single-Cell Transcriptome Sequencing (scRNA-seq)

Although cells in an organism share almost identical genotypes, gene expression is 
heterogeneous and reflects the activity of a subset of genes. ScRNA-seq technologies 
are capable of generating data sets that describe the transcriptome of single cells. 
Single-cell transcriptome sequencing (scRNA-seq) expands the biological panorama 
granted by RNA-seq. It allows to estimate the expression levels of the whole 
transcriptome or targeted gene expression from a single cell and addresses new 
biological questions such as the heterogeneity of cell responses and their gene 
regulatory networks. It emerged with an mRNA-seq assay where a single mouse 
blastomere was sequenced, detecting the expression of 75% more genes than 
microarray techniques (Tang et al. 2009). This pioneer scRNA-seq method profiled 
RNA transcriptomes from single cells using oligo-dT primers followed by ligation 
adapter PCR (Tang et al. 2009). This method’s limitation is the reverse transcriptase’s 
inefficiency on the first-strand cDNA synthesis, causing a 3′ bias.

Eventually, new protocols and lower sequencing costs made scRNA-seq more 
accessible as technologies advance, resulting in continuously growing datasets, 
ranging from ~102 to ~106 cells. Some of the most distinguished methods for 
scRNA-seq are Smart-seq (Ramsköld et al. 2012), Smart-seq2 (Picelli et al. 2014), 
Drop-seq (Macosko et al. 2015), inDrop (Klein et al. 2015), CEL-seq2 (Hashimshony 
et al. 2016), 10× Chromium (Zheng et al. 2017), and Smart-seq3 (Hagemann-Jensen 
et al. 2020).

In general, scRNA-seq methods tag transcripts to make it possible to identify 
their cell of origin and generate libraries for sequencing. scRNA-seq sequencing 
data can both come from next-generation sequencing (NGS) and single-molecule 
sequencing (SMS) (Gao 2018). Smart-seq, Smart-seq2, Smart-seq3, and CEL-seq2 
can be considered low-throughput plate-based methods, where the cells are sorted 
into wells of a multi-well plate. Alternatively, bead-based high-throughput methods 
distribute the cell suspension into tiny droplets containing reagents and barcoded 
beads (Drop-seq, 10× Chromium, and inDrops) or into well microplates (Seq-Well 
and sci-RNA-seq) to produce single droplets or well microplates with one cell and 
one bead marking the cDNA generated from that cell (Ding et al. 2019).

The Smart-Seq (Ramsköld et al. 2012) addressed this problem using a Moloney 
Murine Leukemia Virus Reverse Transcriptase (M-MLV RT) to synthesize cDNA 
with long messenger RNA templates. Unique molecular identifiers (UMI) were 
incorporated into each RNA molecule as unique barcodes before the whole 
transcriptome amplification (WTA) amplification (Islam et al. 2014). Smart-seq2 
(Picelli et  al. 2014) is an approach that combines sensitivity (it captures a 
considerable fraction of RNAs present in cells) with full-length coverage of 
transcripts and can detect genes per cell and across cells enabling quantifying 
isoform-level expression from single cells, but without the incorporation of unique 
molecular identifiers (UMIs). Smart-seq3 (Hagemann-Jensen et al. 2020) improves 
the sensitivity of Smart-seq2, adding optimized reverse transcriptase and buffer 
conditions together with a partial Tn5 motif and a tag sequence in the template-
switching oligonucleotide to directly assign individual RNA molecules to isoforms 
and establish their allelic origin in single cells.

