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Preface

The completion of the human genome, with its more than three billion base pairs 
(bp) of sequenced DNA, has provided an unprecedented wealth of knowledge. With 
the additional investigation of single nucleotide polymorphisms (SNPs), we have 
also learned how little genetic variability there truly is in the human genome. 
Moreover, genome-wide association studies (GWAS) have revealed critical 
genotype- phenotype correlations. Nevertheless, our understanding of the function-
ality of the genome is still in its beginnings.

Dispersed among its three billion bp, the human genome features approximately 
20–25,000 functional genes that encode a vast set of proteins and their isoforms, 
which compose the human proteome. In recent years, however, scientists realized 
that the functionality of the genome is not restricted to only protein-encoding genes, 
which are transcribed into messenger RNAs, but also to the transcription of non- 
coding RNAs [e.g., microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)], 
which play essential roles in the posttranscriptional control of gene expression and, 
consequently, influence the resulting phenotypes.

At this point – from studies investigating where the functions of the genome first 
begin – the science of transcriptomics emerged. For example, how are RNA mole-
cules transcribed, what are the different RNA species, what are the functions of each 
species, what are the different mRNA isoforms, and how are they differentially 
expressed among cells, tissues, and organs?

Transcriptomics can therefore be thought of as the molecular biology of gene 
expression on a large scale. It is derived from functional genomics studies with a 
focus on transcription. Since its origin, transcriptomics has benefitted from and will 
continue to benefit from microarray technology. The RNA sequencing (RNA-Seq) 
is undoubtedly the ultimate tool for delving into the differences at the sequence 
level or confirming the specific RNA isoform involved. Moreover, more and more 
questions from current projects are these. Even more so now, with the emergence of 
new technologies for high-throughput RNA-Seq, we can answer more questions 
about the structure of RNAs, such as those found in alternative splicing. However, 
the bottleneck remains in the data analysis because sequences are currently being 
obtained in quantities that have never been previously achieved.
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However, as microarray bioinformatics has reached a very advanced stage (with 
more than 20 years to perfect the analysis pipeline) and as microarray slides them-
selves have become increasingly “large,” currently encompassing sequences from 
the entire functional genome plus the complete set of known non-coding RNAs, 
researchers have not neglected the applications of this important technology.

Recent comparative analyses have indicated a strong concordance between exon 
microarrays and RNA-Seq data. Therefore, the goal is now to use these two comple-
mentary strategies for in-depth transcriptomics studies.

The advances of the last 5 years have made possible the sequencing of the single- 
cell transcriptome and showed us how individual cells respond to normal and patho-
logical differentiation stimuli. More recently, space transcriptome technology has 
emerged, making it possible to investigate how gene expression varies in specific 
locations in a tissue, organ, or cancerous tumor.

This book was organized based on these assumptions. It includes 18 chapters and 
covers the fundamental concepts of transcriptomics and the current analytical meth-
ods. We provide high-level technical and scientific examples, using accessible lan-
guage whenever possible, as each chapter is written by experienced and productive 
researchers in the field.

Over the first 10 chapters (Part I), we introduce the concept of the transcriptome, 
the alternative processing of pre-mRNAs, as well as how microarrays or RNA-Seq 
can be used to trace expression signatures, measure transcriptional expression lev-
els, and establish connections between genes based on their transcriptional activity 
in normal cells, differentiating cells, and organs. Moreover, we introduce dedicated 
chapters on proteomics, single-cell RNA-Seq, and spatial transcriptomics as well.

Chapters 11, 12, 13, 14, 15, 16, 17, and 18 (Part II) then provide examples of the 
state of the transcriptome associated with major human diseases, such as autoim-
mune diseases, metabolic diseases (such as type 2 diabetes mellitus), genetic dis-
eases, cancer, and infections caused by pathogenic microorganisms, such as fungi or 
the protozoan Trypanosoma cruzi, which is the causative agent of Chagas disease.

I hope this book will be helpful to researchers who wish to gain a comprehensive 
view of transcriptomics in health and human disease. I want to thank all of the 
authors for their dedication and time spent writing these chapters. Finally, I thank 
Springer Nature for providing this opportunity and their continued support during 
the writing and organization of this work.

Ribeirão Preto, São Paulo, Brazil  Geraldo A. Passos   

Preface
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Chapter 1
What Is the Transcriptome  
and How It Is Evaluated

Amanda F. Assis, Ernna H. Oliveira, Paula B. Donate, Silvana Giuliatti, 
Catherine Nguyen, and Geraldo A. Passos

1.1  What Is the Transcriptome, How It Is Evaluated, 
and What Types of RNA Molecules Exist

Strictly speaking, the transcriptome can be conceptualized as the total set of RNA 
species, including coding and noncoding RNAs (ncRNAs), that are transcribed in a 
given cell type, tissue, or organ at any given time under normal physiological or 
pathological conditions. This term was coined by Charles Auffray in 1996 to refer 
to the entire set of transcripts. Soon after, this concept was applied to the study of 
large-scale gene expression in the yeast S. cerevisiae (Velculescu et al. 1997; Dujon 
1998; Pietu et al. 1999).
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However, due to the importance of messenger RNAs (mRNAs), which represent 
protein-coding RNAs, the term transcriptome is often associated with this set of 
RNA and as an analogy species. Researchers later coined the analogous term miR-
Nome to refer to the total set of miRNAs.

The proteome is conceptually similar to the transcriptome and refers the total set 
of proteins translated in a given cell type, tissue, or organ at any given time during 
normal physiological or pathological conditions. Due to its importance, and as a 
consequence of the transcriptome, the proteome will be discussed on Chap. 8 of this 
book. Moreover, we suggest the following reviews for further reading: Alfaro et al. 
2021; Foreman et al. 2021; Joyce and Ternette 2021; Anderson 2014; Forler et al. 
2014; Padron and Dormont 2014; Altelaar et al. 2013; and Ahrens et al. 2010.

Analyses of the transcriptome began well before its conceptualization. Large- 
scale analyses of gene expression in the murine thymus gland (Nguyen et al. 1995), 
the human brain and liver (Zhao et al. 1995), and human T cells (Schena et al. 1996) 
have been performed since the mid-1990s. These independent groups used cDNA 
clones arrayed on nylon membranes or glass slides to hybridize labeled tissue- or 
cell-derived samples. These arrayed cDNA clones represented the prototypes of the 
modern microarrays currently used in transcriptome research (Jordan 2012).

1.1.1  How the Transcriptome Is Evaluated: The Birth 
of Transcriptome Methods

Although the first method used to analyze transcriptional gene expression emerged 
in 1980 with the development of Northern blot hybridization (Wreschner and 
Hersberg 1984), this method was not and still is not capable of being performed on 
a large scale, and thus cannot be considered a transcriptome approach. In 1990s, the 
human genome project, through partially automated DNA sequencing, had the 
ambition to identify, characterize, and analyze all of the genes in the human genome 
(Watson 1990; Cantor 1990). This revolutionary approach led to thousands of 
entries that were constructed via the tag-sequencing of randomly selected cDNA 
clones (Adams et al. 1991, 1992, 1993a, b; Okubo et al. 1992; Takeda et al. 1993), 
thus opening an avenue for high-throughput approaches by making these data 
widely available in repositories such as the dbEST database (http://www.ncbi.nlm.
nih.gov/dbEST). As more and more genes are identified, efforts are now being redi-
rected toward understanding the precise temporal and cellular control of gene 
expression. The advances provided by the current progress in high-throughput tech-
nologies have enabled the simultaneous analysis of the activity of many genes in 
cells and tissues, essentially depicting a molecular portrait of the tested sample. The 
transcriptome approach, based on the large-scale measurement of mRNA, became 
the method of choice among the emerging technologies of the so-called functional 
genomics, primarily because this method was rapidly identified as one that can be 
performed at a reasonably large scale using highly parallel hybridization methods, 

A. F. Assis et al.

http://www.ncbi.nlm.nih.gov/dbEST
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and it has allowed a more holistic view of what is really happening in the cell (Sudo 
et al. 1994; Granjeaud et al. 1996, 1999; Botwell 1999; Jordan 1998).

As mentioned above, the first transcriptome analysis was performed on large 
nylon arrays using high-density filters containing colony cDNA (or PCR products) 
followed by quantitative measurements of the amount of hybridized probe at each 
spot. A common platform used spotted cDNA arrays, where cDNA clones repre-
senting genes were robotically spotted on the support surface either as bacterial 
colonies or as PCR products. These “macroarrays,” or high-density filters, were 
made on nylon membranes measuring approximately 10 cm2. Although this is now 
considered a dated approach, it was nonetheless effective enough to test sets of 
hundreds or even a few thousand genes.

DNA arrays allow the quantitative and simultaneous measurement of the mRNA 
expression levels of thousands of genes in a tissue or cell sample. The technology is 
based on the hybridization of a complex and heterogeneous RNA population derived 
from tissues or cells. Initially, this was referred as a “complex probe,” i.e., a com-
plex mix that contains varying amounts of many different cDNA sequences, corre-
sponding to the number of copies of the original mRNA species extracted from the 
sample. This complex probe was produced via the simultaneous reverse transcrip-
tion and 33P labeling of mRNAs, which were then hybridized to large sets of DNA 
fragments, representing the target genes, arrayed on a solid support. Thus, each 
individual experiment provided a very large amount of information (Gress et  al. 
1992; Nguyen et al. 1995; Jordan 1998; Velculescu et al. 1997; Zhao et al. 1995; 
Bernard et al. 1996; Pietu et al. 1996; Rocha et al. 1997).

1.1.2  Miniaturization: An Obvious Technological Evolution 
Toward Microarrays

One of the major challenges that researchers faced was to obtain the highest possi-
ble sensitivity when working with a limited amount of sample (biopsies, sorted 
cells, etc.). In this regard, five parameters were taken into account: (1) the amount 
of DNA fixed on the array support; (2) the concentration of RNA that should be 
labeled with the 33P isotope; (3) the specific activity of the labeling; (4) the duration 
of the hybridization; and (5) the duration of exposure of the array to the phosphor 
imager shields.

The miniaturization of this method lay in the intrinsic physical characteristics of 
nylon membranes, which allowed a significant increase in the amount of immobi-
lized DNA. The feasibility of miniaturizing nylon was demonstrated in the Konan 
Peck (Academia Sinica, Taiwan) laboratory in 1998 using a colorimetric method as 
the detection system (Chen et al. 1998). A combination of nylon microarrays and 
33P-labeled radioactive probes was subsequently shown to provide similar levels of 
sensitivity compared with the other systems available at the time, making it possible 
to perform expression profiling experiments using submicrogram amounts of unam-
plified total RNA extracted from small biological samples (Bertucci et al. 1999).

1 What Is the Transcriptome and How It Is Evaluated
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These observations had important implications for basic and clinical research in 
that they provided a cheaper alternative approach that was particularly suitable for 
groups operating in academic environments and led to a large numbers of expres-
sion profiling analyses when only small amounts of biological material were 
available.

Microarrays based on solid supports, typically coated glass, were simultaneously 
developed in different academic and industrial laboratories. These arrays boasted 
the advantage of performing dual hybridization of a test sample and a reference 
sample, as they could be labeled with two different fluorescent compounds, namely 
the fluorochrome “Cy-dyes” cyanine-3 (Cy3) and cyanine-5 (Cy5) (Chee et al. 1996).

Around the same time, another well-known DNA array platform was developed 
by Affymetrix (Santa Clara, CA, USA). Their array used oligonucleotide chips fea-
turing hundreds of thousands of oligonucleotides that were directly synthesized in 
situ on silicon chips (each measuring a few cm2) using photochemical reactions and 
a masking technology (Lockhart et al. 1996). This microarray platform promised a 
rapid evolution in miniaturization because it was based on the synthesis of short 
nucleic acid sequences, which could be updated on the basis of the current knowl-
edge of the genome.

It quickly became clear in the academic community, as well as in industry, that 
the available microarray technologies represented the beginning of a revolution 
with considerable potential for applications in the various fields of biology and 
health because gene function is one of the key elements that researchers want to 
extract from a DNA sequence. Microarrays have become a very useful tool for this 
type of research (Gershon 2002). Therefore, the development of the microarray 
opened the door to various DNA chip technologies based on the same basic concept. 
For example, the maskless photolithography used to produce oligonucleotide arrays 
was originally developed in 1999 using the light-directed synthesis of high- 
resolution oligonucleotide microarrays with a digital micromirror array to form vir-
tual masks (Singh-Gasson et  al. 1999). However, this technology was barely 
accessible to academic laboratories at the time because of the high initial cost, the 
limited availability of equipment, non-reusability, and the need for a large amount 
of starting RNA (Bertucci et al. 1999).

This development formed the basis for the NimbleGen company, which in 2002 
demonstrated the chemical synthesis quality of maskless arrays synthesis (MAS) 
and its utility in constructing arrays for gene expression analysis (Nuwaysir et al. 
2002). Currently, Roche-NimbleGen is focused on products for sequencing (https://
sequencing.roche.com/en.html/).

Similarly, in 2005, Edwin Southern’s team developed a method for the in situ 
synthesis of oligonucleotide probes on polydimethylsiloxane (PDMS) microchan-
nels through the use of conventional phosphoramidite chemistry (Moorcroft et al. 
2005). This became the basis of the Oxford Gene Technology company (http://
www.ogt.co.uk/), which today develops array products centered on cytogenetics, 
molecular disorders, and cancer.

It is also widely known that Affymetrix (https://www.thermofisher.com/br/en/
home/life- science/microarray- analysis.html/) and Agilent  (http://www.home.

A. F. Assis et al.

http://www.nimblegen.com/products/index
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http://www.ogt.co.uk/
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https://www.thermofisher.com/br/en/home/life-science/microarray-analysis.html/
https://www.thermofisher.com/br/en/home/life-science/microarray-analysis.html/
http://www.home.agilent.com/agilent
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agilent.com/agilent) developed the most popular microarray technology for expres-
sion profiling based on ink jet technology, which is still widely available in the 
transcriptome market.

1.1.3  Reliable Microarray Results Depend on a Series 
of Complex Steps

The reliability of transcriptome results has concerned scientists since the beginning 
of transcriptome research, resulting in a number of studies comparing the different 
platforms, which was a real challenge in the early 2000s. Transcriptomic results 
largely depend on the technology used, which itself is dependent on several com-
plex steps, ranging from the fabrication of the microarray to the experimental condi-
tions, in addition to the chosen detection system, which also determines the method 
of analysis.

The results obtained with one microarray platform cannot necessarily be repro-
duced on another, and differences in the presence of different target sequences rep-
resenting the same gene on different arrays can make it extremely difficult to 
integrate, combine, and analyze the data (Järvinen et al. 2004).

The fabrication of high-quality microarrays has been a challenging task, taking a 
decade to reach several stabilized solutions, and has become an industry of its own. 
There are a large number of parameters and factors that affect the fabrication of a 
microarray, as performance depends on the array geometry, chemistry, and spot 
density, as well as on characteristics such as morphology, probe and hybridized 
density, background, and sensitivity (Dufva 2005). Among the different methods 
used to fabricate DNA microarrays, in situ synthesis is the most powerful because a 
very high spot density can be achieved and because the probe sequence can be cho-
sen for each synthesis.

To achieve a 105-fold dynamic range, which is an important parameter for gene 
expression analysis, the spots must contain at least 105 molecules, and the optimal 
spot size should be large enough to acquire the maximum hybridized density to 
obtain good sensitivity. Bead arrays that have different combinations of fluorescent 
dyes, which essentially constitute a barcode tag associated with the different immo-
bilized probes, appeared to be the next evolution because they are in suspension and 
are therefore suitable for automation using standard equipment, leading to extremely 
high-throughput approaches. Optical microarrays that are detected via flow cytom-
etry can use a large number of different beads because each bead can be decoded 
using a series of hybridization reactions following the immobilization of the beads 
to the optical fibers (Ferguson et al. 2000; Epstein et al. 2003). This increases the 
multiplex capacity to several thousands of different beads (Gunderson et al. 2004). 
Optical fiber microarrays have been commercialized by Illumina (http://www.illu-
mina.com/), currently the leader in high-throughput sequencing technology, which 
allow the measurement of expression profiles by counting the amount of each RNA 
molecule expressed in a cell.

1 What Is the Transcriptome and How It Is Evaluated

http://www.home.agilent.com/agilent
http://www.illumina.com/
http://www.illumina.com/


8

Experimental conditions also vary from lab to lab, as the preparation is dependent 
on the array platform. Variations in the quality of RNA preparations can be evaluated 
using the 2100 Bioanalyzer instrument developed by Agilent, which has become a 
standard, even if some slight variations have been observed from time to time. This 
system provides sizing, quantitation, and quality control for RNA and DNA, as well 
as for proteins and cells, on a single platform, providing high-quality digital data 
(https://www.agilent.com/en/product/automated- electrophoresis/bioanalyzer- 
systems/bioanalyzer- instrument/2100- bioanalyzer- instrument- 228250) (Fig. 1.1).

The preparation of RNA prior to hybridization can affect microarray perfor-
mance, particularly in terms of data accuracy, by distorting the quantitative mea-
surement of transcript abundance. To obtain enough material from an initial nano- or 
picogram range of starting material, the RNA is transcribed in vitro and amplified 
using different protocols, which can introduce bias. In 2001, several publications 
discussed the different commercial protocols that were available. A publication 
from Charles Decreane’s team examined the methods for amplifying picogram 
amounts of total RNA for whole genome profiling. The authors set up a specific 
experiment to compare three commercial RNA amplification protocols, Ambion 
messageAmpTM, Arcturus RiboAmpTM, and Epicentre Target AmpTM, to the standard 
target labeling procedure proposed by Affymetrix, and all of the samples were 
tested on Affymetrix GeneChip microarrays (Clément-Ziza et al. 2009). The results 
obtained in this study indicated large variations between the different protocols, 
suggesting that the same amplification protocol should always be used to maximize 
the comparability of the results. Additionally, it was found that the RNA amplifica-
tion affects the expression measurements as well, which was in agreement with 
earlier observations seen at the nanogram scale, as well as with other studies that 
were concerned with this question (Nygaard and Hovig 2006; Singh et al. 2005; 
Wang et al. 2003; Van Haaften et al. 2006; Degrelle et al. 2008).

In 2012, questions surrounding RNA amplification were still relevant. Indeed, even 
if the amplification of a small amount of RNA is reported to have a high reproducibil-
ity, there is still bias, and this can become time consuming. Even taking into account a 
correlation coefficient of 0.9 between microarray assays using non- amplified and qRT-
PCR samples, the matter should still be reconsidered. In one study, the authors used the 
3D-GeneTM microarray platform and compared samples prepared using either a con-
ventional amplification method or a non-amplification protocol and a probe set selected 
from the MicroArray Quality Control (MAQC) project (https://www.fda.gov/science- 
research/bioinformatics- tools/microarraysequencing- quality- control- maqcseqc/). 
They found that the samples from the non- amplification procedure had a higher quan-
titative accuracy than those from the amplification method but that the two methods 
exhibited comparable detection power and reproducibility (Sudo et al. 2012).

However, in the above study, the researchers also used a few micrograms of RNA 
and a large volume of hybridization buffer. It is known that the ability to reduce the 
quantity of input RNA while maintaining the reaction concentration can be achieved 
in a device that decreases the hybridization reaction volume. Devices developed for 
use with beads have this characteristic; therefore, would hybridization using a bead 
device resolve this issue?

A. F. Assis et al.
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1.1.4  Bioinformatics and Standardization Approaches: 
A Possible Solution?

With regard to bioinformatics and standardization approaches, the MAQC project 
was initiated in 2006 to address these questions, as well as other performance and 
data analysis issues. The Microarray Quality Control (MAQC Consortium 2006) 
( h t t p s : / / w w w. f d a . g o v / s c i e n c e -  r e s e a r c h / b i o i n f o r m a t i c s -  t o o l s /
microarraysequencing- quality- control- maqcseqc/) study tested a large number of 
laboratories, platforms, and samples and found that there were notable differences 
in various dimensions of performance between microarray platforms. Each micro-
array platform has different trade-offs with respect to consistency, sensitivity, speci-
ficity, and ratio compression. One interesting result was that platforms with divergent 
approaches for measuring expression often generated comparable results. The 
authors of this study concluded that the technical performance of microarrays sup-
ports their continued use for gene expression profiling in basic and applied research 
and may lead to the use of microarrays as a clinical diagnostic tool as well. This 
project has provided the microarray community with standards for data reporting, 
common analysis tools, and useful controls that can help promote confidence in the 
consistency and reliability of these gene expression platforms (MAQC Consortium 
2006). Similarly, in 2007, another meta-analysis of microarray results suggested 
several recommendations for standardization under the Standard Microarray Results 
Template (SMART) to facilitate the integration of microarray studies and proposed 
the implementation of the Minimum Information About a Microarray Experiment 
(MIAME) currently at Functional Genomics Data Society (http://fged.org/) to facil-
itate the comparison of results (Cahan et al. 2007).

Fig. 1.1 (continued)

A. F. Assis et al.
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Given that measurement precision is critical in clinical applications, the question 
of the measurement precision in microarray experiments was addressed again in 
2009 through an inter-laboratory protocol. In this study, the authors analyzed the 
results of three 2004 Expression Analysis Pilot Proficiency Test Collaborative stud-
ies using different methods. The study involved 13 participants out of 16, each of 
whom provided triplicate microarray measurements for each of two reference RNA 
pools. To facilitate communication between the user and developer, this study 
sought to set up standardized conceptual tools, but the result of this analysis was 
relatively disappointing and did not allow the creation of a gold standard, though it 
did put forth several recommendations (Duewer et al. 2009).

All of these studies focus on the same concept that has been defended since 2001 
by the Microarray Gene Expression Data Society, now Functional Genomics Data 
Society (http://fged.org/) – the reanalysis and reproduction of results by the scien-
tific community. The MGED society was the first to define the MIAME, which 
describes the minimum information required to ensure that microarray data can be 
easily interpreted and that the results derived from their analysis can be indepen-
dently verified. This protocol became the standard for recording and reporting 
microarray-based gene expression data and for inserting it in databases and public 
repositories (Brazma et al. 2001; Ball et al. 2002). Currently, raw and/or normalized 
microarray data are deposited either in the ArrayExpress databank (https://www.
ebi.ac.uk/arrayexpress/) or in the Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/), providing the scientific community with data for further 
analysis.

1.1.5  Analysis of the Expression Data

The past two decades have seen the development of methods that allow for a nearly 
complete analysis of the transcriptome, in the form of microarrays and, more 
recently, RNA-Seq, which are the most popular technologies used in genome-scale 
transcriptional studies. These high-throughput gene expression analysis systems 
generate large and complex datasets, and the development of computational meth-
ods to obtain biological information from the generated data has been the primary 
challenge in bioinformatics analysis.

Next Generation Sequencing (NGS) technology has experienced a great techni-
cal advance and a decrease in costs lately. In this way, it is undeniable that RNA-Seq 
has become the most used tool for comprehensive identification and characteriza-
tion of both coding and noncoding RNAs from bulk tissue and/or cells and even 
specific cell types through single-cell sequencing (Stark et al. 2019).

Minnier et al. (2018) point that a gene expression profile experiment is composed 
of five related components: (1) study design, (2) sample collection and processing, 
(3) data generation, (4) data analysis, and (5) data interpretation. In selecting a par-
ticular technology or platform for the investigation of the transcriptome, the biologi-
cal question must be considered, as well as the characteristics of the sample under 

1 What Is the Transcriptome and How It Is Evaluated
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study (fresh or preserved material; type, yield and quality of the extracted RNA) and 
the capabilities of the available analysis platforms. If researchers are concerned in 
measure differential expression or biological pathways that are changing under the 
study conditions, any platform which provides a comprehensive measurement of 
mRNAs should be adequate. If a broader measurement of RNA transcripts, like 
miRNAs or lncRNAs, is desired, microarrays and RNA-Seq technologies do, and 
this last one provides opportunity for discovery of unannotated transcripts. 
Microarray relies on the availability of sequence information and gene annotation 
for design and synthesis of probes, an issue that is not a point for human studies and 
widely used model organisms and agriculturally important species.

Concerning analysis, microarrays and RNA-Seq are genome-wide gene expres-
sion profiling technologies, so they both generate a large amount of data, which 
places certain demands on the analysis software. Fortunately, microarrays have ben-
efited from the availability of many commercial and open-source software packages 
for data manipulation that have been developed over the years. RNA-Seq, however, 
demands more bioinformatics expertise. There are publicly available online tools 
such as the Galaxy platform (Goecks et al. 2010), but a basic knowledge of UNIX 
shell programming and Perl/Python scripting is necessary for data modification. 
Furthermore, similar to microarray analysis, a familiarity with the R programming 
environment is useful, as the software programs for many of the downstream analy-
ses are collected in the Bioconductor (http://www.bioconductor.org/) (Gentleman 
et al. 2004) suite of the R package. Other important considerations regarding the 
choice for RNA-Seq include the need for data storage resources and computing 
systems with large memories and/or many cores to run parallel, sophisticated algo-
rithms efficiently and faster.

In this section, we present the main steps for analyzing multi-dimensional 
genomic data derived from the application of microarray or RNA-Seq assays based 
on a common pipeline illustrated in Fig. 1.2.

1.1.5.1  Experimental Design

The aim of the experimental design is to make the experiment maximally informa-
tive given a certain number of samples and resources and to ensure that the ques-
tions of interest can be answered. All of the decisions made at this initial step will 
affect the results of all the subsequent steps. The consequences of an incorrect or 
poor design range from a loss of statistical power and an increased number of false 
negatives to the inability to answer the primary scientific question (Stekel 2003).

The basic principles of experimental design rely on three fundamental aspects 
formalized by Fisher (1935), namely, replication, randomization, and blocking.

Randomization dictates that the experimental subjects should be randomly 
assigned to the treatments or conditions to be studied to eliminate unknown factors 
that may potentially affect the results (Fang and Cui 2010).

A relevant issue in RNA-Seq experiments is sequencing depth or library size, 
which is the number of sequenced reads for a given sample. An optimal sequencing 

A. F. Assis et al.
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depth depends on the goals of the experiment and optimal library size depends on 
the complexity of the targeted transcriptome (Tarazona et al. 2011; Conesa et al. 
2016; Stark et al. 2019). By evaluating different algorithms available for the analy-
sis of RNA-Seq, Tarazone and colleagues (2011) verified that methodologies suffer 
from a strong dependency on sequencing depth for their differential expression calls 
since deep sequencing improves quantification and identification but might result in 
a considerable number of false positives (transcriptional noise and off-target tran-
scripts) that increases as the number of reads grows.

Replication is essential for estimating and decreasing the experimental error and, 
thus, to detect the biological effect more precisely. A true replicate is an indepen-
dent repetition of the same experimental process and an independent acquisition of 

Fig. 1.2 An overview of 
the steps in a typical gene 
expression microarray or 
RNA-Seq experiment

1 What Is the Transcriptome and How It Is Evaluated
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the observations. There are different levels of replication in gene expression experi-
ments: (1) a technical replicate provides measurement-level error estimates and (2) 
a biological replicate provides estimates of the population-level variability. If the 
goal is to evaluate the technology, technical replicates alone are sufficient. Otherwise, 
if the goal is to investigate the biological differences between tissues/conditions/
treatments, biological replicates are essential (Alison et  al. 2006; Fang and Cui 
2010). Replication is widely used in microarray experiments, though technical rep-
licates are generally no longer performed, as analyses have shown that the results 
will be relatively consistent overall (Slonin and Yanai 2009). In RNA-Seq studies, 
the number of replicates that should be included is determined by three factors: (i) 
the amount of technical variability in the RNA-Seq procedures, (ii) biological vari-
ability of the system under study, and (iii) the desired statistical power. The first one 
is influenced by the technical noise, mainly RNA extraction and library preparation, 
and the biological variation. Biological variation is particular to each experimental 
system; nevertheless, a minimum of three replicates is necessary for any inference 
on the population analysis. Regarding the third factor, statistical power, a proper 
analysis requires estimates of the within-group variance and gene expression levels; 
these can be done by software packages that provide a theoretical estimate of power 
over a range of variables considering the method used for differential expression 
analysis (Conesa et al. 2016). Setting a number of appropriate replicas for a RNA- 
Seq experiment is not always simple, Lamarre et al. (2018) suggested four repli-
cates for DEGs analysis, but they point the necessity of measuring biological before 
settling on an appropriate number of replicates. Stark et al. (2019) also emphasize 
that for highly diverse samples many more replicates are likely to be required in 
order to pinpoint changes with confidence.

As with microarray studies, RNA-Seq experiments can be affected by the vari-
ability coming from nuisance factors, often called technical effects, such as the 
processing date, technician, reagent batch, and the hybridization/library preparation 
effect (Fig. 1.3). In addition to these effects, in RNA-Seq experiments, there are also 
other technology-specific effects, for example, there is variation from one flow cell 
to another and variation between the individual lanes within a flow cell due to sys-
tematic variation in the sequencing cycling and/or base calling (Alison et al. 2006; 
Slonin and Yanai 2009; Auer and Doerge 2010; Fang and Cui 2010; Luo et al. 2010; 
Conesa et al. 2016; Chatterjee et al. 2018).

In the case of microarray and RNA-Seq experiments, design issues are intrinsi-
cally dependent on hybridization and library construction, respectively. It is beyond 
the scope of this section to discuss and compare the different technologies available, 
but we recommend reading the following articles for microarray technologies: 
Patersen et al. (2006), Allison et al. (2006), Stekel (2003), Churchill (2002), Kerr 
and Churchill (2001), and Jordan (2012). For RNA-Seq technologies, see Auer and 
Doerge (2010), Fang and Cui (2010), Van Dijk et  al. (2014), SEQC/MAQC-III 
Consortium (2014), Conesa et al. (2016), Chatterjee et al. (2018), Stark et al. (2019), 
as well as Chaps. 3 and 5 of this book.

A. F. Assis et al.
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1.1.5.2  Quality Control

To assure the reproducibility, comparability, and biological relevance of the gene 
expression data generated by high-throughput technologies, several research groups 
have provided guidelines regarding quality control (QC) (Fig. 1.4):

• Minimum Information About a Microarray Experiment (MIAME): describes the 
minimum information required to ensure that microarray data can be easily inter-
preted and that the results derived from their analysis can be independently veri-
fied (Brazma et al. 2001).

• External RNA Control Consortium (ERCC): develops external RNA controls 
useful for evaluating the technical performance of gene expression assays per-
formed by microarray and qRT-PCR (Baker et al. 2005).

• MicroArray Quality Control (MAQC) Consortium: a community-wide effort, 
spearheaded by the Food and Drug Administration (FDA), that seeks to experi-
mentally address the key issues surrounding the reliability of microarray and 
next-generation sequencing technologies. Now in its fourth phase (MAQC-IV), 

Fig. 1.3 Comparison of two methods for testing differential expression between treatments (a) 
(red) and (b) (blue). In the ideal balanced block design (left), six samples are barcoded, pooled, 
and processed together. The pool is then divided into six equal portions that are input into six flow 
cell lanes. The confounded design (right) represents a typical RNA-Seq experiment and consists of 
the same six samples, with no barcoding, and does not permit batch and lane effects to be distin-
guished from the estimate of the intra-group biological variability. (Adapted from Auer and 
Doerge 2010)

1 What Is the Transcriptome and How It Is Evaluated
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also known as Sequencing Quality Control Phase 2 (SEQC2), the MAQC project 
consists of three specific aims: (1) to develop quality metrics for reproducible 
NGS results from both whole genome sequencing (WGS) and targeted gene 
sequencing (TGS), (2) to benchmark bioinformatics methods for WGS and TGS 
toward the development of standard data analysis protocols, and (3) to assess the 
joint effects of key parameters affecting NGS results and interpretation for clini-
cal application (Shi et  al. 2006, 2010; SEQC/MAQC-III Consortium 2014) 
( h t t p s : / / w w w. f d a . g ov / s c i e n c e -  r e s e a r c h / b i o i n f o r m a t i c s -  t o o l s /
microarraysequencing- quality- control- maqcseqc).
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Fig. 1.4 Quality control plots of raw data sets. (a) Boxplots presenting various statistics for a 
given data set. The plots consist of boxes with a central line and two tails. The central line repre-
sents the median of the data, whereas the tails represent the upper (75th percentile) and lower (25th 
percentile) quartiles. These plots are often used to describe the range of log ratios that is associated 
with replicate spots. (b) MA plots are used to detect artifacts in the array that are intensity dependent
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• Standards, Guidelines and Best Practices for RNA-Seq: a guideline for conduct-
ing and reporting on functional genomics experiments performed with RNA- 
Seq. It focuses on the best practices for creating reference-quality transcriptome 
measurements (The ENCODE Consortium 2011, 2016) (https://www.encodepro-
ject.org/about/experiment- guidelines/).

However, there are several sources of variability originating from biological and 
technical causes that can affect the quality of the resulting data, including biological 
heterogeneity in the population, sample collection, RNA quantity and quality, tech-
nical variation during sample processing, and batch effects, among others. Some of 
these issues can be avoided with an appropriate and carefully designed experiment 
that controls for the different sources of variation, but others require a quality assess-
ment of the raw data through computational support tools. Therefore, regardless of 
the technology used to measure gene expression, ensuring quality control is a criti-
cal starting point for any subsequent analysis of the data (Irizarry et al. 2005; Heber 
and Sick 2006; Conesa et al. 2016; Minnier et al. 2018; Chatterjee et al. 2018).

With regard to microarray technology, many tools applying diagnostic plots have 
been developed to visualize the spread of data and compare and contrast the probe 
intensity levels between the arrays of the dataset. These qualitative visualization 
plots include histograms, density plots, boxplots, scatter plots, MA plots, score 
plots of the PCA, hierarchical clustering dendrograms, and even chip pseudo plots 
and RNA degradation plots. Comparing the probe intensity between samples allows 
us to observe if one or more of the arrays have intensity levels that are drastically 
different from the other arrays, which may indicate a problem with the arrays. For a 
better review of the use of diagnostic plots in quality control metrics, please see 
Gentleman et al. (2005) and Heber and Sick (2006).

Concerning RNA-Seq, several sequence artifacts are quite common, including 
read errors (base calling errors and small indels), poor quality reads, and adaptor 
contamination. Such artifacts need to be removed before performing downstream 
analyses; otherwise they may lead to erroneous conclusions. Performing a quality 
assessment of the reads allows us to determine the need for filtering (or cleaning) 
the data, removing low quality sequences, trimming bases, removing linkers, deter-
mining overrepresented sequences, and identifying contamination or samples with 
a low sequence performance. The most important parameters used to verify the 
quality of the raw sequencing data are the base quality, the GC content distribution, 
and the duplication rate (Guo et al. 2013; Patel and Jain 2012).

In addition to the QC pipelines provided commercially by the sequencing plat-
form, there are online/standalone software packages and pipelines available as well 
(see: http://en.wikipedia.org/wiki/List_of_RNA- Seq_bioinformatics_tools). These 
packages present different features, and many are designed for a particular sequenc-
ing platform, such as NGS QC for the Illumina and Roche 454 platforms (Patel and 
Jain 2012) or for a specific data storage format, such as FastQC toolkit and 
FastQScreen, which were both developed by the Brabaham Institute. The FastQC 
(Fig. B) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and FASTX- 
Tool kits (http://hannonlab.cshl.edu/fastx_toolkit/) include many of the tools used to 
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remove indexes, barcodes, and adapters and filter out the reads based on the quality 
metrics of the FASTQ files. For a comparison of some of the available QC tools for 
RNA-Seq, please refer to Patel and Jain (2012).

1.1.5.3  Data Processing

Once the quality of the data has been assessed and the applicable changes have been 
done, it is still necessary to make some processing before the analysis of differential 
expressed genes. The main objective in processing raw data is to remove unwanted 
sources of variation, ensuring the accuracy of the final results. There are several dif-
ferent methods to process data being assayed and the form to perform it depends on 
how data were generated.

Essentially, microarray processing involves three steps depending on the type of 
array: (1) background adjustment, which divides the measured hybridization inten-
sities into a background, and a signal component; (2) summarization which com-
bines probe-level data into gene expression values, reducing multiple probes 
representing a single transcript to a single measurement of expression; and (3) nor-
malization which has the aim of removing non-biological variation between arrays 
(Heber and Sick 2006). Other potential processing steps include transformation of 
data from the raw intensities into log intensities and data filtering by removing 
flagged features which are features for which the image-processing software has 
detected some type of problem (Stekel 2003; Allison et al. 2006).

Microarray data must be background corrected to remove signal due to non- 
specific hybridization or spatial heterogeneity across the array. The background is a 
measure of the ambient signal obtained, generally, from the mean or median of the 
pixel intensity values surrounding each spot (Ritchie et al. 2007). The traditional 
correction is to subtract the local background measures from the foreground values 
but the main problem with this procedure is that it could give negative correct inten-
sities and high variability of low intensity log-ratios when the background is higher 
than the feature intensity (Stekel 2003). Different methods have been developed as 
alternatives, for example the empirical Bayes model developed by Kooperberg et al. 
(2002), setting a small threshold value as suggested by Edwards (2003), the vari-
ance stabilization method (Vsn) (Huber et  al. 2002), the normexp (normal- 
exponential convolution) method implemented by the RMA algorithm (Irizarry 
et al. 2003), and MLE (maximum likelihood estimation for normexp) (Silver et al. 
2009). A comparison of several methods can be accessed on Ritchie et al. (2007).

Microarray signal intensity normalization has been widely used to adjust for 
experimental artifacts within array and between all the samples so that meaningful 
biological comparison can be made (Quackenbush 2001; Luo et al. 2010). According 
to Stekel (2003) the methods for may be broadly classified into two methods:

 1. Within array normalization (normalize the M-values for each array separately) – 
methods applicable in two-channel arrays which aim is to adjust Cy3 and Cy5 
intensities into equal footing. Methods as linear regression of Cy5 against Cy3, 

A. F. Assis et al.
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linear regression of log ratio against average intensity and non-linear (Loess) 
regression of log ratio against average intensity can correcting for different 
response of Cy3 and Cy5 channels. However, these methods rely on the assump-
tion that the majority of the genes on the microarray are not differentially 
expressed. If this assumption is not true, a different normalization method, using 
a reference sample for example, would be more appropriate.

 2. Between array normalization (normalize intensities or log-ratios to be compara-
ble across arrays) – used for one and two channel arrays. Various methods have 
been proposed in this approach, for example scaling to mean or median, center-
ing, and quantile. Bolstad et al. (2003) presented a review of some methods and 
found quantile normalization to perform favorable.

After processing procedure, it is strongly recommended to check the performance 
of the choosing method; it can be done applying the diagnostic plots cited above at 
Quality Control session. Several studies have been published concerning perfor-
mance of the processing methods (Bolstad et al. 2003; Ploner et al. 2005) but most 
studies find Robust Multichip Average (RMA) (Irizarry et al. 2003) to be among the 
best methods. It applies a model-based background adjustment followed by quantile 
normalization and a robust summary method (median polish) on the log2 intensities 
to obtain probe set summary values.

RNA-Seq data processing steps considered in our pipeline are: (1) alignment and 
assembly of sequencing reads, (2) quantification of transcript abundance, and (3) 
filtering lowly expressed features and normalization of read counts.

A common characteristic of all high-throughput sequencing technologies is the 
generation of relatively short reads which should be mapped to a reference sequence, 
being a reference genome or a transcriptome database. This is a critical task for 
most applications of the technology because the alignment algorithm must be able 
to efficiently find the right location of each read from a potentially large quantity of 
reference data (Fonseca et al. 2012). The assembly of the transcriptome consists in 
the reconstruction of the full-length transcripts, except in the case of small classes 
of RNA that are shorter than the sequencing length and no require assembly. The 
methods used to assembly reads fall into two main classes: (1) assembly based on a 
reference genome and (2) de novo assembly (Martin and Wang 2011). Alignment 
tools, such as TopHat (Kim et al. 2013), STAR (Dobin et al. 2013), or HISAT (Kim 
et al. 2015), rely on a reference genome and perform a spliced alignment allowing 
for gaps in the reads when compared to the reference genome. The strategies to map 
the reads and assemble the transcriptome and the available tools will be presented 
in more detail in Chap. 3.

Quantification in RNA-Seq experiments stands for assign mapped reads to genes 
or transcripts, to determine abundance measures and this step is the basis for to 
estimate gene and transcript expression. This application is primarily based on the 
number of reads that overlap known genes, using a transcriptome annotation 
(Rapaport et al. 2013; Conesa et al. 2016; Stark et al.2019). Commonly used quan-
tification tools include RSEM (Li and Dewey 2011), CuffLinks (Trapnell et  al. 
2012), and HTSeq (Anders et al. 2015). Usually, the results are combined into an 
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expression matrix, with a row for each expression feature (gene or transcript) and a 
column for each sample, with the values being either actual read counts or estimated 
abundances (Stark et al. 2019).

Normalization should be applied in read counts due to two main sources of sys-
tematic variability: (i) RNA fragmentation during library construction causes longer 
transcripts to generate more reads compared to shorter transcripts present at the 
same abundance in the sample; and (ii) the variability in the number of reads pro-
duced for each run causes fluctuation in the number of fragments mapped across 
samples. Properly normalization will enable accurate comparison of expression lev-
els between and within samples (Garber et al. 2011; Dillies et al. 2013). Filtering 
step is used to remove features with uniformly low read abundance has been shown 
to improve the detection of true differential expression (Bourgon et al. 2010). The 
RPKM (reads per kilobase of transcript per million mapped reads) was the widely 
used normalization metric. It normalizes a transcript read count by both its length 
and the total number of mapped reads in the sample (Mortazavi et al. 2008). This 
approach facilitates comparisons between genes within a sample and combines 
between and within sample normalization. When data originate from paired-end 
sequencing, the FPKM (fragments per kilobase of transcript per million mapped 
reads) metric is used (Garber et al. 2011; Dillies et al. 2013). RSEM algorithm uses 
an expectation maximization approach that returns transcripts per million (TPM) 
values. The transcript fraction measure is preferred over the popular RPKM and 
FPKM measures because it is independent of the mean expressed transcript length 
and is thus more comparable across samples and species (Li and Dewey 2011).

Normalization methods for RNA-Seq that correct for more subtle differences 
between samples by applying inter-sample normalization by scaling factors, such as 
quartile or median, have been proposed: (i) Total count (TC): in which gene counts 
are divided by the total number of mapped reads (or library size) associated with 
their lane and multiplied by the mean total count across all the samples of the data-
set; (ii) Upper Quartile: which is very similar in principle to TC, the total counts are 
replaced by the upper quartile of counts different from 0 in the computation of the 
normalization factors; (iii) Median: also similar to TC, the total counts are replaced 
by the median counts different from 0 in the computation of the normalization fac-
tors; (iv) DESeq: normalization method included in the DESeq Bioconductor pack-
age (version 1.6.0) that is based on the hypothesis that most genes are not 
differentially expressed (DE); (v) Trimmed Mean of M-values (TMM): normaliza-
tion method implemented in the edgeRBioconductor package (version 2.4.0). It is 
also based on the hypothesis that most genes are not DE; (vi) Quantile: first pro-
posed in the context of microarray data, this normalization method consists in 
matching distributions of gene counts across lanes (Dillies et al. 2013; Conesa et al. 
2016; Stark et al. 2019).
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1.1.5.4  Statistical Analysis and Interpretation

The main goal of gene expression studies is to determine which transcript features 
have changed their level of expression under some biological conditions, i.e., iden-
tify genes that are Differentially Expressed (DE) between RNA samples. DE can 
give insights into biological mechanisms or pathways, and form the basis for further 
experiments as sample and gene similarity performed in clustering analysis or test-
ing gene set enrichment.

Differential expression analysis search for genes that have changed significantly 
in abundance across experimental conditions. In general, this means taking the 
quantified and normalized expression values for each library and performing statis-
tical testing between samples of interest. In thesis transcript abundance of mRNA 
would be directly proportional to the number of reads thereby determining the 
expression level (Oshlack et al. 2010).

Many methods have been developed for the analysis of differential expression 
using microarray data. In the early days of microarray, only the simple method of 
fold change was used (Chen et al. 1997). But the evolution of the technique led to 
the necessity more accurate analysis methods and many more sophisticated statisti-
cal methods have been proposed.

Besides the traditional t-test and ANOVA approaches used to access differential 
gene expression in microarrays assays, methodologies with variations of these tests 
were created for the purpose of overcoming the problem of small sample size 
accessing such a large dataset: dealing with many genes but few replicates may lead 
to large fold changes driven by outliers, and to small error variances (Lönnstedt and 
Speed 2002). SAM (Significant Analysis of Microarrays) (Tusher et al. 2001) is a 
very popular DE method that uses a modified t-statistic to identify significant genes, 
using non-parametric statistics.

Other statistical approaches for microarray data analysis have introduced linear 
models. The bioconductor package limma, developed by Smyth (2005), applies a 
gene-wise linear model and allows for the analysis of complex experiments (com-
paring many RNA samples), as well as more simple replicated experiments with 
two RNA samples. Empirical Bayes and other shrinkage methods are used to bor-
row information across genes making the analyses stable even for experiments with 
small number of arrays. Another powerful method to detect DE genes in microarray 
experiments is rank products which is based on calculating rank products (RP) from 
replicate experiments and at the same time, it provides a straightforward and statisti-
cally stringent way to determine the significance level for each gene and allows for 
the flexible control of the false-detection rate and familywise error rate in the mul-
tiple testing situation of a microarray experiment (Breitling and Herzyk 2005).

In DE analysis methods using probability distributions have been proposed to 
model the count data from RNA-Seq studies: Poisson and negative binomial (NB). 
Poisson distribution is the basis for modeling RNA-Seq count. However, when there 
are biological replicates, RNA-Seq data may exhibit more variability than expected 
by Poisson distribution because it assumes that the variance is equal to the mean. 
Then it predicts smaller variation than what is seen in the data and it will be prone 
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to high false positive rates resulting from underestimation of sampling error (Anders 
and Huber 2010). Assuming a negative binomial (NB) model instead of Poisson is 
a way to deal with this so-called overdispersed problem because the NB distribution 
specifies that the variance is greater than the mean (Oshlack et al. 2010; Anders and 
Huber 2010; Garber et al. 2011).

Statistical analysis on RNA-Seq data will be discussed more in Chap. 3. Some 
reviews discuss and compare statistical methods to compute differential expression; 
for this purpose refer to Seyednasrollah et al. (2015), Soneson and Delorenzi (2013), 
Rapaport et  al. (2013), Conesa et  al. (2016), Chatterjee et  al. (2018), and Stark 
et al. (2019).

1.1.5.5  Classification and Enrichment Analysis

Classification can be performed a priori or a posteriori DE analysis. This process 
implies in either placing objects (in this case samples, genes or both) into pre- 
existing categories (called supervised classification) or developing a set of catego-
ries into which objects can subsequently be placed (unsupervised classification) 
(Allison et al. 2006). Class discovery or clustering analysis is an unsupervised clas-
sification widely used in the study of transcriptomic data because it allows us to 
identify co-regulates genes and/or samples with similar patterns of expression (bio-
logical classes). Various clustering techniques have been applied to the identifica-
tion of patterns in gene-expression data. Most cluster analysis techniques are 
hierarchical; the resultant classification has an increasing number of nested classes 
and the result resembles a phylogenetic classification. Non-hierarchical clustering 
techniques also exist, such as k-means clustering, which simply partition objects 
into different clusters without trying to specify the relationship between individual 
elements (Quackenbush 2001). Einsen et al. (1998) is a classical reference on using 
hierarchical clustering with microarray data. The authors developed an open-source 
integrated pair of programs, Cluster and TreeView, for analyzing and visualizing 
clusters and heat maps.

Biological insight into an experimental system can be gained by looking at the 
expression changes of sets of genes. Many tools focusing on gene set testing, net-
work inference, and knowledge databases have been designed for analyzing lists of 
DE genes from microarray datasets for example Gene Set Enrichment Analysis 
(Subramanian et al. 2005), DAVID (Dennis et al. 2003; Huang at al. 2009) which 
use of functional themes, e.g. those defined by the Gene Ontology consortium 
(Ashburner et al. 2000), and metabolic and signaling pathways, e.g. KEGG, (https://
www.genome.jp/kegg/) (Kanehisa and Goto 2000) and Biocarta (https://maayanlab.
cloud/Harmonizome/dataset/Biocarta+Pathways) combined with statistical enrich-
ment analysis to determine, for each theme or pathway, whether it is overrepre-
sented in a given list of DE genes. These approaches can also be applied to RNA-Seq 
but biases present by this kind of data, such as gene length, should be taken into 
account (Oshlack et al. 2010; Conesa et al. 2016). Therefore, specialized approaches 
and tools for enrichment analysis on RNA-Seq are being developed, for example, 
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GO-seq (Young et al. 2010), GSASEQ (Wang and Cairns 2013), GAGE (generally 
applicable gene set enrichment for pathway analysis (Luo et al. 2009), Gene Set 
Variation Analysis (GSVA) (Hänzelmann et al. 2013), and SeqGSEA (Wang et al. 
2003) packages that combine splicing and implement enrichment analyses similar 
to Gene Set Enrichment Analysis (GSEA).

When it comes to the transcriptome, we must not forget that a large portion of it 
is composed of non-protein coding transcripts. It is an emerging issue and the func-
tional annotation of these RNAs, mainly long noncoding RNAs (lncRNAS), is chal-
lenging, even when dealing with model organisms. Researchers in this area can 
make use of the resources and tools present at RNAcentral (https://rnacentral.org/) 
that is a free, public resource that offers integrated access to a comprehensive and 
up-to-date set of noncoding RNA sequences provided by a collaborating group of 
Expert Databases representing a broad range of organisms and RNA types. 
Currently, in its 18th version, the RNAcentral Consortium is formed by 54 Expert 
Databases, and among these miRBase (https://www.mirbase.org/) contains high- 
quality miRNA annotations and is responsible for assigning official miRNA gene 
names; NONCODE (http://www.noncode.org/), an integrated knowledge database 
dedicated to noncoding RNAs; lncRNAdb (https://bio.tools/lncrnadb), a database 
providing comprehensive annotations of eukaryotic lncRNAs. The development of 
RNAcentral is coordinated by European Bioinformatics Institute (EMBL-EBI) 
(https://www.ebi.ac.uk/).

1.2  The Diversity of the Transcriptome

Unlike the genome, which is essentially static in terms of its composition and size 
(barring the rare occurrence of somatic and germline mutations or the rearrange-
ment of immunoglobulin and T cell receptor genes), the transcriptome (and simi-
larly, the miRNome) is extremely variable and depends on the phase of the cell 
cycle, the organ, exposure to drugs or physical agents, aging, diseases such as can-
cer and autoimmune diseases, and a multitude of other variables, which must be 
considered at the time that the transcriptome is determined. This variability arises 
from the fact that RNAs are differentially transcribed (or transcribed at different 
rates) depending on the cell type and status, though this excludes ribosomal RNAs, 
as they are considered housekeeping molecules.

For many years, the central dogma of molecular biology stated that RNAs mol-
ecules were intermediates between DNA and protein. This idea presupposed that 
the function of RNA was primarily linked to the translation of the genetic material 
into polypeptide chains (proteins). The genetic material was interpreted as being 
involved in the synthesis of these RNAs, which were termed mRNAs (Brenner et al. 
1961; Jacob and Monod 1961).

During the human genome sequencing era of the 1980s and 1990s, indepen-
dently led by Francis Collins and Craig Venter, the latter individual and his cowork-
ers conceived of expressed sequence tags (ESTs), which focus on mRNAs because 
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they encode proteins. Libraries of mRNA-derived cDNA clones were generated 
based on first-strand synthesis using oligonucleotide primers for that are anchored 
at the 3′ end of the transcript [the poly(A) tail of mRNA] (Strausberg and Riggins 
2001) and then sequenced to create unique identifiers for each cDNA, with lengths 
ranging from 300 to 700 bp (Adams et al. 1992; Adams 2008).

ESTs were very useful for identifying new expressed genes in normal and diseased 
tissues (Strausberg and Riggins 2001), and transcriptome analysis at this time was 
largely, if not solely, based on this approach. The EST clones were distributed through 
the former IMAGE Consortium, whose sequences can now be retrieved via the National 
Center for Biotechnology Information (NCBI) dbEST Database (http://www.ncbi.nlm.
nih.gov/dbEST/). The current number of public entries for all uni- or multicellular 
eukaryotic organisms that have been sequenced stands at more than 74 million ESTs, 
including more than eight million human and nearly five million mouse ESTs.

However, as was to be expected, imaginative new strategies were emerging 
around the same time as well. The Serial Analysis of Gene Expression (SAGE) 
method (Velculescu et al. 1997), which produces short sequence tags (usually 14 
nucleotides in length) positioned contiguous to defined restriction sites near the 3′ 
end of the cDNA strand (Strausberg and Riggins 2001), has also been widely used. 
At the time, the NCBI created the SAGEmap as a public repository for SAGE 
sequences. Currently, all of the SAGE libraries have been uploaded and accessioned 
through the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 
repository.

Another novel strategy, which had yet to be tested at that time, was the genera-
tion of open reading frame (ORF) ESTs (ORESTES). This approach was jointly 
developed by researchers funded by the São Paulo Research Foundation (FAPESP) 
and by the Ludwig Institute for Cancer Research (FAPESP/LICR)-Human Cancer 
Genome Project (Camargo et  al. 2001). Unlike ESTs, ORESTES sequences are 
spaced throughout the mRNA transcript, providing a scaffold to complete the full- 
length transcript sequences. The authors generated a substantial volume of tags 
(700,000 ORESTES), which at the time represented nearly 20% of all human 
dbESTs (Strausberg and Riggins 2001).

The Transcript Finishing Initiative, another FAPESP/LICR project, was then 
undertaken for the purpose of identifying and characterizing novel human transcripts 
(Sogayar et al. 2004). This strategy was also novel and was based on selected EST 
clusters that were used for experimental validation. In this method, RT-PCR was 
used to fill in the gaps between paired EST clusters that were then mapped on the 
genome. The authors generated nearly 60,000 bp of transcribed sequences, organized 
into 432 exons, and ultimately defined the structure of 211 human mRNA transcripts.

However, the increasing use of modern transcriptome-wide profiling approaches, 
such as microarrays and whole-genome and transcriptome sequencing, allied to the 
precise isolation and characterization of different RNA species from eukaryotic 
(including mammalian) cells, led to an explosion of findings and revealed that 
although approximately 90% of the mammalian genome is actively transcribed into 
RNA molecules, only a tiny fraction (~2% of the total human genome) encodes 
mRNAs and, consequently, proteins (Maeda et al. 2006; Djebali et al. 2012).
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In fact, the function of the genome can be seen from two different but comple-
mentary views. From a functional standpoint, only a fraction of the genome encodes 
RNA molecules (including coding and noncoding RNAs), and only a fraction of 
these are translated into proteins. In other words, when considering the genome in 
numerical terms, or rather the physical portion of DNA that is functional, we realize 
that only a small number of genes are transcribed specifically into mRNA mole-
cules. However, a larger number of “variable” mRNA molecules are generated 
through alternative splicing, and these are translated into a greater number of pro-
teins (including various isoforms). A large portion of the genome is then transcribed 
into noncoding RNAs, which play a role in the posttranscriptional control of mRNAs 
during their translation into proteins (Fig. 1.5).

Molecular mapping of the human genome has been largely resolved, revealing 
slightly more than three billion bp encompassing approximately 20–25,000 func-
tional nuclear genes and mitochondrial DNA located in the cytoplasm. We suggest 
consulting the ENCODE Project (http://www.genome.gov/encode/) to follow ongo-
ing progress in the identification of the functional elements in the human genome 
sequence. Nevertheless, the definition of the human transcriptome is still far from 
set, and it appears that most of the RNA molecules in eukaryotic cells are composed 
of ncRNAs that are involved in the fine control of gene expression.

Aside from knowing the exact number of mRNA molecules in a human cell, 
which is currently being investigated using new sequencing technologies (de Klerk 
et al. 2014; Kellis et al. 2014), one of the great challenges of the next decade will be 
to decipher the posttranscriptional interactions between coding and ncRNAs in the 
control of gene expression.

Fig. 1.5 Two ways to interpret the functioning the genome and the relative number of molecular 
entities. (a) In functional terms only a part of the genome encodes RNAs from which only a small 
fraction encodes proteins. (b) However, in numerical terms the set of functional genes transcribe a 
larger number of mRNAs from which a larger number of proteins is translated. The part a of this 
figure was conceived by Dr. Sven Diederichs (German Cancer Research Institute, DKFZ, 
Heidelberg, Germany) who allowed their use
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In fact, the human genome was revealed to be more than just a collection of 
protein-coding genes and their splice variants, rather, it displays extensive antisense, 
overlapping, and ncRNA expression (Taft et  al. 2010;  https://www.genome.gov/
about-genomics/fact-sheets/Transcriptome-Fact-Sheet).

In mammals, the vast majority of the genome is transcribed into ncRNAs, which 
exceed the number of protein-coding genes (Liu and Taft 2013). These molecules 
are characterized by the absence of protein-coding capacity, but these RNAs have 
been described as key regulators of gene expression (Geisler and Coller 2013).

ncRNAs are grouped into two major classes based on their transcript size: small 
ncRNAs (19–30 nt) and long noncoding RNAs (200 nt to ~100 kilobases). These 
groups are distinct in their biological functions and mechanisms of gene regulation 
(Geisler and Coller 2013; Fatica and Bozzoni 2014; Neguembor et al. 2014).

Furthermore, ncRNAs can be grouped into a third class of housekeeping ncRNAs, 
which are normally constitutively expressed and include ribosomal (rRNAs), trans-
fer (tRNAs), small nuclear (snRNAs), small nucleolar (snoRNAs), and regulatory 
noncoding RNAs (rnRNAs) (Ponting et al. 2009; Bratkovic and Rogelj 2014).

Small ncRNAs are primarily associated with the 5′ or 3′ regions of protein- 
coding genes, and based on their precursors and mechanism of action, they have 
been divided into three main classes: miRNAs, small interfering RNAs (siRNAs), 
and PIWI-associated RNAs (piRNAs). These ncRNAs are involved in posttran-
scriptional gene regulation through translational repression or RNAi (Sana 
et al. 2012).

Interestingly, the aberrant expression of small ncRNAs has been associated with 
a wide variety of human diseases, including cancer, central nervous system disor-
ders, and cardiovascular diseases (Taft et al. 2010; Sana et al. 2012) (Table 1.1).

For much of the last decade, special attention has been paid to research into long 
noncoding RNAs (lncRNAs), as these molecules tend to be shorter and have fewer 
introns than protein-coding transcripts (Ravasi et al. 2006). lncRNAs are considered 
to be the most numerous and functionally diverse class of RNAs (Derrien et  al. 
2011). Over 15,000 lncRNAs have already been identified, and this number is con-
stantly increasing (Kozlowska et al. 2021; Napoli 2021; Derrien et al. 2012; Fatica 
and Bozzoni 2014).

Amidst the great discoveries being made during this time of genome exploration, 
RNA is beginning to take center stage, and lncRNAs are a major part of this. These 
molecules are more abundant and functional than previously imagined, and they 
have been shown to be key players in gene regulation, genome stability, and chro-
matin modifications. Therefore, the identification and characterization of the func-
tion of lncRNAs have added a high degree of complexity to the comprehension of 
the structure, function, and evolution of our genome.

lncRNAs can be grouped into one or more of five categories based on their posi-
tion relative to protein-coding genes: (1) sense or (2) antisense, when they overlap 
with one or more exons of another transcript on the same or opposite strand, respec-
tively; (3) bidirectional, when the expression of a lncRNA and a neighboring coding 
transcript on the opposite strand is initiated in close genomic proximity; (4) intronic, 
when the lncRNA is fully derived from the intron of a second transcript; or (5) 
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intergenic, wherein an lncRNA is located within a gene (Poting et al. 2009). Most 
lncRNAs are transcribed by RNA Pol II and are often polyadenylated and have 
splice sites (Guttman et  al. 2009;  2013; Mercer et  al. 2013). However, they are 
devoid of obvious ORFs (Fatica and Bozzoni 2014).

The functional characterization of several mammalian regulatory lncRNAs has 
identified many biological roles, such as dosage compensation, genomic imprinting, 
cell cycle regulation, pluripotency, retrotransposon silencing, meiotic entry and 
telomerase length, and gene expression through chromatin modulation (Wery et al. 
2011; Wilusz 2016; Nagano and Fraser 2011).

The number of lncRNAs with described functions is steadily increasing, and 
many of these reports revolve around the regulatory capacity of lncRNAs. These 
molecules localize both to the nucleus and to the cytosol and can act at virtually 
every level during gene expression (Batista and Chang 2013; Van et  al. 2014). 
Nuclear lncRNAs act as modulators of protein-coding gene expression and can be 
subdivided into cis-acting RNAs, which act in proximity to their site of transcrip-
tion, or trans-acting lncRNAs, which work at distant loci. Both cis- and trans-acting 
lncRNAs can activate or repress transcription via chromatin modulation (Penny 
et al. 1996; Pandey et al. 2008; Nagano et al. 2008; Chu et al. 2011; Plath et al. 
2003; Bertani et al. 2011).

Cytoplasmic lncRNAs can modulate translational control via sequences that are 
complementary to transcripts that originate from either the same chromosomal 
locus or independent loci. Target recognition occurs through base pairing (Batista 
and Chang 2013).

RNA-Seq, the most powerful methodology for de novo sequence discovery, has 
been used to identify and analyze the expression of new lncRNAs in different cell 
types and tissues. Interestingly, sequencing experiments have shown that lncRNA 
expression is more cell-type specific than that of protein-coding genes (Derrien 
et  al. 2012; Guttman et  al.  2013; Mercer et  al. 2008; Cabili et  al. 2011; Pauli 
et al. 2012).

The identification of lncRNAs relies on the detection of transcription from 
genomic regions that are not annotated as protein coding. However, other similarly 
robust methodologies have been used in the identification of lncRNAs, including 
the following: (1) Tiling arrays: this technology enables the analysis of global tran-
scription from a specific genomic region and was initially used to both identify and 
analyze the expression of lncRNAs; (2) serial analysis of gene expression (SAGE): 
this methodology allows both the quantification and the identification of new tran-
scripts throughout the transcriptome; (3) cap analysis gene expression (CAGE): this 
methodology is based on the isolation and sequencing of short cDNA sequence tags 
that originate from the 5′ end of RNA transcripts; (4) chromatin immunoprecipita-
tion (ChIP): this method allows the isolation of DNA sequences that are associated 
with a chromatin component of interest, thereby allowing the indirect identification 
of many unknown lncRNAs; and (5) RNA-Seq: in a single sequencing run, this 
methodology produces billions of reads that are subsequently aligned to a reference 
genome (Fatica and Bozzoni 2014).
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Transcriptome research began in parallel with the genome project because of 
Craig Venter’s idea to sequence the “most important” genes, i.e., the functioning 
genome. This directive clearly fell upon mRNAs, as this type of RNA carries the 
protein code. Of course, this concept has not changed and mRNAs are still of central 
importance; however, what followed was the subsequent discovery of a large num-
ber of different ncRNAs whose functions are linked to the fine control of gene 
expression, often controlling the translation of mRNAs into proteins, i.e., posttran-
scriptional control as it is exerted by miRNAs. In its broadest sense, the transcrip-
tome is undoubtedly more complex than anyone previously imagined.

1.3  The Transcriptome and miRNome Are Closely 
Associated: The Role of microRNAs, a Class 
of Noncoding RNAs Linked to the Fine Control 
of Gene Expression

Cellular gene expression is governed by a complex, multi-faceted network of regu-
latory interactions. MicroRNAs (miRNAs) are recognized as important components 
that shape the transcriptome and also complement and extend the regulation that 
occurs in other levels. MiRNAs are small regulatory RNAs that produce a complex 
topology of gene expression that impacts cellular biological functions.

The discovery of the first miRNA in Caenorhabditis elegans (Lee et al. 1993; 
Wightman and Ruykun 1993) almost 30 years ago has led into a new era in molecu-
lar biology. Hundreds of different miRNAs have been identified in humans, many of 
which are conserved in other animals (Bartel 2008). MiRNAs play important roles 
in cellular homeostasis, development of organs and systems, cell differentiation, 
proliferation, metabolism, pluripotency, apoptosis, neural plasticity, memory, and 
others. They are also involved in pathologies, including metabolic disorders, can-
cers, neurodegenerative disorders, and infectious and autoimmune diseases 
(Bernstein et al. 2003; Ambros 2004; Neilson et al. 2007; Bushati and Cohen 2007; 
Stefani and Slack 2008; Baltimore et al. 2008; Bredy et al. 2011; Leonardo et al. 
2012; Chen et al. 2016). MiRNAs are also promising candidates for new targeted 
therapeutic approaches and as biomarkers of disease. At approximately 22 nucleo-
tides long, miRNAs are among the shortest known functional eukaryotic RNAs, and 
they repress most of the genes they regulate by just a small amount.

MicroRNAs are described as a group of endogenous small noncoding RNA of 
18–22 nts in length. A large proportion of miRNAs are localized as cluster in the 
genome, predominantly distributed in intragenic and intergenic regions Kabekkodu 
et al. 2018). Most miRNAs genes are transcribed by RNA polymerase II as part of 
longer RNAs termed primary miRNAs (pri-miRNAs) (Lee et al. 2002, 2004; Cai 
et al. 2004). Although all canonical pri-miRNAs have a 5′ cap, they might not have 
the polyadenylation signal in the 3′ end (Ballarino et al. 2009).

A. F. Assis et al.
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Each pri-miRNA contains at least one region that folds back on itself to form a 
hairpin structure substrate for the microprocessor; a heterodimeric complex that 
contains one molecule of the endonuclease Drosha and two molecules of its dsRNA- 
binding partner DGCR8 (DiGeorge syndrome critical region gene 8) (Nguyen et al. 
2015). Drosha has two RNase III domains that excised pri-miRNA hairpin which 
liberates the called “pre-miRNA.” The resulting pre-miRNA consists of an approxi-
mately 70-nucleotide stem-loop structure characterized by imperfect base-pairing 
in the stem-loop and a two-nucleotide overhang at the 3′ end (Lee et al. 2002).

The pre-miRNA is subsequently exported to the cytoplasm by the nuclear trans-
port protein exportin-5 (XPO5), in combination with the guanosine triphosphate 
(GTP) binding RAS-related nuclear protein (Ran-GTP) (Yi et al. 2003; Bohnsack 
et al. 2004; Lund et al. 2004; Okada et 2009). In the cytoplasm, the pre-miRNAs are 
further processed by the RNAse III enzyme Dicer liberating a 21–24 nt miRNA 
duplex. Several Dicer-associated proteins are known, including the double-stranded 
RNA-binding protein TRBP (TAR RNA-binding protein), PACT (protein activator 
of protein kinase R), and ADAR1 (adenosine deaminase acting on RNA) (Ha and 
Kim 2014; Hutvagner et al. 2001; Zhang et al. 2004).

After the sequential processing of the miRNA precursors, the miRNA duplex is 
loaded into an Argonaute (Ago) protein which is assisted by the HSP70-HSP90 
chaperone machinery to form the RNA-induced silencing complex (RISC). Only 
one of the two strands of the miRNA duplex is retained in Ago proteins and stably 
forms RISC to mediate the recognition of the target mRNA (Chendrimada et al. 
2005; Haase et al. 2005). The ratios of mature miRNAs derived from 5′(5p) and 
3′(3p) sequences vary, and both strands of some miRNAs are functional (Chiang 
et  al. 2010). Ago–miRNA complexes are guided to their specific targets through 
base pairing (Zealy et al. 2017) and perform its repression functions (Kawamata and 
Tomari 2010; Czech and Hannon 2011).

In addition, some miRNAs are produced by alternative pathways, independent of 
either Drosha- or Dicer-catalyzed cleavage by exploiting diverse RNases that nor-
mally catalyze the maturation of other types of transcripts (Yang and Lai 2010).

1.3.1  miRNA Regulatory Mechanisms

Besides numerous high-quality studies examining the biochemistry, biology, and 
genomics of miRNA-directed mRNA regulation, the factors that determine which 
mRNAs will be targeted, and the precise mechanisms of action remain incompletely 
understand. Extensive computational and experimental research over the last decade 
has substantially improved our knowledge of the mechanisms underlying miRNA- 
mediated gene regulation (Ameres and Zamore 2013; Yue et al. 2009; Ripoli et al. 
2010; Bartel 2009; Chekulaeva and Filipowicz 2009; Brodersen and Voinnet 2009).
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In mammals, the dominate miRNA repression mode acts without slicing the tar-
get mRNA and does not require extensive pairing, as in plants. In turn, Ago proteins 
recruit downstream factors as the adaptor protein TNRC6 (Trinucleotide repeat con-
taining 6) that interacts with the PABPC protein (poly(A)-binding) in the 3′ end of 
mRNA (Fig.  1.6). It recruits deadenylase complexes and most important CCR4- 
complex (Jonas and Izaurralde 2015). The deadenylases shorten the poly(A) tail and 
causes mRNA destabilization (Chen and Shyu 2011). CCR4-NOT complex recruits 
DDX6, a helicase that is reported to inhibit translation (Chu and Rana 2006; Jonas 
and Izarralde 2015). The repressive consequences of this TNRC6-mediated regula-
tory mode depend on the development context of the cell. Indeed, mRNA destabili-
zation explains most of the repression mediated by mammalian miRNAs (Elchcorn 
et al. 2014). The miRNA-mediated RNA silencing processes are mainly localized in 
processing-bodies (P-bodies) in the cytoplasm (Liu et al. 2005).

For sites that promote TNCR6-mediated repression, miRNA recognized its tar-
get primarily through the pairing of its “seed” region that consists of an approxi-
mately 7-nucleotide domain at the 5′ end of the miRNA (Bartel 2009). These 7–8 nt 
sites mediate the bulk of the repression for each miRNA and are the sites identified 
by the most effective target-prediction tools (Bartel 2009; Agarwal et  al. 2015). 
Pairing to the 3′ region of the miRNA can complement the seed region, but this 
supplementary pairing has little influence on efficacy (Wee et al. 2012; Salomon 
et al. 2015). Seed matches can occur in any region of an mRNA but are more likely 
to decrease mRNA expression when they are located in the 3′ untranslated region (3′ 
UTR) (Grimson et al. 2007; Forman et al. 2008, 2010; Gu et al. 2009). Because the 
region used to create the seed is so short, more than half of the protein-coding genes 
in mammals are regulated by miRNAs, and thousands of other mRNAs appear to 
have undergone negative selection to avoid seed matches with miRNAs that are 
present in the same cell (Baek et al. 2008; Lewis et al. 2003, 2005; Farh et al. 2005; 
Stark 2005; Lewis 2005).

The regulation of gene expression is a complicated multi-step process. Recently, 
multi-omics techniques were applied to determine the gene regulatory function of a 
given miRNA and revealed the influence of non-canonical regulations. Besides 
post-transcriptional regulation, miRNAs can also act on transcriptional regulation, 
including interaction with promoters, modulation of transcription factors, and inter-
fering signal cascades as examples.

Fig. 1.6 Interaction of a miRNA with the 3′ UTR of its mRNA target by base pairing. (Figure 
adapted from Filipowicz et al. (2008) Nat Rev Genetics 9: 102–114)

A. F. Assis et al.
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MiR-552-3p inhibit human cytochrome P450 2E1 (CYP2E1) via canonical 
mode. Interestingly, a non-seed sequence of miR-552 is complementary to CYP2E1 
promoter inhibiting the binding of RNA polymerase II and leading to its silence. 
Mutations in the seed and non-seed regions of miR-552 show that this dual inhibi-
tion is more effective in gene regulation (Miao et al. 2016).

Several reports have demonstrated the network between miRNAs and transcrip-
tion factors (Bracken et al. 2016). For example, miR-491-3p downregulated ABCB1 
(a key factor in multidrug resistance) through canonical binding on its 3′ region, but 
it also targeted Sp3, a transcription factor of ABCB1. This dual inhibitory pathway 
increases the sensitivity of hepatoma cells to chemotherapeutic drugs (Zhao 
et al. 2017).

This miRNA dual inhibition also achieves key factors in signal cascades associ-
ated with the target gene. An example is miR-20a that downregulates CDKN1A 
expression through direct binding to the 3′ UTR and also interferes with the expres-
sion of factors in Smad/E2F-based repressor complex to indirectly reduce CDKN1A 
promoter activity (Sokolova et al. 2015). The advances in the field will increase our 
understanding about the complexity of regulatory miRNA functions and gene 
expression network.

Besides P-body, miRNAs can also traffic between various intracellular compart-
ments (e.g., nucleus, mitochondria, Golgi and lysosome) contributing for the regu-
lation of cellular functions. For example, miR-1 induced during myogenesis can 
enter mitochondria, where it stimulates translation of specific DNA-encoded tran-
scripts (Sripada et al. 2012; Zhang et al. 2014; Chen et al. 2012).

In the nucleus, the first miRNA described was miR-21  in Hela cells (Meister 
et  al. 2004). Further, several reports show the presence of miRISC components 
including Ago, Dicer, TRBP, and TRNC6/GW182 (Gagnon et  al. 2014). Some 
results demonstrate that miRNA may have different nuclear functions as regulation 
of the noncoding RNA transcriptome, involvement in the cellular splicing program, 
and control of transcriptional gene activation (TGA) or transcriptional gene silenc-
ing (TGS) (Pu et al. 2019; Catalanotto et al. 2016). As a new and additional miRNA 
working mode, the exact mechanisms involved with their nuclear functions are not 
fully understood. In-depth studies are helping to gradually discover the inhibition or 
activation of intranuclear miRNAs.

1.3.2  Control of miRNA Expression

Advances in the biology of miRNAs have been revealing several regulatory mecha-
nisms in the control of miRNAs biogenesis, maturation, and action in a cell- 
dependent manner under physiological and pathological conditions (Ha and Kim 
2014; Treiber et al. 2017). MiRNA expression can be regulated at both transcrip-
tional and post-transcriptional levels.
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At DNA level, genetic alterations as amplification, mutations, and translocation 
in the genome can influence miRNA expression (Kabekkodu et al. 2018). Single 
nucleotide polymorphisms (SNPs) and epigenetic control of transcription, through 
classical mechanisms of acetylation/methylation of DNA/histones, also contribute 
for miRNA regulation (Pajares et al. 2021).

Once miRNAs are transcribed, modulation of Drosha expression and defects in 
exportin and Ago proteins also affect their expression (Romero-Cordoba et al. 2014; 
Ohtsuka et al. 2015; Gulyaeva and Kushlinskiy 2016). Although changes in accu-
mulation and activity of both microprocessor and Dicer broadly affect miRNA pro-
duction, individual miRNAs are differently sensitive, and some miRNAs expression 
can be impacted more than others. Adenosine to inosine (A-to-I) RNA editing of 
miRNA catalyzed by adenosine deaminase acting on RNA (ADAR) proteins may 
affect the stability, biogenesis, and target recognition of microRNA leading to 
changes in gene expression (Nishikura et al. 2013).

Biosynthesis and maturation of miRNAs can also be influenced by RNA-binding 
proteins (RBPs), which can interact with key enzymes such as DROSHA/DGCR8/
DICER and the RISC complex (Ota et al. 2013). Examples of such mechanisms are 
illustrated by the stabilization of pri- and/or pre-miR-144 by BUD13 and Interleukin 
Enhancer Binding Factor 3 (ILF3) that lead to increased levels of mature forms. The 
use of proteomics-based pull-down approach and UV cross-linking followed by 
immunoprecipitation (eCLIP) analysis have expanded the list of RNA binding pro-
teins (RBPs) that regulates miRNA biogenesis (Treiber et  al. 2017; Nussbacher 
et al. 2018).

In addition, expression of other endogenous competing RNAs (ceRNAs), such as 
pseudogenes, circular RNAs, and long ncRNAs (lncRNAs), can act as “sponges” 
and impair specific miRNA–mRNA interactions (Thomson et  al. 2016). 
Unexpectedly, some miRNAs are destabilized by specific interactions with mRNAs. 
This post-transcriptional regulation of miRNAs is called target-directed miRNA 
degradation (TDMD) and is mediated by transcripts containing sequences that have 
a near-perfect match with miRNAs and centered mismatches. Recent structural 
analyses of AGO2 and mutational analyses of miRNAs and their respective targets 
revealed that the shape of the AGO2 central cleft and the centered mismatches in the 
miRNA targets allow for modifications of the miRNA 3′ end by unknown enzymes. 
These modifications lead to 3′ end remodeling and eventually the decay of miRNAs 
(Park et al. 2019; Sheu-Gruttadauria et al. 2019).

1.3.3  Extracellular miRNAs

Additionally, to their well-known intracellular functions, miRNAs can also be 
secreted in extracellular complexes as extracellular vesicles (EVs) or associated 
with lipoproteins and ribonucleoproteins (Wagner et  al. 2013; Arroyo et  al. 
2011; Valadi 2007). Circulating miRNAs have been studied in patient samples 
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and animal models in the context of cancer, diabetes, cardiovascular disease, 
sepsis, and various other physiological and pathophysiological states (Cui et al. 
2019; Villard et al. 2015; Cortez et al. 2011). Extracellular miRNAs have been 
identified in different body fluids (Wu et  al. 2019; Kim et  al. 2019; Mariner 
et al. 2018; Mall et al. 2013), and several findings indicate their utility as readily 
accessible biomarkers.

The demonstration that extracellular miRNAs could be transported from donor 
to recipient cells indicates a potential role as mediators of cell to cell communica-
tion. Some studies have shown that miRNAs are not randomly exported. Comparison 
of miRNA’s expression levels in a variety of cells lines with their release exosomes 
indicates that a subset of miRNAs is preferentially selected (Guduric-Fuchs et al. 
2012). Besides the considerable recent scientific advances in the field, the exact 
mechanisms involved in miRNA sorting, export, and uptake are still not fully under-
stood (Vu et al. 2020).

For example, miR-223/105/106a are upregulated in HDL particles from 
patients with familial hypercholesterolemia. Cholesterol uptake could be 
decreased through the HDL-mediated miR-223 transport by targeting the scav-
enger receptor class B member 1 (SRB1) mRNA (SBR1 functions as a receptor 
for HDL) in cultured hepatocytes (Bayraktar et al. 2017). Nonsmall cell lung 
cancer cell lines secret EVs containing miR-21/29a that can bind to mouse toll-
like receptor 7 (TLR7) and human TLR8  in tumor-associated macrophages, 
leading to nuclear factor κB (NF- κB) activation and secretion of the pro-meta-
static inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 
6 (Fabbri 2018).

Another important feature of extracellular miRNAs that has gained lot of atten-
tion is their immunomodulatory roles. For example, EVs from regulatory T cells 
contain several miRNAs and miRNA precursor (Aiello et  al. 2017; Okoye et  al. 
2014). The uptake of EVs containing miR-142 and miR150 by dendritic cells 
reduces the expression of cytokine IL-6 and increases the IL-10, interfering with 
antigen processing and presentation in these cells and inhibiting immune activation 
(Tung et al. 2020; Naqvi et al. 2016).

1.3.4  An Example of the Biological Consequence of miRNAs: 
Their Role in Immune Diseases

It is clear that as important modulators of cell differentiation, proliferation, and 
survival, miRNAs contribute to various diseases at the molecular levels. A study 
conducted in 2016 determined the miRNAs profile in human tissue biopsies 
from different organs and revealed a tissue-specific expression (Ludwig et al. 
2016). Alterations in miRNAs expression pattern have been demonstrated in a 
variety of human diseases, such as cancer, autoimmunity, cardiovascular dis-
eases, and viral infections, confirmed as a casual factor in disease progression 
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(Paul et al. 2018). For example, in systemic lupus erythematosus, upregulation 
of several miRNAs was described to be involved in disease progression. DNMT1 
expression was decreased by upregulation of miR148a and miR-21 leading to a 
DNA hypomethylation pattern (Wang et al. 2018). MiRNAs are also associated 
with SLE disease activity index (SLEDAI) and are a good predictor of disease 
activity (Khoshmirsafa et al. 2019).

In rheumatoid arthritis (Donate et al. 2013), studies showed the overexpres-
sion of miRNA-155, miR-124a, and miR-223 in various tissue and immune cells, 
such as CD4+ T cells and CD14+ cells derived from synovial fluid, B cells, mac-
rophages, and PBMCs. The association between miR-155 expression in PBMCs 
and swollen joints indicates that miR-155 promotes the progression of RA by 
triggering production and recruitment of cytokines (Zakeri et al. 2019; Tavasolian 
et al. 2018).

In multiple sclerosis, EAE murine models show upregulation of let-7e in CD4+ T 
cells, amplifying the function of Th1 and Th17 cells and increasing IL10 activity, 
leading to an increase in the severity of EAE.  Furthermore, miR-155 has been 
shown to be able to regulate Th17 cells by controlling the suppressive effects of 
Jarid2, which functions as a recruiter of PRC2. Decreased expression of miR-320a 
has been found in B cells, leading to overexpression of MMP-9 (Yang et al. 2018).

Due to their roles in disease progression, there are increasing interests in the 
development of new miRNA-target therapies. Interestingly, one of the first miRNA- 
based molecules to enter clinical development was the LNA miravirsen, a 
15- nucleotide antisense RNA oligo with complementarity to the 5′ end of miR-122, 
for the treatment of HCV (Van Rooij et al. 2014, Elmen et al. 2008a, b). Since then 
considerable progress was reached in terms of therapeutic approaches (Rupaimoole 
et al. 2017).

1.4  Conclusion

Early on, transcriptome research was intertwined with the genome. Much of this 
was due to the mapping of ESTs, and sequencing dominated the scene. Through the 
use of EST clones and the application of technical concepts such as nucleic acid 
hybridization, researchers began to use arrayed filters to explore the transcriptional 
expression of a large number of genes in a single experiment.

The constant improvement of these DNA arrays led to the fabrication of high- 
density arrays and, finally, microarrays.

At the same time, sequencing also underwent significant changes involving auto-
mation and the endless quest to increase the number of reads, and this contributed 
substantially to a better understanding of the diversity of the transcriptome. Indeed, 
transcriptome research was rooted in these two major technological approaches 
(i.e., large-scale hybridization and sequencing).

What made microarrays robust and increased their popularity was the increase in 
the number of sequences deposited on the slides (currently, these slides contain the 
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entire human or mouse functional genome), the sensitivity of the method (currently, 
experiments are being performed with nanogram amounts of total RNA to screen 
the entire functional genome), the simplicity of its use, its commercial availability, 
and the availability of bioinformatics packages dedicated to analyzing the large 
amounts of data being generated.

Of key importance was the development of statistical procedures for the analysis 
of large amounts of data, which opened the door for biostatisticians and 
bioinformaticians.

All of these ongoing technological advances have contributed to the consolida-
tion of the concept of the transcriptome. Unlike the genome, which is essentially 
static, the transcriptome is variable and is dependent on normal physiological, path-
ological, or environmental conditions. Moreover, it is composed of not only mRNAs 
but also noncoding RNAs, including miRNAs.

This concept has provided the opportunity for all types of biomedical research to 
re-examine their results in light of transcriptomics.
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Chapter 2
Alternative Splicing of Pre-messenger RNA

Vanessa Cristina Arfelli and Leticia Fröhlich Archangelo

2.1  Splicing and the Splicing Machinery

Since the discovery that eukaryotic genes are discontinuous, much has been learnt 
about how its transcriptional products are processed to generate the protein-coding 
mRNAs (Sharp 1994, 2005). Splicing is the cellular process in eukaryotic cells in 
which the intronic non-coding sequences are removed from the precursor mRNA 
(pre-mRNA) and exonic sequences are juxtaposed to yield mature functional 
mRNAs. This process is accomplished by a large machinery, the spliceosome, com-
prised of five small nuclear ribonucleoprotein particles (U1, U2, U3, U4, and U6 
snRNP) and approximately 170 associated proteins, which combinational composi-
tion varies from one stage to the next throughout spliceosome cycle (Wahl et al. 2009).

The spliceosome assembly onto the pre-RNA is a highly dynamic process, where a 
series of consecutive steps produce the complexes E, A, B, C, P and ILS, respectively. 
The formation of these complexes is based on the establishment and dismantlement of 
several weak interactions between RNA:RNA, protein:RNA, and protein:protein mol-
ecules that act synergically to recognize and assemble onto the pre-RNA splice sites 
and to form the catalytically active structure (Wahl et al. 2009). The entire process is 
highly orchestrated and subject to different levels of regulation to guarantee the correct 
processing of mRNAs and the fidelity of the cellular transcriptome.

Three common consensus sequences define intronic regions of a pre-mRNA and 
are needed for the initial recognition and assembly by the spliceosome on the splice 
sites: the 5′ donor splice site (5′-ss) and the 3′ acceptor splice site (3′-ss) at both ends 
of the intron and a branchpoint sequence (BPS). Every intron almost invariantly 
contains GU dinucleotide at the 5′ end and AG dinucleotide at the 3′ end. These 
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Fig. 2.1 The splicing process. (a) pre-mRNA structure: Exons 1 and 2 are represented in light and 
dark blue, respectively. The intron is represented by brown line. The 5′ donor splice site (5′-ss) is 
defined by the nucleotides GU, while the 3′ acceptor splice site (3′-ss) is defined by the nucleotides 
AG. In humans, the conserved branch point sequence (BPS) is yUnAy, which is represented in the 
scheme by the adenine (A). The poly-pyrimidine tract (Py-tract) is represented by a Y. (b) Splicing 
events coordinated by the major spliceosome: the stepwise binding of U2AF (pink), SF1 (purple), 
snRNPs (colored circles), and NTR and NTC (light blue) is depicted, as well as the action of heli-
cases (red) to form the complexes E, A, B, C, P, and ILS, resulting in the mature mRNA and the 
removal of introns. (c) Transesterification reactions. The adenine (A) 2-OH in BPS mediates the 
nucleophilic attack to the phosphate group (p) in the 5′-ss of the intron. In the second transesterifi-
cation reaction, the free 3′-OH of the first exon attacks the phosphate group in the 3′-ss, yielding 
junction of exons 1 and 2 and removal of the intron in a lariat form. (Made in ©BioRender – bio-
render.com)
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dinucleotides are positioned inside longer consensus sequences known to influence 
the strength of the splicing sites. The BPS is located in the proximity upstream of 
the 3′-ss. A pyrimidine enriched sequence, known as polypyrimidine tract (Py-tract), 
lies between the BPS and the 3′-ss (Fig. 2.1a) (Reed 1996).

The stepwise assembly of the spliceosome begins with the Early complex (com-
plex E) formation when U1 snRNP, through RNA–RNA base-pairing interactions, 
recognizes the 5′-ss. It is followed by ligation of splicing factor 1 (SF1/BBP) to BPS 
and its interaction with the U2 auxiliary factor large subunit (U2AF65), which in 
turn associates with the Py-tract, whereas the small subunit of the U2AF heterodi-
mer (U2AF35) binds to the 3′-ss.

In the subsequent ATP-dependent step, the U2 snRNP is recruited to replace SF1 
from its interaction with the BPS. It interacts with U1 snRNP and turns the E com-
plex into a pre-spliceosome complex (complex A). The next step involves binding 
of the pre-assembled U4/U6 and U5 snRNPs to form the pre-B complex. The exit of 
U1 snRNP marks the formation of B complex. Although all the snRNPs are present 
at this point, the complex B is catalytically inactive. In order to activate the spliceo-
some, the complex has to go through a series of conformational and compositional 
changes turning it into an activated complex (complex Bact and further B*). 
Specifically, 5′-ss and 3′-ss are brought into proximity, U4/U6 duplex unwind, and 
the U4 snRNP is released, allowing U6 to interact with the 5′-ss.

Moreover, the NineTeen complex (NTC) and the NTC-related complex (NTR) are 
recruited. The activated B complex engages in the first catalytic reaction, additional 
rearrangements occur and generate the catalytic complex C (C* complex), which 
undergoes the second catalytic step of splicing. In the P complex, interactions between 
the three conserved elements of the intron (3′-ss, 5′-ss, and lariat junction) occur. 
Rearrangements promote mature mRNA release, leaving only the intron lariat spliceo-
some (ILS). Finally, the U2, U5, U6 snRNPs and NTC and NTR complexes are 
released to engage in an additional round of splicing and the post-spliceosome com-
plex disassemble (Fig. 2.1b) (Matera and Wang 2014; Wahl et al. 2009; Wan et al. 2019).

A large amount of energy is devoted to RNA remodeling throughout spliceo-
some formation, which is employed by the action of numerous evolutionarily con-
served DExD/H type RNA-dependent ATPases/helicases that act at specific steps of 
the splicing cycle to catalyze RNA–RNA rearrangements and RNP remodeling 
events (Cordin and Beggs 2013; Staley and Guthrie 1998).

Essentially, the splicing process of intron removal and ligation of the flanking 
exons entails two trans-esterification reactions involving functional groups in the 
5′-ss, 3′-ss, and BPS regions of an intron. First, a nucleophilic attack by the 2′ 
hydroxyl group of a conserved adenosine residue within the BPS cleaves the phos-
phodiester bond within the 5′ exon–intron junction. The reaction generates a free 3′ 
hydroxyl group on the 5′ exon and a lariat intron intermediate. In the second reac-
tion, the phosphodiester bond in the 3′ intron–exon junction is attacked by the 3′ 
hydroxyl group of the 5′ exon, displacing the lariat and promoting exons ligation 
(Padgett et al. 1986) (Fig. 2.1c).

The major spliceosome, built by the U1, U2, U4/U6, and U5 snRNPs particles, as 
described above, is responsible for removing the vast majority of pre-mRNA introns. 
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However, a distinct but structurally and functionally analogous spliceosome complex 
mediates the excision of a rare subset of evolutionary conserved introns that exhibit 
non-canonical consensus sequence, referred to as minor-class introns (Hall and Padgett 
1994). The minor-class intron spliceosomes are low abundant and formed by the dis-
tinct but functionally analogous snRNPs U11, U12, U4atac, and U6atac together with 
the U5 snRNPs, which is a particle shared by both machineries. The much less frequent 
minor-class introns coexist with neighboring canonical major-class introns in a gene. 
The two spliceosome machineries undergo comparable dynamic rearrangements, with 
the main differences occurring at the early stages of intron recognition rather than dur-
ing catalysis (Patel and Steitz 2003). The minor- class splicing follows the same two-
step reactions and formation of a lariat intermediate as the major splicing. U11 base-pair 
with the characteristic longer and constrained consensus sequence at the 5′-ss of the 
minor class introns, whereas U12 base-pair with the BPS. The secondary structure of 
U11 and U12 mimics that of U1 and U2 snRNAs, respectively. Minor-class introns lack 
the Py-tract. Analogous to the major pathway, the U4atac snRNP chaperone U6atac 
into the spliceosome, preventing U6atac interaction with U12 and the 5′-ss before their 
helicase-dependent unwinding. Upon unwinding, U4atac is released, followed by rear-
rangements that permit catalytic activation (Patel and Steitz 2003).

Initial recognition and pairing of the 5′ and 3′ splice sites depend very much on 
the size of the intron and the distance between the splice sites affects the efficiency 
in which spliceosome assembles (Fox-Walsh et al. 2005). Because splice sites are 
recognized across an optimal nucleotide length, depending on the size of the intron 
or the flanking exons, the splice sites are recognized across the intronic or exonic 
segments, known as exon and intron definition models (Berget 1995; De Conti et al. 
2013). When exons are small and introns are long, the splicing machinery forms 
across exons, whereas in genome architecture, where exons are large and introns are 
small, such as observed in lower eukaryotes, the intron definition prevails. In the 
human genome, where the majority of exons are short and introns are long, it is 
likely that the vast majority of splice sites are recognized across the exon (Fig. 2.2). 
The same splicing complexes formed across exon operate on intron definition in 
terms of composition and structure, and both exon and intron definition models may 
co-occur within the same pre-mRNA (De Conti et al. 2013; Li et al. 2019).

2.2  Alternative Splicing

Whereas some exons are constitutively spliced, that is, they are present in every 
mRNA produced from a given pre-mRNA, others are alternatively spliced to generate 
variable forms of mRNA from a single pre-mRNA. By shifting the exon usage, alter-
native splicing (AS) notably enhances the transcriptome and cellular proteome (Pan 
et al. 2008). Alternatively, spliced gene products may have related, distinct, or even 
opposing functions as well as non-functional properties, which may lead to the regula-
tion of its expression through nonsense-mediated mRNA decay (NMD) or nuclear 
sequestration and turnover. Consequently, AS represents an important level of 
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regulation in gene expression and plays a critical role in biological processes such as 
development, cell differentiation, and response to environmental cues. AS frequency 
increases with species complexity and it has been proposed to be a driver of pheno-
typic complexity evolution in mammals. Accordingly, significative higher frequencies 
of AS events are observed in brain tissues throughout vertebrate species where regula-
tion of these splicing events has been associated with evolutionary changes contribut-
ing to nervous system development (Barbosa-Morais et al. 2012; Merkin et al. 2012).

Virtually all human multi-exon genes undergo alternative splicing (Pan et  al. 
2008; Wang et al. 2008). The main types of AS events are exon skipping, mutually 
exclusive exon, alternative 5′ and 3′ splice site selection, and alternatively retained 
introns (Nilsen and Graveley 2010). Exon skipping takes place when a particular 
cassette exon is spliced out of the mature message. In a mutually exclusive exon AS 
event, one out of two exonic regions of a pre-mRNA is included in the final tran-
script when the other is excluded, and vice versa, so that these exons never coexist 
in the same product. Alternative splice site selection occurs when spliceosome rec-
ognizes and pairs with cryptic splice sites, resulting in the alternative splice site 
cleavage on the nearby exon. The fifth type of AS event, the retained intron, is the 
process by which a particular intron remains unspliced in the final transcript, and as 
a result, it triggers the downregulation of the transcript through NMD or nuclear 
sequestration and turnover (Braunschweig et al. 2014). In addition to the common 
types of AS, alternative promoter usage and alternative cleavage and polyadenyl-
ation yield different types of alternative transcript events, such as alternative first 
exon (AFE), tandem 3′ untranslated region (UTR), and alternative last exon (ALE). 

Fig. 2.2 Intron and exon definition models. (a) Intron definition model: the U1 and U2 snRNPs 
and U2AF interact to allow the pairing of the splice sites across an intron when the intron is short 
(<250 bp). (b) Exon definition model: the pairing of the splice sites occurs across the exon when 
separated by a long intron (>250 bp). (Made in ©BioRender – biorender.com)
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In the first case, alternative promoter usage gives rise to mRNA isoforms with dis-
tinct 5′ UTR, and in the second case, the usage of alternative polyadenylation sites 
gives rise to transcripts with shorter or longer 3′ UTR and with distinct terminal 
exons (Wang et al. 2008) (Fig. 2.3). A combination of different modes of AS is often 
observed throughout a single precursor mRNA of multiexon genes.

Fig. 2.3 Types of alternative splicing (AS) events. (Made in ©BioRender – biorender.com)

V. C. Arfelli and L. F. Archangelo



57

In humans, the splice site sequences are highly degenerated (Sheth et al. 2006) 
and often not sufficient to define exon–intron boundaries. In addition, sequences 
that match the short consensus splice site signals are commonly found throughout 
the introns. In order to help the splice site selection, exons and their nearby intronic 
regions contain a variety of additional splicing regulatory elements (SREs). If they 
enhance exon inclusion, these elements are called exon splicing enhancers (ESE) or 
intronic splicing enhancers (ISE), depending on whether they are present in exonic 
or intronic regions. If they tend to repress exon inclusion, these elements are called 
exon or intron splicing silencers (ESS or ISS, respectively) (Zhang et al. 2008).

These cis-acting sequences within the pre-mRNA influence splicing through the 
binding of specific RNA-binding non-spliceosomal regulatory proteins, which 
either promote or hinder the spliceosome activity on the adjacent splicing sites 
(Cartegni et al. 2002).

The requirement for additional cis-acting and trans-acting elements to stabilize 
and target specific sites introduces another layer of complexity in the regulation of 
the splicing machinery and provides an important window for variations and 
diversity.

Two major classes of widely expressed trans-acting factors, namely the SR pro-
teins and the heterogeneous ribonucleoproteins (hnRNPs), are involved in recogniz-
ing and binding the cis-elements within the RNA (Long and Caceres 2009; 
Martinez-Contreras et al. 2007).

Proteins of the SR family contain one or two N-terminal RNA recognition motif 
(RRM), which mediate binding to RNA and a C-terminal arginine-serine-rich (RS) 
domain, involved mainly in protein–protein interaction. They play an important role 
as general splicing factors and as regulators of alternative splicing (Manley and 
Krainer 2010). The hnRNPs form a group of structurally diverse RNA binding pro-
teins involved in different stages of the RNA metabolism (Geuens et al. 2016).

Several reports describe the antagonistic function of SR and hnRNP proteins on 
alternative splicing (Cáceres et  al. 1994). Typically, splicing enhancers are recog-
nized by a member of the SR family, whereas hnRNP recognizes splicing silencers 
(Cartegni et al. 2002). SR sequence motifs are enriched in exonic sequence (Liu et al. 
1998). When SR proteins are bound to ESEs they favor exon inclusion and prevent 
exon skipping. They can also promote exon definition by directly recruiting the splic-
ing machinery through their RS domain and antagonizing nearby silencer elements.

On the other hand, hnRNP sequence motifs are enriched in introns. hnRNP 
represses splicing by directly antagonizing the recognition of splice sites or inter-
fering with the binding of proteins bound to enhancers. Various hnRNPs regulate 
alternative splicing by stimulating exon skipping or intron retention (Fig. 2.4). To 
add an additional layer of complexity to this network, some SR protein can be 
implicated in splicing silencing when associated with introns, whereas some hnRNP 
can inhibit splicing from exonic locations. Specifically, SR and hnRNP protein 
activities differ depending on their position relative to the regulated splice, in which 
some SR protein can repress splicing, whereas hnRNP can enhance splicing depend-
ing on their position relative to the regulated site (Erkelenz et al. 2013; Matera and 
Wang 2014).
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In the end, the decision of whether a specific site is selected or if a particular 
exon or intron is included or excluded from the final transcript is defined by the 
combinatorial interplay of positive and negative regulatory signals present in the 
RNA, the ultimate complexes formed by the trans-acting factors assembled on these 
regulatory sequences and how they influence the splicing machinery on the nearby 
splice sites. On top of that, variations in the relative concentrations of the antagonis-
tic trans-acting elements may affect splice-site choice by tipping the balance in 
favor of different outcomes. Thus, the ratios of these antagonistic factors are likely 
to define a cellular code for establishing cell-specific patterns of splicing in multiple 
genes (Smith and Valcárcel 2000).

2.3  Mechanisms of Alternative Splicing Regulation

A much higher level of complexity is added to alternative splicing regulation when 
considering the fact that most splicing evens occur co-transcriptionally. The cou-
pling of splicing and transcription implies a tight integration of alternative splicing 
with other gene regulatory pathways (Braunschweig et al. 2013).

2.3.1  RNA Architecture and Secondary Structures

RNA architecture impacts splicing outcomes. Secondary structures on the pre- 
mRNA can influence the accessibility of splice sites or cis-acting elements. These 
secondary structures are formed by intramolecular base-pairing and impact splice 
site selection positively or negatively. Thus, RNA folding may be regarded as an 
important component of AS regulation (McManus and Graveley 2011; Warf and 
Berglund 2010).

Fig. 2.4 The antagonistic role of SR proteins and hnRNPs in splicing. In general, when bound to 
enhancer sequences, SR proteins positively influence splicing promoting exon inclusion, exon 
definition, and recruiting the splicing machinery. hnRNPs, conversely, bind to silencing elements, 
inhibiting the recognition of splice sites, and interfering with the binding of proteins to enhancers. 
ESE: exonic splicing enhancer; ESS: exonic splicing silencer; ISE: intronic splicing enhancer; 
ISS: intronic splicing silencer. (Made in ©BioRender – biorender.com)
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The mechanisms by which these structures influence splicing may involve local- 
and long-range interactions within the RNA molecules. Local pairing forms RNA 
structures that may prevent the binding of appropriate regulatory factors to the 
single- stranded molecule, which can happen when secondary structures are formed 
onto cis-regulatory elements or in its vicinity. Similarly, when secondary structures 
overlap splicing signals, such as 5′-ss, 3′-ss, BPS, and Py-tract, it can hamper rec-
ognition and assembly of spliceosome complexes onto these sites.

Conversely, long-range interactions place distant sequences into proximity, 
which promotes the looping out of specific regions of the pre-mRNA. These regions 
may contain cassette exons, a stretch of exonic and intronic sequences, or function-
ally active cis-acting elements that are drawn to alternative splicing regulation. 
Besides, approximation of distant regulatory elements and cognate factors to target 
exons may favor alternative splice site selection. The role of alternative competing 
RNA folding in the choice of alternative splice sites and mutually exclusive exons 
was first described for the drosophila Dscam gene, but similar modes of regulation 
have been proposed for human genes (Pervouchine et al. 2012).

While RNA secondary structure impacts splicing, its formation is condition- 
dependent and may also be subject to regulation. For instance, RNA helicases can 
unwind these structures and consequently regulate pre-mRNA splicing. Also, tran-
scription rate can influence the folding of the RNA during synthesis and ultimately 
if slow-folding structures have enough time or not to assemble on the nascent pre- 
mRNA before splicing occurs.

2.3.2  Coupling Transcription to Alternative Splicing

Besides the interaction of snRNPs and splicing regulatory factors with pre-mRNA, 
the high-fidelity process of splice site selection also requires transcriptional machin-
ery as well as chromatin modifiers and remodelers (Luco et al. 2011). Each step of 
transcription, namely initiation, elongation, and termination, contributes to how the 
nascent pre-mRNA is processed.

The impact of promoter usage in alternative splicing was first demonstrated on 
experimental models in which an artificial minigene under the regulation of differ-
ent promoters exhibited a different pattern of alternative transcript. This led to the 
conclusion that promoters may contribute to AS by recruiting different molecules to 
the transcriptional complex, which in turn participate in the splicing regulation. The 
primary implication of these findings was that cell-specific AS may not simply 
result from the differential abundance of SR proteins but also from a more complex 
process involving cell-specific promoter occupation. Unlike the minigene experi-
mental model, most of the genes are regulated by a single promoter in nature. In this 
case, the differential occupancy of the promoters by a variety of transcription fac-
tors and co-activators impacts AS. The promoter itself is responsible for recruiting 
splicing regulator factors to the site of transcription, possibly through the interaction 
with transcription factors bound to the promoter or transcriptional enhancers. Also, 

2 Alternative Splicing of Pre-messenger RNA



60

some of the effects of promoters on pre-mRNA splicing are mediated by proteins 
that function as dual transcription and splicing factors (Kornblihtt 2005).

The RNA polymerase II (RNAPII) has a major impact on alternative splicing, 
and its largest subunit C-terminal domain (CTD) plays a central role in coupling the 
two processes. In mammals, the CTD domain comprises 52 heptad repeats 
(YS2PTS5PS), subject to extensive phosphorylation. Phosphorylated CTD serves as 
a binding module for multiple mRNA processing factors, including splicing factors. 
Phosphorylation of the CTD repeats on serine 5 residues are essential for capping 
enzyme recruitment, whereas phosphorylation on serine 2 facilitates recruitment of 
cleavage and polyadenylation factors at 3′ ends of the RNA. Particularly, serine 2 
phosphorylation was shown to be essential for the integration of transcription and 
splicing. In addition, the mediator complex, known to facilitate the interaction 
between the transcription pre-initiation complex on promoters with distant tran-
scription regulatory factors bound to enhancers, also contacts splicing factors 
(David and Manley 2011).

The regulation of the RNAPII elongation rate constitutes another mechanism in 
which transcription affects AS. The RNAPII elongation rate is governed by the rates 
of RNA synthesis and translocation of the enzyme interspersed by acceleration, 
deceleration, backtracking, pausing and release, and sometimes with premature ter-
mination, which may occur while the RNAPII transcription elongation complex 
travels along a given gene. The use of RNAPII rate mutants to investigate the impact 
of elongation rate on genome-wide alternative splicing in human cells demonstrated 
that both slow and fast transcription changed the alternative splicing of thousands of 
exons. Slower transcription rates mainly contribute to cassette exons’ inclusion, 
whereas a faster transcription leads to their skipping from mature mRNAs (Saldi 
et al. 2016).

Two models were proposed to illustrate the coupling of transcription and splicing 
processes, namely the recruitment and the kinetic models. In the recruitment model, 
a change in promoter architecture results in the recruitment of splicing factors to the 
transcription machinery that in turn impact the splicing of the nascent RNA. In the 
kinetic model, the change in promoter architecture affects the elongation rate of the 
RNAPII, such that there is more or less time for splice sites or other splicing signals 
flanking the alternative exons to be recognized by trans-acting factors. Thus, this 
model predicts that elongation rate modulates competition between splice sites and 
cis-regulatory elements. Such as, if there is a cassette exon flanked by weak upstream 
3′-ss and a strong downstream 3′-ss, a lower transcription rate will favor the usage 
of the upstream site and, consequently, the inclusion of the cassette exon. On the 
other hand, acceleration of transcription will favor the usage of the downstream site, 
resulting in exon skipping (Fig. 2.5a). In addition, a lower transcription rate can also 
favor exon skipping if, for example, an ISE is displayed upstream of a cassette exon. 
And as mentioned before, the elongation rate can also influence RNA folding events, 
which contributes to the AS outcome (Braunschweig et al. 2013).
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Fig. 2.5 Promoter and chromatin features affect AS through recruitment and kinetic models. (a) 
Recruitment model (left): the type of promoter will determine the transcription factors (TFs) that 
will be recruited to the transcription initiation complex. Promoter A recruits TFs that interact with 
splicing factors (for example, SR proteins) that will enhance splicing of the alternative exon. The 
TFs on Promoter B do not interact with splicing factors, affecting the splicing outcome differently 
from Promoter A. Kinetic model (right): the type of promoter will determine RNAPII elongation 
rate. Promoter A determines a high elongation rate of the RNAPII, allowing less time to the CTD- 
associated splicing factors to recognize weak (W) splice sites. Higher RNAPII elongation rate 
favors recognition of strong (S) splice site. Promoter B determines a slower RNAPII elongation 
rate, allowing for weak splice site recognition and exon inclusion. (b) The chromatin architecture 
is dictated by many epigenetic layers, such as nucleosome positioning, DNA methylation, histone 
modification, histone variants, and also non-coding RNAs. All these aspects of chromatin influ-
ence alternative splicing. Recruitment model (left): histone modification (such as H3K36me3) 
recruits an adaptor protein (MRG15) which in turn recruits a splicing factor (PTB, an hnRNP 
protein with repressor activity) that will affect splicing of the alternative exon. Non-coding RNAs, 
such as lncRNAs, can act as a scaffold to recruit or sequestrate specific splicing factors. Kinetic 
model (right): chromatin features affecting the RNAPII elongation rate. For example, DNA meth-
ylation prevents CTCF binding, which acts as a roadblock for RNAPII. Without the binding of 
CTCF, elongation is accelerated and disfavors alternative exon inclusion. DNA methylation on 
alternative exons can also recruit methyl-binding proteins (MBP) such as MeCP2. MBP recruits 
histone deacetylase complex (HDAC), leading to less permissive chromatin and slower RNAPII 
elongation, favoring alternative exon inclusion. (Made in ©BioRender – biorender.com)
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2.3.3  Epigenetic Control of Alternative Splicing

Transcription rate is influenced by the binding of transcription factors and co- factors 
to promoters and regulatory sequences on the DNA, which in turn is shaped by the 
chromatin structure and the intricate interplay of epigenetic modifications.

