LECTURE NOTES IN COMPUTATIONAL
SCIENCE AND ENGINEERING

lIdar B. Badriev - Victor Banderov
Sergey A. Lapin Editors

Mesh Methods

for Boundary-Value
Problems

and Applications

13th mternatiOnal Editorial Board
Conference, Kazan, Russia, o
October 20 — 25, 2020 D.E. Keyes

R.M.Nieminen

D.Roose
T.Schlick

@ Springer



Lecture Notes in Computational Science
and Engineering

Volume 141

Series Editors
Timothy J. Barth, NASA Ames Research Center, Moffett Field, CA, USA

Michael Griebel, Institut fiir Numerische Simulation, Universitit Bonn, Bonn,
Germany

David E. Keyes, Applied Mathematics and Computational Science, King Abdullah
University of Science and Technology, Thuwal, Saudi Arabia

Risto M. Nieminen, Department of Applied Physics, Aalto University School of
Science & Technology, Aalto, Finland

Dirk Roose, Department of Computer Science, Katholieke Universiteit Leuven,
Leuven, Belgium

Tamar Schlick, Courant Institute of Mathematical Sciences, New York University,
New York, NY, USA



This series contains monographs of lecture notes type, lecture course material, and
high-quality proceedings on topics described by the term ‘“computational science
and engineering”. This includes theoretical aspects of scientific computing such as
mathematical modeling, optimization methods, discretization techniques, multiscale
approaches, fast solution algorithms, parallelization, and visualization methods as
well as the application of these approaches throughout the disciplines of biology,
chemistry, physics, engineering, earth sciences, and economics.



[ldar B. Badriev ¢ Victor Banderov * Sergey A. Lapin
Editors

Mesh Methods for
Boundary-Value Problems
and Applications

13th International Conference, Kazan, Russia,
October 20-25, 2020

@ Springer



Editors

Ildar B. Badriev Victor Banderov
Kazan Federal University Kazan Federal University
Kazan, Russia Kazan, Russia

Sergey A. Lapin

Department of Mathematics and Statistics
Washington State University

Pullman, Washington, USA

ISSN 1439-7358 ISSN 2197-7100 (electronic)
Lecture Notes in Computational Science and Engineering
ISBN 978-3-030-87808-5 ISBN 978-3-030-87809-2  (eBook)

https://doi.org/10.1007/978-3-030-87809-2
Mathematics Subject Classification: 65-XX, 65Mxx, 65Nxx, 65Yxx, 65Zxx

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-87809-2

Preface

This volume presents selected papers from the 13th International Conference “Mesh
Methods for Boundary-Value Problems and Applications” that was held in Kazan,
Russia, during October 20-25, 2020. The conference was attended by scientists
from leading scientific centers engaged in mathematical modeling of nonlinear
problems, theory of numerical methods for solving differential equations and
inequalities, computer modeling, development training systems, and computational
experiments. The tradition of holding this conference originates from conferences
and schools conducted under the leadership of academician A. A. Samarskiy and has
had a significant impact on the development of computational mathematics and its
applications in various fields of knowledge, especially the theory of grid methods,
in global scientific centers. The conference is biannual (since 1996), and it is one of
the well-known international conferences in the area of mesh methods for boundary-
value problems.

With over 300 attendees, “Mesh Methods for Boundary-Value Problems and
Applications 2020 has been the largest edition of the conference series to date. The
program consisted of 7 invited speakers across the week, who are internationally
renowned researchers, along with 7 minisymposiums (of around 250 presentations)
dedicated to specialized topics in mathematical modeling of nonlinear problems,
the theory of numerical methods for solving differential equations and inequalities,
computer modeling, development training systems, and computational experiments
as well as 190 contributed talks. The goal of this book is to provide a good balance
between engineering algorithms and mathematical foundations. The content of these
proceedings is organized as follows. The main section criteria are based on the
recommendations of anonymous peer reviews from experts of the corresponding
fields. The content of these proceedings consists of refereed selected papers
highlighting the broad spectrum of topics presented at Mesh Methods 2020.

We would like to give special thanks to our local organizing committee for their
efforts in organizing and promoting the event. In particular, we would also like to
thank Mr. Ildar Badriev for his organizational efforts leading up to the conference,
as well as the administrative staff of the Institute of Computational Mathematics and
Information Technologies at Kazan Federal University for their help in coordinating

v



vi Preface

the logistics of the event. We also thank many student helpers for their advice, help,
and support given to the delegates during the event itself, all of whom contributed
to the smooth running of the event.

Kazan, Russia Ildar B. Badriev
Kazan, Russia Victor Banderov
Pullman, Washington, USA Sergey A. Lapin



Contents

Quantum Algorithms for String Processing......................ccooiiiin 1
Farid Ablayev, Marat Ablayev, Kamil Khadiev, Nailya Salihova,
and Alexander Vasiliev

Multicriteria Optimization Techniques in SVM Method for the
Classification Problem ... 15
Anastasia A. Andrianova

Developing Experimental-Numerical Methods for Constructing

True Deformation Diagrams of Elastoplastic Materials ..................... 27
Valentin G. Bazhenov, Elena V. Nagornykh, Sergey L. Osetrov,

and Dmitry L. Osetrov

Cubic Spline on a Bakhvalov Mesh in the Presence of a Boundary
Ly T oo e 39
Igor Blatov, Elena Kitaeva, and Nikita Zadorin

On Exact Penalty Operators and Penalization Methods for
Elliptic Unilateral Problems with Piecewise Smooth Obstacles............. 57
Rafail Z. Dautov

Accurate Simulation of Guided Waves in Optical Fibers Using

Finite Element Method Combined with Exact Non-reflecting

Boundary Condition ... 69
Rafail Z. Dautov and Evgenii M. Karchevskii

Simulation of Dynamic Response at Resonant Vibrations of a
Plate with a Viscoelastic Damping Coating ..................................L 81
Vyacheslav A. Firsov, Victor M. Shishkin, and Ruslan K. Gazizullin

The Limit Theorem on the Trajectories Distribution ........................ 97
Farit G. Gabbasov, Aleksandr V. Gerasimov, Vyacheslav T. Dubrovin,
R. M. Askhatov, and Maria S. Fadeeva

vii



viii Contents

Design of the Best Linear Classifier for Box-Constrained Data Sets ....... 109
Zulfiya R. Gabidullina
Patient-Specific Bone Organ Modeling Using CT Based FEM ............. 125

Oleg Gerasimov, Nikita Kharin, Evgeny Statsenko, Dmitri Mukhin,
Dmitri Berezhnoi, and Oskar Sachenkov

Parallel Algorithm for Solving Problem of Electromagnetic Wave
Diffraction by a Tooth-Shaped Plate........................................... 141
Dinara Giniyatova, Dmitrii Tumakov, and Angelina Markina

On Convergence of Explicit Differential Scheme for Solving One

Parabolic Equation with Double Degeneration and Nonlocal

SPACE OPErator .. ........ooi ettt 155
Ludmila Glazyrina, Olga Glazyrina, and Maria Pavlova