W. M. C. Silva et al.
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Drop-Seq dissociates a tissue into individual cells and encapsulates them into 
droplets with microparticles that deliver barcoded primers. After associating 
barcodes to each cell’s RNAs, they are reverse-transcribed into cDNAs to generate 
beads called “Single-cell Transcriptomes Attached to Microparticles” (STAMPs). 
Then, the STAMPs are amplified in pools for high-throughput mRNA-seq (Macosko 
et al. 2015) (Fig. 3.7). The 10× Chromium system works, generating a large number 
of “Gel Bead-in-emulsions partitions” (GEMs) to index each cell’s transcriptome 
separately. The barcoded gel beads (read, 10xbarcode, UMI, oligo-dT) are mixed 
with cells, enzymes, and partitioning oil to create single-cell GEMs. Then, the 
single-cell GEMs undergo reverse transcriptase (RT) to generate a 10× barcoded 
cDNA library where cDNA from individual cells share a common 10× barcode that 
can be used for single-cell whole transcriptome sequencing or target sequencing 
workflows (10× Genomics Inc. 2020). In the inDrops method, the cells are also 
encapsulated into droplets with lysis buffer, hydrogel microspheres carrying 
barcoded primers, and an RT mix. After the release of primers, cDNA in each 
droplet is barcoded during reverse transcription. After the droplets are broken, all 
cellular material can be amplified for sequencing (Klein et al. 2015).

The Smart-seq methods can detect many genes in a cell, including low abun-
dance transcripts and alternatively spliced transcripts. CEL-seq2 (Hashimshony 
et al. 2016), Drop-seq, 10× Chromium, and inDrops can quantify mRNA levels with 
less amplification noise using UMIs, enabling less and profiling isoform-level RNA 
counting. As a limitation, inDrops droplets may contain two cells or two different 
types of barcodes. Table 3.4 shows a comparison of some important aspects of these 
scRNA-seq methods.

3.3.1  �scRNA-seq Computational Analysis

Despite the different methods available, the scRNA-seq data is essentially the result 
of high-throughput sequencing cDNA reverse transcribed from mRNA isolated 
from a pool of cells. The primordial difference is that the sequenced data is somehow 
tagged to assign its origin to individual cells. Some standard steps remain the same 
as RNA-seq, such as the reads quality filtering and reads mapping to a reference 
genome. Reads quality filtering can be applied to filter the read quality using a 
quality metric for sequencing like the percentage of base calls (Q score). The reads 
are then mapped to a reference genome and quantified to generate an expression 
profile matrix. Some scRNA-seq specialized tools can both align and quantify the 
reads. Additionally, a second filtering step can be performed after quantifying reads 
to discard cells expressing a low number of genes or a high number of mitochondrial 
genes (Park and Lee 2020). The next step of the pipeline is data normalization using 
a metric for expression normalization as TPM (Transcripts Per Kilobase Million) or 
RPKM (Reads Per Kilobase per Million) (Gao 2018). At this point, the scRNA-seq 
computational analysis reaches its two fundamental problems: cluster analysis and 
sample/feature reduction.
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Normalization allows consistent comparison of gene expression measurements 
in individual cells, including technical variation due to the numbers of sequenced 
readings or transcripts identified per cell. A normalized gene expression matrix is a 
matrix with n samples (cells) by m features (genes, transcripts, or exons), depending 
on the read’s size. For example, for transcripts as features, PacBio full-length 
transcriptome could be the right choice, or for Illumina short-length reads, the 
features could be genes. As the number of annotated genes of the target organism, 
the matrix could be large and sparse, which justifies the sample and feature reduction. 
The feature selection can be understood as removing genes unhelpful to distinguish 
biological variation across samples.

Clustering cells allow us to identify cells with correlated phenotype by grouping 
them based on their gene expression profiles’ similarity. This is achieved using 
dimension reduction algorithms to embed the expression matrix into a low-
dimensional space that summarizes the data structure in as few dimensions as 
possible (Gao 2018; Luecken and Theis 2019). These low-dimensional spaces can 
come from dimension reduction methods as Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), 
Multidimensional Scaling (MDS), and t-distributed Stochastic Neighbor Embedding 
(t-SNE).

Fig. 3.7  Individual cell’s transcriptome can be analyzed using scRNA-seq. Tissue disrupted single 
cells are mixed with barcode bead primers and reagents in oil droplets in a microfluidic device. The 
formed droplet contains a single cell and a barcode. After lysis and primer hybridization, RNA is 
reverse transcribed and sequenced as in a conventional RNA-seq experiment. The UMI and 
barcode sequence will be incorporated in the final sequenced reads and will guide the scRNA-seq 
processing

W. M. C. Silva et al.
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3.3.2  �scRNA-seq Analysis Tools

Seurat (Hao et al. 2020) is an R package that integrates quality control, analysis, and 
exploration of single-cell RNA-seq data. It is based on a Seurat object, which serves 
as a container for both data (like the count matrix) and analysis (like PCA, or 
clustering results). Also, Seurat can make simultaneous measurements of multiple 
data types from the same cell, known as multimodal analysis, and analyze spatially 
resolved RNA-seq data.