The various layers of epigenetic control – DNA methylation, nucleosome posi-
tioning, histone modifications, histone variants, chromatin remodeling factors, and 
non-coding RNAs – are involved in the regulation of AS.

The 5′ cytosine methylation, deposited by DNA methyltransferases (DNMTs) on 
CpG dinucleotides, corresponds to an essential epigenetic modification on the DNA 
that influences gene expression patterns across the genome. While deposition of the 
5-methylcytosine (5mC) at promoter regions exerts an inhibitory effect on gene 
expression, its presence on the genes bodies positively affects transcription of the 
related genes, besides preventing spurious transcription initiation from cryptic 
internal promoters. 5mC are enriched at exons and especially at splice sites when 
compared to flanking introns. Moreover, DNA methylation is less abundant in alter-
natively spliced exons than in constitutive exons (Lev Maor et al. 2015). DNA meth-
ylation can either enhance or silence exon recognition. There are three different 
mechanisms by which DNA methylation regulates AS. DNA methylation can pre-
vent the DNA binding protein, CTCF, from interacting to its binding site, counter-
acting its function as a roadblock for RNA pol II, culminating in increased elongation 
rate and exon skipping. Another mechanism involves the binding of methyl-binding 
proteins, such as MePC2. Binding of MePC2 to methylated DNA triggers recruit-
ment of histone deacetylase complex (HDAC), local hypoacetylation, and conse-
quent RNA pol II pause, favoring exon inclusion (Lev Maor et al. 2015). In a third 
mechanism, DNA methylation on alternative exons induces the H3K9me3 histone 
modification, which in turn anchors Heterochromatin Protein 1 (HP1) isoforms 
HP1α and HP1β. HP1α and HP1β act as adaptor proteins for the recruitment of 
splicing factors. The presence or absence of HP1 and its associated splicing factors 
determine whether a cassette exon is included or excluded from the transcript 
(Yearim et al. 2015).

Nucleosomes are the basic units of chromatin, comprised of an octamer of his-
tones. The DNA wrapped around the nucleosome is approximately 147 nt in length, 
which is also the average size of exons in mammals. Nucleosomes are enriched in 
exons, and because of that, they are determinants in exon definition. Moreover, 
exons that lay between long introns present a higher nucleosome positioning than 
exons separated by small introns. These facts suggest that nucleosomes may act in 
both protecting and defining exons (Luco et al. 2011). Alternatively, included exons 
flanked by weak splice sites present higher nucleosome density than excluded 
exons, pointing to nucleosome function in AS. Nucleosomes influence AS by acting 
as a barrier that controls RNA pol II density at exons, lowering transcription rate 
and favoring the inclusion of cassette exons (Saldi et al. 2016).
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Post-translational modification of histones is an important determinant of chro-
matin. Histone modification such as H3 lysine 36 trimethylation (H3K36me3) and 
H3 lysine 9 trimethylation (H3K9me3) also influence alternative splicing (Luco 
et  al. 2011). H3K36me3 is highly abundant in actively transcribed genes and is 
deposited by the methyltransferase SETD2. Dysfunction in this enzyme leads to 
changes in alternative splicing events. H3K36me3 mark influences splicing by 
anchoring the chromatin-binding protein, MRG15, which recruits the polypyrimi-
dine binding protein (PTB), a splicing repressor. Therefore, the levels of H3K36me3 
will determine the ultimate effect of PTB, favoring exon inclusion or skipping (Luco 
et  al. 2010). Likewise, the H3K9me3 mark also promotes exon skipping, in this 
case, by recruiting the Heterochromatin protein 1 (HP1). HP1 isoforms HP1α and 
HP1β act as adaptors to recruit the protein SRSF3. The SRSF3 protein is a member 
of the SR family that functions as a splicing silencer hindering the inclusion of cas-
sette exons.

As previously mentioned, the H3K9me3 mark recruits HP1, but different from 
HP1α and HP1β, the isoform HP1γ has a different mode of action. HP1γ binds to 
the H3K9me3 marks in the gene’s coding region and simultaneously associates with 
the pre-mRNA. Interaction of HP1γ with the nascent pre-mRNA slows RNAPII and 
consequently the elongation rate. Decrease in the RNAPII elongation rate allows 
time to recruit splicing factors and cassette exon inclusion (Saint-André et al. 2011).

Additionally, histone variants play a role in AS.  The variants H3.3A, H3.3B, 
H2a.V, and the H3-histone chaperone Asf1 play a role in the processing of histone 
RNAs itself. It has been described in human lung fibroblasts that deposition of the 
linker histone variant H1.5 at the splicing sites of short exons constitutes a mark 
responsible for considerable stalling of RNAPII. Again, decreased RNAPII elonga-
tion rate facilitates the inclusion of alternative exons (Glaich et al. 2019). Similarly, 
BRM – the ATPase subunit of the switch/sucrose non-fermenting, SWI/SNF – a 
chromatin remodeling factor, facilitates the inclusion of alternative exons by inter-
acting with RNAPII and inducing its pause (Batsché et al. 2006).

In conclusion, the dynamics of the chromatin imposed by DNA methylation, 
nucleosome positioning, and histone modifications control alternative splicing 
through the mechanisms portrayed by the recruitment and the kinetic models 
described earlier (Braunschweig et al. 2013) (Fig. 2.5b).

Ultimately, non-coding RNAs are epigenetic regulators that can affect the chro-
matin structure and also alternative splicing. Long non-coding RNAs (lncRNAs), 
such as Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), tau-
rine upregulated gene 1 (TUG1), and Gomafu, act as a scaffold for the binding of 
splicing factors, affecting their function in splicing (Ramanouskaya and Grinev 
2017). For example, Malat1 associates with SR proteins such as SRSF1, SRSF2, 
and SRSF3, and its deletion changes the alternative splicing pattern of genes related 
to tumorigenesis (Zhang et al. 2020).
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2.3.4  Coupling Cell Signaling to Alternative Splicing

Alternative splicing also responds to the constant changes in the cell’s physiological 
or pathological conditions (Kornblihtt et al. 2013). In a seminal work, König and 
colleagues described the mechanism by which splicing can be coupled with signal 
transduction. The authors found signal-responsive elements within the exonic v5 
sequence of the CD44 pre-mRNA. These ESS and ESE elements modulate alterna-
tive splicing in a cell type-specific and inducible manner in response to Ras signal-
ing pathway (König et  al. 1998). The mechanism involved Ras-Raf-MEK-ERK 
activation and SAM68 phosphorylation by ERK. Phosphorylated SAM68 bound to 
the ESS element resulting in the inclusion of the v5 exon through mechanisms that 
include impairing the splicing repressor hnRNP A1 from binding to the ESS ele-
ment, recruiting proteins that promote spliceosome assembly, interacting with chro-
matin remodeling complex, and decreasing RNAPII elongation rate, and thus 
favoring the use of weak splice sites (Frisone et al. 2015; Lynch 2007). Together 
with the protein interactions with the ESE element that enhance splicing, exon v5 is 
included in the mature mRNA in response to an extracellular signal (Shin and 
Manley 2004). The TGF-β signaling also controls alternative splicing of the CD44 
pre-mRNA, leading to the expression of the cancer aggressiveness-related isoform 
CD44v6 (Tripathi et al. 2016).

There are other examples of signaling pathways controlling alternative splicing. 
The mechanism applied in the majority involves regulation of the SR protein activ-
ity through phosphorylation and dephosphorylation events. Such as, Fas receptor 
activation includes the activity of the phosphatase PP1, which dephosphorylates SR 
proteins. Altered phosphorylation of the SR splicing factors results in a switch of 
BCL-X and Caspase 9 transcripts from anti- to pro-apoptotic isoforms. Likewise, 
phosphoinositide signaling leads to dephosphorylation of the SR factors SRSF10. 
Dephosphorylated SRSF10 interacts with U1 snRNPs interfering with its 5′-ss rec-
ognition and impairing splicing. Also, AKT pathway mediates alternative splicing 
in response to epidermal growth factor (EGF) signaling through phosphorylation of 
SR proteins (Kornblihtt et al. 2013).

2.4  Missplicing and Disease

Aberrant splicing causes diseases. According to the Human Gene Mutation Database 
(HGMD), mutations affecting splicing account for one-third of all disease-causing 
mutations. The mutations trigger aberrant splicing by mechanisms that involve 
either disruption of splicing signals or cis-acting regulatory elements on the RNA or 
interference with the function of the trans-acting factors that act on the RNA.

Mutations in regulatory sequences that affect alternative splicing are a wide-
spread cause of human hereditary disease and cancer. These cis-acting mutations 
disrupt the splicing code in different ways. It can affect splice sites (5′- and 3′-ss), 
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Py-tract, or BPS or create cryptic splicing signals. It can alter sequences that overlap 
with the secondary structure of the RNA, hampering its formation or creating fold-
ing that is not usually there. Moreover, cis-acting mutations can result in the loss or 
gain of function of splicing enhancers (ESE, ISE) or silencers (ESS, ISS). The con-
sequence of these alterations is the aberrant splicing of the involved genes due to 
exon skipping, intron retention, activation of cryptic sites, and the altered ratio of 
skipping/inclusion of cassette exons.

The following selected examples illustrate disease-associated splicing altera-
tions caused by the different types of cis-acting mutations. (i) Familial dysautono-
mia (FD) is a recessive genetic disorder characterized by a point mutation in the 
vicinity of the 5′-ss on intron 20 of the IKBKAP gene. The altered splice site impairs 
the recognition and base-pairing of the U1 snRNP at the 5′-ss resulting in exon skip-
ping. (ii) Beta-thalassemia is an inherited disorder characterized by reduced expres-
sion of the hemoglobin beta chain and severe anemia. One form results from a point 
mutation present in the intron 1, which generates an alternative 3′-ss in the HBB 
gene. This cryptic site is preferentially used and results in an aberrant isoform. (iii) 
The frontotemporal dementia and Parkinsonism linked to Chr.17 (FTDP-17) is a 
neurodegenerative disorder that can be caused by a point mutation in the exon 10 of 
the MAPT gene. This mutation affects an ESS leading to increased inclusion of the 
exon. (iv) Familial partial lipodystrophy type 2 (FPLD2) is a rare metabolic condi-
tion characterized by point mutations in 5′-ss of the LMNA gene, resulting in intron 
retention and consequent regulation of its transcripts expression through NMD 
(Daguenet et al. 2015; Scotti and Swanson 2016).

Similar to cis-acting mutations, genetic variations that naturally occur in the 
population, such as single nucleotide polymorphisms (SNPs), also affect the effi-
ciency of alternative splicing. An example of an allele-dependent expression of 
alternative isoform is observed for the major histocompatibility complex, class II, 
DQb 1 (HLA-DQB1) gene. The ratio of DQB1 exon 4 inclusion in the final tran-
script is determined by differential recognition of the upstream 3′-ss during the 
early steps of spliceosome assembly. The differential recognition of the 3′-ss results 
from differences in the RNA sequence due to the SNPs mapped to this region, 
directly affecting the BPS and Py-tract (Královičová et al. 2004).

In addition to mutations affecting splicing signals on the pre-mRNA, mutations 
in genes coding for trans-acting factors also cause disease. Unlike the cis-acting 
mutations that only affect the compromised gene, trans-acting mutations alter the 
function of proteins implicated in the splicing machinery and thus convey a pleio-
tropic effect on large sets of genes.

Disease-associated trans-acting mutations affect genes involved in UsnRNP bio-
genesis and assembly or formation of UsnRNP aggregates, spliceosome assembly 
(core spliceosome mutations), and splicing regulation (SR, hnRNP, and RNA bind-
ing proteins).

Spinal muscular atrophy (SMA), Clericuzio-type poikiloderma with neutropenia 
(PN), Retinitis pigmentosa (RP), and Alzheimer’s disease are examples of disorders 
associated with mutations that interfere with the function of proteins involved in 
UsnRNP biogenesis. Prader-Willi syndrome and RP are examples of disorders 
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associated with mutations that interfere with core spliceosome- and splicing factor 
protein. At the same time, amyotrophic lateral sclerosis (ALS), autism disorder, and 
Huntington’s disease have been associated with deregulated expression of splicing 
factors and RNA-binding proteins.

The following selected examples illustrate disease-associated trans-acting muta-
tions involved in each of the mechanisms described. (i) Clericuzio-type poikilo-
derma with neutropenia (PN) rare autosomal recessive disease associated with 
mutations in the C16orf57 gene. This gene encodes a protein involved in the correct 
processing of the U6 snRNA. Cells from patients carrying these mutations have 
higher levels of U6 snRNA degradation. (ii) RP are inherited degenerative disorders 
of the retina associated with mutations in multiple genes, among them the pre- 
mRNA processing factors PRPF31, PRPF8, PRPF6, PRPF3, and the RNA helicase 
SNRNP200/BRR2. These genes code for components of the spliceosome complex 
involved in complex rearrangement and catalysis. (iii) ALS is a common motor/
neurodegenerative disease caused by mutations in various genes, such as the ones 
coding for the RNA-binding protein FUS and TDP-43. Their altered function affects 
snRNA abundance and, consequently, pre-mRNA splicing (Daguenet et al. 2015).

2.5  Splicing and Cancer

In the context of cancer, mutations in the cis-acting regulatory sequences on the 
RNA often generate aberrant tumor-associated isoforms that contribute to some 
aspects of tumorigenesis. Additionally, cis-acting mutations can contribute to acti-
vate oncogenic isoforms or inactivate tumor suppressor transcripts. On a broader 
scale, somatic mutations in genes encoding components of the splicing machinery 
are also frequently observed and are related to global splicing abnormalities of can-
cer transcriptomes (Dvinge et al. 2016).

Recurrent somatic mutations in core spliceosome and splicing factor coding 
genes were first discovered in hematological malignancies like myelodysplastic 
syndromes (MDS), acute myeloid leukemia (AML), and chronic lymphoblastic leu-
kemia (CLL) (Graubert et al. 2012; Papaemmanuil et al. 2011; Quesada et al. 2012; 
Wang et al. 2011; Yoshida et al. 2011), and later identified with high frequency in a 
variety of solid tumors, such as uveal melanoma (Harbour et al. 2013), lung adeno-
carcinoma (Imielinski et  al. 2012), breast (Maguire et  al. 2015; Stephens et  al. 
2012), and pancreatic cancer (Biankin et  al. 2012). These findings were the first 
direct genetic link between dysfunction of splicing machinery and cancer, and 
defects in this machinery have been proposed as leukemogenic pathways 
(Maciejewski and Padgett 2012).

Interestingly, these mutations are heterozygous and mutually exclusive, indicat-
ing that cells may tolerate only partial deviation from normal splicing. In fact, cells 
carrying splicing factor mutations are sensitive to genetic or pharmacological per-
turbation of splicing (Fei et al. 2016; Obeng et al. 2016; Seiler et al. 2018; Shirai 
et al. 2017; Zhou et al. 2015).
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The most frequently reported splicing mutations in cancer occur in four genes, 
namely SF3B1, SRSF2, U2AF1, and ZRSR2. At least for SF3B1, U2AF1, and 
SRSF2, mutations affect highly restricted residues within the proteins, suggesting 
again (or alteration) of function phenotype, whereas ZRSR2 mutations are wide-
spread throughout the protein and follow a loss of function pattern. These mutations 
affect splicing by interfering with 3′-ss recognition mediated by SF3B1; U2AF1 on 
U2-type introns or by ZRSR2 on U12-type introns as well as with exon recognition 
mediated by SRSF2 (Dvinge et al. 2016).

Among the less frequently mutated splicing factors genes are SF1, U2AF2, 
SF3A1, PRPF40B (Yoshida et al. 2011), PRPF8, LUC7L2, HCF1, SAP130, SRSF6, 
SON, and U2AF26 (Makishima et al. 2012). Together with SF3B1, SRSF2, U2AF1, 
and ZRSR2, these genes encode multiple components or associated factors from the 
spliceosome complexes E/A (Fig.  2.6). Although less frequently mutated, these 

Fig. 2.6 Core spliceosome and splicing factor proteins affected by somatic mutation in cancer. A 
lightning symbol represents the affected components. E complex: U2AF35 binds to AG dinucleo-
tide on the 3′-ss of the intron, while U2AF65 binds to the Py-tract, represented by (Y)n. SF1 binds 
to the BPS, represented by an A. U2AF26 interacts with U2AF to perform essential functions in 
splicing. ZRSR2 acts on 3′-ss recognition of U12-type introns. Arginine/serine-rich splicing fac-
tors SRSF2 and SRSF6 bind to polypurine sequences ((R)n) in the exon. SRSF2 interacts with 
U2AF65. SON, a recently discovered spliceosomal gene, interacts with SRSF2 and mediates con-
stitutive splicing of weak splice sites. A/pre-B complex: SF1 is replaced by U2 snRNP along with 
its components SF3A1, SF3B1, and SF3B3. LUC7L2 is associated with the U1 snRNP on 5′-ss. 
PRPF8 plays an essential role in the interaction among U4/U6/U5 snRNPs, while HCFC1 contrib-
utes to the U1/U5 interaction. (Made in ©BioRender – biorender.com)
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genes participate in the same molecular pathway as the frequently mutated genes, 
indicating that the impairment of the pathway rather than the individual molecule is 
important for carcinogenesis.

In addition to mutations affecting trans-acting factors, the differential expression 
of splicing regulatory factors and altered post-translational modification of these 
proteins are strongly associated with splicing abnormalities and transformation. 
Mounting evidence suggests that these factors can act as both oncoproteins and 
tumor suppressors. Among the growing list are the SR proteins, hnRNPs, and other 
splicing factors such as SRSF1, SRSF3, SRSF6, SRSF10, hnRNP A1, hnRNP A2, 
hnRNP A2/B1, hnRNP H, hnRNP K, hnRNP A2 hnRNP M, PRPF6, PTB QKI, 
RBFOX2, RBM4, RBM5, RBM6, and RBM10 (for review, see Dvinge et al. 2016; 
Grosso et al. 2008).

The first mechanistic evidence that deregulated splicing factor expression 
resulted in the malignant transformation was demonstrated for the SR factor, 
SRSF1. SRSF1 is upregulated in several tumors, and this is sufficient to affect the 
alternative splicing of the BIN1 tumor suppressor and the MNK2 and S6K1 kinases. 
The resulting isoform of BIN1 has no tumor suppressor activity, whereas those of 
MNK2 and S6K1 have shown oncogenic properties (Karni et al. 2007).

There is an overlap between the splicing factors with altered expression in can-
cer, which are also mutated in hematological malignancies, such as U2AF1, SRSF2, 
SFRS6, and SF1 (Grosso et al. 2008), indicating that disturbing the function of these 
proteins at any level might contribute to disease.

A major challenge in research today is to associate the mutations and aberrant 
expression/activity of the splicing factors with specific downstream splicing 
changes.
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Chapter 3
Transcriptome Analysis Using RNA-seq 
and scRNA-seq

Waldeyr Mendes Cordeiro Silva, Fabián Andrés Hurtado, Kelly Simi, 
Pedro Henrique Aragão Barros, Dimitri Sokolowskei, Ildinete Silva-Pereira, 
Maria Emilia Walter, and Marcelo Brigido

3.1  High-Throughput Sequencing Techniques

Since Sanger’s technology in the 1970s, DNA sequencing has been continuously 
improved regarding both throughput and low cost. Next-generation sequencing 
(NGS), also called high-throughput or deep sequencing, constitutes a new 
breakthrough in increasing research power, a revolutionary advancement in 
molecular biology knowledge. An increasing number of biological questions may 
be addressed by NGS technologies, which provide a much larger comprehensive 
survey compared to the Sanger method, and under a system biology perspective. 
Transcriptomics has been particularly benefited by the use of these new technologies, 
also called RNA-seq, allowing a complete characterization of the whole 
transcriptome at both gene (Kvam et al. 2012) and exon (Anders et al. 2012) levels, 
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and with an additional ability to identify rare transcripts, new genes, novel splicing 
junctions, and gene fusions (Wang et  al. 2009; Katz et  al. 2010; Van Verk et  al. 
2013). More recently, single-cell sequencing had become a feasible task allowing a 
deeper and systemic view of individual cell’s transcriptomes.

This chapter first addresses a brief overview of sequencing techniques and the 
most common next-generation platforms and computational methods for RNA-seq 
data analysis. Then, we present two case studies to assess the capabilities of RNA- 
seq in addressing important biological issues.

3.1.1  Sanger’s Sequencing Technology

In 1977, Frederick Sanger and colleagues (1977) developed the DNA sequencing 
method, which in 2001 allowed the first human genome draft (Lander et al. 2001). 
This method, called dideoxy chain-termination or simply the Sanger method, is 
based on special nucleotide molecules (called ddTNP), lacking a 3′-OH at the 
deoxyribose, which blocks the DNA elongation. These special nucleotides are 
mixed in lower concentrations to the regular nucleotides and used as reagents for 
DNA polymerase reaction. Therefore, with the polymer synthesis stopped by the 
ddNTP’s inclusion, the last nucleotide can be determined. Each of the four ddNTPs 
was added separately in four different reactions. In the beginning, one of the regular 
nucleotides, most commonly dATP or dCTP, was radioactively labeled (e.g., 32P or 
35S) to achieve the radioactive signal. Usually, polyacrylamide gel electrophoresis 
was used to separate the DNA molecules, which diverged in length by a single 
nucleotide. Then the gel was dried and exposed to X-ray film.

An important modification of the method was substituting the radioactive label 
with a fluorescent dye (Smith et al. 1986). Each distinct wavelength produced by the 
fluorescent dyes linked to dideoxynucleotides corresponds to a different nucleotide, 
with the four sequencing reactions performed in the same tube. With the Sanger 
sequencing method’s automation, the performance reached up to 96 different 
reactions running in parallel capillary gel electrophoresis (Marsh et al. 1997), which 
is considered the first-generation technology. At the top of the technology, 384 
samples could be sequenced at once in a single multi-well plate. The Sanger 
method’s main sequencing devices are ABI (Applied Biosystems) and MegaBACE 
(GE Healthcare Life Sciences).

3.1.2  Next Generation Sequencing

Regulatory mechanisms and gene expression profiles have been widely investigated 
toward the elucidation of several essential cellular processes. Hybridization-based 
technology, e.g., microarray, has been beneficial for determining global gene 
expression. However, the high background levels due to cross-hybridization, a 
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limited range of quantification, and a restricted detection of known genes are 
bottlenecks for large-scale use of this technique (Shendure 2008). RNA-seq allows 
a genome-scale transcriptome analysis, including novel genes and splice variants, 
with a wide range of quantification and reduced sequencing costs (Wang et al. 2009; 
Soon et al. 2013). These advantages make RNA-seq a better and attractive solution 
for whole-genome transcriptome analysis of several organisms, even for those with 
no sequenced reference genomes.

Nowadays, the most commonly used NGS platforms for RNA-seq research are 
Illumina, PacBio, and Nanopore. These and other novel platforms are rapidly 
becoming more popular as they profile short and longer reads at a reasonable price 
per base. The substitution of older NGS technology is fast and pioneer methods, 
such as pyrosequencing, are nowadays wholly abandoned. A comparison of current 
NGS technologies is shown in Table 3.1.

The enormous amounts of data generated by NGS create new challenges to the 
downstream bioinformatics analysis, which has to handle large sequence files while 
searching for comprehensive and useful biological information, discussed later in 
this chapter.

3.1.3  Illumina Sequencing

Illumina sequencing uses a reversible dye-terminator technique that adds a single 
nucleotide to the DNA template in each cycle (Bentley et al. 2008). This system was 
initially developed in 2007 by Solexa and was subsequently acquired by Illumina, 
Inc. Illumina is widely used in several transcriptome studies since it reaches the 
deepest depth among NGS technologies, despite its small sequence size 
(150–300 bp).

Illumina sequencing is based on sequencing-by-synthesis. Sequencing is per-
formed in a solid slide covered by adaptors complementary to those added to the 
fragmented DNA sequences (Metzker 2010). This procedure, called bridge PCR, 
consists of amplifying bent DNA sequences attached by both ends to the solid 
surface (Fig. 3.1a). By the end of the clonal amplification, clusters of identical DNA 
sequences (Polonies) will be formed to amplify the fluorescence signals. In each 
round, one single nucleotide is added to the single-strand template sequences 
followed by fluorescence detection by a high-sensitivity CCD camera (Fig. 3.1b). 

Table 3.1 Comparison of next-generation sequencing technologies

ABI 3730xl (Sanger) Illumina PacBio Nanopore

Read length (bp) 900 75–300 5000–60000 500–2300000
Cost (US$/Mb) 500 0.01–0.063 0.013–0.933 0.021–2
Output data/run 2,88 Mb ~120 Gb 2–160 Gb 10–300 Gb
Time run (hours) 3 12–44 Up to 4 h 0.017–72

Data from Amarasinghe et al. (2020); Logsdon et al. (2020)
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As in Sanger’s technology, different fluorophore molecules are attached to each 
nucleotide; however, only one nucleotide is incorporated in each cycle. The 
fluorescence emission releases the 3′OH of the recently added nucleotide, allowing 
it to receive new monomers in the subsequent sequencing cycle.

Single-end sequencing, i.e., reads generated from a single-end adaptor, is being 
replaced by the paired-end sequencing since the accuracy of downstream analysis is 
greater with a fair price. Paired-end reads are produced from the adaptor priming 
sites in both template sequence ends, the second adaptor primer being used in a 
subsequent sequencing run (Fig. 3.1c).

3.1.4  Pacific BioSciences Sequencing

Single-molecule real-time (SMRT) sequencing was devised by Pacific BioSciences 
(PacBio) in 2009, and it is also called PacBio sequencing (Eid et al. 2009). This 
platform uses a single DNA polymerase attached to the bottom of a picolitre well – 
zero-mode waveguides (ZMW) – which replicates a single-molecule template per 
well to produce a signal for light detection in the smallest volume. In this method, 
the template is capped by hairpin adapters at both ends of the double-stranded DNA 

Fig. 3.1 The Illumina sequencing technology. (a) Two basic steps encompass an initial priming 
and extending of the single-stranded, single-molecule template, and bridge amplification of the 
immobilized template in a solid device with immediately adjacent primers to form clusters; (b) In 
the images, the sequencing data is highlighted from two sequence clusters; (c) Paired-end 
sequencing by which reads are generated from both template strand. “A” block indicates the 
device-ligation adaptors and “SP,” sequencing primers. (Source: Metzker (2010) and http://www.
illumina.com/)
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molecule, forming a single-stranded circular DNA (called a SMRTbell). 
Consequently, the polymerase repeatedly passes over the circular template and 
sequencing it multiple times, resulting in long read lengths and, thus, providing 
higher accuracy (Rhoads and Au 2015). The PacBio platform enables simultaneous 
analysis of millions of wells per chip in a single run, providing long read lengths to 
up to 60 kb (with average read lengths of 20 kb) (Nakano et al. 2017).

Overall, this technology is considered highly accurate and robust, even as its first 
sequencers have some drawbacks that narrow down its application. For instance, the 
limited high-throughput, higher cost, and error rate compared with those of second- 
next generation sequencing (SGS) technologies (Kanzi et  al. 2020; Wang et  al. 
2020). However, in 2019, PacBio launched the Sequel II System, which asserts 
improvements in the sequencing to deal with these limitations, generating highly 
accurate (99.9%) individual long reads up to 25 kb (HiFi reads) and reduces the 
costs and time of the project, in comparison with its prior versions (Wenger et al. 
2019; Logsdon et al. 2020). These HiFi reads are generated by using the circular 
consensus sequencing (CCS) due to continuous circular sequencing (Wenger et al. 
2019; Pereira et al. 2020).

For transcriptomic analysis, the SMRT isoform sequencing (Iso-Seq) from 
PacBio increased the read length compared to other SGS technologies. This platform 
achieves full-length transcripts sequencing, improving the analysis in different 
applications, including gene annotation, isoform identification, fusion transcripts 
identification, and long non-coding RNA discovery (Weirather et al. 2015; Nattestad 
et al. 2018; Wang et al. 2019; Zhang et al. 2020a; Hu et al. 2020).

3.1.5  Nanopore MinION Sequencing

The long-read-length sequencer MinION, the first nanopore sequencer device, was 
announced by Oxford Nanopore Technologies (ONT) in 2012 as a portable, 
compact, real-time sequencing controlled by a laptop computer device (Deamer 
et al. 2016). Since then, new nanopore platforms have quickly emerged, such as 
PromethION, which offers a greater scale of sequencing, and SmidgION, the 
smallest sequencing platform designed for use with smartphones or other mobile 
devices.

After library preparation, each strand is attached to adapters. The adaptors bind 
to a protein motor that guides the sequence to the protein pore, which processes it. 
Beginning at the 5′-end, the DNA or RNA polymer passes through the pore 
controlled by the motor protein, which unzips dsDNA and translocates a single 
strand sequence (Fig. 3.2). The translocated strand modulates the ion current flow 
through the pore membrane (Ip et al. 2015). The variation of the electrochemical 
current promoted by each different nucleotide is measured by a sensor and enables 
identification by different signal patterns. The resultant signals are stored in a 
FAST5 format file and can be finally used for base-calling, a process in which the 
nucleotides are predicted from the Raw signals and transferred to a FASTQ file. 
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Base-calling can be performed using only information from one strand (1D) or two 
strands (2D) for consensus, with information from both strands resulting in better 
base prediction (Lu et al. 2016). Currently use of neural networks in base-calling 
reached an accuracy interval between 85% and 95% with the detection of signal 
patterns (Zhang et al. 2020b).

Although sequencing full-length reads allows improvement of isoforms identifi-
cation and discovery in transcriptome sequencing, it deals with high error rates 
(Kovaka et  al. 2019). To reduce error rates before analysis, nanopore correcting 
errors can be made by a hybrid error correction strategy. This strategy uses high 
accuracy short reads to correct long-reads, self-correction methods that rely only on 
long-reads, or reference-based methods that use a reference genome for error 
correction (Zhao et al. 2019).

3.2  Bioinformatics Pipelines for Transcriptome Projects

Illumina sequencing is the most used technique in transcriptome studies, since the 
number of sequenced reads (named raw data) allows to find out virtually the 
complete set of expressed genes (transcripts). However, longer reads allow a more 
precise definition of the transcripts. In both cases, the metaphor for reconstructing 

Fig. 3.2 Schematic view of the nanopore sequencer. MinION device process double DNA helix. 
First, the protein motor unzips DNA passing a single strand through the pore. The movement of the 
single strand promotes an ionic current flow that is measured and converted to nucleotides data by 
the base calling analysis

W. M. C. Silva et al.
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the transcripts is like mounting a puzzle, where the pieces (the reads) have to be 
assembled (relative to a reference genome or not) to obtain the picture (transcripts 
in a transcriptome). After this, different analyses can be performed on these 
reconstructed transcripts, e.g., quantitative and differential expression. In a 
transcriptomic project, the tasks of reconstructing transcripts and performing 
biological analyses are performed by bioinformatics pipelines, discussed next.

3.2.1  Pipelines

A bioinformatics pipeline or workflow is a computational system composed of a 
sequence of programs sequentially executed. The output data from one software is 
the input data for the following software (Wercelens et  al. 2019). In general, 
transcriptome bioinformatics pipelines have the following steps, which can be 
combined according to the raw input data and the objectives of each project:

• Quality control of raw data: This initial step allows visualization, analysis, and 
filtering (cleaning) the data. Usually, this process takes two sub-steps as follows: 
clipping and trimming. In the clipping step, adapters (primers) attached to the 
ends of the sequenced reads (or even the whole read) are removed. In the 
trimming step, low-quality sequences in the reads are filtered. The filtering 
guarantees a reliable dataset of quality reads to be used in the following phases 
of the pipeline.

• Assembly: in the absence of a reference genome or transcriptome, it is necessary 
to assembly one. For that, overlapping reads (the end of a read is similar to the 
beginning of another read) are joined in groups of reads (called contig), allowing 
to construct of one larger sequence (called consensus), which is a predicted 
(fragment of) transcript. The complete set of transcripts is the predicted 
transcriptome (Fig. 3.3).

• Mapping: The filtered reads can be aligned to the transcriptome’s reference 
genome to find the actively expressed exons or transcripts. The amount of reads 
mapping to a single exon/transcript is proportional to its expression.

• Analysis: The whole set of (fragments of) transcripts obtained from the mapping 
or the assembling step allows to obtain relevant biological information, e.g.

 (a) quantitative analysis: among others, coverage analysis shows the abundance 
of genes expressed in one RNA-seq sample, more precisely, the number of 
reads mapped in a certain region of the chromosome.

 (b) differential expression: allows to analyze the differences and variability of 
gene expression between samples along distinct genomic regions.

 (c) annotation: assigns a biological function to each transcript.

Designing a particular pipeline mainly depends on the transcriptome project’s 
objectives and other information, such as the sequencing platform employed (since 
the sequencing techniques may cause specific errors in the raw data). It also depends 
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on the availability of a reference genome or transcriptome in the mapping step and 
the analysis step’s accuracy and biases. Two generic bioinformatics pipelines for 
transcriptomes are discussed next.

Pipeline 1 The organisms of interest have already been sequenced, preferably with 
high coverage, well-annotated genes, and other relevant biological characteristics. 
The reads are usually short (about 150–300  bp), typically produced by Illumina 
sequencing platforms. This pipeline would be composed of a minimum of three 
steps (Fig. 3.3a): quality control, mapping, and quantitative analysis.

Pipeline 2 The organism of interest has not been sequenced before. The reads are 
usually long (up to 40 kb), heavily produced by the PacBio sequencing platform. 
This pipeline would be composed of a minimum of three steps (Fig. 3.3b): quality 
control, assembly, and annotation. The assembly phase constructs one consensus 
sequence for each group of reads presenting similar extremities. This approach 
heavily depends on sequencing quality, and the multiplatform approach improves 
the final assembled transcriptome. Finally, the annotation phase assigns biological 
functions to the consensus sequences.

A bioinformatics pipeline is usually implemented using command lines (e.g., 
GNU/Linux terminal) mainly because it is a fast, relatively simple, and reliable way 
to control and manipulate large amounts of datasets. Programming languages such 
as Shell Script, Python, R, and Perl might also help implement a pipeline and resolve 
minor tasks by scripting. The pipeline’s files/data can be organized in directories or 
database management systems, relational databases (e.g., MySQL, Oracle), or 
NoSQL databases (e.g., MongoDB, Neo4J) to store, retrieve, and manage the data. 

Fig. 3.3 Examples of pipelines for transcriptome analysis: (a) Pipelines for short reads, with a 
well-characterized reference genome, and two types of analyses  – coverage statistics and 
differential expression. (b) Pipeline for longer reads, with no reference genome, and annotation 
(biological function, gene categories, and ontologies)
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Most software used in pipelines are free, open-source, publicly available, and some 
of the most common ones are described next.

Frameworks to manage workflows are also available, such as Snakemake (Köster 
and Rahmann 2012) and Common Workflow Language (CWL) (https://www.
commonwl.org/v1.0). They provide a reliable way to standardize the syntax and 
semantics for program evoking and create robust and reproducible workflows.

3.2.2  Bioinformatics Software

3.2.2.1  Software for Quality Control

The overall quality of the output sequencing data must be assessed to eliminate bad 
quality, poorly sequenced, or ambiguous raw data that could negatively impact 
further analysis. Thus, filtering (or cleaning) strategies capable of clipping and 
trimming are essential to guarantee the reliability of transcriptomics data and ensure 
obtaining relevant and trustworthy biological information. The sequenced reads are 
stored using FASTQ format, gathering the nucleotides sequences of each read and 
their corresponding quality scores.

Some tools are used to assess and visualize the overall quality of data, such as 
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc), a popular 
java-based quality control check program. Other tools to perform filtering steps like 
FASTX-Toolkit (http://hannonlabcshledu/fastx_toolkit) provide options for 
performing both clipping and trimming. Other commonly used tools are Cutadapt 
(Martin 2011) for clipping, PRINSEQ (Schmieder and Edwards 2011), and 
Trimmomatic (Bolger et al. 2014) for trimming. Fastp (Chen et al. 2018) is an ultra- 
fast all-in-one quality control, and data-filtering tool that can be an alternative to 
multiple and insufficiently fast software for quality control. They all present several 
options, such as minimum size for a read, minimum quality score, and polyadenylation 
removal.

3.2.2.2  Software for Mapping

The mapping phase’s main objective is to find where each filtered short read corre-
sponds in a reference genome/transcriptome (Fig. 3.4).

There are many programs capable of performing the mapping process. In gen-
eral, these software are computationally intensive (to process and store data), and 
mapping techniques use indices to accelerate the search procedure and reduce the 
memory cost associated with finding the location of reads to the reference genome.

Bowtie (Langmead et al. 2009) is a fast short aligner that tolerates a small num-
ber of mismatches. Bowtie first concatenates all the reference genome in one single 
string and performs the Burrows-Wheeler transformation (BWT) to generate one 
index to this reference genome. Next, character by character of each read is mapped 
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until the entire sequence is aligned. If a read cannot find a perfect alignment location, 
the program backtracks one character, substitutes this character, and the process is 
repeated until the alignment is completed. The maximum number of character 
substitutions is a parameter in Bowtie. The rapid improvement of throughput and 
increase of read length of sequencing technologies required the development of 
Bowtie2 (Langmead and Salzberg 2012), a gapped supported alignment tool that 
performs a faster and more sensitive mapping for reads longer than 50 bp.

TopHat (Trapnell et al. 2009) can identify exons splicing sites by mapping RNA- 
seq reads against a reference genome. First, the Bowtie mapping program is 
employed to map the short unspliced reads to the reference genome. The reads that 
are not initially mapped are not filtered out but are just set apart. After the main 
alignment, each unmapped reads are split into shorter fragments and then aligned 
individually and independently to identify splice junctions between exons. TopHat2 
(Kim et  al. 2013) is an updated version of TopHat with an overall accuracy 
improvement and better alignment procedure.

The Spliced Transcripts Alignment to a Reference (STAR) (Dobin et al. 2013) 
represents a significant mapping alignment algorithm for RNA-seq data. STAR 
aligns non-contiguous (exons) sequences straight to a reference genome by two 
main steps. First, in the seed searching phase, a maximal mappable prefix (MMP) is 
employed to correctly map the reads against the reference genome even if the read 
contains a splice junction. Later, the algorithm attaches the seeds previously aligned 
and constructs alignments of all read sequences. Finally, using a defined local 
alignment score system, a seed combination is called the best alignment for a read 
if it has the highest score.

Segemehl (Hoffmann et al. 2009, 2014) maps short reads to reference genomes, 
detecting mismatches, insertions, and deletions. Moreover, Segemehl can deal with 
different read lengths and can map primer or polyadenylation contaminated reads 
correctly. Segemehl matching method is based on enhanced suffix arrays, supporting 
the SAM format and queries with gzipped reads to save disk and memory space and 
allowing both bisulfite sequencing and split read mappings.

Minimap2 (Li 2018) is a fast RNA-seq aligner that maps long-reads against a 
reference database. Minimap deals with long noisy reads at high error rates generated 
from both ONT and PacBio sequencing. In aligning spliced sequences, it recovers 
insertions and deletions and predicts correct splice junctions for correct alignment.

Fig. 3.4 Short reads mapped to a reference genome. Reads are aligned to a reference genome and 
the accumulation of data brings in evidence expressed exons and splice junctions
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There are many other computational methods to map short reads to a reference 
genome, as shown in Table 3.2.

3.2.2.3  Software for Assembling

Mapping approaches for transcriptome reconstruction can be particularly tricky 
since correctly assigning reads to a reference genome are usually computational 
demanding, prone to errors by splice junctions, sequencing inaccuracy, absence, or 
unfinished reference sequences. Contrarily, assembly (or de novo assembly) 
approaches do not require any reference genome, the desired feature, especially 
when genomic sequences are not available or do not attend minimum quality 
demands.

The assembly tools algorithms usually aim to group reads with similar extremi-
ties, i.e., the overlapping of one read’s end to another indicates that both probably 
belong to the same transcript (Fig. 3.5). These similar extremities enable the recon-
struction of larger regions of the transcripts. As said before, each of these groups is 
called a contig. The sequence resulting from the overlapping reads in one contig, 
called consensus, is a predicted (fragment of) transcript.

Short reads sequencing usually have greater accuracy than long reads; however, 
short reads often align in multiple regions, causing problems to find correct isoforms. 
Thus, long reads sequencing can improve the discovery and identification of 
isoforms, but it is less accurate due to base-calling errors. When possible, the 
mixture of long reads and Illumina short reads are the best strategy for assembling 
complete and accurate transcriptomes (Kovaka et al. 2019).

Trinity (Grabherr et  al. 2011) software package represents a major de novo 
assembly method composed of three modular components: Inchworm, Chrysalis, 
and Butterfly. Initially, the inchworm algorithm decomposes and selects from all 
reads the most common k-mer (k = 25) as the seed promotes contig assembly based 
on greedy extension (k−1)-mer overlaps. Chrysalis clusters and connects Inchworm 
contigs in components that could be originated from alternative splicing or related 

Table 3.2 Mapping software and their websites

Mapping softwares Website/repository

Bowtie1/Bowtie2 http://bowtie- bio.sourceforge.net/bowtie2/
index.shtml

Minimap2 https://github.com/lh3/minimap2
Segemehl https://www.bioinf.uni- leipzig.de/Software/

segemehl/
STAR https://github.com/alexdobin/STAR
TopHat2 http://ccb.jhu.edu/software/tophat/index.shtml
NextGenMap http://cibiv.github.io/NextGenMap/
Kallisto https://pachterlab.github.io/kallisto/
HPG Aligner https://github.com/opencb/hpg- aligner
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genes. If contigs overlap k−1 bases between themselves and reads span the splicing 
junction among different contigs, then highly structured de Bruijn graphs are built 
for each component. Finally, the Butterfly component integrates de Bruijn graphs 
produced in the Chrysalis stage to their corresponding RNA-seq read, allowing the 
reconstruction of the transcriptome sequences similar to the original transcripts.

Trans-ABySS (Transcriptome Assembly By Short Sequences) (Robertson et al. 
2010) is a de novo assembly tool designed to reconstruct paired-end short reads 
from transcriptome data. Trans-AbySS derived from ABySS (Simpson et al. 2009), 
a short-read genomic data assembler. Trans-AbySS employees de Bruijn graph 
approach promoting data assembly with standard k-mers (k = 32) promoting a good 
balance between assembling frequent and rare transcripts. Trans-ABySS single- 
processor version is useful for assembling genomes of up to 100 Mbases. In contrast, 
the parallel version (implemented using MPI) can be assembled larger genomes, 
benefiting from multi-threaded processing.

MaSuRca (Zimin et al. 2013) process hybrid assembly, using “super-reads” from 
short-reads to de novo assemble reads and construct synthetic long reads with a low 
error rate and combining with long reads from Nanopore/Pacbio. Its assembly 
permits work with long reads and short reads at the same time, overcoming high 
error rates from long-reads sequencing (Table 3.3).

3.2.2.4  Software for Analysis

In transcriptome projects, quantitative analysis, differential expression, and tran-
script annotation are extensively used. Many suitable tools for these analyses are 
available in R language, which provides a wide variety of statistical and graphical 

Fig. 3.5 Reads that contain overlapping extremities indicate that they are parts of the same tran-
script. Multiple reads overlapping each other creates a longer fragment called contig that repre-
sents a specific locus of consensus sequence
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resources. R is highly extensible, allowing us to output well-designed publication- 
quality plots, including effective data handling and storage facility and a collection 
of intermediate tools for data analysis. Bioconductor (https://www.bioconductor.
org) is a (mostly) R packages repository that provides open-source tools to analyze 
biological high-throughput data. Similarly, there are many Python-based resources 
as Biopython (https://biopython.org), a set of freely available tools for biological 
computation written in Python.

Quantitative Analysis
The transcript coverage is the number of reads “covering” (or the number of mapped 
reads in) a transcript. The greater the number, the more abundant is the expressed 
gene in an RNA-seq sample (Fig. 3.6). The RNASeqMap library (Leśniewska and 
Okoniewski 2011), for instance, provides classes and functions to analyze the RNA- 
sequencing data using the coverage profiles in multiple samples at a time.

Differential Expression
The differential expression refers to the study of the variability of genetic expres-
sion between samples. One important objective of RNA-seq projects is to identify 
the differentially expressed genes in two or more conditions (Rapaport et al. 2013). 
These genes are selected based on parameters, usually based on p-values generated 
by statistical modeling. The expression level is measured by the number of reads 
mapping to the transcript, such as transcripts per million (TPM), which is expected 
to correlate directly with its abundance level. This measure is different from gene 
probe-based methods, e.g., microarrays. In RNA-seq, the expression of a transcript 
is limited by the sequencing depth. It depends on the expression levels of other 
transcripts, in contrast to array-based methods, in which probe intensities are 
independent of each other. That one and other technical differences have motivated 
many statistical algorithms, with different approaches for normalization and 

Table 3.3 Assembly software and their websites

Assembly Website/repository

BWA https://github.com/lh3/bwa
Cufflinks http://cole- trapnell- lab.github.io/cufflinks/
MaSuRca https://github.com/alekseyzimin/masurca
SPAdes http://cab.spbu.ru/software/spades/
StringTie2 https://github.com/skovaka/stringtie2
Trans-ABySS https://github.com/bcgsc/transabyss
Trinity https://github.com/trinityrnaseq/trinityrnaseq/

wiki
SOAPdenovo https://github.com/aquaskyline/

SOAPdenovo- Trans
Oases https://github.com/dzerbino/oases
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differential expression detection. For example, Poisson or negative binomial 
distributions to model the gene count data and various normalization procedures are 
common approaches.

Cufflinks (Trapnell et al. 2010) may be used to measure global de novo transcript 
isoform expression. It assembles transcripts, estimates their abundances, and 
determines differential expression (Trapnell et  al. 2013) in RNA-seq samples. 
Moreover, Cufflinks accepts reads aligned by other mappers and assembles the 
alignments to a parsimonious set of transcripts. It then estimates the relative 
abundances of these transcripts based on how many reads support each one, 
considering biases in library preparation protocols.

Some articles discuss and compare statistical methods to compute differential 
expression. In a review, Kvam et  al. (2012) compared four statistical methods – 
edgeR, DESeq, baySeq, and a method with a two-stage Poisson model (TSPM). 
Rapaport et  al. (2013) describe an extensive evaluation of common methods  – 
Cuffdiff (Trapnell et al. 2013), edgeR (Robinson et al. 2010), DESeq (Anders and 
Huber 2010), PoissonSeq (Li et al. 2012), baySeq (Hardcastle and Kelly 2010), and 
limma (Smyth 2004) adapted for RNA-seq use, using the Sequencing Quality 
Control (SEQC) benchmark dataset and ENCODE data.

Splice Junctions
Splice junctions are nucleotide sequences at the exon–intron boundary in the pre- 
messenger RNA of eukaryotes removed during the RNA splicing. This process can 
generate many processed transcripts from a single gene. Computationally, the 
problem is to recognize, given a sequence of DNA, the boundaries between exons 
(the parts of the DNA sequence retained after splicing) and introns (the parts of the 
DNA sequence that are spliced out). This problem consists of two subtasks: 
recognizing exon/intron boundaries (called EI sites) and recognizing intron/exon 
boundaries (IE sites). IE borders are called “acceptor sites,” while EI borders are 
called “donor sites.” The recognition and quantification of splice variants are among 
the advances of RNA-seq over microarray to measure differential gene expression. 

Fig. 3.6 Read coverage of transcripts relative to a reference genome. Each red bar plotted indi-
cates a locus alignment coverage. The arcs represent splicing junctions between exons. Finally, the 
arc numbers are the observed numbers of reads across the junction. (Source: https://training.gal-
axyproject.org/training- material/topics/transcriptomics/tutorials/ref- based/tutorial.html)
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The splice junctions help to delineate and quantify the transcript model, as observed 
in Fig. 3.6.

Tophat (Trapnell et al. 2009) identifies splice junctions, producing the junctions.
bed file, where the field score is used to indicate coverage depth. The identified 
splice junctions can be displayed in browsers (e.g., UCSC genome browser (Kuhn 
et al. 2013)) using.bed files encoding splice junctions. Junction files should be in the 
standard.bed format. Pasta (Patterned Alignments for Splicing and Transcriptome 
Analysis) (Tang and Riva 2013) is a splice junction detection algorithm designed for 
RNA-seq data, based on a highly accurate alignment strategy on a combination of 
heuristic and statistical methods to identify exon–intron junctions with high 
accuracy.

Annotation
The annotation step aims to assign a biological function for each transcript, identi-
fying genes and finding more information, e.g., biological categories and ontolo-
gies. The annotation process is characteristic of novel transcriptomes since reference 
genomes and transcriptomes are typically associated with curated gene annotation.

The annotation methods can be organized into two classes:

• Pairwise comparison of every transcript against a file with known transcripts and 
their corresponding annotation. This can be done by comparing the nucleotides 
or the translated nucleotides.

• Ab initio gene prediction, where the presence of structural features and motifs of 
known genes are used to infer function.

The pairwise sequence comparison (or pairwise alignment), where a query 
sequence (transcript of the organism of interest) is compared with annotated 
sequences datasets, relies on an algorithm that computes an alignment among two 
transcripts. The hypothesis is based on Darwin’s evolution theory, which claims that 
living organisms evolved from ancestor organisms. Therefore, if two transcripts 
have similar sequences, they may be homologs and probably share the same 
biological functions. This means that biological function may be inferred from 
similar sequences. Important pairwise algorithms, which produce alignments 
between pairs of sequences, are Smith-Waterman (Smith and Waterman 1981) and 
BLAST (Altschul et al. 1990).

Similar to the assembly step, the main difficulty in the annotation is due to the 
transcript length. The resulting genes may be fragmented, causing loss of 
information. Since alignment programs are error-tolerant, it is reasonable to expect 
that the annotation for transcripts (predicted from reads generated by high-through-
put sequencers) is correct if functions of genes of other organisms have been found 
correctly.

In contrast, finding genes ab initio is not so error robust since sequencing errors 
can lead to incorrect gene prediction. In particular, sequencing errors introducing a 
stop codon can result in an incorrectly predicted gene.

3 Transcriptome Analysis Using RNA-seq and scRNA-seq
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3.3  Single-Cell Transcriptome Sequencing (scRNA-seq)

Although cells in an organism share almost identical genotypes, gene expression is 
heterogeneous and reflects the activity of a subset of genes. ScRNA-seq technologies 
are capable of generating data sets that describe the transcriptome of single cells. 
Single-cell transcriptome sequencing (scRNA-seq) expands the biological panorama 
granted by RNA-seq. It allows to estimate the expression levels of the whole 
transcriptome or targeted gene expression from a single cell and addresses new 
biological questions such as the heterogeneity of cell responses and their gene 
regulatory networks. It emerged with an mRNA-seq assay where a single mouse 
blastomere was sequenced, detecting the expression of 75% more genes than 
microarray techniques (Tang et al. 2009). This pioneer scRNA-seq method profiled 
RNA transcriptomes from single cells using oligo-dT primers followed by ligation 
adapter PCR (Tang et al. 2009). This method’s limitation is the reverse transcriptase’s 
inefficiency on the first-strand cDNA synthesis, causing a 3′ bias.

Eventually, new protocols and lower sequencing costs made scRNA-seq more 
accessible as technologies advance, resulting in continuously growing datasets, 
ranging from ~102 to ~106 cells. Some of the most distinguished methods for 
scRNA-seq are Smart-seq (Ramsköld et al. 2012), Smart-seq2 (Picelli et al. 2014), 
Drop-seq (Macosko et al. 2015), inDrop (Klein et al. 2015), CEL-seq2 (Hashimshony 
et al. 2016), 10× Chromium (Zheng et al. 2017), and Smart-seq3 (Hagemann-Jensen 
et al. 2020).

In general, scRNA-seq methods tag transcripts to make it possible to identify 
their cell of origin and generate libraries for sequencing. scRNA-seq sequencing 
data can both come from next-generation sequencing (NGS) and single-molecule 
sequencing (SMS) (Gao 2018). Smart-seq, Smart-seq2, Smart-seq3, and CEL-seq2 
can be considered low-throughput plate-based methods, where the cells are sorted 
into wells of a multi-well plate. Alternatively, bead-based high-throughput methods 
distribute the cell suspension into tiny droplets containing reagents and barcoded 
beads (Drop-seq, 10× Chromium, and inDrops) or into well microplates (Seq-Well 
and sci-RNA-seq) to produce single droplets or well microplates with one cell and 
one bead marking the cDNA generated from that cell (Ding et al. 2019).

The Smart-Seq (Ramsköld et al. 2012) addressed this problem using a Moloney 
Murine Leukemia Virus Reverse Transcriptase (M-MLV RT) to synthesize cDNA 
with long messenger RNA templates. Unique molecular identifiers (UMI) were 
incorporated into each RNA molecule as unique barcodes before the whole 
transcriptome amplification (WTA) amplification (Islam et al. 2014). Smart-seq2 
(Picelli et  al. 2014) is an approach that combines sensitivity (it captures a 
considerable fraction of RNAs present in cells) with full-length coverage of 
transcripts and can detect genes per cell and across cells enabling quantifying 
isoform-level expression from single cells, but without the incorporation of unique 
molecular identifiers (UMIs). Smart-seq3 (Hagemann-Jensen et al. 2020) improves 
the sensitivity of Smart-seq2, adding optimized reverse transcriptase and buffer 
conditions together with a partial Tn5 motif and a tag sequence in the template- 
switching oligonucleotide to directly assign individual RNA molecules to isoforms 
and establish their allelic origin in single cells.

W. M. C. Silva et al.
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Drop-Seq dissociates a tissue into individual cells and encapsulates them into 
droplets with microparticles that deliver barcoded primers. After associating 
barcodes to each cell’s RNAs, they are reverse-transcribed into cDNAs to generate 
beads called “Single-cell Transcriptomes Attached to Microparticles” (STAMPs). 
Then, the STAMPs are amplified in pools for high-throughput mRNA-seq (Macosko 
et al. 2015) (Fig. 3.7). The 10× Chromium system works, generating a large number 
of “Gel Bead-in-emulsions partitions” (GEMs) to index each cell’s transcriptome 
separately. The barcoded gel beads (read, 10xbarcode, UMI, oligo-dT) are mixed 
with cells, enzymes, and partitioning oil to create single-cell GEMs. Then, the 
single-cell GEMs undergo reverse transcriptase (RT) to generate a 10× barcoded 
cDNA library where cDNA from individual cells share a common 10× barcode that 
can be used for single-cell whole transcriptome sequencing or target sequencing 
workflows (10× Genomics Inc. 2020). In the inDrops method, the cells are also 
encapsulated into droplets with lysis buffer, hydrogel microspheres carrying 
barcoded primers, and an RT mix. After the release of primers, cDNA in each 
droplet is barcoded during reverse transcription. After the droplets are broken, all 
cellular material can be amplified for sequencing (Klein et al. 2015).

The Smart-seq methods can detect many genes in a cell, including low abun-
dance transcripts and alternatively spliced transcripts. CEL-seq2 (Hashimshony 
et al. 2016), Drop-seq, 10× Chromium, and inDrops can quantify mRNA levels with 
less amplification noise using UMIs, enabling less and profiling isoform-level RNA 
counting. As a limitation, inDrops droplets may contain two cells or two different 
types of barcodes. Table 3.4 shows a comparison of some important aspects of these 
scRNA-seq methods.

3.3.1  scRNA-seq Computational Analysis

Despite the different methods available, the scRNA-seq data is essentially the result 
of high-throughput sequencing cDNA reverse transcribed from mRNA isolated 
from a pool of cells. The primordial difference is that the sequenced data is somehow 
tagged to assign its origin to individual cells. Some standard steps remain the same 
as RNA-seq, such as the reads quality filtering and reads mapping to a reference 
genome. Reads quality filtering can be applied to filter the read quality using a 
quality metric for sequencing like the percentage of base calls (Q score). The reads 
are then mapped to a reference genome and quantified to generate an expression 
profile matrix. Some scRNA-seq specialized tools can both align and quantify the 
reads. Additionally, a second filtering step can be performed after quantifying reads 
to discard cells expressing a low number of genes or a high number of mitochondrial 
genes (Park and Lee 2020). The next step of the pipeline is data normalization using 
a metric for expression normalization as TPM (Transcripts Per Kilobase Million) or 
RPKM (Reads Per Kilobase per Million) (Gao 2018). At this point, the scRNA-seq 
computational analysis reaches its two fundamental problems: cluster analysis and 
sample/feature reduction.
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Normalization allows consistent comparison of gene expression measurements 
in individual cells, including technical variation due to the numbers of sequenced 
readings or transcripts identified per cell. A normalized gene expression matrix is a 
matrix with n samples (cells) by m features (genes, transcripts, or exons), depending 
on the read’s size. For example, for transcripts as features, PacBio full-length 
transcriptome could be the right choice, or for Illumina short-length reads, the 
features could be genes. As the number of annotated genes of the target organism, 
the matrix could be large and sparse, which justifies the sample and feature reduction. 
The feature selection can be understood as removing genes unhelpful to distinguish 
biological variation across samples.

Clustering cells allow us to identify cells with correlated phenotype by grouping 
them based on their gene expression profiles’ similarity. This is achieved using 
dimension reduction algorithms to embed the expression matrix into a low- 
dimensional space that summarizes the data structure in as few dimensions as 
possible (Gao 2018; Luecken and Theis 2019). These low-dimensional spaces can 
come from dimension reduction methods as Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), 
Multidimensional Scaling (MDS), and t-distributed Stochastic Neighbor Embedding 
(t-SNE).

Fig. 3.7 Individual cell’s transcriptome can be analyzed using scRNA-seq. Tissue disrupted single 
cells are mixed with barcode bead primers and reagents in oil droplets in a microfluidic device. The 
formed droplet contains a single cell and a barcode. After lysis and primer hybridization, RNA is 
reverse transcribed and sequenced as in a conventional RNA-seq experiment. The UMI and 
barcode sequence will be incorporated in the final sequenced reads and will guide the scRNA-seq 
processing

W. M. C. Silva et al.
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3.3.2  scRNA-seq Analysis Tools

Seurat (Hao et al. 2020) is an R package that integrates quality control, analysis, and 
exploration of single-cell RNA-seq data. It is based on a Seurat object, which serves 
as a container for both data (like the count matrix) and analysis (like PCA, or 
clustering results). Also, Seurat can make simultaneous measurements of multiple 
data types from the same cell, known as multimodal analysis, and analyze spatially 
resolved RNA-seq data.

Cell Ranger is a set of tools to process Chromium single-cell RNA-seq 
data. The package contains cellranger mkfastq which demultiplexes raw 
base call (BCL) Illumina files into fastq files. These files are then taken as 
input by cellranger count to perform alignment, filtering, barcode, and 
UMI counting. In the next step, cellranger aggr aggregates and normalizes 
the outputs from multiple runs of cellranger count recomputing the fea-
ture-barcode matrices and analyzing the combined data. The cellranger 
reanalyze reruns the dimensionality reduction, clustering, and gene expres-
sion algorithms from the feature-barcode matrices produced by cellranger 
count or cellranger aggr. Cell Ranger also uses the aligner STAR (Dobin 
et al. 2013) and the output is delivered in formats like bam, mex, csv, hdf5, 
and html.

Meta Cell (Baran et  al. 2019) is a tool for deriving metacells and analyzing 
scRNA-seq data. Metacells are a theoretical group of scRNA-seq cell profiles 
statistically equivalent to samples derived from the same RNA pool, which is 
obtained by computing partitions of scRNA-seq datasets into disjoint and 
homogenous groups of cells.

SEQC (Azizi et al. 2018) is a Python package for scRNA-seq analysis in a cloud 
and subsequent analyzes on a local machine. It has Spliced Transcripts Alignment 
to a Reference – STAR (Dobin et al. 2013), Samtools (Li et al. 2009), and HDF5 
data model as dependencies and has been tested for 10× Genomics v2 and inDrop 
v2 data.

zUMIs (Parekh et al. 2018) is a pipeline to process RNA-seq data with or 
without UMIs. zUMIs take cDNA fastq files and other reads containing UMI 
and Cell Barcode information as input. It was written using R, Perl shell, and 
Python programming languages and has as dependencies STAR (Dobin 
et al. 2013).

robustSingleCell is an R package that provides clustering and comparison 
of population compositions across tissues and experimental models through a 
similarity analysis characterizing transcriptomic similarities in meta-clusters 
by identifying their defining overexpressed genes (Magen et  al. 2019) 
(Table 3.5).
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3.4  Case Study 1

RNA-seq as an Efficient Tool to Analyze and Identify Gene Expression Patterns 
Related to Murine Bone Marrow-Derived Macrophage’s Susceptibility and 
Resistance to Candida albicans Infection

The improvements in organ transplantation techniques and the rise of immune- 
compromised diseases, like AIDS, are directly linked to the exponential growth of 
opportunist infections in these patients. Therefore, the study of the etiological 
agents of these diseases, particularly fungal pathogens, together with the immune 
response they elicit, became an important issue (Marr et al. 2002; Richardson and 
Lass-Flörl 2008; Miceli et al. 2011). Candida albicans appears to be the leading 
cause of invasive infections among fungi, showing high morbidity and mortality 
rates (Chi et al. 2011; Shigemura et al. 2014).

Many studies have been done to understand the aspects of immune responses to 
C. albicans (Tierney et  al. 2012; Miramón et  al. 2013; Hünniger et  al. 2014; 
Martínez-Álvarez et  al. 2014). In this case study, the transcriptomic response of 
murine bone marrow-derived macrophages (BMDMs) from BALB/c (resistant) and 
DBA/2J (susceptible) mice strains to C. albicans infection was analyzed by RNA- 
seq to compare both transcriptomic patterns. Therefore, this case study’s main 
objective was to identify BMDMs gene expression patterns between resistant and 
susceptible mice after C. albicans infection by the analysis of the resulting 
transcriptome profiles.

Bone marrow was extracted from the mice, and the hematopoietic stem cells 
were then differentiated into macrophages. An amount of 2 × 106 BMDMs were 
co-cultured with 4 × 106 C. albicans yeasts for 90 min, and the RNA was extracted 
using RNeasy (Qiagen). RNA quality and concentration were verified employing a 
Bioanalyzer (Agilent) and NanoDrop (Thermo Scientific), respectively. Three μg of 
total RNA was used for the library preparation, including a step of rRNA depletion 
using Ribozero (Epicentre) before library construction and sequencing in an 
Illumina Hiseq platform.

The sequencing results were provided in fastq format. FastQC was used to assess 
quality. Adaptors clipping and quality trimming were performed using Cutadapt 

Table 3.5 Computational tools for scRNA-seq analysis

Tools Availability

Seurat (Hao et al. 2020) https://github.com/satijalab/seurat
SEQC (Azizi et al. 2018) https://github.com/ambrosejcarr/seqc
zUMIs (Parekh et al. 2018) https://github.com/sdparekh/zUMIs
CellRanger (10× 
Genomics)

https://support.10xgenomics.com/single- cell- gene- expression/
software/pipelines/latest/what- is- cell- ranger

Meta Cell (Baran et al. 
2019)

https://tanaylab.github.io/metacell

robustSingleCell (Magen 
et al. 2019)

https://github.com/asmagen/robustSingleCell
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(Martin 2011). Two mapping software, NextGenMap (NGM) (Sedlazeck et  al. 
2013) and Tophat2 (Kim et al. 2013), were employed. Since both generate a similar 
number of mapped reads, we chose NextGenMap due to its faster analysis. Low- 
quality mappings were removed using Samtools (Li et al. 2009), which was also 
used to sort, index, and convert the mapping results from sam to.bam files. Bedtools 
(Quinlan and Hall 2010) were then used to count reads for both genes and exons, 
and generate a table of these counts, to be analyzed for differential expression. As 
said before, differential expression can be analyzed using different methodologies 
(Wagner et  al. 2012; Soneson and Delorenzi 2013), and EdgeR (Robinson et  al. 
2010) and DESeq (Anders and Huber 2010) were chosen. Both outputted very 
similar results. Alternative splicing can be checked by differential exons usage 
(Anders et al. 2012). Therefore, the resulting list of genes or transcripts differentially 
expressed (adjusted p-value <0.05 and fold change ≥ ±2.5) was checked for gene 
ontology (GO terms) using ClusterProfiler (Yu et al. 2012) Bioconductor package.

Several problems may occur in RNA-seq projects, and here we point out some 
of these:

• Infection conditions: the optimization of the protocols of co-culture conditions, 
as well as RNA extraction, may be hard to adjust. Setting a multiplicity of 
infection (MOI – proportion of host/pathogen cells in the co-culture) that suffices 
to induce a transcriptomic response in the host cells is the first step. However, a 
very high MOI may result in host cells’ death and apoptosis, which may result in 
altered gene expression or low amounts of RNA extracted from these cells.

• Infection time: the definition of correct time intervals of interaction between 
pathogen and host cells is essential since different genes have different kinetics 
of transcription during co-culture. This may vary drastically for different host- 
pathogens and also depends on the major question of interest.

• Biological replicates: in transcriptomic studies, robust statistical analysis is fun-
damental. In this sense, the experimental design has to incorporate proper bio-
logical replicates to allow valid statistical inferences (Robles et al. 2012).

• Library preparation and sequencing parameters: the choice of the preparation 
methodologies, e.g., poly-A enrichment protocols versus rRNA depletion 
protocols, or paired-end versus single-end sequencing, may strongly impact the 
results. Improper handling of samples in this step may also result in sample 
degradation or inefficient rRNA depletion, which may compromise the whole 
experiment if not properly adjusted. A well-defined experimental design for the 
sequencing step must also be taken into consideration. A final low coverage of 
the transcriptome can result in an inadequate analysis of differential gene 
expression.

A significant disparity was observed in the differentially expressed genes upon 
C. albicans infection between BMDMs from both mice strains. BMDMs from the 
susceptible DBA/2J strain modulated a higher number of genes (4021) upon 
infection with C. albicans than BMDMs from the resistant BALB/c strain (99), and 
both sets have few genes in common (60) (Fig. 3.8).
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Analysis focusing on GO categories of biological processes revealed enrichment 
(p <0.01) of upregulated genes in terms related to inflammatory response, cellular 
response to biotic stimulus, and cytokine production in both resistant and susceptible 
strains (Fig. 3.9). However, they markedly differed in the modulation of some terms. 
For example, macrophages from the resistant strain upregulated genes related to apop-
tosis and neutrophil chemotaxis. In contrast, macrophages from the susceptible strain 
upregulated genes involved in innate immune response and leukocyte migration.

3.5  Case Study 2

Single-Cell Sequencing of SARS-CoV-2 Infected Individuals with Distinct Levels of 
Severity

COVID-19 outbreak has caused critical consequences for all countries, including 
many deaths and hospitalization, beyond the economic issues. Beyond the 
vaccination, it is important to research specific drugs to treat the affected individuals. 
Monoclonal antibodies have demonstrated their effectiveness in medicine (Maranhão 
et al. 2020). Therefore, developing new potential antibodies as an alternative against 
viral proteins remains highly valuable.

This example of scRNA-seq analysis is based on the work “Single cell RNA and 
immune repertoire profiling of COVID-19 patients reveals novel neutralizing 
antibody” from Fang Li et al. (2020). They have conducted a study using single-cell 
transcriptome sequencing (scRNA-seq), single-cell BCR sequencing (scBCR-seq), 
and deep BCR repertoire to reveal neutralizing antibody sequences in patients who 
have recently cleared the virus. They collected blood samples (peripheral blood 
mononuclear cells – PBMCs) from 16 COVID-19 patients and eight healthy controls 
to reveal immune cells’ changes caused by SARS-CoV-2 infection. Fang Li et al. 
(2020) scRNA-seq was performed using 10× Genomics. The original data is avail-
able in the Zenodo under the accession URL: https://zenodo.org/record/3744141.

Fig. 3.8 Venn diagram of 
positively (red) and 
negatively (blue) regulated 
genes in BMDMs from 
BALB/c and DBA/2J mice 
strains infected with 
C. albicans. Differentially 
expressed genes were 
considered when adjusted 
p-value <0.05 and fold 
change ≥±2.5
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This case study uses a Fang Li et al. (2020) sample subset with data from two 
patients to demonstrate how to identify distinct types of cells based on clustering 
their transcripts and how to obtain the differentially expressed genes. The input files 
are barcodes.tsv, datasets.rds, genes.tsv, and matrix.mtx. For this case study, we 
filtered the complete data to work only with patient 3 (P3) and patient 10 (P10) 
samples, both from 59 years old females with distinct levels of COVID-19 severity. 
P3 had severe symptoms, and P10 had moderate symptoms.

This example uses the R package Seurat 4.0 (Hao et al. 2020) to perform the 
analysis directly from the matrix. The following R codes are commented, and their 
results presented. The first step is to install and load the required R packages. Seurat 
4.0 requires R version 4.x.

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install(version = "3.12")

BiocManager::install('ggplot2')
BiocManager::install('ggrepel')
BiocManager::install('limma')
BiocManager::install('calibrate')
BiocManager::install('dplyr')
BiocManager::install('Matrix')
BiocManager:: install('Seurat') 

library(ggplot2)
library(ggrepel)
library(limma)
library(calibrate)
library(dplyr)
library(Matrix)
library(Seurat)  

Fig. 3.9 Gene ontology enrichment of upregulated genes in BMDMs from DBA/2J and BALB/c 
mice strains upon C. albicans infection. Enriched GO terms (adjusted p-value <0.01) from 
biological processes category associated with upregulated genes in BMDMs derived from the 
susceptible DBA/2J (left) and the resistant BALB/c (right) mice strains. Dot size is representative 
of enrichment (gene modulated ratio/gene background ratio) for each GO term. Only major terms 
related to immune response were plotted
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The next step is to download, extract, and read the COVID-19 data. This will 
result in a matrix with 33,538 lines and 96,404 columns. The columns represent 
each tagged transcript, and the lines represent the genes where those transcripts 
were mapped.

system("wget https://zenodo.org/record/3744141/files/COVID-19.tar.gz")
system("tar -xzvf COVID-19.tar.gz")
covid_19_data <- Read10X(data.dir = "COVID-19")
dim(covid_19_data) # dimensions for full data  

Once loaded the full data, now it is possible to filter them to work only with P3 
and P10 samples by using regular expression to identify only data from patients P3 
and P10. The new dimensions of P3 and P10 data will be 33,538 lines (genes) by 
16,056 columns (tagged transcripts).

p3_and_p10_data <- covid_19_data[, grep(pattern = "P3|P10", colnames(covid_19_data))]

dim(p3_and_p10_data) # dimensions for selected data
 

The function CreateSeuratObject() initializes the Seurat object with the non- 
normalized data constrained by the following parameters: minimal of two cells with 
at least 20 expressed genes and at least 2,000 features. The dimension of the object 
in this case will be 17,169 genes and 2,123 tagged transcripts that met the criteria.

covid_p3_p10 <- CreateSeuratObject(
counts = p3_and_p10_data, 
project = "COVID-19", 
min.cells = 2, 
min.genes = 20, 
min.features = 2000

)
dim(covid_p3_p10) # dimensions for loaded data  

Before starting the data processing, we will create two new columns to add meta- 
information for the patients (P3 or P10) and for the mitochondrial percent in tran-
scripts. The [[]] operator can add columns to an object. In this case, we create a 
column to identify patients P3 and P10. We also stash quality control (QC) stats for 
their mitochondrial samples, which are identified starting by “MT-”.

covid_p3_p10[["patient"]] <- sapply(strsplit(colnames(covid_p3_p10),"-"), `[`, 1)
covid_p3_p10[["perc_mitochondrial"]] <- PercentageFeatureSet(covid_p3_p10, pattern = "^MT-")  

Next, it is possible to build a violin plot to visualize the QC metrics for number 
of features, read count and mitochondrial percentage, grouped by patient (Fig. 3.10).
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plot_perc_mitochondrial <- VlnPlot(
covid_p3_p10, 
features = c("nFeature_RNA", "nCount_RNA", "perc_mitochondrial"), 
ncol = 3, 
Group.by = "patient",
log = TRUE

)
plot_perc_mitochondrial  

The next step is to remove unwanted cells from the dataset. In this case we can 
apply a new filter to keep only samples with the number of features at least equal to 
2000 and less than 5% of mitochondrial samples.

covid_p3_p10 <- subset(covid_p3_p10, subset = nFeature_RNA >= 2000 & perc_mitochondrial < 5)  

To normalize the data, we can use function LogNormalize(), which normalizes 
the feature expression measurements for each cell by the total expression. It 
multiplies this by a scale factor (10,000 by default), and log-transforms the result.

covid_p3_p10 <- NormalizeData(covid_p3_p10, normalization.method = "LogNormalize", scale.factor = 10000)  

Once normalized, the next step is to identify highly variable features (feature 
selection) using the method vst which, according to the manual of Seurat, fits a line 
to the relationship of log (variance) and log (mean) using local polynomial regression 
(loess). Then, it standardizes the feature values using the observed mean and 
expected variance (given by the fitted line). Then, it is computed the feature variance 
on the standardized values after clipping to a maximum (default is “auto” which sets 
this value to the square root of the number of cells).

covid_p3_p10 <- FindVariableFeatures(covid_p3_p10, selection.method = "vst", nfeatures = 2000)  

At this point, it is possible to find, for instance, the 20 most highly variable genes 
identified (Fig.  3.11) that would be: ‘IGHA1’, ‘JCHAIN’, ‘IGHG1’, ‘IGKC’, 
‘IGLC2’, ‘IGHG2’, ‘DERL3’, ‘IGLL5’, ‘IGHV3-23’, ‘ITM2C’, ‘IGKV3-20’, 
‘MZB1’, ‘LILRA4’, ‘IGHV3-7’, ‘FKBP11’, ‘GNLY’, ‘IGKV4-1’, ‘TNFRSF17’, 
‘STMN1’, and ‘HIST1H4C’. Interestingly, most of these genes are involved with 
the immune system, more precise to B lymphocytes, a known player in the 
inflammatory aspect of COVID-19. IGHA, the heavy constant chain of the 
immunoglobulin alpha, codes for an antibody isotype well characterized to 
participate in the mucosal immunity, the natural site of SARS-CoV-2 infection.

top20 <- head(VariableFeatures(covid_p3_p10), 20)
plot_top20 <- VariableFeaturePlot(covid_p3_p10) 
plot_top20 <- LabelPoints(plot = plot_top20, points = top20, size = 2, hjust = .75, vjust = .75)
plot_top20  
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Before performing the dimensional reduction, it is necessary to perform a linear 
transformation scaling the data. It is a standard pre-processing step prior to applying 
techniques like PCA.

all_genes_covid_p3_p10 <- rownames(covid_p3_p10)
covid_p3_p10 <- ScaleData(covid_p3_p10, features = all_genes_covid_p3_p10)
covid_p3_p10 <- RunPCA(covid_p3_p10, features = VariableFeatures(object = covid_p3_p10))  

Now, it is possible to determine the dimensionality of the dataset. The function 
JackStraw() determines the statistical significance of PCA scores by randomly 
permuting a subset of data, and calculates projected PCA scores for these “random” 
genes. The ScoreJackStraw() function computes the scores significance by PCs 
showing a p-value distribution that is strongly skewed to the left compared to the 
null distribution.

covid_p3_p10 <- JackStraw(covid_p3_p10, num.replicate = 100)
covid_p3_p10 <- ScoreJackStraw(covid_p3_p10, dims = 1:5)  

We can now cluster the cells. The function FindNeighbors() computes the 
k.param nearest neighbors for a given dataset using the k-nearest neighbors 
algorithm. Then, the function FindClusters() identifies clusters of cells from the 
SNN graph (result of the k-nearest neighbors algorithm). As higher is the resolution 
parameter, as larger will be the communities.

Fig. 3.10 Quality control (QC) metrics for the number of features, read count, and mitochondrial 
percentage, grouped by patient. Left: Number of featured genes for patients 3 (red) and 10 (blue) 
after filtering >2000 features. Middle: reads count for P3 and P10. Right: amount of reads from 
mitochondrial origin shown as percentage
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covid_p3_p10 <- FindNeighbors(covid_p3_p10, dims = 1:5)
covid_p3_p10 <- FindClusters(covid_p3_p10, resolution = 1)  

Uniform Manifold Approximation and Projection (UMAP) is a dimensional 
reduction technique that can be used for visualization similarly to t-SNE, but also 
for general non-linear dimension reduction. It is founded on three assumptions 
about the data: (i) the data is uniformly distributed on a Riemannian manifold; (ii) 
the Riemannian metric is locally constant (or can be approximated as such); and (iii) 
the manifold is locally connected.

covid_p3_p10 <- RunUMAP(covid_p3_p10, dims = 1:5)
# It could be alternatively done using tSNE
# covid_p3_p10 <- RunTSNE(object = covid_p3_p10, dims.use = 1:5)  

Fig. 3.11 Twenty most highly variable genes identified versus their average expression. In red are 
shown the 2000 most variable genes among cells, and 20 of them are labeled for exploration 
purposes
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Finally, it is possible to plot the clusters of distinct types of cell in the samples. 
Using these parameters, we can find 10 clusters as can be seen in Fig. 3.12.

plot_clusters <- DimPlot(covid_p3_p10, label = TRUE)
plot_patient <- DimPlot(covid_p3_p10, label = TRUE, group.by = "patient")
plot_clusters + plot_patient  

As it is possible to see in Fig. 3.12, the cluster number 4 has expressed genes 
both from patients 3 and 10. In this case, we first split data of patient 3 and 10 and 
then execute the function FindAllMarkers() can finds all differentially expressed 
genes for each of the patients in this dataset. Some constraints can be used to filter 
these genes, as min.pct that test for genes that are very infrequently expressed, 
which has as default value 0.1. The results are joined and the gene markers are 
filtered only for cluster number 4.

patient_splitted <- SplitObject(covid_p3_p10, split.by = "patient")
p3_markers <- FindAllMarkers(object = patient_splitted$P3)
p10_markers <- FindAllMarkers(object = patient_splitted$P10)
p3_markers[["patient"]] = "P3"
p10_markers[["patient"]] = "P10"
p3_p10_markers <- rbind(p3_markers, p10_markers)
cluster_4_markers <- p3_p10_markers[which(p3_p10_markers["cluster"] == "4"),]  

The next step is to group the expressed genes as “Not Significant,” “Significant,” 
“FoldChange,” and “Significant&FoldChange” depending on the values of p-value 
and fold change. A plot (Fig. 3.13) with the most significant differentially expressed 
genes for the patients P3 and P10 can be built to highlight them.

Fig. 3.12 Ten cell clusters belonging to the patients P3 and P10. Dimensionality reduction yields 
clusters of cells correlated by gene expression profile. Each cluster is labeled with a different color 
and is identified by a number that can be later annotated as a particular cell type based on the gene 
markers expressed in the cluster
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# Preliminarly grouping all genes as "Not Significant"
cluster_4_markers["group"] <- "Not Significant"
# Change the grouping for the entries with significance but not a large enough Fold change
cluster_4_markers [which(cluster_4_markers["p_val_adj"] < 0.05 &

abs(cluster_4_markers["avg_log2FC"]) < 1 ),"group"] <- "Significant"
# Change the grouping for the entries a large enough Fold change but not a low enough p-value
cluster_4_markers [which(cluster_4_markers["p_val_adj"] > 0.05 &

abs(cluster_4_markers["avg_log2FC"]) > 1 ),"group"] <- "FoldChange"
# Change the grouping for the entries with both significance and large enough fold change
cluster_4_markers[which(cluster_4_markers["p_val_adj"] < 0.05 & 

abs(cluster_4_markers["avg_log2FC"]) > 1 ),"group"] <- "Significant&FoldChange"
# Find and label the top peaks
top_peaks <- cluster_4_markers[which(cluster_4_markers["group"] == "Significant&FoldChange", 

order(cluster_4_markers["p_val_adj"])),][1:10,]
p3_p10_plot <- ggplot(na.omit(cluster_4_markers)) +
geom_point(aes(x = avg_log2FC, y = -log10(p_val_adj), colour = group, shape = patient), size = 5) +
geom_text_repel(data=top_peaks[1:7,],aes(x = avg_log2FC, y = -log10(p_val_adj),label = gene))+
scale_color_brewer(palette = "PuRd") +
ggtitle("Most significant expressed genes in cluster 4 for patients P3 and P10") +
xlab("log2 fold change") +
ylab("-log10 adjusted p-value") +
theme_minimal() +
theme(legend.position = "bottom",

legend.title = element_blank(),
plot.title = element_text(size = rel(1), hjust = 0.5),
axis.title = element_text(size = rel(1)))

p3_p10_plot  

Fig. 3.13 Differentially expressed genes for patients 3 and 10. Each cluster of cell is tested against 
all remaining clusters. The most significant down- and upregulated genes are highlighted. Patient 
3 is shown in the left and patient 10 in the right
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The differentially expressed genes depicted in Fig.  3.13 reveal that six genes 
meet both statistical and fold change criteria. The IL7 receptor (IL7R) appears 
upregulated in both patients, while GNLY, MYOM2, CST7, and NKG7 are 
upregulated only in patient 3. The LincRNA 00861, a non-coding RNA, is 
upregulated only in patient 10, who had a milder infection. All of these genes are 
usually expressed in the cytotoxic CD8 lymphocytes, but patient 10, who evolved a 
strong inflammatory response, reveals a different gene response that is not associated 
with the LincRNA but strongly associated with genes involved in cytotoxicity 
(NKG7 and GNLY).

Single-cell computational analysis can consume vast computational resources. 
This case study uses only part of the original data to make it reproducible in a 
regular desktop or notebook computer. All these codes are available for download 
with the environment set-up instructions at https://github.com/waldeyr/
single_cell_analysis.
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Chapter 4
Transcriptomics of Neonatal and Infant 
Human Thymus

Carlos Alberto Moreira-Filho, Silvia Yumi Bando, 
Fernanda Bernardi Bertonha, and Magda Carneiro-Sampaio

4.1  Introduction

The thymus is a primary lymphoid organ where immunocompetent and self-tolerant 
T cells are produced (Kondo et al. 2019; Miller 2020). Anatomic descriptions of the 
thymus date back to Rufus of Ephesus and Galen, in 1st–2nd c A.D (Laios 2018). 
Yet, it was only in the 1970s and 1980s – with the discovery of the basic cellular and 
molecular mechanisms for generating B and T cell antigen receptor diversity, and 
for the elimination of self-reactive T cells in the thymic stroma – that our current 
understanding of thymic functions became established (reviewed in Geenen 2021). 
Presently, remarkable progresses in genomics and systems biology  – mainly on 
single-cell RNA sequencing (scRNA-seq) methodologies and on computational 
analysis of genomic and proteomic big data  – have allowed the construction of 
detailed atlases of thymic organogenesis and development (Kernfeld et  al. 2018; 
Ohigashi et al. 2019; Park et al. 2020; Hao et al. 2021). By using scRNA-seq and 
spatial cell localization techniques, Park et al. (2020) constructed a temporal sce-
nario of the human thymus cell state dynamic changes, spanning from organ devel-
opment to pediatric and adult life. The human thymus involutes very early in life 
(Steinmann 1986; Rezzani et al. 2014) and its functioning suffers the influence of 
sex hormones (Dragin et al. 2016; Berrih-Aknin et al. 2018; Merrheim et al. 2020). 
Therefore, the thymus early programming – sexual dimorphism, dynamics of thy-
mocyte populations, and thymic microenvironment change  – influences immune 
activity throughout life. Here, we used transcriptome analysis to address two key 
issues in early thymus development: the thymic sexual dimorphism during the first 
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6 months of age (i.e., during minipuberty), and the genomic mechanisms governing 
cellular and molecular processes involved in the functioning of the neonate thymus 
and in the onset of thymic decline.

4.2  Methodology

Fresh thymic explants (corticomedullar sections) from karyotypically normal neo-
nates and infants who underwent cardiac surgery were collected at surgery room 
and immediately preserved for total RNA extraction. The resected thymic speci-
mens were preserved in formalin and paraffin-embedded for histological analyses. 
DNA microarray technology was employed to obtain mRNA and miRNA expres-
sion profiles. Transcriptomics was performed in whole thymic tissue to avoid gene 
expression artifacts caused by mechanic/enzymatic tissue dissociation. Whole thy-
mic tissue transcriptome datasets were interpreted through modular repertoire 
identification, a community detection network analysis (Barabási and Oltvai 2004; 
Zhu et al. 2007; Barabási et al. 2011; Chaussabel and Baldwin 2014; Gaiteri et al. 
2014; van Dam et  al. 2018) used, for instance, in the investigation of immune 
responses in vivo following the administration of vaccines (Nakaya et al. 2011; 
Obermoser et al. 2013) and that has proved to be a suitable strategy to circumvent 
tissue microdissection and cell separation (Moreira-Filho et al. 2015, 2016; Bando 
et al. 2021).

For the investigation of thymic sexual dimorphism, we adopted a network-based 
approach for gene co-expression (GCN) analysis that allows the identification of 
modular transcriptional repertoires (communities) and the interactions between all 
the system’s constituents through community detection (Chaussabel and Baldwin 
2014; Moreira-Filho et al. 2016). MiRNA-target analysis was used to investigate 
how the abundantly expressed thymic miRNAs modulate the expression of highly 
connected genes (hubs) in the GCNs. In the study of neonatal and infant thymus we 
employed a weighted gene co-expression network analysis (WGCNA) (Langfelder 
and Horwath 2008) for describing correlation patterns among genes across microar-
ray datasets that allows: (i) the identification of transcriptional modules (van Dam 
et al. 2018) and their association with specific age groups; (ii) the identification of 
highly connected genes (hubs) and of significant genes (HGS genes) for the trait of 
interest (age). This analysis was complemented by an integrative mRNA–miRNA–
transcription factor (TF) co-expression analysis encompassing mRNAs from hubs 
and HGS genes, the abundantly expressed miRNAs, and the TFs that covaried with 
hubs and/or HGS genes. The methodological framework employed these two stud-
ies is detailed in chapter 6. The workflow of experimental approaches and bioinfor-
matic analyses is depicted in Fig. 4.1.
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4.3  Human Thymus During Minipuberty

Sexual dimorphism in the immune system is well documented in humans – as well 
as in other mammals and birds – encompassing sex differences in responses to self 
and foreign antigens: women usually mount stronger immune responses to infections 
and vaccination but have higher susceptibility to autoimmune diseases than men 
(Klein and Flanagan 2016). Regarding autoimmune diseases, it is striking that in 
USA almost 80% of autoimmune patients are women (Billi et al. 2019). Autoimmunity 
results from a tolerance breakdown and essentially involves the thymus, the site of T 
cell selection (Cheng and Anderson 2018). T cell selection depends on the ectopic 
thymic transcription of thousands of genes coding for tissue-specific antigens, which 
is induced by the autoimmune regulator gene AIRE (Passos et  al. 2018; Perniola 
2018). Despite our incomplete knowledge on the biological processes responsible for 
autoimmunity, it would be reasonable to assume that sex hormones impact the 
genomic mechanisms governing AIRE functions and T cell selection. An important 
experimental evidence regarding this assumption came from the work of Dumont-
Lagacé et al. (2015), who showed in a murine model that sex hormones have perva-
sive effects on thymic epithelial cells (TEC) – antigen presenting cells that regulate 
T cell repertoire and tolerance – and that androgens have a greater impact on TEC 

Fig. 4.1 Systems biology workflow used for generating and integrating data on neonatal and 
infant thymus development
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transcriptome than estrogens. Interestingly, the authors observed that sex steroids 
repressed the expression of tissue-restricted antigens but did not alter the expression 
of Aire. Just after this work, Dragin et al. (2016) demonstrated that estrogen mediates 
the downregulation of AIRE in human pubescent and adult thymic tissues, thus indi-
cating that the reduced expression of AIRE protein in women may be related to auto-
immunity susceptibility. However, this study did not cover infants along the first 6 
months of age, i.e., during minipuberty (Kuiri-Hänninen et  al. 2014; Becker and 
Hesse 2020), a period when sex hormones conceivably act on thymic tissue.

To further investigate the presumptive sexual dimorphism induced by minipu-
berty on infant thymus, we performed comparative genomic and immunohisto-
chemical studies on thymic surgical explants obtained from karyotypically normal 
male (M) and female (F) infants during minipuberty, here termed MM and MF 
groups, and from karyotypically normal M and F non-puberty (N) infants aged 
7–31 months, the NM and NF groups. Analyses included gene co-expression net-
works (GCN) for differentially expressed genes, miRNA-target analyses, AIRE- 
centered gene–gene interaction networks encompassing the genes coding for AIRE 
interactors, quantitative RT-qPCR and immunohistochemical measurements of 
AIRE expression, and comparative thymic histomorphometry. GCN analysis was 
performed for the identification of high-hierarchical genes, modular transcriptional 
repertoires (communities), and the interactions between all the system’s constitu-
ents through community detection (Moreira-Filho et al. 2016). MiRNA-target anal-
ysis was used to investigate how the abundantly expressed thymic miRNAs modulate 
the expression of highly connected genes (hubs) in the GCNs. This study is fully 
described in Moreira-Filho et al. (2018).

4.4  Thymic Gene Expression in Minipuberty 
and Non- puberty Infants: mRNA, miRNA, 
and AIRE Interactors

4.4.1  Sample Grouping

Thymic samples from 17 patients aged up to 6 months were classified as minipu-
berty (M) – ten males and seven females, here termed MM and MF, respectively – 
and 17 samples from patients aged 7–17 months were classified as non-puberty (N), 
being nine males and eight females, here termed NM and NF, respectively.

4.4.2  Global Gene Expression and miRNA Expression 
in Minipuberty and Non-puberty Groups

DNA microarray technology was used to obtain mRNA and miRNA expression 
profiles in minipuberty (M) and non-puberty (N) groups. The mRNA expression 
data was analyzed by SAM test (Tusher et  al. 2001) for determining the 
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differentially expressed (DE) genes. In the MM vs. MF group comparison 494 DE 
genes were identified, all being hyper-expressed in the MM group. No DE genes 
were found in the NM vs. NF group comparison. Hence, we conducted DE network 
analysis only for MM and MF groups. Statistical analysis (t-test) for miRNA expres-
sion data revealed 16 abundantly expressed miRNAs in the M group, being all 
hyper- expressed in the MF group (female infants). In the non-puberty groups, 20 
abundantly expressed miRNAs (15 of which were also abundantly expressed in the 
minipuberty groups) and all hyper-expressed in the NM group (male infants). The 
abundantly expressed miRNAs for minipuberty and non-puberty groups were 
selected after analyzing miRNA expression value distribution through a scatter dot 
plot and adopting abundant expression cut-off values for MM and MF groups, and 
for NM and NF groups, respectively. The fold change values were calculated as the 
ratio of the average expression value of each abundantly expressed miRNA to the 
average expression value of the non-abundantly expressed miRNAs for each group.

4.4.3  Gene Co-expression Network Construction and Analysis

Differentially expressed (DE) GO annotated gene co-expression networks were 
constructed for MM and MF groups based on gene–gene Pearson’s correlation 
method and the Networks 3D software developed by Luciano Costa’s Research 
Group, Institute of Physics at São Carlos, University of São Paulo (Bando et  al. 
2013). This package allowed the categorization of network nodes according to dis-
tinct hierarchical levels of gene–gene connections: hubs are highly connected nodes, 
VIPs have low node degree but connect only with hubs, and high-hubs have VIP 
status and high overall number of connections. We classified network nodes as 
VIPs, hubs, or high-hubs by obtaining the node degree, k0, and the first level concen-
tric node degree, k1, which takes into account all node connections leaving from its 
immediate neighborhood, then projecting all node values in a k0 vs k1 graphic (see 
Chap. 6 and Bando et al. 2013).

The GCN topologies were then analyzed for identifying their community struc-
ture. Communities can encompass complex mechanisms that work together to 
maintain the cellular processes across different conditions (Barabasi et  al. 2011; 
Gaiteri et al. 2014; van Dam et al. 2018). For example, community structure analy-
sis of gene co-expression networks obtained from skeletal muscle cells’ transcrip-
tome revealed different biological pathways for Duchenne muscular dystrophy 
patients comparatively to normal individuals (Narayanan and Subramaniam 2013). 
The same modular approach has successfully been used for investigating immune 
response to infections and vaccines using whole blood transcriptome data sets 
(reviewed in Chaussabel and Baldwin 2014), and for characterizing thymic gene 
dysregulation in 21 trisomy patients (Moreira-Filho et al. 2016).

Community detection in complex networks is usually accomplished by discover-
ing the network modular structure that optimizes the modularity measurement. 
Modularity considers the relationship between the number of links inside a 
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community compared to connections between nodes in distinct communities 
(Newman and Girvan 2004; Newman 2010). A diverse range of optimization tech-
niques exists to optimize the modularity. Here we applied the method proposed by 
Blondel et al. (2008), which attains good modularity values and at the same time 
presents excellent performance.

Most of the methods for community detection generate hierarchical structures. 
The Newman-Girvan method uses the edge betweenness centrality measurement as 
a criterion for removing edges and obtaining connected components that correspond 
to each network partition. This builds a tree of communities with branches occur-
ring every time a component is divided into two. Agglomerative methods start from 
a set of communities, where each node corresponds to a different community, which 
are progressively merged according to a similarity criterion or to directly maximize 
the change of modularity (Clauset et al. 2004). In both cases, a dendrogram of the 
partition hierarchy is obtained. The optimal set of communities is then obtained by 
a cut for the highest value of modularity.

Figure 4.2a, b depicts the two minipuberty networks, MM-DE and MF-DE, their 
gene communities (modules), and the high-hierarchy genes for each network. 
Different node colors identify the distinct gene communities in each network. 
Modularity values and the number of communities in each network were quite 
close: 0.728 and 15 communities in the MM-DE and 0.649 and 16 communities in 
MF-DE (Moreira-Filho et al. 2018). Coarse-grained community structure (CGCS) 
was obtained for each DE network, disclosing the relationships between each com-
munity in the network (Fig.  4.2c, d) for MM-DE and MF-DE, respectively). 
Communities having the highest node strength (total probability for community’s 
nodes to connect to distinct communities) hold the most significant functional inter-
actions in the network (Chaussabel and Baldwin 2014).

The integrative network analyses between abundantly expressed miRNAs and 
target high-hierarchy genes (HH) from MM-DE and MF-DE networks appear in 
Fig. 4.2a, b. It is worth to note that all miRNAs interacting with HH genes in the 
MM-DE and MF-DE networks play important roles in the regulation of immune 
processes, and particularly in the thymic environment. Let-7 miRNAs regulate NKT 
cell differentiation (Pobezinsky et  al. 2015). The cluster miR15/16 enhances the 
induction of regulatory T-cells by regulating the expression of Rictor and TOR 

Fig. 4.2 (continued) High hierarchy genes are identified by their node border color: green for 
high-hubs, red for VIPs, and blue for hubs. Abundantly expressed miRNAs are depicted as vee 
nodes. Gray lines indicate gene–gene links, whereas miRNA-gene validated interactions are indi-
cated by blue lines. The vees filled with red or green colors indicate, respectively, hyper- or hypo-
expressed miRNAs. Gene communities in both network diagrams are distinguished by different 
node colors. In CGCS, the communities are identified by different colors and the edge width and 
intensity are proportional to the connection weight of edges linking distinct communities. In the 
networks, the node size is proportional to the number of gene–gene links. In CGCS diagrams, the 
node size is proportional to the number of nodes/genes in each community. In the MM-DE net-
work, the communities harboring high hierarchy genes are identified by the following colors: A, 
blue; B, orange; D, red; F, brown; G, pink; and I, olive green. In the MF-DE network the communi-
ties and their respective colors are: A, blue; B, orange; C, green; D, red; and E, purple
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Fig. 4.2 DE networks with their respective gene communities (modules), miRNA–target interac-
tions, and coarse-grained community structure (CGCS) diagrams. Network topology and community 
structure for minipuberty DE networks (a for MM and b for MF), and CGCSs for minipuberty DE 
networks (c for MM and d for MF) considering 15 and 16 communities per network, respectively.
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(Singh et  al. 2015). MiR-150 controls the Notch pathway and influences T-cell 
development and physiology (Ghisi et al. 2011). MiR-181 enhances cell prolifera-
tion in medullary thymic epithelial cells via regulating TGF-β signaling (Guo et al. 
2016) and is involved in the positive and negative selection of T-cells (Fu et  al. 
2014). MiR-342-3p is a well-known regulator of the NF-κB pathway (Zhao and 
Zhang 2015), whose activation was shown to be necessary for the thymic expression 
of Aire in mice (Zhu et al. 2006; Haljasorg et al. 2015).

In the MM-DE network (Fig. 4.2a) community B harbors most of the HH genes 
(17 out of 24) and all the interactions between HH genes and abundantly expressed 
miRNAs. Moreover, all the HH genes in community B are VIPs (11 genes) or high- 
hubs (six genes), which means that these genes play relevant roles regarding the 
network functioning and robustness (van Dam et al. 2018). Indeed, VIPs connect 
different gene communities (Bando et al. 2013) and high-hubs are essential for the 
maintenance of network robustness (Azevedo and Moreira-Filho 2015). Network 
biology studies have shown that GCNs can be effectively used to associate highly 
connected genes (i.e., GCN hubs) with biological functions/processes in cells and 
tissues (Zhu et al. 2007; Gaiteri et al. 2014). Targeted hub attacks in protein–protein 
and gene–gene networks have been used to disclose relevant functional genes in 
health and disease (Gaiteri et al. 2014; Azevedo and Moreira-Filho 2015; Farooqui 
et al. 2018). Therefore, GCN hubs are relevant for both network topology and cell 
functioning.

Noteworthy, miRNA-target interactions involved only VIPs and high-hubs in 
MM-DE network. One of these high-hubs, TCP1, which codes for a molecular 
chaperone required for the transition of double negative to double positive T cells in 
the thymus (Cao et al. 2008), has interactions with three abundantly expressed miR-
NAs, all exerting known regulatory roles in the immune system. Functionally, most 
of the HH genes in MM-DE network are related to DNA and chromatin binding, 
DNA repair, histone modification, and ubiquitination (Moreira-Filho et al. 2018). 
CGCS analysis shows clearly that community B holds the highest connection 
weights, thus evidencing its importance for network functioning (Fig. 4.2c).

In the MF-DE network (Fig. 4.2b), the HH genes are quite evenly distributed 
among five gene communities: A (three high-hubs and one hub), B (two VIPs, one 
high-hub, and one hub), C (one high-hub and one VIP), D (two VIPs and one high- 
hub), and E (two hubs). Abundantly expressed miRNAs were found to interact with 
two high-hubs, one VIP, and one hub. The genes involved in these interactions were 
related to DNA binding (two genes), alternative mRNA splicing (one gene), and 
transmembrane (mitochondrial) transporter activity (one gene). The most repre-
sented molecular functions and biological processes among HH genes in MF-DE 
network are related to DNA binding, control of gene expression, and DNA repair 
and replication. CGCS analysis shows that the five gene communities harboring HH 
genes are also the ones presenting the highest connection weights (Fig. 4.2d).

GCN analyses (Fig. 4.2a, b) clearly show that abundantly expressed miRNAs 
interact almost exclusively with high-hubs and VIPs, i.e., with genes that are essen-
tial for network robustness (high-hubs) and for connecting gene communities 
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(VIPs). Altogether, these results indicate that testosterone and estradiol surges in 
minipuberty are related to significant changes in HH genes in MM and MF net-
works, respectively, and that these changes are under tight control by abundantly 
expressed miRNAs interacting with high-hubs and VIPs. In fact, relevant thymic 
functions, such as the induction of regulatory T cells, are regulated by abundantly 
expressed miRNAs (Singh et al. 2015). Noteworthy, all miRNAs interacting with 
HH genes in both networks play important roles in the regulation of immune pro-
cesses, and particularly in the thymic environment.

4.4.4  AIRE Interactors

Since AIRE expression assessment by microarray analysis, RT-qPCR, and immuno-
histochemistry revealed no significant differences between male and female groups 
(Moreira-Filho et al. 2018), we constructed four other GCNs for investigating AIRE 
interactors’ gene–gene expression relationships for minipuberty (MM and MF) and 
non-puberty groups (NM and NF). These AIRE interactors networks included AIRE 
and other 34 genes (34 genes in the minipuberty group and 33 genes in the non- 
puberty group), which code for proteins that are associated, directly or indirectly, 
with AIRE and exert impact on its functions (Abramson et al. 2010; Abramson and 
Goldfarb 2016). AIRE interactors were classified according to their molecular func-
tion and represented by different node colors in the networks (Fig. 4.3). Gene–gene 
expression relationships of AIRE interactors presenting a Pearson’s correlation 
coefficient value ≥0.70 at least in one group across minipuberty and non-puberty 
samples were termed high interactors. We found 14 high-interactors distributed 
among minipuberty and non-puberty groups and, noteworthy, distinctive profiles of 
AIRE interactors’ gene–gene relationships for each group (Fig. 4.3). The MM group 
encompassed more high interactors (seven) than the other three groups. These data 
suggest that sex hormones and genomic background exert their influence on AIRE 
interactors’ gene–gene expression relationship during and after minipuberty.

Interestingly, neither the sex steroids surge during minipuberty nor the XY or 
XX background were found to promote any significant gender-related histomorpho-
metric changes  – average cortical thickness; average diameter of the medullary 
region; total area of the lobule; area of the medullary region; and medullary area/
lobule area (%) – in neonatal and infant thymus (Moreira-Filho et al. 2018), thus 
corroborating previous data (Steinmann et al. 1985; Steinmann 1986).

In conclusion, these results suggest that genomic mechanisms and postnatal hor-
monal influences probably act synergistically in shaping thymic sexual dimorphism 
along the first 6 months of life, but this process does not involve changes in AIRE 
expression, although may involve differences – perhaps long-lasting differences – in 
the interactions of AIRE with its partners.
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4.5  Age-Related Transcriptional Modules and TF–miRNA–
mRNA Interactions in Neonatal and Infant 
Human Thymus

The human thymus grows only during the first year of life and its steady involution 
begins thereafter (Steinmann 1986; Thapa and Farber 2019). Moreover, the human 
thymus presents some functional peculiarities in the neonatal period and along the 
first 6 months of age, i.e., during minipuberty, when a transient surge in gonadal 
hormones takes place (Kuiri-Hänninen et al. 2014; Becker and Hesse 2020). In the 
neonatal thymus occurs a transient involution marked by severe depletion of double- 
positive (DP) thymocytes, which is later compensated by increased levels of primi-
tive T-cell precursors. Concomitantly, there is a reinforcement of the subcapsular 
epithelial cell layer and an increase of the intralobular extracellular matrix network, 
leading to augmented thymic permeability and to the recirculation of primitive pre-
cursors and mature T-cells in the neonatal thymus (Varas et al. 2000). After the first 
year of life the total amount of lymphatic thymic tissue declines 5% per year until 

Fig. 4.3 AIRE interactors’ gene–gene expression relationships. Gene–gene expression relation-
ship networks for MM (a), MF (b), NM (c), and NF (d) groups. Nodes are colored according to 
their molecular function (GO): green for transcription, yellow for chromatin binding/structure, 
blue for nuclear transport, brown for ubiquitination, pink for pre-mRNA processing, red for DNA 
repair, and purple for AIRE. AIRE–gene expression correlation values <|0.70| are depicted with 
gray links; AIRE–gene expression correlation values ≥|0.70| are depicted with red links; gene–
gene expression correlation values ≥|0.90| are depicted with black links
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the 10th year and at progressively slower rates afterwards (Steinmann 1986). The 
histomorphological features of thymic postnatal growth and of infant and adult thy-
mic aging (lymphatic tissue decline, lipomatous atrophy) were quite well studied 
(Steinmann et al. 1985; Steinmann 1986; Chinn et al. 2012; Gui et al. 2012; Cowan 
et al. 2020), but the genomic mechanisms underlying this process remain largely 
unknown.

4.5.1  Transcriptome Analysis

In order to further investigate the genomic mechanisms involved in thymic growth 
and early involution, we performed a comparative transcriptome analysis of whole 
thymic tissue from human neonates and from infants grouped according to sequen-
tial age intervals (6 months) up to the first 2½ years of life. Thymic tissue samples 
were obtained from 57 karyotypically normal patients who underwent cardiac sur-
gery. For genomic analyses samples were classified according to patients’ age in 
five sequential age groups: A, neonates up to 30 days; B, infants aged 31 days to 
6  months; C, infants aged 7–12  months; D, infants aged 13–18  months; and E, 
patients aged 19–31 months. DNA microarray technology was employed to obtain 
mRNA and miRNA expression profiles.

Whole thymic tissue transcriptome datasets were interpreted through modular 
repertoire identification. Here we employed a weighted gene co-expression network 
analysis (WGCNA) (Langfelder and Horvath 2008) for describing correlation pat-
terns among genes across microarray datasets that allows: (i) the identification of 
transcriptional modules (Chaussabel and Baldwin 2014) and their association with 
particular age groups; (ii) the identification of highly connected genes (hubs) and of 
significant genes (HGS genes) for the trait of interest (age). This analysis was com-
plemented by an integrative mRNA–miRNA–transcription factor (TF) co- expression 
analysis encompassing mRNAs from hubs and HGS genes, the abundantly expressed 
miRNAs, and the TFs that covaried with hubs and/or HGS genes.