The Program System for Design Optimization of Data
Transmission Networks.................. i, 173
Vadim M. Gostev

Mathematical Modeling of Transient Processes in Circular

Channel with the Boiling of Refrigerant-113 ................................. 185
Damir A, Gubaidullin and Boris A. Snigerev
Hybrid Methods for Network Equilibrium Problems........................ 195

Igor Konnov and Olga Pinyagina

Numerical Simulation of Water-Oil Inflow into the Producing
Well from Non-uniform Oil Reservoir .......................ooiiiiiiiii 209
Vladimir M. Konyukhov, Ivan V. Konyukhov, and Leysan R. Ilyasova

On Error Control at Numerical Solution of Forth Order Elliptic
Equations with Strongly Discontinuous Reaction Coefficient............... 219
Vadim G. Korneev

On the Solvability of a One-Dimensional Problem of Filtration
Consolidation with a Limiting Gradient...............................ooo 231
Alexander V. Kosterin, Maria F. Pavlova, and Elena V. Rung

Mathematical Modeling (Faedo—Galerkin Method, Solution

Existence Theorem) of Nonlinear Dynamics for MEMS/NEMS

Devices Elements (Micropolar Theory) in the Rectangular

Shells form in Plane, Taking into Account the Temperature and

Deformation Fields Connection .....................ooiiiiiiiiiiii. 247
Ekaterina Yu. Krylova, Irina V. Papkova, Anton V. Krysko,

and Vadim A. Krysko

Component-Based Software Model for Numerical Simulation of
Constrained Oscillations of Liquid Drops and Layers....................... 261
Igor Kuzmin and Leonid Tonkov



Contents ix

Modeling of Long-Term Strength of a Rod Under Creep
Conditions and Finite Deformations ...........................ooL. 273
Evgenii B. Kuznetsov and Sergey S. Leonov

Locally One-Dimensional Schemes for Quasilinear Parabolic
Equations with Time Fractional Derivative................................... 279
Alexander V. Lapin and Ksenija O. Levinskaya

Enhanced Step-Wise Approximation to Speech File in a Noisy
Environment ......... ... 293
R. Latypov and E. Stolov

Simulation of Two-Phase Flow Toward a Horizontal Multistage
Hydraulically Fractured Well Using Accelerated Explicit-Implicit

AlOTIthms ... 309
Alexander B. Mazo and Marsel R. Khamidullin

Dynamical Processes in the Space of ¢-Distributions ........................ 325
Valery S. Mokeichev and Anatoly M. Sidorov

An Approach to Synthesis of the Neuromorphic Functional
Models for Analog Components and Blocks .................................. 335
Sergey Mosin

Scalability Pipelined Algorithm of the Conjugate Gradient
Method on Heterogeneous Platforms ....................................... 347
Nikita S. Nedozhogin, Sergey P. Kopysov, and Alexandr K. Novikov

Accumulation of Microdamages During Cyclic Loading of CFRP
Structure Elements..............cooiiiiiiiiiii i 363
Vitaly N. Paimushin, Rashit A. Kayumov, and Sergey A. Kholmogorov

Two-Dimensional Integrating Matrices for Solving Elasticity
Problems in a Rectangular Domain by the Finite Sum Method ............ 379
Vitaly N. Paimushin and Maksim V. Makarov

On Resonant Effects in the Semi-Infinite Waveguides with Barriers ...... 391
Nikolai Pleshchinskii, Garnik Abgaryan, and Bulat Vildanov

Numerical Simulation of Composite Structures Polymerization

and Determination of Residual Deformations ................................ 403
Evgeniy A. Puzyretskiy, Leonid P. Shabalin, Igor N. Sidorov,

and Azat M. Girfanov

Numerical Analysis of One Two-layer Completely Conservative

Difference Scheme of Gas Dynamics in Eulerian Variables with

Adaptive Viscosity ...t 415
Orkhan Rahimly, Yury Poveshchenko, Viktoriia Podryga,

and Parvin Rahimly



X Contents

Accurate Simulation of On-Threshold Modes of Microcavity

Lasers with Active Regions Using Galerkin Method ......................... 427
Anna I. Repina, Alina O. Oktyabrskaya, Ilya V. Ketov,

and Evgenii M. Karchevskii

A Solution of Inverse Problem in the Theory of Supercritical
Fluid Extraction of Qil from Ground Plant Material ........................ 445
Artur A. Salamatin and Andrey G. Egorov

Mathematical Model of a Dynamically Loaded Thrust Bearing of

a Compressor and Some Results of Its Calculation .......................... 461
Nikolay V. Sokolov, Mullagali B. Khadiev, Pavel E. Fedotov,

and Eugeny M. Fedotov

Approximation of Positive Semidefinite Nonlinear Eigenvalue
Problems ... 475
Pavel S. Solov’ev, Diana M. Korosteleva, and Sergey 1. Solov’ev

Numerical Modelling of the Hydraulic Fracturing Through
Microseismic Monitoring...............ccooiiiiii i 493
Polina Stognii, Nikolay Khokhlov, and Igor Petrov

Modeling of Deformation of Solids with Material Damage ................. 505
Lenar U. Sultanov and Almaz M. Kadirov

Prediction of Temperature-Dependent Processes in

Multicomponent Fluid Flow Through Porous Media ........................ 515
Marina A. Trapeznikova, Natalia G. Churbanova,

and Antonina A. Chechina

A Difference Scheme Based on the Schwarz Method for a

Time-Dependent Singular Perturbation Problem in a Doubly

Connected Domain ......... ... 531
Irina V. Tselishcheva and Grigorii I. Shishkin

Two Finite Volume Schemes for Advection Equation ........................ 545
Alexander V. Vyatkin, Vladimir V. Shaydurov, and Elena V. Kuchunova

Mathematical Modeling and Diagnostics Using Neural Networks

and a Genetic Algorithm for Epilepsy Patients ............................... 563
Tatiana V. Yakovleva, Vitalii V. Dobriyan, Tatiana Yu. Yaroshenko,

and Vadim A. Krysko-jr.

A Two-Stage Cutting-Plane Method for Conditional Minimizing
FUunCtion ... ..o 575
Igor Zabotin, Oksana Shulgina, and Rashid Yarullin

Self-Consistent Model of Low Pressure Inductively Coupled RF

Discharge. ... 587
Viktor Zheltukhin, Aleksandr Shemakhin, Timur Terentev,

and Ekaterina Samsonova



Contents

Robust One/Two-Grid Solver for Black-Box Software in the
Computational Continuum Mechanics ..................coooiiiiiiiiiiii,
Weixing Zhou and Sergey Martynenko

Large Deformations of Biaxial Tension-Compression of the Plate,
Consisting Two Pre-deformed Layers Made of Incompressible

Treloar Material........... ... oo e
Konstantin M. Zingerman, Vladimir A. Levin, Leonid M. Zubov,

Anton E. Belkin, and Danila R. Biryukov

xi



Quantum Algorithms for String )
Processing ot o

Farid Ablayev, Marat Ablayev, Kamil Khadiev, Nailya Salihova,
and Alexander Vasiliev

Abstract In the paper, we investigate two problems on strings. The first one
is the String matching problem, and the second one is the String comparing
problem. We provide a quantum algorithm for the String matching problem that
uses exponentially less quantum memory than existing ones. The algorithm uses the
hashing technique for string matching, quantum parallelism, and ideas of Grover’s
search algorithm. Using the same ideas, we provide two algorithms for the String
comparing problem. These algorithms also use exponentially less quantum memory
than existing ones. Additionally, the second algorithm works exponentially faster
than the existing one.