Cell Ranger is a set of tools to process Chromium single-cell RNA-seq 
data. The package contains cellranger mkfastq which demultiplexes raw 
base call (BCL) Illumina files into fastq files. These files are then taken as 
input by cellranger count to perform alignment, filtering, barcode, and 
UMI counting. In the next step, cellranger aggr aggregates and normalizes 
the outputs from multiple runs of cellranger count recomputing the fea-
ture-barcode matrices and analyzing the combined data. The cellranger 
reanalyze reruns the dimensionality reduction, clustering, and gene expres-
sion algorithms from the feature-barcode matrices produced by cellranger 
count or cellranger aggr. Cell Ranger also uses the aligner STAR (Dobin 
et al. 2013) and the output is delivered in formats like bam, mex, csv, hdf5, 
and html.

Meta Cell (Baran et  al. 2019) is a tool for deriving metacells and analyzing 
scRNA-seq data. Metacells are a theoretical group of scRNA-seq cell profiles 
statistically equivalent to samples derived from the same RNA pool, which is 
obtained by computing partitions of scRNA-seq datasets into disjoint and 
homogenous groups of cells.

SEQC (Azizi et al. 2018) is a Python package for scRNA-seq analysis in a cloud 
and subsequent analyzes on a local machine. It has Spliced Transcripts Alignment 
to a Reference – STAR (Dobin et al. 2013), Samtools (Li et al. 2009), and HDF5 
data model as dependencies and has been tested for 10× Genomics v2 and inDrop 
v2 data.

zUMIs (Parekh et al. 2018) is a pipeline to process RNA-seq data with or 
without UMIs. zUMIs take cDNA fastq files and other reads containing UMI 
and Cell Barcode information as input. It was written using R, Perl shell, and 
Python programming languages and has as dependencies STAR (Dobin 
et al. 2013).

robustSingleCell is an R package that provides clustering and comparison 
of population compositions across tissues and experimental models through a 
similarity analysis characterizing transcriptomic similarities in meta-clusters 
by identifying their defining overexpressed genes (Magen et  al. 2019) 
(Table 3.5).

W. M. C. Silva et al.
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3.4  �Case Study 1

RNA-seq as an Efficient Tool to Analyze and Identify Gene Expression Patterns 
Related to Murine Bone Marrow-Derived Macrophage’s Susceptibility and 
Resistance to Candida albicans Infection

The improvements in organ transplantation techniques and the rise of immune-
compromised diseases, like AIDS, are directly linked to the exponential growth of 
opportunist infections in these patients. Therefore, the study of the etiological 
agents of these diseases, particularly fungal pathogens, together with the immune 
response they elicit, became an important issue (Marr et al. 2002; Richardson and 
Lass-Flörl 2008; Miceli et al. 2011). Candida albicans appears to be the leading 
cause of invasive infections among fungi, showing high morbidity and mortality 
rates (Chi et al. 2011; Shigemura et al. 2014).

Many studies have been done to understand the aspects of immune responses to 
C. albicans (Tierney et  al. 2012; Miramón et  al. 2013; Hünniger et  al. 2014; 
Martínez-Álvarez et  al. 2014). In this case study, the transcriptomic response of 
murine bone marrow-derived macrophages (BMDMs) from BALB/c (resistant) and 
DBA/2J (susceptible) mice strains to C. albicans infection was analyzed by RNA-
seq to compare both transcriptomic patterns. Therefore, this case study’s main 
objective was to identify BMDMs gene expression patterns between resistant and 
susceptible mice after C. albicans infection by the analysis of the resulting 
transcriptome profiles.