The mRNA expression data matrix was used for GCN construction employing 
the WGCNA package (Langfelder and Horvath 2008). After dynamic tree cut, the 
hierarchical clustering dendrogram identified 15 distinct gene modules (Fig. 4.4a, 
b) containing from 85 (midnight blue module) to 403 genes (turquoise module). 
Genes not clustered in any module were grouped in the grey module. Subsequently, 
each age group was correlated with all the co-expression modules. This module- 
trait correlation analysis revealed three modules – tan, green yellow, and brown – 
that were significantly (p < 0.05) associated with at least one age group (Fig. 4.4c). 
The green yellow module was positively correlated with group E (MS  =  0.41, 
p = 0.003); the brown module was negatively correlated with group E (MS = −0.34, 
p = 0.02); while the tan module was negatively correlated with group A (MS = −0.31, 
p = 0.03), and it was positively and significantly correlated with group E (MS = 0.30, 
p = 0.03). None of the modules were significantly correlated with gender or with the 
age groups ranging from 31 days to 18 months.

4 Transcriptomics of Neonatal and Infant Human Thymus



120

Hub genes identification in each significant module was accomplished through 
intramodular connectivity measures, i.e., the network nodes presenting high kWithin 
values. A total of 34 hubs were found and assessed by an enrichment analysis. The 
Enrichr online web-based tool (Chen et al. 2013; Kuleshov et al. 2016) was used to 
identify significantly over-represented terms on GO Biological Process, 
Transcription Factor–PPIs Database, and miRTarBase. The TF–miRNA–mRNA 
regulatory network was then visualized by using the Cytoscape software, version 
3.8.2 (Shannon et  al. 2003). The hubs were mostly related to cellular/metabolic 
processes or related to T-cell development. The tan module (negatively associated 
with group A and positively associated with group E) encompasses a total of nine 
hubs. Two of them – CAND1 and ZNF675 – are related to medullary thymic epithe-
lial cells (mTECs). The green yellow module (positively associated with group E) 
has a total of seven hubs. Three of them – SNX17, MTMR4, and NKIRAS2 – are 
related to T-cell receptor (TCR) and thymic stromal functions. The brown module 
(negatively associated with group E) harbors a total of 18 hubs. Six of them  – 
CHMP5, PIK3CA, ARL8B, RNF138, NMI, and NRIP1  – are involved in T-cell 
development and antigen presentation-related functions.

Fig. 4.4 WGCNA analysis. Gene dendrogram and gene clustering analysis for module identifica-
tion (a). Hierarchical clustering dendrogram of the module-eigengenes (b). Module-trait relation-
ships (c). The modules’ names correspond to their colors (rows). Each column indicates a specific 
trait. The numbers inside each colored box are the module significance (MS) correlation values for 
gender and age groups, with p-value between parentheses. The more intense the box color, the 
more negatively (green) or positively (red) correlated is the module with the trait (MS values are 
indicated at the right color bar). Black-border boxes highlight the significant module-trait 
relationships
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The three age-related transcriptional modules here identified are correlated with 
two distinct and characteristic time intervals in human thymic evolution during the 
first 2½ years of life: the neonatal period (age group A) and the fourth/fifth semester 
period (age group E). In the neonatal period a transient thymic involution takes 
place, marked by severe cortical DP thymocyte depletion, and pronounced changes 
in the extracellular matrix network (Varas et al. 2000), whereas in the fourth semes-
ter of life the thymic involution becomes histomorphologically patent through the 
initial decline of the total amount of lymphatic tissue (Steinmann 1986). Interestingly, 
no transcriptional module was correlated with any interval in the 31  days to 
18 months period, along which the thymus reaches its maximal growth (Steinmann 
1986). Our TMA-IHC data on thymic cell subpopulations reflects this scenario, 
showing a continuous and moderate increase of thymocyte and B-cell numbers. 
These findings indicate that a genomic mechanism may act, synergistically with 
physiological and environmental stimuli (Moreira-Filho et  al. 2018; Gui et  al. 
2012), on early thymic evolution/involution programming.

Additionally, we were able to identify the high gene significance (HGS) genes of 
the three modules significantly associated with age groups A (tan) and/or E (tan, 
green yellow, and brown). This categorization was accomplished according to mod-
ule membership (MM) and gene significance (GS) values for groups A or E. Among 
the 50 HGS genes, a set of 37 were found to be DE: 19 genes were hyper-expressed 
in group A and 18 in group E. Moreover, 34 of these DE genes significantly varied 
their expression across all age groups. Among the hyper-expressed genes in group 
A, six are related to T-cell development and 13 to other cellular and metabolic pro-
cesses. The hypo-expressed genes encompassed one gene related to T-cell develop-
ment, six related to signaling pathways, and 11 related to other cellular and metabolic 
processes. It is interesting to mention that three of the hyper-expressed genes in the 
group A presented high fold-change values (>2.0): CD5 and CAND1, in the tan 
module, and SCML4, in the green yellow module.

The integrative analysis of hubs and HGS genes, abundantly expressed miRNAs, 
and transcription factors (TFs) was accomplished by Pearson’s correlation. For net-
work construction we first obtained a gene expression data matrix for the above- 
mentioned genes, miRNA, and TFs. Subsequently, (i) for miRNA expression data 
we identified those abundantly expressed in at least one age group, and (ii) for TF 
expression data we used Enrichr online web-based tool (Chen et al. 2013; Kuleshov 
et  al. 2016) to search TFs that have protein–protein interactions with hubs and 
HGS genes.

An integrative TF–miRNA–mRNA co-expression network of the abundantly 
expressed miRNAs covarying with hubs, HGS genes, and TFs was subsequently 
constructed (Fig. 4.5). It shows that most of the hub–hub or HGS–HGS gene links 
have positive correlations, while many hub–HGS gene links present negative cor-
relations. Moreover, there are more hub–hub links than hub–HGS genes or HGS–
HGS links. This result indicates that hubs are related to network module robustness 
and the HGS genes – which are differentially expressed genes – are either bridges 
between modules or border genes.
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This integrative analysis clearly showed that the three age-related modules and 
their respective hubs are regulated by different and quite specific sets of abundantly 
expressed miRNAs and TF–hub interactions. The same situation prevails for the 
HGS genes, though it should be noted that just three TFs and several abundant miR-
NAs interact with the hyper-expressed genes in the age group A, whereas six differ-
ent TFs but no abundantly expressed miRNA interact with the hypo-expressed 
genes in this group. The validated TF–miRNA interactions occurred more fre-
quently with miR-150-5p, miR-181a-5p, and miR-205-5p.

Altogether, our results (Bertonha et al. 2020) show a genomic mechanism dif-
ferentially governing the cellular and molecular processes involved in the function-
ing of the neonate thymus and, later, in the beginning of thymic decline. Along the 
first 2 years of age, this mechanism is tightly regulated by the differential expression 
of HGS genes and by TF-miRNA-hub/HGS interactions.

Fig. 4.5 Integrative TF–miRNA–mRNA co-expression subnetwork of the abundantly expressed 
miRNAs covarying with hubs, HGS genes, and transcription factors (TFs). Only co-expression 
covariance values of ≥|0.70| between gene–gene (solid lines), ≤ −0.50 between gene-miRNA 
(arrowed lines), and ≥|0.50| gene-TFs (dashed lines) were considered. Abundantly expressed miR-
NAs are depicted by gray vees; abundantly expressed and DE miRNAs are highlighted with a 
yellow border; HGS genes are depicted by green border nodes; hubs are depicted by blue border 
nodes; the two HGS genes that are also a hub gene are depicted by red border nodes; TFs are 
depicted by light yellow hexagons; positive and negative co-expression interactions are depicted 
by blue and red links, respectively
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Chapter 5
Transcriptomics at the Single Cell Level 
and Human Diseases: Opportunities 
and Challenges in Data Processing 
and Analysis

Vinicius Maracaja-Coutinho and Patricia Severino

5.1  Introduction

Most cells belonging to an organism share the same genome, but gene expression 
levels vary according to cell types and tissues. RNA amounts present in each cell are 
limited, so gene expression profiling has been traditionally performed with pooled 
cells. Despite breakthroughs in precision medicine during the past decade, bulk 
RNA profiling approaches conceal gene expression heterogeneity expected in sam-
ples and tissues. The recent development of single-cell RNA sequencing (scRNA- 
seq) enables researchers to dissect this heterogeneity through genome-wide 
expression profiling at cellular resolution (Kolodziejczyk and Lonnberg 2018). This 
information allows not only the re-evaluation of current hypothesis and biomarkers 
that differentiate disease subtypes and treatment subgroups, but also to distinguish 
cell types and cell states within tissues, possibly shedding light into molecular 
mechanisms underlying the pathogenesis in complex diseases.

In this chapter, we will discuss features of the most relevant technologies for 
single cell isolation and library preparation these days, as well as pipelines for data 
analysis and interpretation. We will also examine the application of scRNA-seq for 
biomarker discovery and challenges specific to single cell data analysis or that may 
also be experienced when analyzing bulk RNA sequencing data.
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Although this chapter does not claim to be an exhaustive review, it should be a 
helpful guide for beginners in this field on state-of-the-art single-cell handling tech-
nologies and data analysis.

5.2  Isolation of Individual Cells

Single-cell RNA-seq involves isolating individual cells, then independently reverse 
transcribing and amplifying their mRNAs before generating barcoded libraries that 
are pooled for sequencing.

Numerous technologies are available for single-cell isolation and separation 
and they differ in mainly three aspects: levels of automation (manual to high 
throughput solutions), ability to isolate specific/individual cells, and compatibil-
ity with application requirements. At present, cell integrity and viability (after 
isolation) and single- cell yield (after separation) are technically challenging. 
Cell integrity is essential throughout the cell isolation process and should be kept 
prior to lysis to avoid early degradation of RNA for any type of application. 
When operating on living cells, cell viability is required and it is critical to keep 
in mind that cells respond to stress factors (e.g., mechanical forces and chemi-
cals) with changes in biological processes. Thus, regardless of the selected tech-
nology for cell isolation, when working with live cells, they must be disaggregated 
into a suspension with rapid processing steps at near-physiological conditions 
since lengthy procedures will lead to undesirable alterations in gene expression 
or even to death of a fraction of the cell population.

Efficiency regarding yield of the single-cell isolation process becomes critical 
when performing single-cell analysis on rare cell types or when using costly 
reagents. The analysis of individually selected cells rather than of a complete popu-
lation of cells from a sample imposes rigorous requirements on the separation tech-
nology, such as not only preventing aliquots that are empty, but also that no cell is 
lost during the isolation process. Additionally, throughput in terms of total number 
of single cells that can be isolated is an important factor when large cell populations 
with low abundance of target cells (e.g. circulating tumor cells) are the focus. In 
these cases, manual procedures are prohibitive and a high throughput technology 
must be used.

Finally, compatibility with existing workflows; acquisition, maintenance, and 
running costs of the platforms; and even the space needed in the laboratory for the 
instruments are also important criteria when selecting isolation and separation 
platforms.

Currently the most widely adopted technologies for cell isolation are 
fluorescence- activated cell sorting (FACS), limiting dilution on microplates, 
manual single cell picking or micromanipulation, laser capture microdissection, 
and microfluidics.
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5.2.1  Flow Cytometry and Fluorescence-Activated Cell Sorting

The principle of flow cytometry is passing of cells, in single-file, in front of a laser 
beam that allows for cells to be detected, counted, and, eventually, sorted. In order 
for this to happen single or multiple cell components are labeled with synthetic 
markers such as fluorescent dyes that are excited by the laser and emit light at spe-
cific wavelengths.

Thousands of cells per second can be analyzed as they pass in front of the laser 
and, as fluorescent dies are measured, the amount and types of cells present in the 
sample are determined by means of information on their physical, chemical, or opti-
cal properties. In practice, relative size and granularity can be extracted as forward 
scatter (FSC) and side scatter (SSC), respectively, and a vast palette of functional 
properties can be measured by different fluorescent staining. There are various types 
of flow cytometers, but for single cells isolation, fluorescence activated cell sorting 
(FACS) systems are required (Herzenberg et al. 2002). In FACS systems, the bypass-
ing cells are sorted after analysis. Briefly, cells are automatically suspended in a 
closed system of small channels, forced through a small nozzle forming a liquid jet 
that is then broken apart into a continuous stream of droplets. Electrically charged 
plates deflect droplets containing the cells of interest and guide them to collector 
tubes or micro-well plates. FACS systems provide different sort modes that special-
ize on high throughput, enrichment, or purity. Depending on the application, type of 
cells, and the chosen sorting mode, the actual rate of sorted cells per second can 
strongly differ between some hundred up to several thousand cells.

FACS can be suitable for rare cell sorting (subpopulations < 1%) and some of 
FACS systems, within minutes, are able to deposit single cells in micro-well plates 
with high purity. Nevertheless, drawbacks specific to this technology include the 
need for monoclonal antibodies to label proteins of interest, subpopulations with 
similar expression of labeled proteins are difficult to differentiate, large starting 
volumes are required, and FACS may have non-negligible effects on cell viability 
(Wu and Singh 2012). However, the popularity of FACS systems makes them acces-
sible to a broad range of users.

5.2.2  Limiting Dilution on Microplates

Hand-pipettes or pipetting robots can be used to isolate individual cells from cell 
suspensions: the number of cells in a highly diluted sample can be as low as one 
single cell per aliquot due to the statistical distribution of the cells in the suspension. 
This procedure is termed limiting dilution, and even though it has been known for 
decades (Fuller et al. 2001), its application in single-cell transcriptomics may be the 
technology of choice depending on the application since it is a simple, gentle, and 
relatively cost-efficient process with reasonable throughput when using automated 
pipetting robots. However, due to the statistical nature of the process, further 
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technologies such as microscopic imaging systems may be required downstream to 
prove single-cell presence in wells. Combined with upstream sorting or enrichment 
techniques it can constitute an appropriate tool to easily separate viable single cells.

5.2.3  Manual Single Cell Picking or Micromanipulation

Targeted isolation of individual single cells may be achieved by micromanipulation 
using a microscope -assisted picking tool. These micromanipulators for manual cell 
picking consist of an inverted microscope combined with movable micropipettes 
made of ultrathin glass capillaries coupled with an aspiration and dispensation 
device. For cell picking, an operator selects target cells from a suspension in a dish 
or well plate and performs the aspiration, transfer, and dispensation to a well of a 
well plate. Micromanipulators allow controlled separation of living cells and this 
targeted isolation of a specific cell under microscope is the central benefit of this 
technology, not shared by many others (Wright et al. 1998; Citri et al. 2011).

In terms of cell types it is a very flexible technology, unlike laser capture micro-
dissection (see next section in this chapter) that mainly isolates single cells from 
sections of fixed tissue, micromanipulation allows the isolation of live cells, 
although the manual process of obtaining single cells limits the overall throughput. 
Furthermore, to confirm if a single cell has been successfully transferred to a well, 
additional observation of the well plate is required. Recent methodologies have pro-
posed fully automated, video assisted, isolation and placement of single cells in 
well plates (Lu et al. 2010).

5.2.4  Laser Capture Microdissection

Individual cells or cell compartments can be isolated from solid tissue samples 
using laser capture microdissection (LCM) (Espina et  al. 2007; Nakamura et  al. 
2007). Briefly, the target cell or compartment in a tissue section is visually identified 
through a microscope and the section to be cut off is marked with a line around it so 
that the laser will cut the tissue or the isolated cell or compartment along the line 
trajectory. Following this cutting procedure different methods can be used to extract 
the dissected tissue: contact-based extraction via adhesion, employing solutions 
such as adhesive tube caps; contact-free gravity-assisted microdissection (GAM) 
using an inversely mounted substrate placed over a collector tube so that once cut 
out by the laser, the target section falls down into the collector cube; and contact- 
free laser pressure catapulting (LPC), where a short defocused laser pulse ignites a 
local plasma below the previously cut section catapulting the section vertically 
against gravity into a nearby collector tube.

Whenever single cells need to be isolated from solid samples (e.g., tissue and 
biopsies) LCM systems are commonly the tool of choice. These systems are 
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relatively easy to handle and the lasers cut with sub-micrometer precision without 
introducing deleterious heat to the tissue. However, despite a higher level of user-
friendliness and automation in modern LCM systems, the selection and isolation 
processes remain operator based, limiting the throughput. Additionally, since the 
integrity of extracted cells is important for reliable downstream analysis of RNA, 
depending on the quality of fixation and cell extraction method used (i.e. adhesion, 
gravity, and catapulting) single-cell integrity might be compromised, it might 
remain unclear if a cell was actually transferred, and if contaminants such as frag-
ments of adjacent cells were transferred along with the cell of interest (Fend 2000; 
Bevilacqua et al. 2010; Liu 2010).

5.2.5  Microfluidics

Microfluidics have been establishing new workflows for single-cell separation, iso-
lation, and analysis (Whitesides 2006). These systems can be operated with very 
low volumes regarding cell samples and reagents, which is advantageous for rare 
cell applications or from an economical point of view, and allow the isolation of 
hundreds to thousands of cells with more or less automation (Svensson et al. 2018).

A widely used commercial platform is Fluidigm C1, launched in 2013. It enables 
automated single-cell lysis, RNA extraction, cDNA synthesis, and amplification 
based on Smart-seq (Ramskold et al. 2012) (see section 3.3 for sequencing details) 
of up to 800 single cells in parallel. Cap analysis gene expression (CAGE) can also 
be conducted using this system, which enables the profiling of the 5′ end of tran-
scripts with strand information in a single cell (Kouno et al. 2019).

Droplet-based microfluidics, consisting mainly of microchannels introducing or 
collecting reagents and samples, allows the monodispersion of aqueous droplets in a 
continuous oil phase that rapidly encapsulates, in nanoliter- sized volumes, single-
cell reactions (Agresti et al. 2010; Duncombe et al. 2015). The lower volume required 
by this system enables the manipulation and screening of thousands to millions of 
cells at a reduced cost. Relevant microdroplet-based systems are inDrop (1CellBio), 
Chromium (10× Genomics), ddSEQ (Bio-Rad/Illumina), and Nadia (Dolomite).

Finally, relevant microwell-based systems are Rhapsody (BD) and ICELL8 
(Takara). These systems capture and barcode hundreds to thousands of single cells 
using single-cell partitioning technologies, and use visualization systems following 
the single-cell capture workflow to provide more control over the selection of the 
isolated cells.

The complexity of biological systems and the number of cells that can be pro-
cessed in parallel for scRNA-seq constitute a challenge and impact statistical power. 
However, it is important to select appropriate methods of single cell processing 
according to sample type and research purposes. While droplet-based platforms 
offer a high throughput, meaning a lower cost per cell, platforms such as Fluidigm 
C1 provide lower throughput, but give the possibility to inspect the presence of the 
cells before lysis, ensuring the presence of a single cell for downstream analysis, 
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saving costs in case cell isolation was inefficient. Additionally, although the 
Fluidigm system can analyze relatively few cells per run, as determined by its size, 
the platform can be used to obtain full-length cDNA libraries for each cell sepa-
rately and can perform additional sequencing of libraries in user-selected wells, 
enabling in-depth, more sophisticated information for each cell. Chromium, on the 
other hand, enables the analysis of thousands of cells but the libraries of selected 
cells cannot be reanalyzed because they are mixed after barcoding. Thus, a choice 
between a small number of cells with a large amount of information for each cell 
(Fluidigm) and many cells with less information per cell (Chromium) should be 
carefully evaluated considering the study design.

5.3  Single-Cell Transcriptomics

Transcriptome analysis profiles the complete set of RNA molecules in a given bio-
logical sample. Three technologies that dominate this field have recently been 
extended to single cell applications: quantitative reverse transcription polymerase 
chain reaction (qRT-PCR), microarrays, and RNA sequencing (RNA-seq) (Esumi 
et al. 2008; White et al. 2011; Tang et al. 2009).

5.3.1  Quantitative Reverse Transcription Polymerase 
Chain Reaction

Based on the hybridization with fluorescent markers, qRT-PCR measures PCR 
product accumulation and until this date it is the most sensitive and reproducible 
quantification method for gene expression (Kolodziejczyk et al. 2015). However, 
even though recent studies have dramatically increased the number of cells profiled 
in a single experiment by qRT-PCR (Moignard et al. 2015), the main limitation of 
this technology is still its low throughput: while the number of cells measured can 
be increased using parallelized microfluidic approaches, the number of analyzed 
genes per experiment is hard to scale up since multiplexing is limited to four fluo-
rescent dyes and, for each gene, specific primers require extensive testing (White 
et al. 2011; Zhong et al. 2011; Citri et al. 2011). Fundamentally, these characteris-
tics imply high costs per cell and laborious efforts. Additionally, since qRT-PCR 
requires selection of target genes based on prior knowledge, it is a hypothesis-driven 
approach, potentially leading to a biased analysis.

5.3.2  Microarrays

Another popular quantification method in transcriptomics is microarrays. This tech-
nology uses pre-designed RNA probes for transcriptome-wide analyses. Even 
though microarrays have been used in single-cell analysis (Esumi et al. 2008; Rajan 
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et al. 2011), they have not become a method of choice due to several limitations that 
include costs, limited dynamic range and sensitivity, and the requirement of rela-
tively large amounts of RNA as starting material, a problematic feature when work-
ing with single cells.

5.3.3  Single-Cell RNA Sequencing

RNA sequencing (RNA-seq) is the most recent transcriptome measurement 
approach. Compared with qRT-PCR and microarrays, a major advantage of RNA- 
seq is the fact that it enables the unbiased profiling of the entire transcriptome. Its 
application to single cells was driven by new approaches for single cells isolation 
that have substantially increased the number of cells that can be profiled in a single 
experiment, as described in the previous section, including applications of Fluidigm 
C1 (Xin et  al. 2016), and droplet-based approaches such as Drop-seq (Macosko 
et al. 2015), inDrop (Klein et al. 2015), and Chromium (Zheng et al. 2017).

In a typical mammalian cell only less than 5% of the total RNA is polyadenyl-
ated mRNA. Thus, for the measurements in single cells, reverse transcription (RT) 
and cDNA amplification will be performed from very small amounts of RNA. This 
means that the mRNA capture efficiency (i.e., the fraction of mRNA molecules that 
are actually recovered and quantified) is as important as the quantification accuracy. 
This is to say that contrary to bulk RNA analysis, where losses during sample prepa-
ration can be tolerated as long as the remaining sample is still representative of the 
original, if a large portion of a single-cell RNA sample is lost, then information on 
genes expressed in low copy numbers per cell will be irreversibly lost.

Diverse technologies for whole-transcriptome amplification (WTA) exist. Smart-
seq is a WTA method developed for full-length cDNA amplification with oligo-dT 
priming and template switching (Ramsköld et  al. 2012). Currently, Smart-seq2 
(Picelli et al. 2013), Quartz-Seq (Sasagawa et al. 2013), and CEL-seq (Hashimshony 
et  al. 2012) stably measure mRNAs from a single cell, with complete coverage 
across the genome allowing the detection of alternative transcript isoforms and 
SNPs, while RamDa-seq also detects non-poly(A) transcripts, long noncoding 
RNAs, and enhancer RNAs in single cells (Hayashi et al. 2018).

For the processing of hundreds to thousands of single cells for scRNA-seq, a 
number of solutions for library construction have been proposed (see section 2 of 
this chapter). Microdroplet- and microwell-based protocols allow easy handling of 
thousands of single cells and are currently popular platforms. In microdroplet-based 
technologies, RT is conducted with molecular/cell barcoding within oil droplets 
containing a cell or nucleus, a reaction liquid, and a barcoded bead. In the microwell- 
seq approaches a cell and a barcoded bead are isolated in a well (Han et al. 2018). 
Nx1-seq (Hashimoto 2019) and Seq-Well (Gierahn et al. 2017) have been reported 
to be portable, low-cost microwell-based platforms. Additionally, higher- throughput 
and lower-cost for scRNA-seq analysis are achieved with sci-RNA-seq, a combina-
torial indexing method (Cao et al. 2017, 2019).
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5.3.4  Biological Interpretation of scRNA-seq

Beyond computational analysis, challenges also arise when it comes to biological 
interpretation: how to relate molecular measurements and cellular function in health 
and disease. Cellular heterogeneity of human tissues has been the focus of recent 
scRNA-seq studies and of the international consortium Human Cell Atlas (www.
humancellatlas.org) (Regev et al. 2017; Lindeboom et al. 2021; Rozenblatt-Rosen 
et al. 2021) that include the search for rare or new cell types in large data sets as well 
as contributions of different genes to each cell state. The in silico dissection of a 
mixture of cells into different molecular/transcriptomic states is visually interpre-
table by cell clusters or cell/gene networks, using tools for dimension reduction 
(e.g., principal component analysis or Gaussian process latent variable model), dif-
ferential analysis, clustering (e.g. t-stochastic neighborhood embedding plots), or 
network inference (Stegle et al. 2015). Noteworthy is that as the number of cells in 
a given study increases due to technological improvement, so will the number of 
presumed transcriptomic states and, consequently, of distinct clusters detected. This 
scenario potentially influences the interpretation of the results and demands appro-
priate model selection procedures. Advances in statistical modeling of scRNA-seq 
data should be closely linked to proper model selection to guide heterogeneity 
analysis.

Computational approaches can generate hypotheses and complement but not 
substitute traditional experimental validation. Only from transcriptional profiles 
obtained from scRNA-seq data it is difficult to make conclusive statements on the 
functional state of cell subtypes. All exclusively big data-driven single cell analyses 
are mostly descriptive and lack mechanistic insights. Besides a computing infra-
structure and robust statistical methods, for extracting relevant information that 
would guide follow-up experiments, biological expertise and a clear research ques-
tion are needed.

5.4  scRNA-seq Bioinformatics and Data Analysis

The bioinformatics data analysis of scRNA-seq is much more complex than the 
traditional bulk RNA-seq. It requires careful execution of distinct computational 
steps, using stand-alone tools and R packages, together with some particular web 
services and specific databases. In this section, we will cover the general tools used 
to perform each one of the main steps in scRNA-seq data analysis, from the initial 
quality control and filtering of unwanted cells and transcripts, to the cell identity 
classification, cellular state dynamics, gene networks inference, and intercellular 
communication.
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5.4.1  Barcoding Inspection, Reads Mapping, Quantification, 
and Batch Correction

First, standard FASTQ format files with sequencing reads retrieved from the 
sequencer must be demultiplexed into sets of cell-specific reads based on specific 
barcodes. Different scRNA-seq library construction platforms vary in approaches 
used to barcode cells and transcripts (see previous sections in this chapter), resulting 
in a myriad of platform-specific protocols. Some scRNA-seq approaches addition-
ally use unique molecular identifiers (UMIs), which are tag sequences used to 
reduce amplification noise of transcripts within the same cell (Islam et al. 2014; 
Stegle et al. 2015). For instance, Chromium (10× Genomics) platform provides its 
own software (Cell Ranger); CELSeq2 (Hashimshony et al. 2016) barcoding was 
developed for Cel-seq2 protocol, but it can be used in data generated by other plat-
forms such as SMART-seq2 and Drop-seq; and other generic tools were also made 
available for this purpose, such as STARsolo (Kaminow et  al. n.d.), Alevin 
(Srivastava et al. 2019), and scPipe (Tian et al. 2018). These tools also perform the 
mapping of reads to the studied genome and gene expression quantification, gener-
ating cell-specific read counts expression matrices as output.

Next, the expression matrix must be evaluated by a quality control procedure, 
filtering out unwanted genes and cells based on several criteria. The huge amount of 
gene expression data from thousands of cells presents a high level of variance and 
noise due to cell-to-cell variation, which are caused by the particularities and limita-
tions of the cell isolation and selection procedures, and transcripts amplification. In 
this process, different tools use distinct metrics to remove low-quality cells and 
transcripts, filtering out, for example, genes expressed in a small number of cells, as 
well as cells expressing a small number of genes. Seurat (Hao et al. 2021), Scater 
(McCarthy et al. 2017), and Scanpy (Wolf et al. 2018) workflows are widely used 
tools for these quality control, filtering, and bias correction steps. In this process, the 
proportion of reads mapping to the mitochondrial genome (mtDNA) is also evalu-
ated as an additional quality control metric, and cells presenting an abnormal num-
ber of mapped reads to mtDNA are often removed.

5.4.2  Normalization, Feature Selection, Dimensionality 
Reduction, and Cell-Specific Marker Genes Identification

Once we have a high quality expression matrix consisting of read counts, the tran-
scripts expression must be normalized to adjust for differences in experimental con-
ditions making the expression values between cells more comparable. Examples of 
tools for this purpose are Scanpy (Wolf et  al. 2018), Seurat (Hao et  al. 2021), 
Monocle3 (Trapnell et al. 2014), and CORAZON (Ramos et al. 2020). It is worth 
mentioning that due to the particularities and 3′ biases in the library preparation of 
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some scRNA-seq platforms, the normalization approaches that consider the tran-
script length in their formula (e.g., FPKM and RPKM) may not be appropriate.

In scRNA-seq experiments, one of our main goals is to characterize heterogene-
ity in a particular tissue and condition of interest (e.g., cell states and cell types). 
The clustering and dimensionality reduction are commonly used approaches to 
compare the expression of transcripts within cells, classifying them into groups by 
their expression levels. In this process, the feature selection step is essential for the 
selection of transcripts relevant to the biological tissue, excluding transcripts with 
expression patterns that do not present meaningful biological variation across the 
cells. Next, the selected genes must be clustered through unsupervised learning 
approaches to separate different groups of cells according to their expression pat-
terns. In the clustering process, each individual transcript represents a dimension of 
the data, and each cell expression profile determines the location of a particular 
transcript in a high-dimensional space. To facilitate data processing and visualiza-
tion, the number of separated dimensions of data is reduced. Finally, once the cells 
are separated into clusters according to their expression patterns, the cell identity is 
obtained through the identification of specific gene markers. All these steps can be 
performed by tools such as SC3 (Kiselev et al. 2017), Scanpy (Wolf et al. 2018), 
Seurat (Hao et al. 2021), and Monocle3 (Trapnell et al. 2014). Additionally, data-
bases providing comprehensive information related to cell markers for different cell 
types and human diseases have been released, such as CellMarker (Zhang et  al. 
2019), PanglaoDB (Franzén et al. 2019), and CancerSEA (Yuan et al. 2019), which 
can be integrated into the tools to map and annotate specific cell types in the differ-
ent clusters.

5.4.3  Gene Trajectories and Pseudotime

Cells in particular systems and biological conditions exhibit continuous and 
dynamic states, and transitions between them. Examples are the cell differentiation 
state of specialized cell subtypes or immune cells activation, which occur through 
gradual changes in their RNA expression profiles. The cell states along these pro-
cesses can be computationally reconstructed through cell trajectories and pseudo-
time approaches, revealing key factors that could be triggering these state transitions. 
In summary, the cell trajectory characterizes a path through which cell populations 
may progress along different cellular states in a continuous process, representing 
the transition from an initial to a final state. In this sense, the pseudotime represents 
the specific state of cells along this trajectory and can reveal if a particular cell is 
more differentiated than the other. Widely used tools to characterize cellular state 
dynamics are Scanpy (Wolf et  al. 2018), Monocle3 (Trapnell et  al. 2014), and 
CellRouter (Lummertz da Rocha et al. 2018).
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5.4.4  Gene Regulatory Networks and Cell–Cell 
Communication Profiling

The inference of biological networks to sets of genes expressed in specific cells and 
conditions of interest can provide meaningful biological insights that may not be 
revealed by bulk RNA-seq. However, technical noise of scRNA-seq data, the cell 
gene expression heterogeneity, subpopulations, and cell states may impose a level 
of complexity in this type of analysis. SCENIC (Van de Sande et al. 2020) and PIDC 
(Chan et al. 2017) were developed to reconstruct gene regulatory networks by pre-
dicting transcription factors and target transcripts associations in scRNA-seq data. 
CEMiTool (Russo et al. 2018) and webCEMiTool (Cardozo et al. 2019), an R pack-
age and web-server respectively, allow users to easily identify biologically relevant 
gene co- expression modules in an automated and easy-to-use way, as well as to 
perform a comprehensive set of analyses to better understand the biological func-
tions present in the underlying system. In single-cell assays, the modules found can 
be used to redefine cell populations, revealing novel gene associations, and predict-
ing gene function by a guilt-by-association approach.

Another interesting type of computational functional analysis that is gaining 
attention in the scRNA-seq field is the determination of cell–cell interactions and 
communication patterns based on single-cell data. Computational tools and data-
bases emerged recently to decipher the intercellular signaling pathways, especially 
ligand–receptor pairs, based on protein–protein interaction information retrieved 
from scRNA-seq (Armingol et al. 2021). Examples of tools for this kind of analysis 
are iTALK (Wang et al. n.d.), CellChat (Jin et al. 2021), CCCExplorer (Choi et al. 
2015), and ICELLNET (Noël et al. 2021).

5.5  Final Remarks

Single-cell analysis distinguishes differences between individual cells within seem-
ingly homogeneous populations. Single-cell analysis techniques can also be applied 
to the detection of rare cells within heterogeneous cell populations, which would be 
useful in both basic research and clinical applications. Over the last decade, 
advanced analysis techniques have enabled the study of complex biological systems 
and phenomena at this single-cell resolution. However, despite the advantages of 
these techniques, they are not exempt from limitations and can be technically and 
financially demanding. This chapter addressed transcriptomics at single-cell resolu-
tion. Currently, the sensitivity of scRNA-seq is critically dependent on a variety of 
technical aspects that include single-cell isolation and handling, library preparation, 
and sequencing depth. With the number of cells tested, experimental costs increase 
significantly and the large amounts of complex data generated demand high levels 
of expertise and complex computational tools. Moreover, the implementation of 
scRNA-seq may require time-consuming and labor-intensive optimization of 
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multiple sample-specific steps in their procedures. This scenario explains why 
single- cell analysis technologies are still not routinely performed or widespread. To 
enable extensive use in both laboratory and clinical settings, assays of relatively 
lower costs, easy to perform, and readily adaptable for a wide range of applications 
are awaited.
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Chapter 6
Methods for Gene Co-expression Network 
Visualization and Analysis

Carlos Alberto Moreira-Filho, Silvia Yumi Bando, 
Fernanda Bernardi Bertonha, Filipi Nascimento Silva, 
and Luciano da Fontoura Costa

6.1  Introduction

The development of high-throughput techniques for concurrently measuring the 
expression levels of thousands of genes, mostly based on DNA microarrays 
(Bumgarner 2013) or on RNA sequencing (RNA-seq) techniques (Cockrum et al. 
2020), allowed monitoring cell’s transcriptional activity across multiple conditions, 
opening broad perspectives for functional genomics (Joshi et al. 2021). Hereafter, 
new insights were gained on the genomic mechanisms underlying relevant biologi-
cal processes – such as cell cycle and development, and the genome–environment 
interplay – leading to a systemic approach for the identification of disease-related 
genes and their interaction with external stressors (Vermeulen et al. 2021). A large 
part of this remarkable progress required multi-omics data integration (genomics, 
transcriptomics, proteomics, metabolomics, etc.) using systems biology computa-
tional tools (Manzoni et al. 2018; Vlachavas et al. 2021). Essentially, systems biol-
ogy aims to explain biology in terms of interacting components (Joshi et al. 2021). 
Gene co-expression network analysis is a systems biology method for describing 
the correlation patterns among genes across DNA microarray or RNA- seq samples 
that heavily relies on network science (Gysi and Nowick 2020), as shown in the 
subsequent sections of this chapter.
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Although RNA-seq is becoming increasingly popular for measuring gene expres-
sion, DNA microarray technology remains widely used for transcriptomics, since it 
is cheaper and easier to analyze (Mantione et al. 2014; Costa-Silva et al. 2017; Rao 
et al. 2019; Geraci et al. 2020). A single DNA microarray generates data on the 
expression levels of thousands of genes and typical microarray studies encompass 
multiple arrays covering several distinct experimental conditions, e.g., tissue sam-
ples from patients and controls, or cultured cells submitted to different treatments 
(Moreira-Filho et al. 2016; Bando et al. 2019). Advanced statistical and computa-
tional tools have been developed to deal with the large amount of data derived from 
microarray experiments (Zhang and Horvath 2005; Lee and Tzou 2009; Faro et al. 
2012; Ang et al. 2016; Arunkumar et al. 2017), including machine learning tech-
niques (Mahendran et al. 2020). One of the most effective methods for the analysis 
of microarray data is based on the construction of gene co-expression networks, or 
GCNs: gene expression levels are pairwise compared and the pairs above a cutoff 
threshold are linked to create a gene–gene interaction network (Weirauch 2011). 
The topological and dynamic properties of these networks provide important clues 
for understanding the functional organization of cells and tissues (Barabási and 
Oltvai 2004; Zhu et al. 2007; Gaiteri et al. 2014, van Dam et al. 2018). This chapter 
is centered in network-based methods for analyzing DNA microarray data: the fun-
damentals for construction, visualization, interpretation, and validation of GCNs 
will be discussed in the next paragraphs, emphasizing the use of graph methods 
(Barabási and Oltvai 2004; Barabási et al. 2011; Costa et al. 2011; Villa-Vialaneix 
et al. 2013; Winterbach et al. 2013). Because the identification of transcriptional 
modules (sets of highly interconnected genes) is of utmost biological importance, 
there is a specific section on Weighted Gene Co-expression Network Analysis 
(WGCNA), a bioinformatics tool for identifying relationships between transcrip-
tional modules, and between these modules and phenotypic and/or clinical traits 
(Langfelder and Horvath 2008; Galán-Vásquez and Perez-Rueda 2019; Bando 
et al. 2021).

A few considerations are still needed before we start to review the network-based 
approach to functional genomics. First, one should keep in mind that gene function 
is not isolated: the network effect of genes is the driving force moving cell metabo-
lism from one steady state to another, frequently in response to environmental 
changes (Sieberts and Schadt 2007; Liu et al. 2012a; Sahni et al. 2013). These tran-
sitions shape what we call complex phenotypes – normal or altered by a disease 
state – and can be correlated with specific changes in GCNs (Benson and Breitling 
2006; Carter et al. 2013; Bando et al. 2019). Second, for studying these network 
changes are mandatory: (i) to gain access to the cells or tissues specifically involved 
in the physiological or pathological process under investigation; (ii) to collect an 
adequate number of biological replicates; (iii) to obtain good quality RNA samples; 
and (iv) to use a microarray (or RNA-seq) platform suitable for attaining the research 
goals. Therefore, comments on sample quality and experimental design will be 
made in the following section.
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6.2  Analysis of DNA Microarray Data

The DNA microarray for assaying gene expression (Bumgarner 2013) consists in 
grid that can contain tens of thousands of probes corresponding to known transcripts 
of a particular genome (human, rat, etc.). Fluorescent-labeled complementary DNA 
(DNA synthesized from messenger RNA) samples are hybridized to probes and the 
relative abundance of each sequence in a sample is quantified in microarray scanner 
for fluorescence detection (image capture). The steps from RNA extraction to array 
scanning, data export, and subsequent statistical and network analyses are outlined 
in the following subsections. This workflow is presented in Fig. 6.1.

Fig. 6.1 Workflow for gene co-expression network construction, visualization, and analysis. The 
diagram depicts the following steps: gene expression data matrix; statistical analysis and gene co- 
expression network construction; network visualization and analysis (2D or 3D); WGCNA; enrich-
ment analysis; experimental data validation
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6.2.1  RNA Isolation and Preservation

Messenger RNA for DNA microarray experiments must be preserved in its last 
physiological state and be prevented from degrading. Larger tissue samples 
(>50  mg) may be snap-frozen in liquid nitrogen. Smaller tissue samples (5-mm 
thick fragments) are usually preserved in RNAlater®, a product (distributed by 
Ambion and Qiagen) which penetrates cell membranes and inactivates RNAses. 
After RNA extraction, RNA quality should be assessed in a microfluidics-based 
platform (e.g., BioAnalyzer) for sizing, quantification, and quality control. The 
integrity of RNA molecules is estimated by using the RIN algorithm (Schroeder 
et al. 2006). RIN values range from 1 (total degradation) to 10 (intact). As a rule, 
only RNA samples with RIN values of 7 or higher should be used in DNA microar-
ray experiments. Irrespective of the cellular RNA extraction protocol adopted, a 
final column purification step (e.g., RNeasy) consistently leads to a high yielding 
synthesis of cDNA.

6.2.2  Gene Expression Analysis

Scanner generated data (image file) are pre-processed, filtering out probes flagged 
as unreliable (low intensity, saturation, restriction control probes, etc.) by the scan-
ning software, and thereafter normalized ending up with a file of numerical values 
corresponding to probe’s expression levels in a microarray experiment. The assess-
ment of raw data quality and data grouping (comparison groups, e.g., patients and 
controls) can be done using free software packages, like R software (R Development 
Core Team 2012), for normalization (Lowess test for arrays normalization), outlier 
exclusion, and exporting of valid transcript expression data.

MeV (TIGR Multiexperiment Viewer) is a popular free software for comparative 
analysis that can be used for clustering, visualization, classification, statistical anal-
ysis, and biological theme (Gene Ontology, or GO) discovery (Saeed et al. 2003). 
The differentially expressed transcripts for two comparison groups are obtained 
using SAM test – Significance Analysis for Microarray – for parametric analysis 
(using non-parametric statistics) or Wilcoxon–Mann–Whitney test for non- 
parametric analysis. ANOVA is used for multiple comparisons across conditions. 
Thereafter, false discovery rate tests are applied (already included in SAM test). 
Finally, the differential GO annotated gene expression data can be used for gene 
expression analyses (Fig. 6.1) and in the construction of co-expression networks, as 
described in Sect. 6.3.
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6.3  Construction and Analysis of GCNs

GCNs can be obtained for a subset of genes, i.e., differentially expressed GO anno-
tated genes (DE networks), or for all valid GO annotated genes (complete, or CO 
networks). These networks are constructed based on gene–gene covariance correla-
tion, usually using Pearson’s or Spearman’s rank correlation (Fig. 6.1) (Prifti et al. 
2008; Song et al. 2012). Genes presenting similar patterns of expression are strongly 
bounded together forming a weighted complete graph.

In order to construct a GCN links are removed from the initially complete graph 
by gradually increasing the correlation threshold (Elo et al. 2007). After link strength 
threshold adoption, usually above 0.80, the network is tested for scale-free status 
(see Sect. 6.3.2) by Kolmogorov–Smirnov (K-S) statistics, i.e., power law distribu-
tions in empirical data (Clauset et al. 2009). Here we used a demonstrative example 
of a “patient versus control” gene co-expression analysis (Fig. 6.2). This analysis 
considered: 202 genes and 561 links for patients’ DE network; 219 genes and 486 
links for control DE networks; 6,927 genes and 12,768 links for patients’ CO net-
works; 6,705 genes and 12,468 links for control CO networks. Link strength cut- 
offs were 0.998 for control CO network and 0.999 for the other three networks. 
Figures 6.2 and 6.3 show K-S distribution for DE and CO networks, respectively, of 
patients’ group (Figs. 6.2c and 6.3c) and controls’ group (Figs. 6.2d and 6.3d).

The number of samples available for each gene is also directly connected to the 
statistical significance of the generated GCN. Networks constructed from datasets 
with less than five samples per gene can lead to high adherence to the null model, 
where nodes are randomly connected, thus presenting degree distributions with 
asymptotic exponential decay behavior. This effect can occur even when consider-
ing a very large correlation threshold, such as above 0.999.

6.3.1  Network Visualization

The Cytoscape free software (Saito et al. 2012; www.cytoscape.org) is very useful 
for data analysis and visualization of DE networks or subnetworks (Fig. 6.2a, b). On 
the other hand, CO network analysis is only possible through 3D visualization 
(Fig. 6.3a, b and Videos 6.1 and 6.2). Several 3D visualization softwares for gene–
gene and protein–protein networks are being developed (Ishiwata et  al. 2009; 
Pavlopoulos et al. 2008; Wang et al. 2013). One of them – developed by Luciano 
Costa’s Research Group, Institute of Physics at São Carlos, University of São Paulo 
(Bando et al. 2013), and suitable for obtaining visualization of large complex net-
works – is based on the Fruchterman–Reingold algorithm, FR (Fruchterman and 
Reingold 1991), which is a force-directed technique based on molecular dynamics 
employing both attractive and repulsive forces between nodes (Silva et al. 2013).
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Fig. 6.2 Comparative DE network analysis for patients and control groups in a hypothetical net-
work. DE co-expression networks for patients (a) and control (b) groups; links in blue or red 
indicate positive or inverse covariance correlation. It is interesting to note that the same genes 
(numbered nodes bordered in red or blue) have different covariance correlation between patients 
and control groups. Clusters are encircled in (a and b) networks. (c and d) Kolmogorov–Smirnov 
test for scale-free status for patients and control groups, respectively. Scatterplot of node degree 
(k0) vs concentric node degree (k1) measures for patients (e) and control (f) groups. Interactome in 
silico validations for patients and control networks are depicted in (g and h), respectively. Hubs, 
VIPs, and high-hubs are indicated in blue, red, and green, respectively. Network analyses and 
visualization were accomplished through Cytoscape
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Fig. 6.3 Complete CO networks analysis for patients and control groups. CO co-expression net-
works for patients (a) and control (b) groups. Kolmogorov–Smirnov test for scale-free status for 
patients (c) and control (d) groups. Scatterplot of node degree (k0) vs concentric node degree (k1) 
measures for patients (e) and control (f) groups. Hubs, VIPs, and high-hubs are indicated by rect-
angles, diamonds, and triangles, respectively. For 3D CO network visualization access the video 
hyperlinks (Videos 6.1 and 6.2)
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6.3.2  GCNs Are Scale-Free Networks

GCNs, like other biological networks and similarly to social and internet networks, 
are not random and follow some basic principles (Newman 2010). In random net-
works the nodes have nearly the same number of links and, therefore, highly linked 
nodes are rare. In network terminology, the number of links, or edges, connected to 
a node is called node degree. Hence, nodes in random networks characteristically 
have low diversity of node degrees. Conversely, most of the “real world networks,” 
as GCNs or protein–protein networks, are scale free, what means that the degree 
distribution follows a power law: the node degree distribution P(k), with node 
degree k, follows P(k) ~ k−γ, where γ is the degree exponent. Therefore, scale-free 
networks have a limited number of highly connected nodes, or hubs, that, as we 
shall discuss latter, are usually associated with relevant biological functions and 
responsible for the network robustness, i.e., hold the whole network together 
(Winterbach et al. 2013).

The categorization of nodes according to their node degree encompasses two 
other categories besides the hubs. The VIPs (a term coined in the study of social 
networks) are nodes presenting low node degree but connected only with hubs 
(Masuda and Konno 2006; Mcauley et al. 2007). In some networks VIPs may rep-
resent the highest control hierarchy in a system and hubs may be under VIPs' influ-
ence. Some nodes may present VIP status (connected with many hubs) and also 
present high overall number of connections, being called high-hubs (Bando et al. 
2013). These hierarchical categories are all coherent with the biological role and 
dynamic behavior of GCNs hubs, as discussed below.

Some hubs are highly interlinked in local regions of a network thereby forming 
network clusters, topologically called modules or communities. Modules may be 
associated with specific biological processes in gene co-expression and protein–
protein networks. For this reason, hubs may be sometimes classified as “party 
hubs”, those functioning inside a module, or “date hubs”, i.e., those linking different 
processes and organizing the network, playing a role similar to VIPs and high-hubs 
(Zhu et al. 2007; Barabási et al. 2011; Weirauch 2011).

6.3.3  Concentric Characterization of Nodes

One way to classify network nodes as VIPs, hubs, or high-hubs is by obtaining the 
node degree, k0, and the first level concentric node degree, k1, which takes into 
account all node connections leaving from its immediate neighborhood, then pro-
jecting all node values in a k0 vs k1 graphic. VIPs should present low k0 but high k1, 
while hubs present high k0 and low k1, and high-hubs present high k0 and k1 values. 
Figures 6.2e–f and 6.3e–f show each of these node categories in scatterplots of node 
degree vs concentric node degree measures obtained in DE and CO networks distri-
bution scatterplots (k0 vs k1) generated for distinct GCNs.
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Because most real networks present scale-free distributions, there is no clear 
definition for setting a degree threshold for which we can classify nodes as being 
hubs or not (Barabási and Oltvai 2004; Barabási et al. 2011). This same is true for 
objectively defining VIPs and high-hubs, since the distribution of k1 also suffers 
from the problem of not presenting a scale. Here we define hubs, VIPs, and high- 
hubs by ranking them according to k0 and k1, and then considering a set of those 
presenting the highest values of each property, as depicted in Fig.  6.4 (see also 
Bando et al. 2013). These measures are used for nodes categorization such as Hub 
(high k0 VIP (high k1 and low k0)) and High-hub (high k0 and k1).

6.3.4  Betweenness Centrality

Betweenness centrality (Costa et al. 2008; Freeman 1978; Brandes 2001) is a mea-
surement of node importance which considers the entire set of shortest paths 
between nodes and passing through a particular node in a network. Betweenness is 

Fig. 6.4 Concentric levels. Example of concentric levels of a network for node A as reference (i.e., 
centered at node A). Each concentric level is represented by rings Rh(A), namely R0(A) = {A}, 
R1(A) = {B, C, D}, and R2(A) = {E, F, G, H, I, J, K}, with concentric node degrees k0(A) = 3 and 
k1(A) = 8
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one of the most important topological properties of a network: nodes with the high-
est betweenness control most of the information flow in the network (Yu et al. 2007; 
Azevedo and Moreira-Filho 2015; van Dam et al. 2018).

6.3.5  Positive or Inverse Gene–Gene Correlation

Pearson’s correlation coefficient (PCC) gives us the strength of the relationship 
between a pair of genes (nodes in the network) (Allen et al. 2010). PCC ranges from 
−1 to 1 and the closer the number to either of these boundaries, the stronger the 
relationship: a negative number indicates an inverse correlation (e.g., expression of 
gene A increases as expression of gene B decreases) while a positive number indi-
cates a positive correlation (e.g., as A increases B tends to increase). This is depicted 
by the blue (positive correlation) and red (negative correlation) edges in Fig. 6.2a, b.

6.3.6  Network Connectivity

This and the two next subsections will address issues on network topology. Network 
topology exerts a pivotal role in unraveling GCNs organization and performance 
under different conditions (Barabási and Oltvai 2004; Zhu et al. 2007; Costa et al. 
2011; Liu et al. 2012b; Bando et al. 2019). Network connectivity is an elementary 
network property: a pair of nodes that have just one independent path between them 
are weakly connected than a pair that has many paths (Flake et al. 2002). Connectivity 
is commonly visualized as bottlenecks between nodes and formalized by the notion 
of cut set (Newman 2010). A node cut set is a set of nodes whose removal will dis-
connect a specific pair of nodes. Conversely, an edge cut set (or link cut set) is a set 
of edges whose removal will disconnect a pair of edges. A node with a higher degree 
of links (edges) is better connected in the network and it is supposed to play a more 
important role in maintaining the network structure (Barabási and Oltvai 2004; 
Albert 2005), what is generally associated with a relevant biological role (Langfelder 
et al. 2013). Connectivity is the most widely used concept for distinguishing the 
nodes of a network (Horvath and Dong 2008). Densely interconnected groups of 
nodes, or clusters (pointed out by arrows in Fig. 6.2a, b and in color in Videos 6.1 
and 6.2), are frequently found in most GCNs and protein–protein networks (Newman 
2006) in accordance with its scale-free connectivity distribution (Winterbach et al. 
2013). These groups form topological modules, i.e., highly interlinked regions in a 
network, and have been associated, in GCNs and protein–protein networks, with 
highly conserved genes (Barabási and Oltvai 2004) and genes involved with com-
plex diseases (Tuck et al. 2006; Cai et al. 2010; Barabási et al. 2011).

Robustness of complex networks is associated with the capacity of a network to 
preserve its topological features, such as connectivity and average path length, after 
the removal of a set of nodes or edges. Scale-free networks such as GCNs are found 
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to be very resilient to random node/edge attacks. This means that random failures or 
perturbations in some nodes or sub-mechanisms do not seem to drive the entire 
system to a critical condition (Albert et al. 2008). However, attacks targeting nodes 
with high number of connections, i.e., hubs, present the opposite effect, thus remov-
ing a small number of such nodes in scale-free networks causes a huge impact on 
the network diameter and on its functionality performance (Azevedo and Moreira- 
Filho 2015).

6.3.7  Network Motifs

In biological networks it is possible to identify groups of nodes that link to each 
other forming a small subnetwork, or subgraph, at numbers that are significantly 
higher than those in randomized networks (Milo et al. 2002). These subgraphs are 
called motifs. Network motifs constitute smaller common patterns, or “building 
blocks”, of GCNs (Barabási and Oltvai 2004; Weirauch 2011) and were found to be 
associated with some optimized biological functions, such as feedback and feedfor-
ward loops, related to transcriptional regulation (Shen-Orr et al. 2002; Zhang et al. 
2007; Watkinson et al. 2009). Molecular components of a particular motif frequently 
interact with nodes in outside motifs, and aggregation of motifs into motif clusters 
is likely to occur in many real networks (Ravasz et al. 2002). As pointed out by 
Barabási and Oltvai (2004), because “the number of distinct subgraphs grows expo-
nentially with the number of nodes that are in a subgraph, the study of larger motifs 
is combinatorially unfeasible.” The alternative is to identify groups of highly con-
nected nodes, called modules, directly from the network topology and manage to 
correlate these topological entities with their functional role (Winterbach et al. 2013).

6.3.8  Network Modules

Modules are large subgraph units, encompassing groups of densely associated 
nodes and connected to each other with loose links: in GCNs, for instance, modules 
may be hub clusters tenuously connected by VIPs. Modules serve to identify gene 
functions in a GCN and – as it was already observed for protein networks (Yu et al. 
2007; Zhu et al. 2007) – contain “module organizer” genes, highly connected to 
other genes (equivalent to hubs and high-hubs) and essential to module functioning, 
and “connector” genes, linking different modules and relevant for intermodule com-
munication (equivalent to VIPs) (Weirauch 2011; Bando et al. 2013, Moreira-Filho 
et al. 2015).

There are many statistical and computational methods for identifying modules in 
scale-free networks. One of them, the Girvan–Newman algorithm (Girvan and 
Newman 2002), is centered on defining the boundaries of modules by searching for 
those edges with high betweenness, i.e., more likely to link different modules. This 
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is an important issue: cell functions are carried out in a very modular way. Modular 
structure reflects a group of functionally linked nodes (genes) acting together to 
accomplish a specific task: it may be invariant protein–RNA complexes involved 
post-transcriptional control of RNAs, or temporally coregulated genes controlling 
processes such as cell cycle and differentiation, or bacterial response to growth and 
stress conditions (Costanzo et al. 2010; Wang and Zheng 2012; Rosenkrantz et al. 
2013, Moreira-Filho et al. 2016; Bando et al. 2017).

6.3.9  GCNs Are Modular Scale-Free Networks

The GCNs have a hub-dominated architecture, containing modules, or clusters, con-
stituted by a highly connected number of nodes. The clustering coefficient C is a 
measure of the degree to which nodes in a graph tend to cluster together (Watts and 
Strogatz 1998). The average clustering coefficient < C > is significantly higher in 
most biological networks (gene–gene, protein–protein) than in random networks of 
equivalent size and distribution (Barabási and Oltvai 2004). In Fig. 6.2a, b GCN 
gene clusters appear encircled by a solid line and in Videos 6.1 and 6.2 the clusters 
are identified by distinct colors.

Network modules, or clusters, are present in all cellular networks and identifiable 
by clustering methods based on network’s topology description (Newman 2006; Li 
and Horwath 2009) or by combining topology and functional genomics data (Wang 
and Zheng 2012; Weiss et al. 2012). Therefore, finding out correspondences between 
cluster topology and functional properties is the main goal of GCN analysis. A large 
amount of evidence show that modules involved in closely related biological func-
tions tend to interact and are proximally located in the network (reviewed in Barabási 
et al. 2011). As we mentioned before (Sect. 6.3.6), scale-free networks are robust 
but attacks targeting highly connected nodes may cause network disruption. There 
are now compelling data linking the establishment of complex diseases with the 
perturbation (by mutation or altered expression) of highly connected genes in GCNs 
(Barabási et al. 2011; Cho et al. 2012; Liu et al. 2012a; Sahni et al. 2013; Gaiteri 
et al. 2014; Sahni et al. 2015; Moreira-Filho et al. 2015; Hu et al. 2016; Bando et al. 
2019). Thus, functional and disease modules overlap and the transition between 
health and disease can be described as a module breakdown.

Another challenging issue is to understand network controllability. Controllability 
analysis in complex networks, a concept introduced by Liu and Barabási (Liu et al. 
2011), determines the minimum set of driver nodes necessary to (linearly) control 
an entire system. This also allows determining the degrees of freedom that a system 
can attain; therefore, it can also be understood as a measurement of the network 
complexity. Shortly thereafter, Liu et al. (2012b) introduced the control centrality 
measurement which considers the individual control potential of each node in a 
system. As GCNs may represent complex control systems, this new framework can 
be helpful to understand its control hierarchical structure. However, the inference of 
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causality, i.e., who controls whom, still presents as an open problem in network 
theory (Wu et al. 2012, 2019; Yuan et al. 2013).

6.4  Weighted Gene Co-expression Network 
Analysis (WGCNA)

The Weighted Gene Co-expression Network Analysis (WGCNA) package (https://
horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/) is a 
comprehensive collection of R functions (R Core Team 2012) that renders possible 
to identify and characterize gene modules whose members share strong co- 
expression. (Langfelder and Horvath 2008; Zhao et al. 2010; Pei et al. 2017; Galán- 
Vásquez and Perez-Rueda 2019; Kakati et  al. 2019). WGCNA is based on the 
concept of scale-free network. It is assumed that all genes are connected. The con-
nection strength is quantified by measures of gene expression correlation. Hence, 
the relative importance of a gene in a network is defined by its connectivity (Zhao 
et al. 2010).

Pearson’s correlation coefficient is applied to calculate correlation patterns 
among genes across all samples or conditions and for the subsequent construction 
of an adjacency matrix using soft power and topological overlap matrix (TOM). 
Soft-thresholding process transforms the correlation matrix to mimic the scale-free 
topology. Module identification is based on TOM and in average linkage hierarchi-
cal clustering. Keeping to the scale-free topology criterion, a soft power β is consid-
ered. Finally, Dynamic Tree Cut algorithm is used for dendrogram’s branch 
selection. The module eigengene (ME) is defined as the first principal component of 
a given module, which can be considered a representative of the gene expression 
profiles in a module. Module Membership (MM), also known as eigengene-based 
connectivity (kME), is defined as the correlation of each gene expression profile 
with the module eigengene of a given module (Langfelder and Horvath 2008).

WGCNA is one of the most widely used co-expression network techniques and 
its underlying methods can be used in both microarray gene expression data and 
RNA-Seq data (Kakati et al. 2019). The identification of transcriptional modules 
(Chaussabel and Baldwin 2014) and their association with specific phenotypic traits 
allow the identification of highly connected genes (Hubs) and high gene signifi-
cance (HGS) genes for the traits of interest.

6.4.1  Module-Trait Association

Gene significance (GS) stands for the value of the correlation between the gene 
expression and particular traits. The mean GS considered for a module is the mea-
sure of the module significance (MS). The GS values are obtained using Pearson’s 
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correlation and Student’s t-test is used to assign a p-value to the module signifi-
cance. The modules presenting a significant p-value (p < 0.05) are further selected 
for biological functional analysis.

6.4.2  Modular Analysis for Hub Selection

Modules significantly correlated with one or more traits can be deeply evaluated for 
identifying relevant hubs, i.e., genes presenting high connectivity values related to 
the network (overall connectivity) – eHubs – and to the module (intramodular con-
nectivity for each gene based on its Pearson’s correlation with all other genes in the 
module) – iHubs, determined by a kTotal (x-axis) vs kWithin (y-axis) scatterplot. 
Genes presenting high kTotal and kWithin values are here named HHubs (Fig. 6.5a).

6.4.3  Identification of HGS Genes

Modules showing high correlation with one or more clinical traits are then selected 
for the identification of genes presenting high GS values (HGS genes), determined 
by a MM (x-axis) vs GS (y-axis) scatterplot. This kind of plot can also reveal iHubs 
and HGS-iHubs (Fig.  6.5b). Here iHub stands for nodes with high MM value, 
whereas HGS-iHub stands for nodes with high MM and GS values.

Fig. 6.5 Scatterplots for selection of modular highly connected genes (Hubs) and high gene sig-
nificance (HGS) genes for the trait of interest, according to WGCNA. kTotal vs. kWithin plot for 
intramodular Hub selection (a), where iHubs, eHUbs, and Hhubs are depicted by blue, red, and 
green colored dots, respectively; Module Membership (MM) vs. Gene Significance (GS) plot for 
the identification of intramodular high GS (HGS) genes for the trait of interest (b), where HGS 
genes, iHubs, and HGS-iHubs are depicted by plum, blue, and black colored dots, respectively. 
Here iHub stands for nodes with high MM value
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6.4.4  Functional Enrichment Analysis for Selected 
Module Genes

The analysis of co-expression modules involves enrichment analysis – a set of bio-
informatics and statistical techniques able to identify classes of molecules (such as 
genes or proteins) which are over-represented in a large dataset and might have an 
association with a functional term, a biological pathway, or a disease phenotype 
(van Dam et al. 2018).

Gene sets of significant trait-associated modules can be submitted to enrichment 
analyses using, for instance, the Enrichr online web-based tool (Chen et al. 2013; 
Kuleshov et  al. 2016) to identify significantly over-represented terms on GO 
Biological Process, KEGG pathways, Transcription Factor–PPIs Database, GWAS 
(Genome-Wide Association Studies), and miRTarBase Database, among other sev-
eral gene annotations.

6.5  Validation of Transcriptional Networks

The analysis of GCNs based on DNA microarray experiments has multiple applica-
tions in life sciences and medicine, ranging from the study of basic cell functions to 
the identification of disease markers and the molecular mechanisms underlying 
complex diseases. Therefore, microarray generated data need to be checked for 
reproducibility and biological significance. Two categories of data validation will be 
considered here: (i) the technical and biological validation of DNA microarray 
experiments (Shi et al. 2008); and (ii) the validation of GNCs through interactome 
analysis (Wang et  al. 2014). Additionally, raw microarray data and experimental 
design should be deposited in at least one data repository supporting MIAME (min-
imum information about a microarray experiment)-compliance data (Brazma et al. 
2001). Two repositories commonly used for this purpose are: Gene Expression 
Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/) at the National Center for 
Biotechnology Information, and ArrayExpress – functional genomics data, at the 
European Bioinformatics Institute (www.ebi.ac.uk/arrayexpress/).

6.5.1  DNA Microarray Technical Validation

Good laboratory proficiency and appropriate data analysis are essential to avoid 
artifactual gene profiles generated from DNA microarrays experiments (Shi et al. 
2008). Nevertheless, it is mandatory to check for results erroneously representing 
either under- or overexpression of specific genes. There are several methods to 
quantify gene expression using RNA or gene-specific protein detection, such as 
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quantitative real-time PCR (qPCR) and immunohistochemistry, respectively (True 
and Feng 2005).

A commonly used strategy for microarray technical validation using qPCR is to 
select in the gene data set those presenting the largest fold changes (statistically 
significant differentially expressed genes between groups). Here one can use the 
RNA aliquots from the same biological samples tested in the microarray experiment 
(Miron et al. 2006). In order to accomplish biological validations, it is necessary to 
test additional biological samples (not those used in the experiment). This is critical, 
for instance, for validating certain genes as disease biomarkers (LaPointe et  al. 
2012). This kind of validation usually encompasses, whenever possible, immuno-
histochemistry validation (Kujawa et al. 2020).

6.5.2  Interactome Validation of GCNs and WGCNA: Tools 
for Gene Function Discovery

Interactome analysis, particularly protein–protein interaction (PPI) networks (where 
nodes stand for proteins and edges for the physical interactions), have been used in 
many different areas, from the study of protein function to disease prognosis (Taylor 
et al. 2009), being a very useful tool for disease-gene identification (del Rio et al. 
2009; Barabási et al. 2011, Carter et al. 2013; Wang et al. 2014). This kind of analy-
sis also allows the in silico validation of GNC data. Protein–protein interaction 
(PPI) networks for GCN validation may be constructed using proteins correspond-
ing to each of the selected hubs, VIPs, and high-hubs of a particular GCN (Bando 
et al. 2013; Moreira-Filho et al. 2015). Several major primary protein databases are 
available for PPI networks, such as APID, BIND, BioGRID, DIP, HPRD, IntAct, 
and MINT (De Las Rivas and Fontanillo 2010; Khatun et al. 2020; Armingol et al. 
2021). Data analysis and visualization are accomplished through Cytoscape. 
Figure 6.2g, h shows the patient and the control groups’ DE GCNs used as a demon-
strative example along this chapter. Essentially, the software helps to search for 
interactions among the selected GCN genes (i.e., their corresponding proteins) and 
their neighbors in the human interactome. Considering our patient versus control 
example, these neighbors could participate in some disease-related metabolic path-
ways, thus indicating that the selected GCN genes are involved in the molecular 
mechanism of that disease.

The integrative analysis of GCN and PPI data has proven to be very helpful for 
disclosing changes in steady states that characterize the transitions between health 
and disease (Sahni et  al. 2013, 2015), and for finding common genomic drivers 
beyond apparently distinct pathophenotypes (Cristino et  al. 2014; Nangraj et  al. 
2020). This approach is also advantageous for identifying disease subtypes. For 
instance, through GCN and interactome analysis of hippocampal CA3 surgical 
explants our group was able to reveal pathogenic and compensatory pathways in 
febrile and afebrile refractory mesial temporal lobe epilepsy (RMTLE), as well as 
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distinct molecular pathways for early- and late-onset RTLME with childhood febrile 
seizures (Bando et  al. 2013; Moreira-Filho et  al. 2015). Recently, we employed 
WGCNA for integrating clinical, histopathological (dentate gyrus), and transcrip-
tomic (CA3) data from a cohort of RMTLE patients and found transcriptional mod-
ules highly correlated with age of disease onset, cognitive dysfunctions, and granule 
cell alterations. We also found 15 genes with high gene significance values, which 
have the potential to be novel biomarkers and/or therapeutical targets (Bando et al. 
2021). The application of WGCNA for analyzing proteomic and metabolomic data-
sets (Pei et al. 2017) and the integration of PPI and WGCNA computational tools 
(Nangraj et al. 2020) opened new perspectives for the retrieval of shared and distinct 
hub signatures underlying pathophenotypes. Now, with the continued reduction in 
costs and processing time, computer scientists and life scientists are struggling to 
integrate all omics, what implies not only to deal with very large datasets, but, and 
fundamentally, to tackle the hard tasks of normalization, data dimensionality reduc-
tion, statistical validation, data storage, etc. (Manzoni et al. 2018; Misra et al. 2018; 
Turek et al. 2020; Vlachavas 2021). Nevertheless, the rewards seem tempting: omics 
integration is essential for translational research in the era of precision medicine.
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Chapter 7
Comparative Analysis of Packages 
and Algorithms for the Analysis 
of Spatially Resolved Transcriptomics Data

Natalie Charitakis, Mirana Ramialison, and Hieu T. Nim

7.1  Introduction

Despite the natural stochasticity that can disrupt biological processes such as organ 
development, biological systems consistently produce the same gene expression 
pattern with sufficient robustness such that the embryo forms correctly (nearly) 
every time. Furthermore, the genes typically work together in networks, requiring a 
systems-wide transcriptomic approach to fully understand the spatial expression 
patterns. Many of these create well-defined regions of cells within developing tis-
sues that can be easily reproduced, demonstrating how the spatial location of the 
gene regulatory networks is critical for the proper formation of tissues (Exelby et al. 
2021). Determining these networks is an active study area in the emerging field of 
‘spatial biology’, and calls for specialised computational techniques, many of which 
have been developed very recently.

The merits and limitations of single-cell RNA Sequencing (scRNA-Seq) have 
been well established (Hwang et  al. 2018; Chen et  al. 2019) and the method 
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successfully applied across varying organs and conditions (Karaayvaz et al. 2018; 
Regev et al. 2017; Dong et al. 2018; He et al. 2020; Ximerakis et al. 2019; Tiklová 
et al. 2019; Zhou et al. 2021). scRNA-Seq is capable of identifying rare cell popula-
tions, including in disease states and developmental stages; however, the method 
yields noisy, variable data with lots of technical variation (Chen et al. 2019). Despite 
scRNA-Seq allowing for the study of cellular heterogeneity and cell type hierarchy, 
the loss of spatial information prevents the systematic study of physiological struc-
ture/function relationships in various tissues and organs. This was part of the drive 
in the development of spatial transcriptomics (ST) (Marx 2021) (now commer-
cialised by 10x Genomics under the name Visium) and other spatially resolved tran-
scriptomics (SRT) methods. The spatially resolved gene expression pattern within 
the context of a tissue is critical to achieving a full understanding of disease states 
and tissue development and function and the ability to investigate this is achievable 
using SRT (Ståhl et al. 2016).

Spatial transcriptomics is an area that is becoming more widely used and will 
continue to expand in the upcoming years (Marx 2021). Having been featured as 
Nature’s ‘Method of the Year’ in 2020, the technology and the analytical opportuni-
ties it provides are going to keep growing rapidly (Marx 2021). As demonstrated in 
Fig.  7.1, the number of papers published on spatial transcriptomics has greatly 
increased since 2016, when the first technology named ‘spatial transcriptomics’ was 
published (Ståhl et al. 2016). Offering unprecedented spatial context to transcrip-
tomic data presents an invaluable tool for studying tissues and their cellular 
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Fig. 7.1 Number of papers returned when a search was performed using the keywords ‘Spatial 
Transcriptomics’ using the software ‘Publish or Perish’(Harzing 2016) to search PubMed and to 
manually search bioRvix, with the additional parameter of papers published from 01/01/2016 to 
16/04/2021. Papers identified by searching both databases were consolidated; note that this is not 
a comprehensive view of all papers published on the topic since 2016. Bars in light blue with a 
dotted outline indicate that not all papers for the calendar year have been included
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composition. As early as 2017, the merits of applying SRT to the discovery of spatial 
organisation of gene expression to improve transcriptional classification of cell types 
and localisation within a tissue had been discussed and even put to the test (Lein 
et al. 2017; Shah et al. 2016). The potential applications of this technology are con-
tinuously improving and expanding, as demonstrated by the integration of different 
methods to improve the resolution of current SRT methods (Moncada et al. 2020). 
The different techniques available to generate SRT data and their merits have been 
discussed (Lein et al. 2017; Crosetto et al. 2015; Asp et al. 2020; Waylen et al. 2020), 
but a review of data analysis tools is as of yet lacking. With an emphasis on obtaining 
spatially resolved data sets with single-cell resolution (Marx 2021), the method, 
aims and approaches to integrate and analyse the data generated are still in flux, with 
a clear ‘gold standard’ yet to distinguish itself. This chapter discusses some of the 
current packages and pipelines available to perform this analysis (Table 7.1).

7.2  Methods for Downstream Analysis of Spatially Resolved 
Transcriptomics Data

As identifying the spatial expression patterns of genes and how they vary across a 
tissue is a critical aim of spatial transcriptomics, many purpose-built tools for analy-
sis of this data aim to identify spatially variable genes (SVGs) (Box 7.1) (Exelby 
et al. 2021). Building on the concept of highly variable genes in scRNA-Seq analysis, 
SVGs have a pattern of expression that depends on their location in the tissue and can 
give insight into biological function (Svensson et al. 2018). A complication of ana-
lysing these spatial transcriptomics data sets is accurately accounting for the spatial 
correlation across samples (Li et al. 2021), and different methods can be employed 
to tackle this problem. Various packages have been developed in primarily R or 
Python and are currently available to identify SVGs in spatial transcriptomic data sets.

Box 7.1
One key aim of analysing RNA-Seq and scRNA-Seq datasets is to identify dif-
ferentially expressed genes (DEGs) between two groups from within a group of 
highly variable genes (HVGs). DEGs are identified between two groups when 
a gene’s expression is statistically significantly different between the two groups 
present (Exelby et al. 2021). While this approach has yielded many important 
findings, it removes organisational context from the groups in question, some-
thing that can be recovered using spatial transcriptomics (Marx 2021). This new 
technology has shifted the goalposts for transcriptomics analysis, resulting in 
many bioinformatics packages dedicated to discovering spatially variable 
genes (SVGs) (Svensson et al. 2018; Li et al. 2021; Sun et al. 2019; Edsgärd 
et al. 2018; Hao et al. 2021; Zhang et al. 2018). As the name suggests, these 
genes will have amplified expression in certain regions of the tissue or sample, 
often displaying an underlying pattern (Svensson et al. 2018; Hu et al. 2020). 
Determining the best method to achieve the most biologically accurate results 
and computational efficiency is challenging, and research in this area is ongoing.
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7.2.1  Identifying Spatially Variable Genes

Among these, SpatialDE is a popular package based on Gaussian process (GP) 
regression, which can clearly identify localized gene expression patterns for data 
sets containing temporal and/or spatial annotations (Svensson et al. 2018). SpatialDE 
can recognise SVGs by creating a model with two different terms reflecting distinct 
variance present in the data set. The first term captures the non-spatial variance pres-
ent within the data, while the second aims to capture the spatially related variance 
of gene expression within the data set, with the assumption that the covariance 
between a cell’s gene expression profile decreases with an increase in distance 
between the cells (Svensson et al. 2018). A ratio calculated using these terms can 
then be used as a measure of the level of gene expression variance attributable to 
spatial location (Svensson et al. 2018). These are the key parameters used to fit the 
Gaussian model in a computationally efficient manner (Svensson et  al. 2018). 
Testing to prove whether statistically significant SVGs are present is performed by 
comparing this model to a second one which lacks the spatial covariance parameter 
that represents a data set in which spatial localisation has no effect on gene expres-
sion patterns (Svensson et al. 2018). This process is repeated for each gene, and 
after correcting for multiple testing, the SVGs can be pulled out of the data set 
(Svensson et al. 2018). SpatialDE has the capability of taking this a step further by 
creating models with different covariance functions for SVGs and comparing them, 
this is in addition to the initial 10 Gaussian kernels it tests before selecting that with 
the lowest p-value. This creates the ability to determine whether each SVGs is most 
accurately expressed as a linear, periodic or general expression model (Svensson 
et  al. 2018). However, for the data to fit certain underlying assumptions of the 
Gaussian model, two normalisation steps are performed, the first being a variance 
stabilising transformation (Svensson et al. 2018; Sun et al. 2019). It may affect the 
package’s performance as the assumptions underlying the model and the necessary 
data transformations do not truly reflect the nature of the data (Li et al. 2021). A 
further functionality of SpatialDE is that it can implement an unsupervised learning 
technique built on the Gaussian Mixture Model to apply automatic expression his-
tology (AEH), which can group together SVGs by their spatial expression pattern 
using hidden patterns learnt from the data (Svensson et al. 2018). The observation 
that SpatialDE may introduce false positives by labelling genes with low levels of 
expression as SVGs is an area which requires further investigation and can be 
improved upon in future releases of the package (Sun et al. 2019).

A package with the same goal as SpatialDE is SPARK (Spatial Pattern 
Recognition via Kernels), which employs a generalised linear spatial model (GLSM) 
with different spatial kernels to identify SVGs (Sun et al. 2019). This model was 
built on previous work to take into consideration the effects of spatial correlation 
and covariate measurement error; it was built and tested on 2D data; however, it is 
capable of being expanded to 3D data sets (Sun et  al. 2019). As in the case of 
SpatialDE, SPARK models gene expression for each gene across all spatial coordi-
nates; however, this model operates under the assumption that the spatial data is 

7 Comparative Analysis of Packages and Algorithms for the Analysis of Spatially…
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non-Gaussian (Sun et al. 2019). SPARK builds on other GLSMs by developing a 
hypothesis testing framework for the model (Sun et al. 2019). The power of this 
hypothesis testing is linked to how the spatial kernel function accurately represents 
the spatial pattern of the gene represented in the model; and as different gene expres-
sion patterns will most accurately be represented by different spatial kernel func-
tions, SPARK considers 10 different kernels (similarly to SpatialDE) based on 
commonly observed biological patterns (Sun et al. 2019). Due to the heuristic nature 
of these kernels, this process could introduce biases that lead that package to choose 
more commonly observed biological patterns. SPARK can work with large data sets 
as it employs a penalised quasi-likelihood (PQL) algorithm for parameter estima-
tion to circumvent the problem of the difficulty in solving GLSMs in short periods 
of time; this algorithm informs the parameters used in each of the spatial kernel 
functions. It further improves on the packages available at the time of publication, 
SpatialDE and Trendsceek, by not performing a normalisation step on the data, 
which decreases the power of the analysis (Sun et  al. 2019). A drawback of 
SpatialDE that SPARK corrects for is to control for type 1 errors through the Cauchy 
combination rule, thus giving it additional power when identifying SVGs (Sun et al. 
2019). The Cauchy combination rule groups the p-values generated from each spa-
tial kernel function into a single p-value while still controlling for type 1 errors, 
which results in a single p-value per gene (Sun et al. 2019). The final steps involve 
controlling for FDR across all p-values and then determining which are SVGs (Sun 
et al. 2019). While SpatialDE and SPARK share the use of parametric test statistics, 
there are a few critical differences between the packages (Sun et al. 2019). As previ-
ously mentioned, SPARK does not model normalised data, while SpatialDE can 
only approximate p-values; SpatialDE first calculates an exact p-value per gene; and 
once it obtains the initial set of statistically significant genes, SpatialDE then per-
forms additional analysis to determine their p-values (Sun et al. 2019). Furthermore, 
when validated against multiple data sets, it performed just as well or better than 
SpatialDE and Trendsceek (described in next paragraph) (Sun et al. 2019). When its 
ability to calculate true positives in two simulated data sets was tested across a total 
of six different spatial expression patterns with varying FDRs, SPARK outper-
formed Trendsceek and had better results than SpatialDE (Sun et al. 2019). While 
with certain simulated data sets, SPARK and Trendsceek performed similarly in 
computing well-calibrated p-values, but SpatialDE did not identify certain SVGs 
present (Sun et al. 2019). While the SPARK paper only tests the package’s perfor-
mance against SpatialDE and Trendsceek, it outperformed both in terms of the num-
ber of SVGs identified when validated against a spatial transcriptomics mouse 
olfactory bulb data set (Sun et  al. 2019). However, not all genes identified by 
SpatialDE overlapped with those identified by SPARK (Sun et al. 2019). Despite 
this, the newly identified SVGs are in line with markers specific to the tissue they 
were annotated in, and GO enrichment analysis adds further confidence that the 
majority of these newly identified SVGs are biologically relevant (Sun et al. 2019). 
In terms of computational efficiency, when running with 10 parallel CPU threads, 
SPARK was more computationally efficient than the same analysis run on a single-
threaded SpatialDE (although the difference in this instance is minimal) and 
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Trendsceek; its single-threaded performance is consistently less efficient than 
SpatialDE across 4 datasets of varying sizes (Sun et al. 2019).

Trendsceek is one of the earlier packages developed to identify SVGs using a 
non-parametric approach (Edsgärd et al. 2018). Trendsceek individually assesses 
each gene and normalises its expression through a log10 transformation (Edsgärd 
et al. 2018). It relies on a marked point process to model gene expression and cell 
location and later will test the null hypothesis by generating four non-parametric 
test statistics (Edsgärd et al. 2018). These four test statistics yield four p-values and 
a gene with a minimum of 1 p-value ≤ 0.05 after adjustment for multiple testing 
using the Benjamini-Hochberg method is determined to be an SVG (Edsgärd et al. 
2018). A key difference that separates Trendsceek from SpatialDE and SPARK is its 
computing of non-parametric test statistics, meaning it lacks an underlying genera-
tive model. Trendsceek was tested against simulated data sets, and it demonstrated 
very low power to identify SVGs when they were present if less than 5% of cells in 
the data set had varying levels of expression (Edsgärd et al. 2018). This implies that 
as SRT datasets continue to increase in size, Trendsceek will not be able to distin-
guish SVGs present in a very small subset of cells within a tissue. When Trendsceek’s 
performance in identifying SVGs across two spatial transcriptomics data sets is 
compared to SpatialDE and SPARK, it identified fewer SVGs, with numbers almost 
10 times lower than the other packages (Sun et al. 2019). When compared to differ-
ent packages in other studies, Trendsceek struggled to identify SVGs in real datas-
ets, while other packages were able to (Sun et al. 2019).

Each new package developed aims to address the shortcomings of those already 
published; for example, BOOST-GP claims that many popular substitutes such as 
SpatialDE, SPARK and Trendsceek do not account for the substantial proportion of 
zero counts present in the data set and the effect the sparsity of the data can have 
analysis (Li et al. 2021). Therefore, BOOST-GP puts forth a new Bayesian hierar-
chical model aimed at accounting for the considerable number of zero counts pres-
ent in spatial data sets, that other packages published up to this point had neglected 
(Li et al. 2021). A key difference to other packages is that BOOST-GP employs a 
negative binomial distribution when modelling count data, which should account 
for its observed over- dispersion (Li et al. 2021). This resembles the methods used 
by popular bulk RNA-Seq analysis packages rather than other spatial transcrip-
tomics packages explored thus far (Li et al. 2021). BOOST-GP’s performance was 
compared to that of SpatialDE’s, SPARK and Trendsceek when there were false 
zeros present in the data, and BOOST-GP was clearly most adept at handling this 
complication, even if it still presented significant difficulties in retrieving a good 
Matthews correlation coefficient (used to determine the tool’s accuracy) on a syn-
thetic data set (Li et al. 2021). Furthermore, depending on the spatial pattern of the 
expression of the gene, the accuracy of BOOST-GP can differ slightly (Li et  al. 
2021). Alternatively, when the tool was tested on two real data sets, it was found that 
SPARK identified more SVGs than BOOST-GP; however, SpatialDE discovered the 
least (Li et al. 2021). In the analysis of human breast cancer data, despite identifying 
fewer SVGs than SPARK, BOOST-GP was able to identify novel, biologically rel-
evant terms in the GO analysis, adding to its value in the analysis of SRT data  
(Li et al. 2021).
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As larger datasets become increasingly common, packages must be created to 
efficiently analyse the vast amounts of data generated by SRT experiments. One of 
the newer packages is SOMDE (Hao et al. 2021). Built-in python, SOMDE aims to 
identify SVGs in large-scale datasets (Hao et al. 2021). By using a self-organising 
map (SOM) neural network and a Gaussian process to model the data, it can identify 
SVGs in large datasets much faster than SpatialDE, SPARK or Trendsceek (Hao 
et al. 2021). This is achieved as the data is organised into different nodes by the 
SOM neural network, the Gaussian process is used at the level of the nodes to iden-
tify the SVGs present in the data (Hao et al. 2021). The organisation of data into 
nodes minimises the sample space while preserving the original spatial organisation 
and expression data (Hao et al. 2021). The next stage which uses a Gaussian process 
identifies the SVGs from the reduced sample space (Hao et al. 2021). As seen in 
packages such as SpatialDE and BOOST-GP, the Gaussian process is a popular 
method for identifying SVGs (Svensson et al. 2018; Li et al. 2021). SOMDE also 
uses a log ratio test similar to that employed by SpatialDE to test the statistical sig-
nificance of the spatial expression variability of each gene (He et al. 2020). When 
SOMDE was applied to discover the SVGs of five different data sets, it was able to 
do so without significant increase in computational time as the size of the data set 
increased, yielding results in under 5 min for the largest data set with over 20,000 
data sites (Hao et al. 2021). It also demonstrated a faster running time compared to 
Giotto and SpatialDE on three differently sized data sets used for validation (Hao 
et al. 2021). Despite this, the package lacks validation on a data set of single-cell 
resolution (Hao et al. 2021). When its performance was compared to scGCO and 
SpatialDE on a simulated data set, SOMDE consistently outperformed scGCO but 
only had an improved performance compared to SpatialDE when a high dropout 
rate is incorporated into the data set (Hao et al. 2021). When its performance was 
compared to real data sets, most of the SVGs identified by SOMDE overlap with 
those identified by packages like scGCO, SPARK and SpatialDE (Hao et al. 2021).

Other methods have been developed to identify SVGs that differ from those pre-
sented thus far. One of these methods has been implemented in a python package 
called scGCO, which employs graph cut algorithms to identify SVGs (Zhang et al. 
2018). scGCO first produces a graph by performing a Delaunay triangulation in 
which only true cell neighbours are connected by edges, allowing an accurate rep-
resentation of cellular interactions in a sparse graph which is not memory intensive 
(Zhang et al. 2018). Subsequently, Voronoi diagrams are created which have previ-
ously been used to model cells (Zhang et al. 2018). Using a Markov random field 
(MRF) model and adapting methods traditionally used in object identification in 
images, scGCO can classify cells into two categories which provide efficient, low 
polynomial time computing and a result which is globally optimal (Zhang et  al. 
2018). Much like SpatialDE, scGCO employs Gaussian Mixture modelling but uses 
it to classify each gene’s expression to ensure more accurate classification of cell 
types based on their gene expression (Svensson et al. 2018; Zhang et al. 2018). The 
performance of SVG was tested against a spatial transcriptomics data set obtained 
from a mouse olfactory bulb and compared to results obtained from the same data 
by SpatialDE (Zhang et al. 2018). A more comprehensive review of scGCO against 
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different packages would be beneficial to obtain a holistic understanding of its 
improved performance in SVG detection. scGCO successfully identified over 1,000 
additional SVGs compared to SpatialDE, and at an FDR cut-off of 0.01 rather than 
0.05 (Zhang et  al. 2018). The majority of SVGs identified by scGCO were also 
identified by SpatialDE, and each formed its own spatial pattern. These results were 
consistent when validation was repeated across replicate mouse olfactory bulb data 
(Zhang et al. 2018). However, while scGCO yielded a smaller number of unrepro-
ducible SVGs across the different replicate data sets than SpatialDE, ~35% of iden-
tified SVGs were still unreproducible (an 11% reduction from SpatialDE) (Zhang 
et al. 2018). If replicate data sets are available for studies, then this is something that 
should be investigated further across all packages, resulting in the exclusion of non-
reproducible SVGs for a more accurate final subset of SVGs. Additionally, when 
comparing between regions of the mouse olfactory bulb, scGCO was more adept at 
identifying SVGs than SpatialDE, while neither method entirely recovered all 
marker genes reported in the study which published the data set (Zhang et al. 2018). 
Additional validation was performed using data from breast cancer biopsies, with 
scGCO having a similar improved performed compared to SpatialDE when 
employed on the mouse olfactory bulb data set. Furthermore, the SVGs identified 
by SpatialDE within the breast cancer data set did not maintain consistent clustering 
pattern (Zhang et al. 2018). scGCO’s performance on other spatial transcriptomics 
data sets was equally as robust (Zhang et al. 2018). scGCO also performed better in 
terms of computational time and memory required than SpatialDE and Trendsceek 
when used to analyse a simulated data set with up to a million cells.

7.2.2  Identifying Spatially Variable Genes and More

As evidenced by the packages reviewed so far, GPs are a popular method for analys-
ing spatial transcriptomics data as they can model its spatial dependence. To this 
end, as new packages are developed, many are built on alternative GP regression 
models, such as GPcounts (BinTayyash et al. 2020). GPcounts can be used to model 
either spatial or temporal large-scale scRNA-Seq data through modelling count data 
using a negative binomial (NB) likelihood (BinTayyash et al. 2020). The NB likeli-
hood model should more accurately capture the distribution of gene expression data 
compared to Gaussian likelihood model as it accounts for possible heteroscedastic 
noise and the presence of many zero-counts but requires UMI normalisation to be 
applied (BinTayyash et al. 2020). Furthermore, GPcounts evaluates its performance 
across different simulated data sets when it implements different underlying likeli-
hood models to determine under which conditions each yields the best results 
(BinTayyash et al. 2020). Subsequently, it can be observed that employing an NB 
likelihood was effective in producing accurately identified SVGs in the package 
BOOST-GP (Li et al. 2021). However, GPcounts’s primary aim is not to identify 
SVGs, it is also able to identify differentially expressed genes (DEGs), perform 
pseudotime inference and then identify branching genes and discover temporal 
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trajectories, widening its scope compared to most packages (BinTayyash et  al. 
2020). The GP model is stochastic and non-parametric, and there is a choice of 
kernel to find one that most accurately models the data, similarly to the step 
employed by SpatialDE (Svensson et  al. 2018), and this is determined by the 
Bayesian Inference Criterion (BinTayyash et al. 2020). Using SpatialDE as a bench-
mark, GPcounts builds on and alters many of the steps implemented by SpatialDE 
(BinTayyash et al. 2020). This applies from the testing procedures used to deter-
mine SVGs and DEGs p-values to the type of normalisation applied to the data 
(BinTayyash et al. 2020). GPcounts has also implemented the additional step of a 
built-in check during its kernel function hyperparameter estimation to minimise the 
problems of getting stuck in a local optimum by restarting the optimisation as this 
is suspected (BinTayyash et al. 2020). This is so far one of the only optimisation-
based methods that has implemented this kind of self-check and could give GPcounts 
a distinct advantage in the accurate identification of SVGs. An improved assessment 
of GPcounts performance when detecting DEGs would be to evaluate the package 
on published data sets in addition to the simulated data (BinTayyash et al. 2020). 
When evaluated for its identification of SVGs, GPcounts did use a real mouse olfac-
tory bulb data set and compared its performance to SpatialDE, SPARK and 
Trendsceek (BinTayyash et al. 2020). GPcounts identifies the most SVGs out of any 
of the packages, with the vast majority of identified SVGs at a 5% FDR overlapping 
with those identified by SpatialDE and SPARK (BinTayyash et  al. 2020). The 
unique SVGs identified by GPcounts have spatial patterns that match those depicted 
in the Allen Brain Atlas, indicating a high confidence in these findings (BinTayyash 
et  al. 2020). GPcounts also identified 90% of the biologically important marker 
genes expressed in the dataset, although SPARK had a similar performance as it 
identified 80% (BinTayyash et al. 2020), while SpatialDE identified only 30% of the 
marker genes (BinTayyash et al. 2020).

Certain frameworks have been developed with a particular SRT technology in 
mind, in combination with addressing an area of data analysis the developers deem 
lacking. One of these is the STUtility workflow created in R and based and built on 
the Seurat analysis tool (Bergenstråhle et al. 2020a). Aiming to develop a package 
that allows the user to visualise multiple experiments in conjunction to create a 3D 
view of tissue, STUtility builds on well-established methods of analysis (moulded 
by those established for scRNA-Seq analysis) to focus on novel data visualization 
(Bergenstråhle et al. 2020a). Highlighting the importance of data normalisation and 
transformation to deconvolute technical noise from meaningful biological insight, 
the package uses a regularized negative binomial regression model successfully 
implemented in Seurat for normalisation (Bergenstråhle et al. 2020a). The image 
processing capabilities of STUtility focus on the alignment, automatic or manual, of 
multiple samples in addition to the removal of background noise (Bergenstråhle 
et al. 2020a). The removal of background noise – called masking in the study – is an 
integral part of image processing and allows the inside and outside of the tissue to 
be defined as well as decreasing the images’ storage requirements (Bergenstråhle 
et al. 2020a). To automatically align multiple samples, the package identifies a ref-
erence image, then uses an iterative closest point (ICP) algorithm to align the 
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remaining samples to the reference, which can then be reconstructed into a 3D tis-
sue model (Bergenstråhle et al. 2020a). While this method of creating a 3D model 
is not one which yields the most precise cell segmentation, this trade-off yields 
greater computational efficiency and still gives a faithful reconstruction of tissue 
morphology (Bergenstråhle et  al. 2020a). Implementation of k-means clustering 
algorithms allows the package to clearly define the boundaries of the tissue 
(Bergenstråhle et al. 2020a). For the sequencing data, STUtility leans heavily on the 
functions created by the package Seurat (Bergenstråhle et al. 2020a). A decomposi-
tion of the normalised gene data called non-negative matrix factorization (NMF) is 
used to choose gene drivers and create a low dimensional representation of the data 
to be used in defining clusters and nearest neighbours (Bergenstråhle et al. 2020a). 
To obtain genes whose expression demonstrates spatial patterns, a connection net-
work is created for each spot which allows the package to calculate the spatial-lag 
of each gene across spots. This is one of the inputs – the other being the normalised 
counts – used to calculate spatial correlation across the sample (Bergenstråhle et al. 
2020a). Its ability to visualise spatial distinct features is clearly demonstrated in 
determining the spatial relation of gene expression to tissue areas (e.g., a tumour). 
STUtility is also able to identify SVGs using neighbourhood networks, but its accu-
racy in performing this function is not compared to other packages (Bergenstråhle 
et al. 2020a). Other capabilities were tested on a variety of human and mouse tissues 
(Bergenstråhle et al. 2020a). For both mouse brain and human breast cancer tissue 
samples, spatial gene expression patterns can be clearly identified (Bergenstråhle 
et al. 2020a). STUtility allows for the manual alignment of multiple images; how-
ever, a comparison as to the accuracy of this method compared to the automatic 
alignment is not offered and depending on the expertise of the user may vary signifi-
cantly (Bergenstråhle et al. 2020a). Furthermore, while its implementation of neigh-
bourhood networks offers a promising method to define subsections within a tissue 
and the heterogeneity within, as would be beneficial during the study of tumours, to 
see how well this correlates to the heterogeneity of the actual tissues of the sample 
is not reported (Bergenstråhle et al. 2020a; Palla et al. 2021).

7.2.3  Assigning Lost Transcripts

Other packages have been developed with the aim of addressing gaps in analysis 
that have not been adequately accounted for; one such package is Sparcle 
(Prabhakaran et  al. 2021). When attempting to obtain an accurate gene counts 
matrix from image-based spatial transcriptomics techniques, often many transcripts 
are not assigned to cells after segmentation is performed, leading to a loss of data 
(Prabhakaran et al. 2021). Sparcle aims to recapture the data from these ‘dangling’ 
transcripts (Prabhakaran et al. 2021). Developed to be used in conjunction with data 
from any smFISH technology, Sparcle can build a probabilistic model which allows 
assignment of these dangling transcripts to the appropriate neighbouring cells using 
a maximum likelihood estimation (MLE). The MLE considers the dangling mRNA’s 
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distance to other transcripts, nearby cells and genes’ covariance when calculating 
which nearby cell the transcript should most accurately be assigned to (Prabhakaran 
et al. 2021). Similar to other packages, Sparcle assumes that the most accurate rep-
resentation of gene expression can be modelled using a multivariate Gaussian dis-
tribution (Svensson et al. 2018; Prabhakaran et al. 2021). Sparcle can employ two 
clustering methods when it first groups the cells in the chosen field of vision (FOV) 
by cell type based on a global count matrix: DPMM and Phenograph. Phenograph 
is an algorithm developed to cluster cell phenotypes in high-dimensions single-cell 
data and was originally applied to data from acute myeloid leukemia (Levine et al. 
2015). Dirichlet process mixture model (DPMM) is a stochastic process which can 
feature all the individual Gaussian distributions for the expression of each gene and 
allows Sparcle to model all these distributions (Neal 2000). While having the addi-
tional flexibility to employ either algorithm at the clustering step, during its valida-
tion, Sparcle reports data based on the Phenograph algorithm but not on the 
performance when using DPMM, nor does it specify in which instance one method 
should be favoured over another (Prabhakaran et al. 2021). When used to assign 
dangling transcripts to a MERFISH data set, Sparcle was able to assign 68% or 
almost 2 million missed transcripts, and validation with scRNA-Seq data confirmed 
that the proportion of cell types assigned post use of Sparcle more closely matched 
the scRNA-Seq data (Prabhakaran et al. 2021). Validation against other neuronal 
data sets returned similarly desirable results. Despite this, there are limitations to 
the use of Sparcle. For example, when the programme draws an area around each 
dangling transcript that should mimic the size of a cell, the size of this area is opti-
mised to the size of an average neuronal cell, meaning the package might not be 
well suited to non-neuronal data (Prabhakaran et  al. 2021). Sparcle can run on 
approximately 80 cells in under 10 min with impressive mRNA recovery over three 
iterations; however, additional data on how this would scale with larger data sets is 
lacking, potentially causing computational bottlenecks in bigger data sets 
(Prabhakaran et al. 2021). It claims to improve on packages that remove the cell 
segmentation step entirely, such as Baysor and SSAM, by removing the need for a 
priori knowledge of the data set and not assuming that the cellular mRNA can be 
modelled by a uniform distribution (Prabhakaran et al. 2021). However, some fur-
ther improvements could be made to enhance the performance, such as staining 
cellular membranes to better understand the size of neighbouring cells rather than 
estimating based on an area around the nucleus and calculating an estimate of the 
prior distribution of a gene’s localised transcripts (Prabhakaran et al. 2021).

7.2.4  Estimation of Cell Type Composition

Identifying SVGs was the primary focus of the initial packages developed, but it is 
important to note that packages with alternative aims are increasingly being pub-
lished. For example, SpatialDWLS was created to improve the identification of dif-
ferent cell types at locations in the data sets which do not have single-cell resolution 
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(Dong and Yuan 2021). This is termed cell type deconvolution (Dong and Yuan 
2021). Other published packages have been developed for this aim, but SpatialDWLS 
claims to improve on the results of these packages (Dong and Yuan 2021). How 
SpatialDWLS performs cell type deconvolution can be summarised in two steps: the 
first uses a cell type enrichment analysis method to identify which kinds of cells 
have a high probability of being at each location, and the second uses an extension 
of the dampened weighted least squares (DWLS) method to pinpoint the precise 
composition of cell types at the specified location (Dong and Yuan 2021). Firstly, 
signature genes can either be supplied by the user to be identified by differential 
expression analysis (Dong and Yuan 2021). Building on the previously developed 
DWLS method for scRNA-Seq data, this was extended to SRT data by incorporat-
ing the signature genes step (Dong and Yuan 2021). Furthermore, SpatialDWLS 
builds on clustering and gene marker identification used in Giotto (Dong and Yuan 
2021; Dries et al. 2019). This would imply that any shortcoming with Giotto’s per-
formance in these areas would be transferred to SpatialDWLS. When evaluated on 
a simulated spatial transcriptomics dataset, SpatialDWLS outperformed RCTD and 
stereoscope in terms of having a lower Root Mean Square Error (RMSE) and in 
terms of computational time (Dong and Yuan 2021). However, when its perfor-
mance was tested against a real mouse brain Visium data set, SpatialDWLS’s per-
formance was not benchmarked against the other three packages, thus making its 
performance on real data unclear (Dong and Yuan 2021). Despite this, the authors 
reported that the spatial location of the cell types assigned by SpatialDWLS was 
consistent with those reported in the Allen Mouse Brain Atlas (Dong and Yuan 
2021). An interesting application of this package was to identify the change of cell 
type organisation in a spatial-temporal context throughout embryonic heart devel-
opment (Dong and Yuan 2021). In addition to quantifying an increase in ventricular 
cardiomyocytes and smooth muscle cells as time went on, by calculating the assor-
tativity coefficient (here used as a measure of whether neighbouring cells were of 
the same type) the study was able to determine that spatial organisation of the devel-
oping heart becomes increasingly defined in terms of neighbourhoods of cell types 
during development (Dong and Yuan 2021).

Assigning cell types to a spatial transcriptomics dataset can be approached more 
than one way. By incorporating a priori knowledge to a probabilistic likelihood 
function, FICT (FISH Iterative Cell Type assignment) can blend expression and 
spatial information to assign cell type to spatial transcriptomics data sets (Teng 
et  al. 2021). This is achieved by creating a generative mixture model using a 
reduced dimensions representation of expression levels through a denoising auto-
encoder and assigning each cell as cell type defined by its neighbourhood (repre-
sented in an undirected graph); the parameters of this model can be learnt by an 
expectation maximization approach, which is an iterative process (Teng et  al. 
2021). Finally, the cell can be classified by a posterior distribution of the model 
(Teng et al. 2021). During this process, the problem of over-reliance on expression 
data needs to be addressed, which occurs because in a dataset it is likely that there 
are more genes being expressed than cell types present (Teng et al. 2021). To cir-
cumvent this problem, a named power factor acts as a weight term to balance the 
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dimensionally reduced expression component with the spatial component (Teng 
et al. 2021). The package was validated using three simulated and real data sets and 
compared to the results of GMM, scanpy, Seurat and smfishHmrf (Teng et  al. 
2021). Across all three simulated data sets, FICT has the highest median accuracy, 
reaching a high of approximately 0.89 in one of the simulated data sets (Teng et al. 
2021). When evaluated on a real MERFISH mouse hypothalamus data set, the 
ground truth of the location of different cell types is unavailable, so clustering 
results obtained from different animals are compared using the Adjusted Rand 
Index. When comparing across this metric, FICT is more consistent in applying 
clusters to the majority of the paired animals, indicating its superior performance 
in assigning cell type clusters (Teng et al. 2021). FICT has the potential to identify 
novel subclusters within the data set (Teng et al. 2021). However, FICT’s perfor-
mance drops when applied to data sets with smaller numbers of cells, although this 
is observed across all packages validated (Teng et  al. 2021). Furthermore, its 
decreased performance was still in line with packages with similar functions, and 
as spatial transcriptomics data sets become larger, this should not interfere with 
FICT being applied in future (Moncada et al. 2020). However, despite its greater 
accuracy when applied to larger datasets, FICT’s runtime in these instances could 
still be improved (Moncada et al. 2020).

RCTD is another package created with the final aim of identifying cell types in 
a spatial transcriptomics data set (Cable et al. 2020). While identifying SVGs is 
extremely informative, it is important to understand how the role of underlying cell 
types contributes to a gene’s spatially variable expression patterns (Cable et  al. 
2020). Robust Cell Type Decomposition (RCTD) makes use of annotated scRNA- 
Seq data to create cell type profiles for expected cell populations in the data, then 
labels spatial transcriptomics pixels with cell types using a supervised learning 
method (Cable et al. 2020). As one of the major hurdles in this analysis is the fact 
that the current spatial transcriptomics data sets can contain multiple cell types 
within a single pixel, RCTD can also fit a statistical model to determine multiple 
cell types present within a pixel and normalise across platform effects between the 
scRNA-Seq and SRT datasets (Cable et al. 2020). To achieve this, RCTD first cre-
ates a spatial map of cell types and estimates the number of different cell types in 
each pixel where the gene counts are assumed to have a Poisson distribution (Cable 
et al. 2020). This should circumvent the problem introduced by the current unsu-
pervised learning methods that overlook clustering cells that co-localise transcrip-
tionally as well as spatially (Cable et al. 2020). Using this approach, RCTD was 
able to classify cells across platforms with almost 90% accuracy. However, as with 
any supervised learning approach, the cell types one can detect using this tool are 
limited to how accurately and fully the reference data set is annotated, which may 
present difficulties. Also, while the study tested RCTD using references and data 
sets generated by many different kinds of scRNA-Seq and SRT technology, the 
effects that specific platforms may have on cell type assignment is still 
undetermined.
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7.2.5  Spot-by-Spot Clustering

A common step in the analysis of many kinds of omics data sets is to perform clus-
tering, and this is prevalent when analysing SRT data. This section will discuss 
techniques that cluster spots on an SRT array, which may contain multiple cell 
types, based on the overall gene expression profile of the spot (Bergenstråhle et al. 
2020b). Despite being common, this is not a straightforward step. Understanding 
the results after different iterations can prove difficult, as does choosing the correct 
hyperparameters (Bergenstråhle et al. 2020b). This is further confounded as each 
barcode is associated with multiple cells (Bergenstråhle et al. 2020b). To address 
these issues, an R package called SpatialCPie was developed which focuses on clus-
tering spots on the array based on the gene expression profile to allow annotation of 
regions of the tissue (Bergenstråhle et al. 2020b). SpatialCPie allows the user to 
choose which algorithm to implement and clusters the data at different resolutions 
from the start (Bergenstråhle et al. 2020b). The user is then free to choose which 
conformations of clusters created at which resolution most accurately represent 
their data. By creating a cluster graph and an array plot, SpatialCPie gives the user 
varied insight into how different resolutions affect the clustering outcomes 
(Bergenstråhle et al. 2020b). The cluster graph displays how the different clusters 
relate to one another across different resolutions, and conveys the origins of new 
clusters as they emerge at higher resolutions (Bergenstråhle et al. 2020b). The edges 
of the graph link the percentage of spots in new clusters that descend from different 
lower resolution clusters (Bergenstråhle et  al. 2020b). The second visualisation 
method is the array plot, which represents the SRT array, but each spot is depicted 
as a pie cart that shows how similar the gene expression is between cluster centroids 
and spatial regions (Bergenstråhle et al. 2020b). SpatialCPie offers the novel, to the 
best of the authors’ knowledge, option to choose a particular region of the dataset 
for further sub-clustering which may be appropriate depending on the tissue of 
interest (Bergenstråhle et al. 2020b). While SpatialCPie only compares itself to ST 
viewer – in a limited capacity – its overall performance is promising (Bergenstråhle 
et al. 2020b). However, additional validation of its performance compared to other 
similar packages such as ST viewer would be beneficial to understand its accuracy.