1 Introduction

Possibilities of quantum speedup for string matching problem have been inves-
tigated during the last decades by different authors [19, 21, 22]. Most of these
algorithms are based on Grover’s algorithm [4, 9] for search through unstructured
data.

In the paper we consider a problem of searching any occurrence of a string w
of length m in a string s of length n. The best known classical algorithm for this
problem is Knuth-Morris-Pratt algorithm [15]. Time complexity of this algorithm
is O(n + m). Quantum algorithms for this problem are typically considered in
the query model [1, 2, 20]. Here the algorithm has access to an oracle (the
unchangeable part of memory that holds input data) and complexity is a number
of queries to this oracle. In the early 2000s researchers obtained one of the first
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results on quantum algorithms for the problem [21]. This algorithm has query
complexity O (y/nlog \/;‘l logm + /mlog? m). Later in 2017 the algorithm [19]

with query complexity 6(\/ - 20/ logm)) was presented. In 2020, Soni and Rasool

[22] suggested an algorithm with O (nlogn) query complexity. Note that, these
algorithms have time complexity (or circuit complexity) logarithmic times larger
than query complexity.

At the same time, researchers did not pay attention to the size of the quantum
memory that we should use for algorithms (a changeable by algorithm part and the
unchangeable part that oracle holds). Due to our analysis, all of these algorithms use
O (n 4+ m) quantum bits (including the unchangeable part of the quantum memory).
Due to the restricted resources of the current and near-future devices, the quantum
memory size, even unchangeable, is an important question.

In the paper, we provide a quantum algorithm for solving string matching prob-
lem with O (y/n(logn + /logn + logm - (loglog n + loglog m))) time complexity
and O((logn)? + logn - logm) qubits of memory (Theorem 1). The algorithm is
based on Grover’s search algorithm, the idea of hashing (or fingerprinting method
[8]) and ideas of Rabin-Karp algorithm [13]. The algorithm is not a query model
algorithm but a quantum circuit algorithm that can be used as a part of other
more complex algorithms for other problems. Many known algorithms like [10]
use similar motivation. Our algorithm assumes that the initial state is prepared. At
the same time, this initial state can be prepared approximately as fast as loading data
to unchangeable memory for oracle.

Additionally, we use the same ideas for comparing two strings u and v in
lexicographical order. The existing algorithm [14] uses modifications [16—18] of
Grover’s search [9] and compares two strings with query complexity O (~+/k), time
complexity O (+/k log k) and uses O (k) qubits of memory, where k is the minimum
of lengths of two strings. Here we use the idea with hashing and provide two
algorithms. The first one has 0k log k) time complexity and uses O ((log k)?)
qubits (Theorem 2). The second one has O((logk)?loglogk) time complexity
and uses O((log k)2) qubits (Theorem 3). Both algorithms have an exponential
advantage in memory and the second one has an exponential advantage in speed.
At the same time, the second algorithm is more complex.

The structure of the paper is the following. Section 2 contains preliminaries. We
present an algorithm for string matching in Sect. 3. Section 4 contains algorithms
for comparing two strings. The conclusion is presented in Sect. 5.

2 Preliminaries

Let us consider a string u = (u1, ..., uy) for some integer £. Then, |u| = £ is the
length of the string. u[i, j] = (u;, ..., u;) is a substring of u.

In the paper, we compare strings in the lexicographical order. For two strings u
and v, the notation u < v means u precedes v in the lexicographical order.
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In the paper, we consider only binary strings. At the same time, all results can be
easily modified for a non-binary alphabet.

2.1 Rolling Hash for Strings Comparing
2.1.1 Rolling Hash

The rolling hash was presented in [8, 13]. For a string u = (uy, ..., u},|) we define a

rolling hash function 1, (u) = (Zluz‘l uj - 2i_1) mod p, where p is a prime integer.

2.1.2 Fingerprinting Technique for Comparing Strings

We can use the rolling hash and the fingerprinting method [8] for comparing two
strings u and v. Let us randomly choose p from the set of the first » primes, such
that r < max(‘;""”‘) for some & > 0. According to the Chinese Remainder Theorem
and [8], if we have h,(u) = hp(v), then u = v with error probability at most
e. If we invoke a comparing ﬁ)rocedure § times, then we should choose a prime
number from the first 5'max(8|”" °D primes for getting the error probability ¢ for the
whole algorithm. Due to Chebyshev’s theorem, the r-th prime number p, ~ rInr.
If r = O™ Shen p, = SmULD (10 (8) 4 In(max(Jul, [v])) — In(e)) and
it can be encoded using O (log(8) + log(max(|u|, |v|)) — log(e)) bits.

2.1.3 Comparing Strings Using a Rolling Hash

For a string u, we can compute a prefix rolling hash, that is A, (u[1, 7]). It can be
computed in O (|u|) running time using formula

hy(ull,i]) = (hp(u[l, i —1]) + @~ mod p) - u,») mod p and i, (u[1 : 0]) = 0.

Assume, that we have computed prefix rolling hashes for two strings u
and v. Then, we can compare these strings in the lexicographical order in
O (logmin(|u/|, |v|)) running time. The algorithm is following. We search the
longest common prefix of u and v. Let Icp(u,v) be an integer x such that

Uy = vy, ...,uy = vy and uyy1 # vyy1. In the case of u is a prefix of v, then
lep(u, v) = |u|. In the case of v is a prefix of u, we have lcp(u, v) = |v|. Notice,
that for any integer mid € {1, ..., min(Ju|, |v|)} the following two statements are
true.

e If mid < lcp(u,v), then u[l,mid] = v[l, mid], and h,(u[l, mid]) =
hp([1, mid]).
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e If mid > lIlcp(u,v), then u[l,mid] # v[l,mid], and h,(u[l, mid]) #
hp(v[1, mid]) with high probability.

Using binary search we find the index x such that i, (u[l, x]) = h,(v[1, x])
and hp(u[l,x + 1]) # hp(v[1, x + 1]). In that case Icp(u, v) = x. After that, we
compare u; and v; fort = Icp(u, v) + 1. Then, we get the following cases:

e Ifu, <wvyort =|u|l < |v|,thenu < v.
e Ifu, > v ort =|v| < |u|,thenu > v.
e Iflul=|v|=t—1,thenu = v.