Bone marrow was extracted from the mice, and the hematopoietic stem cells 
were then differentiated into macrophages. An amount of 2 × 106 BMDMs were 
co-cultured with 4 × 106 C. albicans yeasts for 90 min, and the RNA was extracted 
using RNeasy (Qiagen). RNA quality and concentration were verified employing a 
Bioanalyzer (Agilent) and NanoDrop (Thermo Scientific), respectively. Three μg of 
total RNA was used for the library preparation, including a step of rRNA depletion 
using Ribozero (Epicentre) before library construction and sequencing in an 
Illumina Hiseq platform.

The sequencing results were provided in fastq format. FastQC was used to assess 
quality. Adaptors clipping and quality trimming were performed using Cutadapt 

Table 3.5  Computational tools for scRNA-seq analysis

Tools Availability

Seurat (Hao et al. 2020) https://github.com/satijalab/seurat
SEQC (Azizi et al. 2018) https://github.com/ambrosejcarr/seqc
zUMIs (Parekh et al. 2018) https://github.com/sdparekh/zUMIs
CellRanger (10× 
Genomics)

https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/what-is-cell-ranger

Meta Cell (Baran et al. 
2019)

https://tanaylab.github.io/metacell

robustSingleCell (Magen 
et al. 2019)

https://github.com/asmagen/robustSingleCell

3  Transcriptome Analysis Using RNA-seq and scRNA-seq

https://github.com/satijalab/seurat
https://github.com/ambrosejcarr/seqc
https://github.com/sdparekh/zUMIs
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://tanaylab.github.io/metacell
https://github.com/asmagen/robustSingleCell


94

(Martin 2011). Two mapping software, NextGenMap (NGM) (Sedlazeck et  al. 
2013) and Tophat2 (Kim et al. 2013), were employed. Since both generate a similar 
number of mapped reads, we chose NextGenMap due to its faster analysis. Low-
quality mappings were removed using Samtools (Li et al. 2009), which was also 
used to sort, index, and convert the mapping results from sam to.bam files. Bedtools 
(Quinlan and Hall 2010) were then used to count reads for both genes and exons, 
and generate a table of these counts, to be analyzed for differential expression. As 
said before, differential expression can be analyzed using different methodologies 
(Wagner et  al. 2012; Soneson and Delorenzi 2013), and EdgeR (Robinson et  al. 
2010) and DESeq (Anders and Huber 2010) were chosen. Both outputted very 
similar results. Alternative splicing can be checked by differential exons usage 
(Anders et al. 2012). Therefore, the resulting list of genes or transcripts differentially 
expressed (adjusted p-value <0.05 and fold change ≥ ±2.5) was checked for gene 
ontology (GO terms) using ClusterProfiler (Yu et al. 2012) Bioconductor package.

Several problems may occur in RNA-seq projects, and here we point out some 
of these:

•	 Infection conditions: the optimization of the protocols of co-culture conditions, 
as well as RNA extraction, may be hard to adjust. Setting a multiplicity of 
infection (MOI – proportion of host/pathogen cells in the co-culture) that suffices 
to induce a transcriptomic response in the host cells is the first step. However, a 
very high MOI may result in host cells’ death and apoptosis, which may result in 
altered gene expression or low amounts of RNA extracted from these cells.

•	 Infection time: the definition of correct time intervals of interaction between 
pathogen and host cells is essential since different genes have different kinetics 
of transcription during co-culture. This may vary drastically for different host-
pathogens and also depends on the major question of interest.

•	 Biological replicates: in transcriptomic studies, robust statistical analysis is fun-
damental. In this sense, the experimental design has to incorporate proper bio-
logical replicates to allow valid statistical inferences (Robles et al. 2012).

•	 Library preparation and sequencing parameters: the choice of the preparation 
methodologies, e.g., poly-A enrichment protocols versus rRNA depletion 
protocols, or paired-end versus single-end sequencing, may strongly impact the 
results. Improper handling of samples in this step may also result in sample 
degradation or inefficient rRNA depletion, which may compromise the whole 
experiment if not properly adjusted. A well-defined experimental design for the 
sequencing step must also be taken into consideration. A final low coverage of 
the transcriptome can result in an inadequate analysis of differential gene 
expression.