7.2.6  Pipelines

As the area of SRT continues to expand, pipelines, rather than just analysis pack-
ages, will become more commonplace. One of the first available pipelines written in 
R is Giotto, which is a platform that can be used on both transcriptomics and pro-
teomics data; it is divided into a data analysis and visualisation module (Dries et al. 
2019). With a focus on being user-friendly and reproducible, Giotto does provide 
the opportunity for more complex spatial analysis using HMRF models (Dries et al. 
2019). As a foundation, Giotto creates a neighbourhood network of cells and a 
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spatial grid for downstream analysis which includes ligand- receptor identification, 
gene expression pattern analysis and determining preferential cell neighbours (Dries 
et al. 2019). Giotto is tested on ten different data sets obtained with varying tech-
nologies and from varied tissues to examine its performance across a range of 
benchmarks (Dries et al. 2019). The initial steps in the analysis are similar to those 
performed in scRNA-Seq analysis, but Giotto does offer three different algorithms 
for identifying marker genes, one of which (Gini) was specifically developed for the 
pipeline, which differ in their strength in identifying particular kinds of marker 
genes (Dries et  al. 2019). The Scran method evaluates the markers between two 
groups of cells by running t-test (default) and then determining marker genes (Lun 
et al. 2016). Mast identifies marker genes between two cell groups by employing a 
hurdle model (Finak et al. 2015). The Gini algorithms score marker genes within a 
cluster based on Gini coefficients, which were developed to identify rare cell types 
from an adapted model implemented in the social sciences (Jiang et al. 2016). All of 
these algorithms were developed to score marker genes between clusters in single-
cell data sets. When evaluated, Gini discovered the most marker genes for the 12 
cell types when compared to Mast and Scran; however, when identifying the top 20 
markers using each method, Gini had the lowest sensitivity but highest specificity in 
both the endothelial and oligodendrocyte populations (Dries et al. 2019). The sensi-
tivity and specificity of each algorithm vary slightly across the different cell popula-
tions they investigated when evaluated against a sequential fluorescence in situ 
hybridization (seqFISH+) somatosensory cortex dataset, and this is important when 
deciding which algorithm to employ; furthermore, this needs to be tested against 
data sets generated from different biological material and technologies to best 
understand the true limitations of each algorithm (Dries et al. 2019). Giotto also has 
analysis pipelines designed specifically for SRT data sets with lower resolution 
(Dries et al. 2019). By using one of three algorithms to provide an enrichment score 
between a location’s expression pattern and a cell’s gene signature, it is possible to 
assign a cell type to a location which contains more than one cell (Dries et al. 2019). 
Once again, the availability of multiple algorithms at this step which require differ-
ent inputs allows Giotto to be flexibly implemented on a number of different datas-
ets (Dries et  al. 2019). These three enrichment algorithms were validated on a 
simulated dataset similar to one generated using seqFISH+ with the hypergeometric 
algorithms having the lowest AUC score (0.8) and both PAGE and RANK scoring 
similarly well when predicting cell type at a particular location (Dries et al. 2019). 
When applied to real data sets, the two best scoring algorithms RANK and PAGE 
performed well and should be used when employing the Giotto pipeline (Dries et al. 
2019). To analyse spatial patterns of gene expression, Giotto creates a spatial net-
work to represent the data using a Delaunay triangulation network, which is the 
same as the method employed by scGCO (Zhang et al. 2018; Dries et al. 2019). 
While the option is available to alternatively construct a spatial network with two 
different methods offering the user greater control on downstream parameters, the 
analysis results appear insensitive to these adjustments (Dries et  al. 2019). To 
uncover SVGs, Giotto introduces two new methods, BinSpect-kmeans and BinSpect 
rank, as well as incorporated methods from SpatialDE, Trendsceek and SPARK 
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(Dries et al. 2019). When evaluated, each of the methods identified unique SVGs, 
with 103 genes being identified by all five methods (Dries et al. 2019).

As the field of SRT continues to expand, so will the analytical tools available. As 
an increasing number of downstream analysis packages are published for SVG 
identification amongst other analyses, pipelines and frameworks will become 
increasingly complex in the scope of their abilities. A new framework developed to 
combine and encompass all aspects of analysis for spatial-omics technology is 
Squidpy (Palla et al. 2021). While not built specifically for the analysis of SRT data, 
the Squidpy framework developed in Python brings common tools for analysis and 
visualisation to any spatial-omics data and takes advantage of the additional infor-
mation available to improve exploration (Palla et al. 2021). Offering a broader and 
more modular approach than Giotto, Squidpy offers the opportunity for other pack-
ages to be easily integrated into its pre-existing framework to expand its capabilities 
(Palla et al. 2021). Squidpy will store the image data in an Image Container and 
create a neighbourhood graph of spatial coordinates so that it can be used on a wide 
array of technologies (Palla et al. 2021). A feature of Squidpy that adds additional 
analytical opportunity is its in-built image analysis tools (Palla et al. 2021). While 
the packages discussed so far require an image as part of the input for analysis, none 
extend so far as to allow the user to investigate the data contained in this image to 
the same extent as Squidpy, which is the capability that differentiates it most from 
Giotto (Palla et al. 2021). The first step in the investigation of cellular neighbour-
hoods and spatial patterns is the construction of a spatial graph (Palla et al. 2021). 
When compared to similar processes in Giotto, Squidpy had a more efficient run 
time when constructing both a spatial graph and calculating neighbourhood enrich-
ment, although for data sets with a smaller number of observations the difference 
was not great (Palla et al. 2021). Despite offering an interesting perspective on the 
direction of spatial-omics analysis frameworks and pipeline and reporting limited 
but promising results with regards to its ability to reproduce results about cellular 
neighbourhoods, Squidpy does not report its performance in accurately discovering 
SVGs nor does it quantify how its results relate to those reported in the previous 
studies (Palla et al. 2021).

7.2.7  Discussion

Despite being a relatively novel technology, SRT – often alongside scRNA-Seq or 
other techniques – has already been successfully applied to identify gene expression 
changes in a variety of tissues and disease states. One example was its application 
in mouse brains to understand spatially DEGs involved in early-stage Alzheimer’s 
disease (Navarro et al. 2020). Different SRT methods are best suited to studying 
different cell types within a tissue to distinguish differences between them in dis-
ease states, such as comparing the dopamine neurons from two regions in Parkinson’s 
patients (Aguila et al. 2018). To further demonstrate how this technology can be 
applied to an array of conditions and diseases, Modlin and colleagues successfully 
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actioned it as part of an investigation into the organisation of cellular subtypes that 
contribute to the antimicrobial capabilities of human leprosy granulomas (Ma 
et al. 2020).

This clear increase in the popularity of SRT has prompted the recent develop-
ment of many different packages and pipelines for the downstream data analysis of 
SRT data sets. While it seems that certain studies are still reliant on packages devel-
oped for scRNA-Seq data adapted to included SRT analysis such as Seurat (Ortiz 
et al. 2019), the variety of purpose-built available tools will likely replace these. A 
package for easily identifying SVGs seems to be the most popular aim, and even the 
pipelines developed so far have centred around this same purpose (Svensson et al. 
2018; Li et al. 2021; Sun et al. 2019; Edsgärd et al. 2018; Hao et al. 2021; Zhang 
et al. 2018; Palla et al. 2021; Dries et al. 2019). However, the scope of developing 
packages continues to expand to further improve the capabilities of analysis, such as 
Sparcle, which was developed to be used in conjunction with other packages.

Of all the packages discussed, SpatialDE seems to be the most popular, followed 
by SPARK, Trendsceek and Giotto in terms of being used as benchmarks by which 
to validate new packages. SpatialDE indicated a tendency to label genes with very 
low expression as SVGs (Sun et al. 2019), and certain discrepancies in performance 
compared to other packages tested on real data sets. This alongside the potential 
introduction of false positives indicates an area of improvement for this popular 
package. A current limitation of the validation of package performance is that most 
commonly two data sets (Ståhl et al. 2016), obtained using the same Visium method, 
are used which will surely introduce inherent bias to the benchmarking process. It 
would be beneficial to understand the package’s performance across datasets from 
different tissues (instead of exclusively olfactory bulb and breast) generated using a 
different technology.

To most comprehensively establish the relative performance of all packages, a 
review should be conducted which benchmarks all packages simultaneously against 
the same datasets, generated by different SRT methods in different tissues and a 
standard method for validation established. More packages that are modular and can 
be integrated alongside one another to expand the scope of analysis are critical and 
will help advance the field and uptake of this technology. Additionally, the further 
development of user-friendly pipelines will also make analysing SRT results more 
accessible. As the array of available tools for analysis of SRT data becomes greater, 
the results from studies employing the technology will improve and the scope of 
biological problems that can be addressed will simultaneously expand.
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Chapter 8
The Interplay Between 
the Transcriptomics and Proteomics 
Profiles

John Oluwafemi Teibo, Virgínia Campos Silvestrini, Alessandra P. Vargas, 
Guilherme Pauperio Lanfredi, and Vítor Marcel Faça

8.1  Introduction

Living organisms have complex physiology, with extremely regulated systems to 
modulate responses to internal and external stimuli, allowing adaptability in the 
environment in which they live. These processes involve constant synthesis and 
degradation of biomolecules as a response to cellular events. The same occurs in 
pathological situations, where the abnormal stages of development of a disease are 
carried out by important changes in the set of biomolecules responsible for cell or 
organism function. Genetic products, mainly mRNAs and proteins, are constantly 
being modulated in response to normal physiological and pathological cellular 
events. Therefore, effective monitoring of the cellular or organism complement of 
mRNAs and proteins, namely the transcriptome and proteome, respectively, are fun-
damental to understand normal as well as pathological molecular mechanisms in 
the cells.

Technological advances in genomic sciences, including modern tools for tran-
scriptomics and proteomics, have been recognized as important drivers of biosci-
ences, allowing significant scientific discoveries and biological advances in the last 
decade. The genomics, transcriptomics, and proteomics now can routinely provide 
information on cell mutations, disease biomarker, gene therapies, with particular 
direct impact in personalized medicine applications. More importantly, these 
approaches can be used coordinately in the same study, providing deep molecular 
profiles in healthy and diseased situations (Manzoni et al. 2018).

Great scientific advances started with genomics. However, despite being revolu-
tionary in the beginning of the century, the study of the genome does not respond to 
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all the challenges and questions posed by biology especially in human health and 
disease areas. Many regulatory mechanisms are orchestrated between the genome 
transcription and the translation of proteins, which are responsible for most of the 
phenotypic characteristics of an organism (Buccitelli and Selbach 2020). Based on 
this principle, other technologies and approaches emerged with the aim of identify-
ing a complete set of transcripts and also proteins in a given biological system. The 
integration of these “omics” approaches can be the key to understanding complex 
data, helping to generate more complete hypotheses in several areas of biology.

From the earlier studies comparing mRNA and protein abundancy in some bio-
logical models, it was obvious the lack of full concordance observed in high- 
throughput experiments (Anderson and Seilhamer 1997; Gygi et al. 1999). On the 
biological front, differences could be initially attributed to RNA splicing, differen-
tial RNA and protein turnover, post-translational modifications, allosteric protein 
interactions, and proteolytic processing events. On the experimental front, chal-
lenges in experimental design and data interpretation, as well as technological limi-
tations, contributed to some of the differences observed (Hegde et al. 2003).

In this chapter, we will explore the biological and technical factors that affect the 
concordances and differences already established for the interplay of transcriptomes 
and proteomes in biological system. After a couple of decades with scientific and 
technological advances in the “omics” field, researchers have been elucidating some 
new players and factors responsible for the imbalance between mRNA and proteins, 
some of the technical limitations has been overcome, data generation and process-
ing and more importantly, how and when data from both transcriptomics and pro-
teomics can be integrated have been improved and properly compared in order to 
draw hypothesis and conclusions that now can form the basis of pathways involved 
in health and diseases processes in various biological systems.

8.2  Transcriptomics

The analysis of the entire transcriptome (mRNA, tRNA, rRNA, and miRNA) has 
become an essential tool in the quantification of gene expression in different tissues, 
organs, and cells, previously identified only by DNA sequencing. Transcriptomics 
can routinely provide an overview of the characteristics of gene expression in differ-
ent samples, determining the presence/absence and quantification of transcripts. 
These transcripts profiles provide the basis for understanding regulatory pathways 
that control cell function, growth, and development in different biological systems. 
This information is also essential for understanding the metabolic and tissue dynam-
ics, especially in comparisons among physiological and pathological states (Jiang 
et al. 2015).

The dominant contemporary techniques used for transcripts profiling are RNA 
microarray and RNAseq, both with their distinct advantages and disadvantages. 
Microarrays measure the abundances of an established set of transcripts via their 
hybridization with an array of complementary probes, allowing the analysis of 

J. O. Teibo et al.



189

thousands of transcripts at a low cost (Lowe et al. 2017). The abundance of tran-
scription is determined by hybridization of fluorescently labeled transcripts to these 
know probes. Importantly, this approach is based on a defined set of known 
sequences, to generate the profiles for the array (Barbulovic-Nad et al. 2006; Lowe 
et al. 2017). Current commercially available mRNA microarrays can profile virtu-
ally the entire transcriptomes for several different organisms.

More recently, RNAseq, which refers to the complete sequencing of the tran-
scriptome, determines the abundance of mRNA from the number of counts from 
each transcript (Morozova et al. 2009). The first paper published using this tech-
nique was in 2006 with 105 transcripts sequenced and that provided sufficient 
sequence coverage to quantify their relative abundance (Bainbridge et  al. 2006). 
RNAseq became more established and robust from 2008 with the emergence of next 
generation sequencing and massive sequencing by synthesis (SBS) technology, 
which now is sufficient for accurate quantitation of the entire human transcriptome 
(Lappalainen et  al. 2013). These approaches have led to rapid expansion of this 
technology to answer many biological questions revolving around the transcrip-
tomes for health and diseased biological problems.

For both the microarray and RNAseq strategies, it is initially necessary to purify 
the RNA and convert it into complementary DNA (cDNA). Subsequently, cDNAs 
are chemically marked with fluorophores and hybridized to probes on the chip to 
detect present target genes, if the technique used is RNA-microarray. On the other 
hand, if the strategy used is that of RNAseq, the RNA can also be fragmented to 
build a library for sequencing analysis. Both strategies must be executed through the 
platform of choice according to the specific objectives of each experiment or study 
(Nagalakshmi et al. 2010; Kukurba and Montgomery 2015; Manzoni et al. 2018).

Microarrays are now a robust technique and they are commercially available for 
complete genomic coverage using optimized sets of probes. However, transcripts 
not included in the probes will not be observed. More complex organisms have a 
greater number of exons and also non-coding sequences (introns). In this case, 
direct sequencing of mRNA molecules can provide more information about tran-
scription products and potential translation products with greater coverage. Based 
on this principle, RNAseq does not require prior knowledge of the transcripts in the 
sample, making it possible to compare different sets of genes. This unique feature 
has enhanced the discovery of novel transcript products from the gene expression 
process. The microarray technique, on the other hand, has a lower cost and allows a 
higher number of replicates, necessary for confident new discoveries (Nagalakshmi 
et al. 2010).

The integration of transcriptomics with other “omics” technologies can help to 
grasp the complexity of cell life. Transcriptomics tools permit the parallel quantifi-
cation of thousands of biomolecules and therefore allow for explorative, non- 
hypothesis- driven studies. However, there are several sources of variability 
originating from biological and technical causes that can affect the quality of the 
resulting data, such as biological heterogeneity in the sample, sample collection 
variations, RNA quantity and quality obtained from preparation steps, technical 
variation during sample processing, and batch effects, among others. Some of these 
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issues can be avoided with an appropriate and carefully experimental design that 
controls for the different sources of variation, but others will be detected only after 
a quality assessment of the raw data through computational support tools. Therefore, 
regardless of the technology used to measure gene expression of a cell, ensuring 
quality control is a critical starting point for any subsequent analysis of the data 
(Cobb et al. 2005; Larkin et al. 2005; Irizarry et al. 2005; Heber and Sick 2006). As 
we will discuss ahead, other technologies such as proteomics also present advan-
tages and technical limitations. These potential limitations are the initial key factors 
to be eliminated or at a least minimized to allow multi-omics platforms data integra-
tion and comparison to provide more information toward answering complex bio-
logical questions.

8.3  Proteomics

Proteomics consists of suite of techniques that allow proteome analysis, making 
possible to identify proteins and quantify their abundance and post-translational 
modifications (PTMs) in a complete and complex set of different samples, including 
cells, tissues, and fluids, among others (Faça 2017). Unlike the transcriptomics 
strategies mentioned above, proteomics provides direct measurements on active and 
post-translationally modified proteins, in addition to their cell expression and local-
ization. This kind of information is essential during the development of several 
pathologies, since biochemical processes such as splicing, phosphorylation, ubiqui-
tination and other PTMs are usually severely impacted. Thus, proteomics studies 
also provide information on altered pathways, contributing to the discovery of 
important biological targets in the emergence of diseases (Silvestrini et al. 2019). 
Therefore, proteomic strategies are important to complement genomic and tran-
scriptomic information (Aslam et al. 2017; Silvestrini et al. 2019).

When studying the proteome, an increase in the degree of molecular complexity 
in relation to the genomic study must be considered. The four-nucleotide codes of 
DNA and mRNA are translated into a complex code of 20 amino acids with differ-
ent combinations, forming primary sequences that can adopt specific chemical con-
formations and modifications to produce a functional protein (Manzoni et al. 2018). 
The proteome is a multidimensional and highly dynamic system, in which each 
protein has several interconnected properties that together represent the phenotype 
of a cell or organism.

Although some of the underlying technology for quantifying protein abundance 
was introduced more than 40 years ago (O’Farrell 1975; Klose 1975), there has 
been recently a significant advance in the field and the development of new tools. 
With the advances in mass spectrometry which focus on studying proteomes, cell 
location, synthesis/degradation, Post-translational modifications, (PTMs) etc. 
has began to be analyzed in an integrated manner, allowing a better understanding 
of physiological and cellular processes (Larance and Lamond 2015).
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The need to understand cellular changes at the protein level has led to the emer-
gence of more accurate, high-quality proteomic strategies that guarantee sensitivity 
for the simultaneous identification and quantification of thousands of proteins in a 
sample. Most common proteomic studies in disease development are based on 
liquid- chromatography coupled with high-throughput mass spectrometry (LC-MS/
MS) technology. In particular, LC-MS/MS has enabled the structural characteriza-
tion of proteins and protein complexes that have been intractable through other 
methods, providing experimental evidence with high resolution (Chandramouli and 
Qian 2009). Currently, two principles of analysis are used: a global and targeted 
proteomics approach (Chandramouli and Qian 2009). In global proteomics or also 
called shotgun sequencing or whole proteome analysis, there is no hypothesis of 
specific proteins to be found in the sample. These approaches have gained interest 
in clinical applications since a high number of altered proteins are observed in dif-
ferent conditions, and they can be evaluated in a quantitative manner, using a wide 
range of approaches that are mainly divided in isotopic-labeling or label-free meth-
ods (Chandramouli and Qian 2009; Silvestrini et al. 2019, 2020). This strategy cur-
rently provides a detailed map of thousands of proteins and their respective 
abundance, allowing comparison of few different variables in each experiment.

Conversely, in targeted proteomics, a known and specific set of proteins are 
quantitatively analyzed by mass spectrometry. Panels are created with unique pep-
tide sequences that represent the target protein and that will be accurately monitored 
during the experiment. This approach is based on the high selectivity of peptide ions 
filtering to improve the sensitivity and accurate quantification of ions (Faça 2017; 
Silvestrini et al. 2019). Also, this approach allows faster methods and larger number 
of samples and variables analyzed, which is still a limitation for high-throughput/
shotgun proteomics. In summary, the combination of shotgun and targeted strate-
gies provides additional capabilities to identify and validate protein molecular sig-
natures, for example in patient sample cohorts, since the global analysis identifies 
the altered proteins and subsequent individual sample are accurately quantified for 
the set of selected proteins by targeted proteomics (Lanfredi et al. 2021). This is a 
potent strategy for the discovery of new pathways and disease molecular signatures 
in various perturbed conditions for a wide variety of biological systems.

8.4  Mechanisms That Regulate mRNA and Protein Levels

For many years, the central dogma of molecular biology stated that RNAs mole-
cules were intermediates between DNA and protein and that the function of RNA 
was primarily linked to the translation of the genetic material into polypeptide 
chains (proteins) (Brenner et al. 1961; Jacob and Monod 1961). Therefore, the basic 
level of understanding of the central dogma of biology supports that protein concen-
trations in a biological system should then directly correlate with their respective 
mRNAs levels, since translation is required to produce proteins. In fact, it has been 
shown that when mRNA levels are low, usually proteins are not detected and the 
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ability to detect proteins increases significantly at higher levels of mRNA (Vogel 
and Marcotte 2012).

Considering the last decades’ technological advances, the measurement of tran-
scribed mRNA has proven to be very powerful in the discovery of molecular mark-
ers and the elucidation of functional biological mechanisms. However, it was also 
evident that mRNA abundance is not a good predictor of protein abundance in the 
cell. Many possible points of control and potential interruption for the flow of infor-
mation coded in DNA sequences until it becomes a functional protein have been 
elucidated. The synthesis and turnover of cellular proteins require several processes 
that are interconnected, starting with the transcription, processing, and translation 
of mRNAs, followed by protein folding, cellular transport and localization, and 
post-translational modification. Parallel processes such as mRNA degradation, inhi-
bition of mRNA translation and protein degradation also modulate the amount of 
functional protein available in the cell, tissue or organism, which directly impact 
their physiological conditions (Vogel and Marcotte 2012). These basic mechanisms 
are illustrated in Fig. 8.1. Given this high degree of interconnection of processes 
that affect both mRNA and protein levels, understanding normal physiological 

Fig. 8.1 General overview 
of gene expression. The 
diagram depicts main 
processes that are 
responsible for producing 
(green arrows) or 
degrading (red arrows) 
mRNAs and proteins at a 
cellular level. Upon 
intracellular or 
extracellular signals or 
stimulus, gene expression 
is triggered and the fine 
balance between all these 
processes is responsible for 
the maintenance of cellular 
physiology and defines its 
normal momentary 
phenotype
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processes that modulate these biomolecules are important to introduce the correla-
tion of mRNA and protein levels in health and disease. Below we discuss some of 
the most established points in that regard.

8.4.1  mRNA Transcription and Decay

The average abundance of mRNA in a given cell, tissue, or organism is determined 
by the rates of the transcription versus degradation. Transcriptional regulation 
occurs at two interconnected levels: the first involves transcription factors and the 
transcription apparatus, and the second involves chromatin and its regulators. All 
starts with DNA binding transcription factors that occupy specific sequences and 
recruit and regulate the transcription by the RNA polymerase II machinery. In 
eukaryotic systems, there has been extensive study of specific transcription factors 
and their cofactors, the general transcription apparatus, and various chromatin regu-
lators, leading to current models for specific gene transcription control. The particu-
lar set of transcription factors that are expressed in any cell or tissue type at a given 
moment controls the selective transcription of a subset of genes, correspondent to 
that cell or tissue expression program. Therefore, the set of genes that are tran-
scribed largely defines the cell phenotype. The gene expression program of a spe-
cific cell type includes RNA species from genes that are active in most cells 
(housekeeping genes) and genes that are active predominantly in one or a limited 
number of cell types (cell-type-specific genes). Studies of the transcription factors 
that are key to establishing and maintaining specific cell states suggest that only a 
small number of the transcription factors that are expressed in cells are necessary to 
establish cell-type-specific gene expression programs (reviewed by Lee and 
Young 2013).

On the other end, decay of mRNA can be broadly divided into two classes: 
mechanisms of quality control that eliminate the production of potentially toxic 
proteins and mechanisms that lengthen or shorten mRNA half-life for the purpose 
of changing its abundance, and therefore the availability of functional proteins. 
Because mRNAs primarily function as templates for protein synthesis, it is logical 
that cells have evolved translation dependent quality-control mechanisms to dispose 
of defective mRNAs that synthesize abnormal proteins. Nonsense-mediated mRNA 
decay (NMD), which, unlike most mRNA decay pathways, appears to be restricted 
to newly synthesized transcripts, which occurs in all eukaryotes that have been stud-
ied, eliminates mRNAs that prematurely terminate translation. This mechanism 
dampens the potentially toxic effects of defective transcripts that are routinely gen-
erated during gene expression of newly synthesized mRNAs. In addition, NMD is 
inhibited by negative regulators induced by some stresses  – such as amino acid 
starvation and viral infection, among others. Mature mRNAs are degraded by exo-
nucleases acting at both ends of the molecule or endonucleases. Decay rates can be 
specified by control elements that are usually located within the 3′-untranslated 
regions (UTRs) of mRNAs and are recognized by various RNA-binding proteins 
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(RBPs) (Wilusz et al. 2001; Parker and Song 2004). Additionally, degradation of 
transcripts occurs at distinct cytoplasmic sites in both yeast and human cells indicat-
ing that the regulation of mRNA stability is a widespread, tightly regulated, and 
conserved mechanism for the control of gene expression (Wilusz and Wilusz 2004). 
Interestingly, little is known about how ribonucleases are regulated, particularly 
because this class of enzymes is regulated through the proteins they interact with 
(reviewed by Schoenberg and Maquat 2012).

The time-course measurements of mRNA abundance are, therefore, the key fac-
tor to evaluate turnover and stability. Technological advances made the global eval-
uation of mRNA turnover more common and efficient than it is for proteins. 
Genome-wide mRNA turnover has been determined in bacteria (Bernstein et  al. 
2002; Selinger et  al. 2003), yeast (Wang et al. 2002; Grigull et  al. 2004), plants 
(Gutiérrez et al. 2002), and humans (Raghavan et al. 2002; Yang et al. 2003) by 
measuring mRNA levels at different times after RNA polymerase II inactivation. In 
fact some of these studies brought the concept of timing to describe mRNA stability. 
Each RNA polymerase II can transcribe about ~100 primary mRNAs per hour from 
the DNA template. In contrast, ribosomes produce up to 10,000 protein molecules 
per mRNA per hour (Darzacq et al. 2007; Hausser et al. 2019). We will discuss more 
about the differences in timing and turnover rates for mRNA and proteins in the next 
sections.

8.4.2  Regulation of Protein Translation

Cellular functions depend on simultaneous participation of thousands of proteins, 
which are in a dynamic equilibrium of abundance to maintain homeostasis. As we 
have been discussing, the cellular processes of protein translation, folding, and deg-
radation together determine the total repertoire of cellular proteins. Protein levels in 
cells, tissues, and organisms are extremely well regulated in order to reflect the 
healthy phenotype. Therefore, there should be a very efficient balance between the 
mechanisms of production and degradation of proteins. In fact, protein translation is 
the most energy consuming process in the cell, requiring fine modulation before the 
different stimulus provided by the cellular microenvironment according to the vari-
ety of needs of the organism. Starting from the availability of the particular tran-
scriptome of a cell in a given moment, post-transcriptional control takes place 
during translation, and encompasses both global and transcript-specific mechanisms 
to regulate protein synthesis (Dever 2002; Gebauer and Hentze 2004). Global regu-
lation, which affects the translation of most transcripts, usually occurs by changes 
in the phosphorylation state of translation initiation factors and by adjusting the 
number of available ribosomes (Preiss and Hentze 2003). Transcript-specific regu-
lation, by contrast, modulates the translation of a distinct group of mRNAs and is 
mediated by a large diversity of mechanisms, such as codon bias or the interaction 
of the transcript with regulatory elements (Beilharz and Preiss 2004). It involves 
RNA binding proteins that associate with particular structural features or control 
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elements present in the UTRs of target transcripts, and are similar to the control of 
RNA decay which is highlighted earlier.

Among the various processes that coordinate the mRNA translation is the mTOR 
signaling pathway listed as one of the most studied and understood. The mTOR 
signaling pathway can rely on various external stimuli to continue the translation 
regulation. Hormones, growth factors, metabolites, and nutrients can start cell trans-
lation machinery (Buttgereit and Brand 1995). mTOR is a Ser/Thr kinase that stim-
ulates anabolic processes through the phosphatidylinositol 3-kinase/protein kinase 
B (PI3K/AKT) signaling pathway activation by hormone or growth factor via spe-
cific receptor tyrosine kinase complexes and its specific substrates. Notably, the 
entire functional control of these pathways is regulated by post-translational modi-
fication, mainly phosphorylation. In addition to regulation by external factors, the 
mTOR translation modulation pathway is also affected by the cell’s internal signal-
ing by conditions such as hypoxia and energy depletion. Another way of modulating 
the translation extensively studied is the MAPK (mitogen-activated protein kinases); 
this pathway regulates among others translation parallel to mTOR, interacting with 
it at several points enabling or inhibiting translational activity. Considering the 
beginning of MAPK pathway, the upstream event begins with Ras GTPases that can 
be activated by several external stimuli, also interacting with MAPKs that regulate 
TSC complex to finally affect mTORC1, or downstream with modulation of transla-
tion machinery stimulating its components, such as elf4E (Shaw and Cantley 2006). 
Despite the detailed understanding of signaling pathways for the components 
responsible for mRNA translation, such as the regulatory role of the PI3K/mTOR 
and Ras/MAPK pathways, they are not unique, recent efforts with different analyti-
cal techniques show the role of additional signaling pathways in the activation of the 
translational machinery and even of sensitive or specific transcripts of given path-
way (Roux and Topisirovic 2018).

With all these roles assigned, the signaling pathways involved in the translation 
also prove to be a relevant target for the therapy of diseases, since the imbalance in 
this adjustment has great potential in the appearance of organism disorders. 
Comprehensive analysis using a proteogenomics approach of the PI3K/AKT/mTOR 
pathway showed high activity of these pathways in a significant portion of cancers 
and despite the great correlation of activity rates, there is in some cases decoupling, 
showing the regulatory character in the multiple levels of these pathways (Zhang 
et al. 2017).

8.4.3  Non-coding RNAs Inhibit mRNA Translation

We have been discussing many aspects that affect mRNA translation. However, the 
development and application of deep sequencing have shown that most of the 
genome results in transcription to RNAs, but from these only 1–2% of the human 
genome codes for proteins. Hence, it is possible to divide the transcriptome into two 
large groups, being coding potential RNAs, that have potential to be translated into 
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proteins and RNAs without coding potential, not being translated into proteins, non- 
coding RNAs (ncRNAs). Even though the RNAs were already studied extensively, 
currently represented mainly by mRNAs, ncRNAs account for the major part of 
RNAs, holding a great potential for the knowledge of new mechanisms of the pro-
cesses of expression (Dunham et al. 2012). In fact, the discovery of microRNAs 
(miRNAs) in 1993 (Lee et al. 1993) followed by developments and discoveries in 
small RNA and other ncRNA species have redefined the gene regulation landscape. 
These RNA molecules play a significant role in modulation of an array of physio-
logical and pathological processes that impact directly the balance between mRNA 
and protein levels (Bhaskaran and Mohan 2014).

Since then, one of the most studied regulatory mechanisms that directly mediate 
mRNA and protein translation are the miRNAs. These non-coding short RNA mol-
ecules inhibit the translation and alter the stability of mRNA by binding to comple-
mentary sites on the target mRNAs, usually in the 3′ UTR. With such capabilities, 
miRNAs are responsible for coordinately controlling genes expression involved in 
several cellular mechanisms, such as inflammation, cell cycle, apoptosis, migration, 
and stress, among others pathways involved in disease development (Mollaei et al. 
2019). Most importantly, miRNA alterations are evident in several cancer types and 
correlated with differentiation stages. These molecules can be miRNAs tumor sup-
pressor or oncogenic (oncomiRS). For example, in prostate, pancreatic, bladder 
cancers, and multiple myeloma the tumor suppressor miR-145 controls targets such 
as ROCK1, p-AKT, p-PI3K, STAT3, and FOXO1 (Kato et al. 2017; Mollaei et al. 
2019). On the other hand, in breast cancer the oncomIR controls PTEN/Akt path-
way and contributes to tumorigenesis (Kato et al. 2017; Li et al. 2017).

The main action of ncRNAs widely known is the negative regulation of gene 
expression by binding a target mRNA through complex formation and induction of 
its degradation or inhibition of its translation by different mechanisms (Ha and Kim 
2014). Regulatory ncRNAs can be divided into microRNAs (miRNAs), Piwi- 
interacting RNAs (piRNAs) (Ozata et al. 2019), small interfering RNAs (siRNAs), 
and long non-coding RNAs (lncRNAs) (Yao et al. 2019). The largest quantitative 
contribution to the group of the non-protein-coding transcripts belongs to the group 
of lncRNAs, which are arbitrarily considered as about 200 nucleotides in length. 
Since many of these lncRNAs can also act as primary transcripts for the production 
of short RNAs, they are involved in the silencing of gene expression (Ponting et al. 
2009). In summary, these inhibitory molecules provide possible explanations on 
how variations can arise between transcriptomics and proteomics profiles in bio-
logical systems.

8.4.4  Protein Degradation

On the other side of abundance control, protein half-life can vary significantly 
depending on a number of different conditions (Glickman and Ciechanover 2002). 
The proteome is modulated by protein degradation rates, which are influenced by 
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protein localization, stability, the three-dimensional conformation, and their inte-
gration into stable protein complexes. The amino-terminal and carboxy-terminal 
composition of a protein can determine a protein’s half-life through the recognition 
of degron sequences by proteolytic systems that cause degradation via N-degron 
pathways or C-degron pathways, respectively (Qian et al. 2003).

To keep cellular homeostasis, cells evolved a dynamic and self-regulating quality 
control processes to maintain protein and to prevent accumulation of damaged mol-
ecules. Considering that approximately 240 g protein are synthesized and degraded 
daily in a 60 kg adult human (Mitch and Goldberg 1996), no wonder a failure on this 
tight turnover system ultimately leads to disease. In cells, protein degradation is 
achieved by different degradation systems, of which the ubiquitin–proteasome sys-
tem (UPS) and autophagy are involved in the degradation of the majority of cellular 
proteins. Yet another function of proteolytic pathways is selective destruction of 
proteins whose concentrations must vary with time and alterations in the state 
of a cell.

The UPS mostly degrades single, unfolded polypeptides able to enter into the 
narrow channel of the proteasome, and the majority of intracellular proteins are 
degraded by this process (Zhao et al. 2015). UPS comprises the ubiquitylation sys-
tem, which involves the activity of specific enzymes that ubiquitylate or deubiqui-
tylate target proteins, and the proteasome system, which degrades ubiquitylated 
proteins (Collins and Goldberg 2017). Ubiquitylation is a sequential, ATP- 
consuming process involving a hierarchically acting enzymatic cascade E1, E2, and 
E3 enzymes, which mediate the covalent attachment of ubiquitin monomers (mono- 
ubiquitylation) or chains (polyubiquitylation) to protein substrates. Ubiquitin (Ub) 
is typically attached via its carboxy-terminus to a lysine residue on a target protein, 
and it contains seven lysine residues, Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and 
Lys63, which can form up to seven different polyubiquitin chain linkages. The 
mode of conjugation determines the fate of ubiquitylated proteins, including target-
ing proteins for degradation, affecting their activity or altering their localization. 
The proteasome preferentially degrades branched (Lys48-linked) polyubiquitylated 
proteins, although chains containing nearly all linkages can be recognized and 
degraded by the proteasome (Meyer and Rape 2014).

The proteasome is the most complex protease in the UPS, has a molecular mass 
>2.5 MDa, and exists in multiple structural forms but contains two assemblies, a 
proteolytic chamber formed by the core particle (20S) and a regulatory particle (19S 
or PA700), which are functionally linked by a gated protein translocation channel, 
which collectively are known as the 26S complex. Although the roles of many of 
26S subunits and associated proteins are still unclear, the 26S proteasome catalyzes 
the great majority (at least 80%) of the protein degradation in growing mammalian 
cells. Of note, the proteasome does not degrade proteins to individual amino acids 
but instead polypeptides are digested to short peptides, which range between 2 and 
10 residues in length. The remaining peptides are digested in seconds to amino acids 
by cytosolic peptidases, but in mammals some serve as precursors for antigenic 
peptides displayed on MHC-class I molecules (Kisselev et  al. 1999; Murata 
et al. 2018).
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As proteolysis is irreversible, intricate multi-level mechanisms have evolved to 
ensure efficient and selective protein degradation. In this scenario removal of ubiq-
uitin from substrates is tightly controlled by deubiquitylating enzymes (DUBs; also 
known as deubiquitylases or deubiquitinases). There are four main families of 
DUBs, and they cleave ubiquitin from proteins and disassemble polyubiquitin 
chains that are released from substrates before proteasomal degradation, recycling 
Ub for subsequent ubiquitylation reactions, preventing proteasome congestion and 
controlling protein turnover by modifying or removing ubiquitin or polyubiquitin 
chains from the targeted protein (Wilkinson 1997).

Another important, although less specific protein degradation machinery is 
called autophagy, which is an intracellular pathway for bulk protein degradation and 
the removal of damaged organelles by lysosomes. It is involved in recycling cellular 
components like the cytoplasmic proteins; soluble misfolded protein and insoluble 
misfolded aggregates content for reuse and ensuring that it obeys the rule that 
“energy can neither be created nor destroyed instead it can be change from one form 
to another” as the energy required for degradation is high which is also in tandem 
with notable energy also biosynthesis (Wang et al. 2015). Thus, it helps to change 
the state of cellular contents to re-useable form to build new cells. There are four 
pathways identified for the autophagic process which include: the post-translational 
modification dependent and independent CMA pathways and the ubiquitin depen-
dent and independent macroautophagy pathways (Wang et  al. 2015). Autophagy 
occupies a central position in the maintenance of cellular homeostasis by directing 
protein degradation, and the process adapts cells to adverse micro-environmental 
conditions mainly stress such as nutrient/energy starvation, hypoxia, ER stress, 
hypoxia, and organelle damage (Chen et al. 2019). A precarious balance is essential 
in protein synthesis as well as turnover so as to prevent the onset of diseases such as 
neurodegeneration and cancer, which has made autophagy pathway a target in the 
management of these diseases (Dikic 2017).

Taken together, these major processes and machineries discussed above bring 
their individual roles into the complex network of events that keep the cellular 
homeostasis. In the next sections, we will explore how these individual processes 
contribute to our understanding about when, during cellular events, it is possible to 
expect a balanced correlation between RNA and protein levels.

8.5  Temporal Correlation of RNA and Protein Levels

In healthy cells and at steady state, RNA and protein synthesis and degradation are 
well balanced (Harper and Bennett 2016). A given protein abundance can be 
obtained from infinitely many combinations of these synthesis and degradation 
rates. In addition, variation in mRNA abundance is frequently buffered on the pro-
tein level, meaning that a substantial change in mRNA abundance is not propagated 
immediately into a corresponding change in protein abundance (Liu et al. 2016). 
The cell can control the rates of degradation or synthesis for a given protein, and 
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there is significant heterogeneity even within proteins that have similar functions 
(Pratt et al. 2002). It is clear that cells control protein production at multiple levels, 
and the resulting amounts of protein reflect cellular integration of the various regu-
latory layers, ranging from mRNA production to protein degradation. Although 
regulation at a single level might prevail in some cases, it is common for cells to 
coordinately modulate gene expression at several levels.

One important reason for a general lack of correlation between mRNA and pro-
tein abundance may be that proteins have very different half-lives as the result of 
varied protein synthesis and degradation ratios. Given that proteins are on average 
more stable than mRNAs, proteins can still be present when the mRNA that encoded 
them is long gone. Therefore, it seems recognizable that the possible reasons why 
imperfect mRNA–protein correlations arise from the majority of studies for that 
matter is the factor of “time.” Any change in the transcriptional state of a cell will 
lead to a delay in the response at the protein level simply due to the time it takes to 
reach a new steady state. Correlations at specific time points during a transition may 
be uninformative, as changes in mRNA levels in reality correspond to latent changes 
in protein levels that have yet to occur. Indeed, examples of this are seen in many 
studies that will be discussed ahead.

As an example, at steady state, the RNA polymerase II machinery can transcribe 
2–6  kb/min for a mammalian cell (Maiuri et  al. 2011). Considering an average 
length for an mRNA around 2kb, it takes around a couple of minutes to transcribe 
one gene. On the protein side, the ribosomal machinery operates at a rate of few to 
several amino acids per second, generating proteins with average length also in a 
couple of minutes. Moreover, since many ribosomes can translate the same mole-
cule of mRNA simultaneously, these rates can increase significantly (Riba et  al. 
2019). Overall, it takes more than an hour to generate 106 protein molecules after 
initiation of transcription from a single locus, for example during cell duplication. 
A faster means to upregulate proteins is to increase the number of mRNA mole-
cules, amplifying their translation exponentially (Schwanhäusser et  al. 2013). 
However, many factors, such as rates of translation initiation, sequence, folding, and 
structure of the protein, also significantly affect these rates, again disrupting the cor-
relation of mRNA and protein levels (Riba et al. 2019).

8.6  The Imbalance Between the Transcriptome 
and Proteomes: Lessons Learned 
from High-Throughput Studies

Considering what has been discussed so far, it is certain that protein and RNA-based 
measurements are complementary to provide accurate status of cellular homeosta-
sis. It is important to recognize that many factors can cause imbalances between 
levels of messenger (transcript) and its final effector (mature protein). As we have 
seen, several post-transcriptional and post-translational control mechanisms such as 
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the translation rate or half-lives of mRNAs and proteins are affected by a wide range 
of factors.

On top of all the biological dynamics, the methods of RNA sequencing and also 
of protein expression evaluation by mass spectrometry suffer from technical limita-
tions that affect the precision and final accuracy of the quantitative measurements. 
For example, biases in RNA data can arise during formation of the sequencing 
library. Also, in mass spectrometry, the shotgun approach relies on proteins digested 
with enzymes such as trypsin to generate peptides that are the entities identified. 
The tremendous variety of chemical species generated in shotgun approaches, 
which are influenced by several physicochemical factors, and the stochastic prop-
erty of this technique, turn the proteome samples extremely challenging and almost 
impossible to be completely characterized. Certain approaches such as the use of 
isotopic labeling for relative quantitation or the run of multiple technical and bio-
logical replicates in mass spectrometry turn such proteome complexity into a fea-
sible strategy that can be effectively profiled (Buccitelli and Selbach 2020).

Even with the significant developments in the technologies used to quantify pro-
tein abundance over the past couple of years, protein identification and quantifica-
tion still lag behind the high-throughput experimental techniques used to determine 
mRNA expression levels. The proteome of a cell or tissue at a specific time point is 
extremely complex and diverse. The major limits of proteome analysis are associ-
ated with the heterogeneity of proteins and the huge differences in abundance 
(dynamic range). Abundant proteins mask the presence of low abundant proteins. 
Because no PCR equivalent exists for proteins, low-abundant proteins have a low 
probability to be detected (Churchill 2002; Larkin et al. 2005). Since it is fundamen-
tal to consider at a least some of these drawbacks reported above for a satisfactory 
comparison between the transcriptome and proteome, several studies have been 
specifically designed with this particular focus.

Overall, genome-wide studies have shown that the correlation between expres-
sion levels of mRNA and protein are marginal, hovering around 40–50% across 
many studies. One of the seminal studies specifically developed with the purpose to 
compare the expression profile of active genes in the adult human liver and the pro-
tein abundance in human plasma (Kawamoto et al. 1996). The study found a posi-
tive correlation between the abundance of the transcript and the protein concentration 
in the serum. It was also possible to categorize the responsible genes into three 
groups: those with less than five transcripts (per 1000 mRNA molecules) produce 
proteins at a level of <0.1 g/100ml, those with 5–20 transcripts produce proteins at 
0.1–0.4 g/100 ml, and those with more than 30 transcripts produce proteins at 0.5–4 
g/100 ml. This was a pioneering study on a large scale showing that particularly for 
secreted proteins, the transcript – protein correlation was positive.

Another important study explored for the first time a quantitative comparison of 
mRNA transcript and protein expression levels for a relatively large number of 
genes expressed in the same metabolic state in yeast (Gygi et al. 1999). The study 
concluded that predictions of protein levels from mRNA transcript levels were not 
feasible. This study particularly relied on 2D-electrophoresis to evaluate the pro-
teome, which itself is a very limited technique in terms of dynamic range for protein 
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abundance. However, the study found that for a subset of 106 highly abundant pro-
teins, the correlation with mRNA levels was positive. Subsequently, using the same 
yeast as model system, it was again demonstrated a partial correlation of protein 
expression after specific perturbations in know pathways, namely the galactose uti-
lization (Ideker et al. 2001). While several genes–proteins ratios correlated well in 
increased or decreased expression upon perturbation, others know players in the 
pathway still had poor correlation. More specifically this study attributed the dis-
crepancy in gene–protein expression correlations to post-transcriptional regulatory 
events. Yet, this study also uncovers that for genes linked by physical interactions in 
the network tend to have more strongly correlated expression profiles than genes 
chosen at random. Using modern high-throughput proteomics and accurate relative 
quantitation based on stable isotopes, another study explored in depth the yeast 
proteome and transcriptome correlation (de Godoy et  al. 2008). This study once 
again demonstrated the poor overall correlation of transcriptome and proteome, but 
particularly found that good correlation was found for the subset of genes involved 
in yeast pheromone pathway components.

Studies based on more complex organisms also provided contrasting mRNA and 
protein levels. In a detailed comparison of mesenchymal stromal cells obtained 
from bone marrow or umbilical cord vein, with the overall objective to prove the 
interchangeability of these sources for cellular therapy, proteomic and gene expres-
sion analysis reached a 63% correlation level for those specific set of genes specific 
for one or the other mesenchymal cell type (Miranda et al. 2012). This dataset is 
particularly illustrated in the correlation plot (Fig.  8.2a), which indicated that 
mRNA abundance data (y-axis) presented more spreading in terms of ratios in com-
parison to proteomic data (x-axis). Using more sophisticated proteomic strategies, 
the dynamics of protein and mRNA expression levels across the cell cycle in human 
myeloid leukemia cells using was explored (Ly et al. 2014). Myeloid-specific gene 
expression and variations in protein abundance, isoform expression, and phosphory-
lation at different cell cycle stages were dissected for over ∼6000 genes individually 
across the cell cycle, revealing complex, gene-specific patterns. Protein and mRNA 
correlations were modest across different cell cycle stages, suggesting again greater 
contribution of post-transcriptional mechanisms in cell cycle control.

Considering that most of the aforementioned studies focused on static of mini-
mally dynamic biological events, the temporal contribution to the lack of correlation 
between proteome and transcriptome of a cell was still obscure. A breakthrough 
study shed light in the time variable studying the dynamics of embryonic develop-
ment (Peshkin et al. 2015). Based on a time-resolved deep quantitative profiling of 
proteins and mRNA, the study produced an unprecedented dataset that illustrated 
the turnover of these molecules during the embryo development. As example, 
Fig.  8.2b demonstrates the normalized curves of mRNA and protein levels over 
time. It is clear that the initial wave of mRNA expression and accumulation, was 
followed by a quick decay, while protein levels progressively accumulated for both 
CAPN8 and LIN28A genes. Obviously, depending on the moment one makes the 
mRNA and protein measurements for such gene, more or less correlation will be 
found. On the other hand, the other illustrated genes, DND1 and SPARC, have a 
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very tight correlation. Of note, DND1 itself is a RNA-binding factor that positively 
regulates gene expression by prohibiting miRNA-mediated gene suppression, creat-
ing a scape for post-transcriptional regulation. SPARC is a secreted protein, class 
that has been observed with greater gene expression correlations.
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Fig. 8.2 Correlation of gene expression in complex systems. (a) The combined analysis of the 
transcriptome and proteome of mesenchymal stromal cells from bone-marrow (BM and umbilical 
cord vein (UVC) demonstrated a correlation of 63% of the profiled genes (central circle) and simi-
larity between these two sources of therapeutic cells (reproduced from Miranda et al. 2012). (b) 
Time-course experiments during embryonic development demonstrated the syntheses and decay of 
mRNA and proteins. While some genes (CAPN8 and LIN28A) have an evident difference in tim-
ing for synthesis and degradation, others (DND1 and SPARC) present a completely synchronized 
and correlated gene expression. (Reproduced from Peshkin et al. 2015)
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Several other studies support these major findings described above. But particu-
larly for diseases, the context of protein versus mRNA expression becomes particu-
larly important for diagnostics and molecular profiling. As examples, a study 
correlated the expression of microRNA, mRNA, and proteins in the identification of 
microRNA-related cancers, particularly in glioblastoma (Seo et  al. 2017). For a 
subset of 146 upregulated genes, mRNA and proteins were positively correlated. 
These findings are consistent with the hypothesis that the malignant phenotype 
required additional cancer promoter genes that were coordinately overexpressed. In 
a similar study, Yang and colleagues used a combination of proteomics and tran-
scriptomics strategies and found potential targets in early colorectal cancer (CRC) 
(Yang et al. 2019). The study identified 2968 proteins in stage II CRC proteomics 
data, where most (2846) of these proteins were identified in TGCA transcriptome 
data. Numerous bioinformatics methods, including differential expression analysis, 
weighted correlation network analysis, gene ontology, and protein–protein interac-
tion analyses, were used to select a set of 111 key proteins, differentially expressed 
in terms of proteins and mRNAs, levels. These highly correlated genes can repre-
sent a molecular signature for the CRC, and used, for example, to subclassify the 
tumor types. In summary, the integration of proteomics and transcriptomics data, 
particular for disease studies, can generate a high-resolution global expression map 
that can collaborate to discover new biomarkers for several diseases.

8.7  Final Remarks and Perspectives

As we discussed in this chapter, profiling gene expression enables a global physio-
logical picture for a given system in a specific context or moment. When the dynam-
ics of cellular processes is taken into account, several regulatory processes emerge 
and explain apparent disconnection of the transcriptome and proteome. Unlike the 
genome, which is virtually static in terms of its composition and size, we gave sev-
eral examples here that support the dynamics of the genetic cellular programming, 
which continually changes depending on the phase of the cell cycle, the organ, 
exposure to drugs or physical agents, aging, diseases such as cancer and autoim-
mune diseases, and a multitude of other variables.

Several of the factors that modulate abundance of mRNA and proteins have been 
presented. New features of these molecular mechanisms have been continuously 
uncovered, mainly promoted by advances in high-throughput deep biomolecular 
profiling. In addition to the development of modern multidimensional transcrip-
tomics and proteomics strategies, bioinformatics and data integration have become 
a common basis for translational areas, where complex integrated mRNA and pro-
tein molecular signatures are aiding the development of new therapeutic strategies 
or methods for diseases diagnostics. Ultimately, full and effective integration across 
the relatively static genomic information with the dynamic transcriptomic and pro-
teomic data will produce complete maps of normal and pathological process to 
drive personalized medicine.
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With the continuous advancing of technology and biology, the interplay of tran-
scriptomics and proteomics profiles in living organisms will become more evident 
and fundamental to provide answers to many relevant biological questions in health 
and disease.
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Chapter 9
Transcriptome During Normal Cell 
Differentiation

Karina Fittipaldi Bombonato-Prado, Adalberto Luiz Rosa, 
Paulo Tambasco de Oliveira, Janaína Andrea Dernowsek, Vanessa Fontana, 
Adriane Feijó Evangelista, and Geraldo A. Passos

9.1  Human Mesenchymal Stem Cells Represent 
a Model- System for Cell Differentiation Studies

Stem cells are mainly classified as adult stem cells (ASCs), embryonic stem cells 
(ESCs), and induced pluripotent stem cells (iPSCs), in which mesenchymal stem 
cells (MSCs) are considered the main class of ASCs with prominent therapeutic 
efficacies (Dayem et  al. 2019). The progressive restriction of the differentiation 
potential from pluripotent embryonic stem cells (ESC) to different populations of 
adult stem cells depends on the orchestrated action of key transcription factors and 
changes in the profile of epigenetic modifications that ultimately lead to the expres-
sion of different sets of genes. ESC are unique in their capacities to self-renew and 
differentiate into any somatic and germline tissue, while, by contrast, the differen-
tiation potential of adult stem cells is limited (Aranda et al. 2009).
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Studies have shown that mesenchymal stem cells (MSCs) reflect the stem cell 
differentiation potential and may form the basis of studies designed to provide 
insights into genes that confer the greatest developmental potency (Ulloa-Montoya 
et al. 2007). The knowledge of the fundamental processes associated with the dif-
ferentiation of MSCs is still poor, and elucidation of the genetic cascade guiding 
these cells to become more specialized is important for both basic knowledge and 
clinical application (de Jeong et al. 2004). Roson-Burgo et al. (2016) described a 
core mesenchymal lineage signature of 489 genes based on a deep comparative 
analysis of multiple transcriptomic expression data series that comprise MSCs of 
different tissue origins, MSCs undifferentiated states of commitment and other 
related non- mesenchymal human cell types.

MSCs have now been isolated from many sites throughout the body. In the bone 
compartment, they can be found in bone marrow, periosteum, endosteum, and bone 
mineralized matrix itself, and are known to be the primary sources of cells during 
bone repair (Knight and Hankenson 2013).

The differentiation of MSCs toward different lineages seems to display different 
metabolism signatures (Chen et al. 2014). For instance, there is a transition from 
glycolysis to oxidative phosphorylation in MSCs’ differentiation toward osteogenic 
lineage (Chen et al. 2008) and adipogenic lineage (Hofmann et al. 2012; Tormos 
et  al. 2011). In contrast, when MSCs differentiate toward chondrogenic lineage 
using pellet culture, glycolysis is enhanced (Pattappa et al. 2011). Furthermore, it 
has been reported that mitochondrial metabolism and reactive oxygen species 
(ROS) generation might be one of the causal factors rather than the merely results 
of adipogenic differentiation (Tormos et al. 2011). Thus, treatments altering mito-
chondrial metabolism and ROS generation might affect or determine MSCs’ fate.

Several methods for MSCs’ generation have been developed, relying initially on 
cell scraping, followed by trypsinization, defined culture conditions, and more 
recently the utilization of three-dimensional (3D) platforms for MSCs derived via 
spheroid culture (Dayem et al. 2019). Former studies indicate that MSCs originat-
ing from specific tissues are capable of differentiation into distinct tissues (Kim 
et al. 2006). The molecular characteristics, surface antigen expression, and biologi-
cal functions such as proliferation and differentiation capacities of MSCs can vary 
based on the MSC source (Billing et al. 2016). For instance, bone marrow MSCs 
presented higher expression of genes related to osteogenesis, whereas adipose tis-
sue MSCs showed a higher expression of genes related to angiogenesis and adipo-
cyte differentiation, irrespective of cell differentiation (Fidelis et  al. 2019). Such 
differences lead the authors to suggest that the former should be considered for bone 
regeneration and adipose tissue MSCs for angiogenesis (Fidelis et  al. 2019). In 
addition to the bone marrow (BM), MSCs have been found in several other sites 
such as circulating blood of preterm fetuses, hematopoietic lineage (Campagnoli 
et al. 2001; Erices et al. 2000), Wharton’s jelly explants (Ishige et al. 2009; Wagner 
et al. 2005), adipose tissue (Xu et al. 2017), oral tissues (Zhou et al. 2020), and lung 
and dermal tissues (Yaghoubi et al. 2019). According to Souza et al. (2016), the 
perivascular MSCs are adventitial cells, acting as precursors of the pericytes (Yianni 
and Sharpe 2019) and other stromal cells during tissue homeostasis.
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Although the presence of MSCs in the umbilical cord vein (UC) of newborns 
was formerly controversial (Mareschi et al. 2001; Wexler et al. 2003), this site is 
now being used as a standard source of these cells. Sarugaser et al. (2005) have 
shown that perivascular tissue from human UC vein cultivated in a non-osteogenic 
medium contains a subpopulation of cells with an osteogenic phenotype that forms 
calcified nodules. The addition of osteogenic chemical supplementation to the cul-
ture medium resulted in a significant increase of these cells. Wang et  al. (2004) 
demonstrated that mesenchymal cells from the mucous connective tissue of 
Wharton’s jelly express matrix receptors (CD44, CD105) and integrin markers 
(CD29, CD51), suggesting that these cells are similar to stem cells in that they can 
be differentiated into chondrogenic, adipogenic, or osteogenic cell lines. Recent 
findings showed that exosomes produced by mesenchymal stem cells from human 
umbilical cord carry biomolecules that promote similar functions to MSCs with low 
immunogenicity and no tumorization, and therefore play an important role in cell–
cell communication (Yaghoubi et al. 2019).

9.2  Therapeutic Potential of Human Mesenchymal 
Stem Cells

The therapeutic potential of stem cells is already a reality but there is still a need of 
understanding several aspects of their molecular biology during differentiation and 
induced pluripotency (Cohen and Melton 2011; Zhao et al. (2021). Stadtfeld and 
Hockedlinger 2010). Zhao et al. (2021) suggest that different populations of resi-
dent stem cells are mobilized at different times and during disease to generate pre-
cursors for cell differentiation, providing insight for novel therapeutic approaches. 
Considering that the control of messenger RNA (mRNA) transcription corresponds 
to the first step of gene regulation (Rajewsky 2011), which ultimately controls the 
process of differentiation, transcriptome analysis is critical for better understanding 
MSCs. The gene expression of pluripotency-related genes has been examined in 
MSCs derived from bone marrow, adipocytes, amniotic membrane and epithelial 
endometrium-derived stem cells, and stroma endometrium-derived stem cells, and 
these studies suggest that pluripotency-related gene expression varies in different 
tissues (Tanabe 2014). Sacchetti et al. (2016) showed that human cell populations 
from different anatomical sources, regarded as MSCs, differ widely in their tran-
scriptomic signature and in vivo differentiation potential, but share the capacity to 
guide the assembly of functional microvessels in vivo, regardless of their anatomi-
cal source, or in situ identity as pericytes or circulating cells.

The knowledge of distinct gene modulation is being applied in the investigation 
of diseases or responses to damage or trauma. Babb et  al. (2017) indicated the 
importance of molecular events that initiate MSCs to proliferate and differentiate in 
response to damage, showing that Axin2-expressing cells act as their source of Wnt 
ligands to induce repair via autocrine Wnt/β-catenin signaling. Semeghini et  al. 
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(2018) have observed that the expression of mRNAs and miRNAs in cells from dif-
ferent sites, e.g., bone marrow and calvaria, was distinctively modulated in healthy 
and osteoporotic rats, suggesting that osteoporosis promotes specific gene expres-
sion of osteoblastic cells depending on its site of origin. Investigating the genes that 
might act as triggers of MSC early differentiation regardless of their tissue of origin 
is a promising approach, and we hypothesized that MSCs isolated from different 
anatomical sites (bone marrow and umbilical cord vein) stimulated to differentiate 
toward a specific cell type would express a set of common genes implicated in the 
differentiation fate.

9.3  Transcriptome Analysis During Mesenchymal Stem 
Cell Differentiation

To explore a larger set of genes (transcriptome profiling) in MSC obtained from 
human bone marrow (BM) and umbilical cord vein (UCV), (Figs. 9.1 and 9.2), we 
used microarray screening. As expected, the results showed that during early dif-
ferentiation, BM and UCV cells expressed exclusive sets of genes. However, these 
two isolates shared expression of 25 genes (Table. 9.1), including those involved in 
cell–substrate junction assembly/cell–cell adhesion mediated by integrin (integrin, 
alpha 5, fibronectin receptor, ITGA5), hormone-mediated signaling pathway/ossifi-
cation (thyroid hormone receptor alpha, THRA), cell differentiation (nephronectin, 
NPNT), and regulation of cell growth (HtrA1 serine peptidase 1, HTRA1). Based 
on their involvement with the molecular/biological processes mentioned above, 
these could be considered key genes in driving early osteoblastic differentiation of 
MSCs, independent of their anatomic origin.

Earlier studies have compared the gene expression profile of BM stem cells, 
UCV cells, and other types of stem cells using serial analysis of gene expres-
sion (SAGE) (Panepucci et al. 2004), real-time PCR (Guillot et al. 2008), and 
microarrays (Bombonato-Prado et  al. 2009; Carinci et  al. 2004; Jeong et  al. 
2005; Schilling 2008; Shi et al. 2001; Secco et al. 2009) following an extended 
culture of the MSCs in osteogenic medium. Of note, the previous results of 
Kulterer et al. (2007) have revealed the participation of the genes ID4, CRYAB, 
and SORT1 that were considered to be candidates as regulators of osteogenic 
differentiation.

In this investigation, we hypothesized that during the initial stages, as early as 24 
to 168 h into in vitro cultivation, key genes are activated during the critical period in 
which the fate of MSCs is defined toward osteogenic differentiation, independent of 
their anatomical origin. A set of 115 specific genes were found in bone marrow 
MSCs, from which we highlight selected genes including Biglycan (BGN), whose 
coded protein is a proteoglycan of the extracellular matrix that is involved in the 
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adhesion of collagen fibers (SOURCE Database). This protein is an extracellular 
matrix structural constituent, which may be involved in collagen fiber assembly (by 
similarity). Inkson et al. (2009) suggested that WNT1 inducible signaling pathway 
protein 1 (WISP-1) and BGN may functionally interact and control each other’s 
activities, thus regulating the differentiation and proliferation of osteogenic cells. 
Besides playing a crucial role in osteogenesis (Jongwattanapisan et al. 2018), BGN 
expression can be inhibited by microRNAs (miRs) such as miR-185 during osteo-
blast differentiation (Cui et al. 2019).

Another modulated gene was fibronectin (FN), which codes the fibronectin pro-
tein that binds cell surfaces and various compounds including collagen, fibrin, hepa-
rin, and actin (SOURCE Database). Fibronectins are involved in cell adhesion, cell 
motility, opsonization, wound healing, and maintenance of cell shape. Ogura et al. 
(2004) also found that MSCs can differentiate into osteoblasts and that FN can 
stimulate the attachment and spreading of these cells.

Fig. 9.1 Cell morphology 
and ALP expression in 
human umbilical cord stem 
cells after 7 days of 
culture: (a) cells in contact 
with osteogenic medium, 
showing polygonal shape 
and expression of ALP;  
(b) cells in the absence of 
osteogenic medium. Green 
labeling shows actin and 
blue stain labels cell nuclei 
(DAPI). Magnification of 
400×, fluorescence 
microscopy
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The collagen, type VI, alpha 3 (COL6A3) gene codes the alpha-3 chain, one of 
the three alpha chains of type VI collagen, beaded filament collagen found in most 
connective tissues. The alpha-3 chain of type VI collagen is much larger than the 
alpha-1 and -2 chains. These domains have been shown to bind extracellular matrix 
proteins, an interaction that explains the importance of this collagen in organizing 
matrix components (SOURCE Database).

A set of 178 umbilical cord-specific genes was modulated, including Tafazzin 
(TAZ), which codes the tafazzin protein. Tafazzins compose a group of proteins that 
promote the differentiation and maturation of osteoblasts while preventing adipo-
cyte maturation (SOURCE Database). A large number of morphogens, signaling 
molecules, and transcriptional regulators have been implicated in regulating bone 
development, including transcriptional factors like TAZ, Runx2, Osterix, ATF4, and 
NFATc1 and the Wnt/beta-catenin, TGF-beta/BMP, FGF, Notch, and Hedgehog sig-
naling pathways (Burns et al. 2010; Deng et al. 2008). Recent studies have observed 
that TAZ may serve as a decisive factor involved in the osteogenesis also in human 
BM stromal cells when associated with polydatin, a process mediated through the 
BMP2-Wnt/β-catenin signaling pathway (Shen et  al. 2020). Another modulated 
gene is the microfibrillar-associated protein 3 (MFAP3), which codes a microfibril-
lar protein important for the structure of extracellular matrix (Abrams et al. 1995), 
the expression of which has been correlated with bone formation (Burns et al. 2010).

The Sprouty 2 gene (SPRY2) codes a protein associated with cell signaling and 
cell fate commitment and also plays a role as a modulator of FGF signaling. Welsh 
et al. (2007) demonstrated that mice carrying a deletion that removes the FGF sig-
naling antagonist Spry2 showed cleft palate, suggesting a role for this gene in the 
differentiation of MSCs into osteoblasts. Moreover, it was observed that this protein 
modulates tyrosine kinase signaling, regulating cell migration and proliferation 
(Edwin et  al. 2008). More recently, Vesela et  al. (2019) showed decreased bone 
formation in postnatal Spry2−/− mice, demonstrating the impact of Spry2 deletion 
in bone biology that included effect on osteoblasts (Runx2) and osteocytes (Sost).

These transcriptional profiles obtained with monolayer cultures are comparable 
to those obtained with MSCs cultured in three-dimensional scaffolds (Burns et al. 
2010), which mimic the in vivo bone formation. This demonstrates that the mono-
layer culture model-system reproduces the transcriptional modulation of three- 
dimensional cultures, at least for the genes above mentioned and therefore is 
adequate to study gene profiling of human MSCs’ differentiation.

Finally, we found 25 differentially expressed genes (Figs. 9.3 and 9.4) that were 
shared between the two MSC sources. Due to the biological processes in which 
these genes participate, they can be considered triggers of osteoblastic differentia-
tion of MSCs independent of their anatomical origin. Among these, we will discuss 
selected genes. The integrin, alpha 5 (fibronectin receptor, alpha polypeptide) gene 
(ITGA5), which is associated with cell-matrix adhesion, was also one of these 25 
genes. Integrins are cell surface receptors that interact with the extracellular matrix 
(ECM) and mediate various intracellular signals, defining cellular shape and mobil-
ity and regulating the cell cycle (SOURCE Database). Integrins may play signifi-
cant roles in determining osteoblast function because they are signal transduction 
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molecules. Type I collagen, fibronectin, and integrins are critical for osteoblast 
function and bone development (Cowles et al. 2000; Shekaran and Garcia 2011). 
Brunner et  al. (2018) showed that the conditional deletion of β1 integrins in the 
osteo-precursor population severely impacts bone formation and homeostasis both 

Fig. 9.2 Cell morphology and ALP expression in mesenchymal stem cells after 7 days of culture: 
(a) cells in contact with osteogenic medium, showing polygonal shape and expression of ALP; (b) 
elongated cells in the absence of osteogenic medium with few cells positive for ALP. Green label-
ing shows actin and blue stain labels cell nuclei (DAPI). Magnification of 400×, fluorescence 
microscopy
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in vivo and in vitro. These authors observed that mutant mice display severe bone 
deficit characterized by bone fragility and reduced bone mass and that β1 integrins 
are required for proper BMP2 dependent signaling at the pre-osteoblastic stage, by 
positively modulating Smad1/5-dependent transcriptional activity at the nuclear 
level (Figs. 9.3 and 9.4).

The HtrA serine peptidase 1 (HTRA1) gene promotes the regulation of cell pro-
liferation (SOURCE Database). It has been proposed that the HtrA1 protein regu-
lates biological processes by modulating growth-factor systems other than IGF, 
such as the system mediated by the transforming growth factor beta 1 (TGFB1) 
family. Transforming growth factor beta (TGF-beta) is effective in regulating osteo-
blast proliferation, differentiation, bone matrix maturation, and cell-specific gene 
expression, as well as inhibiting the expression of markers characteristic of the 
osteoblast phenotype such as osteocalcin (Oka et al. 2004). Hadfield et al. (2008) 
suggested that HTRA1 may regulate matrix calcification via the inhibition of 
BMP-2 signaling, modulating osteoblast gene expression, and/or via the degrada-
tion of specific matrix proteins. Recent reports demonstrated that Htra1 is a positive 

Fig. 9.3 Venn diagram 
showing the specific and 
the 25 sharing genes 
during normal 
differentiation of 
mesenchymal cells 
obtained from human bone 
marrow and umbilical cord 
vein. UC: umbilical cord 
vein cells; BM: bone 
marrow mesenchymal cells

Fig. 9.4 Expression profiling of the 25 genes with shared modulation during osteoblast differen-
tiation of bone marrow (BM) and umbilical cord vein (UC) mesenchymal stem cells [0–7 days 
(168 h) cultured in osteogenic medium]. FDR ≤0.05 and fold change ≥2.0

K. F. Bombonato-Prado et al.
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regulator of osteogenic differentiation, showing that Htra1 is a direct downstream 
target of RUNX2 (Iyyanar et al. 2019).

Nephronectin (NPNT) gene codes an extracellular matrix protein highly 
expressed in long bones. Kahai et al. (2009) discovered that ectopic expression of 
nephronectin promotes osteoblastic differentiation, thus corroborating our results. 
Kuek et al. (2016) have shown that NPNT is expressed by osteoblasts and its expres-
sion is reduced in osteoporosis. Besides presenting a direct effect on endothelial cell 
activities and on the regulation of angiogenesis via p-38 and ERK pathways, NPNT 
is pointed out as a potentially important molecule in the communication between 
osteoblasts and endothelial cells by a paracrine mode of action.

The thyroid hormone receptor, alpha-1 (THRA) gene codes one of the several 
receptors of thyroid hormone, an established regulator of skeletal growth and main-
tenance both in clinical studies and in laboratory models (Lindsey et al. 2018). This 
gene is involved in the formation of bone or of a bony substance and the conversion 
of fibrous tissue or cartilage into bone or a bony substance (SOURCE Database).

Protein phosphatase 1 regulatory inhibitor subunit 11 (PPP1R11) was also found 
to be a shared gene. Considering that phosphatase activity is important for osteo-
blast differentiation, as in the case of ALPL that we determined in this study, and 
that the PPP1R11 protein is associated with inhibition of phosphatase activity, this 
may be evidence for a mechanism involving phosphatase enhancement/inhibition 
during osteoblast differentiation. Further, genes involved in kinase activity/protein 
phosphorylation such as Rap guanine nucleotide exchange factor (GEF) 1 (RAPEF1) 
and Protein kinase 3 (PKN3) also appeared, reinforcing the importance of phos-
phate metabolism in osteoblast differentiation.

Genes that control apoptosis such as lectin, galactoside-binding, soluble, 1 
(LGALS1) and CASP2 and RIPK1 domain containing adaptor with death domain 
(CRADD) were also shared between the two sources of MSCs, providing evidence 
for controlled cell death during differentiation.

Genes involved in general processes such as control of transcription including 
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon 
(NFKBIE) and control of ion transport as solute carrier family 12 (potassium/chlo-
ride transporter), member 5, (SLC12A5) were also shared.

Finally, we identified the participation of the protein kinase, DNA-activated, 
catalytic polypeptide (PRKDC) gene; in addition to its role in kinase activity and 
osteoblast differentiation as discussed above, this gene also plays roles in DNA and 
in the control of apoptosis, which are both processes that ultimately regulate cancer. 
These results suggest that regardless of the anatomical site from which stem cells 
were obtained, a shared set of genes is activated to trigger osteoblast 
differentiation.
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Chapter 10
Transcriptomics to Dissect the Immune 
System

Hideyuki Yoshida, Mitsuru Matsumoto, and Minoru Matsumoto

Immunology, which is the study for the immune system, started in the late nine-
teenth century beginning with two significant discoveries. One was the phagocyto-
sis by macrophages which plays a critical host-defense mechanism against invading 
pathogens found by Elie Metchnikoff (1845–1916). The other one was an antibody 
which can neutralize microbial toxins discovered by Emil von Behring (1854–1917) 
and Paul Ehrlich (1854–1915) (Kaufmann 2017). Since then, immunology has been 
a field of intensive biomedical research and contributed to society by providing 
pivotal knowledge on both basic science and clinical applications along with its 
development. While the classical and authentic function of the immune system is to 
protect our bodies from diverse pathogenic microorganisms, including bacterias, 
viruses, and parasites, recent immunological studies revealed different parts of the 
immune system in eliminating cancer cells and regulating physiologic processes in 
diverse tissues such as the nervous system function, metabolic state, thermogenesis, 
and tissue repair (Chaplin 2010; Rankin and Artis 2018; Rouse and Sehrawat 2010). 
Now, we recognize the immune system is a multifunctional biological system and 
vital for our health and survival.
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The immune system is composed of different types of immune cells, which do 
not form a single organ like the brain and heart but are spread throughout the body 
to achieve rapid responses to invading pathogens. As transcriptional regulation 
plays a crucial role in shaping these immune cells of diverse differentiation and 
activation status, various immune cells were examined at the transcriptional level. 
These profiling analyses effectively yielded relevant insights of immune cells 
regarding respective regulatory mechanisms and crucial factors involved in cell 
differentiation and activations (Amit et al. 2011; Lara-Astiaso et al. 2014; Mostafavi 
et al. 2016; Smale and Fisher 2002; Uhlen et al. 2019). Furthermore, recent single- 
cell transcriptome analyses by single-cell RNA sequencing (scRNA-seq) provide 
unprecedented high-resolution insights of immune cells which cannot be captured 
by studies in bulk and are expected to promote our understanding of the nature of 
immune cells in both physiological and pathological contexts (Proserpio and Mahata 
2016; Roy 2019; Seumois and Vijayanand 2019; Stubbington et al. 2017; Xie et al. 
2021). We introduce general features of the immune system and discuss the 
transcriptome analysis applied to explore the immune system.

10.1  The Immune System and Immune Cells

The immune system not only protects us from diverse infections, including bacte-
rias, viruses, and parasites, but also eliminates cancer cells and healing wounds. The 
efficiency of the immune activity relies on the orchestrated functions of a set of 
different types of immune cells, which are responsible for the diverse steps of the 
process. In the case of infections, for example, these include pathogen recognition, 
the cascade to recruit and activate effector cells, and the final clearance by other 
immune cells. Identifications of different types of cells involved in the immune 
process have been a keen target of immunological research for decades, 
and accordingly, types of immune cells have been expanded, which contributed to 
the dissection of the immune functions. It was started from the discovery of white 
blood cells in 1843 by Gabriel Andral (1797–1876) and William Addison 
(1802–1881). Then, different types of immune cells have been progressively 
identified along with the development of technologies such as flow cytometry in the 
1960s and monoclonal antibodies in the 1970s, which were collectively employed 
to specify CD4+ T cells and CD8+ T cells, for instance (Hajdu 2003; Jayasinghe 
2020; Packer 2021). The major populations of immune cells include granulocytes 
and macrophages with innate ability to phagocytose bacteria, antibody-producing B 
cells which were discovered before the 1990s, and more than 80 immune cell 
populations are recognized to date (Fig. 10.1) (Ackerman 1964; Hayakawa et al. 
1983; Maecker et al. 2012; Stein et al. 1992).

While different immune cells possess distinctive functions, essentially all 
immune cells develop from a hematopoietic stem cell in the bone marrow and share 
the same genome except for rearranged genes (i.e., T cell receptor and 
immunoglobulin). Through the differentiation pathways that can be parsed up to as 
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many as ten successive steps, immune cells acquire their divergent capabilities, 
which are established by correspondent transcriptional landscapes (Hardy and 
Hayakawa 2001; Rothenberg 2014). As such, transcriptional regulations are the 
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most fundamental mechanisms controlling immune cells and the immune system. 
Thus, it is not surprising that the recent development of single-cell transcriptomics 
is promising to confirm existing populations and unveil new populations efficiently 
in an unbiased manner.

10.2  Transcriptome Analysis of Different Subsets in Bulk

While more than 80 immune cell subsets are recognized throughout our body, many 
subsets residing in lymph nodes, tissues, and organs, immunocytes in peripheral 
blood are the most feasible cells to be examined for research and clinical diagnostics 
(Chou and Li 2018; Maecker et  al. 2012; Novershtern et  al. 2011). A few large 
transcriptomic studies  have been done on different immune cell populations in 
blood. For example, 13 immune cell types in peripheral blood were examined by 
Schmiedel et  al. (2018) 29 immune cell types by Monaco et  al. (2019), and 18 
immune cell types by Uhlen et al. (2019). In these studies, they isolated immune 
cells in blood including such as monocytes, natural killer (NK) cells, neutrophils, 
basophils, B cells, CD4+ and CD8+ T cells, as well as dendritic cells (DCs) employing 
known markers and fluorescence-activated cell sorters (FACS), and profiled whole 
transcriptomes by RNA sequencing (RNA-seq) or microarrays. These studies have 
revealed the distinctive global expression profiles of various immune cells where 
granulocyte cell types (neutrophils, basophils, and eosinophils) are discrete from 
others, all lymphocytes make a cluster, including T cells, NK cells, and B cells. In 
contrast, monocytes are closely related to DCs. According to the study by Uhlen 
et  al., among ~16,000 genes detected in 18 immune cell types, ~10,000 were 
detected in single-cell types, which were almost comparable to genes detected in 
cell lines (~9,500 genes per cell line). Of these, 5,934 genes were seen across all 
immune cells and 1,713 genes in a single-cell type: 9,939 genes showed low 
specificity for cell types. The sets of differentially expressed and co-expressed genes 
were served to deduce the functional modules of genes with the aid of bioinformatics 
such as enrichment analysis using the gene ontology (GO). Furthermore, these 
transcriptome atlases in each cell type are valuable to promote the understanding of 
primary immunodeficiency diseases (PID). PID are a large group of over 400 
different diseases caused by quantitative and functional changes in the various 
mechanisms involved in immune response and associated with complications 
including infections, autoimmune disorders, immune dysregulation with 
lymphoproliferation, inflammatory disorders, lymphomas, and other types of 
cancers (Amaya-Uribe et  al. 2019; Sánchez-Ramón et  al. 2019). While PID are 
caused by genetic disorders and 354 diseases were listed as consequences of 
monogenic defects in genes associated with the immune system involving 224 
identified genes, the mechanism of disease is often incompletely understood (Uhlen 
et al. 2019) (https://www.omim.org). Uhlen et al. hypothesized that an analysis of 
cellular expression of identified genes could help generate a better mechanistic 
investigation and analyzed 224 PID genes across their 18 immune cell populations. 
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They divided these PID genes into seven clusters according to the shared expression 
pattern among cell populations and found some PID genes are expressed explicitly in 
restricted populations. These included the CEBPE gene in which mutations can 
cause specific granule deficiency 1 (SG1) highly expressed in eosinophils. Although 
SG1 has been considered a neutrophil-granule deficiency associated with recurrent 
pyogenic infections, CEBPE’s expression in eosinophils suggested that eosinophil 
deficiency might also be involved in SG1.

It is also worth noting that the variable mRNA abundance in different immune 
cells was carefully examined in the study by Monaco et al., and they developed an 
enhanced method for normalization. The normalization for mRNA abundance can 
become essential for differential expression analyses. For example, if the analysis is 
done with two cell types of essentially different total mRNA amounts per cell (e.g., 
same 10 gene X mRNA molecules are expressed, but cell type A is expressing 100 
mRNA molecules in total, and cell type B is expressing 1,000 mRNA molecules in 
total), this can lead to the misleading that the gene X is downregulated in cell type 
B. Indeed, existing normalization methods for transcriptome profiling such as the 
UQ, TMM, and RLE cannot correctly identify transcriptomes in which the overall 
transcriptional activity is suppressed or enhanced (Anders and Huber 2010; Bullard 
et  al. 2010; Robinson and Oshlack 2010). Normalizing mRNA abundance also 
becomes relevant to analyzing the transcriptomes from cells of heterogeneous 
populations such as peripheral blood mononuclear cells (PBMCs) by employing a 
deconvolution method. Deconvolution processing computationally estimates the 
proportions of distinctive cell types in a heterogeneous sample utilizing the 
normalized abundance of mRNA in each cell type as references It is an effective 
solution to determine the composition of each immune cell type in PBMCs (Abbas 
et  al. 2009; Shen-Orr and Gaujoux 2013). Considering that the proportion of 
immune cell subsets in PBMCs can be dynamically affected by the disease, age, or 
interventions (e.g., vaccines and drugs), the composition of immune cell populations 
needs to be carefully evaluated. Otherwise, it is not always possible to accurately 
determine which immune cell types are responsible for any given transcriptomic 
changes in PBMCs. The transcriptome profiling can contribute to the results that are 
inconclusive or difficult to interpret. Hence, the appropriate normalization method 
is crucial for differential expression analyses and deconvolution approaches. 
Monaco et al. developed an advanced and robust normalization method that can be 
applied for future transcriptome analyses of PBMCs  by taking advantage of the 
breadth and granularity of the datasets from 29 isolated immune cell types.

In summary, transcriptome analyses of isolated immune cells from peripheral 
blood elucidate individual immune cell population’ divergent gene expression pat-
terns, which promote our understanding of diseases related to the immune system. The 
transcriptome analyses of isolated immune cells are also critical as the resource for 
analyzing transcriptomes obtained from whole peripheral blood. Furthermore, large 
transcriptomic studies of isolated immune cells provide opportunities to develop and 
validate analysis pipelines which would be impractical from heterogeneous samples.

Another point to mention here is that the immune cells have been exploited to 
investigate the regulatory mechanisms of gene expressions. The immune system 
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serves as an excellent model to explore the gene regulations along changing cell 
states, as discrete cell populations can be readily purified by well-established 
markers along differentiation and activation pathways that have been carefully 
characterized by persuasive studies. We took advantage of the breadth and 
granularity of immune cells to study the dynamic epigenetic landscapes associated 
with the target gene expression (Yoshida et al. 2019). The study provided a deep 
insight to understand immunological differentiation and function and the broad rel-
evance of gene regulatory elements on the genome, such as a profound dichotomy 
within mammalian gene regulation by enhancers and promoters.

10.3  Transcriptomes Analyses Employing Whole Blood 
and PBMC

Blood is an invaluable source to examine our health not only because of the easy 
accessibility and minimal invasiveness during sampling but also because of the 
breadth of information it can provide (Sohn 2017). Transcriptomes in PBMCs have 
also been investigated intensively for scientific research (Corkum et al. 2015; Mello 
et al. 2012), as well as in medical contexts such as ischemic stroke (Baird et al. 
2015), ulcerative colitis (Miao et al. 2013), epilepsy (Karsten et al. 2011), and sepsis 
(Davenport et  al. 2016) to characterize diseases, and epidemiological contexts 
including aging (Peters et  al. 2015), obesity (Homuth et  al. 2015), and lifestyle 
factors such as smoking, drinking, and nutrition (Burton et  al. 2018; Dumeaux 
et al. 2010).

Since PBMCs can include variable naïve and activated immune cells recirculat-
ing throughout the body, PBMCs transcriptome analyses are expected to promote 
the characterization of the whole immune system. However, due to the heterogene-
ity and dynamics of the components of immune cell types in PMBCs, cell population- 
level resolution is not successfully achieved so far even with the cutting-edge 
approaches such as deconvolutions mentioned and thus straight immunological 
interpretations (e.g., a specific immune cell population is enlarged in donor A than 
donor B, or a set of genes are more activated in immune cell population X in donor 
A than B) are readily possible. Accordingly, different approaches employing 
systems biology are preferentially applied for analyzing transcriptomes from 
PBMCs (Chaussabel 2015).

Systems biology is an approach in the biomedical research field to understand 
the larger picture hidden in the biological system by putting pieces of information 
from the system together. A hypothesis being constructed based on all observed 
parameters associated with a given biological system, systems biology is compatible 
with high throughput technologies called “omics” such as genomics, transcriptomics, 
proteomics, and metabolomics by which a biology system is comprehensively 
profiled (Aizat et al. 2018; Veenstra 2021). In omics, the parameters are not chosen 
in advance like in more traditional assays, and these approaches are inherently 
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unbiased. Importantly, as the potency of systems biology intrinsically relies on the 
variability of observed parameters, the size and heterogeneity of a dataset are crucial 
for the analyses employing systems biology, and thus more informative results can 
be expected from the larger dataset (Koumakis 2020; McCue and McCoy 2017; Qin 
et al. 2015). Schmidt et al. reported the analysis of blood transcriptomes of 3,388 
adult individuals (mean age = 58 years), together with phenotypic attributes 
including disease history, medication status, lifestyle factors, and body mass index 
(BMI) (Schmidt et  al. 2020). Although there were preceding studies analyzing 
blood transcriptomics, studies were composed of relatively smaller sample sizes 
related to specific diseases, which restricted the analytical power due to the limited 
variability in the transcriptomic states and health conditions. Schmidt et  al. 
demonstrated the diversity of blood transcriptomes with modules of co-expressed 
genes linking to different biological functions. They visualized the molecular 
heterogeneity of transcriptomes combining with different phenotypic statuses by 
employing state-of-the-art machine learning methods. The results include two major 
transcriptomic types, one relating to inflammation enhanced in male, elderly, and 
overweighted people, and the other one to activated immune responses in female, 
younger, and ordinary weighted people. They also found that  transcriptome 
signatures are associated with immune response and the increase of inflammatory 
processes are shared among multiple diseases, aging, and obesity, indicating 
common underlying mechanisms.

Together, transcriptome analyses employing blood or PBMC is not straightfor-
ward to elucidate biological processes at the cell population level and characterize 
specific immune processes. However, they can provide an unprecedented opportu-
nity to evaluate various diseases and lifestyle factors. They will be applicable for 
medical diagnostics and molecular and epidemiological research, which will con-
tribute to the promotion of the personalized medicine.

10.4  Transcriptome Analyses: From Bulk to Single Cells

As mentioned earlier, transcriptome analyses using isolated immune cells as well as 
blood cells are beneficial to promote our understanding of the immune system by 
shedding light on disease pathogenesis and global immunity. However, as these are 
averaged profiles of immune cells and the transcriptomes of minor cells are masked 
by other major cells, it is not feasible to detect its relevance if rare subsets of cells 
are responsible for an immune phenotype. The heterogeneity is evident in blood 
cells and PMBC. Still, FACS-isolated cells according to their markers can also be 
heterogeneous because immune cell types are too heterogeneous to be entirely sepa-
rated by known markers. Furthermore, immune cells can be activated by various 
stimuli such as pathogens and secreted proteins from other cell types (i.e., cytokines) 
temporarily in an unsynchronized manner. The  heterogeneity should also be 
considered when rare subsets of cells (e.g., antigen-specific T cells or B cells) drive 
the immune responses by temporal activation (Chattopadhyay et al. 2014; Mostafavi 
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et  al. 2016). Hence, single-cell analysis is most anticipated when seeking rare 
distinctive subsets of cells relating to biological outcomes, for example, when rare 
cells are essential for conferring protection or inducing pathologic status.

10.5  Recent Development of Single-Cell Transcriptomics

Before the transcriptome analyses from single cells became possible, cDNA synthe-
sis and amplification from a single cell were first succeeded by Iscove in 1990 and 
Coleman in 1992 (Brady et al. 1990; Eberwine et al. 1992). The cDNA was ana-
lyzed using DNA microarrays in the early 2000s and subsequently combined with 
next-generation sequencing (NGS) technology for single-cell RNA sequencing 
(scRNA-seq) around 2010 (Bengtsson et al. 2005; Islam et al. 2011; Klein et al. 
2002; Kurimoto et al. 2006; Tang et al. 2009). There have been various scRNA-seq 
methods developed ranging from relatively lower throughput but more detailed full- 
length transcriptomic data from individual cells to higher throughput with focused 
coverage on the 3′ terminal of the transcript (Jaitin et al. 2014; Klein et al. 2015; 
Macosko et  al. 2015; Picelli et  al. 2013). Currently, scRNA-seq employing a 
commercial kit from 10× Genomics (Pleasanton, CA) is presumably the most 
popular. They allow us to profile up to 10,000 cells at a time, and have been used in 
more than 1,000 publications (Daniloski et al. 2021; Stewart et al. 2020).

10.6  Applying scRNA-seq for Immune Cells

The heterogeneity in immune cells mirrors the unusual flexibility of the immune 
system and is essential to protect our bodies efficiently from diverse pathogens. It 
was recognized in the 1970s and successively confirmed along with the identifications 
of the cluster of differentiation (CD) antigens using monoclonal antibodies (Engel 
et al. 2015; Talal 1973). For example, a type of T cells marked by CD4 glycoprotein 
molecule on the cell surface was identified around 1980. Then subtypes including 
Th1, Th2, Th17, and the regulatory T cells (Tregs) were identified later (Engleman 
et al. 1981; Harrington et al. 2005; Mosmann et al. 1986; Park et al. 2005; Sakaguchi 
et al. 1995). However, given that these distinctions between subtypes are defined by 
the expression of a few specific markers, these classifications might be a very 
simplified categorization. Indeed, Teichmann and colleagues demonstrated a 
subpopulation in Th2 cells which produces the steroid pregnenolone by employing 
the scRNA-seq approach (Mahata et al. 2014). Importantly, as the comprehensive 
transcriptome analysis was accomplished by scRNA-seq, they could identify 
co-regulated genes in the subpopulation, which facilitated the characterization of 
the cells. Shalek et al. also reported the transcriptomic heterogeneity within bone- 
marrow- derived dendritic cells (BMDCs) which were seemingly homogenous using 
scRNA-seq (Shalek et  al. 2013). They found hundreds of key immune genes, 
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including genes very highly expressed at the population level, are bimodally 
expressed across cells. While these pioneering researches employed mouse cells, 
scRNA-seq approaches were also effectively applied to human cells later.

Karamitros et al. employed scRNA-seq to investigate the transcriptomic differ-
ences between progenitor populations in human cord blood (i.e., lymphoid-primed 
multipotential progenitors: LMPPs, granulocyte-macrophage progenitors: GMPs 
and multi-lymphoid progenitors: MLPs which were FACS- isolated according to 
known markers) (Karamitros et  al. 2018). They revealed these progenitors were 
transcriptionally distinct and heterogeneous at the single-cell level, with cells from 
different progenitor populations showing a transcriptional continuum. Combining 
with the results from functional assays, they argued a continuum of progenitors 
executed lymphoid and myeloid differentiation, rather than progenitors downstream 
of stem cells are uni-lineage. Considering that functional assays can only demonstrate 
the potential rather than actual cell fate in vivo, and a failure to display functional 
potential might reflect the assay’s problem, transcriptome analysis adequately 
contributed to declaring progenitor’s fate in vivo. Recently, Xie et al. profiled 7,551 
human blood cells isolated from 21 healthy donors (Xie et al. 2021). They isolated 
32 immunophenotypic cell types by FACS and measured transcriptomes in single 
cells by scRNA-seq. These cells include hematopoietic stem cells, progenitors, and 
mature immune cells, representing the whole-blood system. The  transcriptomic 
profiles from these 7,551 cells constitute a comprehensive atlas for hematopoietic 
cells at single-cell resolution. Besides they identified putative long non-coding 
RNAs (lncRNAs) and transcription factors regulating the differentiation of immune 
cells, the atlas is also valuable as a resource. It will be utilized by the community to 
understand the transcriptomic regulations underlying hematopoiesis and immune 
cell differentiation.

10.7  scRNA-seq Analysis in Diseases

Measuring the transcriptomes at single-cell resolution by scRNA-seq is innovating 
our understanding of immune cells in a physiological setting, as mentioned above. 
In addition, this approach has afforded new options to study the immune response 
in pathological conditions. What types of cells are responsible for the dysregulated 
immune response in diseases? By employing comprehensive transcriptome profiling 
at single-cell resolution, it is possible to examine whether new pathogenic cell 
subsets developed in disease and the expansion (or contraction) of physiological 
cell subsets are accompanied. For example, Golumbeanu et  al. employed the 
scRNA-seq approach for dissecting HIV-infected primary CD4+ T cells (Golumbeanu 
et al. 2018). HIV can persist in latently infected cells despite the effective treatments, 
which hampers HIV eradication. Hence strategies so-called “shock and kill“ have 
been developed aiming at reactivating HIV production from the latent cells, so as 
these cells will die due to virus-mediated cytotoxicity and be killed by cytotoxic 
CD8+ T cells. However, reactivations of HIV expression are limited to a fraction of 
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latent cells, and the heterogeneity of latently infected cells was suggested. 
Golumbeanu et al. identified two major cell subpopulations characterized by a set of 
134 differentially expressed genes (DEGs) by employing scRNA-seq. Gene 
ontology analysis revealed enrichment of viral processes, translational regulation, 
RNA and protein metabolism as well as cell activation genes among these DEGs, 
which indicates different HIV reactivation potentials for each cluster. They argue 
that these DEGs are valuable to facilitate the identification of successful reactivations 
and to identify potential biomarkers of inducible cells.

The composition of the tumor microenvironment (TME) is known to affect the 
prognosis of cancer patients. For example, higher infiltrates of cytotoxic and 
memory CD8+ T cells, Th1 CD4+ cells, and NK cells are usually associated with 
better outcomes, whereas Th2 and Th17 CD4+ cells and Tregs with poor prognosis 
in several cancers (Fridman et al. 2012). Indeed, while immunotherapies for lung 
cancer can significantly improve the prognosis for patients, their efficacy varies and 
depends on in part the number and properties of tumor-infiltrating T cells. Guo et al. 
investigated the heterogeneity within the tumor-infiltrating T cell by scRNA-seq 
(Guo et al. 2018). They performed scRNA-seq for 12,346 T cells from 14 untreated 
non-small-cell lung cancer (NSCLC) patients to comprehensively understand the 
infiltrating T cells regarding composition, lineage and functional status, and 
demonstrated the heterogeneity within exhausted CD8+ T cells and Tregs. T-cell 
exhaustion was originally identified in mice during chronic infection and was later 
observed in cancer patients (Jiang et al. 2015; Pauken et al. 2016). Exhausted T cells 
in TME are hyporesponsive states expressing increased inhibitory receptors and 
decreased effector cytokines, which provoke the failure of cancer elimination. 
Reinvigorating T-cell exhaustion by such as anti-CTLA-4 (ipilimumab) and 
anti-PD-1 (nivolumab and pembrolizumab) represents a promising strategy to treat 
cancer. Since scRNA-seq facilitates trajectory inference or so-called pseudo-time 
ordering which estimates the cellular identity along with a consecutive differentiation 
without prior knowledge, they could analyze CD8+ T cells undergoing exhaustion in 
TME and anticipate two clusters of cells preceding exhaustion, including their 
transcriptome signatures (Saelens et  al. 2019). They employed the transcriptome 
datasets from TCGA LUAD (The Cancer Genome Atlas Lung Adenocarcinoma) 
and demonstrated that a high ratio of pre-exhausted to exhausted T cells was 
associated with a better prognosis. Furthermore, they identified heterogeneity 
within Tregs in TME, marked by the bimodal expression pattern of TNFRSF9 which 
is a known activation marker for Tregs. They found a set of 260 genes, including 
REL and LAYN which are associated with immunosuppressive functions, are highly 
expressed in TNFRSF9+ Tregs compared to TNFRSF9− Tregs. Importantly, survival 
analysis employing the TCGA LUAD dataset indicated that higher expressions of 
these 260 genes were predictive of a worse prognosis. These results represent the 
efficacy of an approach using scRNA-seq to reveal the heterogeneity in immune cell 
populations and identify potential clinical biomarkers.

Compared with bulk RNA-seq, scRNA-seq detects the transcriptome nuance in 
single cells that contribute to revealing the heterogeneity in a seemingly single 
population. With state-of-the-art machine learning and big data analytics, 
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scRNA- seq has been becoming valuable to identify unknown subpopulations and 
their transcriptome signatures that affect the biological process and disease diagno-
sis. However, it is worth noting that scRNA-seq also has limitations compared with 
bulk RNA-seq, which include relatively low sensitivity, the bias of the transcrip-
tome coverage, and overall cost. Hence, we anticipate that bulk RNA-seq will not 
lose its value.

10.8  The Paradigm of Self vs. Non-self 
from a Transcriptomic Viewpoint

Heterogeneity in the immune cells includes diversity at the DNA level besides the 
RNA and protein levels which establish the heterogeneity on the population level 
as discussed. At the DNA level, the number of T-cell receptors (TCRs) and the 
B-cell receptors (BCR) are estimated to be in the order of 107 whereas the human 
genome contains roughly 30,000 genes (Fugmann et  al. 2000; Nikolich-Zugich 
et  al. 2004). These are produced by somatic DNA recombination called V(D)J 
recombination in developing lymphocytes during the early stages of T and B cell 
differentiation. The exceptional divergency endows the immune system with 
potent effector mechanisms to destroy and eliminate a broad range of pathogenic 
microorganisms. As the recombination is nearly random, which appropriate to 
achieve the reactivity to targets of essentially unlimited diversities, it also causes 
the possibility of self- reactivity at the same time. Therefore, it is critical for the 
immune system to have mechanisms discriminating self from non-self to avoid 
destroying the host’s own tissues. The capability of the immune system to avoid 
damaging the host’s tissues is known as self-tolerance. As the failure of self-toler-
ance is associated with various autoimmune diseases, this mechanism has been 
broadly studied in immunology (Besnard et al. 2021; Klein et al. 2014; Sakaguchi 
et al. 2020).

One of the pivotal roles of T cells is to recognize and kill host cells infected by 
microbes which otherwise serve as factories for producing replicated microbes. 
This is managed by a mechanism where infected cells present a molecular complex 
of microbe antigens and Major Histocompatibility Complex (MHC) class I mole-
cules on the cell surface, which are recognized and killed by T cells with a compat-
ible TCR. As MHC molecules also present normal self-peptides on the cell surface, 
it is crucial for T cells to maintain self-tolerance. Negative selection of self- reactive 
T cells is an important process in the thymus where developing T cells of self-
reactivity are eliminated if their TCRs react to self-peptides on MHC molecules. 
Intriguingly, essentially all protein-coding genes are expressed in sets of cells in the 
thymus. Negative selection functions effectively and comprehensively in the thy-
mus where thymic epithelial cells (TECs) play a pivotal role. In the final section, we 
discuss how the establishment of self-tolerance in the thymus has been studied 
using transcriptomic data obtained by novel technologies.
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10.8.1  Thymic Epithelial Cells (TECs) in the Thymic Stroma

The thymus is a highly specialized organ for the establishment of self-tolerance, 
which is characterized by the “education” of immature T cells. Thymus’ key 
function is to provide diverse competent T cells that can recognize and eliminate 
foreign antigens, while they are tolerant to self-components. This complicated 
process is mainly orchestrated by TECs that form reticular structures in the thymus. 
TECs are divided into two major subsets by their localization, molecular 
characteristics, and functions: cortical TECs (cTECs) and medullary TECs 
(mTECs). Specifically, cTECs are responsible for T-cell lineage commitment and 
positive selection, while mTECs contribute to the negative selection of self-reactive 
T cells and/or their cell-fate diversion into Treg lineages (Kyewski and Klein 2006; 
Matsumoto et al. 2019). These incomparable roles in mTECs are achieved by the 
expression and presentation of diverse self-antigens complexed with MHC molecule 
on the surface of mTECs. Notably, to effectively screen for considerable self- 
reactive thymocyte clones, mTECs are equipped with a unique capacity to express 
almost 90% of the coding genome, including thousands of tissue-restricted antigens 
(TRAs) (Kadouri et al. 2020). As expected, the impairment of this “central tolerance” 
machinery can result in various autoimmune diseases. However, most autoimmune 
diseases are multifactorial, making it difficult to elucidate their pathogenesis. In this 
regard, autoimmune regulator (AIRE) and forkhead box P3 (FOXP3), both of which 
work as transcription factors, are very characteristic genes that cause severe 
autoimmunity by a single gene mutation. Considering its intimacy with TECs, we 
focus on and review Aire, an intriguing transcriptional regulator.

10.8.2  Aire in mTEC

The human AIRE gene was first cloned as the causative gene for autoimmune poly-
endocrinopathy-candidiasis-ectodermal dystrophy (APECED) (Finnish- German 
APECED Consortium 1997; Nagamine et  al. 1997). APECED shows autosomal 
recessive inheritance and patients have been preferentially reported in certain popu-
lations such as Finns, Norwegians, Sardinians, and Iranian Jews (Myhre et al. 2001). 
The human AIRE gene is composed of 14 exons and is located in the region q22.3 
of chromosome 21, encoding a 545 amino-acid protein with a molecular weight of 
57.5 kDa (Pitkanen et al. 2000). Importantly, Aire is almost exclusively expressed 
in mTECs in the thymus.

APECED patients’ symptoms are characterized by a variable combination of (i) 
failure of the endocrine organs, (ii) chronic mucocutaneous candidiasis, and (iii) 
dystrophy of the ectoderm-derived tissues (Ahonen et  al. 1990). The 
“hypoparathyroidism,” “adrenal insufficiency (Addison disease),” and “chronic 
mucocutaneous candidiasis” are regarded as the triad of APECED.  Notably, 
APECED patients have high levels of serum autoantibodies reacting specifically 
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with components in the affected organs, like antibodies against steroidogenic 
enzymes of the P450 superfamily (e.g., P450c21 and P450c17) in the adrenal cortex 
(Peterson and Peltonen 2005). Furthermore, unique neutralizing autoantibodies to 
type I IFN and Th17-related cytokines are frequently detected in patients and these 
antibodies had been considered to be responsible for the development of chronic 
mucocutaneous candidiasis (Kisand et  al. 2010; Puel et  al. 2010). However, this 
long-standing hypothesis was recently challenged by another group, arguing that 
aberrantly enhanced type 1 immunity in the patients promotes candida infection 
susceptibility (Break et al. 2021).

Following the identification of the human AIRE gene, Aire-knockout (Aire-KO) 
mice (B6 genetic background) were generated to elucidate the mechanisms 
underlying the Aire deficiency and breakdown of self-tolerance (Anderson et  al. 
2002). Although the Aire-KO mice showed a rather milder phenotype than APECED 
patients, they developed lymphocytic infiltrates in several organs with the production 
of several autoantibodies. Remarkably, Aire-deficient mTECs showed considerable 
reduction in TRAs, raising a model wherein Aire functions predominantly as a 
direct transcriptional activator of TRA genes, and reduced TRAs is the cause of 
autoimmunity in Aire-KO mice (Anderson et al. 2002). This story seems perspicuous 
and reasonable, but some questions remain. Kuroda et  al. reported that although 
mRNA levels of α-fodrin in mTECs were not reduced, autoantibodies against this 
molecule were produced in their Aire-deficient mouse model (Kuroda et al. 2005). 
Another example came from the Aire-KO mice on NOD (non-obese diabetic) 
background that developed severe autoimmune pancreatitis attacking acinar cells in 
parallel with a production of autoantibodies against pancreas-specific protein 
disulfide isomerase (PDIp), despite that the expression of PDIp was retained in 
Aire-deficient mTECs (Niki et al. 2006). Although further study is required, it is 
possible that Aire-dependent TRA reduction may not be the sole factor for the 
breakdown of self-tolerance in Aire-KO mice. In this regard, the role of Aire in the 
maturation program of mTECs has been proposed (Matsumoto 2011). Interestingly, 
each TRA protein is expressed only in a few mTECs, considered to be 1–3% of total 
mTECs with ordered stochasticity (Derbinski et al. 2008). The complete expression 
of all TRAs by the total mTEC population must be owing to the summation of 
mosaic expression of TRAs by individual mTECs (Kadouri et al. 2020).

10.8.3  The Molecular Function of Aire

Aire protein is localized in the nucleus as the shape of nuclear dots, resembling 
promyelocytic leukemia (PML) nuclear bodies, but they were revealed largely not 
to be colocalized (Akiyoshi et al. 2004). Considering its localization and structure, 
the Aire protein appears to be a putative transcriptional regulator, consisting of two 
plant homeodomain-type zinc-fingers (PHD-fingers), a DNA-binding domain 
(SAND), and four nuclear receptor binding LXXLL motifs (Kumar et al. 2001). 
These structural and functional domains are well conserved across phyla (Saltis 
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et al. 2008). Many studies argue about the transcriptional role in Aire, but several 
unique features that differ from conventional transcription factors have been 
reported. Aire is apparently involved in the regulation of its target loci in collabo-
ration with lots of partner proteins, forming a large multimolecular complex (Mathis 
and Benoist 2009). For example, CREB-binding protein (CBP) was the first identi-
fied Aire’s partner (Pitkanen et al. 2000). It has also been reported that Aire recruits 
p-TEFb for transcriptional elongation of target genes (Oven et al. 2007), followed 
by a study arguing that bromodomain-containing protein, Brd4, bridges Aire and 
p-TEFb (Yoshida et  al. 2015). Furthermore, a broad screen for Aire-targeted 
coimmunoprecipitation followed by high-throughput mass spectrometry newly 
identified putative Aire-interacting proteins involved in multiple biological 
pathways, including nuclear transport, chromatin structure, binding to the 
transcription machinery, and pre-mRNA processing (Abramson et al. 2010).

Aire’s extraordinary broad transcriptional effect seems to be achieved by activat-
ing ectopic transcription, not through specific recognition of TRA gene promoters 
or enhancer motif. Instead, Aire appears to bind to the repressive chromatin mark 
H3K4me0 with its PHD1 finger domain (Koh et  al. 2008; Org et  al. 2008), and 
release RNA polymerase II paused just downstream of transcriptional start site 
(TSS) (Giraud et  al. 2012). Moreover, recent bioinformatics revealed that Aire-
containing complexes are predominantly located on mTEC super-enhancers, which 
are chromatin stretches enclosing TSS of Aire-dependent genes (Bansal et al. 2017).

10.8.4  mTEC Heterogeneity Defined by 
the Single-Cell Approach

As described above, TECs have been divided into cTECs (EpCAM+Ly51+UEA1−) 
and mTECs (EpCAM+Ly51−UEA1+), histologically and cytologically. Referring to 
their ontogeny, the evidence regarding the bipotent progenitor cells that give rise to 
both mTEC and cTEC lineages is emerging in the fetal and early neonatal thymus 
(Bleul et al. 2006; Rossi et al. 2006), characterized by cTEC-like molecular markers 
(Baik et al. 2013; Ohigashi et al. 2013). In contrast, it is still controversial about the 
existence and molecular characteristics of corresponding progenitors in the adult 
thymus (Ulyanchenko et al. 2016; Wong et al. 2014).

Depending on their molecular characteristics, mTECs were previously catego-
rized as mTEClow (Aire−CD80lowMHC-IIlow) and mTEChigh (Aire+CD80highMHC-
IIhigh). “Central tolerance” is primarily achieved by the effective expression and 
presentation of TRAs from mTEChigh to the developing thymocytes. mTEChigh are 
differentiated from a part of mTEClow and require RANK and CD40 signals for the 
development (Akiyama et al. 2008). In comparison with mTEChigh, mTEClow frac-
tion appeared to contain multiple subsets as studied in the past several years: (i) 
developing stage of mTEC lineage (recently categorized as “Ccl21+ mTEC”) and 
(ii) terminally differentiated stage of mTECs, called “post- Aire mTEC” (Nishikawa 
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et al. 2010) or “corneocyte-like mTEC” (Kadouri et al. 2020) (Table 10.1). Post-
Aire mTECs lose their nuclei as they form Hassall’s corpuscles. Notably, Aire-
deficient mice have reduced numbers of Krt10+ post-Aire mTECs and impaired 
formation of Hassall’s corpuscles in their thymi, which suggests that Aire may con-
trol the differentiation program of mTECs (Matsumoto 2011; Yano et al. 2008).

Furthermore, recent high-throughput scRNA-seq revealed that TECs, especially 
mTECs, consist of more heterogeneous groups than previously appreciated 
(Bornstein et al. 2018; Dhalla et al. 2020; Miller et al. 2018; Miragaia et al. 2018). 
Bornstein et al. categorized mTECs into four subsets as follows: (i) mTEC I (Ccl21+ 
mTEC), (ii) mTEC II (previous “mTEChigh”), (iii) mTEC III (previous “post-Aire 
mTEC” or “corneocyte-like mTEC”), and (iv) a newly identified mTEC IV (called 
“thymic tuft cells”). The existence of the thymic tuft cells, which are considered to 
establish an immune microenvironment in the thymus, was simultaneously reported 
by two groups (Bornstein et  al. 2018; Miller et  al. 2018). Thymic tuft cells are 
remarkably similar to peripheral tuft cells existing at mucosal barriers in that they 
express canonical taste transduction pathway molecules  and IL-25, whereas the 
expression of MHC-II and CD74 is characteristic to thymic tuft cells (Miller et al. 
2018). Moreover, Dhalla et  al. identified a “proliferating mTEC” cluster that 
exhibited upregulation of Mki67 with Aire, but its biology is still controversial 
(Ishikawa et al. 2021).