Binary search works in O (log(min(|«/|, |v|))) running time.

2.2 Problems

String Matching Problem
Given a string (text) s = (sq, ..., sp) of length n and a string w of length m, where
m < n, one needs to determine the index of the string w occurrence in the text s.
Formally, the task is to find the index d such that w = (sg4 .. .Sg4+m—1)-

We use the following notations. Let T'(s) = (s',...,s" ™t where s' =
sli,i +m — 1] fori € {l,...,n —m + 1}. T(s) is a sequence of substrings of
lengthm.Let N =n —m + 1.

String Comparing Problem
Given two strings u# and v. The problem is comparing these two strings in
lexicographical order. Formally, we want to determine one of three options:

e Ifu < v, then the result is —1.
e Ifu > v, then the result is +1.
e If u = v, then the result is 0.

2.3 Basics of Quantum Computation and Computational
Model

The main difference between quantum computation and the classical one is
manipulations with quantum bits (qubits). A state of a qubit is a vector from two-
dimensional complex Hilbert space. We can represent it using Dirac notation as
|[¥) = al0) + b|1), where |0) and |1) are unit vectors, and a and b are complex
numbers such that |a|> + |b|> = 1. We can use two kinds of transformations:
transition and measurement. The transition is multiplying a vector of state to
2 x 2 unitary matrix. The measurement is obtaining O-result with probability |a|?
and 1-result with probability |b|?. Similarly, a state of a register of ¢ qubits is a
vector from 29-dimensional complex Hilbert space, and is traditionally denoted as
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[y) = 2,2161 a;|i), where leigl lai|> = 1. Transformations are defined in an
analogous manner.

A quantum circuit is a circuit that uses four types of gates that are 1-qubit
Hadamard gate (H-gate), T-gate and S-gate; and 2-qubit CN O T -gate. That are

1000

1 0 10 11 0100
T — , . S= . H= , CNOT =
(06’”/4> (Oj) ¢2<1—1> 0001

0010

An algorithm’s time complexity is the size of a circuit that uses only presented gates
and implements the algorithm.

The standard form of the quantum query model is a generalization of the decision
tree model of classical computation that is commonly used to lower-bound the
amount of time required by a computation. Let f : D — {0, 1}, D € {0, 1}M be
an M variable function we wish to compute on an input x = (xo, ..., xy—1) € D.
We have an oracle access to the input. That is implemented by storing the input into
an unchangeable part of quantum memory |x). The oracle access is realized by a
specific unitary transformation usually defined as |)|@) V) |x) — [i)|¢ @ x;)|¥)|x)
where the |i) register indicates the index of the variable we are querying, |¢) is the
output register, and [y) is some auxiliary work-space. An algorithm in the query
model consists of alternating applications of arbitrary unitaries (that are independent
of the input) and the input-dependent query unitary, and a measurement in the end.
The smallest number of queries for an algorithm that outputs f (x) with probability
> % on all x is called the quantum query complexity of the function f.

More information on quantum computation and computational models can be
found in [1, 2, 20].

3 Quantum Algorithm for String Matching Problem
Firstly, let us present Grover’s search algorithm because we use its ideas as a base
for our algorithm.

3.1 Grover’s Search Algorithm

Definition 1 (Search Problem) Suppose we have a set of objects named
{1,2,..., M}, of which some are targets. Suppose O is an oracle that identifies
the targets. The goal of a search problem is to find a targeti € {1,2,..., M} by
making queries to the oracle O.
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Remind that Oracle is implemented by accessing an unchangeable (by the algo-
rithm) part of the quantum memory.

In search problems, one will try to minimize the number of queries to the oracle.
In the classical setting, one needs O (M) queries to solve such a problem. Grover,
on the other hand, constructed a quantum algorithm that solves the search problem
with only O(~/M) queries [9], provided that there is a unique target.

The algorithm uses additional log M qubits for indexing element in a state
J1114 Zf‘igl |t) and one additional qubit |§) in a state jz(IO) — |1)). On step of the
algorithm is applying two operations: Grover’s diffusion D and a query to oracle Q.
The matrix D can be implemented using log M gates due to [9].

The matrix Q is a transformation that converts [t)|§ & f(¢)) = (—1)~f(’)|t)|§),
where f () is a Boolean function that shows whether ¢-th object is target.

After O(+/M) iterations, the algorithm measures the quantum register and
obtains the index of the target object with high probability. If there are no target
objects, then the algorithm returns any object with equal probability.

When the number of targets is unknown, Brassard et al. designed a modified
Grover algorithm that solves the search problem with O (\/ M) queries [4], which is
of the same order as the query complexity of the Grover search.

The algorithm repeats Grover’s search algorithm for logz(\/ M) times. It does
2/ iterations on j-th repetition. Such behavior allows us to obtain one of the target
objects with a probability at least 1/2.

3.2 Our Algorithm

Let us choose a prime p from the first d 2" prime numbers, where 0 < & < 1 is some
constant and § = N because we will have N hashes of substrings of the string s.
Additionally, we will use a hash function 4, that is discussed in Sect. 2.1.

Assume that the initial state for our algorithm is the following one

log, N 1 Nl
_ a+1
o =lmmie @ e [h(s+h). M

3.2.1 Unique Target Case

Firstly, assume that there is only one position ¢ such that s = w. In that case, we
use only the following part of the quantum register.

) g Nt l_
o) = [np(w)) ® (JN ; li) ® \h<s “))).
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Let us hav_e a function f : {0,...,N — 1} — {0, 1}, such that f(i) = 1 iff
hp(w) = h(s™t1). We will discuss the implementation of the algorithm for f later.
Then, we can add additional qubit |£) in a state «/12 (10) — |1)) and apply O(+v/N)

times D and Q matrices to.|<p’ > state. Here D is the Grover’s diffusion and Q is the
transformation that works in the following way:

0 : )™ )y )i§) — )| D)y )i @ £ i) =
= (=710 |G ) |y w)g)

So, using the idea of Grover’s search algorithm, we can do 0(\/ N) iterations of
D and Q and after that measure the quantum register and obtain the index d such
that i, (w) = h(s4t1).

Let us discuss, the implementation of the function f. The computation of f (i)
is equivalent to the problem of checking equality of two strings z = h,(w) and
7/ = h(s'*1) that are stored in quantum memory. Let us define a function g; :
{0, ..., [logy p1 — 1} — {0, 1}, where g; (j) = liff z; # z;.. In other words, we
mark the indexes of unequal symbols of two strings. We can say that (i) = 0 iff
thereis j € {0, ..., log, p} such that g;(j) = 1.

Let us solve this problem using Grover’s search algorithm. In fact, we have
two strings in unchangeable memory, and using additional O (loglog p) qubits can
implement Grover’s search algorithm for searching an index j; such that g; (j1) = 1.

If the Grover’s search algorithm finds j; and g;(j1) = 1, then f(i) = O. If the
result index jj is such that g; (j;) = 0, then f(i) = 1.