A significant disparity was observed in the differentially expressed genes upon 
C. albicans infection between BMDMs from both mice strains. BMDMs from the 
susceptible DBA/2J strain modulated a higher number of genes (4021) upon 
infection with C. albicans than BMDMs from the resistant BALB/c strain (99), and 
both sets have few genes in common (60) (Fig. 3.8).

W. M. C. Silva et al.
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Analysis focusing on GO categories of biological processes revealed enrichment 
(p <0.01) of upregulated genes in terms related to inflammatory response, cellular 
response to biotic stimulus, and cytokine production in both resistant and susceptible 
strains (Fig. 3.9). However, they markedly differed in the modulation of some terms. 
For example, macrophages from the resistant strain upregulated genes related to apop-
tosis and neutrophil chemotaxis. In contrast, macrophages from the susceptible strain 
upregulated genes involved in innate immune response and leukocyte migration.

3.5  �Case Study 2

Single-Cell Sequencing of SARS-CoV-2 Infected Individuals with Distinct Levels of 
Severity

COVID-19 outbreak has caused critical consequences for all countries, including 
many deaths and hospitalization, beyond the economic issues. Beyond the 
vaccination, it is important to research specific drugs to treat the affected individuals. 
Monoclonal antibodies have demonstrated their effectiveness in medicine (Maranhão 
et al. 2020). Therefore, developing new potential antibodies as an alternative against 
viral proteins remains highly valuable.

This example of scRNA-seq analysis is based on the work “Single cell RNA and 
immune repertoire profiling of COVID-19 patients reveals novel neutralizing 
antibody” from Fang Li et al. (2020). They have conducted a study using single-cell 
transcriptome sequencing (scRNA-seq), single-cell BCR sequencing (scBCR-seq), 
and deep BCR repertoire to reveal neutralizing antibody sequences in patients who 
have recently cleared the virus. They collected blood samples (peripheral blood 
mononuclear cells – PBMCs) from 16 COVID-19 patients and eight healthy controls 
to reveal immune cells’ changes caused by SARS-CoV-2 infection. Fang Li et al. 
(2020) scRNA-seq was performed using 10× Genomics. The original data is avail-
able in the Zenodo under the accession URL: https://zenodo.org/record/3744141.

Fig. 3.8  Venn diagram of 
positively (red) and 
negatively (blue) regulated 
genes in BMDMs from 
BALB/c and DBA/2J mice 
strains infected with 
C. albicans. Differentially 
expressed genes were 
considered when adjusted 
p-value <0.05 and fold 
change ≥±2.5
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This case study uses a Fang Li et al. (2020) sample subset with data from two 
patients to demonstrate how to identify distinct types of cells based on clustering 
their transcripts and how to obtain the differentially expressed genes. The input files 
are barcodes.tsv, datasets.rds, genes.tsv, and matrix.mtx. For this case study, we 
filtered the complete data to work only with patient 3 (P3) and patient 10 (P10) 
samples, both from 59 years old females with distinct levels of COVID-19 severity. 
P3 had severe symptoms, and P10 had moderate symptoms.

This example uses the R package Seurat 4.0 (Hao et al. 2020) to perform the 
analysis directly from the matrix. The following R codes are commented, and their 
results presented. The first step is to install and load the required R packages. Seurat 
4.0 requires R version 4.x.

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install(version = "3.12")

BiocManager::install('ggplot2')
BiocManager::install('ggrepel')
BiocManager::install('limma')
BiocManager::install('calibrate')
BiocManager::install('dplyr')
BiocManager::install('Matrix')
BiocManager:: install('Seurat') 

library(ggplot2)
library(ggrepel)
library(limma)
library(calibrate)
library(dplyr)
library(Matrix)
library(Seurat)  

Fig. 3.9  Gene ontology enrichment of upregulated genes in BMDMs from DBA/2J and BALB/c 
mice strains upon C. albicans infection. Enriched GO terms (adjusted p-value <0.01) from 
biological processes category associated with upregulated genes in BMDMs derived from the 
susceptible DBA/2J (left) and the resistant BALB/c (right) mice strains. Dot size is representative 
of enrichment (gene modulated ratio/gene background ratio) for each GO term. Only major terms 
related to immune response were plotted
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The next step is to download, extract, and read the COVID-19 data. This will 
result in a matrix with 33,538 lines and 96,404 columns. The columns represent 
each tagged transcript, and the lines represent the genes where those transcripts 
were mapped.