Recently, two groups have reported scRNA-seq studies focusing on human TECs 
(Bautista et al. 2021; Park et al. 2020). Importantly, human TECs have been revealed 
to contain similar subsets to mouse TECs (i.e., mTEC I-IV), and the expression of 

Table 10.1 mTEC clusters identified by scRNA-seq

Cluster
Molecular 
marker Functional role

mTEC I mTEClow PDPN+ jTEC
(CCL21+ 
mTEC)

Pdpn, Ccl21, 
Sox4, Ascl1, 
Itgb4, Itga6

mTEC 
precursor?
Recruitment of 
CCR7+ 
thymocytes

mTEC II Mature
mTEChigh

AIRE+ 
mTEChigh

Aire, Fezf2, 
CD80, CD86, 
MHC-IIhigh

Tolerance 
induction

mTEC III Post-Aire mTEC,
Hassall’s 
corpuscle(mTEClow)

KRT10+ 
corneocyte-like 
mTEC

Krt1, Krt10, 
Spink5, Ivl

Tolerance 
induction?

mTEC IV Thymic tuft 
cell(mTEClow)

DCLK1+
Tuft mTEC

Pou2f3, Dclk1, 
L1cam, Trpm5

Promotion of 
type 2 immunity

aNeuroendocrine 
cell

NEUROD1, 
BEX1, CHGA

Peptide 
provision to 
other APCs?aMyoid cell MYOD1, 

MYOG, DES
aMyelin cell SOX10, MPZ Unknown

aSpecific for human TEC
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TRA genes and APECED relevant genes are enriched in the AIRE-expressing 
mTEChigh cluster (Bautista et al. 2021). Bautista et al. also reported the existence of 
immature TECs, which express canonical TEC genes but lacking characteristic 
genes of cTECs and mTECs, from both datasets. Moreover, some unique TEC 
subsets that are specific to humans were identified. Both groups reported the 
existence of (i) MYOD1 and MYOG expressing myoid cells, and (ii) NEUROD1, 
NEUROG, and CHGA expressing neuroendocrine cells. Bautista et  al. further 
identified (iii) SOX10 and MPZ expressing myelin cells. Interestingly, expressions 
of myasthenia gravis relevant genes (i.e., CHRNA1, TTN, and MUSK) were 
predominantly found in the myoid, and  neuroendocrine subsets (Bautista et  al. 
2021). It evokes the possibility that these unique AIRE− populations also participate 
in the induction of immune tolerance, while these cells may not directly present 
antigens due to their low levels of MHC (HLA) expression. In summary, recent 
transcriptome analysis at single-cell resolution revealed that the thymus orchestrates 
the establishment of self-tolerance by the coordination of quite heterogenous TEC 
subsets, collaborating with unique transcriptional machineries.

10.9  Conclusion

In this chapter, we have described the recent advances in transcriptome analyses 
especially focusing on the bulk RNA-seq and scRNA-seq approaches that helped 
our understanding of the immune system more globally. In the last part of the 
chapter, we touched on how these techniques have now been bringing a new 
paradigm for self vs. non-self-discrimination in the thymus. The study on Aire 
deficiency, a monogenic autoimmune disease, has underscored the importance of 
the advent of new technologies to draw a whole picture of transcriptional control of 
the immune system. We are hoping that the complete picture of the transcripts of 
each immune cell type and the integration of this knowledge will pave the way to a 
comprehensive understanding of the immune system from a novel viewpoint.
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Chapter 11
Transcriptome Profiling in Autoimmune 
Diseases

Cristhianna V. A. Collares and Eduardo A. Donadi

The principal function of the immune system is related to the protection of the 
organism against invasion of pathogens and restore tissue integrity. However, the 
immune system may fail to perform its major task in immunodeficiency states, usu-
ally associated with the inability of its major components to respond/fight patho-
gens, and in autoimmune diseases, associated with the failure to distinguish between 
the self and non-self. The violation of the tolerance to self-antigens is the basis of 
autoimmune diseases, which will be focused on this chapter.

Autoimmune diseases are a group of different inflammatory disorders, character-
ized by systemic or localized inflammation, usually leading to cell or tissue destruc-
tion. Systemic autoimmune disorders encompass diseases caused by a fault in the 
immune system, primarily associated with the failure to recognize self-antigens by 
tolerance loss and cross-reactivity between pathogen and self-antigens. In these pro-
cesses, the chronic overreactivity of B and T cells induces unsafe signals to cells or 
tissues, impairing their function. The uncontrolled cell proliferation may also pro-
mote chronic inflammation (Kamradt and Mitchison 2001; Matzinger 2002).

The knowledge on the pathogenesis of autoimmune diseases has not yet been 
fully elucidated. Studies suggest that some specific gene variants or shared gene 
variants are observed autoimmune diseases and, similarly, pathogenic mechanisms 
may be shared among these disorders (Zhernakova et al. 2009; Cho and Gregersen 
2011). Although many genetic loci have been described for autoimmune diseases, 
additional elements have been identified and associated with pathogenesis of these 
disorders.

Approximately 0.1–1% of general population develops autoimmune diseases 
during life. In a recent study, researchers have reported that almost 20 million 
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Americans are affected by autoimmune diseases (Rose 2016). Considering first- 
degree relatives, this incidence increases five times, and in monozygotic twins, this 
rate increases more than five times. Thus, the risk is increased with increasing 
genetic similarity to an affected individual. However, the highest autoimmune dis-
ease concordance rate (higher than 20–30%) is observed among monozygotic twins, 
showing that additional genetic and non-genetic factors may play a role (Mackay 
2009). Besides genetics, some autoimmune diseases are influenced by hormonal 
factors and affect more women than men, i.e., systemic lupus erythematosus, that 
affects 80–90% more women than men, and the peak of its incidence occurs during 
childbearing ages (Straub 2007). Indeed, the role of hormonal factors corroborates 
an evolutionary point of view, in which the female gender of most vertebrates has an 
incubation time to passively offer immunity to the offspring (immunological prim-
ing) and during pregnancy and breastfeeding (Lin et al. 2016; Moulton 2018). If 
evolution has shaped immunological priming, an undesirable effect of a stronger 
immune response in the trend for the development of autoimmune diseases. Several 
lines of evidence indicate the participation of sex hormones on the regulation of 
both innate and adaptive (humoral and cell-mediated) immune responses. 
Noteworthy, sexual hormones may act in the development, homeostasis, and gene 
expression, in addition to controlling the signaling processes of T and B lympho-
cytes, influencing gene expression profiles (Klein and Flanagan 2016; Ortona et al. 
2016; Trombetta et al. 2017; Edwards et al. 2018).

In addition to genes and hormones, recent studies regarding the influence of 
infectious agents (particularly Arbovirus and Coronavirus) on the modification of 
the immune response have shed light into the understanding of the pathogenesis of 
autoimmune disorders. The outbreak of Zika, Chikungunya, and Dengue viruses, 
which have reached Brazil and other countries in the 2015–2016 epidemics, has 
produced neurological and rheumatological complications that are remarkably like 
multiple sclerosis, neuromyelitis optica, Guillain-Barré syndrome, and others. 
Besides cross-reaction between host and virus antigens, the viruses themselves have 
been detected in the cerebrospinal fluid (Almeida et al. 2021), putatively influencing 
gene expression profiles. The recent pandemic caused by the infection by SARS- 
CoV2 has also produced several alterations on the leukocyte function and of the 
inflammatory cytokine profile (Lei et al. 2020), producing autoimmune manifesta-
tion exacerbations (Peeters et al. 2020).

Among the several autoimmune disorders, in this revision we will devote special 
attention to three conditions, an endocrinologic (type 1 diabetes mellitus), a rheu-
matologic (systemic lupus erythematosus), and a neurologic (multiple sclerosis) 
autoimmune disorders. These three diseases have been prominently investigated in 
the medical-scientific scenario, particularly emphasizing their transcriptional pro-
files, and this knowledge may contribute for a better understanding of disease patho-
genesis, disease morbidity, development of new drugs and diagnostic tools, and the 
unraveling of biomarkers for early diagnosis and treatment.
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11.1  Type 1 Diabetes Mellitus

Diabetes affects more than 300 million of adults in worldwide population, and this 
rate will be increase to 440 million by 2030 (Shaw et al. 2010). Type 1 diabetes 
(T1D) is usually associated with an autoimmune pathogenesis and accounts for 
approximately 10% of all cases of diabetes, affecting individuals under the age of 
30, but can also be manifested later (Geenen et al. 2010). The incidence and preva-
lence of T1D have grown worldwide, particularly in developed countries, increasing 
2–3% per year (Maahs et al. 2010; Mayer-Davis et al. 2017). In the United States, 
the increased incidence of T1D is observed among young people under 15 years of 
age, and especially in children under 5 years old (Chobot et al. 2017). Although 
susceptibility to T1D has been primarily attributed to histocompatibility genes 
(HLA), most of the patients have no familiar history of the disease and no HLA 
susceptibility genes, indicating a combinatorial influence of environmental and 
behavioral factors (DiMeglio et al. 2018).

T1D is caused by cellular and humoral autoimmune responses specifically 
against pancreatic beta cells, producing a substantial decrease of insulin production 
(Battaglia 2014). It is estimated that 80–95% of pancreatic beta cells are destroyed 
when T1D is diagnosed, impairing the diagnosis at the early asymptomatic stages of 
the autoimmune attack. Since the direct access to pancreas is difficult, disease diag-
nosis is primarily clinical, and the search for islet autoantibodies may have impor-
tant function as serological marker for the disease (Achenbach et  al. 2004). 
Autoantibodies against islet cells antigens (ICAs), glutamic acid decarboxylase 
(GAD), islet antigens (IAA), and protein tyrosine phosphatase-like protein IA-2 
(IA-2A) can be used for the prediction and progression of T1D (Achenbach et al. 
2004). In recent years, other biomarkers have been used like autoantibodies against 
the zinc efflux transporter ZnT8 (Herold et al. 2009; Wenzlau et al. 2007). Most 
newly diagnosed T1D patients have measurable antibodies against insulin, GAD, 
IA-2, ZnT8, and tetraspanin-7 (McLaughlin et al. 2016). It has also been described 
that seroconversion of two or more autoantibodies is necessary for the development 
of T1D in almost 85% of cases before the age of 20 years (Ziegler et al. 2013). 
Despite the presence of these serological biomarkers, the discovery of novel bio-
markers to diagnose T1D before the complete islet cell destruction is a major goal. 
The early prediction is still missing due to insufficient predictive power of the indi-
vidual risk factors (Purohit and She 2008).

Several genes and gene regions distributed throughout the genome have been 
associated with T1D in population, family, and linkage studies. T1D has been shown 
to be slightly more common in men than in women (Diaz-Valencia et al. 2015). The 
strongest genetic susceptibility contribution comes from the human leucocyte anti-
gen complex (HLA) region at chromosome 6p21 (IDDM1), responsible for up to 
40–50% of T1DM susceptibility, and from the insulin gene (INS) region (IDDM2) 
(Pugliese and Miceli 2002). Although it is still unknown how some HLA haplotypes 
can interfere with the susceptibility or resistance or development of T1D, some 
studies have shown that in 50% of cases, susceptibility has been associated with the 
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HLA-DRB1*03:01-DQA1*05:01-DQB1*02:01 (DR3/DQ2) and HLA-DRB1*04:01- 
DQA1*03:01-DQB1*03:01 (DR4-DQ8) haplotypes, and these haplotypes have 
been more prevalent in White individuals. In contrast, protection against the devel-
opment of T1D has been associated with the HLA-DRB1*15:01-DQA1*01:02- 
DQB1*06:02 (DR15-DQ6) haplotype (Noble 2015). In addition, more than 60 
non-HLA loci have been identified as being relevant for the development of T1D in 
genome-wide association studies, including immune system variants, such as the 
expression of the insulin thymus gene, regulation of T cell activation, and viral 
responses (Noble 2015).

The loss of tolerance to self-antigens in T1D can be summarized combining the 
genetic features and the immunoregulatory imbalance observed in T1D patients, 
encompassing: (i) decreased expression of insulin in thymus, impairing lymphocyte 
education during the negative selection in the medullary region; (ii) the molecules 
encoded by the genes HLA-DQA1*05:01, HLA-DQB1*03:02, and DQB1*02:01 
and HLA-DRB1*03/*04 mediate the presentation of autoantigens and this feature is 
associated with the development of anti- GAD, insulin (IAA), islet antigen 2 (IA2A), 
and ISS autoantibodies; (ii) deficient immunoregulation, mediated by specific sur-
face and intracellular molecules, including IL-2, IL-2RA, IL-2RB, CTLA-4, 
PTPN-2, and PTPN-22; (iii) decreased number of T regulatory cells; (iv) decreased 
function of the molecules involved on innate immune response; (v) decreased cell 
regulation by invariant natural killer-like T (iNKT) cells (Cipolletta et al. 2005; Sia 
2006; Li et al. 2007; Chentoufi et al. 2008; Knip and Siljander 2008; McDevitt and 
Unanue 2008; Tisch and Wang 2008; Karumuthil-Melethil et al. 2008; Todd 2010; 
Pociot et al. 2010; Buschard 2011; Novak and Lehuen 2011).

Diabetes mellitus is one of the most studied diseases in terms of genetic associa-
tion and of the transcriptome profile of disease subtypes. Pathogenic features 
observed in T1D patients have been used to characterize the gene expression profile 
and to identify novel biomarkers, for instance: (i) among the more than 40 loci asso-
ciated with probable contributors to T1D (Barrett et al. 2009; Nerup et al. 2009; 
Plagnol et al. 2011), most of them modulate the immune system (Concannon et al. 
2009); (ii) chromatin remodeling may simultaneously downregulate several inflam-
matory genes and upregulate many genes responsible for a set of cellular functions, 
including glucose homeostasis, and other signaling and metabolic pathways 
(Jayaraman et al. 2013); (iii) proinflammatory cytokines or double-stranded sRNA 
(by-product resulting from viral infection) can contribute for T1D pathogenesis, 
modifying the expression of the differentially expressed genes observed in human 
pancreatic islets (Eizirik et al. 2009; Moore et al. 2009; Colli et al. 2010; Eizirik 
et  al. 2012); (iv) cytokines may regulate more than 3000 genes associated with 
inflammation, innate immune response and apoptosis, and cytokine and chemokine 
genes (CCL2, CCL5, CCL3, CXCL9, CXCL10, CXCL11, IL-6, and IL-8), and 
these genes are induced in human islet cells. Among them, the CCL2 and CXCL10 
molecules attract macrophages and may be involved in the recruitment of immune 
cells at the beginning of insulitis (Eizirik et al. 2012); and (v) the highly expressed 
CXCL10 chemokine is regulated by 16-5p miRNA, and the binding of this miRNA 
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to the CXCL10 transcript can act on T1D cell proliferation and apoptosis in T1D 
patients (Gao and Zhao 2020).

Differential gene expression profiles have also been reported for humans and 
animal models (Grinberg-Bleyer et al. 2010; Fornari et al. 2011), using peripheral 
blood mononuclear cells (Rassi et al. 2008; Han et al. 2011; Collares et al. 2013b), 
pancreatic beta cells (Planas et  al. 2010), and in whole peripheral blood cells 
(Reynier et al. 2010) obtained from T1D patients.

To unveil shared and specific differences among autoimmune and non- 
autoimmune diabetes, several studies have been conducted using peripheral blood 
lymphocytes, primarily applying the microarray technology. In this context, Collares 
et al. (2013b) evaluated the transcriptome of diabetic patients, including T1D, type 
2 diabetes (T2D), and gestational diabetes (GDM) patients. The results revealed that 
the overall gene expression profile is characteristic for each group of diabetic 
patients and that gene expression profile of GDM was closer to T1D than to T2D. An 
in silico analysis showed that the similarities observed in the transcriptional profile 
of GDM and T1D were due to the role of genes associated with inflammation 
(Evangelista et al. 2014). The higher expression of these genes in some T1D and 
GDM patients seems to influence the global gene expression pattern of diabetic 
patients. Indeed, several important molecular mechanisms identified in this cluster 
account for an intricate array of the inflammation pathways. Using the DAVID data-
base (http://david.abcc.ncifcrf.gov/) it is possible to obtain functionality of these 
genes and the involvement of modulated genes in different biological functions. In 
a meta-analysis evaluating the transcription profiles of T1D, T2D, and GDM, it was 
observed that induced genes were grouped into five major groups of biological 
function: (i) development of multicellular organism (20.3%), (ii) signal transduc-
tion (17.9%), (iii) stress response (12.2%), (iv) cell differentiation (10.7%), and (v) 
processes the immune system (6.8%). The repressed genes were clustered into three 
main biological processes: (i) regulation of metabolic processes (30%), (ii) biosyn-
thetic processes (26.9%), and (iii) transcriptional processes (22%) (Fig.  11.1). 
Performing a more restrictive analysis, considering only modulated genes that 
showed fold change ≥2 for all comparisons of the three groups of diabetes, we 
observed 10 most significant genes, seven of them were induced in GDM and T1D 
and repressed in T2D and three genes were repressed in GDM and T1D and induced 
in T2D. The chromosomal location of these genes is shown in Fig. 11.2.

Pancreatic beta cell gene features have been studied by real-time PCR, microar-
rays (Kutlu et al. 2009; Dorrell et al. 2011), and, more recently, using next- generation 
sequencing (NGS) of RNA (Mutz et al. 2013). Among the studies involving NGS, 
it is important to highlight that the genome-wide association study (GWAS) from 
human diabetic populations (pancreatic islets) confirmed more than 60% of previ-
ously identified genes in T1D (Eizirik et al. 2012). The major contribution of GWAS 
to T1D was reviewed in detail, expanding the six susceptibility genomic regions for 
T1D to almost 60 regions, emphasizing the importance to identify and characterize 
intronic variants and intergenic regions. Additionally, a major advance in this area 
was the large-scale sequencing, mainly studies involving scRNA-seq, which allowed 
understanding the role of coding and non-coding RNAs and their influences on T1D 
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development (Bakay et al. 2019). The non-coding RNAs have been identified as 
important or even major regulators of gene expression and include small microRNA 
(miRNA) and long noncoding RNA (lncRNA) (Mattick and Makunin 2006; Ponting 
et al. 2009). Approximately 200 dysregulated miRNAs in several tissues, cells, and 

Fig. 11.1 Biological function of the significant and differentially expressed genes (3747 tran-
scripts) modulated after comparing GDM, T1DM, and T2DM. Panel A illustrates the upregulated 
transcripts (from GDM to T1D to T2D), which were clustered into five groups according to their 
biological functions: (i) development of multicellular organism (20.3%), (ii) signal transduction 
(17.9%), (iii) stress response (12.2%), (iv) cell differentiation (10.7%), and (v) immune system 
processes (6,8%). Panel B shows the downregulated transcripts clustered into three main groups: 
(i) regulation of metabolic processes (30%), (ii) biosynthetic processes (26.9%), and (iii) transcrip-
tional processes (22%)
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blood (serum and plasma) have been identified in both human and murine T1D 
sample Assmann et al. 2017). Some miRNAs are key players in pancreatic develop-
ment and homeostasis. Among them, miR-375 has been considered a key miRNA 
that regulates B-cell insulin secretion and hence overall glucose homeostasis 

Fig. 11.2 Chromosomal location of the ten differentially expressed genes selected from the meta- 
analysis among GDM, T1D, and T2D and exhibiting fold change ≥2
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(Dumortier and Van Obberghen 2012). Moreover, miR-375 was reported as putative 
circulating biomarker for beta-cell injury (Erener et  al. 2013), since it has been 
responsible for insulin gene expression and secretion (El Ouaamari et al. 2008; Poy 
et al. 2004). Overall, miRNAs play regulatory roles in many biological processes 
associated with diabetes, including adipocyte differentiation, metabolic integration, 
insulin resistance, and appetite regulation (Krützfeldt and Stoffel 2006). The role of 
miRNAs in diabetes has been associated with several pathogenic features. For 
example, miR-410, miR-200a, and miR-130a regulate secretion of insulin in 
response to stimulatory levels of glucose, and overexpression of miR-410 enhances 
the levels of glucose-stimulated insulin secretion (Hennessy et  al. 2010). The 
miR-200 and the miR-7 families are constitutively repressed in beta-cells (Latreille 
et al. 2014; Belgardt et al. 2015). MiR-30d is upregulated in pancreatic beta-cells 
and collaborates for the increased insulin gene expression (Tang et al. 2009a) and 
miR-9 acts in the fine-tuning of glucose metabolism (Plaisance et al. 2006).

In experimental diabetes, the miR-142-3p, miR-142-5p, and miR-155 present in 
NOD (non-obese diabetic) mice (observed also in human T-cell exosomes) favored 
apoptosis of beta cells, and when inactivated, protected mice from the development 
of T1D. The islets of the protected mice have a higher level of insulin, a lower rate 
of insulitis, and inflammation. This is because the exosomes of T lymphocytes trig-
ger apoptosis and the expression of genes involved in chemokine signaling, such as 
CCL2, CCL7, and CXCL10, in beta cells. The induction of these genes can promote 
the recruitment of immune cells and exacerbate the death of beta cells during the 
autoimmune attack (Guay et al. 2019).

The comparisons between the transcript profile of the immunologic and non- 
immunologic types of diabetes revealed the mRNA/miRNA signatures of T1D, 
T2D, and GDM patients, pinpointing some miRNAs shared among the three types 
of diabetes, miRNAs specific for each type of diabetes, and identified non-described 
miRNAs associated with each type of diabetes (Collares et al. 2013a). Nine miR-
NAs were shared among the three types of diabetes, including hsa-miR-126, hsa- 
miR- 144, hsa-miR-27a, hsa-miR-29b, hsa-miR-1307, hsa-miR-142-3p, 
hsa-miR- 142-5p, hsa-miR-199a-5p, and hsa-miR-342-3p, and suggested that these 
miRNAs are associated with diabetes per se. For T1D, some miRNAs were primar-
ily observed in T1D and the only miRNA that linked to glucose metabolism was 
let-7f, which was previously suggested as a potential therapy for T2D (Frost and 
Olson 2011). Another biomarker that has already been suggested for early detection 
of beta-cell death and predicting T1D development was the methylation patterns of 
circulating DNA (Lehmann-Werman et al. 2016). A NGS study evaluating T1D and 
T2D patients showed specific miRNAs involved in diabets complication: diabetic 
nephropathy (miR-9-5p, miR1249-3p, miR-409-5p, miR12271-5p, miR-501-3p, 
miR-193a-5p, and miR-148a-5p); diabetic neuropathy (miR-873-5p, miR-125a-5p, 
miR145-3p, and miR-99b-5p); diabetic retinopathy (miR-409-5p, miR-1271-5p, 
miR143-3p, and miR-199a-5p). In addiction, this study showed miRNAs involved 
in more than one diabetc complications: miR-193b-3p, miR-101-5p, miR-486-5p, 
miR-382-5p, miR-144-5p, and miR-145-3p. Most of the miRNAs differentially 
expressed in T1D and T2D patients targeted genes (GSK3B, FZD4, BCL2, PRKAA1, 
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and NFAT5) and gene families (SMAD, AKT, CBL, MAPK, TGF-beta, and FOXO) 
associated with diabetic complications (Massaro et al. 2019).

Concluding, several genes and transcripts have already been described in auto-
immune diabetes; many of than were associated with increased chance to develop 
T1D with increased morbidity, complications, and mortality. Although linkage stud-
ies have been associated with transcriptome and microRNAs and, most recently 
proteomes, many issues are still studied to unveil the intricate mechanisms associ-
ated with the development of diabetes. The understanding of the association between 
susceptibility genes and their differential transcript profiles may contribute to the 
development of new drugs, novel strategies for diabetes care, including early diag-
nosis (before there is destruction of most of the pancreatic beta cells), avoiding 
autoimmune destruction of pancreatic beta cells, or even preventing the develop-
ment of T1D.

11.2  Systemic Lupus Erythematous

Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder character-
ized by the presence of high amounts of circulating immune complexes, leading to 
tissue/organ damage because of persistent tissue inflammation (Shaikh et al. 2017; 
Kaul et al. 2016). Among SLE patients, women are nine times more affected than 
men, suggesting that gender-related factors are crucial for disease development 
(Schwartzman-Morris and Putterman 2012; Weckerle and Niewold 2011). The 
highest SLE prevalence (241/100.00) and incidence (23.2/100,000 people/year) 
rates are observed in North America, and the lowest in Africa and Ukraine 
(0.3/100,000 people/year) (Rees et al. 2017). The etiology of SLE remains uncer-
tain and disease pathogenesis has been associated with the interaction of genetic, 
epigenetic, and environmental factors (Shaikh et al. 2017; Kaul et al. 2016; Liu and 
Davidson 2012). Exposure to viruses and bacterial infections, and ultra-violet radia-
tion are known to trigger SLE (Doria et al. 2008). SLE involves the activation of the 
innate and adaptive immune response and is usually considered a severe and poten-
tially life-threatening disease, which may represent a therapeutic challenge because 
of its heterogeneous organ manifestations. The central pathogenic features of SLE 
encompass T- and B-cells abnormalities that lead to autoantibody production. Innate 
immune cells produce type 1 interferon (IFN) that has a central role in systemic 
autoimmunity and in the activation of B and T cells. Autoantibodies produced by 
B-cells stimulate dendritic cell IFN production, combining the role of innate and 
adaptive immune system responses (Kiefer et al. 2012).

In terms of the genetic risk for developing SLE, only 10-20% of the cases can be 
explained by heritability, and genetic variability of individuals has a smaller contri-
bution (Moser et al. 2009). The great challenge of the studies on lupus is the identi-
fication of gene variants that are, in 90% of the cases, in non-coding, intronic or 
intergenic regions (Moser et  al. 2009; Deng and Tsao 2010; Guerra et  al. 2012; 
Costa et al. 2013; Kilpinen and Dermitzakis 2012). Although: (i) the concordance 
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rate of SLE in monozygotic twins is 24–57% and in dizygotic twins or full siblings 
is 2–5% (Jarvinen et al. 1992; Deapen et al. 1992; Ghodke-Puranik and Niewold 
2015), (ii) no genomic differences between monozygotic twins are observed, evi-
dencing the role of epigenomic and gene expression variations (Furukawa et  al. 
2013), (iii) environmental factors mediate epigenetic effects, i.e., DNA/RNA meth-
ylation and histone modification, these findings corroborate the complex bases of 
SLE heritability, emphasizing the key role of environmental factors in disease 
development (Alarcón-Segovia et al. 2005; Kilpinen and Dermitzakis 2012; Costa 
et al. 2013).

Genome-wide association and linkage studies have revealed more than 90 loci 
associated with SLE susceptibility (Kaul et al. 2016; Graham et al. 2009; Niewold 
2015; Langefeld et al. 2017) and over 40 genes have been associated with pathways 
associated with immune system regulation, tissue response to injury, endothelial 
function, and others (Moser et al. 2009; Deng and Tsao 2010; Guerra et al. 2012). 
Linkage and genome-wide association studies have indicated genetic risk factors 
associated with the HLA region (Gough and Simmonds 2007; Morris et al. 2014; 
Armstrong et  al. 2014), and with other genes including IRF5, STAT4, BLK, 
TNFAIP3, TNIP1, FCGR2B, and TNFSF13 (Koga et al. 2011; Morris et al. 2016; 
Alarcón-Riquelme et al. 2016). Noteworthy, genes associated with SLE susceptibil-
ity genes are also involved in other autoimmune diseases, emphasizing the genetic 
polymorphism of cytokine genes that may differentially control lymphocyte activ-
ity. Several cytokines (IL-1, IL-6, IL-10, TNF-alpha, among others) play an impor-
tant role in SLE disease activity (Asanuma et al. 2006; McCarthy et al. 2014; Cigni 
et al. 2014). According to this idea, cytokine signatures can be defined depending on 
the disease activity: (i) a “susceptibility signature” is observed in patients in clinical 
remission, (ii) an “activity signature” is related to genes associated with immune 
cell metabolism and protein synthesis and proliferation, and (iii) a “severe signa-
ture” is related to active nephritis (Panousis et al. 2019). In the context of nephritis, 
a recent study showed evidence of genetic risk shared between SLE and lupus 
nephritis, especially in patients younger than 18 years, pointing that SLE suscepti-
bility loci are related to the development of proliferative lupus nephritis (Webber 
et al. 2020).

The group of the interferon (IFN) cytokines deserves special attention in 
SLE. Since peripheral blood mononuclear cells (PBMC) are reporters of the ongo-
ing tissue/cell/organ damage occurring elsewhere, these cells have been used to 
evaluate the transcript profiles in autoimmune disorders. Using PBMC, the IFN 
signature is very characteristic and more prominent in patients with more active and 
severe form of SLE. Induced genes have been associated with type I interferon sig-
naling (Crow and Kirou 2004; Ghodke-Puranik and Niewold 2013; Crow 2014), 
with emphasis on interferon alpha (IFN-alfa) (Blanco et al. 2001; Niewold 2011; 
Weckerle et  al. 2011). Microarray analysis showed overexpression of IFN-alfa- 
regulated genes in SLE patients, including the type 1 IFN signature (Crow and 
Wohlgemuth 2003; Niewold et  al. 2007; Panousis et  al. 2019). Moreover, it has 
shown that viral infection treated with IFN-alfa may contribute to de novo SLE 
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development that disappears when treatment is discontinued (Niewold and Swedler 
2005; Ronnblom et al. 1990).

PBMC transcript profiles may also differentiate clinical manifestations of SLE, 
differentiating neuropsychiatric from non-neuropsychiatric patients (Sandrin- 
Garcia et al. 2012). Besides PBMC, subpopulations of purified cells may exhibit a 
unique pattern of gene expression. A specific signature has been identified in SLE T 
CD4+ cells, involving IFN transcripts, and most differentially expressed genes in 
these cells had promoter sequences presenting targets for the interferon regulatory 
factor (IRF) -3 and -7 (Lyons et al. 2010; Li et al. 2010). The involvement of IFN 
and IFN-induced genes also appear when evaluating target organ or tissue. In the 
transcriptome of the synovial membrane, the comparisons between SLE patients 
with rheumatoid arthritis or osteoarthritis show upregulation of IFN induced genes 
and repression of genes involved in extracellular matrix homeostasis (Toukap 
et al. 2007).

The bone marrow is a central lymphoid organ with hematopoietic and immuno-
regulatory function and exhibits a variety of histopathological abnormalities in 
SLE, and the evaluation of bone marrow may be more informative than PBMC 
(Voulgarelis et al. 2006). The differential gene expression of the bone marrow, using 
the microarray analysis, shows a clear differentiation between active from inactive 
SLE (Nakou et al. 2008), revealing pathways related to cellular growth, cell sur-
vival, and immune reactions, as important factors associated with SLE pathogenesis 
(Nakou et  al. 2010). Additionally, the transcriptome analysis of SLE platelets 
reveals increased expression of genes encoding cytokines, chemokines, and pro-
teins involved in apoptosis, and overexpression of type I IFN-regulated genes in 
comparison to controls (Lood et al. 2010). These studies confirm the type I INF- 
related genes expression profile in platelets from SLE patients, as well as its related 
proteins. Regardless of the biological material studied, several lines of evidence 
show that IFN is extremely important for SLE, since its expression is induced in 
SLE tissues and cells. Approximately 60% of patients exhibit increased expression 
of genes induced by type 1 IFN, which is directly associated with the disease activ-
ity (Baechler et al. 2003; Bennett et al. 2003; Han et al. 2003; Kirou et al. 2004; 
Kirou et al. 2005; Feng et al. 2006), and with signaling pathways induced by type 1 
IFN (Yao et al. 2009). Other interferon-induced genes are also modulated in SLE 
patients, including OAS2 (2′5′-oligoadenylate synthetase 2) (Grammatikos et  al. 
2014), and interferon regulatory factor 5 (IRF5), for which specific polymorphisms 
may confer susceptibility to SLE (Stone et al. 2013). The gene expression profile 
studies of granulocytes show differential expression of genes involved in cell apop-
tosis and motility, and also show repression of genes related to DNA repair, differ-
ential expression of genes involved in cell apoptosis and motility (Baechler et al. 
2003; Han et al. 2003; Rus et al. 2004; Maas et al. 2005; Lee et al. 2011).

Many transcription factors were shown to be crucial for immune system and their 
differences in the expression and activity may imply in discovering novel biomark-
ers in some diseases, including SLE. Comparing levels of transcription factors in 
PBMC of SLE patients, Sui et al. (2012) found 92 differentially expressed transcrip-
tion factors and indicated activator protein-1 (AP-1), Pbx1, and myocyte enhancer 
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factor-2 (MEF-2) as candidates involved in pathogenesis of SLE and new diagnosis 
biomarker for this disease. The transcription factor FOXO1 was also related to SLE, 
which was downregulated in PBMCs from SLE and rheumatoid arthritis patients 
(Kuo and Lin 2007). The transcript family FOXO involves transcription factors that 
play an important role in controlling lymphocyte activation and proliferation. A 
member of nuclear factor (NF)-kB/Rel family of transcription factors, c-Rel, was 
found in higher levels in PBMCs from SLE patients (Burgos et  al. 2000). Since 
cytokines are produced by T-help cell 1 (Th1) and 2 (Th2), probably transcription 
factors related to T-help cells must have an important role in SLE (Foster and Kelley 
1999). The principal transcription factors for differentiation of Th1 and Th2 are 
T-bet and GATA-3, which were found to be up or downregulated in SLE patients, 
respectively (Chan et al. 2006; Lit et al. 2007). Other transcription factors, including 
AP-1, NF-kB, and IRF5, increase STAT-4 expression (Remoli et al. 2007) and are 
important for type 1 IFN receptor signaling. Moreover, the IRF5 is mediator of Toll- 
like receptor-triggered expression of proinflammatory cytokines such as type 1 IFN 
and TNF-alfa (Kawai and Akira 2006).

Regarding the control of gene expression within the context of SLE, the levels of 
RNA may be controlled by epigenetic mechanism including microRNAs, which 
usually acts by degradation of target mRNA or inhibiting its translation. Many stud-
ies have reported miRNAs deregulation in SLE and more than 42 differentially 
expressed microRNAs were detected in PBMCs from SLE patients, and some of 
them were pinpointed as biomarker candidates. It has been demonstrated that 
miRNA deregulation is implicated in different systemic autoimmune diseases 
(Stagakis et al. 2011). MiR-21 acts partly through inhibition of PDCD4 (selective 
protein translation inhibitor of genes involved in immune responses) and it was 
found upregulated in T- and B-cells (Stagakis et al. 2011) and in CD4 T cells (Pan 
et al. 2010) of SLE patients comparing to control group, suggesting it as possible 
biomarker for SLE.

An increased expression of miR-224 (Lu et  al. 2013), miR-148a (Pan et  al. 
2010), miR-15 (Yuan et al. 2012), miR-142-3p and miR-181a (Carlsen et al. 2013), 
miR-189, miR-61, miR-78, miR-21, miR-142-3p, miR-342, miR-299-3p, miR-198, 
and miR-298 (Dai et al. 2007) has been described in patients and animal models. 
However, many studies have shown downregulation of different microRNAs in SLE 
patients, including: miR-146a (Tang et  al. 2009b), miR-145  in T cells (Lu et  al. 
2013), miR-155 in serum and urine from SLE patients (Wang et al. 2010), miR- 181a 
in pediatric patients (Lashine et  al. 2011), miR-19b and miR-20a in monocytes 
(Teruel et  al. 2011), miR-125a (Zhao et  al. 2010), miR-17, miR-20a, miR-106a, 
miR-92a, and miR-203  in the circulation (Carlsen et  al. 2013), and miR-196a, 
miR- 17-5p, miR-409-3p, miR-141, miR-383, miR-112, and miR-184  in PBMCs 
(Dai et al. 2007). In addition, a circulating miRNA (miR-125a 3p) was related to 
disease activity (Wang et al. 2011, 2012).

In the context of SLE, some specific knowledge about some miRNAs and their 
target genes may help to develop new drugs and to propose novel diagnostic tools. 
For example, the decreased expression of miR-145 and induction of its target pro-
tein activator of transcription-1 (STAT-1) seem to be associated with lupus nephritis, 
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and may contribute to the immunopathogenesis of SLE (Lu et al. 2013). MiR-146a, 
which targets STAT1 and IRF5 in innate immune cells and is negative regulator of 
type 1 IFN and TLR7 signaling pathways, was described as repressed compared to 
controls (Tang et  al. 2009b). Some reports show miRNAs, such as miR-148a, 
miR-126, miR-21, and miR-29b, are downregulated, targeting DNA methyltransfer-
ase- 1 expression and, thus, contributing to global hypomethylation observed in SLE 
(Deng et al. 2001; Pan et al. 2010; Zhao et al. 2011; Layer et al. 2003; Qin et al. 
2013). MiR-125a is involved in inflammatory chemokine pathway and contributes 
to higher expression of RANTES, an inflammatory chemokine, indicating that this 
miR can be used as a novel target for SLE treatment (Zhao et al. 2010). MiRNA-142 
and miR-31 have already been reported in T cells of SLE patients, acting on cyto-
kine expression (Ding et al. 2012; Fan et al. 2012). MiR-146a and miR-241-3p/5p 
have been described as altered by mycophenolic acid, followed by reduction of 
autoreactive lupus T cells, a finding that suggests that these miRNAs may serve as 
prediction biomarkers to drugs (Tang et al. 2015).

11.3  Multiple Sclerosis

Multiple sclerosis (MS) is a common, severe, chronic inflammatory autoimmune, 
and demyelinating disease of the central nervous system (CNS), associated with an 
immune reaction against myelin proteins. The disease primarily affects the white 
matter, in which autoreactive T cells attack the myelin-oligodendrocyte complex 
(Noseworthy et al. 2000). Generally, it begins at the third and fourth decades of life, 
affects more women than men (3:1), and is more common in developed countries of 
the Northern hemispheres (Weinshenker 1994; Orton et al. 2006). Approximately 
80% of MS patients have relapsing-remitting MS forms (Lublin and Reingold 1996).

The etiology of MS is still unknown; however, evidence indicates a multifacto-
rial and complex nature, where genetic and environmental factors may influence 
their onset (Noseworthy et al. 2000). Evidence pinpoints for polygenic susceptibil-
ity and for multiple environmental triggering factors (Poo 2001), including Epstein- 
Barr virus (EBV) infection, smoking, obesity, and vitamin D deficiency 
(Ramagopalan et al. 2010; Mokry et al. 2016; Sintzel et al. 2018).

The role of autoimmunity becomes clear by the presence of autoreactive T cells 
for myelin components of CNS and peripheral blood of MS patients. It is believed 
that T lymphocytes are activated at lymph nodes in the periphery and bind to recep-
tors on endothelial cell, continuing to cross the blood–brain barrier into the intersti-
tial matrix (Karpuj et al. 1997). Activation of T cells induces the release of cytokines, 
propitiating sensitized lymphocytes to have access to the CNS through the blood–
brain barrier, stimulating chemotaxis. The recruitment of inflammatory cells and 
leakage of plasma proteins into the CNS trigger a series of mechanisms responsible 
for myelin damage. The main pathological feature in MS is the plaque, a well- 
demarcated white matter injury, histologically characterized by inflammation, T 

11 Transcriptome Profiling in Autoimmune Diseases



262

cells and macrophage infiltration, demyelination and gliosis, and axonal loss 
(Lucchinetti et al. 1998).

Current knowledge of MS allows the formation of the concept of circulating 
T-cell receptor-selected T cells in MS and that CD8+ T cells may be essential in the 
pathophysiology of the disease. The study of abnormalities of blood T cells in MS 
may contribute to better understanding of the disease and the discovery of new 
drugs against MS (Laplaud et al. 2004). The study of monozygotic twins and the 
observation of the differential MS manifestations have suggested the influence of 
environmental factors (Mumford et al. 1994; Sadovnick et al. 1996; Willer et al. 
2003; Nielsen et al. 2005; Islam et al. 2006; Chitnis 2007; Oksenberg et al. 2008; 
Harirchian et al. 2018). In genetically associated cases, the genetic component is 
valued at higher relative risk of siblings of affected individual presenting the same 
disease, and there is also a higher concordance rate in monozygotic than in dizy-
gotic twins (Sadovnick and Ebers 1993; Willer et al. 2003). Considering MS, the 
most striking susceptibility genes are encoded at the major histocompatibility com-
plex MHC, especially class II alleles (Dyment et al. 2004). The HLA-DR2 pheno-
type (DRB1*15:01-DQB1*06:02) has been described in different populations 
(Sadovnick and Ebers 1993; Epplen et al. 1997; Barcellos et al. 2003; Hollenbach 
and Oksenberg 2015). It is believed that there are specific standards of ethnic, envi-
ronmental, or both association patterns, wherein HLA-DRB1 alleles may have dif-
ferent behavior in different environmental contexts (Brum et al. 2007). Furthermore, 
the DRB1*15 allele group was suggested as significant factor MS susceptibility and 
development (Kaimen-Maciel et  al. 2009), as previously demonstrated in the 
Brazilian Caucasian population (Brum et al. 2007).

Many research studies of gene expression on MS have been performed using 
brain tissue from patients, and gene profile may be altered in acute, chronic, or silent 
lesions, or even normal tissue. The most important discoveries were related to a set 
of 16 genes related to autoimmunity, with seven of them associated with SLE and 
two associated with T1D (Tajouri et al. 2007).

GWAS studies revealed more than 150 single nucleotide polymorphisms in MS 
patients, many of them located in regulatory regions of genes related to the immune 
response (Dobson and Giovannoni 2019). Approximately 300 differentially 
expressed genes were detected in a study done in PBMCs of MS patients (Bomprezzi 
et  al. 2003). Among them, overexpression of (i) platelet activating factor acetyl 
hydrolase (PAFAH1B1), a gene associated with brain development and chemoat-
traction during inflammation and allergy; (ii) tumor necrosis factor receptor (TNFR 
or CD27), which is a co-stimulator for T cell activation and fundamental for immune 
response development; (iii) T cell receptor (TCR), crucial for T cell mediated 
immune response and it was associated with MS susceptibility (Beall et al. 1993); 
(iv) zeta chain associated protein kinase (ZAP70), gene responsible for TCR induced 
T cell activation (Chan et al. 1992); (v) interleukin 7 receptor (IL7R), involved in B 
and T cells activation. In the same study, several genes were repressed, such as: tis-
sue inhibitor of metalloproteinase 1 (TIMP1), plasminogen activator inhibitor 1 
(SERPINE 1), histone coding genes, and heat shock protein 70 (HSP70). 
Additionally, the evaluation of T cells from MS patients stressed the importance of 
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transcriptional regulation of NF-kB, which is responsible for regulating gene 
expression during MS relapse; deregulation of NF-kB on T cell transcriptome may 
be used as a molecular biomarker for clinical disease activity (Satoh et al. 2008).

An alternative study of the transcription profile of MS patients is the use of cere-
brospinal fluid. Brynedal et al. (2010) investigated gene expression profile in leuko-
cytes of CSF from MS patients and found AIF1, MGC29506, POU2AF1, PLAUR, 
and TNFRSF17 as differentially expressed. A comparative study between MS 
patients at relapse and healthy controls showed the overexpression of genes involved 
in T and NK cell process, genes belonging to pathways involved in T-cell co- 
stimulation, activated T-cell proliferation, regulation of cell surface receptors, and 
NK-cell activation (Jernas et al. 2013). The authors also showed a decreased expres-
sion of genes associated with innate immunity, B-cell activation and immunoglobu-
lin secretion, and T helper 2 responses in leukocytes of CSF, highlighting the 
HMOX1 gene. The deletion of this gene was associated with enhanced demyelin-
ation (Chora et al. 2007). The induced genes were: (i) EDN1, associated with integ-
rity of blood–brain barrier; (ii) CXCL11 that is important for recruitment of T-cells 
to the CNS when disease activity is higher; and (iii) CXCL13, which may be impor-
tant for the T-helper cell recruitment during relapses. Furthermore, certain CXCL13 
polymorphic sites associated with high levels of the chemokine are more frequent in 
patients with MS (Lindén et al. 2013). Cerebrospinal fluid was also used for the 
study of the hypothalamus–pituitary–adrenal (HPA) axis activity in MS, because of 
its association with disease progression and comorbid mood disorders. The activity 
of axis was determined by measuring cortisol in cerebrospinal fluid and the results 
revealed, in MS patients, low HPA axis activity and associated it with increased 
disease severity (Melief et al. 2013).

Additionally, in a comparative study between three neurodegenerative disorders 
(associated neurocognitive disorders, Alzheimer’s disease, and multiple sclerosis) 
was observed the common overexpression of BACE2, gene previously associated 
with Alzheimer’s disease (Holler et al. 2012) that codes for an amyloid-beta peptide 
(Borjabad and Volsky 2012). In the same study, among the repressed genes were the 
GABRG2 (GABA receptor 2), impairing GABAergic neuron signal transmission 
and memory (Melzer et al. 2012). Observing T cell genes in whole blood of MS 
patients, Gandhi et al. (2010) showed overexpressed genes in MS patients compar-
ing to control subjects, and most of them was expressed on cells from antigen pre-
senting cell, suggesting that excessive T cell activity as a hallmark of disease.

Brain derived neurotrophic factor (BDNF) was suggested as neuroprotective fac-
tor for MS (Frota et al. 2009) and the overexpression of anti-inflammatory pathway, 
BNDF related neuroprotection, showed by overexpression of BDNF, BDNF 
upstream activator-TNK, and BDNF receptor NTRK3, was demonstrated during 
acute relapse (Gurevich and Achiron 2012). In addition, some transcript factors 
were described influencing MS disease, in special the YY1, which is related to pro-
cesses that affect myelin protein generation (Berndt et al. 2001), immune response 
process (Guo et al. 2001; Guo et al. 2008), and viral replication (Oh and Broyles 
2005) and are involved in differential gene expression in MS patients (Riveros 
et al. 2010).
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Epigenetic mechanisms may alter gene expression and modulate the response to 
environmental factors, affecting MS morbidity. Three principal epigenetic mecha-
nisms include: DNA methylation, histone modifications, and micro-RNA-mediated 
genetic silencing. Among them, miRNAs have been extensively evaluated for their 
influence on the manifestation of various autoimmune diseases, including 
MS. Several microRNAs were induced in different MS studies, some of them were 
just induced when compared to controls and others were associated with disease 
activity/severity, including: (i) miR-17-5p that acts on lipid kinases and regulates 
the development of lymphocyte (Lindberg et  al. 2010); (ii) miR-326 (associated 
with Th17 cell profile) (Chen et al. 2018) was associated with disease severity (Du 
et  al. 2009); (iii) miR-214 and miR-23a were present in active and inactive MS 
lesions, and in oligodendrocyte differentiation, suggesting their involvement in 
remyelination (Junker et  al. 2009); (iv) miR-23a was observed in PBMCs from 
patients exhibiting the remissive/remittent disease subset (Ridolfi et al. 2013); (v) 
miR-338, miR-491, and miR-155 (also referred as miR-155-5p) were associated 
with more advanced stages of MS (Noorbakhsh et  al. 2011); (vi) miR-155 was 
observed in peripheral blood monocytes and in myeloid cells from MS brain lesions 
(Moore et al. 2013); (vii) miR-145, miR-660, miR-939, and miR-223 were observed 
in PBMCs (Sondergaard et al. 2013; Ridolfi et al. 2013), blood (Keller et al. 2009; 
Cox et  al. 2010), and T regulatory cells (De Santis et  al. 2010); (viii) miR-34a, 
miR- 142–3p, and miR-326 were detected in demyelinating plaques, suggesting that 
these miRNAs may contribute to disease pathogenesis (Junker et al. 2009; Mandolesi 
et al. 2017; Honardoost et al. 2014).

Considering the repressed miRNA in MS patients: (i) miR-219 and miR-338-5p 
were observed in inactive lesions, targeting genes responsible for the integrity of 
myelin (Junker et  al. 2009); (ii) serum miR-15b and miR-223 that target genes 
implicated MS pathogenesis (Fenoglio et  al. 2013); (iii) members of the mir-29 
family observed in PBMCs from relapsing-remitting patients were associated with 
apoptotic processes and IFN feedback loops (Hecker et al. 2013); (iv) miR-20a-5p 
in whole blood of patients (Keller et al. 2014) that targets the CDKN1A gene, which 
collaborates in T cell activation and has been associated with systemic autoimmu-
nity (Santiago-Raber et al. 2001); (v) miR-17 and miR-20a, which are related to 
control of immune function, are involved in T cell activation and are implicated in 
MS pathogenesis (Cox et al. 2010).

In conclusion, in this revision we highlighted three representative autoimmune 
diseases: T1D, SLE, and MS.  In all of them, the non-genetic factors may have 
important role in the development of the disorders. The discovery of gene tran-
scripts and miRNAs that are involved in the development of each one of these dis-
orders is a major challenge to increase the understanding of their role on disease 
pathogenesis, which may be useful to develop new drugs and novel diagnostic/prog-
nostic tools. Prevention may also be feasible when biomarkers (susceptibility genes 
and differentially expressed transcripts) are available, permitting the early detection 
of autoimmune disorders, ameliorating patient care.

C. V. A. Collares and E. A. Donadi



265

References

Achenbach P, Warncke K, Reiter J et al (2004) Stratification of type 1 diabetes risk on the basis of 
islet autoantibody characteristics. Diabetes 53:384–392

Alarcón-Riquelme ME, Ziegler JT, Molineros J et al (2016) Genome-wide association study in an 
Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the 
role of European admixture. Arthritis Rheum 68:932–943

Alarcón-Segovia D, Alarcón-Riquelme ME, Cardiel MH et al (2005) Familial aggregation of sys-
temic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus 
patients from the GLADEL cohort. Arthritis Rheum 52:1138–1147

Almeida RS, Ferreira MLB, Sonon P et al (2021) Cytokines and soluble HLA-G levels in the acute 
and recovery phases of arbovirus-infected Brazilian patients exhibiting neurological complica-
tions. Front Immunol 12:582935

Armstrong D, Zidovetzki R, Alarcón-Riquelme M et al (2014) GWAS identifies novel SLE sus-
ceptibility genes and explains the association of the HLA region. Genes Immun 15:347–354

Asanuma Y, Chung CP, Oeser A et al (2006) Increased concentration of proatherogenic inflamma-
tory cytokines in systemic lupus erythematosus: relationship to cardiovascular risk factors. J 
Rheumatol 33:539–545

Assmann TS, Recamonde-Mendoza M, De Souza BM et al (2017) MicroRNA expression profiles 
and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocr Connect 
6:773–790

Baechler EC, Batliwalla FM, Karypis G et al (2003) Interferon-inducible gene expression signa-
ture in peripheral blood cells of patients with severe lupus. PNAS 100:2610–2615

Bakay M, Pandey R, Grant SFA et al (2019) The genetic contribution to type 1 diabetes. Curr Diab 
Rep 19:116

Barcellos LF, Oksenberg JR, Begovich AB et al (2003) HLA-DR2 dose effect on susceptibility to 
multiple sclerosis and influence on disease course. Am J Hum Genet 72:710–716

Barrett JC, Clayton DG, Concannon P et  al (2009) Genome-wide association study and meta- 
analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707

Battaglia M (2014) Neutrophils and type 1 autoimmune diabetes. Curr Opin Hematol 21:8–15
Beall SS, Biddison WE, McFarlin DE et al (1993) Susceptibility for multiple sclerosis is deter-

mined, in part, by inheritance of a 175-kb region of the TcR V beta chain locus and HLA class 
II genes. J Neuroimmunol 45:53–60

Belgardt BF, Ahmed K, Spranger M et al (2015) The microRNA-200 family regulates pancreatic 
beta cell survival in type 2 diabetes. Nat Med 21:619–627

Bennett L, Palucka AK, Arce E et al (2003) Interferon and granulopoiesis signatures in systemic 
lupus erythematosus blood. J Exp Med 197:711–723

Berndt JA, Kim JG, Tosic M et al (2001) The transcriptional regulator Yin Yang 1 activates the 
myelin PLP gene. J Neurochem 77:935–942

Blanco P, Palucka AK, Gill M et al (2001) Induction of dendritic cell differentiation by IFN-alpha 
in systemic lupus erythematosus. Science 294:1540–1543

Bomprezzi R, Ringner M, Kim S et al (2003) Gene expression profile in multiple sclerosis patients 
and healthy controls: identifying pathways relevant to disease. Hum Mol Genet 12:2191–2199

Borjabad A, Volsky DJ (2012) Common transcriptional signatures in brain tissue from patients 
with HIV-associated neurocognitive disorders, Alzheimer’s disease, and multiple sclerosis. J 
NeuroImmune Pharmacol 7:914–926

Brum DG, Barreira AA, Louzada-Junior P et al (2007) Association of the HLA-DRB1*15 allele 
group and the DRB1*1501 and DRB1*1503 alleles with multiple sclerosis in White and 
Mulatto samples from Brazil. J Neuroimmunol 189:118–124

Brynedal B, Khademi M, Wallstrom E et al (2010) Gene expression profiling in multiple sclerosis: 
a disease of the central nervous system, but with relapses triggered in the periphery? Neurobiol 
Dis 37:613–621

11 Transcriptome Profiling in Autoimmune Diseases



266

Burgos P, Metz C, Bull P et al (2000) Increased expression of c-rel, from the NF-KB/Rel family, in 
T cells from patients with systemic lupus erythematosus. J Rheumatol 27:116–127

Buschard K (2011) What causes type 1 diabetes? Lessons from animal models. APMIS Suppl 
119(132):1–19

Carlsen AL, Schetter AJ, Nielsen CT et al (2013) Circulating microRNA expression profiles asso-
ciated with systemic lupus erythematosus. Arthritis Rheum 65:1324–1334

Chan AC, Iwashima M, Turck CW et al (1992) ZAP-70: a 70 kd protein-tyrosine kinase that asso-
ciates with the TCR zeta chain. Cell 71:649–662

Chan RW, Lai FM, Li EK et al (2006) Imbalance of Th1/Th2 transcription factors in patients with 
lupus nephritis. Rheumatology 45:951–957

Chen C, Zhou Y, Wang J et al (2018) Dysregulated microRNA involvement in multiple sclerosis by 
induction of T helper 17 cell differentiation. Front Immunol 9:1256

Chentoufi AA, Binder NR, Berka N et al (2008) Advances in type I diabetes associated tolerance 
mechanisms. Scand J Immunol 68:1–11

Chitnis T (2007) The role of CD4 T cells in the pathogenesis of multiple sclerosis. Int Rev 
Neurobiol 79:43–72

Cho JH, Gregersen PK (2011) Genomics and the multifactorial nature of human autoimmune 
disease. N Engl J Med 365:1612–1623

Chobot A, Polanska J, Brandt A et  al (2017) Updated 24-year trend of type 1 diabetes inci-
dence in children in Poland reveals a sinusoidal pattern and sustained increase. Diabet Med 
34:1252–1258

Chora AA, Fontoura P, Cunha A et al (2007) Heme oxygenase-1 and carbon monoxide suppress 
autoimmune neuroinflammation. J Clin Invest 117:438–447

Cigni A, Pileri PV, Faedda R et al (2014) Interleukin 1, interleukin 6, interleukin 10, and tumor 
necrosis factor α in active and quiescent systemic lupus erythematosus. J Investig Med 
62:825–829

Cipolletta C, Ryan KE, Hanna EV et al (2005) Activation of peripheral blood CD14+ monocytes 
occurs in diabetes. Diabetes 54:2779–2786

Collares CV, Evangelista AF, Xavier DJ et al (2013a) Identifying common and specific microR-
NAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes 
mellitus patients. BMC Res Notes 6:491

Collares CV, Evangelista AF, Xavier DJ et al (2013b) Transcriptome meta-analysis of peripheral 
lymphomononuclear cells indicates that gestational diabetes is closer to type 1 diabetes than to 
type 2 diabetes mellitus. Mol Biol Rep 40:5351–5358

Colli ML, Moore F, Gurzov EN et al (2010) MDA5 and PTPN2, two candidate genes for type 1 dia-
betes, modify pancreatic b-cell responses to the viral by-product double-stranded RNA. Hum 
Mol Genet 19:135–146

Concannon P, Rich SS, Nepom GT (2009) Genetics of type 1A diabetes. N Engl J Med 
360:1646–1654

Costa V, Aprile M, Esposito R et al (2013) RNA-seq and human complex diseases: recent accom-
plishments and future perspectives. Eur J Hum Genet 21:134–142

Cox MB, Cairns MJ, Gandhi KS et al (2010) MicroRNAs miR-17 and miR-20a inhibit T cell acti-
vation genes and are under-expressed in MS whole blood. PLoS One 5:e12132

Crow MK (2014) Advances in understanding the role of type I interferons in systemic lupus ery-
thematosus. Curr Opin Rheumatol 26:467–474

Crow MK, Kirou KA (2004) Interferon-alpha in systemic lupus erythematosus. Curr Opin 
Rheumatol 16:541–547

Crow MK, Wohlgemuth J (2003) Microarray analysis of gene expression in lupus. Arthritis Res 
Ther 5:279–287

Dai Y, Huang YS, Tang M et al (2007) Microarray analysis of microRNA expression in peripheral 
blood cells of systemic lupus erythematosus patients. Lupus 16:939–946

De Santis G, Ferracin M, Biondani A et al (2010) Altered miRNA expression in T regulatory cells 
in course of multiple sclerosis. J Neuroimmunol 226:165–171

C. V. A. Collares and E. A. Donadi



267

Deapen D, Escalante A, Weinrib L et al (1992) A revised estimate of twin concordance in systemic 
lupus erythematosus. Arthritis Rheum 35:311–318

Deng Y, Tsao BP (2010) Genetic susceptibility to systemic lupus erythematosus in the genomic 
era. Nat Rev Rheumatol 6:683–692

Deng C, Kaplan MJ, Yang J et al (2001) Decreased Ras-mitogen-activated protein kinase signal-
ing may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 
44:397–407

Diaz-Valencia PA, Bougnères P, Valleron AJ (2015) Global epidemiology of type 1 diabetes in 
young adults and adults: a systematic review. BMC Public Health 15:255

DiMeglio LA, Evans-Molina C, Oram RA (2018) Type 1 diabetes. Lancet 391:2449–2462
Ding S, Liang Y, Zhao M et al (2012) Decreased microRNA-142-3p/5p expression causes CD4+ 

T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 
64:2953–2963

Dobson R, Giovannoni G (2019) Multiple sclerosis – a review. Eur J Neurol 26:27–40
Doria A, Canova M, Tonon M et al (2008) Infections as triggers and complications of systemic 

lupus erythematosus. Autoimmun Rev 8:24–28
Dorrell C, Schug J, Lin CF et al (2011) Transcriptomes of the major human pancreatic cell types. 

Diabetologia 54:2832–2844
Du C, Liu C, Kang J et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is asso-

ciated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259
Dumortier O, Van Obberghen E (2012) MicroRNAs in pancreas development. Diabetes Obes 

Metab 14(Suppl 3):22–28
Dyment DA, Ebers GC, Sadovnick AD (2004) Genetics of multiple sclerosis. Lancet Neurol 

3:104–110
Edwards M, Dai R, Ahmed SA (2018) Our environment shapes us: the importance of environment 

and sex differences in regulation of autoantibody production. Front Immunol 9:478
Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and b-cell loss in type 1 

diabetes. Nat Rev Endocrinol 5:219–226
Eizirik DL, Sammeth M, Bouckenooghe T et al (2012) The human pancreatic islet transcriptome: 

expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cyto-
kines. PLoS Genet 8:e1002552

El Ouaamari A, Baroukh N, Martens GA et  al (2008) MiR-375 targets 3′-phosphoinositide- 
dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic 
beta-cells. Diabetes 57:2708–2017

Epplen C, Jackel S, Santos EJ et al (1997) Genetic predisposition to multiple sclerosis as revealed 
by immunoprinting. Ann Neurol 41:341–352

Erener S, Mojibian M, Fox JK et al (2013) Circulating miR-375 as a biomarker of β-cell death and 
diabetes in mice. Endocrinology 154:603–608

Evangelista AF, Collares CV, Xavier DJ et al (2014) Integrative analysis of the transcriptome pro-
files observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflamma-
tion. BMC Med Genet 23(7):28. https://doi.org/10.1186/1755- 8794- 7- 28. PMID: 24885568; 
PMCID: PMC4066312

Fan W, Liang D, Tang Y et al (2012) Identification of microRNA-31 as a novel regulator contribut-
ing to impaired interleukin-2 production in T cells from patients with systemic lupus erythema-
tosus. Arthritis Rheum 64:3715–3725

Feng X, Wu H, Grossman JM et  al (2006) Association of increased interferon-inducible gene 
expression with disease activity and lupus nephritis in patients with systemic lupus erythema-
tosus. Arthritis Rheum 54:2951–2962

Fenoglio C, Ridolfi E, Cantoni C et al (2013) Decreased circulating miRNA levels in patients with 
primary progressive multiple sclerosis. Mult Scler 19:1938–1942

Fornari TA, Donate PB, Macedo C et al (2011) Development of type 1 diabetes mellitus in non-
obese diabetic mice follows changes in thymocyte and peripheral T lymphocyte transcriptional 
activity. Clin Dev Immunol 2011:158735

11 Transcriptome Profiling in Autoimmune Diseases

https://doi.org/10.1186/1755-8794-7-28


268

Foster MH, Kelley VR (1999) Lupus nephritis: update on pathogenesis and disease mechanisms. 
Semin Nephrol 19:173–181

Frost RJ, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the let-7 fam-
ily of microRNAs. Proc Natl Acad Sci U S A 108:21075–21080

Frota ER, Rodrigues DH, Donadi EA et al (2009) Increased plasma levels of brain derived neuro-
trophic factor (BDNF) after multiple sclerosis relapse. Neurosci Lett 460:130–132

Furukawa H, Oka S, Matsui T et al (2013) Genome, epigenome and transcriptome analyses of 
a pair of monozygotic twins discordant for systemic lupus erythematosus. Hum Immunol 
74:170–175

Gandhi KS, McKay FC, Cox M et al (2010) The multiple sclerosis whole blood mRNA transcrip-
tome and genetic associations indicate dysregulation of specific T cell pathways in pathogen-
esis. Hum Mol Genet 19:2134–2143

Gao X, Zhao S (2020) miRNA-16-5p inhibits the apoptosis of high glucose-induced pancreatic β 
cells via targeting of CXCL10: potential biomarkers in type 1 diabetes mellitus. Endokrynol 
Pol 71:404–410

Geenen V, Mottet M, Dardenne O et al (2010) Thymic self-antigens for the design of a negative/
tolerogenic self-vaccination against type 1 diabetes. Curr Opin Pharmacol 10:461–472

Ghodke-Puranik Y, Niewold TB (2013) Genetics of the type I interferon pathway in systemic lupus 
erythematosus. Int J Clin Rheumtol 8. https://doi.org/10.2217/ijr.13.58

Ghodke-Puranik Y, Niewold TB (2015) Immunogenetics of systemic lupus erythematosus: a 
comprehensive review. J Autoimmun 64:125–136. https://doi.org/10.1016/j.jaut.2015.08.004. 
Epub 2015 Aug 29. PMID: 26324017; PMCID: PMC4628859

Gough SC, Simmonds MJ (2007) The HLA region and autoimmune disease: associations and 
mechanisms of action. Curr Genomics 8:453–465

Graham RR, Hom G, Ortmann W et al (2009) Review of recent genome-wide association scans in 
lupus. J Intern Med 265:680–688

Grammatikos AP, Kyttaris VC, Kis-Toth K et al (2014) A T cell gene expression panel for the 
diagnosis and monitoring of disease activity in patients with systemic lupus erythematosus. 
Clin Immunol 150:192–200

Grinberg-Bleyer Y, Baeyens A, You S et al (2010) IL-2 reverses established type 1 diabetes in 
NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 207:1871–1878

Guay C, Kruit JK, Rome S et al (2019) Lymphocyte-derived exosomal microRNAs promote pancre-
atic β cell death and may contribute to type 1 diabetes development. Cell Metab 29:348–361.e6

Guerra SG, Vyse TJ, Cunninghame Graham DS (2012) The genetics of lupus: a functional per-
spective. Arthritis Res Ther 14:211

Guo J, Casolaro V, Seto E et al (2001) Yin-Yang 1 activates interleukin-4 gene expression in T 
cells. J Biol Chem 276:48871–48878

Guo J, Lin X, Williams MA et al (2008) Yin-Yang 1 regulates effector cytokine gene expression 
and T(H)2 immune responses. J Allergy Clin Immunol 122:195–201

Gurevich M, Achiron A (2012) The switch between relapse and remission in multiple sclerosis: 
continuous inflammatory response balanced by Th1 suppression and neurotrophic factors. J 
Neuroimmunol 252:83–88

Han GM, Chen SL, Shen N et al (2003) Analysis of gene expression profiles in human systemic 
lupus erythematosus using oligonucleotide microarray. Genes Immun 4:177–186

Han D, Leyva CA, Matheson D et al (2011) Immune profiling by multiple gene expression analysis 
in patients at-risk and with type 1 diabetes. Clin Immunol 139:290–301

Harirchian MH, Fatehi F, Sarraf P et al (2018) Worldwide prevalence of familial multiple sclerosis: 
a systematic review and meta-analysis. Multi Scler Relat Disord 20:43–47

Hecker M, Thamilarasan M, Koczan D et  al (2013) MicroRNA expression changes during 
interferon-beta treatment in the peripheral blood of multiple sclerosis patients. Int J Mol Sci 
14:16087–16110

C. V. A. Collares and E. A. Donadi

https://doi.org/10.2217/ijr.13.58
https://doi.org/10.1016/j.jaut.2015.08.004


269

Hennessy E, Clynes M, Jeppesen PB et al (2010) Identification of microRNAs with a role in glu-
cose stimulated insulin secretion by expression profiling of MIN6 cells. Biochem Biophys Res 
Commun 396:457–462

Herold KC, Brooks-Worrell B, Palmer J et  al (2009) Validity and reproducibility of measure-
ment of islet autoreactivity by T-cell assays in subjects with early type 1 diabetes. Diabetes 
58:2588–2595

Hollenbach JA, Oksenberg JR (2015) The immunogenetics of multiple sclerosis: a comprehensive 
review. J Autoimmun 64:13–25

Holler CJ, Webb RL, Laux AL et al (2012) BACE2 expression increases in human neurodegenera-
tive disease. Am J Pathol 180:337–350

Honardoost MA, Kiani-Esfahani A, Ghaedi K et al (2014) miR-326 and miR-26a, two potential 
markers for diagnosis of relapse and remission phases in patient with relapsing-remitting mul-
tiple sclerosis. Gene 544:128–133

Islam T, Gauderman WJ, Cozen W et al (2006) Differential twin concordance for multiple sclerosis 
by latitude of birthplace. Ann Neurol 60:56–64

Jarvinen P, Kaprio J, Makitalo R et al (1992) Systemic lupus erythematosus and related systemic 
diseases in a nationwide twin cohort: an increased prevalence of disease in MZ twins and con-
cordance of disease features. J Intern Med 231:67–72

Jayaraman S, Patel A, Jayaraman A et al (2013) Transcriptome analysis of epigenetically modu-
lated genome indicates signature genes in manifestation of type 1 diabetes and its prevention 
in NOD mice. PLoS One 8:e55074

Jernas M, Malmeström C, Axelsson M et al (2013) MS risk genes are transcriptionally regulated 
in CSF leukocytes at relapse. Mult Scler 19:403–410

Junker A, Krumbholz M, Eisele S et al (2009) MicroRNA profiling of multiple sclerosis lesions 
identifies modulators of the regulatory protein CD47. Brain 132:3342–3352

Kaimen-Maciel DR, Reiche EM, Borelli SD et al (2009) HLA-DRB1* allele-associated genetic 
susceptibility and protection against multiple sclerosis in Brazilian patients. Mol Med Rep 
2:993–998

Kamradt T, Mitchison NA (2001) Tolerance and autoimmunity. N Engl J Med 344:655–664
Karpuj MV, Steinman L, Oksenberg JR (1997) Multiple sclerosis: a polygenic disease involving epi-

static interactions, germline rearrangements and environmental effects. Neurogenetics 1:21–28
Karumuthil-Melethil S, Perez N, Li R et al (2008) Induction of innate immune response through 

TLR2 and dectin 1 prevents type 1 diabetes. J Immunol 181:8323–8334
Kaul A, Gordon C, Crow MK et  al (2016) Systemic lupus erythematosus. Nat Rev Dis 

Primers 2:16039
Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825
Keller A, Leidinger P, Lange J et  al (2009) Multiple sclerosis: microRNA expression profiles 

accurately differentiate patients with relapsing remitting disease from healthy controls. PLoS 
One 4:e7440

Keller A, Leidinger P, Steinmeyer F et al (2014) Comprehensive analysis of microRNA profiles in 
multiple sclerosis including next-generation sequencing. Mult Scler 20:295–303

Kiefer K, Oropallo MA, Cancro MP et al (2012) Role of type I interferons in the activation of 
autoreactive B cells. Immunol Cell Biol 90:498–504

Kilpinen H, Dermitzakis ET (2012) Genetic and epigenetic contribution. Hum Mol Genet 
21:R24–R28

Kirou KA, Lee C, George S et al (2004) Coordinate overexpression of interferon-alpha-induced 
genes in systemic lupus erythematosus. Arthritis Rheum 50:3958–3967

Kirou KA, Lee C, George S et al (2005) Activation of the interferon-alpha pathway identifies a 
subgroup of systemic lupus erythematosus patients with distinct serologic features and active 
disease. Arthritis Rheum 52:1491–1503

Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638
Knip M, Siljander H (2008) Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 

7:550–557

11 Transcriptome Profiling in Autoimmune Diseases



270

Koga M, Kawasaki A, Ito I et al (2011) Cumulative association of eight susceptibility genes with 
systemic lupus erythematosus in a Japanese female population. J Hum Genet 2011:12

Krützfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. 
Cell Metab 4:9–12

Kuo CC, Lin SC (2007) Altered FOXO1 transcript levels in peripheral blood mononuclear cells of 
systemic lupus erythematosus and rheumatoid arthritis patients. Mol Med 13:561–566

Kutlu B, Burdick D, Baxter D et al (2009) Detailed transcriptome atlas of the pancreatic beta cell. 
BMC Med Genet 2:3

Langefeld CD, Ainsworth HC, Cunninghame Graham DS et al (2017) Transancestral mapping and 
genetic load in systemic lupus erythematosus. Nat Commun 8:16021

Laplaud DA, Ruiz C, Wiertlewski S et al (2004) Blood T-cell receptor beta chain transcriptome in 
multiple sclerosis. Characterization of the T cells with altered CDR3 length distribution. Brain 
127:981–995

Lashine YA, Seoudi AM, Salah S et al (2011) Expression signature of microRNA-181-a reveals 
its crucial role in the pathogenesis of paediatric systemic lupus erythematosus. Clin Exp 
Rheumatol 29:351–357

Latreille M, Hausser J, Stützer I et al (2014) MicroRNA-7a regulates pancreatic β cell function. J 
Clin Invest 124:2722–2735

Layer K, Lin G, Nencioni A et al (2003) Autoimmunity as the consequence of a spontaneous muta-
tion in Rasgrp1. Immunity 19:243–255

Lee HM, Sugino H, Aoki C et al (2011) Underexpression of mitochondrial-DNA encoded ATP 
synthesis-related genes and DNA repair genes in systemic lupus erythematosus. Arthritis Res 
Ther 13:R63

Lehmann-Werman R, Neiman D, Zemmour H, Moss J et  al (2016) Identification of tissue- 
specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A 
113:E1826–E1834

Lei J, Li J, Li X et al (2020) CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. 
Radiology 295(1):18

Li R, Perez N, Karumuthil-Melethil S et al (2007) Bone marrow is a preferential homing site for 
autoreactive T-cells in type 1 diabetes. Diabetes 56:2251–2259

Li QZ, Zhou J, Lian Y et al (2010) Interferon signature gene expression is correlated with autoan-
tibody profiles in patients with incomplete lupus syndromes. Clin Exp Immunol 159:281–291

Lin T, Zhang D, Liu X et al (2016) Parental care improves immunity in the seahorse (Hippocampus 
erectus). Fish Shellfish Immunol 58:554–562

Lindberg RL, Hoffmann F, Mehling M et al (2010) Altered expression of miR-17-5p in CD4+ 
lymphocytes of relapsing– remitting multiple sclerosis patients. Eur J Immunol 40:888–898

Lindén M, Khademi M, Lima Bomfim I et al (2013) Multiple sclerosis risk genotypes correlate 
with an elevated cerebrospinal fluid level of the suggested prognostic marker CXCL13. Mult 
Scler 19:863–870

Lit LC, Wong CK, Li EK et al (2007) Elevated gene expression of Th1/Th2 associated transcrip-
tion factors is correlated with disease activity in patients with systemic lupus erythematosus. J 
Rheumatol 34:89–96

Liu Z, Davidson A (2012) Taming lupus – a new understanding of pathogenesis is leading to clini-
cal advances. Nat Med 18:871–882

Lood C, Amisten S, Gullstrand B et al (2010) Platelet transcriptional profile and protein expression 
in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is 
strongly associated with vascular disease. Blood 116:1951–1957

Lu MC, Lai NS, Chen HC et al (2013) Decreased microRNA(miR)-145 and increased miR-224 
expression in T cells from patients with systemic lupus erythematosus involved in lupus immu-
nopathogenesis. Clin Exp Immunol 171:91–99

Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an 
international survey. Neurology 46:907–911

C. V. A. Collares and E. A. Donadi



271

Lucchinetti CF, Brueck W, Rodriguez M et al (1998) Multiple sclerosis: lessons from neuropathol-
ogy. Semin Neurol 18:337–349

Lyons PA, McKinney EF, Rayner TF et al (2010) Novel expression signatures identified by tran-
scriptional analysis of separated leukocyte subsets in systemic lupus erythematosus and vascu-
litis. Ann Rheum Dis 69:1208–1213

Maahs DM, West NA, Lawrence JM et al (2010) Epidemiology of type 1 diabetes. Endocrinol 
Metab Clin N Am 39:481–497

Maas K, Chen H, Shyr Y et al (2005) Shared gene expression profiles in individuals with autoim-
mune disease and unaffected first-degree relatives of individuals with autoimmune disease. 
Hum Mol Genet 14:1305–1314

Mackay IR (2009) Clustering and commonalities among autoimmune diseases. J Autoimmun 
33:170–177

Mandolesi G, De Vito F, Musella A et al (2017) miR-142-3p Is a Key regulator of IL-1β-dependent 
synaptopathy in neuroinflammation. J Neurosci 37:546–561

Massaro JD, Polli CD, Silva MCE et al (2019) Post-transcriptional markers associated with clini-
cal complications in Type 1 and Type 2 diabetes mellitus. Mol Cell Endocrinol 490:1–14

Mattick JS, Makunin IV (2006) Noncoding RNA. Hum Mol Genet 15(Spec 1):R17–R29
Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305
Mayer-Davis EJ, Lawrence JM, Dabelea D et al (2017) Incidence trends of type 1 and type 2 dia-

betes among youths, 2002–2012. N Engl J Med 376:1419–1429
McCarthy EM, Smith S, Lee RZ et  al (2014) The association of cytokines with disease activ-

ity and damage scores in systemic lupus erythematosus patients. Rheumatology (Oxford) 
53:1586–1594

McDevitt HO, Unanue ER (2008) Autoimmune diabetes mellitus–much progress, but many chal-
lenges. Adv Immunol 100:1–12

McLaughlin KA, Richardson CC, Ravishankar A et al (2016) Identification of tetraspanin-7 as a 
target of autoantibodies in type 1 diabetes. Diabetes 65:1690–1698

Melief J, de Wit SJ, Van Eden CG et al (2013) HPA axis activity in multiple sclerosis correlates 
with disease severity, lesion type and gene expression in normal-appearing white matter. Acta 
Neuropathol 126:237–249

Melzer S, Michael M, Caputi A et al (2012) Long-range-projecting GABAergic neurons modulate 
inhibition in hippocampus and entorhinal cortex. Science 335:1506–1510

Mokry LE, Ross S, Timpson NJ et al (2016) Obesity and multiple sclerosis: a Mendelian random-
ization study. PLoS Med 13:e1002053

Moore F, Colli ML, Cnop M et al (2009) PTPN2, a candidate gene for type 1 diabetes, modulates 
interferon-c-induced pancreatic b-cell apoptosis. Diabetes 58:1283–1291

Moore CS, Rao VT, Durafourt BA et al (2013) miR-155 as a multiple sclerosis-relevant regulator 
of myeloid cell polarization. Ann Neurol 74:709–720

Morris DL, Fernando MM, Taylor KE et al (2014) MHC associations with clinical and autoanti-
body manifestations in European SLE. Genes Immun 15:210–217

Morris DL, Sheng Y, Zhang Y et al (2016) Genome-wide association meta-analysis in Chinese and 
European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat 
Genet 48:940–946

Moser KL, Kelly JA, Lessard CJ et al (2009) Recent insights into the genetic basis of systemic 
lupus erythematosus. Genes Immun 10:373–379

Moulton VR (2018) Sex hormones in acquired immunity and autoimmune disease. Front 
Immunol 9:2279

Mumford CJ, Wood NW, Kellar-Wood H et al (1994) The British Isles survey of multiple sclerosis 
in twins. Neurology 44:11–15

Mutz K-O, Heilkenbrinker A, Lonne M et al (2013) Transcriptome analysis using next-generation 
sequencing. Curr Opin Biotechnol 24:22–30

11 Transcriptome Profiling in Autoimmune Diseases



272

Nakou M, Knowlton N, Frank MB et al (2008) Gene expression in systemic lupus erythematosus: 
bone marrow analysis differentiates active from inactive disease and reveals apoptosis and 
granulopoiesis signatures. Arthritis Rheum 58(11):3541–3549

Nakou M, Bertsias G, Stagakis I et al (2010) Gene network analysis of bone marrow mononuclear 
cells reveals activation of multiple kinase pathways in human systemic lupus erythematosus. 
PLoS One 5:e13351

Nerup J, Nierras C, Plagnol V et al (2009) Genome-wide association study and meta-analysis find 
that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707

Nielsen NM, Westergaard T, Rostgaard K et al (2005) Familial risk of multiple sclerosis: a nation-
wide cohort study. Am J Epidemiol 162:774–778

Niewold TB (2011) Interferon alpha as a primary pathogenic factor in human lupus. J Interf 
Cytokine Res 31:887–892

Niewold TB (2015) Advances in lupus genetics. Curr Opin Rheumatol 27:440–447
Niewold TB, Swedler WI (2005) Systemic lupus erythematosus arising during interferon-alpha 

therapy for cryoglobulinemic vasculitis associated with hepatitis C. Clin Rheumatol 24:178–181
Niewold TB, Hua J, Lehman TJ et al (2007) High serum IFN-alpha activity is a heritable risk factor 

for systemic lupus erythematosus. Genes Immun 8:492–502
Noble JA (2015) Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun 

64:101–112
Noorbakhsh F, Ellestad KK, Maingat F et al (2011) Impaired neurosteroid synthesis in multiple 

sclerosis. Brain 134:2703–2721
Noseworthy JH, Lucchinetti C, Rodriguez M et  al (2000) Multiple sclerosis. N Engl J Med 

343:938–952
Novak J, Lehuen A (2011) Mechanism of regulation of autoimmunity by iNKT cells. Cytokine 

53:263–270
Oh J, Broyles SS (2005) Host cell nuclear proteins are recruited to cytoplasmic vaccinia virus 

replication complexes. J Virol 79:12852–12860
Oksenberg JR, Baranzini SE, Sawcer S et al (2008) The genetics of multiple sclerosis: SNPs to 

pathways to pathogenesis. Nat Rev Genet 9:516–526
Orton SM, Herrera BM, Yee IM et al (2006) Sex ratio of multiple sclerosis in Canada: a longitudi-

nal study. Lancet Neurol 5:932–936
Ortona E, Pierdominici M, Maselli A et al (2016) Sex-based differences in autoimmune diseases. 

Ann Ist Super Sanita 52:205–212
Pan W, Zhu S, Yuan M et al (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypo-

methylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 
1. J Immunol 184:6773–6781

Panousis NI, Bertsias GK, Ongen H et al (2019) Combined genetic and transcriptome analysis of 
patients with SLE: distinct, targetable signatures for susceptibility and severity. Ann Rheum 
Dis 78:1079–1089

Peeters LM, Parciak T, Walton C et al (2020) COVID-19 in people with multiple sclerosis: a global 
data sharing initiative. Mult Scler 26:1157–1162

Plagnol V, Howson JM, Smyth DJ et al (2011) Genome-wide association analysis of autoantibody 
positivity in type 1 diabetes cases. PLoS Genet 7:e1002216

Plaisance V, Abderrahmani A, Perret-Menoud V et al (2006) MicroRNA-9 controls the expres-
sion of granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 
281:26932–26942

Planas R, Pujol-Borrell R, Vives-Pi M (2010) Global gene expression changes in type 1 diabetes: 
insights into autoimmune response in the target organ and in the periphery. Immunol Lett 
133:55–61

Pociot F, Akolkar B, Concannon P et al (2010) Genetics of type 1 diabetes: what’s next? Diabetes 
59:1561–1571

Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 
136:629–641

C. V. A. Collares and E. A. Donadi



273

Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32
Poy MN, Eliasson L, Krutzfeldt J et  al (2004) A pancreatic islet-specific microRNA regulates 

insulin secretion. Nature 432:226–230
Pugliese A, Miceli D (2002) The insulin gene in diabetes. Diabetes Metab Res Rev 18:13–25
Purohit S, She JX (2008) Biomarkers for type 1 diabetes. Int J Clin Exp Med 1:98–116
Qin H, Zhu X, Liang J et al (2013) MicroRNA-29b contributes to DNA hypomethylation of CD4+ 

T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J 
Dermatol Sci 69:61–67

Ramagopalan SV, Dobson R, Meier UC et al (2010) Multiple sclerosis: risk factors, prodromes, 
and potential causal pathways. Lancet Neurol 9:727–739

Rassi DM, Junta CM, Fachin AL et al (2008) Gene expression profiles stratified according to type 
1 diabetes mellitus susceptibility regions. Ann N Y Acad Sci 1150:282–289

Rees F, Doherty M, Grainge MJ et al (2017) The worldwide incidence and prevalence of systemic 
lupus erythematosus: a systematic review of epidemiological studies. Rheumatology (Oxford) 
56:1945–1961

Remoli ME, Ragimbeau J, Giacomini E et al (2007) NF-{kappa}B is required for STAT-4 expres-
sion during dendritic cell maturation. J Leukoc Biol 81:355–363

Reynier F, Pachot A, Paye M et al (2010) Specific gene expression signature associated with devel-
opment of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun 
11:269–278

Ridolfi E, Fenoglio C, Cantoni C et  al (2013) Expression and genetic analysis of MicroRNAs 
Involved in Multiple Sclerosis. Int J Mol Sci 14:4375–4384

Riveros C, Mellor D, Gandhi KS et al (2010) A transcription factor map as revealed by a genome- 
wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. 
PLoS One 5:e14176

Ronnblom LE, Alm GV, Oberg KE (1990) Possible induction of systemic lupus erythematosus 
by interferon-alpha treatment in a patient with a malignant carcinoid tumour. J Intern Med 
227:207–210

Rose NR (2016) Prediction and prevention of autoimmune disease in the 21st century: a review 
and preview. Am J Epidemiol 183:403–406

Rus V, Chen H, Zernetkina V et al (2004) Gene expression profiling in peripheral blood mono-
nuclear cells from lupus patients with active and inactive disease. Clin Immunol 112:231–234

Sadovnick AD, Ebers GC (1993) Epidemiology of multiple sclerosis: a critical overview. Can J 
Neurol Sci 20:17–29

Sadovnick AD, Ebers GC, Dyment DA et al (1996) Evidence for genetic basis of multiple sclero-
sis. Lancet 347:1728–1730

Sandrin-Garcia P, Brandão LA, Guimarães RL et  al (2012) Functional single-nucleotide poly-
morphisms in the DEFB1 gene are associated with systemic lupus erythematosus in Southern 
Brazilians. Lupus 21:625–631

Santiago-Raber ML, Lawson BR, Dummer W et al (2001) Role of cyclin kinase inhibitor p21 in 
systemic autoimmunity. J Immunol 167:4067–4074

Satoh J, Misawa T, Tabunoki H et al (2008) Molecular network analysis of T-cell transcriptome 
suggests aberrant regulation of gene expression by NF-kappaB as a biomarker for relapse of 
multiple sclerosis. Dis Markers 25:27–35

Schwartzman-Morris J, Putterman C (2012) Gender differences in the pathogenesis and outcome 
of lupus and of lupus nephritis. Clin Dev Immunol 2012:604892

Shaikh MF, Jordan N, D’Cruz DP (2017) Systemic lupus erythematosus. Clin Med (Lond) 
17:78–83

Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 
and 2030. Diabetes Res Clin Pract 87:4–14

Sia C (2006) Replenishing peripheral CD4(+) regulatory T cells: a possible immune-intervention 
strategy in type 1 diabetes? Rev Diabet Stud 3:102–107

11 Transcriptome Profiling in Autoimmune Diseases



274

Sintzel MB, Rametta M, Reder AT (2018) Vitamin D and multiple sclerosis: a comprehensive 
review. Neurol Ther 7:59–85

Sondergaard HB, Hesse D, Krakauer M et al (2013) Differential microRNA expression in blood in 
multiple sclerosis. Mult Scler 19:1849–1857

Stagakis E, Bertsias G, Verginis P et al (2011) Identification of novel microRNA signatures linked 
to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses 
through regulation of PDCD4 expression. Ann Rheum Dis 70:1496–1506

Stone RC, Du P, Feng D et al (2013) RNA-Seq for enrichment and analysis of IRF5 transcript 
expression in SLE. PLoS One 8:e54487

Straub RH (2007) The complex role of estrogens in inflammation. Endocr Rev 28:521–574
Sui WG, Lin H, Chen JJ et al (2012) Comprehensive analysis of transcription factor expression 

patterns in peripheral blood mononuclear cell of systemic lupus erythematosus. Int J Rheum 
Dis 15:212–219

Tajouri L, Fernandez F, Griffiths LR (2007) Gene expression studies in multiple sclerosis. Curr 
Genomics 8:181–189

Tang X, Muniappan L, Tang G et al (2009a) Identification of glucose-regulated miRNAs from 
pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA 15:287–293

Tang Y, Luo X, Cui H et al (2009b) MicroRNA-146A contributes to abnormal activation of the 
type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis 
Rheum 60:1065–1075

Tang Q, Yang Y, Zhao M et al (2015) Mycophenolic acid upregulates miR-142-3P/5P and miR- 146a 
in lupus CD4+T cells. Lupus 24:935–942

Teruel R, Corral J, Pérez-Andreu V et al (2011) Potential role of miRNAs in developmental hae-
mostasis. PLoS One 6:e17648

Tisch R, Wang B (2008) Dysrulation of T cell peripheral tolerance in type 1 diabetes. Adv Immunol 
100:125–149

Todd JA (2010) Etiology of type 1 diabetes. Immunity 32:457–467
Toukap AN, Galant C, Theate I et al (2007) Identification of distinct gene expression profiles in 

the synovium of patients with systemic lupus erythematosus. Arthritis Rheum 56:1579–1588
Trombetta AC, Meroni M, Cutolo M (2017) Steroids and autoimmunity. Front Horm Res 

48:121–132
Voulgarelis M, Giannouli S, Tasidou A et  al (2006) Bone marrow histological findings in sys-

temic lupus erythematosus with hematological abnormalities: a clinicopathological study. Am 
J Hematol 81:590–597

Wang G, Tam LS, Li EK et  al (2010) Serum and urinary cell-free MiR-146a and MiR-155  in 
patients with systemic lupus erythematosus. J Rheumatol 37:2516–2522

Wang G, Tam LS, Li EK et al (2011) Serum and urinary free microRNA level in patients with 
systemic lupus erythematosus. Lupus 20:493–500

Wang H, Peng W, Ouyang X et  al (2012) Circulating microRNAs as candidate biomarkers in 
patients with systemic lupus erythematosus. Transl Res 160:198–206

Webber D, Cao J, Dominguez D et  al (2020) Association of systemic lupus erythematosus 
(SLE) genetic susceptibility loci with lupus nephritis in childhood-onset and adult-onset 
SLE. Rheumatology (Oxford) 59:90–98

Weckerle CE, Niewold TB (2011) The unexplained female predominance of systemic lupus ery-
thematosus: clues from genetic and cytokine studies. Clin Rev Allergy Immunol 40:42–49

Weckerle CE, Franek BS, Kelly JA et al (2011) Network analysis of associations between serum 
interferon-alpha activity, autoantibodies, and clinical features in systemic lupus erythematosus. 
Arthritis Rheum 63:1044–1053

Weinshenker BG (1994) Natural history of multiple sclerosis. Ann Neurol 36:S6–S11
Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major 

autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104:17040–17045
Willer CJ, Dyment DA, Risch NJ et al (2003) Twin concordance and sibling recurrence rates in 

multiple sclerosis. Proc Natl Acad Sci U S A 100:12877–12882

C. V. A. Collares and E. A. Donadi



275

Yao Y, Higgs BW, Morehouse C et  al (2009) Development of potential pharmacodynamic and 
diagnostic markers for anti-IFN-α monoclonal antibody trials in systemic lupus erythematosus. 
Hum Genomics Proteomics pii: 374312

Yuan Y, Kasar S, Underbayev C et al (2012) Role of microRNA-15a in autoantibody production in 
interferon-augmented murine model of lupus. Mol Immunol 52:61–70

Zhao X, Tang Y, Qu B et al (2010) MicroRNA-125a contributes to elevated inflammatory chemo-
kine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 
62:3425–3435

Zhao S, Wang Y, Liang Y et al (2011) MicroRNA-126 regulates DNA methylation in CD4+ T 
cells and contributes to systemic lupus erythematosus by targeting DNA methyl-transferase 1. 
Arthritis Rheum 63:1376–1386

Zhernakova A, van Diemen CC, Wijmenga C (2009) Detecting shared pathogenesis from the 
shared genetics of immune-related diseases. Nat Rev Genet 10:43–55

Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and 
risk of progression to diabetes in children. JAMA 309:2473–2479

11 Transcriptome Profiling in Autoimmune Diseases



277© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
G. A. Passos (ed.), Transcriptomics in Health and Disease, 
https://doi.org/10.1007/978-3-030-87821-4_12

Chapter 12
Transcriptome Profiling in Experimental 
Inflammatory Arthritis

Olga Martinez Ibañez, José Ricardo Jensen, and Marcelo De Franco

12.1  Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that 
affects 0.5 to 1% of the human population. RA is a complex pathology characterized 
by systemic chronic inflammation with the accumulation into synovium and periar-
ticular spaces of activated T and B lymphocytes, innate immune cells such as neu-
trophils, mast cells, dendritic cells, natural killer cells, and macrophages, and 
endothelial cells. Rheumatoid fibroblast-like synoviocytes, which exhibit invasive 
characteristics and synovial macrophages with proinflammatory properties are cru-
cial for the progression of arthritis causing proliferation of synovial membranes and 
the formation of the invasive pannus that erodes cartilage and bone. In human 
patients the clinical signs of RA are largely heterogeneous, but the disease is con-
sidered to be autoimmune (You et al. 2014). RA heterogeneity is demonstrated by 
the presence of distinct autoantibody specificities, such as antibodies against immu-
noglobulins, the rheumatoid factor (RF), and anti-cyclic citrullinated peptide anti-
bodies (ACPA) in the serum, the differential responsiveness to treatment, and by the 
variability in clinical signs (Silman and Pearson 2002). The precise etiology of RA 
remains poorly understood, but the main symptoms are chronic synovitis, joint ero-
sion, and several immune abnormalities in both the innate and adaptive 
compartments.

Given the complexity of RA, systems biology approaches designed to give a 
general view of different aspects of the disease are required to better understand the 
basis of arthritis. Oligonucleotide-based microarray technology for global gene 
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expression profiling has arisen as a powerful tool to investigate the molecular com-
plexity and pathogenesis of arthritis and other complex pathologies. This genomic 
or transcriptomic method combined with postgenomic techniques provides an 
opportunity to monitor the complex interactions between genes and environment, 
the regulation of genes and of RNA transcripts, and the proteins that constitute the 
basis for the etiology or progression of the diseases (Jarvis and Frank 2010).

Gene expression profiling studies of tissues from RA patients showed marked 
variation in gene expression profiles that allowed to identify distinct molecular dis-
ease mechanisms involved in RA pathology (Baechler et  al. 2006). The relative 
contribution of the different mechanisms may vary among patients and in different 
stages of the disease. Thus, the broad goals of expression profiling in RA are the 
improvement of understanding of the pathogenic mechanisms underlying RA, the 
identification of disease subsets and new drug targets, and the assessment of disease 
activity, such as responsiveness to therapy, overall disease severity, and organ- 
specific risk, and development of new diagnostic tests (Teixeira et al. 2009).

Genetic and environmental factors contribute to the development of this disease. 
Numerous studies have indicated the participation of the major histocompatibility 
complex (MHC) class II alleles and non-MHC genes, such as the solute carrier fam-
ily 11a member 1—SLC11A1 (formerly named NRAMP1- Natural resistance- 
associated macrophage protein 1) related to macrophage activation (Runstadler 
et al. 2005). Identification of the major roles of the participating cells and of candi-
date genes has been an important subject of study to the understanding of RA patho-
genesis (Kurko et al. 2013).

12.2  Experimental Models of Rheumatoid Arthritis

The initial or preclinical stages of RA are difficult to be studied in humans but 
numerous arthritis experimental models have been developed which are valuable 
tools for in-depth investigation of pathogenic pathways that are involved in the sev-
eral phases of the disease (Kobezda et al. 2014). Regarding ethical procedures, in 
these models the animals can be submitted to immunizations with arthritogenic sub-
stances or antigens, to cell transfer or depletion, to phenotypic selective crosses, to 
genetic manipulations for the production of transgenic or knockout individuals, etc. 
Most importantly, these models have been useful for the candidacy of targets for 
preventive or therapeutic strategies (Asquith et al. 2009).

Several studies have used different animal models for arthritis, generally induced 
by the injection of adjuvants (AIA), proteoglycan (PGIA), type II collagen (CIA), 
or pristane (PIA) (Kannan et al. 2005).

Collagen-induced arthritis (CIA). Type II collagen (CII) is expressed exclusively 
in the articular joint. Although the relationship between anti-CII immunity and 
human rheumatoid arthritis (RA) has been studied for a long time, definitive conclu-
sions have not been established. CII, as an autoantigen, has been studied extensively 
in small animal models, such as mice and rats, and the collagen-induced arthritis 
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(CIA) model has increased our understanding of the pathogenesis of human RA 
(Cho et al. 2007). The disease is class II MHC restricted but mouse strains with 
permissive haplotypes vary in their susceptibility to CIA. Arthritis development is 
associated with B and T lymphocyte responses and the generation of anticollagen 
antibodies and T-cells.

Collagen antibody-induced arthritis (CAIA) in mice has demonstrated the role of 
humoral immunity in arthritis development. It has been useful for the identification 
of collagen epitopes for the generation of arthritogenic antibody cocktails that rep-
resent humoral autoimmunity in RA. The disease is characterized by macrophage 
and polymorphonuclear cell infiltration and no T- and B-cell involvement and is 
non-MHC class II restricted (Hirose and Tanaka 2011).

Proteoglycan-induced arthritis (PGIA) is based on the immunization of mice 
with human cartilage-derived proteoglycans, which induces the development of 
severe polyarthritis and spondylitis (Glant et al. 2003).

Pristane-induced arthritis (PIA) has proven to be a valuable experimental model 
for inflammatory RA. The natural saturated terpenoid alkane 2,4,6,10-tetramethyl 
pentadecane induces an acute inflammation followed by a chronic relapsing phase. 
The reaction is T-cell dependent with edema and articular infiltration of mononu-
clear and polymorphonuclear cells (Potter and Wax 1981).

There are also genetically manipulated models that develop RA spontaneously. 
For example, transgenic mice overexpressing human TNF-α develop chronic 
inflammatory erosive polyarthritis (Li and Schwarz 2003). This model highlights 
the importance of TNF-α in cytokine network in RA. Another example is the IL1 
receptor antagonist-deficient mouse that develops inflammatory arthritis mediated 
by a polarized TH17 response (van den Berg 2009; Lubberts et al. 2005).

In experimental models, microarray analysis should optimally be carried out in 
isolated populations of cells. New methods have emerged for transcriptomic analy-
sis that are based on single cell RNA sequencing and high-resolution spatial tran-
scriptomic technology. Although they still have limitations, the methods allow the 
analysis of the subpopulations of cells that make up the tissue and their location 
(Reviewed in Carr et al. 2020). However, in complex diseases such as RA there is 
extensive tissue damage with the contribution of several cell types. Hence the analy-
sis of rodent whole ankle joints or of footpads, which comprise heterogeneous cell 
types, has given a global view of differential gene expression during the several 
phases of arthritis onset and development. Differential expression of genes encod-
ing tissue repair factors, signal transduction molecules, transcription factors, and 
DNA repair enzymes, as well as cell cycle regulators have been observed in multi-
ple microarray experiments. An interesting observation in these experiments is the 
transcriptome map of the differentially expressed genes; in different models of 
arthritis there is a functional grouping of dysregulated genes forming clusters in the 
chromosomes. Examples are the MHC class I and class II gene clusters, known to 
affect susceptibility to a variety of autoimmune diseases and the chemoattractant 
gene clusters such as CC or CXC chemokine ligands and receptors, which mediate 
infiltration of leukocytes into synovial tissue, a hallmark of RA (Fujikado et  al. 
2006). Some studies attempt to link differentially expressed genes into interactive 
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regulatory networks (Silva et al. 2009). This approach is quite powerful to identify 
new targets for therapy by looking at the network structures, the places (genes) with 
the highest connectivity in which disruption would have a larger impact.

12.3  Loci Regulating Inflammatory Arthritis

The identification of the loci influencing inflammatory arthritis in animal models is 
important for parallel genetic studies in humans. The individual genetic constitution 
of experimental animals involving major histocompatibility complex (MHC) or 
non-MHC genes has been associated with variations in rheumatoid arthritis suscep-
tibility. In mice or rats, genome-wide linkage studies with DNA polymorphism 
markers, such as microsatellites or single nucleotide polymorphisms (SNPs), have 
been carried out using intercross progenies of resistant and susceptible strains. 
These studies, in which environmental effects and genetic backgrounds are con-
trolled, have been useful for the study of the genetic basis of RA (Ibrahim and 
Yu 2006).

Several QTLs (Quantitative Trait Loci) were identified in different models of 
experimental arthritis. The first locus controlling pristane-induced arthritis (PIA) 
detected in mice was Prtia1 on chromosome 3, in an intercross population from 
mice selected for high and low antibody production (Jensen et al. 2006). QTL was 
also mapped in other arthritis models such as those induced by Borrelia burgdorferi 
(Roper et al. 2001), PGIA (Glant et al. 2004), and collagen (Adarichev et al. 2003). 
Nonoverlapping sets of QTLs were identified, generating a heterogeneous picture of 
risk alleles (Besenyei et  al. 2012; Kurko et  al. 2013). The results evidence the 
genetic heterogeneity in the control of the different stages and phenotypes of the 
disease. Table 12.1 presents some relevant coincident susceptibility QTLs in rheu-
matoid arthritis, according to GWAS studies carried out in mice and humans.

Numerous RA QTLs have been mapped but few of the associated polymor-
phisms were identified in protein-coding regions of genes causing changes in pro-
tein structure or function. This suggests that polymorphisms in noncoding regions 
which might affect gene expression largely contribute to variations in RA suscepti-
bility. In this way, transcriptome technology can also be used to detect genetic poly-
morphisms that regulate gene expression levels.

12.4  Combining Transcriptome and Genome Screening 
to Identify Genes That Control Arthritis

The two genomic approaches, that is, transcriptome and genome screening (GWAS), 
have been combined in studies where the locations of differently expressed genes 
during RA are compared with those mapping at QTLs for arthritis, for immune or 
inflammatory responses, or for other autoimmune diseases (Yu et  al. 2007). The 
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Table 12.1 Common arthritis-associated QTLs (Non-MHC regions) mapped by GWAS in mice 
and humans

Mouse Human

Chr
Locus 
name Candidate gene Chr position

Locus 
name

1 Cia14 Aff3: expressed in lymphoid cells, encodes a 
nuclear factor that contains transcriptional 
activation domains

2q11 AFF3

1 Cia9, 
Pgia1

Fcgr2b: a variant allele alters dendritic cell 
behavior, suggesting a role for dendritic cells in 
RA pathology

1q23 FCGR2A

2 Cia2, 
Cia4, 
Pgia2

Traf1/Hc: Genetic variants associated to risk of 
anti-CCP antibody-positive RA

9q33 TRAF1/C5

3 Cia21, 
Cia22, 
Pgia26 
Prtia1

Cd2: encodes a costimulatory molecule found on 
natural killer and T cells

1p23 CD2

Ptpn22: the gene is a negative regulator of T 
cells. Allele variant affects binding to an 
intracellular signaling molecule (Csk) resulting in 
a failure to switch off T cells or to delete 
auto-reactive T cells during thymic development

1p13 PTPN22

5 Pgia16, 
Cia13

Rbjp: The gene encodes a transcription factor 
involved in the notch signaling pathway and in 
regulation of T-cell development

4p15 RBJP

6 Pgia19 Irf5: transcription factor involved in antiviral and 
anti-inflammatory responses and in 
differentiation of B-cells regulation

7q32 IRF5

10 Pgia6, Tnfaip3: knock-out mice develop severe 
inflammation

6q23 TNFAIP3

Pgia6b Prdm1: The gene product is a transcription factor 
involved in B-cell regulation

6q21 PRDM1

10 Cia8 Kif5a: gene encodes a kinesin-heavy chain 12q13 KIF5A
Pip4k2c: phosphatidyl inositol kinase PIP4K2C

13 Pgia15, IL6st/Ankrd55: IL-6 5q11 ANKRD55
Cia19 Signal transduction gene region IL6ST

15 Pgia9, 
Cia35, 
Cia37

IL2rb 22q12 IL2RB

Bik: apoptosisinducing,BCL2-interacting killer 8p3 BIK
18 Pgia11 Ptpn2: KO mice have increased susceptibility to 

inflammatory diseases
18p11.3-p11.2 PTPN2

Gene names: Affr AF4/FMR2 family, member 3; Fcgr2b Fc receptor IgG, low affinity IIb; Traf1 
TNF receptor-associated factor 1; Ptpn22 protein tyrosine phosphatase, nonreceptor type 22 (lym-
phoid); Rbjp recombination signal binding protein for immunoglobulin kappa J region; Irf5 inter-
feron regulatory factor 5; Tnfaip3 tumor necrosis factor, alpha-induced protein 3; Prdm PR domain 
containing 1, with ZNF domain; Kif5a kinesin family member 5A; Pip4k2c phosphatidylinositol- 5- 
phosphate 4-kinase, type II, gamma; Ankrd55 ankyrin repeat domain 55; Ptpn2 protein tyrosine 
phosphatase, nonreceptor type 2
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approach has been useful to candidate genes inside the QTLs. The coincidence of 
chromosomal locations of genes in QTLs in different model systems with the loca-
tions of the corresponding human orthologue is a good indicator of their implication 
in RA control.

Furthermore, the modulation of common genes during RA, irrespective of etiol-
ogy and of species indicates the importance of these mediators in the pathogenesis 
of arthritis. For example, the augmented expression of chemokines and receptors, 
which recruit neutrophils or naïve and memory T cells to inflammatory sites, is very 
important to disease progression. Chemokines and ligands are found in the synovial 
tissue of patients with RA; proinflammatory cytokines and their cognate receptors, 
such as IL-1β, IL-1RI, TNF-α R, IL-6Rα, IL-2Rγ, and IL-17R, are upregulated in 
several RA models as well as in arthritis patients; IL-1β induces serum amyloid A3 
(Saa3) and the matrix metalloproteinases Mmp-3 and Mmp-9 that are also upregu-
lated in several models. High upregulation in runt-related transcription factor 1 
(RUNX1) and a group of transporter genes such as solute carrier 11 family A1 
(Slc11a1, formerly Nramp1) is also a common feature in RA models. In synthesis, 
a remarkable feature that originated from numerous transcriptome or genomic stud-
ies of arthritis has been the demonstration of gene expression signatures associated 
with inflammation. The results evidence that besides being an antigen-driven event 
there is an important interplay between innate and adaptive immunity systems in the 
etiology of RA (Jarvis and Frank 2010).

12.5  A Model to Study Inflammatory Rheumatoid Arthritis: 
AIRmax and AIRmin Phenotypically Selected 
Mouse Lines

Heterogeneous mice selected for maximal (AIRmax) or minimal (AIRmin) acute 
inflammatory reaction appeared to be useful models for studying the mechanisms 
involved in rheumatoid arthritis susceptibility (Vigar et al. 2000).

AIRmax and AIRmin mice were produced by bidirectional selection, starting 
from a highly polymorphic population (F0) derived from the intercrossing of eight 
inbred mouse strains (Fig. 12.1). The selection phenotypes chosen were localized 
leukocyte influx and exudated plasma proteins 24 h after the subcutaneous injection 
of polyacrylamide beads (Biogel), a nonantigenic, insoluble, and chemically inert 
substance (Ibanez et  al. 1992). The progressive divergence of the AIRmax and 
AIRmin lines during successive generations of selective breeding reached 20- and 
2.5-fold differences in leukocyte infiltration and exudated protein concentrations 
respectively. These differences resulted from the accumulation of alleles in quanti-
tative trait loci endowed with opposite and additive effects on the inflammatory 
response. Inbreeding was avoided for selective breeding, and as such AIRmax and 
AIRmin mice are outbred mice that maintain a heterogeneous genetic background 
but are homozygous in acute inflammation modifier loci. Analysis of the selective 
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processes indicated that the AIR phenotype is regulated by at least 11 QTLs (Biozzi 
et al. 1998).