Note that for a standard version of Grover’s search algorithm, function f should
be computed with no error. At the same time, our version of the implementation
of f can return a result with constant error probability. That is why we should
use the modification of Grover’s search algorithm [11] for bounded-error oracle.
This algorithm uses the generalization of Grover’s search algorithm that is called
Amplitude Amplification [5].

Lemma 1 The presented algorithm solves string matching problem for unique tar-
get with bounded error, has O (y/n(logn—++/logn + logm - (loglog n+1log log m)))
time complexity and uses O (logn + log m) qubits of memory.

Proof Due to description of the algorithm, it finds the index i such that f(i) = 1,
ie. hp(w) = h(s") with constant probability. Let us say that the probability of
success is at least 0.5. Due to choice of p and results that discussed in Sect. 2.1,
The fact hp(w) = h(s') means w = s with probability at least 1 — ¢. So the
total probability of success is 0.5 - (1 — ¢). If we want a bigger success probability,
then we can repeat the process several times and choose the major result. A similar
technique was used, for example, in [3, 12]. Constant times repetitions increase the
total time complexity and memory size only in constant times.
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Let us discuss the time complexity of the algorithm. Due to [9], the time
complexity of Grover’s algorithm is O(+~/M log M) in a case of searching the
target element among M elements and constant time implementation of the oracle.
In fact, the time complexity of all Grover’s diffusion operators is O (v/M log M)
and all Oracle operators is O (¥M). The modification with bounded-error oracle
[11] has only constant time bigger time complexity. In our case M = N and
the oracle is complex. The implementation of f function has O (y/log p loglog p)
time complexity because there are log, p objects for search. Hence the total time
complexity is O(v/Nlog N + +/N - /log ploglog p). Here p = *™ = N’” and
0 (y/log ploglog p) = O((log N +log m —log )% (10g(10gN+10gm—10g €)=
O((log N + logm)®? - (loglog N + loglog m)). Therefore, the time complexity is

O(V/NlogN + /N - (log N 4 logm) - \/log p loglog p) =
= O(/NlogN + \/N(logN +logm) - (loglog N + loglogm)) =
remember that N = n — m, therefore
= O(y/n(logn + \/logn + logm - (loglogn + loglogm))).

Let us discuss the memory complexity. The main part of the algorithm requires
O (log N + log p) qubits. Additionally, we need O (loglog p) for Grover’s Search
that implements the function f. Therefore, the total complexity is

O (log N +log p+loglog p) = O(log N +log N +logm+loglog N +loglogm) =
= O(log N +logm) = O(logn + logm).

Finally, we have proved the claim. O

3.2.2 Multi-Target Case

Let us consider the general case when the string w can occur in s several times.
As mentioned in Sect. 3.1, we should repeat our algorithm log, N times with a
different number of iterations. For several repetitions of the algorithm, we should
have an unchangeable part of a quantum memory that holds all hashes & p(si). At
the same time, our algorithm destroys the quantum state that holds the required data.

Therefore, we should have log, N copies of our state that allow us to repeat the
process several times. That is why we use the initial state in the (1) form.

Let us analyze the complexity of the algorithm.

Theorem 1 The presented algorithm solves string matching problem with bounded
error, has O (y/n(logn + /logn + logm - (loglogn + loglog m))) time complexity
and uses O ((logn)* + logn - logm) qubits of memory.
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Proof Due to Lemma 1, the algorithm for unique target solves the problem with
bounded error, has O (y/n(logn + /logn + logm - (loglogn + loglogm))) time
complexity and uses O (logn + logm) qubits of memory.

Let us discuss time complexity. Due to [4, 9], if we do b iterations of the
Grover’s search algorithm for M elements, then time complexity is O (blog M).
In our algorithm we do 2/ iterations for j-th step, where j € {0, ... [log, VM)
and M = N. Therefore, similar to the proof of Lemma 1, we can show that time
complexity is

log, /N

o Z 2/ <logn + \/logn + logm - (loglogn + loglogm)) =
j=1

Due to the properties of the sum of geometric progression and N = n — m, we have

=0 <\/n (logn + \/logn +logm - (loglogn + 10g10gm)>) .

We have log, N copies of qubits. Each of them is used for a single invocation
of the algorithm for a unique target. Therefore, the total memory complexity is
O(logn(logn + logm)) = O((logn)2 + logn - logm). O

4 Quantum Algorithm for String Comparing Problem

Let us discuss the algorithm for String Comparing Problem. There are two
algorithms. The first one is based on Grover’s search algorithm that was discussed
in Sect. 3.1. The second one is faster and based on comparing strings using Binary
search algorithm and rolling hash that was discussed in Sect. 2.1, but it requires a
more complex initial state.

4.1 The Algorithm Based on Grover’s Search Algorithm

Let k = min(Ju|, |v|) for strings # and v. As it was discussed in Sect. 2.1, for
comparing two string u and v, it is enough to find the Longest common prefix. We

can use an idea similar to [12, 14]. Let us consider a function g’ : {1,...,k} —
{0, 1} such that k = min(|u|, |v]), g'(i) = 1 iff u; # v;. If we found the smallest
lexicographical element of the sequence (1 — g’(i),i) fori € {1,...,k}, then it

corresponds to the minimal argument i} such that g’(i;) = 1. Such idea is used in
[12, 16—18] algorithms for searching the first target object.

We can use the Diirr-Hgyer algorithm for minimum search [6, 7]. Let us briefly
present its idea in Sect. 4.1.1 and then present algorithm itself in Sect. 4.1.2.
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4.1.1 Diirr-Hgyer Minimum Search Algorithm

The problem is searching for the index of minimal element among (aj, ..., ay} for
some positive integer M.

The algorithm contains several phases. The 0-th phase is an assumption that
minimal element y° is any element. On i-th phase, we have an assumption that the
minimal element is y’. Then, we run the Grover’s search algorithm for searching
for a smaller than y’ element. We consider a function g’ : {1,..., M} — {0, 1}
such that g'(j) = 1iff a i< y'. The algorithm finds any argument j such that
¢'(j) = 1 and updates the assumption of the minimum by assigning y'*!
where g/ (j) = 1.

Due to [7], the expected number of phases is O (log M). At the same time, the
expected number of all iterations of all invocations of Grover’s search algorithm
is O(~/M). Due to Markov’s inequality, if the algorithm stops after 3 times more
phases than the expectation, then we get a result with bounded error.

Note that used Grover’s search implementation is the algorithm for multi-target
case.

<—aj,

4.1.2 The Main Part of the Algorithm

Assume that the initial state for our algorithm is the following one

3log, klog, k k—1
o) =18) @ ® Da)@ma @) )= Zm ® lita) ® [va).
i=1 t=1 a 0

@

As in Sect. 3, we implement Grover’s search algorithm on our state. Let us
discuss i-th phase of the algorithm. We use

log, k

® Z|a> ® lua) ® va). 3)

Let i = 0. We invoke Grover’s search algorithm on the quantum state and find
any ji such that g(j;) = 1. Note, that computing g have constant time and memory
complexity because it is comparing two qubits for equality. Then, we store 1 — g(j1)
to a qubit |¢0> and we denote the obtained index as a qubit |1ﬂ0>.