system("wget https://zenodo.org/record/3744141/files/COVID-19.tar.gz")
system("tar -xzvf COVID-19.tar.gz")
covid_19_data <- Read10X(data.dir = "COVID-19")
dim(covid_19_data) # dimensions for full data  

Once loaded the full data, now it is possible to filter them to work only with P3 
and P10 samples by using regular expression to identify only data from patients P3 
and P10. The new dimensions of P3 and P10 data will be 33,538 lines (genes) by 
16,056 columns (tagged transcripts).

p3_and_p10_data <- covid_19_data[, grep(pattern = "P3|P10", colnames(covid_19_data))]

dim(p3_and_p10_data) # dimensions for selected data
 

The function CreateSeuratObject() initializes the Seurat object with the non-
normalized data constrained by the following parameters: minimal of two cells with 
at least 20 expressed genes and at least 2,000 features. The dimension of the object 
in this case will be 17,169 genes and 2,123 tagged transcripts that met the criteria.

covid_p3_p10 <- CreateSeuratObject(
counts = p3_and_p10_data, 
project = "COVID-19", 
min.cells = 2, 
min.genes = 20, 
min.features = 2000

)
dim(covid_p3_p10) # dimensions for loaded data  

Before starting the data processing, we will create two new columns to add meta-
information for the patients (P3 or P10) and for the mitochondrial percent in tran-
scripts. The [[]] operator can add columns to an object. In this case, we create a 
column to identify patients P3 and P10. We also stash quality control (QC) stats for 
their mitochondrial samples, which are identified starting by “MT-”.

covid_p3_p10[["patient"]] <- sapply(strsplit(colnames(covid_p3_p10),"-"), `[`, 1)
covid_p3_p10[["perc_mitochondrial"]] <- PercentageFeatureSet(covid_p3_p10, pattern = "^MT-")  

Next, it is possible to build a violin plot to visualize the QC metrics for number 
of features, read count and mitochondrial percentage, grouped by patient (Fig. 3.10).
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plot_perc_mitochondrial <- VlnPlot(
covid_p3_p10, 
features = c("nFeature_RNA", "nCount_RNA", "perc_mitochondrial"), 
ncol = 3, 
Group.by = "patient",
log = TRUE

)
plot_perc_mitochondrial  

The next step is to remove unwanted cells from the dataset. In this case we can 
apply a new filter to keep only samples with the number of features at least equal to 
2000 and less than 5% of mitochondrial samples.

covid_p3_p10 <- subset(covid_p3_p10, subset = nFeature_RNA >= 2000 & perc_mitochondrial < 5)  

To normalize the data, we can use function LogNormalize(), which normalizes 
the feature expression measurements for each cell by the total expression. It 
multiplies this by a scale factor (10,000 by default), and log-transforms the result.

covid_p3_p10 <- NormalizeData(covid_p3_p10, normalization.method = "LogNormalize", scale.factor = 10000)  

Once normalized, the next step is to identify highly variable features (feature 
selection) using the method vst which, according to the manual of Seurat, fits a line 
to the relationship of log (variance) and log (mean) using local polynomial regression 
(loess). Then, it standardizes the feature values using the observed mean and 
expected variance (given by the fitted line). Then, it is computed the feature variance 
on the standardized values after clipping to a maximum (default is “auto” which sets 
this value to the square root of the number of cells).

covid_p3_p10 <- FindVariableFeatures(covid_p3_p10, selection.method = "vst", nfeatures = 2000)  

At this point, it is possible to find, for instance, the 20 most highly variable genes 
identified (Fig.  3.11) that would be: ‘IGHA1’, ‘JCHAIN’, ‘IGHG1’, ‘IGKC’, 
‘IGLC2’, ‘IGHG2’, ‘DERL3’, ‘IGLL5’, ‘IGHV3-23’, ‘ITM2C’, ‘IGKV3-20’, 
‘MZB1’, ‘LILRA4’, ‘IGHV3-7’, ‘FKBP11’, ‘GNLY’, ‘IGKV4-1’, ‘TNFRSF17’, 
‘STMN1’, and ‘HIST1H4C’. Interestingly, most of these genes are involved with 
the immune system, more precise to B lymphocytes, a known player in the 
inflammatory aspect of COVID-19. IGHA, the heavy constant chain of the 
immunoglobulin alpha, codes for an antibody isotype well characterized to 
participate in the mucosal immunity, the natural site of SARS-CoV-2 infection.