Pristane-induced arthritis (PIA) has proven to be a valuable experimental model 
for inflammatory RA for its delayed onset, chronicity, and independence from xeno-
antigen administration. Thus, arthritis ensues from a sensitization over time and 
pristane has been described to improve autoimmunity by the activation of the 
immune response against cross-reactive microbiota antigens (Patten et  al. 2004). 
AIRmax mice are extremely susceptible whereas AIRmin mice are resistant to PIA 
(Fig. 12.2a). The incidence of PIA in AIRmax mice was similar to that of inbred 
DBA/1 and BALB/c mice although with higher severity. The incidence and severity 
were more intense than in the CBA/Igb model because 15 to 25% of these mice 
develop inflammation of the ankle and wrist joints approximately 200 days after 
pristane injection. PIA is accompanied by markedly elevated humoral agalactosyl 
IgG levels mediated by IL6 production (Thompson et al. 1992) and CD4+ T cell 
(Th)-dependent (Stasiuk et al. 1997) immune responses to mycobacterial 65-kDa 
heat shock protein (hsp65). Moreover, the protection against PIA is mediated by 
Th2-associated cytokines produced after hsp65 preimmunization (Thompson et al. 
1998; Thompson et al. 1990). In contrast to the immune response profile observed 
in inbred mice, high IgG1 anti-hsp65 levels were observed in susceptible AIRmax 
mice, whereas IgG2a was the predominant isotype in the resistant AIRmin mice. 
Additionally, it was shown that IL-4, IL-6, and TNF secreting splenic cells were 

AIRmax:

SJL CBA Balb/c C57bl/6 A/J DBA P SWR

s.c. polyacrylamidegel

AIRmin:

High acute
inflammatory
response

Low acute
inflammatory
response

F1 F1 F1

SJL CBL BALB/c C57BL6 A P SWR

RRRRRRRRRRRRSlc11a1 alleles SSSS

DBA

F1

F2

F3=F0

F2

Fig. 12.1 Scheme used for the production of the foundation population (F0) by the intercrossing 
of eight inbred strains of mice for the production of AIRmax and AIRmin mice by bidirectional 
phenotypic selection
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significantly more abundant in AIRmax than in AIRmin animals. IFNg-producing 
cells, on the other hand, increased only in AIRmin mice. Specific pathogen-free 
susceptible mice do not develop this disease, but when transferred to a conventional 
environment, they reacquire arthritis susceptibility, indicating the involvement of 
environmental factors in PIA (Thompson and Elson 1993).

The results in the AIRmax and AIRmin PIA model, when compared to those 
obtained in inbred mice, evidence the interference of genetic background in the 
mechanisms underlying arthritis susceptibility and severity. Interaction of arthritis 
controlling genes with heterogeneous genetic backgrounds and variability in gut 
microbiota might contribute to the variable signs of arthritis occurring in humans.

The transporter gene Solute carrier 11 family a1 ( Slc11a1) has been described in 
mice as a major modulator of susceptibility to infectious diseases and is expressed 
in macrophages and neutrophils. Slc11a1 is pleiotropic, interfering with macro-
phage activation, oxidative and nitrosamine bursts, TNF, IFNg, and IL-1 produc-
tion, and the expression of MHC class II molecules. In mice, the mutation 

Fig. 12.2 PIA incidence in AIRmax and AIRmin mice and their sublines homozygous for the 
Slc11a1 gene R and S alleles. Mice received two IP injections of pristane with 60 days interval
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corresponding to the Slc11a1 S allele associated with susceptibility determines a 
gly169asp substitution resulting in a nonfunctional protein that promotes an accu-
mulation of ions inside the phagosome of macrophages that favors pathogen repli-
cation (Vidal et  al. 1992). In the experiment for the production of AIRmax and 
AIRmin mouse lines, the frequency of the Slc11a1 S allele was 25% in the founder 
population (F0), but shifted to 60% in AIRmin and to 9% in AIRmax after 30 gen-
erations of selective breeding. The results suggest that these changes in allele fre-
quencies were the result of the selection process for acute inflammatory response 
(Araujo et al. 1998).

The effect of the Slc11a1 R and S alleles during PIA development was studied in 
AIRmax and AIRmin mice that were rendered homozygous for the Slc11a1 alleles 
by genotype-assisted breeding (Fig. 12.2b). AIRmax mice homozygous for the S 
allele (AIRmaxSS) were significantly more susceptible (80% incidence) to RA than 
AIRmaxRR mice (30% incidence) evidencing the influence of this polymorphism in 
RA (Peters et al. 2007). The involvement of this gene in this study as well as in other 
murine arthritis models constituted the basis for the study of Slc11a1 involvement 
in human RA. In fact, several authors reported linkage of SLC11A1 alleles to human 
RA probably associated with a polymorphic repeat in the RUNX1-containing pro-
moter region of the gene (Ates et al. 2009).

12.6  Mapping of QTL Controlling PIA in AIRmax 
and AIRmin Mice

A genome-wide linkage study was carried out in a large F2 population of inter-
crossed AIRmax and AIRmin F2(AIRmax x AIRmin) mice through linkage analy-
sis of PIA severity phenotype with a panel of SNPs. Two new PIA QTLs ( Prtia 2 
and Prtia3) were mapped on chromosomes 5 and 8, respectively, and three sugges-
tive QTLs were detected on chromosomes 7, 17, and 19 (De Franco et al. 2014). In 
this same F2(AIRmax x AIRmin) population, loci that regulate the intensity of the 
acute inflammatory response were mapped on chromosomes 5, 7, 8, and 17, which 
overlap the QTLs that controls PIA severity, suggesting common regulations 
(Vorraro et al. 2010; Galvan et al. 2011). Co-located chromosome 5 QTLs control-
ling arthritis severity and humoral responses during B. burgdorferi infection were 
identified in the F2 intercross of C3H/HeNCr and C57BL/6NCr mice (Weis et al. 
1999), suggesting the involvement of the chemokine Cxcl9 gene, which maps to the 
QTL peak in this model (Ma et al. 2009).

In order to candidate genes within the QTL detected in the AIRmax and AIRmin 
model, transcriptome studies were performed using tissues or cells from normal or 
arthritic individuals. In this model, the total number of up- and downregulated genes in 
each line was distinct, as can be seen in Fig.  12.3. More genes were modulated in 
AIRmax than in AIRmin mice, although a gene ontology analysis revealed an overrep-
resentation of genes related to inflammatory reaction and chemotaxis biological themes 
in both lines (Fig. 12.4). Global gene expression analysis indicated 419 differentially 
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expressed genes between AIRmax and AIRmin mice. Figs. 12.5 and 12.6 show genes 
differentially expressed on chromosomes 5 and 8 respectively. Several genes related to 
inflammation, cell adhesion, and chemotaxis could be observed on chromosome 5, 
while tissue antigens, cell differentiation, hemeoxigenase, and scavenger receptor genes 
were observed on chromosome 8 (De Franco et al. 2014).

Ibrahim and collaborators investigated the gene expression profiles of inflamed 
paws in DBA/1 inbred mice using a similar approach for collagen-induced arthritis 
(Ibrahim et al. 2002). In their work, inflammation resulted in increased gene expres-
sion of matrix metalloproteinases, and immune-related extracellular matrix and 
cell-adhesion molecules, as well as molecules involved in cell division and tran-
scription, in a manner very similar to the AIRmax/AIRmin model. However, the 
total number of differentially expressed genes involved in the inbred mice model 
(223) was lower than in our model (419), suggesting that the heterogeneous back-
ground of AIRmax and AIRmin mice permitted a larger genome involvement in this 
phenotype. Among the differentially expressed genes, inflammatory and chemokine 

Fig. 12.3 Up- and downmodulated inflammatory and chemokine genes in AIRmax and AIRmin 
mice. Total RNA was extracted from arthritic paws at 160 days after pristane injection
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Fig. 12.4 Differentially expressed inflammatory and chemokine genes between AIRmax and 
AIRmin mice

Fig. 12.5 Differentially expressed genes between AIRmax and AIRmin mice mapping at 
chromosome 5

12 Transcriptome Profiling in Experimental Inflammatory Arthritis



288

genes on chromosome 5 and macrophage scavenger receptor 1 ( Msr1) and heme-
oxigenase 1 ( Hmox1) genes on chromosome 8 appear to be the major candidates.

Chemokines are involved in leukocyte recruitment to inflammatory sites, such as 
synovial tissue in rheumatoid arthritis (RA). However, they may also be homeostatic 
as these functions often overlap (Ibrahim et  al. 2001). Chemokines have essential 
roles in the recruitment and activation of leucocyte subsets within tissue microenvi-
ronments, and stromal cells actively contribute to these networks. Macrophages play 
a central role in the pathogenesis of rheumatoid arthritis (RA), which is marked by an 
imbalance of inflammatory and anti-inflammatory macrophages in RA synovium. 
Although the polarization and heterogeneity of macrophages in RA have not been 
fully elucidated, the identities of macrophages in RA can potentially be defined by 
their products, including costimulatory molecules, scavenger receptors, cytokines/
chemokines and their receptors, and transcription factors (Li et al. 2012). It has been 
demonstrated that inappropriate constitutive chemokine expression contributes to the 
persistence of inflammation by actively blocking its resolution (Filer et al. 2008). This 
was also observed in urethane- induced lung carcinogenesis, where transcriptome 
analysis revealed that the genes involved in transendothelial migration and chemo-
kine-cell adhesion were differently expressed in normal lungs of susceptible AIRmin 
and resistant AIRmax mice (De Franco et al. 2010), suggesting important roles for 
these phenotypes in chronic diseases.

12.7  MicroRNA and Arthritis

Several studies have demonstrated the involvement of small RNAs, known as miR-
NAs in the development of RA. MiRNAs are a class of small, noncoding, RNA 
molecules with approximately 21 nucleotides in length that can regulate gene 

Fig. 12.6 Differentially expressed genes between AIRmax and AIRmin mice mapping at 
chromosome 8
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expression by reducing the ability of specific mRNAs to direct the synthesis of their 
encoded proteins (Krol et al. 2010). They likely participate in most developmental 
and physiologic processes, with involvement in, but not limited to, cell proliferation 
and differentiation, regulation of lipid metabolism, and modulation of insulin secre-
tion. The importance of miRNA-mediated regulation of gene expression for the 
prevention of autoimmunity and maintenance of normal immune system functions 
has been described (Wittmann and Jäck 2011). Studies in humans have detected 
altered miRNA expression in RA patients when compared to controls or osteoarthri-
tis patients (Pauley et  al. 2008; Kobayashi et  al. 2008; Stanczyk et  al. 2008). 
MiRNAs can be detected in body fluids without invasive procedures, and thus may 
be used as prognostic or diagnostic biomarkers for specific conditions, such as rheu-
matic diseases (Ceribelli et al. 2012).

In the PIA model, pristane injection modulated several genes in the peritoneal 
cells of AIRmax and AIRmin lines in both time points analyzed. This modulation 
was more widespread in AIRmax mice, with about twice the number of modulated 
genes than the AIRmin line (2025 vs 1043). This difference reflects mainly the 
number of downregulated genes, which was five-fold higher in AIRmax animals 
(704 vs 131). In previous microarray analyses using the paws of these animals, the 
AIRmax line also showed five-fold more downregulated genes than AIRmin and 
two-fold more upregulated genes (De Franco et al. 2014). The same gene expres-
sion profile was also observed in the subcutaneous tissue of these lines after Biogel 
injection (Fernandes et al. 2016). Although different tissues and stimuli have been 
analyzed, these results indicate that the selective pressure during phenotypic selec-
tion acted in general inflammatory regulation mechanisms.

MiRNA expressions after pristane injection were also distinct in AIRmax and 
AIRmin mice. At 120 days, 184 miRNAs were upregulated and 12 downregulated 
exclusively in AIRmax animals. That regulation was similar (189 up- and 12 down-
regulated) at 170 days. In contrast, the AIRmin line upregulated 15 and 10 miRNAs 
at 120 and 170  days respectively; no downregulated miRNA was detected. The 
higher number of downregulated genes observed in AIRmax mice may be a conse-
quence of the upregulation of miRNAs in their peritoneal cells.

Most of the up- or downregulated miRNAs have not been ascribed roles in exper-
imental or human arthritis development. Instead, many of those miRNAs are 
described in terms of their roles in suppressing or inducing several types of malig-
nant tumors, although many have been shown to be involved in the regulation of 
important biological processes in the development of autoimmune diseases such as 
inflammation. We therefore sought to identify important pathways in which those 
miRNAs participated and which could explain their modulation in our model  – 
eventually leading to the identification of new arthritis-related miRNAs in experi-
mentally induced arthritis.

MiR-132-3p was the most upregulated miRNA in the susceptible mouse line in 
microarrays and qRT-PCR (106- and seven-fold higher at 120 days, and 67- and 
4.5-fold higher at 170 days respectively). Expression of that miRNA has been found 
to increase in the peripheral blood mononuclear cells (PBMCs) of rheumatoid 
arthritis patients (Kobayashi et al. 2008). In that study, one of the patients with the 
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active disease showed unaltered levels of that and other miRNAs related to the dis-
ease after two months of treatment with methotrexate. Those results indicate that the 
high expressions of miRNAs in that patient were related to unresponsiveness to the 
treatment. MiR-132-3p may therefore play a key role in systemic conditions related 
to joint inflammation, which would explain its high expression in the peritoneum of 
susceptible AIRmax animals. MiR-132 is specifically induced in Th17 cells and 
acts as a proinflammatory mediator increasing osteoclastogenesis through the 
downregulation of COX2. In in vivo, articular knockdown of MiR-132 in murine 
arthritis models reduces the number of osteoclasts in the joints (Donate et al. 2021).

MiR-132-3p and miR-212-3p are members of the same family (located on chro-
mosome 11 in mice) that forms the miR-212/132 cluster, and they have similar seed 
sequences. That cluster, induced by the activation of AhR in inflammatory bowel 
disease, was able to promote an inflammatory response by inducing the Th17 
response and suppressing IL-10 production (Chinen et al. 2015). The Il10 gene was 
downregulated in peritoneal cells in AIRmax mice, indicating that there may be an 
indirect regulation of the expression of that cytokine by those miRNAs (Fernandes 
et al. 2018). IL-10 is an important anti-inflammatory cytokine that inhibits proin-
flammatory mediator production and lymphocyte proliferation, thus playing a pro-
tective role in autoimmune diseases. IL-10 has been shown to contribute to the 
prevention of arthritic inflammation in macrophages during collagen-induced 
arthritis development (Chen et al. 2017). That gene can be regulated by different 
miRNAs, including miR-27b-3p, which is highly upregulated in that line (Fig. 12.7).

Cd69 and S1pr1 (specifically targeted by 106a-5p, 25-3p, and 20b-5p miRNAs) 
were downregulated in AIRmax mice (Fig.  12.7). CD69 is a leukocyte receptor 
induced in lymphocytes and macrophages after activation. Sancho et al. 2003 dem-
onstrated that CD69−/− and CD69 +/− mice had an exacerbated form of collagen- 
induced arthritis (CIA) when compared to controls and that CD69 was capable of 
inducing TGF-β2 synthesis. TGF-β2 is an anti-inflammatory cytokine, and null 
mutations in that gene can lead to severe inflammatory disorders; that gene regu-
lates the production of inflammatory cytokines and has protective effects in the CIA 
model (Sancho et al. 2003; Brandes et al. 1991). Tgfb2 was the most downregulated 
gene in the AIRmax line (40-fold), while CD69 was approximately six-fold down-
regulated. The S1pr1 gene, on the other hand, affects the differentiation of osteo-
blasts (Sato et al. 2012). The inhibition of osteoblast differentiation contributes to 
bone loss in RA as well as to a decreased healing ability of those lesions (Baum and 
Gravallese 2016).

The expressions of miR-181b-5p and Il6 were shown to be inversely correlated 
following stimulation with LPS, and Il6 is a direct target of miR-181b-5p (Zhang 
et al. 2015), demonstrating the critical role of the posttranscriptional control of IL-6 
by miR-181b-5p in endotoxin tolerance. The expressions of miR-181b-5p and Il6 
were also inversely correlated in susceptible AIRmax mice. Although Il6 did not 
appear as a target for miR-181b-5p in our interaction network (which considered at 
least 3 different algorithms), the data from the TargetScan database (which is widely 
used in the literature to predict miRNA-RNA interactions) indicated that gene as a 
possible target of miR-181b-5p. An important role of IL-6 has been reported in the 
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in vitro inhibition of osteoclast progenitors mediated by the disruption of RANK 
signaling (Yoshitake et al. 2008). Osteoclasts are required for articular bone resorp-
tion and are responsible for bone erosion in RA (Baum and Gravallese 2016; Lin 
et al. 2015). The unbalanced expression of the genes that promote osteoclatogenesis 
and inhibit osteoblast differentiation may represent a mechanism for the stimulation 
of bone erosion and increased disease severity in AIRmax animals. Histological 
analyses of the AIRmax paws did, in fact, show bone loss in addition to the destruc-
tion of cartilage (Correa et al. 2017).

Soto et  al. 2008 compared the gene expression profiles of the rat collagen- 
induced arthritis model (CIA) with human RA (using paw and knee synovial tissue 
respectively). Comparing the DEGs in our model with the model used by Soto, we 

Fig. 12.7 mRNA-miRNA interaction network. (a) miRNAs upregulated in AIRmax mice and 
their interaction with predicted target genes; (b) miRNAs upregulated AIRmin mice and their 
interaction with predicted target genes. Red = upregulated genes; green = downregulated genes. 
The interaction network was built with Cytoscape 3.4.0.
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observed that two genes upregulated in AIRmax mice (Mmp13 and Gpsm3) were 
also upregulated in CIA rats.

The MMP13 and GPSM3 genes play significant roles in rheumatoid arthritis in 
humans, and GPSM3 has been associated with the risk of developing autoimmune 
diseases. Polymorphisms associated with decreased transcription have been 
inversely correlated with the risk of developing arthritis. The reduced expression of 
GPSM3 was observed to prevent neutrophil migration mediated by LTB4 (leukotri-
ene B4) and CXCL8 to arthritic joints (Gall et al. 2016). Additionally, mice defi-
cient for Gpsm3 were protected from arthritis induced by anticollagen antibodies, 
with reduced CCL2- and CX3CL1-mediated migration of myeloid cells (Giguère 
et al. 2013). Gpsm3 is located on chromosome 17 in mice, where a suggestive QTL 
for experimental arthritis was detected in our model (De Franco et al. 2014). The 
miRanda database identified Gpsm3 as a predicted target of miRNA-151-5p, which 
is downregulated in AIRmax mice. Since the interaction was only predicted by the 
database, it was not considered in our results, although the high expression of 
Gpsm3 as a consequence of the downregulation of miRNA-151-3p should not be 
completely ruled out.

Fig. 12.7 (continued)
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MMP-13 (or collagenase-3) hydrolyzes type 2 collagen and may favor the 
destruction of cartilage in arthritic joints. In rheumatoid arthritis, IL-1β and TNF-α 
produced by macrophages in the connective tissue stimulate the production of that 
MMP by articular chondrocytes (Vincenti and Brinckerhoff 2002). Additionally, a 
key role has been attributed to some genetic loci encoding metalloproteinases in 
bone destruction. The expression of MMP-13 increased ten-fold in AIRmax mice 
but remained unaltered in pristane-treated AIRmin animals. Vonk and coworkers 
(Vonk et al. 2014) looked for different miRNAs expressed in healthy and osteoar-
thritis (OA) patients and found that miRNA-148a levels in healthy subjects were 
approximately ten-fold higher than those seen in patients with the disease. 
Transfection of miR-148a-3p into cells of OA patients resulted in decreased 
MMP-13 expression (which had increased in those patients), suggesting that this 
miRNA may play a protective role in OA, with a consequent reduction in cartilage 
destruction.

In a second analysis, Soto et al. 2008 identified 30 differentially expressed genes 
when comparing RA patients and healthy controls. Of those 30 genes, Pde3b, 
Tgfb2, and Fam120c were downregulated in both RA patients and AIRmax mice; 
Tgfb2 showed a significant protective effect in arthritis models as discussed above.

Many miRNAs are over- or underexpressed in autoimmune diseases such as SLE 
(Liang and Shen 2012; Amarilyo and La Cava 2012) and rheumatoid arthritis (RA) 
(Ceribelli et al. 2011), and investigators have reported that miR-146a is altered in 
those diseases (Ceribelli et  al. 2012). Interestingly, expression of miR-146a was 
higher in AIRmax than in AIRmin control mice 120 days after pristane injection. 
Increased expression of miRNA-146a has been well documented in the PBMCs of 
arthritic patients. That microRNA has two known targets: Traf6 (TNF receptor- 
associated factor 6) and Irak1 (interleukin-1 receptor-associated kinase 1), both of 
which stimulate TNF-α production (Shrivastava and Pandey 2013). The expression 
of those molecules were unaltered in those patients, suggesting that increased 
miRNA-146a levels were unable to regulate TRAF6/IRAK.  Therefore, it is not 
exactly known how the high expression of that miRNA is related to the increased 
levels of TNF-α in RA (Ceribelli et al. 2011).

12.8  Concluding Remarks

Recent advances in the field of genetics have dramatically changed our understand-
ing of autoimmune disease. Candidate gene and, more recently, genome-wide asso-
ciation (GWA) and linkage studies have led to an explosion in the number of loci 
and pathways known to contribute to autoimmune phenotypes, confirming a major 
role for the MHC region and, more recently, identifying risk loci involving both the 
innate and adaptive immune responses. However, most regions found through GWA 
scans have yet to isolate the association to the causal allele(s) responsible for con-
ferring disease risk. A role for rare variants (allele frequencies of <1%) has begun to 
emerge. The study of the abundant long intergenic noncoding RNAs and of small 
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interfering RNA (microRNAs) has also become a powerful tool to understand the 
mechanisms that modulate the gene expression profiles in RA and other autoim-
mune diseases (Jarvis and Frank 2010; Donate et al. 2013). Future research will also 
use next generation sequencing (NGS) technology to comprehensively evaluate the 
human genome for risk variants. Whole transcriptome sequencing (e.g., RNA-Seq), 
which combines gene expression, sequence, and splice variant analysis, will pro-
vide much more detailed gene expression data. Despite its high incidence and severe 
phenotype, RA still has no cure in spite of many efforts to produce effective therapy 
treatments. Further studies should therefore be carried out to better understand the 
functions and mechanisms of miRNAs in the immune system and in arthritis devel-
opment. The AIRmax and AIRmin lines constitute interesting tools for mapping 
inflammatory disease modifying genes and miRNAs, in addition to being a valid 
animal model for the human disease in respect to similar gene pathways and miR-
NAs. Our studies have been demonstrated that those lines have distinct gene and 
miRNA expression profiles, which may be partly responsible for their different phe-
notypes. Regardless of the current or future technology, the versatility of murine 
models will continue to be required to advance our understanding of human diseases.
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Chapter 13
Trannscriptomics and Immune Response 
in Human Cancer

L. P. Chaves, C. M. Melo, W. Lautert-Dutra, A. L. Caliari, and J. A. Squire

13.1  Introduction

Cancer transcriptomics uses high-throughput methods to determine the abundance 
and relative expression levels of every active gene in a tumor (Cieślik and Chinnaiyan 
2018). The actively transcribed RNA in cancer is highly dynamic, reflecting the tis-
sue of origin of the tumor, disrupted regulatory mechanisms of cancer genes, and 
tumor–host interactions. The cancer transcriptome profile can be regarded as a gene 
expression signature of the underlying cell state of the diverse population of cells at 
the time of tumor sampling. Thus, transcriptomic profiling of patient tumors can 
provide experimental approaches to defining molecular pathways that have been 
activated and are responsible for driving the cancer process.

Changes in gene transcriptional activity are known to mediate various tumor 
phenotypes, such as inflammation, vascularization, apoptosis, proliferation, immune 
evasion, and genomic instability that are considered the hallmarks of cancer pro-
gression (Hanahan and Weinberg 2011). In addition, to identifying driver pathways 
of oncogenesis, transcriptomic analysis of tumor RNA also contains a wealth of 
gene expression information related to microenvironmental interactions that impact 
immunotherapy responses (Galon and Bruni 2019).

Gene expression profiling of cancer started with the application of microarray 
analysis to study tumor-specific patterns of gene expression (reviewed in Macgregor 
and Squire 2002). There are many different commercial microarray platforms, but 
in typical gene microarray design, several thousand known gene probe sequences 
are orderly attached to the solid surface of the array. Fluorescent molecules are 
labeled on cDNA copies of the total RNA from the tumor sample, which are then 
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hybridized with the fixed gene probes on the array. According to the amount of 
hybridization between the tagged tumor cDNA and the fixed gene probes bound to 
the array, the fluorescence intensity varies and is converted into data that indicates 
expression information for each gene probe. This early profiling platform provided 
valuable insights concerning the complexity of gene expression in cancer biology 
and paved the way for molecular classifications of clinical subtypes (discussed in 
the next section) (Colombo et al. 2011).

The ease of use and relatively inexpensive cost of microarrays encouraged their 
popularity for the study of cancer transcriptomics. One major limitation of all the 
microarray platforms is that the coverage of the target gene probes depends upon 
existing knowledge about the genes or transcripts being studied. Another disadvan-
tage of all array methods is the high background levels due to cross-hybridization 
between related genes. In addition to these issues, the narrow dynamic range of 
detection due to both background and saturation signals means that the platform’s 
sensitivity has been a significant limitation. For these reasons, current microarray 
platforms are unlikely to identify gene expression differences arising from tumor 
samples containing mixed populations of cells.

In recent years, RNA sequencing (RNA-seq) has emerged as a more sensitive 
and versatile alternative for gene expression profiling (Wang et  al. 2009). Since 
RNA-seq is not limited to profiling predefined transcripts/genes, it is able to provide 
a complete overview of the expression of the whole transcriptome. This comprehen-
sive coverage means that RNA-seq can identify more differentially modulated tran-
scripts of relevance to cancer, splice variants, and noncoding transcripts [e.g., 
microRNA (miRNA), long noncoding RNA (lncRNA), pseudogenes]. These addi-
tional data may be informative for improved molecular classifications of the cancer 
transcriptome in the context of mutational data from DNA sequencing, mechanistic 
investigations, and biomarker discovery (Malone et al. 2020).

Cancer transcriptome profiling has been greatly aided by bioinformatics methods 
that enable researchers to link the somatic mutations in a tumor with clinical pheno-
types such as drug response or overall survival. The functional phenotypes that can 
be interrogated through transcriptome profiling are very broad and include quantita-
tive estimates of expression levels and the detection of transcript isoforms, fusion 
RNAs, RNA-editing sites, and noncoding RNA (Uhlen et al. 2017). Beyond tumor 
cell-intrinsic features, transcriptome profiling can provide insights into the tumor 
microenvironment, for example, by characterizing transcripts from different types 
of infiltrating T cells during an immune response.

This chapter will address current transcriptome research and translational 
approaches using gene expression data to improve understanding of immune 
responses against cancer. We will focus on the common bioinformatics approaches 
and gene expression databases that new researchers and translational oncologists 
will find helpful for initiating studies on tumor transcriptomes. We discuss in silico 
and single-cell RNA-seq methods currently used to determine the number and type 
of different immune cells in a tumor, and we will briefly consider emerging new 
directions in this field.

L. P. Chaves et al.
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13.2  Gene Expression Approach for Clinical Investigations

Whole exome sequencing (WES) uses coding regions of the transcriptome, which 
more often contains the mutations that affect tumor progression. WES can also be 
expanded to include untranslated regions and microRNA (miRNA)-binding sites. 
Because WES is faster and relatively inexpensive, it is often the best approach for 
clinically related research and patient studies (Koeppel et al. 2018).

Analysis of gene expression and transcriptome changes with WES or RNA-seq 
can aid in understanding tumor classification and help determine how specific 
groups of genes with mutations or altered expression levels can provide information 
of clinical utility such as tumor progression or response to therapies. Most tumors 
accumulate numerous genetic changes, but typically only a few genes have altered 
expression affecting cancer pathways that drive tumor progression. Targeted RNA- 
seq is a rapid and convenient method for obtaining expression data from a series of 
specific transcripts of interest related to a clinical phenotype, such as response to 
therapy or probability of disease recurrence.

Multigene panels are being increasingly used to provide precise genomic data to 
guide clinical decisions (Malone et al. 2020). One of the best examples of an expres-
sion panel used clinically is the Oncotype DX gene test designed to estimate the prob-
ability of recurrence for patients with a specific type of early breast cancer (Paik et al. 
2004). The assay is performed using RNA extracted from formalin-fixed paraffin-
embedded (FFPE) breast cancer tissue biopsies, using quantitative real- time reverse 
transcriptase quantitative polymerase chain reaction (RT-qPCR). The panel contains a 
set of five reference genes and 16 cancer-related genes. The probability of recurrence 
is derived from calculating the weighted expression of each of the 16 genes and clas-
sifying the chance of tumor recurrence as being low, intermediate, or high risk.

Chromosomal rearrangements that juxtapose two different genes together can form 
a fusion gene that encodes a fusion transcript, translated into a chimeric fusion oncopro-
tein. Many of the cancer gene fusions are strong driver mutations in neoplasia, and their 
identification can be helpful for diagnosis or is critical for effective treatment of some 
types of malignancy (Mertens et al. 2015). Older methods such as fluorescence in situ 
hybridization (FISH) and RT-qPCR have limited resolution and are low throughput. 
Targeted RNA-seq can simultaneously identify multiple fusion genes in a single tumor 
sample. This type of test enables better molecular classification into cancer subtypes and 
is also likely to increase the number of fusion genes in human cancer, including rare 
fusion genes and fusions of novel gene partners (Heyer et al. 2019).

13.3  Public Domain Transcriptomic Resources 
and Informatics

During the last years, sequencing technologies evolved rapidly. In the nineties 
sequencing, the human genome took almost 15 years; nowadays, next-generation 
sequencing can do the same analysis in a few hours. Since high-throughput 
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sequencing technologies allow unlimited possibilities for analysis, there is a con-
sensus that all genomic data should be available in the public domain (Conesa and 
Beck 2019). To this end, there are now a diversity of freely available online resources 
and practical algorithms and pipelines to work with multiomics and clinical data. 
Below we summarize some of the approaches currently being used for bioinformat-
ics analysis in human cancer research.

The size and the complexity of the combined layers of genomic, transcriptional, 
and proteomic profiles available in the public domain pose a formidable challenge 
for new investigators in this area. Table 13.1 shows a summary of some of the excel-
lent online resources and different types of analytical software to provide bioinfor-
matics support for students and new researchers in this area to initiate projects using 
cancer genomic databases.

The Cancer Genome Atlas (TCGA) project has characterized over 20,000 pri-
mary cancer and matched normal samples for 33 cancer types (NIH, https://portal.
gdc.cancer.gov/). TCGA currently has over 2.5 petabytes of genomic, epigenomic, 
transcriptomic, and proteomic data available for public domain use. TCGA selected 
tumor type for study based on clinical needs in human cancer. Various practical 
algorithms were developed for analysis, and these shared datasets are easy to use 
and have good online support. For beginners, cBioPortal for Cancer Genomics is 
probably the best place to start investigating online transcriptomics. It is an open- 
access resource for interactive explorations of cancer genomics datasets from differ-
ent origins such as TCGA, ICGC, Stand Up to Cancer (SU2C), and Memorial 
Sloan-Kettering Cancer Center (MSKCC). The International Cancer Genome 
Consortium (ICGC) is similar to a global initiative to build a comprehensive catalog 
of mutational abnormalities in the major tumor types (Zhang et al. 2019).

Both the ICGC and TCGA whole-genome sequencing studies recently formed a 
consortium to publish a meta-analysis of genomic features of representative tumor 
types (Campbell et al. 2020). RNA-sequencing data from TCGA and ICGC cohorts 
were collected and re-analyzed centrally for 1222 samples, including 1178 primary 
tumors, 67 metastases or local recurrences, and 153 matched normal tissue samples 
adjacent to the primary tumor. The data were uniformly processed to quantify nor-
malized gene-level expression. The analysis can be used to detect splicing variation, 
allele-specific expression, fusion transcripts, alternative promoter usage, and any 
sites of RNA editing. The data generated by the consortium produced novel insights 
into the nature and timing of many mutational processes that shape somatic varia-
tion and impact cancer transcriptomics. Findings reported recently show general-
ized effects of somatic variants on transcription. In addition, the consortium study 
highlights the role of intratumoral heterogeneity on progression and the distinct 
evolutionary trajectory of each type of cancer (Calabrese et al. 2020).
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13.4  Transcriptomic Networks and Cancer Pathway Analysis

Determining which pathways are activated by gene expression alterations in tran-
scriptomic data is of central importance for understanding cancer biology and pos-
sible clinical utility. The development of tools like The Database for Annotation, 
Visualization and Integrated Discovery (DAVID), Gene Ontology (GO), Gene Set 
Enrichment Analysis (GSEA), Ingenuity Pathway Analysis (IPA), and the 
Bioconductor packages for R helped focus on specific cancer pathways of therapeu-
tic or diagnostic importance (Paczkowska et al. 2020).

Co-expression analysis is the principal tool to group genes of similar functions 
that impact common pathways of clinical importance. When the samples being 
studied also have linked clinical information on tumor stage and grade, therapies, 
and patient outcome, this type of analysis can be very informative. Collectively, this 
information is analyzed by integrative bioinformatics to define which driver path-
ways are related to the observed clinical outcomes. Together, these findings can 
suggest tumor phenotypes activated by the transcriptional networks that impact the 
hallmarks of cancer (Hanahan and Weinberg 2011).

Gene Expression Omnibus (GEO) is the central repository to find different kinds 
of datasets worldwide, but it may require great familiarity and computational power 
since only raw data is available from this resource. For data visualization, Next- 
Generation Clustered Heat Map (NG-CHM) Viewer is a comprehensive web-based 
graphical environment that may help. For expression enrichment analysis, The 
Database for Annotation, Visualization, and Integrated Discovery (DAVID) is the 
most accessible web-based resource to use, while Gene Set Enrichment Analysis 
(GSEA) may provide more complex results. For data processing, preliminary analy-
sis, GALAXY, and Orange Data mining software are comprehensive tools that may 
be useful even for beginners. At the same time, the Bioconductor Package for R is 
the complete tool for reliable analysis of different types, but that requires a broader 
knowledge in R programming.

13.5  The Tumor Microenvironment, Immune Evasion, 
and Immunotherapy Response

Immune evasion is an important hallmark of cancer associated with failed response 
to immunotherapy (Hanahan and Weinberg 2011). The evasion phenotype is greatly 
facilitated by the tumor microenvironment (TME), which can have a suppressive 
effect on the immune system and also works as a protective barrier for cancer cells. 
The TME comprises multiple components: the extracellular matrix, surrounding 
stromal cells, infiltrating immune cells, and various signaling molecules, all of 
which can influence the competing pressures of immune response vs. tumor growth 
(Havel et al. 2019). During tumor growth, regulatory cellular processes are lost, and 
there is an accumulation of somatic genetic alterations. These genomic changes 
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affect the tumor transcriptome, which can also influence the natural immune 
responses in the TME of developing cancer (see Fig. 13.1).

Immune checkpoint inhibition involves the use of specific agents that block the 
suppressive interactions between a developing tumor and the defensive immune 
system of the patient (Zhao et al. 2019). Among the checkpoint-blocking strategies, 
the two most prominent in terms of clinical success to date are the targeting of 
cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4) and the interaction between 
programmed cell death 1 (PD-1) and PD-L1. Immune checkpoint proteins such as 
programmed PD-L1 downregulate the immune system and promote self-tolerance 
by suppressing T cell inflammatory activity against tumors so that blocking the 
expression of checkpoint proteins with immune checkpoint inhibitors usually 
restores the capacity of the immune system to recognize tumor cells and kill them 
(Koyama et al. 2016; Deng et al. 2018; Della Corte et al. 2019).

Immune checkpoint’s normal function is to prevent autoimmunity and tissue 
damage during pathogenic infection. These molecules are inhibitory receptors 
expressed on the surfaces of T cells and tumor cells, and they mediate the functional 
interaction between these cells (Pardoll 2012). The process of adaptive immune 
resistance involves the engagement of immune checkpoint proteins on T cells by 
tumor cells to suppress T cells’ cytotoxic capacity and enable tumor cells to escape 
immunosurveillance (Tumeh et al. 2014; Wu et al. 2014; Ribas 2015). T cell immune 
inhibition in response to cancer also involves the secretion of various inhibitory 
molecules such as cytokines and chemokines that decreases cytotoxic T lymphocyte 

Fig. 13.1 Schematic diagram of tumor to iillustrate cellular heterogeniety in the 
microenvironment
Different cell phenotypes indicated on the left are depicted in different colors as rare cells inter-
mingled with an excess of blue tumor cells. The central part of the tumor comprises blood vessels 
and vacularized regions on both sides
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function and limits the recruitment of anti-inflammatory cells, such as regulatory T 
cells and myeloid-derived suppressor cells and other immune cell types into the 
TME (Garcia et al. 2014; Kelderman et al. 2014; Yuan et al. 2016). There are now 
several computational approaches to estimating the nontumor cellular content of the 
TME, and these are described in the next section.

13.6  Computational Analysis of the TME from Bulk 
Tumor Transcriptome

Understanding how tumor intrinsic transcriptomic changes influence the immune 
cell content of the TME has been challenging because of the enormous excess of 
cancer cells in the tumor mass. In bulk extracted tumor tissue, the cancer transcrip-
tome overwhelms the smaller proportion of gene expression data from immune and 
stromal cells in the TME. Recently there has been some success in predicting how 
the immune response changes in the TME using computational estimates of the 
abundances of member cell types in a mixed cell population based on analysis of 
transcriptomic data (Chen et al. 2018). These “immunoscores” use gene expression 
signatures of immune cell activity present in the tumor transcriptome to classify 
tumors into two broad types: immunologically nonresponsive or “cold” cancers and 
immunologically responsive or “hot” cancers (Maleki Vareki 2018). Immunologically 
cold tumors have a low mutation load, are immune tolerant against self-antigens, 
and lack infiltrating T cells (Yuan et  al. 2016). In contrast, immunologically hot 
tumors have a variety of infiltrating T cells, which in turn reflects intrinsic T cell 
immune inhibition and extrinsic tumor-related T cell immunosuppression (Galon 
and Bruni 2019). Immunotherapy trials in “hot tumors” such as melanoma, urothe-
lial, and lung cancer show that favorable responses are often observed. These tumors 
all have a pre-existing higher density of tumor-infiltrating lymphocytes (TILs) and 
expression of an interferon-associated gene signature (Gibney et  al. 2016; Shien 
et al. 2016). In contrast, immunologically cold tumors such as pancreatic or prostate 
cancer have a lower TILs density in the TME and they cannot elicit a normal 
immune response to developing cancer. The genomics of tumors with such differing 
immune responses suggests various mutational changes can influence pathways of 
evasion and the tumor–immune interactions making a tumor immunologically cold 
(Thorsson et al. 2018).

Tumor-infiltrating immune cells can be quantified from RNA sequencing data of 
human tumors using various bioinformatics approaches (Finotello and Trajanoski 
2018). In Table 13.2, we show examples of some of the recent computational meth-
ods that quantify immune cells from expression data of cell mixtures using marker 
genes coupled with GSEA or other scoring approaches that rely on deconvolution 
algorithms and immune cell expression signatures. ESTIMATE is one of the sim-
plest methods of analyzing cellular heterogeneity based on transcriptomics, provid-
ing scores for tumor purity, immune infiltration, and stromal presence. CIBERSORTx 
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and xCELL are the easiest to use for a beginner in this area. CIBERSORTx gener-
ates a predictive analysis for 22 immune cells, whereas xCELL provides greater 
depth with estimates of 64 cell types, including immune cells, stromal cells, stem 
cells, and others. Figure 13.2a provides a schematic depiction of the analytical steps 
of most digital cytometry programs, such as CIBERSORT or xCell. These types of 
software typically use a signature matrix from clustering analyses and compare 

Table 13.2 Informatics resources to tumor microenvironment exploration using 
transcriptomics data

Tumor 
microenvironment 
resources Description

Types of 
cells Website domain

Estimation of Stromal 
and Immune cells in 
Malignant Tumor 
tissues using 
Expression data 
(ESTIMATE)

ESTIMATE is an algorithm that 
provides researchers scores for 
tumor purity, the level of stromal 
cells present, and the infiltration 
level of immune cells in tumor 
tissues based on expression data in 
different platforms.

Not 
applicable

https://
bioinformatics.
mdanderson.org/
estimate/

CIBERSORTx CIBERSORTx is an analytical tool 
developed to impute gene 
expression profiles and provide an 
estimation of the abundances of 
member cell types in a mixed cell 
population, using gene expression 
data. CIBERSORTx allows users to 
process gene expression data 
representing a bulk admixture of 
different cell types or single-cell 
transcriptome sequencing.

22 immune 
cells

https://cibersortx.
stanford.edu/
index.php

xCELL xCell is a web tool that performs 
cell type enrichment analysis from 
gene expression data for 64 immune 
and stromal cell types. xCell is a 
gene signatures-based method 
learned from thousands of pure cell 
types and applies a novel technique 
for reducing associations between 
closely related cell types.

64 immune 
and stromal 
cells

https://xcell.ucsf.
edu/

Microenvironment Cell 
Populations-counter 
(MPC-counter)

MPC-counter is an algorithm that 
allows a robust quantification of the 
absolute abundance of eight 
immune and two stromal cell 
populations in heterogeneous 
tissues from transcriptomic data.

8 immune 
cells, 
endothelial 
cells, and 
fibroblasts

https://cit.
ligue- cancer.net/
mcp- counter/

TIminer TIminer is an easy-to-use 
computational pipeline for mining 
tumor–immune cell interactions 
from next-generation sequencing 
data.

28 immune 
cells

https://
icbi.i- med.ac.at/
software/timiner/
timiner.shtml
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expression levels to a previously inputted immune cell signature matrix. Thus, the 
immune cell abundance is displayed by the relative richness of the assigned tran-
scripts related to each of the immune cells presented on each sample. All of the 
methods currently available can be used either in a web-based platform or as an R 
package.

As discussed below, new data from single-cell transcriptomics show that the 
computational cellular deconvolutions using bulk tumor transcriptomic data often 
fail to detect all rare cell types and subpopulations present in the TME (Yu et al. 
2019). These observations draw attention to the need for experimental validation of 
predicted findings from digital cytometry using other methods.

Fig. 13.2 Estimation of immune cell content in a tumor using (a) digital cytometry, and (b) 
scRNA-Seq methods
(a) Schematic representation of typical digital cytometric workflow. The pale blue shaded rectan-
gle depicts publicly available sources of transcriptomic data used to generate gene expression 
signature matrices from tumors. These expression data are then computationally compared by digi-
tal cytometry algorithms to expression reference signatures of immune cells that are used to derive 
and estimate the relative abundances of the various immune cells in the tumor
(b) Schematic representation of scRNA-seq workflow. Schematic illustration of patient tumor to 
show presence of an excess of tumor cells mixed with heterogenous immune cells (see details in 
legend to Fig. 13.1). After a biopsy is removed from the tumor it is subject to tissue dissociation, 
sorting, and library preparation for high-throughput scRNA-seq. Each sample will comprise mixed 
cellular populations of tumor, immune and other rare nontumor cell-types. These expression data 
are then computationally compared by digital cytometry algorithms to expression reference signa-
tures of tumor, immune, and noncancer cells to determine the relative abundances and single cell 
transcriptomics of each cell type sampled
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13.7  Flow Cytometry and Image Analysis 
of the Tumor and TME

The classical methods for confirming the identities of nontumor cells and associated 
immune infiltrates in the TME are either by flow cytometry or microscopic image 
analysis. Both methods require specific antibody labeling strategies to identify 
immune cell subsets and their phenotypic features (Gerner et al. 2012; Bayne and 
Vonderheide 2013). These two strategies provide uniquely different information, as 
microscopy allows spatial appreciation of cellular subsets, whereas flow cytometry 
provides high throughput and broader quantification of cellular changes. Flow 
cytometry is one of the most widely used immune profiling techniques for charac-
terizing the function of cells by exploring protein expression, cell subset frequency, 
cell function, immunophenotype, and ploidy (Maecker et  al. 2012; Van Dongen 
et al. 2012; Streitz et al. 2013). Immunofluorescence image analysis is a comple-
mentary approach to flow cytometry, providing accurate information of immune 
cell types and their specific cell-to-cell interactions in the tumor microenvironment 
(Koelzer et al. 2019). Both flow cytometry and imaging approaches are invaluable 
for investigating the common nontumor cell types in the TME and understanding 
how their presence might influence immunotherapy response. This information is 
now supported by newer single-cell sequencing methods that are providing more 
detailed transcriptomic descriptions of the diversity of cell types in the TME.

13.8  Single-Cell mRNA Sequencing Analysis of the TME

Single-cell mRNA sequencing (scRNA-seq) enables researchers to distinguish the 
various cell types present in a dissociated tissue sample based on cellular gene 
expression levels. The method is typically performed for many hundreds to thou-
sands of cells in a single experiment (Fig. 13.2b). Recent studies have shown that 
analyzing gene expression at the level of individual cells provides a much greater 
depth of analysis than earlier bulk methods (Lim et al. 2020). When combined with 
DNA sequencing, scRNA-seq allows appreciation of the in vivo impact of genomic 
alterations on gene expression. Importantly, scRNA-seq can assess the mutational 
variability and transcriptional pathways in cell populations present in the bulk tumor 
and the TME in an unbiased fashion at the level of individual cells. Gene expression 
analysis at the single-cell level can reliably distinguish neoplastic from nonneoplas-
tic cells, to correlate paracrine-signaling pathways between neoplastic cells and the 
immune cells in the TME and surrounding stroma (Müller and Diaz 2017).

The TME is largely divided into the immune and stromal components, which can 
both be readily resolved using scRNA-seq methods. Investigations of the single-cell 
transcriptomics of the immune TME is an area of intense interest due to the growing 
use and success of immunotherapy in some tumor types, but apparent lack of 
response in other cancers. Recent studies have used scRNA-seq to profile T cells in 
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tumors that fail to respond to treatment and have shown that a suppressive immune 
microenvironment is correlated with poor prognosis, in which increased T cell 
exhaustion signatures and decreased activated T cells were associated with clinical 
progression (Savas et al. 2018; Peng et al. 2019).

One of the most frequent immune cells present in the TME of solid tumors is the 
tumor-associated macrophage (TAM). TAMs have been previously classified by 
flow cytometric and imaging methods as M1 (inflammatory) or M2 (tumor- 
promoting). Analysis using scRNA-seq has shown that there is a continuum of mac-
rophage transcriptomic programs, with a large diversity of cell states, suggesting 
that this traditional classification of TAMs may need refining (Azizi et al. 2018). 
Other scRNA-seq studies indicate that signaling from the TME may promote the 
differentiation of immature myeloid cells toward an immunosuppressive phenotype 
(Song et al. 2019). Single-cell analysis has also shown TAMs to be transcriptionally 
distinct from monocytes and their respective tissue-resident macrophages (Cassetta 
et al. 2019).

Most scRNA-seq studies published to date have centered on research applica-
tions and refinements of this powerful new technology. As scRNA-seq becomes 
more widely used the platform is likely to have more applications in cancer immu-
notherapy and in single-cell genomic classifications at earlier stages in the disease 
course (Lim et al. 2020).

13.9  Future Directions for Cancer Transcriptomics

Emerging data shows that a complete understanding of the dynamics of gene expres-
sion in cancer and the cross-talk between tumor and immune cells requires more 
detailed transcriptomic maps of tumor sections. In 2020, spatially resolved tran-
scriptomics was designated method of the year in recognition of the potential of this 
technology in many areas of life science (Marx 2021). In the TME, there can be 
several subpopulations of cancer cells and intermingled nontumor cells that differ 
from each other completely in terms of both structural features and gene expression 
levels based on their location within the tumor. Proximity to endothelial cells, well- 
vascularized regions or areas of necrosis can all profoundly influence local gene 
expression. Spatially resolved transcriptomics provides a map of the spatial organi-
zation and the exact positions of variation in gene expression. The depth of spatial 
analysis is much greater than that obtained by bulk transcriptomic or scRNA-seq 
experiments (Asp et al. 2020). Spatial transcriptomic maps could be an important 
future tool for precision medicine in heterogeneous tumors where locally acting 
immune responses and clonal niches could be crucial for treatment decisions 
(Maniatis et al. 2021).

There is an increasing interest in using artificial intelligence (AI) to aid in the 
analysis of histological and other transcriptomic data (Yoosuf et al. 2020). AI typi-
cally uses deep neural networks to perform complex operations capable of captur-
ing patterns or models that are not recognizable by traditional statistical methods 
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(Koelzer et al. 2019). Deep learning based on neural networks can also be used in a 
discriminative way to identify groups and subgroups of cells, to scale and improve 
the visual representation of scRNA-seq data to replace principal component analy-
sis and classical unsupervised methods (Lin et al. 2017). Progress in recent years 
has shown that computing plays a crucial role in transcriptomics research, but it 
faces more challenges as new data is generated, leading to increased storage require-
ments and the need for supercomputers and life-science researchers highly skilled 
in AI and bioinformatics (Emani et al. 2021).
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Chapter 14
MicroRNAs in Cancer

Adriane F. Evangelista, Ana Julia A. de Freitas, Muriele B. Varuzza, 
Rhafaela L. Causin, Tatiana T. Komoto, and Marcia M. C. Marques

14.1  MicroRNAs: Characterization and Biogenesis

Due to a collection of studies on understanding the mechanisms of microRNA 
(miRNA) regulation, it was possible to verify that the dysregulation of miRNA 
expression can lead to the development and progression of numerous diseases in 
humans, such as cancer (Ardekani and Naeini 2010; Iorio and Croce 2012; Lages 
et al. 2012; Condrat et al. 2020).

Aberrant miRNA expression in cancer cells is mainly attributed to the localization 
of approximately 50% of miRNAs in fragile sites or regions, which, in turn, are 
more susceptible to genomic changes and associated with tumorigenesis (Calin 
et al. 2004; Marquardt et al. 2020). Another important factor that has been pointed 
out by the researchers in the field is the epigenetic changes that might induce aber-
rant miRNA expression (Fabbri et al. 2019; Barbieri and Kouzarides 2020), such as 
the methylation of miRNA genes (Huang et al. 2014; De Vuyst et al. 2015; Rogeri 
et al. 2018; Del Pino et al. 2019), as well as the activation, or even the inhibition of 
the biogenesis machinery of these small molecules (Lee et al. 2003; Chendrimada 
et al. 2005; O’Donnell et al. 2005). The first evidence of the involvement of miR-
NAs in cancer was based on the identification of the coding sequence of miR-15 and 
miR-16  in the 13q14 chromosomal region (Calin et  al. 2002), and this region is 
frequently deleted in chronic lymphocytic leukemia tumors. Since then, the dys-
regulation of miRNA expression has been demonstrated in a range of tumors, such 
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as breast cancer (Loh et al. 2019), colorectal cancer (Zhu et al. 2020), lymphoma 
(Fernandez-Mercado et al. 2015), and cervical cancer (Causin et al. 2021).

In humans, it has been estimated that about 2588 miRNAs regulate more than 
60% of human genes (Friedman et al. 2009; Shu et al. 2017), and thus, they have 
been shown to regulate key cellular processes, such as cell proliferation, DNA 
repair, differentiation, metabolism, and apoptosis (Forterre et al. 2020). Since the 
discovery of miRNAs in 1993, several studies have been conducted to understand 
the involvement of these molecules in normal physiological processes and the onset 
of a wide variety of diseases. Over 4700 different types of human miRNAs have 
been described so far, and this number is increasing rapidly (Griffiths-Jones 2004; 
miRBase 2021).

miRNAs are small noncoding RNAs (∼19 to 24 nucleotides) that originate from 
precursor RNAs and are involved in the posttranscriptional regulation of coding 
genes (Lin and Gregory 2015). This regulation of gene expression occurs at the 
posttranscriptional level through interaction with the 3′ untranslated region (3′UTR) 
of messenger RNAs (mRNA) (Sevignani et al. 2006).

miRNA biogenesis is a controlled process (Calin and Croce 2006); however, it 
has been reported that miRNAs are dysregulated in cancer. These mechanisms can 
cause the loss of critical biological processes, such as proliferation, differentiation 
(Houbaviy et al. 2003), apoptosis (Cheng et al. 2005), epithelial–mesenchymal tran-
sition (Harquail et  al. 2012), invasion, and migration (Armand-Labit and 
Pradines 2017).

The miRNA profile contributes to the molecular classification of tumors and can 
be associated with diagnosis, staging, progression, prognosis, and response to treat-
ment (Calin and Croce 2006). Studies have shown that miRNAs are present in body 

Fig. 14.1 The canonical pathway of miRNA biogenesis
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fluids, which allow noninvasive identification, and suggest that serum miRNAs may 
act as potential biomarkers (Ono et al. 2015; Larrea et al. 2016; Polasik et al. 2017).

The canonical pathway of miRNA biogenesis (Fig.  14.1) (Kim et  al. 2016) 
involves initial transcription by polymerase II (Pol II) of long RNAs called primary 
microRNA (pri-miRNA) (Bartel 2018), which possesses hundreds of nucleotides, 
and has 7-methyl guanosine at the 5′end, called cap 5′, and a polyadenylated 3′ tail 
(Cai et  al. 2004; Lee et  al. 2004; Neumeier and Meister 2020). A representative 
molecule of pri-miRNA exhibits a complex secondary structure, in the form of 
tweezers, each with a double-stranded rod and a handle containing noncomplemen-
tary bases and flank sequences (Bartel 2004). Then, the pri-miRNA is processed by 
a multiprotein complex called a multiprocessor. This process gives rise to a precur-
sor RNA (pre-miRNA), which has approximately 70–120 nucleotides. The multi-
processor complex is composed of the RNase III enzyme Drosha (Lee et al. 2003), 
which binds to a cofactor, called gene 8 of the critical region of DiGeorge syndrome 
(DGCR8) or Pasha (Denli et al. 2004; Gregory et al. 2004; Landthaler et al. 2004).

The newly transcribed pre-miRNA is then exported to the cytoplasm via exportin 
5 (Exp-5), which is a Ran-dependent nuclear transport receptor protein (Lund et al. 
2004; Yi et al. 2003). In the cytoplasm, the pre-miRNA clamp is processed again 
into mature miRNA duplexes, with approximately 18–23 nucleotides. This process 
is mediated by another RNAase III enzyme, Dicer-1, which is functionally active 
when bound to the RNA-binding proteins in response to transactivation (TRBP) 
(Chendrimada et al. 2005). The strands of mature miRNA are then separated, which 
depends on several factors, such as the thermodynamic asymmetry of the duplex, 
and stability of the base pairs at the 5′ end. miRNAs mature, together with the RNA- 
binding proteins mentioned above and others, including the 6A gene containing 
trinucleotide repeat (TNRC6A), whose protein is associated with the catalytic 
Argonaut proteins 1-4 (AGO 1-4), giving rise to a microribonuclear protein com-
plex (miRNP), called an RNA-induced silencing complex (RISC) (Schwarz et al. 
2003). The miRNA strand with the most stable pairing generally acts as a guide 
tape, while the strands with stable base pairing are usually degraded (Okamura et al. 
2009). This guide tape directs the RISC complex to the target mRNA through 
sequence complementarity and leads to its translational repression (Bartel 2018).

The mechanism of action of miRNAs involves the binding of miRNA to the 3′ 
UTR of the target mRNA, thereby resulting in the regulation of mRNA stability and 
protein synthesis (Bartel 2004, 2018). This posttranscriptional regulation mediated 
by miRNAs occurs through interaction (base pairing) in the 3′ UTR region and 
depends on the degree of complementarity between the miRNA and target 
mRNA. This interaction can lead to translation inhibition or mRNA degradation 
(Treiber et al. 2019). Imperfect pairing leads to the translation inhibition of the tar-
get mRNA, which is one of the major mechanisms of action of miRNAs in mam-
mals (Friedman et al. 2009). The small size of miRNAs and their ability to function 
without complete base pairing means that a single miRNA can regulate multiple 
mRNA targets and that multiple miRNAs can cooperatively regulate the expression 
of a single mRNA (Lin and Gregory 2015).
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Although the process of gene regulation through miRNA binding to the 3′ UTR 
region has been extensively studied, little is known about the regulation through the 
binding to the 5′ untranslated region (5′ UTR). This gene regulation mechanism of 
miRNAs has been demonstrated through several in vitro, in vivo, and in silico 
approaches, and a variety of tools have been developed to predict new targets and the 
function of miRNAs bound to the 5′ UTR (Da Sacco and Masotti 2012). Indeed, the 
gene regulation via the 5′ UTR is mainly known for its role in translational regulation, 
that is, dampening the translation through open upstream reading frames and second-
ary structures (Mignone et al. 2002). The first study to demonstrate such mechanism 
of the post-transcriptional regulation of gene expression by a 5′ UTRbound miRNA 
was conducted in Drosophila melanogaster. In this study, the authors reported that the 
interaction of miR-2 with the 5′ UTR region of the human 𝛽-globin gene inhibited the 
translation of the corresponding protein (Moretti et al. 2010).

Additionally, 5′ UTR regulation can provide a platform for miRNAs to bind and 
regulate the expression of target genes through a variety of other posttranscriptional 
mechanisms (Moretti et al. 2010; Dewing et al. 2012; Zhou and Rigoutsos 2014). It 
is important to note that genes that require fine regulation, such as growth factors, 
transcription factors, and proto-oncogenes, have been shown to possess longer 5′ 
UTR, providing more opportunity for such regulation (Mignone et al. 2002), as is 
the case with the regulation of ATXN1 gene expression that occurs through the pair-
ing of the 5′ UTR to miR-760 (Nitschke et al. 2020).

Classically, the interaction between the miRNA and mRNA targets leads to the 
translation repression of the mRNA (Ha and Kim 2014) through various mecha-
nisms. Functionally, an miRNA can regulate the expression of protein coding as 
well as noncoding transcripts in a specific way, mainly through complementarity 
with the specific miRNA seed sequence (Bartel 2018). This interaction can impair 
the stability of mRNA and/or the translation of a specific protein, thereby leading to 
a reduction in the mRNA and/or protein expression levels (Filipowicz et al. 2008). 
The evidence on the mechanism of action of miRNAs has shown a new perspective 
on the complexity of posttranscriptional regulation exerted by these small mole-
cules (Brennecke et al. 2005; Barbieri and Kouzarides 2020). Previously, the degree 
of complementarity between the miRNA and its mRNA targets was considered an 
important factor for determining the mode of translational repression (Bartel 2018). 
High complementarity can promote target cleavage mediated by Argonaute (AGO) 
protein, while complementarity to the seed sequence can lead to translation inhibi-
tion, and this is the most common mode of action of miRNAs (Moran et al. 2017). 
However, studies have revealed that approximately 60% of mammalian coding 
genes are regulated by miRNAs (Friedman et al. 2009; Lages et al. 2012). Although 
the regulatory mechanisms between the miRNAs and their respective targets are not 
yet fully understood; however, the literature has shown that these molecules are 
involved in numerous biological processes that are essential for cell survival (Iorio 
and Croce 2012; Lages et al. 2012) and that the imbalance of this regulation contrib-
utes to the development of numerous diseases (Ardekani and Naeini 2010; Tüfekci 
et al. 2014), especially cancer (Lages et al. 2012).
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There are other noncanonical pathways of miRNA biogenesis, including a 
miRNA derived from an intronic region of mRNA by splicing independent of 
Drosha processing and a miRNA cleaved by specific poly (A) ribonuclease (PARN) 
independent of Dicer cleavage (Treiber et al. 2019).

Independent microRNAs (miRNAs) include mirtrons and tailed mirtrons, which 
are produced from the mRNA intronic regions during splicing. These RNAs are 
exported directly to the cytoplasm via exportin 1, without the need for Drosha cleav-
age. Dicer-independent miRNAs are processed from endogenous RNA transcripts 
by Drosha. Pre-miRNAs require AGO2 protein to complete their maturation within 
the cytoplasm because they are not long enough to act as a Dicer substrate (O’Brien 
et al. 2018).

In cancer, the mechanism of action of miRNAs is not different, given that these 
small molecules act in two different ways in the molecular pathways of tumor 
development. miRNAs are considered as “oncomiRs” when an increase in their 
expression contributes to the malignant transformation of normal cells, favoring the 
development and survival of these cells, or conversely, as tumor suppressor mole-
cules, in reverse (Lages et al. 2012). The classification of miRNA between oncomiR 
or tumor suppressor miRNA is based on the evidence of its functional role in many 
types of tumors (Lages et al. 2012; Tutar et al. 2014). Several miRNAs have been 
described as tumor suppressor oncomirs (Jiang et al. 2009). In fact, miRNAs are 
natural cellular components and include an intrinsic signature that can guarantee 
specificity to the target. Thus the identification and understanding of the functional 
role of these unregulated molecules can be useful tools in the screening, diagnosis, 
and prognosis of several tumors, as well as in the development of personalized 
therapies. The miRNAs are natural cellular components possessing an intrinsic sig-
nature that guarantees target specificity. Therefore, the understanding of the func-
tional role of these dysregulated molecules can act as useful tools for the screening, 
diagnosis, and prognosis of several tumors, as well as for the development of per-
sonalized cancer treatments.

14.2  Dysregulation of miRNA Expression in Human Cancer

miRNAs have been outstanding for molecular knowledge in human cancers, as they 
are involved in many cellular processes, as mentioned previously. Additionally, the 
small size of miRNAs and their ability to act without complete base pairing indicate 
that a single miRNA can regulate multiple mRNA targets and that multiple miRNAs 
can cooperatively regulate the expression of a single mRNA (Gebert and MacRae 
2019). Recently, it has been proposed that the pathogenesis of cancer involves, 
among other macromolecules, the miRNAs, and their expression profiles are associ-
ated with the diagnosis, prognosis, and therapeutic responses of a variety of human 
cancers, as well as it can be considered as potential cancer biomarkers (O’Brien 
et al. 2018; Mollaei et al. 2019).
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The miRNAs involved in neoplastic processes can be classified as oncomiRs and 
tumor suppressors, which means that the former acts as negatively regulating the 
tumor suppressor genes and the latter as an oncogene (Mollaei et al. 2019; Abd- 
Aziz et al. 2020). In summary, oncomiRs are the miRNAs that are related to tumor 
progression, as they are able to silence some tumor suppressor genes; therefore, 
they are mostly involved in processes, such as an increase in cell growth and metas-
tasis. Conversely, miRNA tumor suppressors act inversely, which means inhibiting 
oncogenic genes related to tumorigenesis. Usually, this type of miRNAs are down-
regulated in tumors, and they are involved in several cellular mechanisms, such as 
genomic alterations, epigenetic alterations, and alterations in miRNA processing 
(Zhou et al. 2017; Mollaei et al. 2019).

For example, the group of polycistronic transcript derived miRNAs, known as 
the miR-17-92 cluster, which is located on chromosome 13q31, is found to be 
upregulated in the lung, colon, and gastric cancer, as well as lymphoma (Osada and 
Takahashi 2011; Concepcion et al. 2012; Fang et al. 2017), and it is considered to 
be potentially oncogenic because of its ability to modulate E2F1 expression and 
consequently inhibit apoptosis mediated by c-Myc via the p53 pathway (Rinaldi 
et al. 2007; Abd-Aziz et al. 2020). Moreover, this miRNA downregulates phospha-
tase, tensin homolog, and RB2 (tumor suppressor genes) mediated by the protein 
kinase B signaling pathway to promote tumor cell survival (Shuang et al. 2013; Tan 
et al. 2018). Another example of oncomiR is miR-21, which is commonly found to 
be overexpressed in different tumors and has been demonstrated to have multiple 
targets and regulate different pathways and genes. MiR-21 has been shown to be 
involved in cell proliferation, metastasis, invasion, and chemoresistance (Abd-Aziz 
et al. 2020).

Conversely, the miRNA let-7, classified as a tumor suppressor, is downregulated 
in several tumor types, and its reduced expression is associated with poor prognosis 
(Boyerinas et al. 2010). Studies have demonstrated that the overexpression of let-7 
can inhibit some important oncogenes related to tumor development and progres-
sion, such as MYC, RAS, E2F1, E2F5, LIN28, ARID3B, HMGA2, and long noncod-
ing RNA H19 (Chirshev et al. 2019). Additionally, let-7 expression correlates with 
the presence of cancer stem cells (CSCs). Therefore, once overexpressed, it can 
reduce the expression of CSC indicators, nestin and CD133, in glioblastomas, and 
that of ALDH1 in breast cancer (Song et al. 2016; Sun et al. 2016; Chirshev et al. 
2019). The miR-34 family (miR-34a, miR-34b, and miR-34c) is another important 
miRNA, similar to let-7, the expression of which is also reduced in many tumors, 
such as lung, breast, colon, and others (Li et al. 2013; Liu et al. 2011; Okada et al. 
2014; Rokavec et al. 2014). They are described as miRNAs regulated by p53 (tumor 
suppressor), as they directly target the antiapoptotic proteins, Bcl-2 and SIRT1 (Li 
et al. 2013; Okada et al. 2014), and that their depletion is also related to metastasis 
and cancer recurrence, whereas their induction is associated with the improvement 
of apoptosis and efficacy of chemotherapy and radiation (Abd-Aziz et al. 2020).

Since more than 50% of miRNA genes are located in cancer-associated genomic 
sites (Friedman et al. 2009; Spengler et al. 2014), implying that miRNAs might play 
an important role in the pathogenesis of cancer. Therefore, previous studies have 
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shown that miRNA expression can be used as a molecular biomarker (Tan et al. 
2018); thus, based on their expression signatures, it is possible to differentiate nor-
mal cells from neoplastic cells at the molecular level and can be used to distinguish 
between several cancer types (Calin and Croce 2006).

An increasing number of studies on miRNAs have demonstrated that they play 
very important roles in the onset of cancer, such as proliferation, invasion, and 
metastasis (Abd-Aziz et al. 2020). The biggest problems related to cancer are asso-
ciated with the angiogenesis and metastatic capacity of these cells. Therefore, the 
involvement of miRNAs in tumor metastasis has been intensely investigated in 
recent years. The role of miRNAs in metastasis was initially discovered by Ma et al. 
(2007), who demonstrated that miR-10b initiates invasion and metastasis in breast 
cancer. Additionally, some miRNAs are shown to modulate the expression of sev-
eral genes related to both metastasis and angiogenesis; for example, miR-29c over-
expression can downregulate the VEGF gene (vascular endothelial growth factor) 
and inhibit angiogenesis. Moreover, once miR-29c is upregulated in glioma cells, it 
has been shown to suppress migration and invasion of cells using an in vitro assay 
(Fan et  al. 2013). Similarly, miR-497 has been shown to inhibit angiogenesis in 
breast cancer through targeting VEGFR2 (Tu et al. 2015).

miRNAs are also associated with metalloproteinases (MMPs), which are 
essential for tissue remodeling in cancer angiogenesis and metastasis. The 
overexpression of miR-9 can inhibit MMP14 levels, which leads to the reduction of 
angiogenesis, invasion, and metastasis in neuroblastoma cells (it has been proved 
using in vitro and in vivo experiments) (Zhang et al. 2012). Moreover, MMP14 is a 
direct target of miR-181-5p in breast cancer cells, which may reduce their invasion, 
migration, and angiogenesis (Li et al. 2015; Lou et al. 2017). Together, these studies 
have revealed a balance between miRNAs as both the stimulators and inhibitors of 
metastasis, leading to the identification of several potential targets representing a 
molecular link between the loss of miRNA expression and specific behavior of a 
given tumor.

The other biggest problem associated with cancer is drug resistance; this process 
is complex and consists of many pathways, two of which are described here. First, 
the main mechanism of drug resistance is based on ATP-binding cassette proteins, 
which are a group of transmembrane proteins involved in the assimilation and secre-
tion of cytotoxic compounds. P-glycoprotein (Pg-p) is responsible for drug resis-
tance to a wide range of chemotherapeutic agents (Geretto et al. 2017). Therefore, 
many miRNAs regulate Pg-g expression and its activity (Garofalo and Croce 2013), 
such as miR-145 in intestinal cells (Ikemura et al. 2013), and miR-130 is related to 
cisplatin-resistant ovarian cancer cells (Yang et al. 2012). Conversely, miR-137 can 
reduce MCF-7 doxorubicin-resistance through targeting Y-box-binding protein-1 
(YB-1) and subsequently downregulates the expression of Pg-p (Zhu et al. 2013). 
Another way by which tumor cells exhibit resistance is associated with DNA mis-
match repair (MMR) genes. The lack of this pathway leads to drug resistance, inhib-
iting the cells to recognize the damage and then activate apoptosis. Additionally, 
indirect damage to this mechanism results in genome instability, and consequently 
an increase in the rate of mutation (Geretto et al. 2017).
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While analyzing the information and assuming that miRNAs could be utilized as 
an alternate tool for cancer treatment, there are two therapeutic strategies aimed at 
re-establishing physiological miRNA expression in cancer cells, including the inhi-
bition of oncomiR activity and restoration of tumor suppressor miRNA activity 
(Abd-Aziz et al. 2020). To inhibit the oncomiRs overexpressed in tumor cells, there 
are four strategies, including anti-miR oligonucleotides (AMO), locked nucleic acid 
(LNA), miRNA antagomiRs, and miRNA sponges (Shah et  al. 2016). All these 
methods consist of miRNA inhibitors that exhibit complementarity to a single- 
stranded oligonucleotide and are able to isolate the endogenous miRNA in an unnat-
ural structure, leading to the inactivation and elimination of mature miRNAs from 
the RISC complex (Shah et al. 2016; Abd-Aziz et al. 2020). Conversely, to restore 
miRNA, we commonly focus on inducing apoptosis or inhibiting cell tumor prolif-
eration, which can be mediated using synthetic miRNA mimics or a viral vector 
expressing the miRNAs of interest (Shah et al. 2016). However, despite the attention 
that these strategies have received, some challenges remain to be addressed for their 
success. The main strategy is to effectively deliver either the miRNA antagonists or 
mimics directly into the tumor mass and to preserve their integrity and stability 
while in circulation (Yu et al. 2009; Jain and Stylianopoulos 2010; Paliwal et al. 
2015). Another important point is the off-target side effects of these miRNAs (Wang 
et al. 2018; Segal and Slack 2020). Since they bind to multiple targets due to imper-
fect pairing in the 3′ UTR region, they exhibit the disadvantage of silencing many 
tumor suppressors, inducing potential toxicities, and reducing therapeutic effects 
(van Dongen et  al. 2008; Meng and Lu 2017; Abd-Aziz et  al. 2020). Therefore, 
gathering this knowledge, it can be inferred that many ongoing studies are still aim-
ing to achieve success.

Finally, these findings are important not only because they represent a new field 
of research, but also because they finely dissect the molecular pathways in which 
miRNAs are involved in, such as tumor development. The abnormal expression of 
miRNAs in tumors, which is characterized by differential expression levels of the 
mature miRNA or miRNA precursor sequences compared to that in normal cells, 
has proven to be the main abnormality of the “miRNome” (the genome-wide set of 
miRNAs) observed in cancer cells.

14.3  Circulating miRNAs: Novel Biomarkers for Cancer

The potential use of miRNAs as biomarkers in several diseases has been explored, 
as these molecules are involved in important cellular processes, such as the regula-
tion of posttranscriptional processes (Bracken et  al. 2016). Considering that the 
dysregulation of miRNA expression is tissue specific, many studies have focused on 
exploring the potential use of miRNAs as biomarkers in cancer. These molecules 
could be used as tools for diagnosis and molecular subtyping, early detection, and 
therapeutics, and even to predict the disease (Wang et al. 2018; Sohel 2020).
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Circulatory miRNAs are found in the circulation and can be assessed in biofluids, 
such as plasma, serum, urine, semen, and saliva, making it easier to examine a 
sample to be analyzed. The first tumor-specific miRNA was discovered in the serum 
of patients with B-cell lymphoma, wherein the increase in the expression of miR21 
was associated with an increase in disease-free survival (Lawrie et al. 2008), and 
now, it has been identified in several types of cancer (Sohel 2020). Various studies 
have demonstrated the potential use of serum or plasma miRNAs as potential non-
invasive biomarkers of different types of human cancers.

The potential use of miRNAs as biomarkers in the diagnosis and prognosis of 
cancer is primarily due to their stability and resistance for long periods under condi-
tions that would normally lead to the degradation of other types of RNAs. However, 
the mechanism underlying miRNA resistance is not clearly understood yet. 
Moreover, two hypotheses have been proposed. The first is based on the molecular 
structure of the incorporating lipoprotein membrane-derived vesicles, such as high-
density lipoproteins, exosomes, and microvesicles. The second hypothesis suggests 
that miRNAs are associated with protein complexes (Sohel 2020).

A study has shown that miRNAs are preserved in serum samples stored for 
10 years (Valadi et al. 2007; Patnaik et al. 2010). The stability of these molecules 
can be partially explained by the discovery of these lipoprotein complexes, which 
are loaded with miRNAs (Valadi et al. 2007), messenger RNAs (El-Hefnawy et al. 
2004), and proteins (Smalheiser 2007; Doyle and Wang 2019).

These vesicles are generally characterized into two major classes based on size: 
a smaller class of approximately 30–100 nm called exosomes, and a larger class of 
approximately 100 nm–1 𝜇m called microvesicles (Doyle and Wang 2019). These 
microvesicles are formed by the internalization of the endosomal membrane to form 
multivesicular bodies that can subsequently merge with the plasma membrane, 
releasing the exosomes to the outside environment of cells (Théry et  al. 2002; 
Michael et  al. 2010). In circulation, these exosomes can export miRNAs to the 
recipient cells through endocytosis. After entering the cell, the delivered miRNAs 
are processed by the same machinery used for their biogenesis and can regulate 
gene expression in the recipient cells, leading to physiological modification.

Exosomes carrying miRNAs can be found not only in blood but also in other 
fluids, such as saliva and urine (Michael et  al. 2010). Recently, exosomes have 
emerged as important mediators of cellular communication that are involved in nor-
mal physiological processes, such as immune response, lactation, and neuronal 
function (Admyre et al. 2007), as well as in the development and progression of 
diseases, such as cancer (Record 2013). In a recent study, the expression profile of 
miRNAs in the extracellular vesicles has been evaluated to predict the response 
upon treatment with anti-PD-1/PD-L1 in patients with non-small cell lung cancer 
(Shukuya et al. 2020).

In the context of cancer, this mechanism has been clearly demonstrated in 
glioblastoma patients where the tumor cells exported exosomes containing mRNA, 
miRNA, and angiogenic proteins that were detected through EGFRvIII receptors by 
normal cells, such as brain microvascular endothelial cells (Skog et al. 2008). In this 
study, it was shown that the cargoes delivered by the tumor-derived exosomes 
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containing miRNAs could promote tumor progression. Furthermore, the results of 
this study showed that patients with cancer exhibited higher levels of exosomes in 
their plasma compared to those in control subjects. A recent review illustrated the 
application of exosomes as a glioblastoma biomarker (Giusti et al. 2017).

An interesting prospective study has shown that the tumor-specific miRNAs, 
such as miR-195, are differentially expressed in the circulatory system of women 
with breast cancer compared to those in the healthy control group. Furthermore, it 
was demonstrated that post tumor resection, the serum levels of miR-195 and let-7a 
were reduced (Heneghan et al. 2010). Another study showed that the analysis of the 
combined expression of miR-21, miR-210, miR-155, and miR-196a in plasma 
could help distinguish the patients with breast adenocarcinoma from the control 
subjects (Wang et al. 2009). The miRNA expression profile was determined using 
the entire genome of the serum sample of patients with triple-negative breast cancer, 
which revealed a signature of four miRNAs (miR-18b, miR-103, miR-107, and 
miR652) that could help predict tumor recurrence and overall survival (Kleivi 
Sahlberg et al. 2015). Moreover, the identification of miRNAs can provide more 
information regarding the molecular subtyping of these neoplasms (Souza 
et al. 2019).

The use of miRNAs as biomarkers has also been studied in other types of cancers 
other than breast cancer. A recent study identified a group of miRNAs (miR-19b3p, 
miR-26b-5p, miR-25-3p, and miR-301a-3p) in patients with ovarian cancer that 
target important genes involved in tumorigenesis, such as PTEN, TP53, and ERBB2 
(Penyige et al. 2019). In another study, the authors evaluated the expression of sev-
eral miRNAs and identified a set of miRNAs (miR-873-3p, miR-149-5p, miR124-
 3p, miR-218-5p, miR-490-5p, miR-323a-3p, miR-10b-3p, miR-375, and 
miR-129-5p) with increased expression according to the advanced stage of neuro-
blastoma (Zeka et al. 2018). In prostate cancer, high expression of miR-17, mir-20a, 
mir-20b, and mir-106 has been shown to predict high-risk and high-stage diseases 
(Hoey et al. 2019). Several studies have identified the function of miRNAs and their 
potential use as biomarkers.

The use of miRNAs as cancer biomarkers relies on scientific evidence and the 
studies that aim to identify tissue-specific miRNAs detectable in biofluids to estab-
lish molecular signatures capable of characterizing the health status of the patients. 
Therefore, circulating miRNAs in body fluids and in extracellular compartments 
can act as hormones, which can trigger changes in the cellular gene expression 
through components secreted by a donor cell at the primary tumor site. Therefore, 
further studies are still required to be conducted to standardize the circulating miR-
NAs as biomarkers, as well as the techniques used to obtain high sensitivity and 
specificity (Sohel 2020; Valihrach et al. 2020).
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14.4  Computational Approaches for miRNA Target 
Identification and Their Application 
in Cancer Research

Considering the role of the miRNAs in regulating gene expression of several cellular 
processes, the characterization of potential mRNA targets is crucial to understanding 
the mechanisms underlying the development of diseases, including cancer. (Bartel 
2004; Sevignani et al. 2006; Peng and Croce 2016). It has been estimated that a 
single miRNAs can bind to approximately 200 transcripts on average (Friedman 
et al. 2009). A recent discovery of a new class of miRNA targets that seems not to 
depend on seed pairing suggests other complex rules for miRNA–mRNA interactions 
in vivo (Chipman and Pasquinelli 2019). However, the function of these molecules 
in cancer development and progression seems to be related to the regulation of a few 
critical targets, providing an entry point into the promising antisense miRNA-based 
therapeutic modalities (Peng and Croce 2016). Among the numerous challenges for 
the application of these strategies in clinical practice is the validation of their targets 
(Shah and Shah 2020; Marceca et al. 2021).

The first database designed to catalog the sequences of miRNAs as soon as they 
are identified was miRBase (www.mirbase.org). This database serves as a reposi-
tory for sequences and annotations, providing access to virtually all published miR-
NAs (Griffiths-Jones 2004). Currently, the database is in version 22.1 (from October 
2018) and consists of 38589 entries of 271 species, representing 1917 human 
miRNA precursor hairpins and 2654 mature sequences (Kozomara et al. 2019). This 
interface provides information about miRNA structure, genome location, and 
expression data and links out to some well-established third-party tools providing 
predicted and validated targets, such as TargetScan (Agarwal et  al. 2015), 
DIANAmicroT (Maragkakis et  al. 2011; Paraskevopoulou et  al. 2013), miRDB 
(Wong and Wang 2015), TarBase (Karagkouni et al. 2018), and miRTarBase (Chou 
et al. 2018). The basic principles of the tools will be discussed below. It is important 
to emphasize that with the advance of large-scale technologies, especially next- 
generation sequencing, new miRNAs have been reported at a high rate (Cordero 
et al. 2012; Stäehler et al. 2012; Siddika and Heinemann 2021), and the miRBase 
increased more than a third over the previous release (Kozomara et  al. 2019). 
Furthermore, other related databases reporting miRNA information are currently 
available, such as Rfam, which is synchronizing microRNA families with miRBase 
(Kalvari et al. 2021), the intragenic database miRIAD (Hinske et al. 2014), and the 
miRNA transcription start sites tracking program (mirSTP) (Liu et al. 2017).

Overall, the vast amount of available bioinformatics tools applied to miRNA 
research has been classified into different categories (Table 14.1). Initially, it was 
separated into two broader categories (Lindow 2011). The first includes those with 
precomputed predictions, in which the user does not need to perform all the steps 
but can search by miRNA name or related identification. The second consists of a 
server that allows the user to add their sequences for the analysis, making the pre-
diction more versatile. This classification was mainly based on sequence-based 
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target prediction algorithms, not considering the stand-alone platform tools and the 
more recent algorithms based on experimental methods (Lindow 2011). With the 
increasing number of tools for miRNAs analysis using several computational strate-
gies, other classifications have emerged.

In this context, Chen et al. (2019) manually curated several reviews, accounting 
for more than 1000 miRNA bioinformatics tools published from 2003 to 2018 (last 
update) and organized in a comprehensive database called miRToolsGallery. This 
knowledge base classified the miRNA tools into four major categories: miRNA 
sequence and annotation, miRNA target gene prediction, novel miRNA discovery, 
and miRNA expression profiles. A more recent review categorized the miRNA tools 
available into three major categories: strategies for de novo predictions, machine 
learning tools, and operative strategy (Riolo et al. 2020). These classes are tentatives 
to organize the tools according to different criteria and are described in Table 14.1. 
The basic principles of some algorithms are discussed below.

This section mainly addresses the computational tools for target prediction and 
strategies that have been applied to the study of cancer. It is not an extensive list of 
methods available but a guide to the most common principles and an overview of 
the downstream analysis that can help users to extract useful biological information.

One of the basic principles widely used by these algorithms is seed pairing 
(Agarwal et  al. 2015, 2018). In plants, complementary base pairing between 

Table 14.1 General classification of microRNA tools according to selected publications

Classes Description Reference

Pre-computed 
predictions

Search by miRNA name or another identification; Lindow 
(2011)

Web-based 
analysis tool

User sequence and parameter setting.

Sequence and 
annotation

Sequence annotation registry databases; Chen et al. 
(2019)

Target gene 
prediction

Characteristics of the miRNA sequence (structure-based, 
evolutionary conservation, machine learning, 
thermodynamic stability, integrated approach);

Novel miRNA 
discovery

Next generation sequencing (NGS)-based;

miRNA expression 
profiles

Next generation sequencing (NGS) and other experimental 
methods to identify miRNAs binding sites.

Predictive methods 
(de novo 
predictions)

Characteristics of the miRNA sequence and/or based on the 
miRNA–mRNA interaction (seed pairing, thermodynamic 
stability, evolutionary conservation, accessibility target site, 
number of targets in the same 3′ UTR)

Riolo et al. 
(2020)

Predictive methods 
(Machine learning 
tools)

The miRNA target identification follows the miRNA–mRNA 
interactions with proven biological significance (pattern 
discrimination between actual and false targets);

Operative strategy Combination of tools derived from different predictions 
methods, allowing a good balance between sensitivity and 
specificity.
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miRNAs and their targets is almost perfect. Only a portion of the miRNA binds 
directly to the target in mammals, making prediction a challenging task (Bartel 
2009). Thus, several rules have been established to identify targets based on 
sequence complementarity. This pairing is essential in positions 2–8 (seed region) 
at the 5′ end of the miRNA, or a high degree of similarity in the 3′ end of the miRNA 
can compensate for low complementarity in the seed region (Rajewsky 2006; Bartel 
2009). Furthermore, the types of miRNA seed sequences vary in size and type, 
namely 8mer-A1 (positions 2–8 with match with an A opposite position 1), 7mer-
m8 (position 2–8 match), 7mer-A1 (position 2–7 match with an A opposite position 
1), 6mer (position 2–7 match), and offset-6mer (position 3–8 match) according to 
the sites matching in the miRNA seed region, with different regulatory efficiencies 
that are considered by these tools (Grimson et  al. 2007; Friedman et  al. 2009; 
Agarwal et al. 2015, 2018). Some additional criteria include the permission of G:U 
pairing, which may affect the repression capacity of the miRNA, among others.

Other well-used strategies include thermodynamic stability, accessibility to the 
target site, conservation patterns, among others. The miRNA target prediction tools 
based on thermodynamic stability consider the free energy estimate of the miRNA–
mRNA interactions. When the free energy is low, more thermodynamically stable 
are the complexes (Akhtar et al. 2019). Furthermore, the mRNA 3′-UTR should be 
accessible for miRNA targeting and has been used by several tools. Algorithms 
based on 3′-UTR site accessibility usually rank the targets based on a calculated 
score (Robins et al. 2005). Moreover, several algorithms use conservation patterns 
for target prediction to reduce the number of false positives in such analyses. This 
approach is based on the principle that evolution selects and conserves useful bio-
logical functions (Riolo et  al. 2020). However, not all sites are necessarily con-
served, nor necessarily imply functionality. Nevertheless, conservation is of 
relevance in cancer. MicroRNAs reported to be oncogenes, or tumor suppressors are 
frequently conserved across species (Wang et al. 2010). Thus, considering the bal-
ance between the limitations and importance of such an approach in some cases, it 
is strongly recommended to combine these methods with other nonconservation 
models (Akhtar et al. 2019; Riolo et al. 2020).

As a few examples, the most popular computational tools that follow these rules 
and predict targets based mainly on sites in the 3′ UTR of the target are DIANAmicroT 
(Maragkakis et al. 2011; Paraskevopoulou et al. 2013), miRanda (Betel et al. 2010), 
PicTar (Krek et  al. 2005), PITA (Kertesz et  al. 2007), RNAhybrid (Rehmsmeier 
et al. 2004), and TargetScan (Grimson et al. 2007). Moreover, several tools have 
recently been developed to study the interactions between miRNAs and the 5′ UTR 
(or CDS) of target genes, such as miBridge, miRTar, miRWalk, and SfoldSTarMirDB 
(Da Sacco and Masotti 2012). Other widely used tools that allow the combination 
of several popular algorithms for target prediction are MAMI (MAMI 2021), miR-
Gen (Megraw et al. 2007), and miRDip (Tokar et al. 2018).

Recently, new experimental methods for large-scale target validation have emerged, 
such as Stable Isotope Labeling by Amino acids in Cell culture (SILAC), which is a 
mass spectrometry (MS)-based quantitative proteomics used for miRNA target 
screening (Vinther et  al. 2006), and Photoactivatable-Ribonucleoside- Enhanced 
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Crosslinking and Immunoprecipitation (PAR-CLIP), which is a biochemical method 
used for identifying microRNA- containing ribonucleoprotein complexes (miRNPs) 
(Hafner et al. 2012), among others. These new methods have provided more robust 
results in this field and the creation of several computational tools. Other methods 
such as correlations, probabilistic methods, regression, and associations with tran-
scription factors have been proposed to assess miRNA–mRNA networks based on 
gene expression data (Joung et al. 2007; Li et al. 2010).

Therefore, using a variety of tools is recommended to computationally search for 
the most representative targets and avoid false-positive data. Witkos et al. (2011) 
postulated that prediction methods considered efficient contain the four steps shown 
in Table 14.2. In line with this guide, a more recent approach described by Kern 
et  al. (2020) suggests a six-step questionnaire that combines tools as a possible 
remedy for the limitations of using a distinct methodology (Table 14.2). An interac-
tive webpage, freely available, can help users perform tool selection based on such 
criteria (https://ccb- web.cs.uni- saarland.de/mtguide). Both options are valuable for 
the best practices on miRNA target identification.

Furthermore, it is important to address the large amounts of data that are 
generated from large-scale transcriptome studies or large-scale target prediction. 
Usually, they can be summarized using functional enrichment analysis. The goal of 
this strategy is to provide a statistical method to estimate the enrichment, i.e., the 
higher- than- expected representation, of certain functional categories, excluding 
functional terms that could be identified by chance. Several tools use Fisher’s exact 
test to estimate enrichment. Databases such as the popular DAVID (Database for 
Annotation, Visualization and Integrated Discovery) analyze data based on Gene 
Ontology (GO) functional categories and pathways from databases such as KEGG 
(Kyoto Encyclopedia of Genes and Genomes) and others (Huang et  al. 2009). 
Another option well used in cancer research includes the clusterProfiler package, 
which compares Gene Ontology and Disease Ontology terms, KEGG pathways, 
Network of Cancer Genes (NCG) information Molecular Signatures Database 

Table 14.2 Recommendations for selection of tools for microRNA target prediction and 
combination

Analysis steps Reference

(1) Use of several algorithms with different methods for confirmation; Witkos et al. 
(2011)(2) Comparisons between mRNA and microRNA expression profiles;

(3) Consideration of nearby sites that may act synergistically;
(4) Experimental validation or subsequent functional assays.
(1) Organism identification; Kern et al. 

(2020)(2) Selection of the target region (3′ UTR, 5′ UTR, coding sequences or entire 
mRNAs);
(3) Input settings (sequences, expression levels, or both);
(4) List type (target sites, target transcripts, or both);
(5) If NGS data should be considered (if available);
(6) Preference between the original features of the tools (seed sequence, free 
energy, site accessibility, machine learning) or a consensus of their prediction.
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(MSigDB), and customized ontology among gene clusters and has been updated 
more frequently (Yu et al. 2012).

Finally, there are some databases, which are generally manually curated from the 
literature, that compile information about diseases to derive biologically relevant 
information from lists of miRNAs and assist downstream analysis. Among the most 
well known are miR2Disease, which addresses 163 diseases (Jiang et al. 2009), and 
the Human microRNA Disease Database (HMDD) v3.2 (from March 2019), which 
provides information about microRNAs for 850 diseases and from approximately 
30,000 experimentally supported miRNA–disease associations (Huang et al. 2019). 
In the cancer research, the ReactomeFIViz (Wu et al. 2014) provides information 
regarding pathway enrichment, cancer drugs, and the Cancer Gene Index (https://
wiki.nci.nih.gov/display/cageneindex), and has been used recently by our group 
(Pessôa-Pereira et al. 2020; Evangelista et al. 2021). Furthermore, data from The 
Cancer Gene Atlas (TCGA) is an important resource for cancer research and data-
bases, such as OMCD (OncomiR Cancer Database), has now supporting informa-
tion from TCGA data and accounting for more than 9500 patients from 33 tumor 
types (Sarver et al. 2018). In summary, these tools provide evidence of the role of 
microRNAs from their targets, with approaches that can be used in cancer research.
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15.1  Introduction

Diabetes Mellitus (DM) is a known important worldwide public health problem 
with the number of cases increasing every year. According to the International 
Diabetes Federation, there were approximately 463 million people between the ages 
of 20 and 79 years with diabetes worldwide in 2019. This number is projected to 
reach 578 million by 2030, and 700 million by 2045 (International Diabetes 
Federation 2019). The two major forms of DM are type 1 diabetes mellitus (T1DM) 
and type 2 diabetes mellitus (T2DM). T1DM is an autoimmune disorder that occurs 
predominantly in young individuals, resulting from a destruction of the insulin- 
producing β-cells by immune cells, which culminates in insulin deficit. T2DM is 
more common in middle-aged people or above (Newsholme et al. 2016).

Therefore, DM is a chronic metabolic disease that arises from a deficiency of the 
organism in insulin secretion and/or insulin resistance in the peripheral tissues, 
which, in turn, leads to chronic high blood glucose levels or hyperglycemia. 
Ultimately, chronic hyperglycemia has been implicated in long-term complications 
involving a variety of organs, including kidneys, eyes, heart, nerves, and blood ves-
sels (International Diabetes Federation 2019). Individuals are diagnosed with 
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diabetes when displaying the following clinical characteristics: glycated hemoglo-
bin levels (HbA1C) ≥6.5% (48 mmol/mol), fasting plasma glucose levels (FPG) 
≥126  mg/dL (7.0  mmol/L), 2-h plasma glucose levels after 75  g glucose load 
≥200 mg/dL (11.1 mmol/L) (in the absence of unequivocal hyperglycemia, these 
three parameters should be confirmed by retaking the test), or for individuals with 
classic hyperglycemic symptoms/hyperglycemic crisis, casual plasma glucose lev-
els ≥200 mg/dL (11.1 mmol/L) (International Diabetes Federation 2019).

There is evidence of an association between oxidative stress and both types of 
DM. Interestingly, while oxidative stress can be a consequence of these disorders 
due to hyperglycemia, it can also be a contributing factor to the pathogenesis of both 
T1DM and T2DM, considering that reactive molecules play a crucial role in pancre-
atic β-cell damage, in addition to the damage to other tissues and biological 
macromolecules.

15.1.1  Oxidative Stress

The advancement of age imposes a progressive increase in the production of reac-
tive oxygen species (ROS), and also a reduced antioxidant defense capacity of the 
body (Cui et al. 2012). ROS encompass a group of reactive molecules produced 
from molecular oxygen by reduction–oxidation (redox) reactions. These molecules 
can be divided into non-radicals and free radical species. The superoxide anion radi-
cal (O2

•–) and the hydroxyl radical (OH•) are commonly referred to as free radicals 
because they have at least one free electron. Hydrogen peroxide (H2O2), singlet 
molecular oxygen (1O2), and hypochlorous acid (HOCl) are some major known 
non-radical species (Collin 2019; Sies and Jones 2020). ROS are normal byproducts 
of cellular metabolism generated by various endogenous and exogenous sources. 
The main endogenous sources are the mitochondrial electron transport chain and 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. However, ROS 
can also be produced in different cell compartments (such as the endoplasmic retic-
ulum [ER], lysosomes, peroxisomes, and membranes) by the action of various stim-
uli (nutrients, growth factors, hormones, cytokines, and others) (He et al. 2017; Sies 
and Jones 2020). In addition to intracellular endogenous sources, ROS can be gen-
erated by exogenous physical agents (ultraviolet light, X-rays, and γ-rays), air pol-
lutants, tobacco smoke, heavy metals, and certain drugs (Moldogazieva et al. 2019).

Under normal conditions and appropriate levels, ROS play important roles in 
several physiological processes, participating in cell signaling pathways, glucose 
uptake, memory function, and cell–cell interactions (Collin 2019; Sies and Jones 
2020). On the opposite, although moderate amounts of ROS have positive effects 
(such as killing of invading pathogens, wound healing, and repairing processes), the 
misregulation of ROS production can cause oxidative damage to macromolecules, 
as well as mitochondrial dysfunction and cell death (Fig. 15.1) (Peoples et al. 2019). 
When present at very high concentrations, ROS react with lipids, proteins, and 
DNA, and can be severely detrimental to cells, thus causing a condition of redox 
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imbalance. This condition leads to the concept of oxidative stress that arises from 
the imbalance between prooxidant species and the antioxidant defense (Moldogazieva 
et al. 2019; Sies and Jones 2020). Moreover, given the fact that superoxide anion 
and hydrogen peroxide levels are significantly higher in the mitochondrial matrix 
than in cytosolic and nuclear spaces, mitochondria become primary targets for 
ROS-induced damage (Luo et al. 2020). The excessive ROS can react with several 
mitochondrial proteins, compromising its function and dynamics and also disrupt 
the mitochondrial permeability transition pore, which facilitates the escape of elec-
trons from the electron transport chain generating ROS and directly contributing to 
the release of ROS to the cytosol (He et al. 2017; Sies and Jones 2020). Mitochondrial 
dysfunction affects several biological processes, including nuclear genomic stabil-
ity and cellular bioenergetics (Luo et  al. 2020). Besides, it have been associated 
with several diseases, such as diabetes (Bhansali et al. 2017) and neurodegenerative 
diseases (Delbarba et al. 2016).

The constant exposure to oxidants triggers many enzymatic and nonenzymatic 
mechanisms, as well as adaptive responses to counteract ROS, ultimately leading to 
the reestablishment of the cellular oxidant/antioxidant homeostasis (Kalyanaraman 
2013). The enzymatic mechanisms include the action of superoxide dismutase 
(SOD), catalase (CAT), glutathione peroxidase (GPx), and thioredoxin system. 
SOD enzymes (cytosolic copper/zinc SOD, mitochondrial manganese SOD, and 
extracellular SOD) are involved in the normal dismutation of O2

•− in O2 and H2O2; 
H2O2 can be detoxified in H2O + O2 mainly by CAT, when H2O2 levels are low, and 
by GPx when these levels are high. GPx also metabolizes other lipid peroxides 
(LOOH) (Fig. 15.1) (Kalyanaraman 2013; He et al. 2017). Regarding the mecha-
nism of adaptive response to ROS, there is a signaling pathway under cell exposure 
to the oxidative challenge, with the activation of genes encoding antioxidant 
enzymes responsible for the maintenance of redox homeostasis in eukaryotes. A 
crucial gene is the nuclear factor erythroid 2-related factor 2 gene (NRF2), which is 
a master regulator of the antioxidant response (He et al. 2020).

On the other hand, there are also nonenzymatic detoxification mechanisms, 
which include the small molecular weight antioxidants: ascorbic acid (vitamin C), 
α-tocopherol (vitamin E), reduced glutathione (GSH), carotenoids, lycopene, some 
minerals (zinc, manganese, and selenium), omega-3 and 6, flavonoids, among oth-
ers. While vitamin C reacts rapidly with several ROS types, such as superoxide, 
hydrogen peroxide, and hydroxyl radical, vitamin E can halt lipid peroxidation (He 
et al. 2017).

Nevertheless, stress conditions that impair those adaptive mechanisms, reduce 
the concentrations of antioxidants, or affect the action of antioxidant enzymes can 
lead to oxidative stress by disrupting the redox homeostasis due to excessive ROS 
production, leading to ROS-mediated damage of important organelles and biomol-
ecules (He et al. 2017). Therefore, when there is a redox imbalance, in which the 
levels of prooxidants exceed those of antioxidants, a consequent induction of dam-
age to macromolecules can occur, such as lipid peroxidation, protein oxidation, and 
DNA damage, leading to disease (Kalyanaraman 2013; He et al. 2017), as illus-
trated in Fig. 15.1.
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In the DNA, ROS can react with both purines and pyrimidines, generating a 
number of modified DNA base products. Guanine exhibits a low redox potential 
and, it is preferentially oxidized, with 8-oxo-7,8-dihydroguanine (8-oxoguanine; 
8-oxoG) being the most extensively oxidized DNA lesion that has been measured in 
several studies (Storr et al. 2013; Dizdaroglu et al. 2017). Nucleotides are also prone 
to oxidation by ROS, and the oxidized bases, deoxynucleotide triphosphates, (espe-
cially oxidized dGTP and dATP), could be erroneously incorporated into the DNA 
during the replication (Sun et al. 2015). Following DNA replication, these lesions 
can cause a change from GC to TA (transversion), thus causing mutations 
(Włodarczyk and Nowicka 2019). Therefore, DNA damage can exert an impact on 
DNA replication fidelity, leading to mutations, and imposing a risk to cell metabo-
lism and survival (Włodarczyk and Nowicka 2019). ROS not only induce oxidized 
bases, abasic (AP) sites, and single-strand breaks (SSBs) (Hegde et al. 2012), but 
can also cause DNA intrastrand and interstrand crosslinks, DNA–protein crosslinks, 

Fig. 15.1 ROS and oxidative damage. ROS can be generated by endogenous and exogenous 
sources. There are antioxidant mechanisms that maintain ROS homeostasis; however, overproduc-
tion of ROS can occur causing a prooxidant redox imbalance, which leads to oxidative damage and 
mitochondrial dysfunction. Furthermore, mitochondrial dysfunction increases even more ROS 
production. Excessive ROS levels can induce lipid peroxidation, protein oxidation, and DNA dam-
age, thus leading to disease. ROS: reactive oxygen species; O●−: superoxide radical; OH●: hydroxyl 
radical; OH−: hydroxyl ions;  H2O2:  hydrogen peroxide; O−:  superoxide radical; ONOO−:  per-
oxynitrite; NO●: nitric oxide; SOD: superoxide dismutase; GPx: glutathione peroxidase enzyme; 
CAT: catalase
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double-strand breaks (DSBs), as well as damage to the DNA sugar moiety (Storr 
et al. 2013; Dizdaroglu et al. 2017).

DNA repair mechanisms play a crucial role in the maintenance of genome integ-
rity against a large variety of endogenous and exogenous ROS, and also chemical 
and physical agents, guaranteeing the fidelity of DNA replication, thus preventing 
mutations and their consequences (Hanawalt and Wilson 2016). Base excision 
repair (BER) is a well-known major mechanism involved in the repair of ROS- 
induced oxidative lesions and SSBs in the DNA. BER requires several proteins; the 
key enzymes are DNA glycosylases, which remove different damaged bases by 
cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties 
of the nucleotide residues. Briefly, several enzymes participate in a sequential path-
way, performing the initial lesion recognition, removal of oxidized bases by DNA 
glycosylases, such as 8-oxoguanine DNA glycosylase (OGG1), followed by the 
DNA incision by the apurinic/apyrimidinic endonuclease 1 (APE1), and subsequent 
recruitment of DNA polymerase β (Pol β), which perform gap filling; subsequently, 
ligase 1 or a complex of X-ray repair complementing protein 1 (XRCC1) and ligase 
IIIα seals the resulting gap to complete the repair process (Svilar et al. 2011; Krokan 
and Bjørås 2013; Cadet and Davies 2017).

BER is the major pathway for the repair of oxidative base damage, but other 
repair processes exist in eukaryotes, such as nucleotide excision repair (NER), mis-
match DNA repair (MMR), translesion synthesis (TS), homologous recombination 
(HR), and nonhomologous end-joining (NHEJ); these repair processes are impor-
tant mechanisms implicated in the repair of several types of DNA lesions (base 
damages, SSBs, DSBs, crosslinks, adducts, intercalation, among others) (Krokan 
and Bjørås 2013; Cadet and Davies 2017), being integrated with several cellular 
processes, such as cell cycle regulation, apoptosis, transcription, and replica-
tion. They may also be activated in response to oxidative damage, as an alternative 
repair pathway (Slupphaug 2003; Surova and Zhivotovsky 2013). Interestingly, 
Souza-Pinto et al. (2009) demonstrated that RAD52 (recombination protein) coop-
erates with OGG1 to repair oxidative DNA damage, suggesting a coordinated action 
between these proteins.

15.1.2  Diabetes Mellitus and Oxidative Stress

Hyperglycemia may lead to increased oxidative stress by the direct production of 
ROS, or by changes in the redox homeostasis through the disruption of a variety of 
mechanisms. The production of ROS in DM can be induced by endothelial and 
vascular smooth muscle cells, NADPH oxidase, xanthine oxidase, cyclooxygenase, 
and uncoupled NOS, while nonenzymatic sources include the generation of super-
oxide by the mitochondrial respiratory chain, advanced glycation end products 
(AGEs), activation of protein kinase C, glucose autoxidation process, and activated 
polyol pathway (Ahmad et al. 2017). All of these pathways can trigger redox imbal-
ance (elevated oxidative stress), leading to damaged macromolecules that 
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ultimately, are implicated in the development and progression of DM (Fig. 15.2) 
(Sifuentes-Franco et al. 2017).

T1DM and T2DM are metabolic disorders, apparently with distinct mechanisms, 
but in both diseases, there is a significant loss of insulin-producing β-cells due to 
cell death. High acute or chronic glucose levels in diabetic patients promote an 
increase in the glycolytic flux and, consequently, an increase in the mitochondrial 
metabolism, which exacerbate ROS production (Gerber and Rutter 2017; Volpe 
et al. 2018). Thus, hyperglycemia induces excessive production of superoxide anion 
in the mitochondrial electron transport chain, formation of AGEs, as well secretion 
of proinflammatory cytokines, leading to numerous metabolic abnormalities and 
activation of pathways involved in the development of DM and diabetes complica-
tions (Djeli et  al. 2019). Particularly, ROS are associated with the activation of 
inflammatory pathways that lead to apoptosis in β-cells (Hurrle and Hsu 

Fig. 15.2 Hyperglycemia-induced oxidative stress. Oxidative stress is a critical contributing fac-
tor to diabetes. A chronic state of hyperglycemia can promote an increase in glycolysis, which, in 
turn, acts on several signaling pathways, such as polyol, advanced glycosylation end products 
(AGEs), hexosamine, and protein kinase C (PKC) pathways. All of these pathways can produce 
oxidative stress. Consequently, the stress signaling and the activation of mitochondrial metabolism 
lead to increased nitric oxide synthases (NOS), cytokines, and NADPH oxidase and generation of 
superoxide by the mitochondrial respiratory chain. These pathways, when deregulated, promote 
the production of ROS, redox imbalance (a condition of oxidative stress), increasing lipid peroxi-
dation, damage to proteins and DNA, consequently leading to diabetes. O●−: superoxide radical; 
ONOO−: peroxynitrite; NO●: nitric oxide
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2017), reduction of glucose transporters, inhibition of insulin receptor, and decreased 
insulin gene expression, which are associated with insulin resistance (Boucher et al. 
2014; DeFronzo et  al. 2015). This picture is compatible with alterations in gene 
expression profiles, as observed in peripheral blood mononuclear cells (PBMCs) of 
diabetic patients who display chronic hyperglycemia (Xavier et al. 2015).

15.2  Type 1 Diabetes Mellitus

T1DM is a consequence of the autoimmune destruction of the insulin-producing 
pancreatic β-cells, which eventually ceases insulin production and hence the glu-
cose uptake by the tissues of the body, and culminates in hyperglycemia (Katsarou 
et al. 2017). Approximately 5–10% of all diabetic patients have T1DM, which can 
occur at any age, although it usually arises during childhood and adolescence 
(International Diabetes Federation 2019). The patients with T1DM commonly pres-
ent classical symptoms as ketoacidosis, excessive thirst, blurred vision, bedwetting, 
frequent urination, fatigue, constant hunger, and weight loss (International Diabetes 
Federation 2019). They require daily insulin injections to control glucose levels and 
avoid life-threatening hypoglycemia; metformin, glucagon-like peptide-1 receptor 
(GLP4-1R) agonists, sodium-glucose cotransporter-2 (SGLT2) inhibitors, dipepti-
dyl peptidase-4 (DPP4) inhibitors may also be used in some cases (International 
Diabetes Federation 2019).

The exact cause of T1DM has not been elucidated, but it might be a result of a 
complex combination of several susceptibility genes (with functions on metabolism 
and immune system), as well as environmental factors (DiMeglio et al. 2018). Over 
90% of T1DM cases have the characteristic presence of autoantibodies for gluta-
mate decarboxylase (GAD65), islet antigen-2 (IA-2), tetraspanin-7, and zinc trans-
porter 8 (ZNT8) that have been usually used as biomarkers of the disease (Katsarou 
et al. 2017; DiMeglio et al. 2018).