Let us consider the case of i > 0. Assume that we have a function comp :
{0, 1} x {1,...,k} x {0, 1} x {1,...,k} — {0, 1} that compares two pairs (g, i)
and (¢’,i’) in lexicographical order, i.e. comp(q,i,q’,i’) = 1iff ¢ < q’ or
(g = q)&({ < i’). The function can be implemented in constant time and
memory complexity because each value is a single qubit. We can say that g’ (j) =
comp(|¢i>, W), "(j >|j)). Using the state (3) and |¢i>|1/fi> we can implement
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multi-target Grover’s search as in Sect. 3. After measurement we obtain a result
index j and value of the function g(j). Then, we store them to the register
|¢i+1>|wi+1>'

Then, we do 3 log, k phases using new copies of the state (3). Finally, we obtain
the minimal index iy of unequal symbols. We can access to ip-th element of state |£),
compare u;, and v;,, and return the answer according to the discussion in Sect. 2.1.
For accessing to i-th element, we can swap it with 0-th element using CNOT gates
and then apply Hadamard transformation for collecting whole amplitude in O-th
element. These operations require O (log k) time complexity.

Theorem 2 The presented algorithm solves string comparing problem with
bounded error. It has O(vk logk) time complexity and uses O ((log k)3) qubits
of memory.

Proof The algorithm solves the problem because it implements the idea from [14].
The probability of success is constant because of the properties of the Diirr-Hgyer
algorithm for minimum search [6, 7].

Let us compute time complexity of the algorithm. Due to the properties of the
Diirr-Hgyer algorithm, the total number of iterations of all invocations of Grover’s
search is O(+/k). Time complexity of computing g(i) and comp are constant.
Therefore, the total time complexity is O (vk log k).

Let us consider the memory complexity. We need O((logk)®) qubits for
state (2). |

4.2 The Algorithm Based on Binary Search

Let us implement the idea with the Binary search algorithm that was discussed in
Sect. 2.1.3.

Let k = min(Ju], |v|) for two comparing strings # and v. Let us choose a prime
p from the first ‘Zk prime numbers, where 0 < ¢ < 1 is some constant and § = k
because we will have k hashes of substrings of the string « and v.

Assume that the initial state for our algorithm is the following.

log, k k—1
1
|¢>®®¢k§j|a>®|h(u[1 a+1D) @ lh(ll,a+1D), |¢) = § ja)lna)
t=1 a=0

“)

We can find the first ag such that 2 (u[1, ap + 1]) # h(v[1, ap + 1]) using Binary
search algorithm because of arguments from Sect. 2.1.3. On each phase, we should
access to some middle element with an index mid and compare h(u[1, mid + 1])
and h(v[1, mid+1]). For accessing to i-th element we can swap it with 0-th element
using CNOT gates, and then apply Hadamard transformation for collecting whole
amplitude in O-th element. These operations require O (log k) time complexity.
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Next, we should compare two strings of length O (log p) for equality. We can do
it using Grover’s search algorithm as it was done in Sect. 3. The time complexity
of this algorithm is O (4/log p loglog p) and memory complexity is O (loglog p)
qubits.

Therefore, after log, k steps of the Binary search algorithm, we obtain the
minimal index ag such that Z(u[1, ap + 1]) # h(v[1, ag + 1]). If h(u[1, agp + 1]) =
h(v[l,ap+1]),thenu = v. If h(u[1, ag+1]) # h(v[1, ap+ 1]), then we can access
to aop-th element of |¢) for accessing to uy,. If uyy = 0, thenu < vandu > v
otherwise.

Theorem 3 The presented algorithm solves string comparing problem with
bounded error. It has O((logk)zlog logk) time complexity and uses O((logk)z)
qubits of memory.

Proof The algorithm solves the problem because it implements the idea from
Sect. 2.1.3.

Let us compute time complexity of the algorithm. There are O (log k) phases of
Binary search. Each phase requires comparing hashes in O (y/log p loglog p) and
accessing to mid-th element in O (log k). The final step is accessing to element with
O (log k) time complexity. The final time complexity is

O(logk - (/log ploglog p + logk) + logk) = O((logk) - (/logkloglogk +
logk)) = 0((logk)210glogk).

Let us consider the memory complexity. We need O(logk - (logk + log p) +
logk) = O((log k)?) qubits for state (4) and O (loglog p) = O (loglogk) states for
the implementation of two hashes comparing. So, the total memory complexity is
O ((logk)?). O

5 Conclusion

In the paper, we presented algorithms for two problems—String matching problem
and String comparing problem. The algorithm for the String matching problem
works as fast as the best-known quantum algorithm up to a log factor. At the same
time, our algorithm uses exponentially fewer qubits of memory. We have presented
two algorithms for string comparing problem. Both use exponentially fewer qubits
comparing to the best-known algorithm for the problem. The first one is based on
Grover’s search algorithm and uses more qubits than the second one based on Binary
search. The second algorithm works exponentially faster than the first one and than
the existing algorithm [14]. At the same time, the initial state of the second algorithm
is more complex compared to the initial state of the first algorithm.

The initial state of all algorithms is not just stored input in quantum memory.
At the same time, preparing this state is not much harder than storing input data in
quantum memory as is. Additionally, these algorithms can be used as a part of other
algorithms. A similar motivation is presented in different papers, for example, in
[10].
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Multicriteria Optimization Techniques )
in SVM Method for the Classification s
Problem

Anastasia A. Andrianova

Abstract The paper considers the procedures for solving the multiclass classifica-
tion problem using a series of support vector machine optimization problems for
the binary classification problem in the multicriteria formulation. In the traditional
formulation, the objective function takes into account the width of the separating
the classes hyperplane and the function of the penalty for classification errors.
Multicriteria modifications of this problem allow us to study the influence of
each criterion separately on the classification error. For the problem of multiclass
classification, the use of the optimization problem of binary classification and
its modifications is carried out within the strategies of the “one against many”
or “elimination tournament”. The research of various procedures for solving a
multiclass problem is carried out using the example of the intrusion detection
problem.

1 Introduction

The classification problem is one of the most popular big data problems. One of the
ways to solve it, both in the case of binary classification and in the case of multiclass
classification, is the Support Vector Machine method (SVM) [1-3].

The main idea of the SVM-method consists of constructing the classes separating
hyperplane (linear separation case) or the nonlinear surface (for kernel approach). To
find it, the optimization problem is used, which is based on maximizing the width
of the classes separating “strip”. The constraint system of this problem includes
inequalities for all training samples, which provides the conditions for belonging
to the “correct side” of the separation, taking into account the sample class labels
and the possible classification error. In order to take into account classification
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errors, which is especially important when classes are not separable by the using
surface, the objective function is complemented by a penalty term, which depends
on the errors for each of the samples of the training dataset. Thus, we obtain an
optimization problem of a large dimension. In this paper, other ways of formulating
the objective function of SVM optimization problem will be considered. The main
attention will be paid to the minimization of the different types of the classification
error functions including multicriteria models for binary classification problem [4].