top20 <- head(VariableFeatures(covid_p3_p10), 20)
plot_top20 <- VariableFeaturePlot(covid_p3_p10) 
plot_top20 <- LabelPoints(plot = plot_top20, points = top20, size = 2, hjust = .75, vjust = .75)
plot_top20  
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Before performing the dimensional reduction, it is necessary to perform a linear 
transformation scaling the data. It is a standard pre-processing step prior to applying 
techniques like PCA.

all_genes_covid_p3_p10 <- rownames(covid_p3_p10)
covid_p3_p10 <- ScaleData(covid_p3_p10, features = all_genes_covid_p3_p10)
covid_p3_p10 <- RunPCA(covid_p3_p10, features = VariableFeatures(object = covid_p3_p10))  

Now, it is possible to determine the dimensionality of the dataset. The function 
JackStraw() determines the statistical significance of PCA scores by randomly 
permuting a subset of data, and calculates projected PCA scores for these “random” 
genes. The ScoreJackStraw() function computes the scores significance by PCs 
showing a p-value distribution that is strongly skewed to the left compared to the 
null distribution.

covid_p3_p10 <- JackStraw(covid_p3_p10, num.replicate = 100)
covid_p3_p10 <- ScoreJackStraw(covid_p3_p10, dims = 1:5)  

We can now cluster the cells. The function FindNeighbors() computes the 
k.param nearest neighbors for a given dataset using the k-nearest neighbors 
algorithm. Then, the function FindClusters() identifies clusters of cells from the 
SNN graph (result of the k-nearest neighbors algorithm). As higher is the resolution 
parameter, as larger will be the communities.

Fig. 3.10  Quality control (QC) metrics for the number of features, read count, and mitochondrial 
percentage, grouped by patient. Left: Number of featured genes for patients 3 (red) and 10 (blue) 
after filtering >2000 features. Middle: reads count for P3 and P10. Right: amount of reads from 
mitochondrial origin shown as percentage

3  Transcriptome Analysis Using RNA-seq and scRNA-seq



100

covid_p3_p10 <- FindNeighbors(covid_p3_p10, dims = 1:5)
covid_p3_p10 <- FindClusters(covid_p3_p10, resolution = 1)  

Uniform Manifold Approximation and Projection (UMAP) is a dimensional 
reduction technique that can be used for visualization similarly to t-SNE, but also 
for general non-linear dimension reduction. It is founded on three assumptions 
about the data: (i) the data is uniformly distributed on a Riemannian manifold; (ii) 
the Riemannian metric is locally constant (or can be approximated as such); and (iii) 
the manifold is locally connected.

covid_p3_p10 <- RunUMAP(covid_p3_p10, dims = 1:5)
# It could be alternatively done using tSNE
# covid_p3_p10 <- RunTSNE(object = covid_p3_p10, dims.use = 1:5)  

Fig. 3.11  Twenty most highly variable genes identified versus their average expression. In red are 
shown the 2000 most variable genes among cells, and 20 of them are labeled for exploration 
purposes
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Finally, it is possible to plot the clusters of distinct types of cell in the samples. 
Using these parameters, we can find 10 clusters as can be seen in Fig. 3.12.

plot_clusters <- DimPlot(covid_p3_p10, label = TRUE)
plot_patient <- DimPlot(covid_p3_p10, label = TRUE, group.by = "patient")
plot_clusters + plot_patient  

As it is possible to see in Fig. 3.12, the cluster number 4 has expressed genes 
both from patients 3 and 10. In this case, we first split data of patient 3 and 10 and 
then execute the function FindAllMarkers() can finds all differentially expressed 
genes for each of the patients in this dataset. Some constraints can be used to filter 
these genes, as min.pct that test for genes that are very infrequently expressed, 
which has as default value 0.1. The results are joined and the gene markers are 
filtered only for cluster number 4.