Individuals with the HLA class 2 haplotypes, HLA DRB1*0301-DQA1*0501- 
DQ*B10201 (DR3) and HLA DRB1*0401-DQA1*0301-DQB1*0301 (DR4-DQ8), 
located on chromosome 6, have the highest genetic risk for T1DM, which are related 
to the development of β-cell-targeted autoimmunity (Katsarou et al. 2017); in addi-
tion, non-HLA genes including those encoding insulin (INS), cytotoxic 
T-lymphocyte-associated protein 4 (CTLA4), non-receptor protein tyrosine phos-
phatase type 22 (PTPN22), and interleukin 2 receptor alpha (IL2RA) have been 
identified by genome-wide association studies (GWAS) as having strong associa-
tions with the disorder (Nyaga et al. 2018). Regarding environmental factors, viral 
infections or toxins, as well as climate and diet have been suggested to contribute to 
T1DM onset (International Diabetes Federation 2019).
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15.2.1  Oxidative Stress and DNA Damage in T1DM Patients

There is evidence that oxidative stress plays a crucial role in the increased inflam-
mation and release of cytokines, which promotes the destruction of β-cells and the 
development of T1DM (Nassima et al. 2014). In this context, it has been investi-
gated the levels of antioxidants, markers of oxidative stress, and DNA damage in 
patients suffering from T1DM relative to healthy subjects.

Studies with T1DM children and adults have consistently shown an increased 
oxidative stress condition, evidenced by increased total antioxidant status (TAS) 
(Gheni et  al. 2020), high levels of lipid peroxidation (malondialdehyde (MDA), 
lipoperoxides (LPO), and 8-iso-prostaglandin F2α (8-iso-PGF2α)), protein oxida-
tion, DNA oxidation (8-OhDG), and carbonylated proteins (Goodarzi et al. 2010; 
Codoñer-Franch et al. 2010; Nassima et al. 2014; Altincik et al. 2016). Moreover, it 
has been reported that glucose fluctuations may potentiate oxidative stress in non- 
obese T1DM children (Meng et al. 2015). On the other hand, the activity of antioxi-
dant enzymes (GPx, glutathione reductase (GR) and SOD), in addition to lipophilic 
antioxidants (α-tocopherol and β-carotene), was found significantly decreased in 
T1DM patients compared to healthy subjects (Codoñer-Franch et al. 2010; Nassima 
et al. 2014). In fact, at the early onset of the disease, T1DM children already show 
glutathione depletion compared to healthy subjects (Pastore et al. 2012).

Furthermore, it has been reported an association between increased oxidative 
stress and impaired antioxidant status with lower levels of Magnesium and Zinc 
(Zn) and increased levels of Copper (Cu), in particular, in poorly controlled (with 
HbA1c ≥ 9%) children (Salmonowicz et al. 2014) and adults (Lin et al. 2014) with 
T1DM. Abnormalities in Zn and Cu levels seem to be associated with increased 
oxidative stress and diabetes complications (Bjørklund et al. 2019). Interestingly, 
Salmonowicz et al. (2014) and Lin et al. (2014) found an increase in CAT and SOD 
activity in T1DM patients, respectively, which might be compensating for the exces-
sive ROS generation in these individuals, but the lower total antioxidant status 
might indicate a deficiency of the antioxidant system in those patients. Moreover, 
the disruption of thiol/disulfide homeostasis, known to play an important role in 
antioxidant responses, is also associated with oxidative damage, and it is considered 
another approach to evaluate oxidative stress (Ates et al. 2016). Durmus et al. (2019) 
and Ates et al. (2016) have shown that T1DM patients have a shift of thiol/disulfide 
homeostasis toward disulfide direction, an indication of oxidative stress, associated 
with chronic inflammation, which is followed by high levels of c-reactive protein, 
besides hyperglycemia.

Additionally, it has been demonstrated that men and women with T1DM have 
significantly more DNA damage and oxidized DNA damage (measured by Fpg- 
sensitive sites) in comparison with their corresponding controls (Dinçer et al. 2003). 
Even those T1DM patients with acceptable glycemic control reported significantly 
elevated rates of DNA damage (Hannon-Fletcher et  al. 2000). Chronic 
hyperglycemia- induced cellular damage and oxidative stress are strongly associated 
with micro- and macrovascular complications of diabetes. Recent studies have 
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shown a correlation between increased oxidative stress (high MDA and nitric oxid 
(NO) levels) and hematologic alterations in T1DM patients (Abdel-Moneim et al. 
2020). Abnormalities in erythrocytes have been suggested to play a pivotal role in 
the development of microvascular complications (Abdel-Moneim et al. 2020). High 
levels of lipid peroxidation and NO have been linked to greater severity of retinopa-
thy (Ruia et al. 2016). The glycemic control and oxidative stress management is an 
important issue to be addressed. It has been reported that glycemic variability in 
T1DM patients induces alterations in erythrocyte membrane stability (Rodrigues 
et al. 2018); recently, a correlation has been found between low levels of antioxi-
dants enzymes (SOD and glutathione), high levels of oxidative stress (MDA), and 
impairment of bone formation, in children with T1DM (El Amrousy et al. 2021). 
Collectively, these studies suggest an impairment of the antioxidant defense system 
and an increase in oxidative stress and DNA damage in T1DM patients, which are 
associated with T1DM progression and later complications.

15.2.2  Transcriptional Expression Profiles of Oxidative Stress 
and DNA Repair Genes in T1DM Patients

A wide interest has been directed to the investigation of molecular pathways under-
lying the development and progression of T1DM and T2DM and their interactions. 
Within this context, studies at a genomic scale have been providing a large volume 
of data that can help in understanding and clarifying the etiopathogenesis of diabe-
tes, with the possibility of contributing to the development of new therapeutic 
strategies.

Since the initial work reported by Schena et al. (1995), the microarray technique 
became a common and important tool in medical and biological research. Over 
more than two decades, several studies developed at a large scale regarding tran-
scriptional profiling have been performed to compare expression profiles displayed 
by patients (for several diseases) relative to healthy subjects. Recently, Gastol et al. 
(2020) have performed a microarray study in T1DM patients to look for alterations 
in molecular pathways, by analyzing differentially expressed genes (DEGs)  in 
blood cells. Interestingly, they found that T1DM patients showed an upregulation of 
genes related to DNA repair (APEX1, ERCC3, ERCC5, PARP1, PARP4, MLH1, 
XPC), antioxidant enzymes (PRDX1, SOD1, SOD2), ER-stress response (ATF6, 
PRDX6, GCLC, TXNRD1), proteasome and autophagosome formation (ATG3, 
ULK1, BECN1, DNAJB1, SQSTM1), apoptosis (caspases, TNF family factors, and 
their receptors), inflammation (NFKB, Il-10, Il-1b), and activation of inflammatory 
pathways. On the other hand, the patients presented a downregulation of genes 
involved in glucose transport (SLC2A11), glutathione synthesis (GCLM), expres-
sion of mitochondrial proteins of complexes I and III, and proteolytic enzymes 
(cathepsins, FRAP1, ATG10, GABARAPL2). Possibly, the inhibition of mitochon-
drial proteins and proteins involved in glutathione synthesis might be responsible 
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for the induction of oxidative stress, which can be related to the activation of DNA 
repair and antioxidant pathways.

There is evidence that ER stress is involved in the destruction of pancreatic 
β-cells, triggering the development of both T1DM and T2DM. The ER is a major 
organelle responsible for regulating protein synthesis, folding, maturation, and 
transport and has a key role in insulin synthesis. The ER maintains a controlled bal-
ance between the synthesis and proper protein folding. However, several conditions 
can break this homeostatic balance, such as excess of nutrients, insulin resistance, 
increased levels of ROS, and inflammation related to obesity. The disturbance of 
this homeostasis leads to an accumulation of misfolded proteins in the organelle, 
either by an increased rate of protein synthesis or by alterations in the ER milieu, 
compromising the efficiency of protein folding. Regardless of the case, the unfolded 
protein response (UPR) is triggered to restore protein homeostasis. In patients with 
diabetes, hyperglycemia triggers the ER to produce an excessive amount of insulin, 
which overloads the ER, leading to the accumulation of misfolded and unfolded 
proteins. The ER overload induces a stress condition that activates the UPR, and 
under pathological conditions and excessive ER stress, the promotion of cell death 
may occur (Cao et al. 2020). Mainly three proteins are responsible for the activation 
of UPR: inositol-requiring protein-1α (IRE1α), protein kinase RNA (PKR)-like ER 
kinase (PERK), and activating transcription factor 6 (ATF6) (Cao et  al. 2020). 
Accordingly, Gastol et al. (2020) observed an increased expression of ATF6, which 
has been linked to the activation of autophagy (Walter et al. 2018). In addition, it has 
been suggested that ER stress induces the release of proinflammatory cytokines, 
which was confirmed by the increased plasma levels of IL-6 and activation of 
inflammatory genes. The authors also discussed that despite the upregulation of 
proteasome and autophagosome formation in T1DM, the removal of damaged pro-
teins can be compromised by a concomitant downregulation of lysosomal proteo-
lytic enzymes, which has been associated with ER stress (Cao et al. 2020).

Irvine et al. (2012) investigated whether there were differences in gene expres-
sion of purified peripheral blood CD14+ monocytes between recently diagnosed 
T1DM children and adult healthy controls by applying the whole-genome microar-
rays, followed by validation of some genes by quantitative polymerase chain reac-
tion (qPCR). The authors showed that the monocyte expression profiles exhibited 
by the patients were clustered into two subgroups, with one of them (group B) 
clustering separate from the other patient subgroup and the healthy controls. At 
diagnosis, both subgroups of patients were clinically identical, however, group B 
presented increased levels of HbA1c 3 and 6 months after diagnosis and needed 
significantly higher insulin doses during the first year of the disease. Expression 
profiles in monocytes from patients belonging to group B showed an upregulation 
of genes related to the UPR, which results from ER stress (IRE1, GRP78, DDIT3, 
XBP1), HIF1A, which is a major mediator of oxidative stress, and several of its 
targets (DDIT4, PFKFB3, and ADM); while genes that play a role in mitochondrial 
oxidative phosphorylation (PDHB, MDH1, IDH1, SDHC, ACLY) and cellular anti-
oxidant pathways (CAT, G6PD, OXR1, PRDX1, PRDX3) were found downregu-
lated, indicating perturbation of protective systems (Irvine et al. 2012). Moreover, 
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mitochondrion was the most significantly enriched cellular component term for the 
downregulated genes in group B. The two biological processes, oxidative and ER 
stresses were found closely associated. Oxidative stress can promote ER stress, and 
in response to that, ER activates the UPR transcriptional program. UPR failure may 
lead to prolonged ER stress, which, in turn, triggers apoptosis and inflammation 
(Cao et al. 2020). Accordingly, genes controlling apoptosis were enriched in mono-
cytes from group B patients. Hence, collectively, these findings imply that the group 
B monocytes are intrinsically susceptible to stress or exist in a stressful environ-
ment, as well as indicate the persistence of ER stress (Irvine et al. 2012).

Intriguingly, Stechova and co-workers (2012) compared gene expression profiles 
of freshly isolated PMBCs from T1DM patients, their first-degree relatives with 
higher genetic risk of developing the disease, and nondiabetic individuals by the 
microarray technology. They observed a clear difference between the expression 
profiles of relatives of patients (in particular the autoantibody-negative ones) and 
healthy controls. Moreover, the highest number of differentially activated cell sig-
naling processes (99 pathways), including DNA damage and oxidative stress path-
ways was reported in the comparison between the relatives, regardless of 
autoantibody status, and the control group. Thus, these findings showed that nondia-
betic relatives of T1DM patients also present alterations in gene expression. 
Caramori et al. (2015) performed a transcriptional profiling study in skin fibroblasts 
taken from 100 T1DM patients and found that longstanding T1DM patients (with-
out diabetic nephropathy) displayed upregulation of DNA repair pathways, DNA 
replication, cell cycle, and RNA degradation compared to T1DM patients with 
nephropathy, and also compared to healthy controls. The authors suggest that the 
increased expression of repair pathways may be involved in preventing or delaying 
the onset of nephropathy.

Another study investigated gene expression profiles of endothelial progenitor 
cells (EPC), which were in vitro differentiated from PBMCs, from T1DM patients 
pre- and post-supplementation with folic acid (FA, a B-vitamin with antioxidant 
properties) and nondiabetic individuals (van Oostrom et  al. 2009). The authors 
found 1591 DEGs between pre-FA treatment T1DM patients and the control group. 
These genes were associated with several processes including response to stress and 
response to hypoxia. Among the upregulated genes (related to these two terms) 
detected in EPC from T1DM patients were dual oxidase 2 (DUOX2), a NADPH 
oxidase that can produce superoxide, nitric oxide synthase 2A (NOS2A) that is 
capable of generating NO  , thioredoxin reductase 2 (XNRD2), a major enzyme 
involved in the control of the intracellular redox balance, lactoperoxidase (LPO) 
and NADPH oxidase organizer 1 (NOXO1), which is associated with the generation 
of ROS. Importantly, after FA treatment the gene expression profiles (513 of the 
1591 DEGs) in diabetic EPC normalized to levels similar to those exhibited by 
healthy individuals. As expected, FA altered the expression of oxidative stress- 
associated genes in EPC, with four (DUOX2, NOS2A, NOXO1, and LPO) being 
included among the 513 normalized genes. In addition, another differentially 
expressed gene (down-regulated) in T1DM patients that was normalized by FA 
treatment was the transcription factor V-maf musculoaponeurotic fibrosarcoma 
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oncogene homolog F (MAFF). This transcription factor can bind to NRF2, which, 
in turn, plays a crucial role in the antioxidant defense (Golpour et al. 2020).

Recent advances have brought novel high-throughput multi-omics approaches to 
provide a deep comprehensive understanding between disease state and the molecu-
lar profiles of healthy individuals. Instead of a single omics analysis, Balzano- 
Nogueira et al. (2021) applied an integrative approach to evaluate gene expression 
profiles, metabolomics, and dietary biomarkers to establish a multi-omics signature 
in children up to 12 months before T1DM development. Interestingly, before T1DM 
development, the children displayed upregulation of several genes associated with 
glucose utilization, energy metabolism, DNA repair, ROS scavenging, ER-protein 
processing, and apoptosis compared to the children who did not develop 
T1DM.  Additionally, arachidonate-lipoxygenase genes (ALOX12, ALOX15, 
ALOX15B, and PTGS1), which are known to be activated by ROS and to increase 
the release of proinflammatory and pro-angiogenic molecules, were found upregu-
lated. On the other hand, immune system pathways (regulation of natural killer 
immunity, CXCR4 signaling, TGFβ signaling, FOXO signaling) became downregu-
lated just before the development of T1DM. At 0–3 months before T1DM diagno-
sis, pathways associated with antigen presentation (NF-kB signaling and insulin 
signaling) became strongly activated. Altogether, the authors pointed out molecular 
profiles following the progression of T1DM, supporting the hypothesis that the 
increased oxidative stress and inflammation do occur even several months before 
the onset of T1DM, being related to the increased activity of proinflammatory cyto-
kines, activation of pathways that favors autoimmunity and cellular damage, con-
comitantly with abnormalities in lipid metabolism and nutrient uptake.

Regarding the expression of noncoding protein genes, microRNAs (miRNAs) 
have been indicated both as potential biomarkers for the earlier diagnosis of diabe-
tes and as therapeutic targets for the treatment of this disorder (Assmann et  al. 
2017). MiRNAs are endogenous noncoding RNA molecules of approximately 22 
nucleotides that are involved in the posttranscriptional regulation of protein-coding 
gene expression by base-pairing to specific sites generally in 3ʼ untranslated regions 
(UTRs) of the messenger RNA (mRNA) targets; in this way, miRNAs lead to the 
degradation and/or translational downregulation of their targets (Agbu and Carthew 
2021). Takahashi et al. (2014) compared the miRNA expression profiles displayed 
by PBMCs from T1DM patients with those from healthy nondiabetic controls by 
performing microarray experiments. The authors identified a set of 44 differentially 
expressed miRNAs (35 upregulated and nine downregulated) that clearly distin-
guish T1DM patients from healthy subjects. After target prediction, results pointed 
to 10,827 and 6,636 potential targets of the up- and downregulated miRNAs, respec-
tively; of note, a total of 85 and 75 genes implicated in DNA repair and response to 
oxidative stress, respectively, are potential targets of the 44 differentially modulated 
miRNAs in T1DM.  Furthermore, Assmann et  al. (2017) performed a systematic 
review of several miRNA studies performed in different tissues (serum, plasma, 
PBMCs, or pancreas) from T1DM patients compared to the controls. They found 
several circulating miRNAs (miR-21-5p, miR-24-3p, miR-148a-3p, miR-181a-5p, 
miR-210-5p, and miR-375) that were upregulated and some miRNAs (miR-146a-5p, 
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miR-150-5p, miR-342-3p, miR-1275, and miR-100-5p) that were found downregu-
lated in T1DM patients compared to the nondiabetic controls. Regarding the upreg-
ulated miR-21-5p, in a previous report in the literature, its function was implicated 
in anti-inflammatory process by inhibition of the NF-kB signaling pathway (Sheedy 
et al. 2010); regarding other relevant functions attributed to miRNAs, miR-24 and 
miR-148 activate insulin expression (Agbu and Carthew 2021), while miR-148a-3p 
is a regulator of β-cell self-tolerance and autoimmunity (Gonzalez-Martin et  al. 
2016); and miR-210-5p targets include genes related to mitochondrial metabolism, 
DNA repair, angiogenesis, and cell survival (Devlin et al. 2011).

Taken together, studies on the whole-transcript expression showed important 
alterations related to the expression of DNA repair and antioxidant genes, ER stress 
response, UPR, apoptosis, mitochondrial genes, and inflammation in T1DM 
patients, as well as in their relatives and also in children before T1DM development. 
Moreover, those genes are putative targets of a set of miRNAs that clearly distin-
guished T1DM patients from healthy individuals. These data support the hypothesis 
that patients with T1DM respond to the increased oxidative stress and DNA lesions 
by means of changes in their gene expression profiles, which probably, may affect 
several biological processes, and may explain the physiological alterations in the 
course of the disease.

15.3  Type 2 Diabetes Mellitus

T2DM is the most common type of DM, accounting for approximately 90% of all 
diagnosed cases of diabetes (International Diabetes Federation 2019). The disease 
is mainly characterized by hyperglycemia resulting from resistance to insulin action 
and/or by a deficiency in the secretion of this hormone, presenting a great correla-
tion with an unhealthy lifestyle, aging, obesity, and lack of physical activity 
(DeFronzo et al. 2015). The symptoms of T2DM are similar to those of T1DM but 
less acute or intense. The majority of T2DM cases are symptomless and remained 
undiagnosed for a long period, until the hyperglycemia starts to trigger a series of 
complications, including diabetic retinopathy, nephropathy, neuropathy, cardiovas-
cular diseases (International Diabetes Federation 2019), and more recently, it has 
been reported risk to the development of dementia (Mittal and Katare 2016; 
Chatterjee and Mudher 2018).

The biochemical mechanisms and physiological processes that characterize 
T2DM are not well understood. Nevertheless, over 500 genomic regions and some 
susceptibility genes have been identified by GWAS, including PPARG, KCNJ, 
CAPN10, FTO, CDKN2A/B, CDKAL1, TCF7L2, and IGFBP2; in addition, several 
identified genes are associated with diabetes complications, such as GJA8 and 
SLC18A2 (for retinopathy), UMOD and TENM3 (for nephropathy), NRP2 (for neu-
ropathy), and SORT1 (for coronary heart disease); furthermore, SCN3A and SV2A 
genes, which are potential targets for therapeutic purpose, were also identified 
(Vujkovic et al. 2020). Additionally, some studies have been exploring epigenetic 
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alterations in diabetes, since they may also contribute to the genetic susceptibility to 
T2DM (Basile et al. 2014; Kwak and Park 2016).

The main metabolic alterations in T2DM are insulin resistance, β-cell dysfunc-
tion, and chronic inflammation (DeFronzo et al. 2015). Obesity is a great contribu-
tor to those alterations, causing a chronic inflammatory response in the adipose 
tissue, characterized by abnormal production of cytokines, which include mostly 
molecules playing roles in stress response processes and activation of inflammatory 
pathways, such as the JNK and NF-kB pathways (Tsalamandris et al. 2019). Among 
the released cytokines are the Tumor Necrosis Factor-alpha (TNF-α) and Interleukin 
6 (IL-6), which are released at large amounts by adipocytes and act inhibiting the 
tyrosine phosphorylation of insulin receptor substrate (IRS-1) impairing the insulin 
signaling pathway and leading to insulin resistance (Chen et  al. 2017). Besides, 
excessive body fat leads to increased circulation of free fatty acids (FFA), known to 
impair pancreatic β-cell function and decrease insulin secretion, in addition to 
increasing the release of TNF-α and IL-6. Under this condition, there is a preferen-
tial use of lipids as an energy source, especially by muscles, which prevents glucose 
utilization and glycogen synthesis, leading to hyperglycemia. Furthermore, there is 
an increase in insulin secretion to compensate for the insulin receptor resistance, 
and this condition gradually leads to the development of the disease (Huang et al. 
2018). Interestingly, a whole-blood transcriptome study in a large cohort (compris-
ing 1977 nondiabetic obese subjects) reported a correlation between increased body 
mass index (BMI) and downregulation of several genes involved in insulin signaling 
(IRS2, PIK3CD, PIK3R4, PDPK1, AKT1, PTEN, PTPN1), DNA repair (ATM) and 
defense against ROS, including target genes and regulators of NRF2 (SOD2, 
NFE2L2, TXNRD1, MGST2, GSTM2, NQO2), suggesting that these alterations may 
contribute to T2DM development in obese subjects (Homuth et al. 2015).

As already mentioned, in diabetes, the chronic increase in glucose levels leads to 
overproduction of ROS and AGEs, and consequently, oxidative stress. ROS and 
oxidative stress activate pathways linked to increased release of proinflammatory 
cytokines, growth factors, adhesion molecules, and procoagulant factors, all culmi-
nating in β-cell dysfunction, insulin resistance, endothelial dysfunction, and T2DM 
progression with micro- and macrovascular complications (Akash et al. 2013).

Currently, the first line of therapy for T2DM patients is the recommendation of 
changes in lifestyle concomitantly with diet and weight management, in addition to 
regular physical activity and the use of glucose-lowering medicaments, such as met-
formin,  which is the preferred drug as the initial pharmacological treat-
ment. Depending on the progression of the disease, SGLT2 inhibitors, GLP-1 RA, 
DPP-4 inhibitors, sulphonylureas, thiazolidinediones, and insulin have also been 
recommended for glycemic control in T2DM patients (ADA 2020). Treatment for 
T2DM aims to reduce hyperglycemia by two main mechanisms: increased secretion 
of insulin by the pancreas or decreased production of glucose by the liver. However, 
T2DM is a progressive condition, that makes its treatment complicated, mainly due 
to the lack of control in insulin secretion and progressive cell death that leads to 
β-cell dysfunction, which should adjust the amount of insulin secreted in 
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accordance with the needs of the organism. Therefore, patients often have episodes 
of hypoglycemia and hyperglycemia, both linked to serious complications of 
diabetes.

15.3.1  Oxidative Stress, Mitochondrial Dysfunction, and DNA 
Damage in T2DM Patients

In T2DM, hyperglycemia contributes significantly to the production of ROS, espe-
cially due to an overproduction of superoxide and hydrogen peroxide by the mito-
chondrial electron-transport chain (Dodson et al. 2013). Hyperglycemia can also 
induce the formation of AGEs, from protein glycation, which in turn contribute even 
more to ROS generation, thus aggravating the oxidative stress condition and leading 
to oxidative damage (Reddy et al. 2013; Pugazhenthi et al. 2017). In this context, 
several studies evaluating T2DM patients have shown increased levels of oxidative 
stress markers, measured by high levels of lipid peroxidation (thiobarbituric acid 
reactive substances (TBARS) and MDA), oxidized proteins, and AGEs (Abou-Seif 
and Youssef 2004; Strom et al. 2017) when compared to healthy individuals. The 
increased oxidative stress in T2DM patients is accompanied by decreased levels of 
antioxidant enzymes (GSH, SOD, and CAT) and total antioxidant status (Abou-Seif 
and Youssef 2004; Jiménez-Osorio et  al. 2014; Strom et  al. 2017). NRF2, a key 
protein involved in the transcription of genes belonging to the antioxidant response 
system, was also found in decreased levels in T2DM patients compared to healthy 
individuals (Jiménez-Osorio et al. 2014; Sireesh et al. 2018). Actually, newly diag-
nosed T2DM patients display decreased NRF2 mRNA expression levels and reduced 
levels of its downstream target genes (SOD, HO-1, GPx, and CAT), increased 
mRNA expression levels of oxidative stress markers (p22Phox, TRPC6, and 
SOCS3), and increased levels of inflammatory cytokines (IL-4, IL-10, IL-13, IFN- 
γ, TNF-α, and GM-CSF). The reduced levels of NRF2, and consequently, low effi-
ciency of the antioxidant response observed in T2DM patients can further aggravate 
the oxidative stress condition, contributing to the development of diabetes compli-
cations (Jiménez-Osorio et al. 2014). For instance, poor renal function in T2DM 
patients is associated with increased levels of lipid peroxidation (8-iso-PGF2α and 
MDA) (Sauriasari et al. 2015).

For this purpose, Golpour et al. (2020) performed a double-blind randomized 
placebo-controlled clinical trial and observed that a 10-week supplementation with 
fish oil n-3 PUFAs containing eicosapentaenoic (EPA) and docosahexaenoic (DHA) 
acids increased NRF2 gene expression, as well as the total antioxidant status, and 
decreased lipid peroxidation (MDA) in T2DM patients compared to the placebo 
group. Another randomized clinical trial has shown that an eight-week supplemen-
tation with resveratrol increased the expression of both NRF2 and SOD genes, 
increasing the total antioxidant capacity and decreasing the levels of carbonylated 
proteins, besides significantly reducing weight, BMI, and blood pressure levels in 
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T2DM patients, compared to those who did not receive any supplementation 
(Seyyedebrahimi et al. 2018). Thus, NRF2 upregulation additionally with the reduc-
tion of oxidative stress markers may have beneficial effects for T2DM patients.

It has been reported that T2DM patients show increased levels of oxidized bases 
in DNA (urinary 8-OHdG) (Tatsch et al. 2015) and in the nucleotide pool (serum 
8-oxodG) (Sun et al. 2015), compared to healthy individuals, and this can also be a 
consequence of oxidative stress. Furthermore, high levels of 8-OHdG in T2DM 
patients have been accompanied by high levels of proinflammatory cytokines and 
higher insulin resistance, suggesting a relationship between inflammation, insulin 
resistance, and oxidative-induced damage in T2DM (Tatsch et al. 2015).

Concerning the importance of glycemic control, higher levels of protein oxida-
tion and lipid peroxidation, and decreased antioxidant status are reported in hyper-
glycemic T2DM patients in comparison with non-hyperglycemic T2DM group of 
patients (Çakatay 2005; Lodovici et al. 2008; Bigagli et al. 2012). The high level of 
protein oxidation in T2DM patients without any comorbidity indicates that oxida-
tive stress is related to hyperglycemia and may not be exclusively a consequence of 
complications of the disease. Besides, it is well known that oxidative stress induces 
DNA damage. Studies with T2DM patients have reported that hyperglycemic 
patients exhibit high levels of DNA damage and oxidative DNA damage compared 
to those of non-hyperglycemic T2DM patients (Lodovici et al. 2008; Xavier et al. 
2015). In this line, Xavier et al. (2014) have shown that a one-week intervention to 
control glucose levels is efficient to significantly reduce DNA damage levels in 
T2DM patients compared to healthy individuals. Since high DNA damage levels are 
associated with the development of diabetes complications (Giacco and Brownlee 
2010; Kumar et al. 2020), it is plausible to suggest that proper glycemic control may 
delay the progression of the disease and later complications.

Moreover, besides the evidence that T2DM patients show higher DNA damage 
than healthy subjects, when cells from T2DM patients were in vitro exposed to 
mutagens, it was found a lower efficiency of DNA repair mechanisms (Blasiak et al. 
2004; Merecz et  al. 2015). Curiously, Merecz et  al. (2015) showed that T2DM 
patients with polymorphisms in APE1 gene (a key gene in BER) showed different 
DNA repair capacities, and higher DNA damage levels compared to those without 
the polymorphism.

Since cellular respiration in mitochondria makes this organelle the site of 
increased production of ROS inside the cell (Peoples et al. 2019), some studies have 
evaluated different mitochondrial parameters in patients with diabetes mellitus. 
Bhansali et al. (2017) have shown that T2DM patients present high levels of mito-
chondrial ROS and several mitochondrial alterations, such as membrane depolariza-
tion, reduced mass, and morphological alterations, all of them being indicative of 
mitochondrial dysfunction. They also showed a downregulation of both mRNA and 
proteins (PINK1, MFN2, NIX, PARKIN, and LC3-II) associated with mitophagy, 
suggesting that an impaired mitophagy favors the accumulation of dysfunctional 
mitochondria and increases ROS production. Additionally, RNA sequencing in 
blood cells of T2DM patients has shown a downregulation of several mitochondrial 
genes, such MT-ATP6, MT-ND1, MT-ND2, MT-ND4, MT-ND4L, MT-ND5, MT-ND6 
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(Ustinova et al. 2020; Lv et al. 2020) related to mitochondrial oxidative phosphory-
lation and mitochondrial energy transduction compared to healthy subjects. 
Furthermore, the quantification of mtDNA copy number (mtDNA-CN) has been 
explored as a marker to assess mitochondrial function, suggesting that a greater 
number of mtDNA-CN is related to a better mitochondrial function. Accordingly, it 
has been found that T2DM patients show lower mtDNA-CN when compared to 
healthy subjects (Cho et  al. 2017; Constantin-Teodosiu et  al. 2020; Latini et  al. 
2020; Fazzini et al. 2021; Memon et al. 2021) and Latini et al. (2020) have sug-
gested that diabetes complications are also associated with lower mtDNA-CN.

Therefore, these studies suggest that hyperglycemia is an important factor 
involved in oxidative stress, oxidative damage, and mitochondrial dysfunction, indi-
cating the requirement of proper control of blood glucose levels and ROS produc-
tion, in an attempt to reduce their detrimental effects on different macromolecules, 
such as nucleic acids, lipids and proteins, and avoiding later diabetes 
complications.

15.3.2  Transcriptional Gene Expression Profiles in T2DM 
and Alterations in Oxidative Stress and DNA 
Repair Genes

Despite the number of studies regarding T2DM, the molecular mechanisms involved 
in the development and progression of the disease still requires elucidation. In the 
last years, many studies have used large-scale transcriptomic analysis (microarray, 
RNA sequencing, single-cell RNA sequencing) to analyze mRNA, microRNA, long 
noncoding RNAs, and circulatory RNAs expression profiles exhibited by T2DM 
patients to reveal the main genes and pathways associated with the pathophysiologi-
cal changes described in T2DM. Manoel-Caetano et al. (2012) conducted a study 
comparing the transcriptional expression patterns exhibited by PBMCs from T2DM 
patients compared with healthy subjects. The authors obtained a list of 92 differen-
tially expressed genes (52 upregulated and 40 downregulated) in diabetic patients 
compared to the control group; among them, genes related to oxidative stress 
responses and hypoxia (OXR1, SMG1, and UCP3) were highly upregulated, possi-
bly in an attempt to deal with increased oxidative stress. Regarding the downregu-
lated genes, many were involved in inflammation, immune response, and DNA 
repair (including SUMO1, ATRX, and MORF4L2). The downregulation of several 
DNA repair genes is in agreement with the decreased efficiency of DNA repair 
reported for T2DM patients (Blasiak et al. 2004; Merecz et al. 2015). A study per-
formed by Xavier et al. (2015) compared the mRNA transcriptional expression pro-
files of PBMCs from hyperglycemic, non-hyperglycemic T2DM patients and 
healthy individuals. Among the results, they found 478 genes (261 upregulated and 
217 downregulated) differentially expressed related to several processes including 
upregulation of the inflammatory response process and the regulation of DNA 
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repair, downregulation of response to superoxide, and response to the ER stress for 
the comparison between the hyperglycemic and nonhyperglycemic T2DM patients. 
Xavier et al. (2015) also found several differentially expressed miRNAs, such as 
hsa-miR-186, hsa-miR-222, and hsa-miR-29b, when comparing T2DM patients 
versus healthy controls, and these miRNAs were related to the development of 
β-islets, cell cycle regulation, and insulin resistance, respectively. The authors fur-
ther searched for possible interactions between the miRNAs and the differentially 
expressed mRNAs providing new information to the pathogenesis of T2DM and the 
importance of adequate glycemic control.

The skeletal muscle also represents an important target tissue in the study of 
T2DM pathogenesis. A large RNA-seq based transcriptome study of human skeletal 
muscle of T2DM patients reported a significant downregulation of key genes 
involved in insulin signaling (such as MTOR, PIK3CA, MAPK9, SLC2A4, PPARA, 
IRS2), which is suggestive of impaired insulin action; oxidative phosphorylation, 
indicative of mitochondrial dysfunction and related to increased ROS generation; 
ER protein processing, which may be associated with ER stress; and upregulation 
of genes related to apoptosis, TP53 signaling, TNF-receptor family members and 
NF-kB signaling, indicative of increased cell death and inflammation in T2DM (Wu 
et al. 2017).

Another approach to the comprehension of T2DM etiopathogenesis has been 
reported in β-cells of pancreatic islets from human donors by Marselli et al. (2020), 
using RNA sequencing; the authors showed that T2DM islets have several molecu-
lar changes regarding upregulation of ROS activity, intracellular calcium regulation, 
apoptotic pathways, and metabolism of FFAs, whereas processes related to the 
mitochondrial respiratory chain and translational control were downregulated com-
pared to the islets of healthy donors. Accordingly, Lundberg et al. (2018) showed 
that T2DM islets displayed downregulation of genes related to mitochondrial func-
tion, while genes associated with oxidative stress and UPR were upregulated. 
Pancreatic β-cell death has been associated with ER stress and UPR response, due 
to the high insulin demand, which causes an increased dependence on ER function-
ing to ensure proper synthesis and insulin folding (Cao et al. 2020). Komura et al. 
(2010) detected elevated expression of ER stress markers, comparing the transcrip-
tional expression profiles of PBMCs from T2DM patients versus healthy individu-
als. Furthermore, Iwasaki et al. (2014) provided evidence that ATF4 (a transcription 
factor activated after metabolic stresses, including ER stress) was activated by FFAs 
in macrophages. Back et al. (2009) showed that the absence of eIF2α phosphoryla-
tion (responsible for activating ATF4) in mice β-cells caused dysregulated proinsu-
lin translation, increased oxidative damage, and defective ER trafficking of proteins 
and apoptosis. In this context, Lytrivi et al. (2020) provided a comprehensive per-
spective of transcriptional changes in β-cells induced by FFAs. They found changes 
in lipid metabolism, ER stress, cell cycle, oxidative stress, and cAMP/PKA signal-
ing implicated in the lipotoxicity of β-cells. Similarly, Bikopoulos et  al. (2008) 
showed that aside from pancreatic islets chronically exposed to FFAs having a sig-
nificantly reduced glucose-stimulated insulin secretion and increased ROS genera-
tion, they also presented altered expression of 40 genes mainly related to the FFAs 
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metabolism, inflammation, and also to antioxidant defense (which were upregu-
lated), highlighting the importance of FFAs as risk factors for the development 
of T2DM.

Another advanced technology, the single-cell RNA sequencing (scRNA-seq), 
has been used to analyze transcriptional profiles of T2DM patients at the β-cell 
level. Bosi et al. (2020) have made an integrative analysis of large scRNA-seq stud-
ies of human islets to identify molecular alterations and provide new relevant infor-
mation for T2DM pathogenesis. They identified 226 differentially expressed genes 
(210 upregulated and 16 downregulated) that included upregulation of pathways 
linked to lysosome activity and ER stress/UPR and downregulation of pathways 
associated with regulation of ROS, DNA repair, and also regulation of DNA damage 
checkpoint, among others. Curiously, 25 of the differentially expressed genes 
(mainly linked to β-cell damage, increased oxidative stress, ER stress, impaired 
insulin action, and autophagy) had not been previously associated with T2DM, 
which help to understand β-cell dysfunction in T2DM.

Regarding diabetes complications, Massaro et al. (2019) found several miRNAs 
associated with specific diabetes complications. The miR-144-3p, for example, was 
found differentially expressed in both T1DM and T2DM, and its targets are linked 
to impaired insulin signaling pathway (IRS1, TGF-β1, and PTEN). These findings 
strongly correlate with insulin resistance and diabetes development (White 2014). 
Moreover, the gene atlas reported 650 nonredundant genes related to specific com-
plications of diabetes (Rani et  al. 2017), and seven genes (AGER, TNFRSF11B, 
CRK, PON1, CRP, and NOS3) were reported to be associated with cardiovascular 
diseases, nephropathy, retinopathy, and neuropathy, which are complications of the 
disease. Furthermore, the authors also reported miRNAs associated with diabetes 
complications; the hsa-miR-107, for instance, common to all complications, is asso-
ciated with ER stress-induced lipid accumulation. Other miRNAS, such as mir-802, 
mir-181, mir-34a, and mir-24a, have been suggested as novel potential therapeutic 
targets, associated with impaired glucose metabolism, insulin resistance, and β-cell 
death and dysfunction, respectively (Rani et al. 2017).

Taken together, information in the literature on transcriptional expression pro-
files highlights not only a serious picture of changes in different molecular signaling 
pathways in T2DM (such as inflammation, oxidative stress response, DNA repair, 
apoptosis, antioxidant response, mitochondrial function, immune response, and ER 
stress, among others) but also establishes a link and integration between biological 
processes, which are clearly related to the physiological changes presented by 
patients. In addition, the use of microarrays and other advanced techniques for the 
study of large-scale transcriptional profiles brings an immense amount of data, 
revealing altered pathways still unknown in T2DM, thus expanding knowledge 
about the disease and also providing valuable data for new therapeutic and diagnos-
tic possibilities.
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15.4  Conclusions

Diabetes mellitus is a worldwide public health problem characterized by distur-
bances in the control of glucose levels, generating hyperglycemia and serious con-
sequences for the body. Several multidisciplinary studies have shown that 
hyperglycemia has a major impact on the onset of oxidative stress and mitochon-
drial dysfunction, which is strongly correlated with damage to β-cells and the pro-
gression of the disease toward various complications. There is evidence that in both 
types, T1DM and T2DM, there is an increase of oxidative stress (as it can be 
detected by various molecular and biochemical markers), oxidative damage to mac-
romolecules, as well as decreased antioxidant response and impaired DNA repair 
capacity. Studies on a genomic scale have shown that patients with T1DM and 
T2DM present important transcriptional changes related to a series of biological 
processes, especially regarding responses to oxidative stress, DNA repair, inflam-
mation, immune response, ER stress, and mitochondrial alterations, among other 
processes, which reflects the characteristic picture of physiological changes that 
occur during development and progression of the disease. Therefore, all these 
changes described for diabetes show the need for adequate control of glycemia, in 
an attempt to reduce the deleterious effects over the years of chronic disease, as well 
as to delay its progression and thus avoiding subsequent complications of diabetes.
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Chapter 16
Large-Scale Gene Expression 
in Monogenic and Complex Genetic 
Diseases

Anette S. B. Wolff, Adam Handel, and Bergithe E. Oftedal

16.1  Introduction

Our genome holds around 20,000–25,000 genes that serve as blueprints for building 
our proteins. An understanding of how these genes are regulated and transcribed, 
and how the protein repertoire is generated and maintained are central to human 
biology, health, and the pathophysiology of the disease. Immune function is crucial 
to all aspects of health, and we have therefore chosen to focus on immunological 
disorders in this chapter.

Monogenic diseases are rare disorders caused by mutations in one gene while 
polygenic diseases often are common disorders with a complex genetic landscape 
related to polymorphisms at multiple loci across the genome. In this chapter, we 
will critically assess the contribution of large-scale gene expression analyses to both 
disease contexts. Monogenic disorders arise from mutations in genes encoding pro-
teins vital for immune function and are excellent model diseases with extreme dis-
ease phenotypes that have provided crucial information for understanding basic 
immunological functions. Knockout animal models are the ideal platform to study 
these disorders, since modifying one genetic locus is far more amenable to genetic 
engineering than for multiple loci. However, these monogenic disorders are rare, 
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and so obtaining sufficient numbers of samples to ensure accurate translation of 
animal models to human disease can be challenging.

The reverse problem exists in polygenic autoimmune disorders, where it may be 
possible to include thousands of individuals in large-scale genomic research. 
However, the generation of animal models that effectively mirror the complex 
genetic background of polygenic autoimmune disease as well as potential environ-
mental precipitants is extremely difficult. The use of large public biobanks integrat-
ing longitudinal sampling with clinical information provides a promising platform 
for retrospective studies identifying individuals at risk of developing disease and 
disentangling causal relationships between gene expression and disease 
pathophysiology.

Translational studies in specific disorders can help to understand other immune 
diseases that are more difficult to study in human patients. By focusing on a few apt 
examples, this chapter aims to provide an overview of how recent progress in tran-
scriptomic analyses has advanced our understanding of gene function and 
immunobiology.

16.2  Monogenic Diseases

Multiple genes have been found to have important roles in immune function. 
Mutations in such genes cause immune deficiencies, often associated with autoim-
mune disease (Azizi et al. 2021). Monogenic diseases can be dominant or recessive, 
autosomal or sex-linked. Dominant inherited diseases occur when a variant in one 
copy of a gene is sufficient to result in a clinical phenotype, while in recessive inher-
ited diseases both alleles of the gene have mutations (Fig. 16.1). Disease-causing 
mutations can be found on all chromosomes, including the X and Y chromosomes. 
Incomplete inheritance is mostly observed in diseases characterized by dominant 
inheritance patterns, meaning that the disease phenotype does not always segregate 
with the genetic change.

We will in this part focus on three examples of monogenic disorders; namely 
autoimmune polyendocrine syndrome type 1 (APS-1), monogenic severe combined 
immune deficiency (SCID), and the immunodysregulation polyendocrinopathy 
enteropathy X-linked (IPEX) syndrome. APS-1 is caused by mutations in the auto-
immune regulator (AIRE) gene which can cause disease both with recessive (classic 
form) and dominant inheritance patterns while mutations in the adenosine deami-
nase (ADA) gene cause immune deficiency by autosomal recessive genetic inheri-
tance. IPEX is an example of an X chromosome-linked monogenic disorder, 
resulting in gender-specific inheritance pattern and originating from mutations in 
the transcription factor forkhead box P3 (FOXP3) gene. An overview of monogenic 
autoimmune and immune deficiency diseases is given in Table 16.1.
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16.2.1  APS-1 and Central Tolerance Beyond AIRE

16.2.1.1  Clinical Phenotype and Molecular Genetics

APS-I is caused by autosomal inheritance of mutations in the AIRE gene on chro-
mosome 21 (Finnish-German 1997; Nagamine et al. 1997). Although most com-
monly recessive in inheritance pattern, dominant mutations in AIRE causing a 
milder expression of the disease have also been described (Oftedal et al. 2015). The 
phenotype of APS-I is characterized by autoimmune endocrine manifestations; a 
clinical diagnosis requires two of Addison’s disease, hypoparathyroidism, and 
chronic mucocutaneous candidiasis (CMC) (Husebye et al. 2018). Autoantibodies 
recognizing proteins expressed in the affected organs and against key intermedia-
tors of immune responses, notably type I interferons (IFNs) and interleukin (IL)-17 
and -22, are hallmarks of this syndrome (Kisand et al. 2010; Puel et al. 2010).

Studying AIRE-deficient mice has provided the majority of the information 
regarding the etiology of APS-I with clear implications for human immune toler-
ance (Anderson et al. 2002; Ramsey et al. 2002; Liston et al. 2003, 2004; Anderson 
and Su 2016; Husebye et al. 2018). Mouse models have clear advantages in permit-
ting one gene-one phenotype correlation. However, there are limitations to how 
accurately AIRE deficient mice model mimics human APS-1: mice show different 
autoimmune target organs (most commonly eyes, salivary glands, and exocrine pan-
creas), the mouse strain genetic background modulates disease severity, and the 
peripheral immune phenotype is different.

Polygenic

Systemic
autoimmune 

disease

Organ specific
autoimmune 

disease

Genetic component

Recessive

Monogenic

Dominant

Fig. 16.1 Overview of autoimmune disease and their patterns of inheritance. The genetic compo-
nent of polygenic- and monogenic disorders, the latter with a dominant or recessive inheritance 
pattern is evident in both organ-specific and systemic autoimmune diseases

16 Large-Scale Gene Expression in Monogenic and Complex Genetic Diseases



370

The main function of AIRE is to act as a transcriptional activator in medullary 
thymic epithelial cells (mTECs) during the process of thymic education of T cells 
(Anderson et al. 2002), although extrathymic expression of AIRE has been described 
(Gardner et al. 2008; Gardner et al. 2013). AIRE specifically acts in negative central 

Table 16.1 Overview on monogenic autoimmune and immune deficiency disorders

Gene Disease Frequency References

AIRE Autoimmune polyendocrine 
syndrome type I (APS-I

1:100,000 Husebye et al. (2018)

BTK X linked gammaglubolinemia 
(XLA), SCID

All SCID: 
1/100,000

Vihinen et al. (2000)

ADA1 ADA-severe combined immune 
deficiency (SCID)

All SCID: 
1/100,000

Fischer (2000)

ADA2 gene 
(formally CECR1)

deficiency of adenosine 
deaminase 2 (DADA2) (SCID)

All SCID: 
1/100,000

Fischer (2000) and 
Kendall and Springer 
(2020)

IL2RG (common 
gamma chain)

X-SCID Dvorak et al. (2019)

JAK3, CD45, 
Artemis, IL7Ra, 
CD3d, CD3E

SCID Fischer (2000)

DCLREIC Art-SCID Schuetz et al. (2014)
FOXP3 X-linked Immune dysregulation 

polyendocrinopathy-enteropathy 
(IPEX)

Powell et al. (1982) and 
Park et al. (2020)

LRBA Lipopolysaccharide responsive 
beige-like anchor (LRBA) 
deficiency, CVID

Lopez-Herrera et al. 
(2012)

TAC1, BAFF-B, 
MSHS, ….a

Common variable 
immunodeficiency (CVID)

1/10–50,000 Knight and 
Cunningham-Rundles 
(2006) and Ma et al. 
(2020)

gp91phox, p22phox, 
p47phox, p67phox, 
p40phox

Chronic granulomatous disease 
(CGD)

Arnold and Heimall 
(2017)

SH2D1A, XIAP XLP About 
500 in total

Beenhouwer (2020)

WASp Wiskott-Aldrich syndrome 1/250,000 
males

Albert et al. (2011)

RAG1, RAG2 Omenn syndrome (SCID) Villa et al. (1999)
ITGB2 Leukocyte adhesion deficiency 

(LAD1)
Fischer et al. (1988)

FAS, FASL Autoimmune 
lymphoproliferative syndrome 
(ALPS)

Fisher et al. (1995)

Mutations in the 
complement system

Degn et al. (2011)

aMonogenic or “few genes” disorders in which mutations in one gene causes a disease phenotype
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tolerance, inducing the expression of ectopically proteins for presentation to devel-
oping T cells. Next generation sequencing has enabled whole transcriptomic studies 
to make major progress on understanding the function of AIRE in different thymic 
compartments.

16.2.1.2  Transcriptomics of AIRE Deficiency and Beyond

Focusing on AIRE’s function in the thymus, mTECs can express nearly 20,000 
unique proteins and AIRE has the potential to induce expression of up to 20% of 
these (Sansom et  al. 2014). In 2015, Meredith and coworkers used single cell 
sequencing techniques to understand the function of AIRE and the mechanism of 
immune tolerance at the level of single mTECs. They performed parallel single-cell 
RNA-sequencing and DNA-single cell-methylation profiling of Aire wild type and 
Aire-deficient mTECs from mice (Meredith et al. 2015). Their results indicated that 
the organization of the DNA and epigenome is stochastically determined but pre-
served throughout cellular divisions. Holländer and coworkers showed that Aire- 
dependent genes in mTECs are marked with an epigenetic H3K27me3 repressive 
label, which allows them to be unsilenced epigenetically with subsequent expres-
sion (Sansom et al. 2014). To further delineate Aire’s function, it was found that in 
addition to its role as a transcriptional activator, Aire has a repressive function to 
counteract accessibility of chromatins in tissue-specific gene loci (Koh et al. 2018). 
Hence, Aire calibrates the expression of tissue-specific genes by several mecha-
nisms, and AIRE mutations impair both performances. These studies have made 
considerable progress regarding the function of Aire in the mouse thymus. However, 
as this disorder is very rare and thymic tissue inaccessible, transcriptomic studies in 
human patients have been more limited, with only a few studies published to date 
regarding the immune repertoire and transcriptome within specific immune subsets. 
There is surprising little effect on the global immune repertoire, although overall 
skewing of peripheral repertoire has been observed along with downregulation of 
peripheral FOXP3-positive regulatory T cells (Tregs) in APS-I (Kekalainen et al. 
2007; Tuovinen et al. 2009; Laakso et al. 2010, 2011; Kaleviste et al. 2020).

Unlike most autoimmune disorders, the functional consequences of the loss of 
thymic AIRE expression in blood from APS-I-patients demonstrate repression of 
IFN and IFN-stimulated genes when the transcriptome is analyzed. This is probably 
due to the presence of high titer neutralizing anti-IFN antibodies (Kisand et  al. 
2008; Heikkila et al. 2016). Another study revealed impairments related to cell–cell 
signaling, innate immune responses, and cytokine activity in monocyte-derived 
dendritic cells from APS-I patients (Pontynen et al. 2008). A few studies have been 
published on TCR repertoires of different T cells subtypes regarding APS-I patients 
showing few differences between patients and controls (Niemi et al. 2015; Koivula 
et al. 2017), but Tregs from patients had a significantly longer TCR complementarity- 
determining region 3 than any other population, indicating that patients’ naive Tregs 
have a defect already when entering the thymus (Koivula et al. 2017). The same 
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group further showed that the CD8+ T cell repertoire in APS-I patients was skewed 
compared to healthy controls (Laakso et al. 2011).

Understanding the mechanisms underlying human AIRE deficiency have been 
hampered by restricted accessibility to those tissues affected in APS-I. Recently, 
two different studies aimed to find the mechanisms underlying chronic candidiasis 
in APS-I patients by studying buccal biopsies with RNA sequencing. While 
Kaleviste and coworkers described an impaired antimicrobial response and cell pro-
liferation profile characterizing APS-I patients, Break et  al. found a localized 
increased IFN-γ and STAT1-response, which they hypothesized contributes to dis-
ruption of the epithelial membrane leading to infection (Kaleviste et al. 2020; Break 
et al. 2021), and the distinctive mucosal candidiasis seen in APS-I patients.

Intriguingly, common polymorphisms in the AIRE gene, combined with variants 
in other immune-related genes, are major risk factors of autoimmune Addison’s 
disease in patients without APS-I (Eriksson et al. 2021). Hence, AIRE may have a 
role beyond monogenic APS-I in some polygenic autoimmune conditions which is 
yet to be functionally determined.

16.2.2  IPEX and Peripheral Tolerance

16.2.2.1  Clinical Phenotype and Molecular Genetics

The IPEX syndrome is a rare, X-linked disorder. IPEX usually presents in early 
childhood but may occur antenatally or later in life (Powell et al. 1982; Allenspach 
et al. 2017). It is characterized by severe enteropathy, chronic dermatitis, early onset 
type 1 diabetes mellitus (T1D), hypoparathyroidism, antibody-mediated cytopenia, 
and other autoimmune manifestations (Powell et al. 1982). Affected males typically 
die within the first years of life without immunosuppressive treatment or stem cell 
transplantation. IPEX was recognized clinically in 1982 (Powell et al. 1982), and 
linkage analysis mapped the genetic defect to the X chromosome (Xp11.23–Xq13.3) 
in 2000 (Bennett et  al. 2000; Ferguson et  al. 2000). Subsequently, the disease- 
causing variants were found to be in the FOXP3 gene (a DNA-binding factor) when 
a frameshift mutation in FOXP3 was observed in a naturally occurring mutant 
mouse (Bennett et al. 2001; Wildin et al. 2001).

The FoxP3 knock out mouse, also called the “scurfy mouse,” shares many phe-
notypic features with the human disease, including scaly skin, low birth weight, 
diarrhea, progressive anemia, lymphadenopathy, and hepatosplenomegaly (Russell 
et al. 1959; Brunkow et al. 2001). The phenotype of the scurfy mouse results from 
immune dysregulation and loss of peripheral tolerance mechanisms due to uncon-
trolled proliferation of active CD4+ effector T cells (Blair et al. 1994; Clark et al. 
1999), and an absence of regulatory T cells (Tregs) (Khattri et al. 2003).

As in the mouse, FOXP3 is the key factor in human Treg development, and its 
function has been extensively investigated (Ziegler 2006; Bin Dhuban and Piccirillo 
2015; Alroqi and Chatila 2016; Bacchetta et al. 2018). Natural Tregs develop in the 
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thymus, but there are also inducible Tregs (iTregs) in the periphery (Komatsu et al. 
2009). When looking at these subtypes by single cell sequencing, their transcrip-
tome of pTregs and iTregs were interlaced, but with minimal overlap in the T cell 
receptor repertoires (Hui et al. 2021). Tregs exert their suppressive effect either by 
direct cell–cell contact, secretion of immunoregulatory cytokines such as IL-10 and 
TGFβ (Palomares et al. 2014; Allenspach and Torgerson 2016), or by their high IL-2 
affinity (Pandiyan et al. 2007).

16.2.2.2  Transcriptomics of FOXP3 Deficiency and Beyond

Previous studies have identified the existence of Treg-like cells in the absence of 
FOXP3  in some IPEX patients (Bacchetta et al. 2006; Otsubo et al. 2011; Boldt 
et al. 2014), and these cells have also been found in the Scurfy mice (Gavin et al. 
2007; Lin et  al. 2007; Charbonnier et  al. 2019). Furthermore, the expression of 
FOXP3 has been found in cells that are otherwise similar to conventional T cells by 
single cell RNA sequencing (scRNAseq) (Zemmour et al. 2018). This, together with 
the finding of low expression-levels of FOXP3 early after the activation of conven-
tional T cells (Walker et al. 2003; Gavin et al. 2006; Allan et al. 2007; McMurchy 
et al. 2013), suggest a role for FOXP3 outside the Treg compartment. Future studies 
will determine if this contributes to the skewing of effector T cell phenotypes 
described in IPEX (Passerini et al. 2011; Van Gool et al. 2019).

In a recent study by Zemmour et al. (2021), they included 15 IPEX patients and 
15 healthy controls and characterized peripheral blood mononuclear cells (PBMCs) 
by scRNAseq, bulk RNA sequencing, and flow cytometry. Interestingly, they found 
the presence of heterogeneous Treg-like cells with an active FOXP3 locus in all 
patients. These Treg-like cells spanned a spectrum, where some resembled classical 
FOXP3-expressing Tregs, while others had distinct phenotypes. The dominant 
IPEX-signature found by Zemmour et  al. was a monomorphic signature equally 
affecting all CD4+ T cells. Supported by the scurfy mouse model, the authors iden-
tified a cluster of genes that was regulated cell-intrinsically by FOXP3. Based on 
these findings, they suggested that FOXP3 is only important for very few Treg 
genes, including IL-2ra, Tnfrsf4, Tnfrsf9, Tnfrsf18, and Capg, corresponding to a 
“core set” of genes expressed by all Tregs, which are directly transactivated by and 
bind FOXP3 (Samstein et al. 2012; Kitagawa et al. 2017; Kwon et al. 2017). These 
genes encode the major homeostatic regulator of Treg cells (IL-2RA), and several 
members of the TNFR superfamily, which are also connected to Treg homeostasis 
and function (Chen et al. 2013; Remedios et al. 2018). This suggests a two-step 
model for the development of IPEX: cell-intrinsic downregulation of core FOXP3- 
responsive genes, which then drives global transcriptomic phenotypic differences in 
both Tregs and conventional T cells, and ultimately leads to a defective feedback 
cycle of T cell activation secondary to defective Treg function.

Transcriptional analyses have pinpointed the effect of FOXP3, and it will be 
interesting to see how this new information can be translated to new treatment 
options beyond IPEX and immunodeficiencies.
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16.2.3  ADA Deficiency

16.2.3.1  Clinical Phenotype and Molecular Genetics

Monogenic mutations in the ADA gene encoding ADA1 result in the most common 
form of the SCID syndrome (Navon Elkan et al. 2014; Zhou et al. 2014; Kaljas et al. 
2017) and clinically manifests as lymphopenia and immunodeficiency. The isoen-
zyme ADA2 is encoded by ADA2/CECR1. Both isoenzymes belong to the adenos-
ine deaminase growth factor family and are important in the cellular metabolism 
through catalyzing the hydrolysis of adenosine to inosine in the purine catabolic 
pathway. ADA1 and -2 convert toxic deoxyadenosine, generated by DNA break-
down, to harmless metabolites. In addition to being a metabolic disorder, in a mouse 
model of ADA1 deficiency, the organs of the immune system including thymus and 
lymph nodes were decreased in size compared to healthy mice (Apasov et al. 2001). 
ADA1-SCID is inherited in an autosomal recessive manner and has an incidence of 
about 1:200,000, thus accounting for ~15% of all known SCID cases worldwide 
(Buckley 2004). ADA1 is expressed in most cells, whereas, in contrast, ADA2 is 
expressed almost exclusively in differentiating monocytes (Kaljas et al. 2017). High 
levels of ADA are expressed in lymphoid tissues with high cell turnover, especially 
in the thymus (Hirschhorn et al. 1978; Aldrich et al. 2003).

In ADA-deficient individuals there is a depletion of T, B, and NK cells, resulting 
in a failure to clear infections. Both ADA1 and ADA2 control the immune responses 
of nearby cells but acts on different targets; ADA1 connects via its receptor CD26 
on the surface of effector T cells and NK cells and binds to CD16 negative mono-
cytes while ADA2 anchors to neutrophils, monocytes, NK cells, B cells, and Tregs 
(Kaljas et al. 2017). ADA deficiency can be treated through enzyme replacement 
therapy with ADA-PEG injections, allogeneic hematopoietic stem cell transplanta-
tion, and hematopoietic stem cell gene therapy (Kohn et al. 2019).

16.2.3.2  Transcriptomics of ADA Deficiency

In both mice and humans with ADA1-deficiency, abnormal thymocyte development 
and differentiation is apparent (Apasov et al. 2001). The deleterious effect of muta-
tions of ADA1 or -2 in T cells leads to the accumulation of toxic substrates not only 
within the cells but also through defective T cell signaling. A compromised TCR/
CD28-driven proliferation and cytokine production has been revealed, associated 
with reduced ZAP-70 phosphorylation, Ca2+ flux, ERK1/2 signaling, and defective 
transcriptional events linked to CREB and NF-κB (Cassani et al. 2008). Flaws in B 
cells are probably caused by defect antigen-dependent maturation and compromised 
V(D)J recombination evident by reduced proliferation, increased apoptosis, and 
impaired signaling (Gangi-Peterson et al. 1999; Aldrich et al. 2003). When analyz-
ing the transcriptome of monocytes from patients ADA2 deficiency in specific, 
increased levels of TNFα, IL6, and IL10 have been identified, in addition to 
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upregulation of the IFN-type I pathway (Navon Elkan et al. 2014; Kaljas et al. 2017; 
Rama et al. 2018). Watanabe and colleagues demonstrated an expansion of CD16+ 
subtype and upregulation of both the IFNI and type II responses in monocytes from 
patients with ADA2 deficiency (Watanabe 2019). The global picture of the blood 
cells in ADA patients is still to be determined at single cell resolution at the tran-
scriptional level.

16.3  Polygenic Diseases

Polygenic diseases are genetic disorders caused by the combined action or interac-
tion of multiple genes (Fig.  16.1), often precipitated by unknown environmental 
triggers, exemplified by hormones, smoking, exposure to unknown chemical sub-
stances, and infections. In humans, these disorders occur more frequently than their 
monogenic counterparts, with a large social and economic impact. Some aspects of 
the genetic architecture of polygenic disorders are reasonably well understood (i.e., 
the implication of specific common single nucleotide polymorphisms) whereas the 
contributions of rare genetic variants and the mechanisms linking variants to disease 
pathogenesis are poorly understood. It is clear that polygenic analyses approaches 
and validation of genetic models need to be undertaken to understand the cumula-
tive impact of the genes for immune disorders (Lvovs et al. 2012).

Mouse models of polygenic disorders are far more challenging than for the 
monogenic counterparts. Individual variants frequently have a minor impact on dis-
ease risk but engineering mice with the entire genetic background of polygenic risk 
variants is impractical. Environmental factors are important for the development of 
most polygenic conditions and these exposures are difficult to replicate in mouse 
colonies housed under sterile conditions.

For organ-specific disorders, advances have also been limited by the inaccessi-
bility of some target organs for biopsy, the small size of the targeted organ, and 
because the target organ is frequently destroyed throughout the course of the disease.

In this section we will focus on the organ-specific polygenic diseases: type 1 
diabetes, Graves’ disease, vitiligo, and celiac disease; and the systemic polygenic 
autoimmune disorders: rheumatoid arthritis, systemic lupus erythematosus (SLE), 
and Sjøgren’s syndrome.

16.3.1  Organ-Specific Disorders

16.3.1.1  Type 1 Diabetes

Type 1 diabetes (T1D) is caused by an autoimmune attack by T cells against the 
insulin-producing pancreatic β-cells, resulting in chronic hyperglycemia (Atkinson 
et al. 2014). The condition usually presents in childhood and is equally common in 
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females and males. Adequate insulin replacement therapy can restore near-normal 
glycemic balance, although hyperglycemia might cause damage to other organs, 
including the retina, vascular structures, kidneys, and peripheral nerves. With a 
prevalence of ~1%, T1D is a relatively common organ-specific autoimmune disor-
der. Unlike APS-I and IPEX, the underlying genetic basis of T1D is thought to be 
polygenic, except for maturity-onset diabetes of the young (MODY), with contribu-
tions to disease susceptibility from poorly understood environmental factors.

The nonobese diabetic (NOD) mouse model is a promising tool to understand 
T1D pathogenesis (Giarratana et  al. 2007). Indeed, the NOD mouse precipitates 
autoimmune glycemia, associates genetically to the orthologous human leukocyte 
antigen (HLA) region as in human T1D, and shows the same clinical picture and 
much of the pathogenic mechanisms as in the human corresponding disorder 
(Sharma et al. 2019). The prominent immune cell infiltration seen in NOD mice 
differs from the rather scarce infiltration seen in human insulitis (Campbell- 
Thompson et al. 2016). Single cell transcriptomics in NOD mice has demonstrated 
that the immune infiltration of the pancreas was highly dynamic (Zakharov et al. 
2020). Until 2 weeks of age, there was little evidence of pancreatic infiltration but 
by 4 weeks memory CD4+ and CD8+ T cells predominated. Thereafter, Tregs, B 
cells, and dendritic cells entered the inflammatory milieu, in parallel with stepwise 
activation of macrophages.

A recent paper by Qian and colleagues took advantage of already published data-
sets on mRNA-expression data from the blood of diabetic patients and controls and 
performed global protein–protein interaction network analysis and transcription 
factor target network analysis based on differential expressions of genes (Qian et al. 
2019). CISC was the most upregulated candidate, and SCAF11 was the most down-
regulated molecule. In addition, they found ARHGAP25, HLA-DRB4, and IL-23A 
as promising and verified candidates. Lu and colleagues re-analyzed GWAS results 
for T1D combined with transcriptomic expressional data from the blood and 
revealed a network of genes responsible for immune regulation. They found several 
genes differentially expressed in T1D, including genes like CAPZB, YWHAZ, TKT, 
TPP1, RBM17, PTPN11, HCG11, and MLLT1 (Lu et al. 2019). Other studies have 
been interested in detecting the autoreactive T cells in particular; peripheral T cells 
have been identified with TCRs specific for the common autoantibodies G6Pase2, 
insulin, pre-proinsulin, IA-2, GAD65, and ZnT8 in blood of T1D patients, but they 
are also seen in control subjects at low frequencies (Mallone et al. 2007; Eugster 
et al. 2015; Seay et al. 2016; Fuchs et al. 2017).

Studies of blood are convenient and may capture some of the important param-
eters to understand pathogenesis, however, the disease initiates at the surface of the 
pancreas and as the disease proceeds, within the organ. Studies in human pancreatic 
tissue from patients with T1D have confirmed that insulitis is associated with the 
presence of macrophages, NK cells, B cells, CD3+ T cells (CD8+ > CD4+), and 
HLA class I overexpression in the islets (Coppieters et al. 2012). There was a high 
degree of heterogeneity in T1D throughout the inflamed pancreas with T cell anti-
gen reactivity, CD8+ T cell TCR clonality, and T cell phenotypes differing across 
individual islets (Coppieters et al. 2012; Arif et al. 2014; Pathiraja et al. 2015; Babon 
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et al. 2016; Seay et al. 2016; Michels et al. 2017). This heterogeneity complicates 
inferences drawn from studies of peripheral blood. When analyzing 261 islets from 
either controls, islet-autoantibody-positive nondiabetic persons, and T1D patients, 
Campbell-Thompson et  al. reported differential expression pathways related to 
β-cells and immune markers in antibody-positive nondiabetics, while β-cell tran-
scripts were downregulated and HLA class II expression upregulated in T1D 
patients (Campbell-Thompson et al. 2018). Studying immune cells in different body 
compartments can gain further knowledge. In a recent study by Giola et al., they 
analyzed anti-islet T cells in the spleen and peripheral lymph nodes, the pancreatic 
lymph nodes, and within the islet cells in NOD mice (Gioia et  al. 2019). In the 
periphery, the T cells had nearly no early T cell signaling genes expressed, although 
this was found both in pancreatic lymph nodes and intra-islet cells. Cytokine activa-
tion was detected in the pancreatic lymph node, however, no TCR recruitment was 
seen as opposed to the T cells within the target organ which had a profile of full TCR 
triggering and activation. The same study showed early epitope preference for a 
specific epitope within the insulin protein, which was not shown later, proving that 
autoimmunity toward insulin is part of the early event, and may be involved in trig-
gering the loss of tolerance in these persons (Gioia et al. 2019).

The crosstalk between pancreatic epithelial cells and surface, and the surround-
ing immune cells are probably essential to initiate and maintain disease, and new 
technology opens new doors to investigate the locally affected milieu. Since patho-
genic T cells are rare in the diseased pancreas (between 0.05% and 0.2%), and even 
rarer in the blood (<0.05% for CD4+ and <0.01% for CD8+ T cells) (Eugster et al. 
2015), the combination of peptide–HLA–tetramers to enrich the pathogenic T cells 
for single cell RNA sequencing stands out as a powerful tool to understand the 
immunobiology and heterogeneity of islet-reactive T cells in T1D. This information 
can be applied to diagnose disease before the development of overt diabetes and to 
target disease-modifying treatments to specific islet-reactive clones (Zhang 
et al. 2021).

Complications of diabetes can further be explored using these novel approaches. 
Diabetic nephropathies confer damage to both the glomerulus and the tubule. To 
reveal changes in these regions, cells from the specified regions from cryopreserved 
kidneys were dissociated and single cell sequenced in three controls and compared 
to three diabetic biopsies (Wilson et al. 2019). Although there were not many leuko-
cytes present, infiltrating monocytes expressed an IFN-γ and HLA class II profile. 
There was also an upregulation of B cells, T cells, plasma cells, and monocytes, and 
multiple cell types showed early signs of aberrant angiogenesis. Although unpow-
ered, such molecular dissection of actual sites of pathogenic events may prove 
important to find new therapeutic tools, and within autoimmune diseases, T1D is 
one of the disorders where the analysis of the transcriptional landscape is most 
advanced.
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16.3.1.2  Graves’ Disease

Grave’s disease (GD) is the most common autoimmune thyroid disease, with a life-
time risk of 3% for females and 0.5% for males. It is characterized by hyperthyroid-
ism due to excessive production of thyroid hormone induced by TSH-receptor-specific 
stimulatory autoantibodies produced by B cells (Smith and Hegedus 2016). 
Autoreactive T cells infiltrate the tissue and produce cytokines, which maintain and 
amplify the immune response (Li et al. 2019). To date, GD is treated by controlling 
the unwanted production of thyroid hormone, by either antithyroid medications, 
radioactive iodine, or surgery. Much insight has been gained regarding the genetic 
susceptibility underlying Grave’s disease, in which >20 genes contribute to the clin-
ical phenotype, including immune regulatory genes (HLA, CTLA4, and PTPN22) 
and thyroid-specific genes (TG and TSHR). However, none of the known genetic 
variants contribute more than a fourfold increase of developing Graves’ disease, 
with considerable heterogeneity between different populations (Davies et al. 2012).

Transcriptional analysis comparing thyroid tissue from patients with Graves’ 
disease to control samples identified upregulation of human leukocyte antigen 
(HLA) genes, cytokine- and chemokine-related genes and regulators, and growth- 
and synthesis-related genes in Graves’ disease (Yin et al. 2014). Pathway analysis 
identified five major categories of overactivity: immune responses (both innate and 
adaptive), pathogen-influenced gene expression, thyroid growth, stress responses, 
and intracellular and second-messenger signaling pathways. Some of these 
GD-related pathways may be driven by differential expression of specific microRNA 
molecules (Martinez-Hernandez et al. 2019). Similar, immune-dominant signatures 
define GD-associated inflammation outside of the thyroid. GD is frequently causing 
inflammation of extraocular adipose tissue, which has shown to be associated with 
IL-5 chemokine signaling by RNA sequencing (Lee et al. 2018). There is a rarity of 
studies in GD utilizing new transcriptome technology, where no single cell RNA 
sequencing data have been reported, either of GD thyroid samples or periph-
eral blood.

16.3.1.3  Vitiligo

Vitiligo is characterized by depigmented areas of the skin. The prevalence of this 
skin disorder worldwide is 0.2% but with geographical variation (Zhang et al. 2016). 
The pathogenic mechanisms causing vitiligo are thought to comprise autoimmunity 
against melanocytes, with subsequent reduction in melanin production (Katz and 
Harris 2021). CD8+ T cells and macrophages have been found within depigmented 
lesions in vitiligo, supporting an immune-mediated component in disease pathogen-
esis (van den Wijngaard et al. 2000).

Transcriptomic analyses have been performed on both blood and skin biopsies 
from patients with vitiligo and controls. In peripheral blood and affected skin, there 
was a common downregulation of immune/inflammatory responses, B cell path-
ways, apoptosis, and catabolic processes in addition to an altered interferon-profile 
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involving STAT1, STAT6, NFKB, CREB1, and MYC amongst others (Dey-Rao and 
Sinha 2017). When analyzing skin samples, it is an advantage to compare lesioned 
skin with healthy skin from the same patient; such data show downregulated mela-
nogenic pathways and of cornification and keratinocyte differentiation processes in 
damaged skin (Yu et al. 2012; Singh et al. 2017) and upregulation of innate immune 
system genes pointing at NK cell activity. Of interest, these immune genes were 
also shown to be upregulated in nonlesioned skin of vitiligo patients (Yu et  al. 
2012). Several studies have implicated interferons to be involved in pathogenic 
events in humans, although not in mice (Bertolotti et al. 2014; Rashighi et al. 2014; 
Tulic et  al. 2019; Jacquemin et  al. 2020; Riding et  al. 2020). IL-15 is further 
increased in lesions (Chen et al. 2019) and the immune checkpoints CTLA4 and 
PD-1 are affected in blood and isolated T cells from vitiligo patients (Zhang et al. 
2018; Willemsen et  al. 2020), suggesting these pathways as suitable targets for 
developing and monitoring treatment of the patient.

16.3.1.4  Celiac Disease

Celiac disease is a systemic immune-mediated inflammation of the intestine trig-
gered by dietary gluten. Celiac disease is characterized by a variety of clinical pre-
sentations, a specific serum autoantibody response, and damage to the small-intestinal 
mucosa (Fasano and Catassi 2012). The pathogenesis of this disease involves gluten 
as an external trigger, changes in intestinal permeability, enzymatically modified 
gluten, HLA recognition, and innate and adaptive immune responses to gluten pep-
tides involving self-antigens (e.g., transglutaminase), eventually leading to celiac 
enteropathy (Jabri and Sollid 2009; Schuppan et al. 2009). A gluten-free diet is a 
principal therapy for celiac disease. The HLA haplotypes HLA-DQ2 and HLA-DQ8 
are expressed in 90% and 5% of the patients, respectively. DQ2 and DQ8 haplo-
types expressed on the surface of antigen-presenting cells bind activated (deami-
dated) gluten peptides, thereby triggering an abnormal immune response (Karell 
et  al. 2003). In addition, genes involved in inflammatory and immune responses 
have been shown to predispose to celiac disease (Trynka et al. 2011).

Transcriptome analysis of FFPE archived duodenum biopsies from active celiac 
disease and control subjects demonstrated both dysregulation of genes associated 
with lymphocyte activation and cytokine response and impaired epithelial prolifera-
tion pathways in celiac disease (Loberman-Nachum et al. 2019). The integration of 
these data with two other RNA sequencing studies (Bragde et al. 2018; Leonard 
et al. 2019) identified a core celiac disease-specific signature of 403 genes.

The possibility to compare biologic material from the same patient with and 
without gluten challenge gives a remarkable opportunity to study the transcriptome 
in celiac disease and how it is affected by gluten. In a study by Donsenko et al. 
(2021), they found that healthy intestinal function could not be reinstalled upon 
long-term gluten-free diet restriction, and that gluten challenge induced hyperactive 
intestinal wnt signaling and consequent immature crypt gene expression resulting in 
a less differentiated epithelium. Investigation of the paired γδTCR repertoire found 
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that celiac patients have a more diverse repertoire, but no specific γδTCR could be 
found that were specific for the patients, suggesting that identifying a celiac disease 
relevant γδTCR ligand to be difficult (Eggesbo et al. 2020).

16.3.2  Systemic

16.3.2.1  Rheumatoid Arthritis

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by swollen, 
stiff, and painful joints. The cause is most likely to be multifactorial, including 
genetic predisposition, break of tolerance involving posttranslational modified pro-
teins and environmental causes like, e.g., smoking (Sumitomo et al. 2018). Genetic 
susceptibility to RA predominantly maps to the HLA with other non-HLA contribu-
tions enriched within pathways associated with CD4+ T cell activation (Raychaudhuri 
et al. 2012; Ha et al. 2020).

Infiltrating B and T cells are found in synovial fluid and immune cells targeting 
citrullinated proteins in blood (Malmstrom et al. 2017), and upregulation of type I 
IFN signature genes in RA has been put forward, which is possible to target for 
therapy (He et al. 2008; Bremer et al. 2011; Sumitomo et al. 2018).

Previously, transcriptomic analyses were mostly done on blood samples from 
RA patients (Sanayama et al. 2014; Sellam et al. 2014), although the new era in 
genomics now facilitates analyses of pathological events near the joints and by 
using single cell approaches as a complement to bulk sequencing protocols. The 
inflamed joint is, however, a heterogenous and rather complex tissue with high 
dynamics and fast interactions with other cells and proteins. Sampling the affected 
joints, Carlberg and co-found an overabundance of T and B cells, especially T cells 
of the memory type at the localized site and claimed high levels of TNFα expression 
(Carlberg et al. 2019). A recent project described a systemic biology approach com-
piling data from single cell RNA transcriptomic, mass cytometry, bulk RNA seq, 
and flow cytometry of 51 synovial biopsies from RA patients, and showed several 
expanded cell subsets, including THY1(CD90)+HLA-DRAhi fibroblasts, IL-1B+ 
pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and 
PDCD1+ peripheral helper T cells and follicular helper T cells. They further mapped 
aberrant IL-6 and IL-1B secretion to fibroblasts and monocytes and defined these as 
drivers of RA pathogenesis (Zhang et al. 2019a). By studying fibroblast-like syn-
oviocytes, Galligans showed that 8 particular genes correlated with RA disease 
activity (Galligan et  al. 2007); (HLA)-DQA2, Clec12A, MAB21L2, SIAT7E, 
HAPLN1, BAIAP2L1, RGMB, and OSAP. Other studies have been interested espe-
cially in determining positive outcomes of immune therapy; by examining involving 
synovial tissue biopsies, it was shown that myeloid, but not lymphoid, gene signa-
ture expression was associated with a positive effect of anti-TNF-treatment (Dennis 
et al. 2014).
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Transcriptomic data on blood cells from RA patients found several links to aber-
rances in the type I interferon profile (Sumitomo et al. 2018), further used to moni-
tor RA patients treated with immune therapy to predict outcome. Single cell analyses 
of whole blood by Sellam et  al. revealed an upregulation of NF-KB, IL-33, and 
STAT5A and downregulation of the IFN pathway (Sellam et al. 2014). Koczan and 
colleagues predicted that TNFα signaling via NFKB could indicate a good or bad 
response toward TNF alpha therapy, including a gene set determined by NFKBIA, 
CCL4, IL-8, IL-1B, TNFAIP3, PDE4B, PPP1R15A, and ADM (Koczan et al. 2008). 
Others reported on dissection of blood CD4+ T cells, finding abnormal STAT1 and 
Wnt signaling (Ye et  al. 2015), and in CD4+ subsets, showing upregulation of 
GTPases-associated signaling and apoptosis and dysregulation of the TCR pathway 
involving ZAP70 and JAK3 (He et al. 2008; Bremer et al. 2011; Sumitomo et al. 
2018), molecules that can cause monogenic inborn errors of immunity if mutated on 
the germline level. A similar approach detected activation of IFN signaling in RA 
neutrophils and patients could be categorized in either IFN-high or IFN-low (Wright 
et al. 2015).

16.3.2.2  Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with 
manifestations ranging from mild to severe and life-threatening. This is a challeng-
ing disease to manage due to its clinical heterogeneity combined with the potential 
severity of the symptoms (Liossis and Staveri 2021). SLE is a chronic disease that 
affects a variety of organ systems leading to organ failure due to the formation and 
deposition of autoantibodies and immune complexes (Rahman and Isenberg 2008). 
Despite recent advantages in treatment, SLE patients still have a two to threefold 
increased risk of death (Thomas et al. 2014; Yee et al. 2015). There is a genetic 
predisposition to SLE within families, especially within identical twins (Block et al. 
1975; Deapen et al. 1992; Perdriger et al. 2003). Gene variants associated with SLE 
susceptibility are enriched within pathways regulating the function of multiple 
aspects of the innate and adaptive immune system (Tsokos 2011; Bentham 
et al. 2015).

Microarray-based transcriptomic analysis of SLE patients compared to healthy 
controls identified disease-associated transcriptional signatures related to type I 
interferon (IFN) and granulocytes (Baechler et al. 2003; Bennett et al. 2003). Single- 
cell RNA sequencing of renal samples from patients with lupus nephritis and con-
trol subjects confirmed global overactivation of type I IFN signaling Nature 
Immunol (2019). Twenty-one subsets of leukocytes were identified within lupus-
associated renal tissue, including multiple populations of myeloid cells, T cells, 
natural killer cells, and B cells with both proinflammatory responses and inflamma-
tion-resolving responses. Trajectory analysis of monocytes within the inflamed kid-
ney identified a continuum of intermediate states, including spanning patrolling, 
phagocytic, and alternatively activated cells. This suggests progressive stages of 
monocyte differentiation within the kidney to underpin lupus nephritis 
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pathogenesis. Hence, access to the affected tissue and the use of single cell sequenc-
ing permit fine resolution understanding of the disease-associated immunobiology, 
emphasizing the potential of these new methods to be applied to other diseases.

16.3.2.3  Sjogren’s Syndrome

Primary Sjögren’s syndrome (pSS) is an autoimmune disorder presenting with dry 
mouth and eyes (xerostomia and xerophthalmia, respectively) (Manuel et al. 2017). 
The disease affects females more frequently than males with a ratio of 10:1. With 
the exception of HLA, risk genes (e.g., STAT4, TNFAIP3, IL-12A, GTF2I, RBMS3) 
have a minor effect on disease predisposition (Teos and Alevizos 2017).

Upregulation of antigen processing and presentation, humoral immune response, 
inflammatory reaction, and the Toll-like receptor and interferon pathways in the 
salivary glands have been identified as common pathways of disease pathogenesis 
both in mouse models and patient samples (Hjelmervik et al. 2005; Gottenberg et al. 
2006; Horvath et al. 2012). Chemotaxis through the cytokines CCR7 and CCL21 
were differentially expressed in salivary gland tissue from pSS patients relative to 
controls and were associated with in vitro evidence of Th17 predominance (Zhang 
et  al. 2019b). Novel systemic approaches, joining genetic, transcriptional, pro-
teomic, and clinical data, recently identified that LINC00487 and SOX4 expression 
were associated with B cell defects in pSS (Inamo et al. 2020). Seven “hub genes” 
were consistently differential expressed in multiple pSS transcriptomic datasets: 
ICOS, SELL, CR2, BANK1, MS4A1, ZC3H12D, and CCR7. ICOS was upregulated 
consistently in both salivary gland biopsies and blood, and furthermore found to be 
associated with lymphocytic infiltration and disease activity of pSS patients (Luo 
et  al. 2020). Powerful studies like this can provide important information about 
pathogenesis and possible targets for therapy, by pinpointing consistently differen-
tially regulated immune cell pathways and cellular subsets.

16.4  Conclusion

By focusing on diseases of the immune system, we have described the current use 
and the knowledge gained from large-scale gene expression studies in monogenic 
and complex disorders. While the monogenic studies often suffer from the limited 
number of patients included, the mouse models have proved important to elucidate 
the molecular function and the transcriptional consequences of the genetic abnor-
mality. We found a large discrepancy in the utilization and progression into the new 
single cell transcriptomic analysis tools for the different diseases. While there were 
yet no single cell studies on GD, more severe diseases like SLE and T1D were 
highly represented, highlighting that there is still progress to be made in understand-
ing the complete picture of these diseases and to define targets and pathways for 
future functional studies.
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The still-emerging single cell technologies determining gene expression in cells 
and tissues will continue to yield important information in the years to come. 
Combined with algorithms incorporating genetic, lifestyle, and environmental fac-
tors, this holds the potential to further untangle these complex diseases.
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Chapter 17
Transcriptome in Human Mycoses

Nalu T. A. Peres, Tamires A. Bitencourt, Gabriela F. Persinoti, 
Elza A. S. Lang, Antonio Rossi, and Nilce M. Martinez-Rossi

17.1  Introduction

Fungi are eukaryotic microorganisms widely distributed in nature, existing as 
yeasts, molds, and mushrooms. Fungi are important decomposers of biomass and 
are useful in baking and wine fermentation. However, fungi can also cause severe, 
life-threatening infections in humans, animals, and vegetables, resulting in enor-
mous economic losses. Humans are constantly in contact with fungi by inhaling 
spores in the air and ingesting them as nutritional sources. Human mycoses have 
increased in incidence due to the high prevalence of immunocompromised patients, 
becoming a major public-health concern. According to the Global Action Fund for 
Fungal Infections (GAFFI  – https://www.gaffi.org), fungal diseases affect more 
than 300 million people, leading to the death of approximately 1.6 million people 
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annually worldwide. Although fungal infections are widespread, they are often 
overlooked, and in general, public health agencies perform little surveillance of 
fungal infections (Brown et al. 2012; Rodrigues and Nosanchuk 2020). Fungi cause 
a wide spectrum of diseases, ranging from asymptomatic infection to disseminated 
and fatal diseases. Nevertheless, fungal infections are not frequently diagnosed, 
which impairs the proper epidemiological surveillance of these diseases. The 
increasing clinical reports of fungal coinfections among hospitalized patients, espe-
cially those with respiratory infections such as the recent COVID-19 pandemic 
caused by the SARS-CoV-2 virus (Zhu et al. 2020; Silva et al. 2021; Alanio et al. 
2020), highlight the importance of investments in basic and clinical research explor-
ing fungal mechanisms and pathways. Therefore, more data about the life cycle of 
pathogenic fungi and the pathogenesis of these infections will aid the development 
of therapeutic approaches and diagnostic tests. Although research funding for 
human mycoses remains lower than that for other areas of medical microbiology, 
the number of publications in the field of medical mycology has increased over the 
past several decades.

Fungi infect several anatomical sites, resulting in different clinical symptoms. 
The most prevalent are cutaneous, mucosal, subcutaneous, and pulmonary diseases. 
These infections can be acquired from trauma to the skin and mucosa, direct or 
indirect contact with infected humans and animals, contact with contaminated fomi-
tes, or inhalation. Airborne fungal infections typically result in pulmonary diseases. 
Skin and nail infections affect both healthy and immunocompromised individuals, 
decreasing quality of life by causing discomfort and pruritus. Cutaneous infections 
are most commonly caused by dermatophytes, a closely related group of keratino-
philic molds that infect humans and animals. They are directly or indirectly trans-
mitted between infected organisms and contaminated objects, such as towels and 
manicure appliances (Peres et al. 2010a). Candida species can also cause skin and 
nail infections, but they more commonly cause oropharyngeal (thrush) and vulvo-
vaginal candidiasis. Many Candida species are harmless and are commensal micro-
organisms. However, immune system impairment favors their pathogenicity, and 
they can cause opportunistic infections. C. albicans is part of the normal microbiota 
of mucous membranes of the respiratory, gastrointestinal, and female genital tracts. 
Changes in the host’s immunological status and microbiota enable its invasive 
behavior, leading to tissue damage and dissemination through the bloodstream to 
other organs (d'Enfert et al. 2020). More recently, the emerging pathogen Candida 
auris poses a threat causing nosocomial infections and hospital outbreaks, increas-
ing global concern owing to its high resistance to antifungal agents and disinfectant 
chemical compounds (Du et al. 2020).

Deep fungal infections are mainly caused by Aspergillus fumigatus, Cryptococcus 
neoformans, Cryptococcus gattii, Coccidioides immitis, Paracoccidioides brasil-
iensis, Histoplasma capsulatum, and Blastomyces dermatitidis. Some fungal dis-
eases are endemic, such as blastomycosis (B. dermatitidis) and histoplasmosis 
(H. capsulatum), which are mainly found in the United States, and paracoccidioido-
mycosis (P. brasiliensis), which is primarily found in Latin America. Others are 
cosmopolitan and are encountered worldwide (Brown et al. 2012). Fungal spores 
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are present in the environment and can be inhaled; upon reaching the lungs, they 
adhere to the parenchyma and initiate the infectious process. From the lungs, they 
can enter the bloodstream and disseminate to other organs, mainly the liver and 
spleen. Cryptococcus spp. may also migrate into the central nervous system, caus-
ing meningitidis and meningoencephalitis. Table 17.1 summarizes the major human 
fungal pathogens and their associated diseases. Overall, treatment of clinical myco-
ses can be a very long and expensive process that is often associated with uncom-
fortable side effects that lead to treatment interruption (Martinez-Rossi et al. 2018).

Some fungal species are found as filamentous or yeast forms, while others are 
dimorphic (i.e., found in both forms). In dimorphic fungi, the yeast form represents 
the parasitic phase, and the hyphae form represents the saprophytic phase. The fila-
ment (or hyphae) is a tubular multicellular structure, and cells may be divided into 
compartments by the formation of a septum. Yeasts are round, single cells that 
reproduce by budding and some species can form pseudohyphae, a chain of inter-
connected yeast cells. Fungi can undergo sexual or asexual reproduction, producing 
spores that can be inhaled or enter the body at sites of tissue damage. Once the 
spores reach their appropriate niche, they develop into hyphae that invade the tissue 
in search of nutrients.

Table 17.1 Main fungal pathogens and their associated diseases in humans

Fungi Main species Disease

Aspergillus A. fumigauts Pulmonary infections (invasive aspergilosis and 
aspergilloma)
Allergy

Blastomyces B. dermatitis Skin lesions
Pulmonary infections

Candida C. albicans
C. glabrata
C. parapsilosis
C. auris

Cutaneous infections – skin and nails
oropharyngeal candidiasis (thrush)
Vulvovaginal candidiasis
Nosocomial infections, fungemia

Coccidioides C. immitis
C. posadasii

Pulmonary infections

Cryptococcus C. neoformans
C. gattii

Meningitis
Meningoencephalitis
Pulmonary infections (pneumonia)

Dermatophytes Trichophyton rubrum
Trichophyton 
mentagrophytes
Microsporum canis

Cutaneous infections – skin, nail, and hair (tinea 
or ringworms)

Histoplasma H. capsulatum Pulmonary infections
Malassezia M. furfur Cutaneous infections – skin (pityriasis versicolor)
Paracoccidioides P. brasiliensis

P. lutzii
Pulmonary and systemic infections

Penicillium P. marneffeii Pulmonary infections
Pneumocystis P. jirovecii Pneumonia
Sporothrix S. brasiliensis

S. schenkii
Subcutaneous infections
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The genomes of several fungal pathogens have been sequenced, enabling the 
design and analysis of microarrays, high-throughput RNA sequencing (RNA-seq), 
and RT-qPCR (Reverse Transcription – quantitative Polymerase Chain Reaction). 
Fungal transcriptomics has been used to analyze gene expression and regulation in 
response to antifungal exposure, environmental changes, and interaction with the 
host during infection. The transcriptional profile may help elucidate several aspects 
of fungal biology, including signaling pathways that enable fungal survival and help 
predict molecular targets for the development of novel antifungal drugs (Peres et al. 
2010b; Cairns et al. 2010). Transcriptional and proteomic analyses have been used 
to identify connections among signaling and metabolic pathways that govern fungal 
development, morphogenesis, antifungal resistance, and pathogenicity as well as 
the host’s immune response. Recent advances in molecular biology methods and 
bioinformatics tools have enabled the study of the whole transcriptome, providing 
meaningful insights into the functionality of the genome, revealing interaction net-
works and molecular components of cells and tissues involved in physiological and 
pathological processes. Transcriptome allows the analysis of all transcript species, 
including mRNAs, which encode proteins, as well as noncoding RNAs (ncRNAs) 
and small RNAs (sRNAs), which regulate gene expression and maintain cellular 
homeostasis. Furthermore, transcriptional profiling by RNA-seq is useful to deter-
mine gene structures at transcription initiation sites, 5′- and 3′-ends, and introns as 
well as splicing patterns (Stark et al. 2019).

This chapter will discuss recent advances in fungal transcriptomics arising from 
microarray and RNA-seq analyses. The contribution of these findings to the under-
standing of fungal biology and fungal diseases will be highlighted. The intrinsic 
relationship between the outcome of fungal infections and the immunological status 
of the host stresses the need to evaluate the host immune response to fungi. 
Furthermore, knowledge of the genes expressed in response to stressful environ-
mental conditions and the gene networks that regulate the transcriptome during a 
fungal infection will help elucidate the pathogenesis of fungal infections and iden-
tify possible molecular targets for the development of novel therapeutic agents. 
Such information will aid both the treatment and prevention of fungal infections.

17.2  Host Immune Response to Fungal Infections

The host’s immunological status is the primary determinant of the severity of fungal 
infections, which can range from asymptomatic to severe and disseminated. 
Immunocompromised patients often suffer from severe, disseminated, and fatal fun-
gal infections. Host–pathogen interactions are complex and involve several mole-
cules on the surface of both host and fungal cells. Understanding the infective 
process requires molecular knowledge of the pathogen strategies for infecting the 
tissue, as well as the host responses aimed at eliminating the pathogen and main-
taining cellular integrity. The development of experimental models has improved 
the study of infectious diseases, and most of these models utilize immunosuppressed 
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mice because most fungal species cause opportunistic infections. However, for 
some pathogens, such as anthropophilic dermatophytes, these models are not suit-
able and ex vivo and in vitro assays have been performed, providing insights into the 
pathogenic process and immune response triggered by the fungus.

Fungal diseases can result from poor immune responses or from exacerbated 
activation of the immune system, such as the inflammatory response. Therefore, the 
interplay of the innate and adaptive immune mechanisms and their appropriate acti-
vation are crucial for successful pathogen clearance and cellular homeostasis. The 
innate immune response is comprised of the epithelial barrier, mucosa, and phago-
cytes (i.e., neutrophils, macrophages, and dendritic cells [DCs]), which play essen-
tial roles in preventing the entry of pathogenic microorganisms and rapidly killing 
these pathogens, as well as activating the adaptive immune response. Complement 
and other molecules, such as antimicrobial peptides (AMPs) and mannose-binding 
lectin, are also important host defense mechanisms. Pattern-recognition receptors 
(PRRs) on the surface of host cells interact with pathogen-associated molecular pat-
terns (PAMPs), such as α- and β-glucans, mannans, lipopolysaccharides, and phos-
pholipomannan in the fungal cell wall. The molecular interaction between PRRs 
and PAMPs triggers intracellular signaling pathways that initiate early inflamma-
tory and non-specific responses in the host and upregulates virulence factors in the 
pathogen that enhance survival. PRRs include the toll-like receptors (TLRs) TLR2, 
TLR4, and TLR9, complement receptor 3, mannose receptor, Fcγ receptor, Dectin-1 
and 2, Galectin, Macrophage-Inducible C-type Lectin (mincle), and Dendritic 
Cells - Specific Intercellular adhesion molecule Grabbing Non-integrin (DC-SIGN) 
(Romani 2011). Pathogen recognition by macrophages leads to their differentiation 
into the classic (M1) and alternatively (M2) activated macrophages. While M1 mac-
rophages have microbicidal and pro-inflammatory properties, playing a role in fun-
gal clearance, M2 macrophages have anti-inflammatory activities implicated in 
fungal persistence (Pathakumari et al. 2020). Furthermore, besides fungal PAMPs, 
recent studies on fungal extracellular vesicles have demonstrated their role in modu-
lating the host immune response (Bitencourt et al. 2018; Bielska and May 2019).

In general, a Th1 response is correlated with protective immunity against fungi, 
and is characterized by the production of interferon gamma (IFN-γ), among other 
cytokines, leading to cell-mediated immunity. Antigen-presenting cells (APCs), 
such as macrophages and DCs, initiate the Th1 response once their PRRs engage 
with fungal PAMPS, which leads to cellular activation and elicits effector proper-
ties. Th1 cells are essential for optimal activation of phagocytes at the site of infec-
tion through the production of signature cytokines. Moreover, Th17 cells support 
Th1 cellular responses, playing an important role in promoting neutrophil recruit-
ment (Bedoya et al. 2013; Pathakumari et al. 2020; Romani 2011). Regulatory T 
cells (Treg) control tissue damage by reducing the inflammatory response. However, 
this also causes immune suppression, thereby allowing fungal persistence. Th2 
response, characterized by the production of IL-4, IL-5, IL-10, TGF-β, and IL-13, 
is correlated with an increased fungal burden. However, IL-4 may play a protective 
role in the early stages of fungal infections, and the balance between Th1 and Th2 
is crucial for the outcome of the infection (Pathakumari et al. 2020). Whole-genome 
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transcriptional analyses have identified specific transcriptional profiles of host cells 
in response to various fungal species. Different cell types respond to fungal stimuli 
by activating distinct intracellular signaling pathways downstream of different 
PRRs. This mechanism confers plasticity to immune cells, such as DCs and macro-
phages, which shapes T-cell responses during fungal infections. The distinct signal-
ing pathways in phagocytes influence the balance between innate and adaptive 
immune responses and the balance between CD4+ T cells and Treg, establishing the 
outcome of the infection (Romani 2011).

H. capsulatum is a dimorphic fungus that causes respiratory infections and dis-
seminated disease in immunocompromised hosts. The H. capsulatum hyphae pro-
duce spores (conidia) in the environment, which can be inhaled by humans. Inside 
the host, the conidia undergo morphological changes to form yeast cells. Once 
inhaled, the conidia are captured by phagocytic cells, such as macrophages, and 
trigger the host immune response. However, yeast cells use alveolar macrophages as 
vehicles to spread to different organs, such as the liver, spleen, lymph nodes, and 
bone marrow (Mittal et al. 2019). Microarray analysis revealed that in response to 
conidia, macrophages specifically upregulated type I IFN-induced genes, including 
IFN-β and a classic type 1 IFN signature, in addition to general inflammatory genes. 
This effect was dependent on interferon regulatory factor 3 (IRF3) and independent 
of the TLR signaling pathway. IFNAR1 (type I IFN receptor) knockout mice showed 
a decreased fungal burden in the lungs and spleen after intranasal infection with 
conidia and yeast cells, compared to wild-type mice. Therefore, IFNAR1 signaling 
might contribute to disease and fungal burden rather than conferring protection, 
through the modulation of cytokines, apoptosis of infected macrophages, or specific 
aspects of the adaptive immune response to H. capsulatum (Inglis et  al. 2010). 
However, in the pathogenic yeast C. neoformans, which causes severe meningoen-
cephalitis in immunocompromised patients, type 1 IFN signaling directs cytokine 
responses toward a protective type 1 pattern during murine cryptococcosis. IFNAR1 
and IFN-β knockout infected mice displayed higher fungal burdens in the lungs and 
brain and decreased survival, compared to wild-type mice (Biondo et  al. 2008). 
Likewise, C. albicans induced the expression of type 1 IFN genes and proteins in 
DCs but not in macrophages. IFNAR1 and IFN-β knockout mice also displayed a 
lower survival rate and increased fungal burden in the kidneys, showing that type 1 
IFN response plays a protective role against C. albicans (Biondo et al. 2011).

The major virulence factor of C. neoformans is its polysaccharide capsule, which 
interferes with recognition by immune cells. Microarray analysis showed that a 
nonencapsulated strain induced the expression of genes involved in DC maturation, 
chemokines, and cytokines, characterizing an immunostimulatory response. Among 
the proteins encoded by these upregulated genes were CD86, CD83, the transcrip-
tion factor Relb, ICAM1, major histocompatibility complex class II (MHC-II)-
related genes (H2-D1, H2-Q7, and H2-Q8), and the pro-inflammatory cytokines 
IL-12, TNF-α, and IL-1. Several chemokines were also upregulated in DCs stimu-
lated with the nonencapsulated strain, including CCL3, CCL4, CCL7, CCL12, 
CXCL10, CCL22, and the chemokine receptor CCR7, which contributes to the 
accumulation of inflammatory cells at the site of infection. In contrast, an 
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encapsulated strain caused downregulation or no change in the expression of these 
genes, indicating that the capsule prevented the activation of immune response-
related genes. Among the proteins encoded by the genes downregulated by the 
encapsulated strain were E74-like factor 1 (Elf1) and sequestosome 1 (Sqstm1), 
which regulate the expression of cytokines genes and the induction of NF-κB sig-
naling, respectively (Lupo et  al. 2008). Additionally, C. neoformans profoundly 
alters the expression profiles of both polarized macrophages M1 and M2 to a naive 
phenotype (Subramani et al. 2020) under in vitro conditions. RNA-seq comparing 
pulmonary infection by C. neoformans in mice and monkeys revealed species-spe-
cific responses. The expression of genes coding for IL-1a and IL-1b and those 
involved in iron acquisition, transport, and storage was upregulated in the lungs of 
monkeys. However, the expression of calcium homeostasis-related genes was 
repressed in mice but remained unchanged in monkeys. Genes related to the TLR, 
TNF, IL-17 pathways, and copper homeostasis were upregulated in both models; 
the insulin signaling pathway was also modulated in response to C. neoformans 
infection (Li et al. 2019).

P. brasiliensis causes pulmonary and systemic infections. Microarray analyses of 
murine macrophages and DCs after phagocytosis of P. brasiliensis identified dif-
ferential expression of genes encoding inflammatory cytokines, chemokines, signal- 
transduction proteins, and apoptosis-related proteins (Silva et al. 2008). Among the 
genes upregulated in macrophages were the pro-inflammatory chemokines CCL21, 
CCL22, and CXCL1. CXCL1 and CCL22 recruit neutrophils and monocytes, 
respectively, while CCL21 mediates the homing of lymphocytes to secondary lym-
phoid organs. Upregulation of the gene encoding NF-κB might account for the 
upregulation of pro-inflammatory chemokines and cytokines (e.g., TNF-α) that 
increase the cytotoxic activity of macrophages (Silva et al. 2008). Also, TNF-α defi-
cient mice were unable to control P. brasiliensis infection, given the increased fun-
gal burden and the absence of a well-formed granuloma (Silva et al. 2008; Souto 
et al. 2000). After exposure to P. brasiliensis, macrophages highly expressed apop-
totic genes, including caspases 2, 3, and 8, which may represent a mechanism of 
eliminating the fungus without damaging host tissues. On the other hand, the fungus 
induced the expression of matrix metalloproteases genes, which may have facili-
tated fungal invasion, given their role in tissue remodeling (Silva et al. 2008).

Expression of the gene encoding IL-12 was downregulated in macrophages 
interacting with P. brasiliensis; however, it was upregulated in DCs interacting with 
P. brasiliensis (Tavares et al. 2012) and C. neoformans (Lupo et al. 2008). IL-12 is 
associated with resistance to paracoccidioidomycosis and cryptococcosis by induc-
ing IFN-γ production and Th1 protective responses. IL-12p40 knockout mice dis-
played decreased survival, higher fungal burden, and decreased production of IFN-γ 
(Livonesi et al. 2008). In addition to IL-12, DCs exposed to P. brasiliensis expressed 
genes encoding other pro-inflammatory cytokine and chemokine genes, such as 
TNF-α, CCL22, CCL27, CXCL10, and NF-κB, concomitantly with the downregu-
lation of the NF-κB inhibitor Nκ-RF encoding gene. Both macrophages and DCs 
expressed CCL22  in response to P. brasiliensis, which might have increased the 
microbicidal activity of macrophages by stimulating a respiratory burst and the 
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release of lysosomal enzymes. The chemokines expressed by macrophages and DCs 
in response to P. brasiliensis mediate the accumulation of leukocytes at the site of 
infection in order to control fungal invasion (Silva et al. 2008; Tavares et al. 2012). 
There is a significant difference between the transcriptome profile of DCs derived 
from susceptible and resistant mice infected in vitro with P. brasiliensis. This obser-
vation highlights that a high activation of the inflammatory responses and down-
regulation of autophagy, lysosome, and apoptosis are involved in the disease. A low 
activation of these pathways is related to infection resistance and a proper immune 
response (de-Souza-Silva et al. 2020).

The dynamics of the molecular response triggered by C. albicans in human 
monocytes identified a pattern of gene expression related to recruitment, activation, 
and viability of phagocytes, as well as the enhancement of chemotaxis and inflam-
mation (Kim et al. 2005). Increased expression of genes encoding TNF-α, IL-6, and 
IL-1α was correlated with neutrophil infiltration at the site of infection. There was 
an upregulation of genes encoding the chemokines CCL3, CCL4, CCL20, CCL18, 
CXCL1, CXCL-3, and IL-8, which are involved in the activation and recruitment of 
phagocytes and lymphocytes, as well as genes encoding the chemokine receptors 
CCR1, CCR5, CCR7, and CXCR5. In the early stages of infection, monocytes over-
express genes encoding various pro-inflammatory cytokines, chemokines, and che-
mokine receptors as well as COX2, IL-23, which are important for inflammation, 
and heat-shock proteins, which are implicated in the induction of inflammatory 
cytokines and chemokines. Thus, these changes in gene expression allow cellular 
recruitment and activation. Along with the pro-inflammatory response, increased 
expression of genes encoding anti-apoptotic molecules (XIAP and BCL2A1) may 
have protected the monocytes from cellular damage and death. The gene encoding 
the transferrin receptor (CD71) was upregulated, suggesting that iron deprivation 
might be a defense mechanism against infection. Indeed, iron is essential to the 
virulence of several pathogens (Johns et al. 2021). Further, RNA-seq of mononu-
clear cells challenged with C. albicans and C. auris showed unique and species- 
specific transcriptional signatures. C. auris induced the expression of type I and II 
IFNs, IFN-related genes, IL-1RA, IL-10, IL-9, and IL-27, thus triggering a stronger 
host response than C. albicans. This may be attributed to differences in the cell wall 
mannoproteins, leading to different phagocytic indices and clinical outcomes 
between these two species (Bruno et al. 2020).

Neutrophils display a potent set of hydrolytic enzymes, antimicrobial peptides, 
and oxidative species within their intracellular granules, having an immediate and 
pronounced effect on C. albicans (Fradin et al. 2005). Granulocyte-like cells phago-
cytose and kill C. albicans, prevent hyphal growth, and undergo apoptosis after 
pathogen exposure. During this process, granulocytes upregulate inflammatory 
genes and downregulate anti-Candida-response genes, depending on the size of the 
inoculum. Among the upregulated genes were inflammatory mediators, including 
IL-1β, TNF-α, COX2, and the chemokine CCL3. On the other hand, genes encoding 
myeloperoxidase, which causes hyphal damage, and defensins, such as human neu-
trophil protein 1 (HPN1), were downregulated. These changes may represent mech-
anisms by which C. albicans survives the early stages of infection (Mullick et al. 
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2004). In another study, a microarray of immune-related genes was used to evaluate 
the early response of PMN cells to C. albicans hyphal cells, UV-killed and live 
yeasts. In PMNs, the transcriptional profiles induced by live yeasts and hyphae were 
more similar to one another than to that induced by dead yeasts. This suggested that 
fungal viability had a more significant effect on PMN gene expression than cellular 
morphotype. The presence of C. albicans did not affect the expression of genes 
encoding granule proteins. Nevertheless, C. albicans induced the upregulation of 
pro-inflammatory genes and cell-to-cell signaling (leukemia inhibitory factor 
[LIF]), signal transduction proteins, cell stimulatory factors, vascular endothelial 
growth factor, and PMN-recruitment chemokines (CCL3 and CXCL2). Importantly, 
these gene expression changes were irrespective of fungal cell type or viability. 
Furthermore, the few genes that were downregulated in response to C. albicans 
were involved in the regulation of cell signaling and growth (Fradin et al. 2007). In 
addition, exposure to viable Candida cells upregulated genes encoding stress- 
response proteins, including heat shock proteins (HSPA8, HSPCA, HSPCB, and 
HSPH1). This demonstrated a direct effect of live cells on PMN cells and mono-
cytes (Kim et al. 2005). Interestingly, these genes also regulate CXC-type chemo-
kines, indicating that this antimicrobial response amplifies the overall immune 
response by recruiting additional cells to the infection site. Overall, this transcrip-
tional profile suggested that PMNs contribute to the immunological response to 
C. albicans by expressing genes involved in cellular communication, which may 
recruit more PMNs or other immune cells.