Several optimizing classification models will be formulated. For them, the
results of an experimental study are given to obtain conclusions on the possibility
of improving the accuracy of a classification and reducing the computational
complexity of the optimization problem. The experiments were performed on
known datasets [5, 6].

Also, methods of applying the multicriteria approach to solving the problem of
multiclass classification [7] are considered by the example of solving the problem
of intrusion detection [8].

2 Optimization Problem of SVM in a Multicriteria
Formulation

In the general form for an arbitrary dataset, the classical classification method
C-SVC (Common-Support Vector Classification) defines a hyperplane as a solution
to the following optimization problem:

K
min — 0.5 ||w||2~|—CZ£,~ (1)
i=1

with the following constraints:
yiwlox)+b)>1—¢, i=1,...,K, &=>0 i=1,...,K,

where K is the size of the training sample, {x;, y;} i € K—training sample where
vi € {—1, 1}—=class labels. The variables of the problem are the parameters of the
separating hyperplane w and variables of the error that estimate the i-th example of
the training sample is assigned to the wrong class ¢;, C > 0 is the penalty constant.
Objective function (1) combines maximizing dividing bandwidth and minimizing
error.

The following cases, which depend on the value ¢;, are possible. If the class
is correctly defined then ¢; = 0. Another case is when the sample lies in the
separating strip, here 0 < ¢ < 1. If the class is defined incorrectly &; > 1, then
the error estimation is proportional to the distance from the classified object x; to
the hyperplane. The function ¢(x) is called the kernel and allows us to consider not
only the linear separability of classes.
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Let us describe four models in which used combinations of two criteria instead
of the classical objective function. In this modification (2), (3) of the method, the
main criteria are separating strip width and total error. The second most important
criterion is the maximum of the examples errors.

Modification 1 (Modif1):

K
min — 0.5 ||w||2 + Z & (2)
i=1

min — max(g&;) 3
with the following constraints:
yiwTo) +b)=1—¢, i=1...K &20 i=1...K,

Let us consider the second modification (4)—(5) of the classical method. Let
us pass from the problem of maximization the width of the separating strip to
minimizing the error function. The second most important criterion is the maximum
error.

Modification 2 (Modif2):
K
min — Z & “4)
i=1
min — max(g&;) (&)

with the following constraints:
yiw (i) +b)=1—¢g, i=1...K &0 i=1..K,

Let us show another modification which is based on the separation of two types of
classification errors. As discussed above, a positive error is possible in two cases:

1. 0 < & < 1, if the sample lies in the separating strip. This is equivalent to a
state of uncertainty, the classifier is more likely to choose the class, closer to the
border of which the object is located;

2. g > 1, if the class is defined incorrectly. This is a more serious error compared
to the first type of error.
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Modification 3 (Modif3):

K K
min—)cZSi—l—CZ/L; (6)
i=1 i=1
min — max(u;) @)

with the following constraints:
yiwlo()+b) > 1—gi—pi, i=1,...,K, 0<8§ <1, u; 20i=1,...,K,

Let us denote the error variable as the sum of two variables &; = §; + u;, where
0 <§; <1, u; = 0. In this case, the following outcomes are possible:

1. & = 0, the object is classified correctly. Then §; = 0, u; = 0 (the object is
classified correctly);

2. 0 < g < 1, the example falls into the dividing strip. Three cases are possible
0 <6 <1and u; = 0; anotherone 0 < §; < 1 and 0 < u; < 1 with the
constraint §; + @; < 1; and the last case §; = 0and 0 < u; < 1;

3. & > 1, the object is classified incorrectly for §; = 0 and u; > 1; 0 < §; and
0 < u;.

A positive value of p; is possible in the third case. Such a multicriteria model has a
more complex structure, since the number of error variables doubles and the number
of constraints increases significantly. By increasing the constant C, we significantly
reduce the magnitude of the error function.

In the following modification, the main criterion is the width of the separating
strip and total error. The second criterion is the sum of the moduli of the components
of the normal vector w to the separating hyperplane.

Modification 4 (Modif4):

K
min — 0.5 ||w||2 + Z & (8)
i=1

L
min — Z |w;] 9)
i=1

with the following constraints:
yviwlo)+b)>1—g, i=1...K, &=>0 i=1... K,

It should be noted that criteria (3), (5), (7), (9) are non-differentiable, which
complicates the methods of their solution.
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One of the models of multicriteria optimization was investigated on the datasets
ala, ala, a2a, a3a, ada, aSa, aba, a7a, a8a, a9a for binary classification problem
[5], in which it showed an improvement in accuracy in 33% of tests (from 120
tasks) compared to the classical SVM-method. The improvement was just under
1% accuracy.

3 Application of the SVM Method for Multiclass
Classification Problem

This section presents a theoretical description of the transition from a binary
classification problem to a multiclass one. Suppose there are M classes, then the
set of class labels Y has the form: Y ={0,1,2,3... M — 1}.

Nowadays, there are two main approaches to solving the problem of multiclass
classification in SVM. The first is called “one-step solution” or “all-together”. This
approach is used for multiclass classifiers such as “decision trees”.

In another approach, the solution of a multiclass problem is reduced to the
solution of a sequence of problems with two classes. In this case, there can be

9% <

several strategies for generating such a sequence: “one against many”, “one against
one”, “elimination tournament”. Thus, in this approach, the multiclass problem
is divided into a set of binary problems that are solved independently using
binary classification algorithms. The partitioning process itself is usually called
the reduction of a multiclass problem to a sequence of binary ones. Methods for
reducing a multiclass classification problem to a sequence of binaries problems are
trained faster and give fewer errors, while the one-step solution approach results in
fewer support vectors.

Let us consider the “one against many” strategy. K classifiers are trained for M
classes, each of which separates “its” class from all other classes. Thus, a classifier is
built for each class. During recognition, the unknown vector X is fed independently
to all M classifiers. The class to which the vector X belongs is determined by the
classifier that gives the highest estimate f(x) = argmax(< wg,x > +by), k =
{1,..., M}. The disadvantages of this approach include the fact that each of the
K classifiers trains on its own sample, from which the obtained values may have
different scales, so it would be incorrect to compare them. It will also be incorrect
to normalize the weight vectors so that the answers are on the same scale since this
procedure will change the weight norm, as a result of which the weights will no
longer be solutions of the support vector classification problem. This problem is
called the problem of the incommensurability of quantities.