patient_splitted <- SplitObject(covid_p3_p10, split.by = "patient")
p3_markers <- FindAllMarkers(object = patient_splitted$P3)
p10_markers <- FindAllMarkers(object = patient_splitted$P10)
p3_markers[["patient"]] = "P3"
p10_markers[["patient"]] = "P10"
p3_p10_markers <- rbind(p3_markers, p10_markers)
cluster_4_markers <- p3_p10_markers[which(p3_p10_markers["cluster"] == "4"),]  

The next step is to group the expressed genes as “Not Significant,” “Significant,” 
“FoldChange,” and “Significant&FoldChange” depending on the values of p-value 
and fold change. A plot (Fig. 3.13) with the most significant differentially expressed 
genes for the patients P3 and P10 can be built to highlight them.

Fig. 3.12  Ten cell clusters belonging to the patients P3 and P10. Dimensionality reduction yields 
clusters of cells correlated by gene expression profile. Each cluster is labeled with a different color 
and is identified by a number that can be later annotated as a particular cell type based on the gene 
markers expressed in the cluster
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# Preliminarly grouping all genes as "Not Significant"
cluster_4_markers["group"] <- "Not Significant"
# Change the grouping for the entries with significance but not a large enough Fold change
cluster_4_markers [which(cluster_4_markers["p_val_adj"] < 0.05 &

abs(cluster_4_markers["avg_log2FC"]) < 1 ),"group"] <- "Significant"
# Change the grouping for the entries a large enough Fold change but not a low enough p-value
cluster_4_markers [which(cluster_4_markers["p_val_adj"] > 0.05 &

abs(cluster_4_markers["avg_log2FC"]) > 1 ),"group"] <- "FoldChange"
# Change the grouping for the entries with both significance and large enough fold change
cluster_4_markers[which(cluster_4_markers["p_val_adj"] < 0.05 & 

abs(cluster_4_markers["avg_log2FC"]) > 1 ),"group"] <- "Significant&FoldChange"
# Find and label the top peaks
top_peaks <- cluster_4_markers[which(cluster_4_markers["group"] == "Significant&FoldChange", 

order(cluster_4_markers["p_val_adj"])),][1:10,]
p3_p10_plot <- ggplot(na.omit(cluster_4_markers)) +
geom_point(aes(x = avg_log2FC, y = -log10(p_val_adj), colour = group, shape = patient), size = 5) +
geom_text_repel(data=top_peaks[1:7,],aes(x = avg_log2FC, y = -log10(p_val_adj),label = gene))+
scale_color_brewer(palette = "PuRd") +
ggtitle("Most significant expressed genes in cluster 4 for patients P3 and P10") +
xlab("log2 fold change") +
ylab("-log10 adjusted p-value") +
theme_minimal() +
theme(legend.position = "bottom",

legend.title = element_blank(),
plot.title = element_text(size = rel(1), hjust = 0.5),
axis.title = element_text(size = rel(1)))

p3_p10_plot  

Fig. 3.13  Differentially expressed genes for patients 3 and 10. Each cluster of cell is tested against 
all remaining clusters. The most significant down- and upregulated genes are highlighted. Patient 
3 is shown in the left and patient 10 in the right
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The differentially expressed genes depicted in Fig.  3.13 reveal that six genes 
meet both statistical and fold change criteria. The IL7 receptor (IL7R) appears 
upregulated in both patients, while GNLY, MYOM2, CST7, and NKG7 are 
upregulated only in patient 3. The LincRNA 00861, a non-coding RNA, is 
upregulated only in patient 10, who had a milder infection. All of these genes are 
usually expressed in the cytotoxic CD8 lymphocytes, but patient 10, who evolved a 
strong inflammatory response, reveals a different gene response that is not associated 
with the LincRNA but strongly associated with genes involved in cytotoxicity 
(NKG7 and GNLY).

Single-cell computational analysis can consume vast computational resources. 
This case study uses only part of the original data to make it reproducible in a 
regular desktop or notebook computer. All these codes are available for download 
with the environment set-up instructions at https://github.com/waldeyr/
single_cell_analysis.
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