Systemic candidiasis is characterized by C. albicans entering the bloodstream, 
disseminating throughout the body, and causing microabscesses. In the blood ves-
sels, the fungus adheres and invades endothelial cells (ECs); thus, the ECs have the 
potential to influence the host response to vascular invasion. Microarray transcrip-
tional analysis of ECs in response to C. albicans identified the upregulation of genes 
involved in chemotaxis, angiogenesis, cell death, proliferation, intra- and intercel-
lular signaling, immune response, and inflammation (Muller et  al. 2007; Barker 
et al. 2008; Lim et al. 2011). C. albicans induces several genes that are targets of the 
pro-inflammatory transcription factor NF-κB, and chemokines, including IL-8, 
CXCL1, CXCL2, CXCL3, CXCL5, and CXCL6, indicating that ECs help to recruit 
neutrophils and monocytes to the infection site (Muller et al. 2007). The overexpres-
sion of genes involved in stress and wound healing, such as IL-1, calgranulin C, 
E-selectin, and prostaglandin-endoperoxide synthase 2, correlated with the endo-
thelial damage caused by C. albicans. The ECs also upregulated antiapoptotic 
genes, suggesting that ECs respond to C. albicans by undergoing cellular prolifera-
tion (Barker et  al. 2008). However, another transcriptional profile revealed that 
apoptotic genes were upregulated in ECs infected with a high density of C. albi-
cans. In general, human umbilical vein ECs infected with high densities of C. albi-
cans displayed a stronger and broader transcriptional response than cells infected 
with low densities, which may be related to the number of cells or even to secreted 
molecules involved in quorum sensing. The authors hypothesized that in microenvi-
ronments with a high density of yeast cells, such as microabscesses, the fungus 
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triggers apoptosis, which disrupts the endothelial barrier and permits fungal dis-
semination to different organs and tissues (Lim et al. 2011).

Given the complex and dynamic nature of host–pathogen interactions, tech-
niques that measure both the host and pathogen responses are crucial for character-
izing their interaction. Dual transcriptomics is used to identify molecular patterns of 
the pathogen and the host simultaneously, providing insights into the dynamics of 
the infectious process (Westermann et al. 2017). Dual transcriptomics by RNA-seq 
was performed during DC phagocytosis of C. albicans, and gene interactions were 
predicted using systems biology. RNA-seq identified 545 C. albicans and 240 DCs 
genes differentially expressed, clustered by their expression kinetics over the dura-
tion of the interaction, and selected genes were used to infer gene interactions. After 
experimentally validating one of these gene interactions, the authors proposed a 
model in which PTX3, an opsonin secreted by DCs that facilitates phagocytosis 
through dectin-1, binds to the C. albicans cell wall, leading to its remodeling, which 
is mediated by the transcription factor Hap3 during the invasion of innate immune 
cells. Remodeling of the fungal cell wall compromises the ability of immune cells 
to recognize fungi, thus attenuating the immune response (Tierney et al. 2012).

Microarray-based dual transcriptomics was performed on A. fumigatus interact-
ing with bronchial epithelial cells, revealing expression patterns indicating the acti-
vation of the host’s innate immune response (Oosthuizen et al. 2011). A. fumigatus 
is a major cause of pulmonary fungal infections, including invasive aspergillosis, 
aspergilloma, and allergy. During infection, environmental conidia enter the air-
ways through inhalation. There, they germinate into hyphae and penetrate the lung 
parenchyma. Upon invasion, the fungus can disseminate to other organs and tissues. 
In response to A. fumigatus conidia, bronchial cells upregulated genes involved in 
innate immunity, chemokine activity, and inflammation. Among the overexpressed 
genes were those encoding the chemokines CCL3 and CCL5, which recruit leuko-
cytes to the site of infection, matrix metalloproteinases (MMP1 and MMP3), and 
glutathione transferase (MGST1), which protects against oxidative damage. By 
comparing the expression profiles of two different cell lines, the authors identified 
only 17 genes in common. This demonstrates the variability in gene expression 
between a cell line and primary cells resulting from exposure to the same fungus 
(Gomez et al. 2011; Oosthuizen et al. 2011). The commonly expressed genes mainly 
encoded chemokines and regulators of the innate immune response. IL-6, a potent 
pro-inflammatory cytokine, was highly expressed in response to A. fumigatus 
conidia, consistent with earlier findings that IL-6-deficient mice were susceptible to 
invasive pulmonary aspergillosis and had impaired protective Th1 responses 
(Oosthuizen et al. 2011). In addition, genes involved in nucleosome organization 
and chromatin assembly were overexpressed. Genes involved in mitosis and cell 
cycle progression were downregulated, suggesting decreased proliferation and cell 
cycle arrest during infection with A. fumigatus (Gomez et al. 2011).

Moreover, in response to A. fumigatus human monocytes presented a coordi-
nated expression of genes involved in fungal death and invasion (Cortez et al. 2006). 
Among the highly expressed genes were pro-inflammatory genes, such as IL-1β, 
CCL3, CCL4, IL-8, PTX3, and SOD2, and regulators of inflammation, such as 
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IL-10, COX2, and HSP40. Moreover, several anti-inflammatory genes were down-
regulated, such as CD14, which is involved in phagocytosis, and CCL5, which is a 
Th1 chemokine. This differential regulation of pro- and anti-inflammatory genes 
likely balanced the innate immune response. Furthermore, the coordinated expres-
sion of genes involved in oxidative response may have both eliminated the fungus 
and protected the cell. This was supported by the high expression of superoxide 
dismutase (SOD2) and dual phosphatase (DUSP1) and downregulation of catalase 
(CAT), glutathione peroxidase 3 (GPX3), and peroxiredoxin 5 (PRDX5) (Cortez 
et al. 2006). Recently, a triple RNA-seq analysis of DCs coinfected with A. fumiga-
tus and cytomegalovirus (CMV) revealed unique transcription profiles of the host in 
response to each pathogen alone or during coinfection along with distinct profiles of 
both pathogens during infection and coinfection. The gene expression profile of 
DCs showed a different pattern in response to each pathogen. A. fumigatus induced 
Th17 expression, whereas CMV infection led to a Th1 response. However, coinfec-
tion led to downregulation of the expression of these genes, with each pathogen 
attenuating the effect of the other on the molecular signature of DCs and thereby 
interfering with the host response (Seelbinder et al. 2020).

Dermatophytes are highly specialized fungi that use keratin as a nutrient source, 
and thus infect keratinized structures, such as skin, hair, and nails. Upon infecting 
the skin, dermatophytes first encounter keratinocytes, which represent an important 
barrier against pathogens and help mediate the immune response (Burstein et al. 
2020). The zoophilic dermatophyte Arthroderma benhamiae, and the anthropo-
philic species Trichophyton tonsurans induced different cytokine expression pro-
files in keratinocytes, correlating with the inflammatory response. In infected 
keratinocytes, the zoophilic species induced the upregulation of pro-inflammatory 
genes and the concomitant secretion of cytokines IL-1β, IL-6, IL-6R, and IL-17 and 
chemokines IL-8 and CCL2. This effect may promote the infiltration of inflamma-
tory cells in the skin during infection, and the upregulation of IL-6, IL-6R, and 
granulocyte-colony stimulating factor (G-CSF) may lead to tissue remodeling and 
wound healing. On the other hand, the anthropophilic species induced limited cyto-
kine expression and release, including exotoxin 2, IL-8, and IL-16. This was likely 
responsible for the poor inflammatory response observed in T. tonsurans skin infec-
tion (Shiraki et al. 2006). Moreover, mice infected with A. benhamiae displayed an 
infiltration of PMNs, macrophages, and DCs in the skin as well as increased levels 
of TGF-β, IL-1β, IL-6, and IL-22 mRNA in skin biopsies (Cambier et al. 2014). 
This pro-inflammatory profile was also observed in keratinocytes challenged with 
the zoophilic dermatophyte Microsporum gypseum, with the upregulation of the 
expression of IL-6, IL-8, IL-1β, TNF-α, and c-Jun and enrichment of the NF-kB, 
TNF, and MAPK signaling pathways. However, the gene network of keratinocytes 
response to Trichophyton rubrum was based on metabolic pathways such as steroid, 
fatty acid, and isoprenoid biosynthesis (Deng et al. 2020). In vitro infection of kera-
tinocytes with T. rubrum induced the expression of genes coding for the AMPs 
RNase 7, beta- defensin 3, and the natural resistance-associated macrophage protein 
1, in addition to that of cytokine-related genes (Firat et al. 2014); Petrucelli et al. 
2018). The expression of genes involved in epidermal cell differentiation, such as 
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caspase 14 and laminin subunit gamma 2, and cell migration, such as metallopro-
teinase 9, was upregulated, whereas that of genes involved in skin barrier mainte-
nance, such as keratin 1 and filaggrin, was downregulated. This may also account 
for the tissue damage and antifungal response during T. rubrum infection (Petrucelli 
et al. 2018). Further, the inflammatory response during infection may also be regu-
lated by microRNAs, owing to their upregulation in macrophages challenged with 
heat- inactivated T. rubrum conidia (Gonzalez Segura et al. 2020).

In summary, fungal pathogens induce several changes in the host’s target cells 
and innate immune cells. Studying the transcriptome of fungal–host interactions has 
elucidated the molecular patterns associated with protection from or progression of 
fungal infections. In general, fungi induce the upregulation of genes encoding cyto-
kines, chemokines, and other pro-inflammatory molecules in host cells, which 
recruit inflammatory cells to the site of infection. Host cells exhibit different expres-
sion profiles in response to different fungal pathogens, which may account for the 
differences in outcomes of these infections. Moreover, some studies have identified 
molecular strategies by which fungi evade the host’s immune system as well as host 
defense mechanisms that favor fungal survival. Transcriptomic analyses have gen-
erated hypotheses that can be further validated by reverse genetic approaches to 
better characterize the immune components that contribute to the outcome of fungal 
infections.

17.3  Metabolic Adaptation of Fungi During Infection

Fungal pathogens adapt to the host’s microenvironment during infection, a process 
that requires dynamic responses to constantly changing conditions (Brown et  al. 
2014). In particular, nutrient availability can be limited in host niches, especially 
inside phagocytes. Host cues and tissue nutrients substantially affect the outcome of 
the infection by triggering the activation of different fungal signaling pathways that 
govern germination, cell wall remodeling, and morphological cell type switch, as 
well as of those regulating the production of enzymes involved in transcription reg-
ulation and metabolic adjustments to improve growth and host invasion and dis-
semination (Johns et  al. 2021). Thus, fungi undergo metabolic adaptations to 
control, for example, glycolysis, gluconeogenesis, glyoxylate cycle, and proteoly-
sis. This allows them to utilize diverse substrates as nutrient sources, evade the toxic 
conditions triggered by the immune response, and maintain their virulence despite 
changes in the physiological ambient (Brock 2009). To avoid immune recognition, 
fungal cells monitor host cues through plasma membrane receptors. Subsequently, 
they mask cell wall components such as β-glucans and melanin, either by the encap-
sulation or formation of titan cells, as shown for C. neoformans, or by the activation 
of the transcription factors Crz1 and Ace2 that govern the cell wall remodeling in 
C. albicans, aiding fungal colonization and reducing neutrophil recruitment (Ballou 
et al. 2016). Moreover, it is well known that phagocytes produce reactive oxygen 
and nitrogen species (ROS and RNS), which induce oxidative and nitrosative stress 
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as an attempt to kill pathogens (Brown et al. 2009). Reactive species can alter or 
inactivate proteins, lipid membranes, and DNA. Pathogens can survive this toxic 
environment by producing protective enzymes, such as flavohemoglobin and 
S-nitrosoglutathione (GSNO) reductase, which confer resistance to nitrosative 
stress (de Jesus-Berrios et al. 2003), and superoxide dismutases, catalases, and per-
oxidases, which counteract oxidative stress. Nonenzymatic defenses include metab-
olites, such as melanin, mannitol, and trehalose (Missall et al. 2004). The ability of 
pathogens to sense and appropriately respond to environmental pH is essential for 
their survival in different host niches. In pathogenic fungi, the PACC/RIM signaling 
pathway has been implicated in survival, growth, virulence, and dissemination in 
different host niches (Cornet and Gaillardin 2014; Martinez-Rossi et al. 2017). The 
pH affects enzymatic activities; the alkaline pH of human tissues influences nutrient 
uptake because the solubility of essential elements, such as iron and zinc, are pH 
dependent (Amich et al. 2010). Iron is a critical micronutrient in both the host and 
pathogen, as it is required for several metabolic processes, including respiration and 
DNA replication. In the form of heme and iron-sulfur compounds, iron is an essen-
tial cofactor in various cellular enzymes, oxygen carriers, and electron-transfer sys-
tems. Iron homeostasis plays a key role in host–pathogen interactions. Similarly, 
zinc is essential for pathogenic fungi because it is a constituent of many transcrip-
tion factors and acts as a cofactor for enzymes involved in cell signaling. For 
instance, host tissues can restrict free iron and zinc availability to prevent infection. 
Accordingly, fungal pathogens have adapted strategies for iron uptake, including 
the production of metalloreductases, ferroxidases, and siderophores (Silva et  al. 
2011) and uptake of zinc through the production of zincophore such as Pra1 and its 
ortholog Aspf2 (Amich et al. 2010; Citiulo et al. 2012) to survive in iron and zinc- 
deficient niches.

Several pathways are crucial for fungal pathogens to survive in various host 
microenvironments during infection. In vivo, ex vivo, and in vitro infection models 
have identified fungal pathogens’ transcriptional profiles during infection and inter-
action with host cells. These studies have helped to elucidate the pathogenesis of 
superficial, deep, and bloodstream fungal infections. In this sense, an in vitro study 
used microarray to assess the transcriptional profile of C. albicans during interac-
tion with human blood. There was an upregulation of genes involved in stress 
response, such as SSA4 (a member of the HSP70 gene family), and anti-oxidative 
response, such as those encoding Cu/Zn superoxide dismutase (SOD1), catalase 
(CAT1), and thioredoxin reductase (TRR1). There was a simultaneous upregulation 
of genes encoding the glycolytic enzymes phosphofructokinase (PFK2), phospho-
glycerate kinase (PGK1), and enolase (ENO1), as well as those encoding the glyox-
ylate cycle enzymes isocitrate lyase (ICL1), malate synthase (MLS1), and 
acetyl-coenzyme-A-synthetase (ACS1). Genes involved in fermentation, such as 
those encoding alcohol dehydrogenases (ADH1 and ADH2), were also upregulated. 
Importantly, C. albicans isolated from infected mice exhibited a similar transcrip-
tion profile, thus validating some of the in vitro results. Moreover, these data sug-
gested that C. albicans use alternative carbon sources during blood infection and 
dissemination (Fradin et al. 2003).
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A subsequent study investigated the utilization of the glyoxylate cycle and gly-
colysis by C. albicans interacting with different blood fractions, including erythro-
cytes, PMNs (mainly neutrophils), PMN-depleted blood (consisting of lymphocytes 
and monocytes), and plasma. C. albicans cells were physiologically active and dis-
played rapid hyphal growth while interacting with plasma, erythrocytes, and PMN- 
depleted blood. On the other hand, growth of C. albicans cells was arrested when 
interacting with PMNs, and only 40% of the cells interacting with whole blood 
produced hyphae. C. albicans upregulated glyoxylate cycle genes when interacting 
with PMNs, but not when interacted with plasma. During interaction with plasma 
and PMN-depleted blood, C. albicans upregulated genes related to glycolysis. 
Global cluster analysis was used to compare the transcriptional profile of C. albi-
cans interacting with whole blood and blood fractions. During interaction with 
whole blood, the upregulation of genes related to glycolysis and the glyoxylate 
cycle resulted from mixed populations of fungal cells that were internalized by 
phagocytes, which triggers a nutrient limitation response, and not internalized 
(Fradin et al. 2005). Indeed, starvation inside the phagosome activated the glyoxyl-
ate cycle, which allowed nutrient uptake and survival.

Besides, during the interaction of C. albicans with neutrophils, the activation of 
nitrogen- and carbohydrate-starvation responses was observed, as indicated by the 
upregulation of genes encoding ammonium permeases (MEP2 and MEP3), vacuo-
lar proteases (PRB1, PRB2, and APR1), carboxypeptidases (PRC1 and PRC2), gly-
oxylate cycle enzymes (MLS1, ICL1, and ACS1), amino acid transporters, and 
proteins involved in amino acid metabolism. Moreover, C. albicans internalized by 
murine macrophages in vitro displayed growth arrest and downregulation of the 
expression of genes associated with translation machinery and glycolysis. In con-
trast, there was an upregulation of genes encoding enzymes involved in the gluco-
neogenesis (phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase), 
glyoxylate cycle (isocitrate lyase and malate synthase), tricarboxylic acid cycle 
(aconitase, citrate synthase, and malate dehydrogenase), and β-oxidation of fatty 
acids, as well as several transporters. Accordingly, C. albicans deficient in the gene 
encoding isocitrate lyase was less virulent than the wild-type strain in murine infec-
tion (Lorenz and Fink 2001). The interaction with host cells also triggered the 
upregulation of oxidative stress response genes such as superoxide dismutases 
(SOD1 and SOD5) and catalase (CAT1) (Fradin et al. 2005), flavohemoglobin, cyto-
chrome c peroxidase, peroxidases, reductases, stress response (heat shock protein 
HSP78), metal homeostasis, and DNA repair (Lorenz et al. 2004). In accordance 
with this data, a previous work evaluated the transcriptional profile of C. albicans 
using biopsies of infected oral mucosa from 11 HIV-positive patients showed 
changes that reflected fungal protective responses toward nitrosative stress, innate 
defense of epithelial cells against microbes, adaptation to the neutral-alkaline pH of 
the oral mucosa, and the use of alternative carbon sources at the site of infection. 
From this evidence in association with literature support, glyoxylate genes have 
been considered an important virulence factor. Indeed, Δicl1 was impaired to dam-
age RHE, suggesting the importance of the glyoxylate cycle in oral candidiasis 
(Wachtler et  al. 2011). Moreover, epithelial escape and dissemination (EED1), a 
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unique species-specific C. albicans gene, is involved in hyphal elongation during 
infection (Zakikhany et al. 2007). Time-course microarray analysis of the wild type 
and Δeed1 strains interacting with RHE showed the downregulation of seven genes 
throughout infection, including the hyphae-associated genes ECE1 and HYR1 and 
those encoding proteins involved in polarized growth, such as CDC42, RDI1, 
MYO2, CDC11, CYB2, MOB1, and MLC1.

Another study showed the coordinated host and fungal transcriptional response 
during macrophage infection with C. albicans (Munoz et al. 2019). In this study, 
sorted cells were analyzed with respect to different infection stages, and a single- 
cell approach was employed to track different trajectories in the course of infection. 
Important changes in metabolic pathways were evidenced by the expression of 
genes modulated in phagocytosed C. albicans. Alternative pathways were activated 
at early infection stages to cope with the macrophage environment and favor fungal 
survival with limited glucose availability in the phagosome, including genes belong-
ing to the glyoxylate cycle and beta-oxidation. In contrast, the expression of genes 
related to chaperones, transcription factors that regulate translation, and peptide 
synthesis was downregulated. A shift in gene expression occurred at a later infection 
time. The central carbon pathway was reactivated with the expression of genes 
involved in morphological changes, such as cell wall assembly and filamentation. 
The genes related to phagocytosis and innate immune response activation were 
enriched in macrophages, including those associated with IL-6, IL-8, and NF-κB 
signaling pathways. Moreover, the production of nitric oxide, reactive oxygen spe-
cies (ROS), and pattern recognition receptors was also induced. Notably, there was 
a shift during the time of the infection, with significant repression of the immune 
response. Interestingly, morphological changes in C. albicans and induction of fila-
mentation were followed by repression of the immune response. Beyond that, the 
single-cell analysis also provided new insights into infection outcomes. It demon-
strated that bimodality in gene expression was observed in about 15% of differen-
tially expressed genes (DEGs) mainly involved in pathogen recognition and 
pro-inflammatory pathways within 2 h and 4 h of interaction. In C. albicans, about 
23% of DEGs presented bimodality in gene expression, evidenced mainly in genes 
related to metabolism and virulence, and hyphae transition. Finally, this study eval-
uated the alternative splice (AS) as exon skipping in these sorted cells, highlighting 
the occurrence of two isoforms for a gene that encodes a dectin potentially involved 
in the Th17 response. From that perspective, both cells trigger mechanisms to pro-
mote stochastic diversification to favor the phenotype and infection outcome during 
the interaction.

In order to investigate expression changes in C. albicans during systemic infec-
tion, transcriptional profiling was performed in vivo on mice infected as well as pig 
livers inoculated ex vivo. The upregulated genes encoded enzymes involved in gly-
colysis, such as phosphofructokinase (PFK2) and pyruvate dehydrogenase subunits 
(PDA1 and PDX1), as well as those involved in acetyl-CoA biosynthesis and the 
tricarboxylic acid cycle (KGD1 and KGD2). This gene expression modulation 
reflected the availability of carbohydrates and the utilization of glycolysis and res-
piration for energy production. However, the upregulation of PCK1, which encodes 
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phosphoenolpyruvate carboxykinase, a key enzyme in gluconeogenesis, suggested 
that alternative carbon sources were also used. Other upregulated genes included 
SAP2, SAP4, SAP5, and SAP6, which encode the hyphae-associated aspartic prote-
ases. Indeed, Sap2 is the major protease that enables the utilization of proteins as 
nitrogen sources. The upregulation of alkaline pH responsive gene (PHR1) sug-
gested adaptation to an alkaline environment. Similarly, upregulation of genes 
encoding stress-response proteins, including heat shock proteins and molecular 
chaperones (HSP78, HSP90, DDR48, HSP104, HSP12, and SSA4), suggested that 
the heat shock response was triggered during the course of infection. However, 
genes related to oxidative, osmotic, and nitrosative stress were not upregulated. On 
the other hand, genes related to iron, copper, zinc, and phosphate transport (FTR1, 
CTR1, ZRT1, PHO84, PHO89) were upregulated during liver infection, suggesting 
limited iron and phosphate in this environment. Also, among genes identified during 
the comparison of transcriptional profile of an invasive C. albicans strain with a 
noninvasive strain was DFG16, which encodes a membrane sensor in the RIM101 
pathway that is crucial for pH-dependent hyphal formation, pH sensing, invasion at 
physiological pH, and systemic infection (Thewes et al. 2007; Martinez-Rossi et al. 
2012; Rossi et al. 2013). Moreover, in rabbits, the infected kidneys with C. albicans 
exhibited an upregulation of genes related to alternative pathways of carbon assimi-
lation, such as β-oxidation of fatty acids, the glyoxylate cycle (MLS1 and ACS1), 
and the tricarboxylic acid cycle (CIT1, ACO1, and SDH12), suggesting limited car-
bohydrate supply in the kidneys (Walker et al. 2009). Although genes involved in 
β-oxidation of fatty acids are upregulated in several infection models, fatty acid 
degradation is not essential for the virulence of C. albicans. Nevertheless, disrup-
tion of genes involved in the glyoxylate cycle or gluconeogenesis significantly 
attenuated its virulence in mice (Ramirez and Lorenz 2007; Barelle et al. 2006).

C. albicans colonizes medical devices, such as intravascular catheters, by form-
ing biofilms. Biofilms are comprised of heterogeneous microbial communities and 
form on biotic or abiotic surfaces embedded in an extracellular polymeric matrix. 
Such biofilms are associated with persistent infections and resistance to antifungal 
drugs and mechanical treatments (Cavalheiro and Teixeira 2018). C. albicans forms 
a biofilm in four steps. First, yeast cells attach to and colonize a surface; second, 
yeast cells form a basal layer that anchors the biofilm; third, hyphae grow and pro-
duce pseudohyphae and extracellular matrix; finally, the yeast cells disperse. In 
order to characterize biofilm formation in C. albicans, the transcriptional regulatory 
network was analyzed in mutants that are unable to form biofilms. A combination of 
whole-genome chromatin immunoprecipitation microarray (ChIP-chip) and 
genome-wide transcriptional profiling identified six master regulators that control 
biofilm formation in C. albicans: BCR1, TEC1, EFG1, NDT80, ROB1, and BRG1. 
Each regulator controlled the other five, and most of the target genes were con-
trolled by more than one master regulator. However, a recent comprehensive analy-
sis in the circuit of biofilm formation demonstrated that the biofilm/hyphae 
regulatory network shows a more profound variation in accordance to genotype 
from each isolate, which was partly attributed to the occurrence of single nucleotide 
polymorphisms in cis-regulatory elements of BRG1 that influences its control by 
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BCR1 (Huang et al. 2019). Moreover, the biofilm network targeted approximately 
15% of the entire genome (Nobile et al. 2012). The enriched GO terms of EFG1 
responsive genes involve biofilm formation and cell surface. It is remarkable that 
the involvement of carbohydrate metabolism, mainly glycolytic and gluconeogen-
esis, processes as an important set of EFG1-activated genes (Huang et al. 2019).

In C. auris, resistance to different antifungal compounds in association with the 
capability to form biofilm and rapid dissemination between patients urge for efforts 
aiming to unveil its physiology. Recent reports have profiled the gene expression of 
C. auris during biofilm formation and exposure to caspofungin (Kean et al. 2018; 
Zamith-Miranda et  al. 2020). In biofilms, the over-enriched GO terms involved 
translation, siderophore transport, and iron homeostasis. Moreover, in biofilms, the 
expression of glycosylphosphatidylinositol (GPI)-anchored cell wall genes, poten-
tially involved with adhesion properties, such as IFF4, CSA1, PGA26, and PGA52, 
was upregulated. During the intermediate to mature biofilm formation phase, the 
expression of some genes encoding efflux pumps, such as RDC3, SNQ2, CDR1, and 
YHD3, was upregulated. Similarly, in mature biofilms, the expression of two 
adhesin- encoding genes, HYR3 and ALS5, was upregulated (Kean et  al. 2018). 
Another recent study assessed the transcriptional profile of C. auris after caspofun-
gin exposure and compared the effect on extracellular vesicles (EVs) secretion. The 
enriched GO terms involved cell wall biogenesis, cell cycle, oxidative stress 
response, and protein transport. In addition, morphological topography of yeast 
cells was affected after caspofungin treatment, and clumps were evidenced, sug-
gesting a transition from yeast to hyphae as a compensatory mechanism to over-
come disturbances in the cell wall. Regarding EV production, there was a shift in 
the content of small RNAs (Zamith-Miranda et al. 2020).

Microarray analyses were used to profile C. neoformans transcription profile in 
response to murine macrophages. C. neoformans exhibited a downregulation of 
genes encoding translational machinery and an upregulation of genes associated 
with lipid degradation and fatty acid catabolism (lipases and acetyl coenzyme A 
acetyltransferase), β-oxidation, transport of glucose and other carbohydrates, 
response to nitrogen starvation, the glyoxylate cycle (ICL1), and autophagy (ATG3 
and ATG9). Moreover, the upregulation of several genes encoding oxidoreductases, 
peroxidases, and flavohemoglobin denitrosylase (FHB1), which are important for 
nitrosative response and virulence, indicated the presence of oxidative and nitrosa-
tive stress (de Jesus-Berrios et al. 2003). Also, there was an upregulation of genes 
related to endocytosis, exocytosis, and synthesis of extracellular polysaccharides 
and cell wall components. Genes located in the mating-type (MAT) locus and sev-
eral genes associated with virulence were also upregulated. These included those 
encoding inositol-phosphorylceramide synthase (IPC1), laccases (LAC1 and LAC2), 
genes involved in capsule formation (CAP10, CAS31, CAS32, CAS1, and CAS2), 
and PKA, a gene in the Gpa1-cAMP pathway, that is essential for virulence. In par-
ticular, the Gpa1-cAMP pathway regulates capsule formation and melanin produc-
tion. Moreover, calcineurin gene (CNA1), which is critical for virulence, was 
upregulated (Fan et al. 2005).
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Transcriptional analyses of C. neoformans isolated from cryptococcal pulmo-
nary infection in mice revealed the upregulation of genes encoding malate synthase, 
phosphoenolpyruvate carboxykinase, aconitase and succinate dehydrogenase as 
well as those involved in β-oxidation of fatty acids. Genes encoding glyoxylate 
cycle enzymes were strongly upregulated as well as genes involved in glycolysis 
(e.g., fructose 1,6-biphosphate, aldolase, hexokinase, and phosphofructokinase). In 
addition, there was an upregulation of genes encoding transporters for monosac-
charides, iron, copper, acetate, trehalose, and phosphate, enzymes involved in the 
production of acetyl-CoA (e.g., acetylCoA synthetase [ACS1]), pyruvate decarbox-
ylase, and aldehyde dehydrogenase. Moreover, the upregulation of several stress- 
response genes, including flavohemoglobin denitrosylase, superoxide dismutase, 
HSP12, HSP90, and other virulence factors were evidenced. Deletion of the acs1 
gene resulted in attenuated virulence and impaired growth on media containing 
acetate as a carbon source. Moreover, ACS1 is regulated by serine/threonine protein 
kinase 1 (SNF1), which mediates glucose sensing, utilization of alternative carbon 
sources, and stress response. Deletion of the SNF1 gene also reduced growth on 
acetate medium, decreased melanin production, and caused loss of virulence in 
murine model (Hu et  al. 2008). Although C. neoformans upregulated glyoxylate 
cycle genes during infection, ICL1 and MLS1 were not essential for establishing 
infection (Rude et  al. 2002; Idnurm et  al. 2007). On the other hand, deficits in 
β-oxidation pathways compromised the virulence of C. neoformans (Kretschmer 
et al. 2012).

The gene expression profile was compared among seven isolates of C. neofor-
mans var. grubii, including the VNI and VNB lineages, comprising four clinical and 
three environmental isolates grown in five different in vitro and in vivo conditions 
(Yu et al. 2020). The conditions corresponded to synthetic media, such as YPD and 
a restrictive low iron medium supplement with an inductor of ROS, infection mod-
els like macrophage-like murine cells infected with yeasts, cerebrospinal fluid 
(CSF) obtained from intracisternal yeast-infected rabbit, and pigeon media guano, 
which is a niche environment in terms of nitrogen composition for VNI isolates. 
Genes that favor fungal virulence and survival within the host were modulated. 
Typically, genes involved in oxidative stress response, acquisition and reduction of 
iron, capsule production, glycosylation pathway, ATP-binding cassette transporters, 
APP1, CXD3, and SRX1 were regulated. APP1 encodes a secreted anti-phagocytic 
protein. Although APP1 deletion does not impair the growth, capsule, or melanin 
production of C. neoformans, it increased the dissemination of C. neoformans in 
hosts with compromised immune response, and the AP1 administration inhibited 
phagocytosis of fungal cells (Luberto et al. 2003). CXD3 encodes a carboxypepti-
dase D that seems to participate in nitrogen metabolism and capsule formation 
(Frazzitta et al. 2013). The sulfiredoxin SRX1 is a virulence factor of C. neofor-
mans, which also plays a protective role by counteracting the stress caused by per-
oxide (Upadhya et al. 2013). Notably, in vivo conditions highlighted the expression 
of metabolic and stress adaptive mechanisms. The functional enrichment of DEGs 
demonstrated genes involved in amino acid biosynthesis and nitrogen metabolism, 
cell cycle, DNA repair, stress responses, inositol phosphate metabolism, and 
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inositol lipid modifications. As the brain microenvironment has limited glucose 
availability, it is conceivable that C. neoformans utilize inositol as a carbon source. 
This study evidenced the upregulation of the expression of virulence-associated 
genes. Almost half of such genes consisted of capsule production genes. Moreover, 
DEGs are involved in sodium efflux transport (ENA1 and NHA1), oligopeptide 
transport, and quorum sensing (OPT1). The expression of stress-responsive genes 
(SRE1and SREBP) was upregulated. Similarly, the expression of genes involved in 
signaling pathways that respond to thermal stress and pH, including Bck1-Mkk2- 
Mpk1 and the pH-response transcription factor, RIM101 was upregulated. Beyond 
that, the targeted genes of RIM101 include CDA1 and KRE6, which are responsible 
for regulating the levels of chitosan and β-glucan synthesis, respectively, in the cells 
(O’Meara et al. 2013).

In a murine model of pulmonary aspergillosis, A. fumigatus exhibited downregu-
lation of genes related to ribosomal biogenesis and protein biosynthesis and upregu-
lation of approximately 150 genes related to siderophore biosynthesis and transport, 
including ferric-chelate reductases, amino acid permeases, GABA and proline per-
meases, maltose permeases and transporters, and extracellular proteases. 
Elastinolytic metalloprotease, an aorsin-like serine protease, and dipeptidylpepti-
dases are antigenic virulence factors that are important for nitrogen uptake, and 
several genes encoding antioxidant enzymes, including a Mn-superoxide dismutase 
and the bifunctional catalase-peroxidase CAT2 (Oosthuizen et al. 2011). The initia-
tion of infection was likely associated with aminoacid catabolism, as indicated by 
the induction of the enzyme methylcitrate synthase, which detoxifies propionyl- 
CoA intermediates, which is a toxic product generated from the degradation of the 
host aminoacids methione, valine, and isoleucine (McDonagh et al. 2008). Moreover, 
an A. fumigatus strain deficient in methylcitrate synthase displayed attenuated viru-
lence (Ibrahim-Granet et al. 2008). Besides, a current study assessed the transcrip-
tional profile of A. fumigatus in a model of invasive pulmonary infection by 
NanoString nCounter. Among the evaluated genes, the expression of 125 genes was 
upregulated whereas that of 85 was downregulated, representing genes potentially 
involved in the response to environmental cues, with an extensive list of transcrip-
tion factors. Upregulated genes were involved in iron acquisition (fre2, hapX, sidA, 
sidD, mirB, and sit1), zinc uptake (zrfC, zrfA, aspf2, and zafA), and nitrogen uptake 
(nrtB and area). Simultaneously, the expression of sreA was downregulated, whose 
codified product represses iron uptake and siderophore synthesis. A prominent 
induction of the expression of genes involved in secondary metabolism, such as 
gliG, gliP, gliZ (belonging to gliotoxin biosynthesis pathway), and mtfA, which acts 
in both gliotoxin and extracellular proteases synthesis, was verified. Notably, this 
study highlighted the role of rlmA, which is involved in the ability of fungus to pro-
liferate in the lung, ace1, which controls gene clusters related to multiple secondary 
metabolites, and mycotoxin, which is paramount for full virulence (Liu et al. 2021). 
Conceivably, the invading hyphae in the lungs trigger neutrophil recruitment, and as 
a consequence, the fungus activates a stress-responsive mechanism, including the 
induction of sebA, mkk2, and sho1. Furthermore, while interacting with human neu-
trophils, A. fumigatus conidia upregulated genes encoding proteins involved in 
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peroxisome biogenesis, β-oxidation of fatty acids (acyl-CoA dehydrogenase and 
enoyl-CoA hydratase), acetate metabolism (acetyl-coenzyme A synthetase), the 
tricarboxylic acid cycle (aconitate, succinate dehydrogenase, and malate dehydro-
genase), and the glyoxylate cycle (isocitrate lyase) (Sugui et al. 2008). There was a 
strong upregulation of the gene encoding formate dehydrogenase, which detoxifies 
formate, an indirect product of the glyoxylate cycle. Albeit the involvement of ROS 
release by phagocytes in killing A. fumigatus, a triple SOD1/SOD2/SOD3 mutant 
and the parental strain were similarly virulent in experimental murine aspergillosis 
in immunocompromised animals (Lambou et al. 2010).

Transcriptional profiling was performed on the dermatophyte A. benhamiae dur-
ing an in vivo skin infection in guinea pigs. During acute infection, A. benhamiae 
upregulated genes encoding key enzymes of the glyoxylate cycle (MLS and ICL), 
formate dehydrogenase, monosaccharide transporter, oxidoreductase, opsin-related 
protein, and several proteases (Staib et al. 2010). The most highly upregulated gene 
was SUB6 that encodes subtilisin 6, a protease previously characterized as the major 
allergen in another dermatophyte, T. rubrum. Sub6 has been shown to bind human 
IgE antibodies (Woodfolk and Platts-Mills 1998). The second most highly upregu-
lated gene was that encoding an opsin-related protein with an unknown function. 
Genes encoding proteases, such as subtilisins SUB1, SUB2, SUB6, and SUB7, the 
neutral protease NpII-1, and serine carboxypeptidase ScpC were also upregulated 
during infection (Staib et al. 2010). Proteases are the most commonly studied viru-
lence factors of dermatophytes, and their function in generating short peptides and 
amino acid breakdown products allows them to infect the skin and nails (Monod 
2008). Genes encoding SUB3, SUB5, and metalloprotease 4 (MEP4) were also 
upregulated in T. rubrum grown in keratin as the sole carbon source (Maranhão 
et  al. 2007). Moreover, a PACC/RIM101-mutant strain of T. rubrum displayed 
decreased keratinolytic activity and impaired growth on the human nail in vitro, 
suggesting a role for RIM101 in the pathogenicity of T. rubrum (Ferreira-Nozawa 
et al. 2006; Silveira et al. 2010; Martinez-Rossi et al. 2012). In addition, the cross-
talk of PacC with different pathways for the maintenance of cellular homeostasis 
has been demonstrated. In T. interdigitale the regulation of egr2 that encodes a 
C2H2 transcription factor involved in ion homeostasis, and P-type ATPase gene, 
putatively involved in the extrusion of Na+ and K+, is influenced by pacC back-
ground (da Silva et al. 2020). Moreover, the ortholog of PacC, Pac3 in N. crassa is 
involved in a myriad of processes. The responsive genes involve those that encode 
catalase 1 and catalase 3, cell wall protein PhiA, C6 transcription factor, calcium- 
transporting ATPase 3, cyclin, and ornithine N5 oxygenase (Martins et al. 2020a).

Indeed, many aspects of dermatophyte physiology were understood based on 
studies performed using protein sources like keratin and elastin to mimic the derma-
tophyte superficial and deep infection, respectively, or even human molecules such 
as nail fragments and skin explants (Peres et al. 2016). In this sense, a study that 
assessed the transcriptional profile of T. rubrum mycelium grown in keratin or elas-
tin through oligonucleotide microarray displayed the modulation of a large set of 
proteases, with a significant upregulation of mep4 and lap1 genes as well as genes 
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encoding heat shock proteins, including Hsp 70 like-protein, Hsp 88-like protein, 
and Hsp 90 like-protein (Bitencourt et al. 2019a). Besides, this study showed the 
equal importance of lipases and keratinases for dermatophyte infection during inter-
action with elastin. It also revealed the modulation of a large set of genes involved 
in carbon and nitrogen metabolism. In this context, another study evaluating the 
transcriptional profile of T. rubrum conidia during growth in keratin and elastin 
revealed the modulation of genes involved in conidia dormancy. Moreover, the 
expression of protease genes including lap1, lap2, sub1, sub3, sub6, and mep4, as 
well as genes belonging to the respiratory chain and tricarboxylic cycle was primar-
ily induced during growth in keratin. In contrast, the expression of approximately 
40 genes involved in metabolic processes was downregulated in both protein 
sources, including genes related to nitrogen and fatty acid metabolism. This study 
unveiled adaptative mechanisms related to conidia survival and germination and 
characterized a putative adhesin potentially involved in the initial phases of derma-
tophyte infection (Bitencourt et al. 2016). In addition, a recent study evaluated the 
transcriptional profile of T. rubrum time-course mycelial growth in minimal medium 
supplement with glucose or keratin, revealing that keratin growth led to the repres-
sion of genes related to glycolysis, nitrogen catabolism, and TCA cycle, and induc-
tion of glyoxylate genes, such as icl (Martins et al. 2020b). This study also showed 
that keratin degradation is followed by an accumulation of ammonium, and as a 
consequence, mechanisms related to glutamine and urea metabolism are activated 
for ammonium utilization and extrusion.

During interaction with human keratinocytes, A. benhamiae upregulated the 
hypA gene, which encodes a hydrophobin (Burmester et al. 2011) that influences the 
organism’s recognition by the immune system (Heddergott et al. 2012). Deletion of 
hypA gene increased the susceptibility of A. benhamiae to human neutrophils and 
DCs. Compared to wild type, the ΔhypA mutant strain activated cellular immune 
defenses and increased the release of IL-6, IL-8, IL-10, and TNF-α to a higher 
degree. Moreover, conidia of the mutant strain were more easily killed by neutro-
phils (Heddergott et al. 2012). Indeed, surface expression of hydrophobin prevents 
A. fumigatus recognition by neutrophils (Aimanianda et al. 2009). Furthermore, in 
T. rubrum, the hypA gene is regulated by the transcription factor StuA, which 
belongs to the APSES family of transcription factors. In comparison to the wild 
type, the ΔstuA mutant strain displayed a significant reduction in hypA transcript 
levels during growth in keratin, and as a consequence, altered other mechanisms 
that ultimately influence germination, stress response, and fungal mechanosensing 
(Lang et al. 2020). Conceivably, the interaction with host cells and the dampening 
of host recognition might also be affected. Within this context, LysM-domain pro-
teins influence fungal infection and immune response by masking fungal chitin rec-
ognition by host cells and controlling fungal growth. These proteins have garnered 
interest in dermatophytes due to high copies in the genome and diversification in 
domain organization, suggesting LysM family evolution in these pathogenic fungi 
(Martinez et al. 2012; Persinoti et al. 2014). Moreover, a recent work characterized 
LysM-domain proteins in T. rubrum and showed the transcriptional profile of 14 
LysM-encoding genes during the growth of T. rubrum in host molecules. In this 
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study, two genes (TERG 03756 and TERG 05625) demonstrated marked changes in 
transcription levels during T. rubrum growth in keratin, displaying a signal peptide, 
hydrophobic region, and two LysM domains without glycosylation sites (Lopes 
et al. 2019).

Recently, the transcriptional profiles of HaCat keratinocyte cell line and T. rubrum 
during fungus–host interaction have been identified simultaneously. In this respect, 
dual RNA seq data showed the induction of the expression of glyoxylate cycle genes 
(malate synthase and isocitrate lyase), erg6, and a carboxylic acid transporter gene 
that probably enhances the assimilation of nutrients (Petrucelli et  al. 2018). 
Furthermore, deletion of hacA impaired the hyphal development during interaction 
with HaCat and altered immune responses, with an increase in TNF-α secretion and 
a decrease in IL-8 levels (Bitencourt et al. 2020).

Transcriptome data from various human fungal pathogens have identified global 
responses and survival strategies during interaction with host cells and substrates. 
Moreover, a deeper understanding of the core in transcriptional responses obtained 
by analyzing the dynamic and coordinate behavior of fungi and hosts during the 
infection and tackling aspects of niche association and adaptation is critical for 
identifying vulnerabilities. Accordingly, some pathways have been implicated in 
mycotic diseases, fungi can proliferate and survive within the host by employing 
sophisticated mechanisms to quickly modulate gene expression and adapt to 
changes in the environment. Genes that are upregulated during the infective process 
or interaction with host cells are potentially important for virulence (Table 17.2), 
and the functional characterization of mutant strains has been performed for some 
of them. Thus, genome-wide transcriptional analyses combined with genetic 
approaches have provided significant insight into fungal responses, adaptive pro-
cesses, virulence, and pathogenesis.

17.4  Transcriptome of Drug Response and Resistance

Microorganisms respond to sublethal doses of chemical and physical agents by syn-
thesizing various specific proteins and low molecular weight compounds that act to 
promote defenses or tolerance (Fachin et  al. 2001). Fungi use numerous signal 
transduction pathways to sense environmental stress and respond appropriately by 
differentially expressing cell-stress genes (Martinez-Rossi et al. 2018). Thus, analy-
ses of transcriptional changes in response to cytotoxic drugs have elucidated the 
mechanisms by which fungi adapt to physiological stress and the mechanisms of 
drug action (Table 17.3).

Although there are several commercially available antifungal drugs, the number 
of cellular targets is limited. Some antifungal drugs target ergosterol, a sterol analo-
gous to cholesterol that is the main component of the fungal cell membrane and has 
diverse functions, including maintaining membrane stability, integrity, and perme-
ability. Polyenes, a class of antifungal drugs including amphotericin B (AMB) and 
nystatin, bind to ergosterol and form pores in the membrane, which leads to the 
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Table 17.2 Putative fungal proteins associated with host interaction and pathogenesis

Protein description
Gene expression modulation 
and functional analysis References

Isocitrate lyase
(glyoxylate cycle 
enzyme)

Upregulated in C. albicans, C. 
neoformans, A. fumigatus, A. 
benhamiae, and T. rubrum. 
Gene inactivation attenuates 
virulence in C. albicans but 
not in C. neoformans and A. 
fumigatus.

Fradin et al. (2003, 2005), Lorenz 
et al. (2004), Zakikhany et al. (2007), 
Fan et al. (2005), Chen et al. (2014), 
Sugui et al. (2008), Staib et al. 
(2010), Rude et al. (2002), Schobel 
et al. (2007), Lorenz and Fink 
(2001), Wachtler et al. (2011), and 
Martins et al. (2020b)

Malate synthase
(glyoxylate cycle 
enzyme)

Upregulated in C. albicans, C. 
neoformans, A. fumigatus, and 
A. benhamiae. Gene 
inactivation does not attenuate 
virulence in C. neoformans.

Fradin et al. (2003, 2005), Lorenz 
et al. (2004), Zakikhany et al. (2007), 
Walker et al. (2009), Hu et al. 
(2008), McDonagh et al. (2008), 
Staib et al. (2010), Idnurm et al. 
(2007), and Cairns et al. (2010)

Acetyl-coenzyme-A- 
synthetase
(glyoxylate cycle 
enzyme)

Upregulated in C. albicans, C. 
neoformans, and A. fumigatus. 
Gene inactivation attenuates 
virulence in C. neoformans.

Fradin et al. (2003, 2005), Walker 
et al. (2009), Sugui et al. (2008), 
McDonagh et al. (2008), Cairns et al. 
(2010), Hu et al. (2008), Thewes 
et al. (2007), and Lorenz et al. (2004)

Aconitase
(tricarboxylic acid cycle 
enzyme)

Upregulated in C. albicans, C. 
neoformans, and A. fumigatus.

Lorenz et al. (2004), Walker et al. 
(2009), Hu et al. (2008), and Sugui 
et al. (2008)

Malate dehydrogenase
(tricarboxylic acid cycle 
enzyme)

Upregulated in C. albicans, C. 
neoformans, and A. fumigatus.

Lorenz et al. (2004), Hu et al. (2008), 
Cairns et al. (2010), and Sugui et al. 
(2008)

Phosphofrucktokinase
(glycolysis enzyme)

Upregulated in C. albicans 
and C. neoformans

Fradin et al. (2003), Thewes et al. 
(2007), and Hu et al. (2008)

Enolase
(glycolysis enzyme)

Upregulated in C. albicans 
and C. neoformans

Fradin et al. (2003), Thewes et al. 
(2007), and Hu et al. (2008)

Phosphoenolpyruvate 
carboxykinase
(gluconeogenesis 
enzyme)

Upregulated in C. albicans 
and C. neoformans. Gene 
inactivation attenuates 
virulence in C. albicans.

Zakikhany et al. (2007), Lorenz et al. 
(2004), Thewes et al. (2007), Hu 
et al. (2008), and Barelle et al. 
(2006)

Flavohemoglobin 
denitrosylases
(RNS detoxification)

Upregulated in C. albicans 
and C. neoformans. Gene 
inactivation attenuates 
virulence in C. albicans and 
C. neoformans.

Hu et al. (2008), Lorenz et al. (2004), 
Zakikhany et al. (2007), Fan et al. 
(2005), de Jesus-Berrios et al. 
(2003), Missall et al. (2004), and 
Brown et al. (2009)

Superoxide dismutases
(ROS detoxification)

Upregulated in C. albicans, C. 
neoformans, and A. fumigatus. 
Gene inactivation attenuates 
virulence in C. albicans and 
C. neoformans but not in A. 
fumigatus.

Hu et al. (2008), McDonagh et al. 
(2008), Morton et al. (2011), Fradin 
et al. (2003, 2005), Lorenz et al. 
(2004), Lambou et al. (2010), 
Missall et al. (2004), and Brown 
et al. (2009)

(continued)
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leakage of intracellular contents and fungal cell death. AMB also induces oxidative 
damage to cellular membranes via the generation of ROS. Some antifungal drugs 
target proteins involved in the ergosterol biosynthetic pathway (Martinez-Rossi 
et  al. 2008) (Fig.  17.1). Azoles are the most commonly used class of antifungal 
drugs in clinical treatment and include ketoconazole, itraconazole, fluconazole, and 
voriconazole. They inhibit the activity of the enzyme cytochrome P450 lanosterol 
14-α demethylase (ERG11), which is responsible for the oxidative removal of the 
14α-methyl group of lanosterol, an essential step in ergosterol biosynthesis. Azoles 
are first-line agents for the treatment of candidiasis, but their frequent use can result 
in resistance due to their fungistatic mechanism of action. Terbinafine (TRB) is 
another antifungal drug that belongs to the allylamine class and is most effective 
against dermatophytes. It inhibits ergosterol biosynthesis by inhibiting the enzyme 
squalene epoxidase (ERG1), responsible for converting squalene to lanosterol. 
Inhibition of ERG1 decreases the production of ergosterol and increases the accu-
mulation of squalene to toxic levels (Sagatova 2021) (Fig. 17.1).

Other antifungal drugs target DNA/RNA metabolism. Flucytosine is a cytosine 
analog that was first used as an antitumor agent. It also exhibits antifungal proper-
ties. Flucytosine is transported to the cytoplasm of fungal cells through cytosine 
permease; in the cytoplasm, cytosine deaminase converts it to 5-fluorouracil, which 
blocks protein and DNA synthesis. When phosphorylated, 5-fluorouracil is incorpo-
rated into RNA, leading to miscoding and inhibition of protein synthesis. 

Table 17.2 (continued)

Protein description
Gene expression modulation 
and functional analysis References

Hydrophobin
(cell surface protein)

Upregulated in A. fumigatus, 
A. benhamiae, and T. rubrum. 
Gene inactivation in A. 
fumigatus and A. benhamiae 
increases the susceptibility to 
the host immune response.

Cairns et al. (2010), Burmester et al. 
(2011), Heddergott et al. (2012), 
Aimanianda et al. (2009), and Lang 
et al. (2020)

HacA transcription 
factor
(Unfolded protein 
response)

Gene inactivation in A. 
fumigatus and T. rubrum leads 
to attenuation in virulence 
traits and increases 
susceptibility to antifungal 
agents

Richie et al. (2009) and Bitencourt 
et al. (2020)

StuA transcription factor
(APSES-family of the 
transcriptional 
regulators)

Upregulated in T. rubrum. 
Gene inactivation in A. 
benhamiae and T. rubrum 
impaired the growth on host 
molecules.

Krober et al. (2017) and Lang et al. 
(2020)

RlmA transcription 
factor
(MPK1 mitogen- 
activated protein kinase 
pathway)

Upregulated in A. fumigatus. 
Gene inactivation in A. 
fumigatus decreases 
pathogenicity in mice.

Liu et al. (2021)
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Table 17.3 Mechanism of action and mechanisms underlying antifungal resistance in fungi

Drug
Mechanism of 
action

Putative resistance 
mechanisms and drug 
response References

Acriflavine Topoisomerase 
inhibition/DNA 
intercalation. 
Nonspecific cellular 
interactions

Drug efflux, stress 
response, oxidative 
stress, decreases 
virulence

Fachin et al. (2006), Paiao 
et al. (2007), Persinoti et al. 
(2014), and Martinez-Rossi 
et al. (2016)

Amphotericin 
B

Binds irreversibly to 
ergosterol, resulting 
in disruption of 
membrane integrity

Drug efflux, stress 
response

Yu et al. (2007b), Martins et al. 
(2016), Mendes et al. (2016), 
and Bitencourt et al. (2019b)

Caspofungin (1,3)-β-D-glucan 
synthase inhibition 
(encoded by FKS1/
FKS2)

Mutations in FKS genes, 
posttranscriptional 
regulation of cell wall 
biosynthesis, stress 
response

Imtiaz et al. (2012), Perlin 
(2015), Bitencourt et al. 
(2019b), and Kalem et al. 
(2021)

Fluconazole Cytochrome P450 
14 α-lanosterol 
demethylase 
inhibition

Drug efflux, stress 
response, alteration of 
the drug target

Cervelatti et al. (2006), Fachin 
et al. (2006), Paiao et al. 
(2007), and Shapiro et al. 
(2011)

5-Flucytosine DNA synthesis and 
nuclear division 
inhibition

Decreased drug uptake, 
alteration in enzyme 
activity, cell wall 
remodeling

Costa et al. (2015)

Griseofulvin Mitosis inhibition Drug efflux, stress 
response

Fachin et al. (1996, 2001, 
2006), Cervelatti et al. (2006), 
Paiao et al. (2007), and Martins 
et al. (2016)

Imazalil Cytochrome P450 
14 α-lanosterol 
demethylase 
inhibition

Drug efflux Cervelatti et al. (2006) and 
Fachin et al. (2006)

Itraconazole Cytochrome P450 
14 α-lanosterol 
demethylase 
inhibition

Drug efflux, alteration of 
the drug target

Cervelatti et al. (2006), Fachin 
et al. (2006), and Shapiro et al. 
(2011)

Ketoconazole Cytochrome P450 
14 α-lanosterol 
demethylase 
inhibition

Drug efflux Cervelatti et al. (2006), Fachin 
et al. (2006), and Wang et al. 
(2021)

Terbinafine Squalene epoxidase 
inhibition (encoded 
by Erg1)

Drug efflux, stress 
response, mutations in 
Erg1, drug metabolism

Graminha et al. (2004), 
Osborne et al. (2005, 2006), 
Rocha et al. (2006), Fachin 
et al. (2006), Paiao et al. 
(2007), Martins et al. (2016), 
Martinez-Rossi et al. (2016), 
Yamada et al. (2017), Santos 
et al. (2018), Petrucelli et al. 
(2019), and Kano (2021)

(continued)
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Furthermore, phosphorylated 5-fluorouracil can be converted into the deoxynucleo-
side form by uridine monophosphate pyrophosphorylase; thereafter, it inhibits the 
enzyme thymidylate synthetase and consequently disrupts DNA synthesis (Vermes 
et al. 2000; Billmyre et al. 2020). Griseofulvin, another antifungal drug, interacts 
with microtubules affecting the mitotic spindle formation, thereby inhibiting the 
mitosis in fungi. This drug serves as a fungistatic agent against dermatophytes. 
However, griseofulvin is not effective against dimorphic fungi, yeast, or 
chromomycosis- causing agents (Gupta et al. 2018).

Table 17.3 (continued)

Drug
Mechanism of 
action

Putative resistance 
mechanisms and drug 
response References

Tioconazole Cytochrome P450 
14 α-lanosterol 
demethylase 
inhibition

Drug efflux Fachin et al. (1996, 2001, 
2006)

Undecanoic 
acid

Nonspecific cellular 
interactions

Stress response, drug 
metabolism, oxidative 
stress, decreases 
virulence

Paiao et al. (2007), Mendes 
et al. (2018), and Rossi et al. 
(2021)

Fig. 17.1 Schematic representation of the ergosterol biosynthetic pathway
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The fungal cell wall is a specific target of antifungal drugs since it is absent from 
mammalian cells. Caspofungin was the first compound to target the fungal cell wall 
and was approved for clinical use in 2001. It is a member of the echinocandin class, 
which inhibits the enzyme (1,3)-β-D-glucan synthases (FKS1 and FKS2), thus pre-
venting the synthesis of (1,3)-β-D-glucan and disrupting cell wall biosynthesis. In 
addition to caspofungin, two other echinocandins, micafungin and anidulafungin, 
are commercially available. These drugs are only available as intravenous infusions 
and are indicated to treat invasive aspergillosis and candidiasis. They have fungi-
cidal activity against most Candida species and fungistatic activity against 
Aspergillus species. Although most fungal species encode orthologs of FKS1 and 
FKS2, echinocandins are not effective against Zygomycetes spp., C. neoformans, or 
Fusarium spp. (Perlin 2015; Kalem et al. 2021).

Transcriptome analyses have been used to evaluate the responses of pathogenic 
fungi, such as C. albicans, A. fumigatus, and T. rubrum, to several antifungal drugs, 
including azoles, polyenes, terbinafine, undecanoic acid, and echinocandins (Yu 
et al. 2007b; da Silva Ferreira et al. 2006; Gautam et al. 2008; Diao et al. 2009; 
Zhang et al. 2009; Peres et al. 2010b; Mendes et al. 2018; Cervelatti et al. 2006; Liu 
et al. 2005; Paiao et al. 2007). These studies revealed that the modulation of genes 
in the ergosterol biosynthetic pathway varies significantly among species and drugs. 
Although caspofungin and flucytosine do not primarily target the ergosterol biosyn-
thetic pathway, they elicited the upregulation of some ergosterol biosynthetic genes 
in C. albicans (Liu et al. 2005). In response to ketoconazole, C. albicans upregu-
lated genes involved in the biosynthesis of ergosterol, lipids, and fatty acids. 
Ketoconazole also induced the expression of the major transporter genes CDR1 and 
CDR2 (Liu et al. 2005). Similarly, in response to ketoconazole, T. rubrum upregu-
lated genes involved in the metabolism of lipids, fatty acids, and sterols, as well as 
the multidrug-resistance gene encoding ABC1, which is a homolog of C. albicans 
CDR1 (Yu et al. 2007a). Transcriptome sequencing revealed that ketoconazole may 
also change cell membrane permeability, destroy the cell wall, and inhibit mitosis in 
Microsporum canis (Wang et al. 2021).

In response to AMB, C. albicans downregulated genes related to ergosterol bio-
synthesis and upregulated genes related to cell stress, including those encoding 
nitric oxide oxidoreductase (YHB1), catalase 1 (CTA1), aldehyde oxidase 1 
(AOX1), and superoxide dismutase 2 (SOD2) (Liu et  al. 2005). A. fumigatus 
exposed to AMB upregulated erg11 and downregulated erg6. Besides, it modulated 
genes involved in cell stress, transport, oxidative phosphorylation, nucleotide 
metabolism, cell cycle control, and protein metabolism. Moreover, in response to 
the oxidative damage caused by AMB exposure, A. fumigatus overexpressed several 
genes encoding antioxidant enzymes, such as Mn-SOD, catalase, the thiol-specific 
antioxidant protein LsfA, glutathione S-transferase (GST), and thioredoxin. 
A. fumigatus downregulated ergosterol biosynthetic genes in response to AMB, pos-
sibly in an attempt to use alternate sterols or sterol intermediates in the cell mem-
brane (Gautam et  al. 2008). C. albicans exposed to caspofungin induced the 
expression of genes encoding cell wall maintenance proteins, including a target of 
caspofungin (the β-1,3-glucan synthase subunit homolog to FKS3), a pH-regulated 
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glucan-remodeling enzyme (PHR1), extracellular matrix proteins (ECM21 and 
ECM33), and a putative fatty acid elongation enzyme (FEN12). Interestingly, fen12 
was upregulated in response to caspofungin and downregulated in response to 
AMB. In response to flucytosine, C. albicans upregulated the CDC21 gene, which 
encodes thymidylate synthetase. This enzyme is the target of flucytosine and is 
associated with DNA synthesis; therefore, its upregulation may prevent fungal 
death. Other upregulated genes include those involved in purine and pyrimidine 
biosynthesis, such as YNK1, a nucleoside diphosphate kinase, and FUR1, an uracil 
phosphoribosyltransferase (Liu et al. 2005).

Terbinafine is commonly used to treat dermatophytosis. Exposure of T. rubrum 
to TRB decreased the expression of genes related to ergosterol biosyntheses, such 
as erg2, erg4, erg24, and erg25, and increased the expression of genes involved in 
lipid metabolism. Although TRB primary target is squalene epoxidase (ERG1), 
T. rubrum did not differentially express erg1 after exposure to TRB. It did, however, 
upregulate multidrug-resistance (MDR) genes, including mdr1 and mdr2 (Zhang 
et al. 2009). Indeed, MDR2 is associated with drug susceptibility. Overexpression 
of mdr2 likely causes the efflux of TRB, since deletion of mdr2 increased dermato-
phyte susceptibility to TRB (Fachin et al. 2006). Interestingly, in T. interdigitale, the 
transcription of mdr4 was downregulated in the ∆mdr2 mutant challenged with 
amphotericin B or terbinafine, indicating that the transcription of mdr4 is dependent 
on the function of mdr2 in response to these drugs. However, when the ∆mdr2 
mutant was challenged with griseofulvin, the high expression of the mdr4 gene 
seemed to compensate for the inactivation of the mdr2 gene. These results suggest 
that these ABC transporter genes act synergistically, and they may compensate for 
one another when challenged with antifungal drugs (Martins et al. 2016; Martins 
et  al. 2019). These results also indicate the existence of a network interaction 
responsible for the failure of antifungal therapeutics. An intriguing mechanism of 
resistance to TRB in A. nidulans (Graminha et al. 2004) and T. rubrum (Santos et al. 
2018) involves the salA gene, which encodes a salicylate 1-monooxygenase. TRB 
contains a naphthalene nucleus in its molecular structure that might be degraded by 
salicylate 1-monooxygenase, an enzyme in the naphthalene degradation pathway in 
Pseudomonas (Bosch et al. 2000).

The emergence of resistant strains is an important obstacle to effective antifungal 
therapy. Azoles are the first-line treatment for many fungal infections; however, 
their use may select for azole-resistant mutants. Several mechanisms contribute to 
drug resistance, including alteration of the drug target, increased drug efflux, and 
increased cellular stress responses. Both mutations in and overexpression of the 
ergosterol biosynthesis gene erg11/cyp51 confer resistance to azoles in C. albicans 
and A. fumigatus. For instance, one mutation causes the synthesis of an alternative 
protein insensitive to azoles and diminishes drug efficacy. At least 12 different point 
mutations in erg11 have been identified in azole-resistant clinical isolates of C. albi-
cans (Shapiro et al. 2011; Rosam et al. 2020). Overexpression of efflux pumps is 
associated with antifungal resistance in C. albicans. CDR1 and CDR2 confer resis-
tance to multiple azoles, while MDR1 confers fluconazole resistance (White et al. 
2002). Similarly, azole-resistant clinical isolates of C. glabrata have been shown to 
overexpress genes encoding CDR1 and CDR2 as well as SNQ2, another 
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ATP- binding cassette ABC transporter (Sanguinetti et  al. 2005). In response to 
azoles and other structurally distinct drugs, dermatophytes overexpressed mdr1 and 
mdr2, which encode ABC transporters (Cervelatti et al. 2006; Fachin et al. 2006). 
The zinc cluster transcription factor TAC1 regulates genes encoding the ABC trans-
porters CDR1 and CDR2 in azole-resistant C. albicans, and deletion of TAC1 gene 
prevented the upregulation of cdr genes (Coste et al. 2004). Furthermore, ChIP-chip 
experiments demonstrated that TAC1 directly binds to the promoter region of sev-
eral genes, including CDR1, CDR2 (Liu et al. 2007).

Genome-wide expression analysis of resistant clinical isolates of C. albicans 
identified a transcription factor that was upregulated in coordination with MDR1. 
This gene encodes the multidrug resistance regulator MRR1, a zinc cluster tran-
scription factor, and the main regulator of MDR1 expression. Gain-of-function 
mutations in MRR1 are responsible for overexpression of MDR1 and are associated 
with fluconazole resistance in C. albicans (Morschhauser et al. 2007). In addition to 
regulating MDR1 expression, MRR1 regulated at least 14 other genes that may also 
contribute to fluconazole resistance. These genes encoded mainly oxidoreductases. 
Notably, MRR1 does not target CDR1 or CDR2. Overall, large-scale transcriptional 
analyses have identified several genes associated with drug response and resistance 
in pathogenic fungi (Morschhauser et al. 2007). RNA-seq analyses were performed 
on two isogenic C. albicans strains that differed only in fluconazole resistance. 
These studies identified novel genes associated with azole resistance, including the 
transcription factor CZF1, which is involved in the hyphal transition and the white/
opaque switch. Inactivation of CZF1 increased the susceptibility to fluconazole and 
unrelated antifungal drugs, such as TRB and anisomycin. Furthermore, the CZF1 
mutant strain displayed increased resistance to the cell wall-disrupting agent Congo 
red. The mutant also overexpressed the gene encoding β 1,3-glucan synthase 
(GLS1), suggesting that CZF1 represses β-glucan synthesis and regulates cell wall 
integrity (Dhamgaye et al. 2012).

The transcription profile of a C. auris isolate susceptible to AMB and voricon-
azole showed upregulation of the expression of 39 genes in response to AMB, 21 in 
response to voriconazole, and 14 being upregulated in response to both drugs 
(Munoz et  al. 2018). AMB-responsive genes included those involved in arginine 
synthesis (ARG1/ARG3), ergosterol biosynthesis (ERG24), fatty acid metabolism 
(FAS1/FAS2), GPI-linked surface proteins (PGA7 and RBT5), and iron transport-
ers, such as SIT1. In response to both drugs, there was an upregulation of the expres-
sion of transmembrane transport and iron transport-related genes, such as the 
high-affinity iron transporter FTH1, ferric reductase, glucose transporter, 
N-acetylglucosamine transporter, and OP1-like oligopeptide transporter. In a 
C. auris-resistant strain to AMB and voriconazole, AMB-responsive genes were 
enriched in translation and transcription processes and the sterol biosynthetic path-
way. Voriconazole response induced the expression of genes related to RNA pro-
cessing and transcription. Furthermore, both strains induced the expression of the 
genes ARG1, CSA1, MET15, and OPT1-like transporter in response to AMB. The 
authors also showed an intrinsic expression profile of polyene resistance genes, 
such as D-xylulose reductase, phosphoenolpyruvate carboxykinase, and several 
transporters and stress response genes in the resistant strain (Munoz et al. 2018).

17 Transcriptome in Human Mycoses



424

In pathogenic fungi, mitochondrial dysfunction has been associated with altered 
susceptibility to antifungal drugs. In C. albicans, inhibition or mutation of the mito-
chondrial complex I (CI) increased susceptibly to fluconazole even in resistant clini-
cal isolates. Transcriptional analysis was performed on the ∆goa1 and ∆ndh51 
mutant strains, which are associated with CI-induced susceptibility to fluconazole. 
GOA1 is required for the function of the electron transport chain, and the ∆goa1 
mutant accumulates ROS, undergoes apoptosis, and is avirulent. Ndh51 encodes a 
51-kDa subunit of the NADH dehydrogenase of the electron transport chain, and the 
∆ndh51 mutant exhibits defects in morphogenesis. RNA-seq analyses of these 
strains demonstrated downregulation of transporters, including the CDR1/CDR2 
efflux pumps but not MDR1. Genes related to ergosterol biosynthesis were down-
regulated in the ∆ndh51 mutant. In contrast, genes associated with peroxisomes, 
gluconeogenesis, β-oxidation, and mitochondria were downregulated in the ∆goa1 
mutant (Sun et al. 2013). NDH51 is conserved among eukaryotes, including mam-
mals; nevertheless, GOA1 is conserved only in some Candida species. Therefore, 
fungi-specific mitochondrial genes may be targets for the development of novel 
antifungal drugs. Indeed, acriflavine, an acridine derivative with antibacterial, anti-
fungal, antiviral, and antiparasitic properties, induces the overexpression of genes 
involved in the mitochondrial electron transport chain of T. rubrum (Segato et al. 
2008). Transcriptomic analysis of the effect of acriflavine on T. rubrum showed that 
the expression of genes involved in cellular detoxification was upregulated, protect-
ing the cell against oxidative stress and reactive oxygen species. Furthermore, this 
drug interferes with the establishment and maintenance of the fungal infection 
(Persinoti et al. 2014).

Interestingly, chemical inhibition of fungal HSP90 improved the activity of 
azoles and echinocandins against C. albicans and echinocandins against A. fumiga-
tus (Cowen 2009). Inhibition of HPS90 prevents the stress-response cascade medi-
ated by calcineurin, which is normally activated in response to antifungal drugs. 
Blunting of the stress-response cascade enhances the fungicidal effects, leading to 
cell death. The development of an inhibitor selective for fungal HSP90 and inactive 
against human HSP90 has been challenging. Nevertheless, HSP90 is a promising 
target for the treatment of resistant fungal diseases and may combat the emergence 
of drug resistance (Cowen 2009; Martinez-Rossi et al. 2016). Additionally, chemi-
cal inhibition of Hsp90 of T. rubrum increased the susceptibility to itraconazole and 
micafungin and decreased its ability to grow on human nail fragments. These results 
suggest the role of Hsp90 in the pathogenicity and drug susceptibility in T. rubrum 
(Jacob et al. 2015), reinforcing its potential as a target for the treatment of fungal 
infections.

In addition to the emergence of drug-resistant strains, another major clinical 
problem is the formation of microbial biofilms. Biofilms possess specific traits as 
compared to planktonic cells, such as intrinsic resistance to drugs. In immunocom-
promised individuals, both C. albicans and A. fumigatus can form biofilms on 
implanted medical devices, such as catheters, and cause persistent infections. In 
particular, biofilms have decreased susceptibility to antifungal drugs. To understand 
their mechanisms of resistance, mature biofilm cells were exposed to fluconazole, 
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AMB, and caspofungin. Fluconazole exposure did not significantly alter gene 
expression, and AMB exposure resulted in only minor alterations in gene expres-
sion. On the other hand, biofilms exposed to caspofungin underwent more pro-
nounced alteration in gene expression, including the upregulation of several genes 
associated with biofilm formation, such as ALS3, a cell wall adhesin, the transcrip-
tion factor TEC1, and genes associated with cell wall remodeling (Vediyappan et al. 
2010). Furthermore, AMB and fluconazole bind to the extracellular matrix of the 
biofilm, which is comprised of β-glucans; such binding inhibits effective drug action 
(Vediyappan et al. 2010). An RNA-seq analysis compared the transcriptional profile 
of an A. fumigatus biofilm to that of planktonic cells. Thousands of genes were dif-
ferentially expressed between the biofilm and planktonic cells. Specifically, the bio-
film exhibited an upregulation of secondary metabolism genes, cell wall-related 
genes, sterol biosynthetic genes (e.g., erg11), transporters associated with antifun-
gal resistance (MDR1, MDR2, and MDR4), and hydrophobins, which are associ-
ated with the structural organization of biofilms (Gibbons et al. 2012). The complex 
gene network involved in biofilm formation is consistent with the fact that C. albi-
cans can form biofilms in different niches, such as the bloodstream, oral cavity, or 
medical devices serving as reservoirs of drug-resistant cells (Mamouei et al. 2021; 
Li et al. 2021). This highlights the challenge inherent to treating these infections as 
well as the importance of searching for new antifungal targets.

Furthermore, posttranscriptional regulation has been described as a fine adjust-
ment for some fungi to adapt to antifungal exposure. This phenomenon occurs in 
N. crassa through alternative splicing of pre-mRNA transcripts of genes encoding 
asparagine synthetase 2, C6-zinc-finger regulator, and farnesyltransferase in 
response to amphotericin B and ketoconazole (Mendes et al. 2016). Additionally, 
RNA-Seq analysis of T. rubrum exposed to undecanoic acid revealed alternative 
splicing in several genes, including hsps (Mendes et al. 2018; Neves-da-Rocha et al. 
2019). These results show the complexity of the metabolic modulation triggered by 
antifungal signaling.

In conclusion, analyses of the transcriptional changes in response to cytotoxic 
drugs have identified genes with known biological functions, suggesting novel 
effects of antifungal drugs. Besides, some of the drug-responsive genes are shared 
across multiple classes of antifungal agents in C. albicans (Liu et al. 2005), derma-
tophytes (Peres et al. 2010b; Persinoti et al. 2014; Mendes et al. 2018; Fachin et al. 
2006; Paiao et al. 2007), and other fungi. Nonspecific responses to stress are also 
known that allow fungi to adapt to several drugs and environmental challenges, 
highlighting the broad range of fungal responses to cope with stress.

17.5  Concluding Remarks

The pathogenesis of fungal infections involves gene expression changes and meta-
bolic pathways, which enable fungal invasion, survival, and dissemination. At the 
same time, fungi elicit host responses aimed at eliminating the pathogen. 
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Genome- wide transcriptional profiling has identified the molecular responses of 
both host and pathogen during the interaction. It has provided insights into the adap-
tive responses that occur during the establishment of infection, antifungal resis-
tance, and exposure. The combination of large-scale transcriptomic analysis and 
systems biology approaches has enabled the development of regulatory molecular 
models that can aid in the assessment of dynamic behaviors of host–pathogen inter-
actions and elucidate the pathogenesis of human mycoses. These regulatory models 
have been validated through reverse-genetic approaches by evaluating the physio-
logical behavior of the knockout strains under in vitro, ex vivo, and in vivo condi-
tions. Furthermore, transcriptomics is a valuable source of data on gene expression 
regulation, gene structure and function, and information regarding the mechanisms 
of fungal responses and resistance to drugs. These insights will further support the 
development of novel therapeutic approaches to prevent and control fungal 
infections.
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Chapter 18
Understanding Chagas Disease  
by Multi- omics Data Integration, 
Functional, and Enrichment 
Computational Analysis

Ludmila Rodrigues Pinto Ferreira

18.1  Epidemiology of Chagas Disease

Chagas disease, also called human American trypanosomiasis, was named after the 
Brazilian medical doctor Carlos Chagas (Fig. 18.1a), who discovered the disease in 
1909 during a campaign to fight malaria in Brazil (Moncayo 2010).

Carlos Chagas identified, associated with diseased individuals living in poor 
dwellings (Fig.  18.1b), a triatomine blood-sucking insect (Fig.  18.1c). He found 
flagellated parasites in the intestine of the bug, which he named Trypanosoma cruzi 
(T. cruzi) (Fig. 18.1d). He also found T. cruzi parasites in the blood of sick people, 
and soon correlated the parasitemia (level of parasites in the blood) with some 
symptoms of the disease, such as fever, anemia, lymphadenopathy, splenomegaly, 
and a cardiac form of the disease (Kropf and Sa 2009; Pays 2009; Kropf 2011).

The disease begins with a short acute phase characterized by high parasitemia 
followed by a life-long chronic phase maintained with scarce parasites (Golgher 
and Gazzinelli 2004). The World Health Organization (WHO) estimated that 8 mil-
lion people are infected worldwide, mostly in Latin America.

Over 25 million people are at risk of the disease, and 10000 people die every year 
from clinical manifestations of Chagas disease (Hotez et al. 2012). Natural trans-
mission of Chagas disease has been controlled in many countries by insecticide 
targeting of hematophagous bug populations, as well as improved socioeconomic 
status and quality of dwelling in Latin America.

The list of possible infection routes of Chagas disease includes vectorial, trans-
fusional (through T. cruzi infected blood), congenital, through organ transplanta-
tion, oral transmission, and accidental, through laboratory accidents. In 2006, WHO 
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certified Brazil as being free of transmission through Triatoma infestans, the main 
intradomicilliary vector of Chagas disease (WHO Expert Committee 2002).

However, there were new reports of oral transmission and oral outbreaks in the 
Amazon region showing that this victory was only partial (Dias 2009). Despite 
improvement in quality assurance of blood transfusions and organ transplants, 
Chagas disease remains a public health problem in Latin America and is becoming 
a new threat for T. cruzi infection in non-endemic countries (Diaz 2007; Lescure 
et al. 2010; Hotez et al. 2012).

It has been estimated that 700,000 infected people are living outside of Latin 
America (Hotez et al. 2012). The pathogenesis of Chagas disease remains largely 
unknown, and there are still no effective vaccines or drugs to prevent or treat chronic 
infection with T. cruzi.

18.2  T. cruzi Life Cycle and Triatomine Vectors

T. cruzi is known to infect eight different mammalian orders including humans, and 
it is transmitted by insect vectors of the Reduviidae family and the subfamily of 
Triatomines (Committee 2002). There are many popular names for the vector. In 
Brazil the common name for the vector is Barbeiro – “the barber” and the English 
name is the “kissing bug.”

Fig. 18.1 Chagas disease, also called human American trypanosomiasis, was named after the 
Brazilian medical doctor Carlos Chagas (a). He identified, associated with diseased individuals 
living in poor dwellings (b), a triatomine blood-sucking insect (c). He found flagellated parasites 
in the intestine of the bug, which he named Trypanosoma cruzi (T. cruzi; trypomastigote in a thin 
blood smear stained with Giemsa (d). (Image credits: (a) Public domain, (b) José Eduardo 
R. Camargo (c) and (d) Public Health Image Library – Centers for Disease Control and Prevention – 
CDC and Laboratory Identification of Parasitic Diseases of Public Health Concern – DPDx)
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Around 100 different triatomine species are susceptible to infection with the 
T. cruzi parasite but the principal vector species has been Triatoma infestans and in 
Brazil, the species Triatoma sordida and Panstrongylus megistus are also prevalent 
(Moncayo and Ortiz Yanine 2006; Dias 2009; Siqueira-Batista et al. 2011). T. cruzi 
has different developmental stages in its life cycle: Epimastigotes are the form stage 
that proliferates by cell division in the stomach of the triatomine bugs, they migrate 
to the distal part of the bug’s intestine, and by a process called metacyclogenesis, 
they transform into metacyclic trypomastigotes, the infective form for the verte-
brate host.

The insects feed on mammals by sucking blood, and T. cruzi is transferred via 
their feces, deposited on the skin of the host after feeding. The metacyclic trypo-
mastigotes can penetrate through mucous membranes as well as skin injuries when 
the host scratches the skin after being bitten or rub their eye.

The parasites then invade host cells, transforming into amastigotes which repli-
cate and differentiate into trypomastigotes, disrupting host cells and infecting vari-
ous cell types with a particular tropism for cardiac, skeletal, and smooth muscle 
cells (de Souza et al. 2010). Finally, the bugs are infected by ingesting trypomasti-
gotes in the blood from infected hosts, thus completing the T. cruzi life cycle 
(Fig. 18.2).

18.3  Basic Knowledge About the Clinical Features of Chagas 
Disease: Acute and Chronic Phases of Infection

The parasite T. cruzi produces pathological processes in mammals that can occur in 
various organs and tissues. When T. cruzi is transmitted, it invades the victim’s 
bloodstream and the lymphatic system. Hereafter, it nestles in many tissues includ-
ing the skeletal muscle and cardiac tissue, which causes immune responses and 
inflammation (WHO Expert Committee 2002).

Chagas disease has an acute as well as a chronic phase. Morbidity and mortality 
are higher in the acute phase for children under five, immunosuppressed people, or 
people with high parasitemia as in patients from outbreaks of food-borne Chagas 
disease.

The acute phase can occur at any age in disease endemic areas; however, the 
highest frequency is before the age of 15, typically starting in the age group 1–5 
years. The acute phase of Chagas disease usually lasts 6–8 weeks, and most fre-
quently is oligo- or asymptomatic and after this phase, most patients appear to be 
healthy (Moncayo and Ortiz Yanine 2006).

The infection by T. cruzi can then only be detected by serological or parasitologi-
cal tests. In the acute phase, if the transmission is vectorial, visible port of entry can 
be identified, such as the chagoma, a skin lesion in exposed areas of the body, or the 
Romaña’s sign, a purplish edema on the lids of one eye (Fig. 18.3). The sign occurs 
only in about 10% of infected persons, and can easily be misdiagnosed with 
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conjunctivitis, for example, which is common in rural areas (Roveda 1967; Delaporte 
1997; Dias 1997).

Other clinical features of the acute phase are an excessive activation of the 
immune system that includes cytokinemia (high plasma levels of cytokines), intense 
activation of B and T cells. Generic and unspecific symptoms include diarrhea, 
vomiting, headache, muscle pain, loss of appetite, and extreme fatigue.

These symptoms are not very specific and can easily be confused with other 
disease etiologies (Coura and Borges-Pereira 2010). Shortly after the acute infec-
tion starts, T. cruzi components – including its DNA and membrane glycoconju-
gates – trigger innate immunity via Toll-like receptors in macrophages and dendritic 
cells, among other cell types. Upon activation, cells from monocytic lineage 

Fig. 18.2 T. cruzi life cycle: An infected triatomine insect vector takes a blood meal and releases 
trypomastigotes in its feces near the site of the bite wound. Trypomastigotes enter the host through 
the wound or through intact mucosal membranes, such as the conjunctiva. Inside the host, the 
trypomastigotes invade cells near the site of inoculation, where they differentiate into intracellular 
amastigotes. The amastigotes multiply by binary fission and differentiate into trypomastigotes, and 
then are released into the circulation as bloodstream trypomastigotes. The “kissing” bug becomes 
infected by feeding on human or animal blood that contains circulating parasites. The ingested 
trypomastigotes transform into epimastigotes in the vector’s midgut. The parasites multiply and 
differentiate in the midgut and differentiate into infective metacyclic trypomastigotes in the hind-
gut. (Life cycle image and information credit: Laboratory Identification of Parasitic Diseases of 
Public Health Concern – DPDx (http://www.cdc.gov/dpdx))

L. R. P. Ferreira

http://www.cdc.gov/dpdx


441

produce high levels of proinflammatory cytokines like interferon gamma (IFN-γ), 
interleukin 12 (IL-12), and tumor necrosis factor alpha (TNF-α).

The high level of IFN-γ-induced chemokines and adhesion molecules plays an 
important role in promoting the inflammatory environment in the heart of animals 
infected with T. cruzi.

In fact, mice lacking the functional IFN-γ gene display major changes in the 
CD4+ T and CD8+ T lymphocytes composition of inflammatory infiltrates, as well 
as enhanced tissue parasitism in the heart (Campos et al. 2004). The essential role 
of some of these cytokines (e.g., IL-12 and TNF-α) and reactive nitrogen intermedi-
ates (RNI) in the control of parasitemia and tissue parasitism is evidenced during 
the early stages of infection in the murine model (Junqueira et al. 2010).

More precisely, the cells from the macrophage lineage exposed to T. cruzi will 
produce IL-12 that is responsible for initiating IFN-γ synthesis by natural killer 
(NK) cell. IFN-γ plays a major role in resistance through the activation of macro-
phages to produce high levels of RNI that will effectively control parasite replica-
tion (Fig. 18.4).

If not controlled by the innate immune system of the host, the infection is fatal as 
shown in experimental models employing mice lacking functional genes for the 
IL-12, IFN-γ, IFN-γ receptor, TNF-α receptor, or inducible nitric oxide (NO) syn-
thase (iNOS) genes (Golgher and Gazzinelli 2004; Gazzinelli and Denkers 2006; 
Junqueira et al. 2010).

Fig. 18.3 Romaña’s sign, 
a purplish edema on the 
lids of one eye that is 
formed during T. cruzi 
infection. (The illustrations 
of chagasic patient were 
obtained from: Public 
Health Image Library – 
Centers for Disease 
Control and Prevention – 
CDC/Dr. Mae Melvin)
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The chronic phase starts with an effective acquired immunity leading to parasit-
emia drop to a level where it is undetectable with direct parasitological tests, and 
when symptoms and clinical manifestations typically disappear.

However, depending on different factors 10–40% of patients in the chronic phase 
will develop lesions in target organs, like the intestine (intestinal mega syndrome), 
esophagus (mega esophagus), and heart (cardiomyopathy); however, up to 70% of 
infected people remain in an indeterminate asymptomatic form (ASY) for their 
whole life. The most important clinical consequence of chronic Chagas disease is 
the chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopa-
thy that develops in up to 30% of infected individuals.

A significant proportion of those patients subsequently develop dilated cardio-
myopathy with a fatal outcome. Heart failure of chagasic etiology has a worse prog-
nosis and 50% lower survival rate than cardiomyopathies of noninflammatory 
etiology, like ischemic (IC) and idiopathic dilated cardiomyopathy (DCM) (Bilate 
and Cunha-Neto 2008; Machado et al. 2012).

Inflammatory cytokines are produced during the chronic phase of Chagas dis-
ease. Mononuclear cells increase their cytokine production, leading to increased 

Fig. 18.4 Immune response to T. cruzi infection. In the initial stage of T. cruzi invasion, cells from 
the innate immune system [dendritic cell, macrophages, and natural killer cells (NK cells)] pro-
duce cytokines (IL-12, TNF-α, and IFN-γ) and effector molecules [reactive nitrogen intermediates 
(RNIs)] that lead to parasite destruction. At the same time, innate immune cells, particularly den-
dritic cells, make the bridge between the innate and acquired immunity, producing cytokines 
(IL-12) necessary for differentiation and clonal expansion of T helper 1 (Th1) CD4+. IFN-γ pro-
duced by CD4+ activates effector mechanisms in macrophages to destroy both amastigotes and 
phagocytosed trypomastigotes. Abbreviations: IFN interferon, IL interleukin, Thp Th precursor 
cell, TNF tumor necrosis factor
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plasma levels of TNF-α and IFN-γ, and are even detected in infected ASY individu-
als, probably in response to parasite persistence.

The subset of patients that develop CCC displays an array of immunological 
alterations consistent with an exacerbated Th1 immune response; the predominance 
of production of IFN-γ and TNF-α (Abel et al. 2001) associated to the increased 
expression of the Th1 transcription factor T-bet in the heart, which is not controlled 
by regulatory T cells in situ is evidence corroborating that the Th1 response is 
involved in tissue damage in CCC.

Chagas thus remains a neglected disease, with no vaccines or antiparasitic drugs 
proven efficient in chronically infected adults, when most patients are diagnosed. 
Development of effective drugs for CCC is hampered by the limited knowledge of 
its pathogenesis. T cell migration to the myocardium and inflammation, cytokine/
chemokine-induced modulation of myocardial gene and protein expression, and 
genetic components controlling such processes are clearly key events (Nogueira 
et al. 2012).

Regardless of the mechanisms underlying the initiation and maintenance of the 
myocarditis, the bulk of the evidence indicates that the inflammatory infiltrate is a 
significant effector of heart tissue damage (Coura and Borges-Pereira 2010).

18.4  High-Throughput Analysis Helping to Understand 
the Mechanisms Involved in Chagas Disease

The pathogenesis of CCC is still matter of intense debate. The susceptibility factors 
that lead to 30% of individuals to develop CCC after T. cruzi infection remain 
unknown, and it is a challenge to identify patients who are at risk of dying. The 
absence of an alternative treatment for CCC demonstrates that our knowledge about 
its pathogenesis is still very limited and that new study strategies are needed to dis-
cover biomarkers of disease progression as well as new treatments for CCC.

The first gene expression analyses in Chagas disease were performed primarily 
based on observations from immunoblotting, polymerase chain reaction, and/or 
northern blotting limited to evaluation of a few preselected genes at one time 
(Ferreira et al. 1999; Ferreira et al. 2002).

Another limitation was the access to human heart samples from the acute phase 
of the disease, so most data available is based on murine models and/or using cells 
from in  vitro T. cruzi infection. Several reports have been published with these 
approaches with a high variability in parasite strains, host cells, mammalian species, 
and times of infection generating a complex picture and few general conclusions.

The continuous advance of transcriptome analysis techniques, from different 
types of microarrays to RNA sequencing (RNAseq) and other omics techniques, 
expanded dramatically in the past few years revolutionized the field of molecular 
biology and afforded the opportunity to profile the expression of thousands of genes, 
collecting a large amount of data, permitting the identification of new molecular 
players in the pathogenesis of Chagas disease.
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Next, we will describe some of the important studies on Chagas disease over the 
years, based on analysis of gene expression and also the recent findings describing 
microRNAs as new players in the disease pathogenesis and also adding complexity 
in the biological system demanding computational and systems biology approaches 
to understand and translate the large amount of data produced in knowledge.

18.5  Transcriptome Analysis in In Vitro Models

In 2002, Burleigh et al. have performed the first microarray analysis to identify dif-
ferences in gene expression using an in vitro model of human fibroblasts infected 
with T. cruzi (Vaena de Avalos et al. 2002). For this experiment, they used a glass 
slides high-density microarray consisting of ∼27,000 human cDNAs that were 
hybridized with fluorescent probes generated from T. cruzi-infected human fibro-
blasts (HFF) at early time points following infection (2–24 h). Surprisingly, they 
observed that no genes were induced ≥2-fold in HFF cDNA between 2 and 6 h 
postinfection (hpi).

A significant increase in transcript abundance for 106 host cell genes was 
observed only at 24 hpi. Among the most highly induced was a set of interferon- 
stimulated genes, indicative of a type I interferon (IFN) response to T. cruzi. The 
authors concluded that the delay of T. cruzi to induce host cell transcriptional 
responses is indicative that changes in host cell gene expression may correlate with 
a particular parasite-dependent event such as differentiation or replication. These 
events are performed by T. cruzi silently without eliciting major changes in the host 
fibroblasts gene expression.

Because cardiac myocytes are important targets of initial infection with T. cruzi, 
in 2009 another study compared gene profiling of primary cultures of cardiac myo-
cytes infected for 48 hours with T. cruzi (Goldenberg et al. 2009). They employed 
microarray analysis with glass slides containing a total of 31,769 70mer oligonucle-
otide probes. As expected, the results are diverse from the study done using fibro-
blasts and show a substantial alteration in expression of more than 5% of the 
sampled genome with major alterations in genes related to inflammation, immuno-
logical responses, and cell adhesion.

Among the pathways most affected from the list of upregulated genes were those 
involved in enzymatic activity, immune and stress responses, apoptosis and activa-
tion of the proteasome, and calcium-activated potassium channel activity. 
Downregulated pathways included calcium and second messenger signaling, cyto-
skeleton elements (actin filaments, stress fibers, myosin), enzymatic degradation 
(lysozyme, trypsin, metallopeptidases), and extracellular matrix. This study showed 
that the cardiac myocytes themselves contribute to the remodeling process even in 
the absence of other confounding factors, even though in vivo models show contri-
butions by fibroblasts and heart-infiltrating inflammatory cells.
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18.6  Transcriptome and Proteome Analysis 
in Rodent Models

The study of chagasic heart disease has been aided using the mouse model which 
recapitulates many of the functional and pathological alterations of the human dis-
ease. In 2003, two different groups have performed microarray analysis to detect 
differences in gene expression in the heart of mice experimentally infected with 
T. cruzi. They have used different microarray platforms, i.e., Garg et al. have used 
commercial nylon membranes microarrays containing a repertoire of 1,176 mouse 
genes printed on the arrays to evaluate the gene expression in whole heart of mice 
infected with SylvioX10/4 strain of T. cruzi for 3, 37, and 110 days postinfection 
(dpi) (Garg et al. 2003), and Mukherjee et al. have used glass microarrays contain-
ing ~27,400 mouse cDNAs clones to evaluate gene expression also in whole heart 
from C57BL/6 129sv mice infected for 100 days with the Brazil strain of T. cruzi 
(Mukherjee et al. 2003).

Garg et al. showed that out of a total of 1176 genes printed on the arrays, 31, 89, 
and 66 genes were differentially regulated in the context of their expression trends 
at 3, 37, and 110 dpi, respectively. They showed that all the differentially expressed 
genes in the myocardium at 3 dpi were upregulated and encoded immune-related or 
host defense/stress proteins. During the acute phase (37 dpi), mRNA species for 77 
of the 89 differentially regulated genes were increased by at least twofold. Of these, 
27 transcripts were increased by >10-fold, and 18 of the 27 transcripts encoded the 
immune-related proteins. Out of the 12 transcripts that were reproducibly repressed 
at 37 dpi, eight were characterized to encode proteins involved in mitochondrial 
energy metabolism.

Surprisingly, a majority of the differentially expressed genes (>63%) in the myo-
cardium of infected mice at 110 dpi were repressed relative to normal controls. 
From the 66 differentially expressed gene at 110 dpi, 42 were repressed and of 
these, 26 (60%) transcripts have implications in sustaining the mitochondrial energy 
metabolism and maintaining the cytoskeletal and extracellular matrix (ECM) struc-
ture and function.

The study performed by Mukherjee et al. (2003) also demonstrated the induction 
of several genes important to cardiac remodeling, like cytokines and growth factor 
genes, including growth differentiation factor 3 and insulin-like growth factor- 
binding proteins, a family of structurally homologous secreted proteins that specifi-
cally bind and modulate the activities of insulin-like growth factors (IGF-1 and 
IGF-2), enhance cellular differentiation and stimulate cell proliferation and muscle 
cell differentiation.

Results from both studies are in accordance showing changes in oxidative phos-
phorylation and depressed energy metabolism. Soares et al. (2010) also analyzed 
gene expression profiling in total heart from C57Bl/6 mice chronically infected (8 
months of infection) with T. cruzi (Colombiana strain) (Soares et al. 2010). They 
used, for their analysis, glass slides microarrays spotted with 32,620 mouse 70mer 
oligonucleotides. Their results showed some similarities to the previous studies. As 
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expected, mice chronically infected with T. cruzi have intense myocarditis, with an 
inflammatory infiltrate mainly composed by mononuclear cells, including CD4+ 
and CD8+ T lymphocytes and macrophages.

So, the arrays showed alterations in a great number of genes related to inflamma-
tion and immune responses. Genes coding for the macrophage cell surface marker 
CD68 and lymphocytes antigens CD38 and CD 52 had their expression increased, a 
finding compatible with the presence of these cells in the inflammatory infiltrate. 
The expression of genes coding for adhesion molecules, such as galectin-3, 
P-selectin ligand (CD162), integrin β3 (CD61), and ICAM-1 (CD54), was increased 
in hearts of chagasic mice.

Cytokine-associated genes were differentially expressed in hearts of chagasic 
mice like IFNγ and TNF-α. Another characteristic of hearts in chronically chagasic 
mice is fibrosis. The results showed upregulation of genes related to synthesis of 
extracellular matrix components and an increased expression of lysyl oxidase, an 
enzyme that promotes the cross-linking of collagen fibers.

The tissue inhibitor of metalloproteinase 1 (TIMP-1), an inhibitor of collagen 
degradation, was also upregulated in chronic chagasic hearts. Bilate et al. have per-
formed a proteomic analysis in hearts of acutely T. cruzi infected Syrian hamsters 
and have shown that severe acute infection is associated to differential expression of 
structural/contractile and stress response proteins that may be associated with alter-
ations in the cardiomyocyte cytoskeleton (Bilate et al. 2008).

18.7  Transcriptomics in CCC Hearts Explanted During 
Heart Transplantation

In 2005, Cunha-Neto et  al. showed the first gene expression profiling study in 
human heart samples from Chagas patients and controls, obtained at transplantation 
(Cunha-Neto et al. 2005). They used a 10,386-element cDNA microarray, built from 
cardiovascular cDNA libraries, in combination with real-time reverse transcriptase 
polymerase chain reaction analysis to compare the gene expression fingerprint of 
five patients with CCC (serological diagnosis, positive epidemiology), seven with 
DCM (dilated cardiomyopathy in the absence of ischemic disease, and negative 
epidemiology), and four normal adult heart tissue (obtained from four non-failing 
donor hearts not used for cardiac transplantation due to size mismatch with avail-
able recipients).

They found that gene expression patterns are markedly different in CCC and 
DCM, with significant activity of IFN-inducible genes in CCC patients. Indeed, it 
showed that immune response, lipid metabolism, and mitochondrial oxidative phos-
phorylation genes were selectively up-regulated in myocardial tissue of the tested 
Chagas’ cardiomyopathy patients. Interferon (IFN)-γ-inducible genes represented 
15% of genes specifically upregulated in Chagas’ cardiomyopathy myocardial tis-
sue, indicating the importance of IFN-γ signaling also in the human model. They 
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also tested whether IFN-γ can directly modulate cardiomyocyte gene expression by 
exposing fetal murine cardiomyocytes to IFN-γ and the IFN-γ-inducible chemokine 
monocyte chemoattractant protein-1. Atrial natriuretic factor expression increased 
15-fold in response to IFN-γ whereas combined IFN-γ and monocyte chemoattrac-
tant protein-1 increased atrial natriuretic factor expression 400-fold. The authors 
concluded that IFN-γ and chemokine signaling may directly upregulate cardiomyo-
cyte expression of genes involved in pathological hypertrophy, which may lead to 
heart failure.

Another important result was similar to it was observed in the gene expression 
analysis in the murine model of T. cruzi infection: They saw that IFN-γ and T. cruzi 
infection can depress energy metabolism, thus reducing myocardial ATP genera-
tion, which has potential consequences for myocardial contractility, electric con-
duction, and rhythm.

18.8  MicroRNAs, New Players in Chagas 
Disease Pathogenesis

Small, noncoding RNAs, known as microRNAs (miRNAs), play a key role in deter-
mining which genes are expressed. MiRNAs regulate tissue-specific protein expres-
sion and are involved in virtually all cellular processes; up to one-third of mammalian 
mRNAs are susceptible to miRNA-mediated regulation (Lewis et  al. 2003). 
MiRNAs bind to partially complementary sequences present in the 3’ untranslated 
regions (UTR) of specific “target” mRNA (Agarwal et al. 2015).

This pairing between the miRNA and its target mRNA leads to cleavage of the 
target mRNA or translation inhibition, resulting in silencing of gene expression. It 
has been shown that miRNAs are determinants of the physiology and pathophysiol-
ogy of the cardiovascular system and altered expression of muscle- and/or cardiac- 
specific miRNAs such as the miRNAs named miR-1, miR-208, and miR-133  in 
myocardial tissue is involved in heart development and cardiovascular diseases 
(CD), including myocardial hypertrophy, heart failure, and fibrosis (Chen et  al. 
2006; Bostjancic et al. 2010; Divakaran 2010; Oliveira-Carvalho et al. 2012).

Several targets of these three miRNAs are related to CD, among them RhoA and 
Thrap1, which are involved in cardiac hypertrophy, and connective tissue growth 
factor (CTGF), related to the development of fibrosis and cardiac remodeling. In 
2014, Ferreira et al. published the first description of miRNA expression dysregula-
tion in diseased myocardium of CCC patients (Ferreira et al. 2014).

The most important finding was that five muscle-specific miRNAs, miR-1, 
miR- 133a-2, miR-133b, and the myocardial-specific miR-208a and miR-208b were 
downregulated in CCC myocardium as compared to control myocardium. 
Importantly, this study identified putative targets of the differentially expressed 
microRNA using a computation analysis.
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They identified 2226 mRNA transcripts as putative targets of these five miRNAs 
tested, of which 221 had already been experimentally validated as targets. To have 
a preliminary assessment whether myocardial expression patterns of the 5 miRNAs 
were associated with concordant (i.e., inverse) expression of target miRNAs in the 
same tissue, they tested mRNA target matches from the gene expression microarray 
profiling done by Cunha-Neto et al. in 2005. Among 91 mRNAs whose expression 
was upregulated in CCC myocardium, 11 were targets of the concordantly down-
regulated miRNAs tested; they also found 3 mRNA targets that were upregulated 
only in DCM (out of 47) and 3 target mRNAs upregulated simultaneously both in 
CCC and DCM (out of 31 genes).

From the gene targets regulated by theses miRNAs there are one transcription 
factor, i.e., the inflammatory transcription factor and a known mediator in cardiac 
dysfunction, NF-κB and protein kinases, i.e., mitogen-activated protein kinases 
(MAPK) including p38MAPK, ERK1/2, c-Jun N-terminal kinases (JNK), phospha-
tidylinositide 3-kinases (PI3K), and the protein kinase B (AKT), enzymes that play 
important roles in signaling pathways leading to cardiac hypertrophy. Another 
important gene, direct target of miR-1 is cyclin D1 (CDND1). This protein, along 
with other D-type cyclins (D2 and D3), is a positive cell cycle regulator that plays 
an important role in controlling proliferation of cardiomyocytes during normal heart 
development. Importantly, the expression of D-type cyclins is generally low in the 
adult heart and is increased in the diseased heart, where their upregulation may 
promote cardiac hypertrophy instead of cell proliferation (Hotchkiss et al. 2012). 
Accordingly, a previous study has shown that CCND1 expression is upregulated 
during T. cruzi acute infection in mice and that the expression of CDND1 and other 
types of cyclins like A1, B1, and E1 are increased in heart lysates of mice acutely 
infected with T. cruzi compared with uninfected controls (Nagajyothi et al. 2006). 
The study showed that miR-1 controlled CDND1 might also be a key ele-
ment in CCC.

18.9  MicroRNA Transcriptome Profiling in Heart 
of T. cruzi-Infected Mice

In 2015, our group performed microRNA transcriptome profiling in the heart of 
mice acutely infected with the high virulent Colombiana T. cruzi strain for 15, 30, 
and 45 days (Navarro et al. 2015). The technology used to screen 641 rodent miR-
NAs was a medium-throughput method, based on real-time RT-PCR that uses a set 
of two 384-well microfluidics cards developed by Thermo Fisher Scientific Inc., 
MA, USA.

The advantage of this technology is the use of stem-loop structured primers spe-
cific for binding mature miRNAs resulting in a combination of miRNA discovery 
and validation (Chen et al. 2005). Although this study focused on the acute phase of 
the experimental Chagas disease, some miRNAs (miR-133, miR-208) were found 
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downregulated at 45 days postinfection in accordance with the previously publica-
tion reported in myocardium of CCC patients (Ferreira et al. 2014).

The use of commercial and freely available web-based computational tools 
(Koumakis et  al. 2016) was essential in this study. The commercial software 
Ingenuity Pathways Analysis (IPA) (Qiagen, USA  – www.ingenuity.com) which 
relies on three popular algorithms (TargetScan, TarBase and miRecords) was used 
to identify putative targets of six differentially expressed miRNAs (DEMs), selected 
from a list of 113 out of 641 miRNAs with significantly altered expression upon 
infection in at least one time point. These six miRNAs were differentially expressed 
in all three time-points postinfection and had the highest correlation significance 
with clinical parameters: such as blood parasitemia and prolongation of ventricular 
depolarization and repolarization time or QTc interval measured in the infected 
mice hearts: MiR-146b, miR-21, miR-142-3p miR-142-5p (positive correlation) 
and miR-145-5p and miR-149-5p (negative correlation).

Computational analysis revealed how these miRNAs potentially influence the 
electrocardiogram parameters: miR-149-5p has a calcium (CACNA1C) and two 
potassium channels as targets: KCNA1 (Kodirov et al. 2004; Newton-Cheh et al. 
2009; Roder et al. 2014) and RNF207 (Roder et al. 2014); these last ones are related 
to repolarization of the cardiac action potential, and associated with the regulation 
of humans QTc interval (Gollob et al. 2006).

These miRNA profiles were also used in 2017, now to perform the first integra-
tion analysis between miRNAs and their mRNA targets in experimental Chagas 
heart disease using global microRNA and mRNA expression profiling from the 
same samples (Ferreira et al. 2017). Gene expression profiling was done using the 
SurePrint G3 mouse Gene Expression v1 8 × 60 K arrays, the Low Input Quick Amp 
Labeling One-Color Kit (Agilent Technologies, USA). By integrating these large 
data sets we could reveal enrichment in biological processes and pathways associ-
ated with immune response and metabolism.

Pathways, functional and upstream regulator analysis of the intersections 
between predicted targets of differentially expressed microRNAs and differentially 
expressed mRNAs revealed enrichment in biological processes and pathways such 
as IFNγ, TNFα, NF-kB signaling signatures, CTL-mediated apoptosis, mitochon-
drial dysfunction, and Nrf2-modulated antioxidative responses. We also observed 
enrichment in other key heart disease-related clinical outcomes, myocarditis, fibro-
sis, hypertrophy, and arrhythmia.

A recent study performing the same workflow integrated miRNome and tran-
scriptome from myocardial tissue of CCC patients employing pathways and net-
work analyses (Laugier et  al. 2020). The intersections between differentially 
expressed microRNAs and differentially expressed target mRNAs showed that even 
a small number of differentially expressed microRNAs targeted a high number of 
differentially expressed mRNAs in multiple processes and key CCC clinical param-
eters like fibrosis, hypertrophy, myocarditis, and arrhythmia.

All these data collected over the years have been unveiling the players of the 
pathological processes in Chagas disease, like the miRNAs which revealed as key 
in orchestrate gene expression which bears pathogenesis, biomarkers, and therapy.
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 Concluding Remarks and Perspectives

I hope the second edition of Transcriptomics in Health and Disease has served as an 
updated overview of transcriptomics, from the fundamental concepts and methodol-
ogy, its use in health and human disease, to the interpretation of the results. After 
completing the human genome, transcriptomics has entered a new realm of research, 
including research traditionally conducted via reductionist approaches, in particu-
lar, immunology (Chaussabel and Baldwin 2014). Because the transcriptome of a 
cell, tissue, or organ changes according to the strict conditions set forth at any given 
moment, the study of the transcriptome holds tremendous promise for health and 
disease research. Even disciplines that rarely adopt genetic approaches, such as 
physiology or pharmacology, are now examining their model systems from tran-
scriptomics. What was once an exclusive task for geneticists and molecular biolo-
gists, i.e., sequencing the genome, has been engaged mainly by transcriptomics in 
the post-genome era. It has opened doors for the entire biomedical research com-
munity, including mathematicians, biostatisticians, and computer scientists. These 
fields have contributed to the construction of algorithms, programs for data analysis, 
and the improvement of bioinformatics pipelines. Without these, we would be 
unable to interpret the enormous quantities of data generated by bench experiments 
(Kharchenko 2021). And of course, clinicians themselves have seen the potential of 
transcriptomics in diagnosis and prognosis. Unraveling the code of life no longer 
involves deciphering three-letter codons (as developed by scientists in the 1960s) or 
sequencing all three billion bp of the human genome (mid-1980-2000), but solving 
the human transcriptome in response to normal physiological conditions as well as 
different disease states. The mouse (Mus musculus) is often used as a model system 
to answer questions of human interest, which must then be validated in humans. 
This is another challenge of comparative transcriptomics, which, although not 
explicitly discussed in this book, is currently making its mark in the literature. The 
core concept of the central dogma of molecular biology has not changed over the 
last several decades. Instead, what has happened is reinterpretation of the data, such 
that the “dogma” can now become: genome ➔ transcriptome ➔ proteome.
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