Here, we consider the second (paired) approach “one against one”. Let us
construct CIZW = M(M — 1)/2 binary classifiers a;;(x), where i, j = 1, M, i # j,
learners to distinguish all possible pairs of classes from each other. We will adjust
the classifier a;; (x) for that part of the sample that contains only objects of classes i
and j. For the recognition of the vector, each classifier produces an estimate f;; (x),
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which reflect the belonging to classes i and j. The resultis a class with the maximum
sum Z# y fij (x), where g is a monotonically non-decreasing function, namely, the
identity or logistic function. The “elimination tournament” strategy is similar to the
“one against one” strategy. This strategy also constructs C2, = M (M — 1)/2 binary
classifiers capable of distinguishing all possible pairs of classes. The difference
is that at the stage of choosing whether the input vector belongs to a class, a
tournament is held between the two classes: at each step of recognizing the vector,
a single classifier is selected, the winning class determines which classifier will be
used at the next step.

4 Dataset UNSW-NB15

The UNSW-NB15 dataset [8] is network packets generated by the IXIA Perfect-
Storm tool at the Australian Cyber Security Center (ACCS) Cyber Range Lab. They
are a combination of real normal actions and artificial attacks. The selected dataset
includes nine types of attacks: Fuzzers, Analysis, Backdoor, DoS, Exploits, Generic,
Reconnaissance, Shellcode, and Worms.

1. Fuzzers is an attack in which a large amount of randomly generated data is fed
to the program/network;

2. Dos is a denial of service attack, it consists in the difficulty/refusal of providing

access to system resources;

. Analysis is an attack that is carried out by scanning ports and sending spam;

4. Bakdoors is a bypass of protection in order to gain unauthorized access to a
computer;

5. Exploits are the exploitation of system errors and vulnerabilities, leading to
unexpected behavior of the network or host;

6. Generic is an attack that uses a hash function to cause a collision;

7. Reconnaissance are attacks that collect information about a computer;

8. Shellcode is the collection of information about the network for further bypassing
the protection of the studied system;

9. Worms is an attack during which the attacking code copies itself for further
transmission over a computer network.

W

Thus, when using the dataset in relation to the classification problem, ten classes
can be distinguished: nine classes correspond to the above attacks, the 10th class
corresponds to normal data transactions, 43 characteristics with a class label: 42
signs of network traffic of five types: integer, string, double, boolean, time, and
43 contain information about the class label (0—normal actions, 1—attacks). All
characteristics have been converted to float64 type.

The developers of this dataset have made it easier to split the sample and provide
two generated datasets for use. The training set contains 175,341 records, and the
test set contains 82,332 records, including various types of attacks and normal
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Table 1 Distribution of the

Category Training set  Testing set
examples Normal 56,000 37,000
Analysis 2000 677
Backdoor 1746 583
Dos 12,264 4089
Exploit 33,393 11,132
Fuzzers 18,184 6062
Generic 40,000 18,871
Reconnaissance 10,491 3496
Shellcode 1133 378
Worm 130 44

Total amount 175,341 82,332

actions. Table 1 shows the distribution of the number of examples of different classes
in the training and test samples.

Evaluation of the UNSW-NB15 dataset in existing classification systems has
shown that this dataset is close to real traffic data. It is important to say that
this dataset can be used to effectively evaluate existing and new classification
methods. The UNSW-NB15 dataset was used to conduct experiments on both binary
and multiclass classification. For the problem of binary classification, the 43rd
component of the characteristic vector was used as class labels, which has the values
0—if the action is normal, and 1—if the action is related to attacks. For a multiclass
problem, the 42nd component of the input vector was used as class labels, which
can take one of ten values: Normal, Fuzzers, Analysis, Backdoor, DoS, Exploits,
Generic, Reconnaissance, Shellcode and Worms.

5 Multiclass Classification Experiments

In this section, we describe the comparative analysis of data obtained as a result of
multiclass classification experiments using the UNSW-NB15 dataset. Comparison
of algorithm modifications and selection of the “best” one will be made according
to the following indicators: time, Accuracy (Ac), Precision (Pr) and Recall (Rec).
The last two metrics are defined as the average over a series of binary classification
problems.

The main technique for solving a multiclass classification problem during
experiments was the “one against many”.

Experiment 1 During the experiment, 30 different samples were generated from
the original dataset. Each sample consists of 3540 examples, of which: 70% for
training, 15% examples for each validation and testing. It is guaranteed that there
are no training sample examples in the validation and training samples.
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Table 2 Methods Ac (%) Time (S)
performance indicators
C-SVM  62.83 612

Modifl  64.1 640

Modif2  69.6 2110

Modif3  67.4 19,322 (near 5h)
Modif4  64.1 630

Table 3 Comparison of the

. AAC(nodif-class) (%)
accuracy of the classical (modif-class)

method and modifications Modifl  1.27
Modif2 6.77
Modif3 4.57
Modif4 1.27

Using the generated samples, it was possible to build a linear classifier with
an Accuracy of 59.32-69.74%. To solve multicriteria problems, the concessions
method is used with the concession size of the main criterion—0.1. Table 2 shows
the average values of the accuracy of the classical method and its four modifications,
as well as the average running time of the algorithm for all series of this experiment.

Table 3 shows the difference between the average accuracy of the algorithm
modification and the average accuracy of its classical interpretation within the series
of this experiment. We analyzed the results obtained during the experiment and now
we can draw the following conclusions. The usage of modifications in the form of
multicriteria formulations of optimization problems made it possible to improve
the classification accuracy in all cases. The highest accuracy was shown by the
Modif3 modification. Modifications Modif1 and Modif4, in which the width of the
separating strip is the main criterion, operate with the same average accuracy, while
the operating time of these modifications is comparable to the operating time of the
classical SVM.

Modif3 modification is much more laborious due to the complication of its
structure and doubling of the number of error variables. Nevertheless, it shows
relatively high rates of classification accuracy, which is of interest from the point
of view of finding more effective methods for its solution. The average difference
between the accuracy of the Modif3 modification and the classical method is 4.57%,
but more time is spent, the operating time of the Modif3 modification is 31 times
longer than the classical method. If the bandwidth is not taken into account (in
particular, the modification of Modif 2), then the accuracy of the algorithm does not
decrease.

Experiment 2 The experiment contained, as a training sample, a dataset with the
same number of examples for each class. In this case, the classification accuracy
dropped quite dramatically—to 17-39%.

In order for us to understand in which classes the classifier is mistaken, a
Confusion matrix was displayed for each method. Figure I shows an example of
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Normalized confusion matrix

Fig. 1 Confusion matrix
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1.0
040 O O O O 0
1490 0 0 O O 0
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310 000330 O 0
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L 0.4
640 0O O O 00.0670230 O
710 0 0 O 008720 O O
-0.2
840 0O O O O . 0O 0 O
940 O O O 00140 0 O
T T T T T T T T T —L-0.0
0 1 2 3 4 5 6 7 8
Predicted label
Table 4 Results of experiment 2.3
Acc (%) Time (s) Classes with maximum recall value
58.63 588.31 5.6
59.33 510.67 5
65.12 1109.52 5
62.77 15,707.8 5
61.78 523.76 5

Modif4

a confusion matrix for the library version of the SVM-method. It should be noted
that the library version of the SVM-method has the lowest accuracy—17.9%. You
can see that the classifier defines the instances of the fifth class as well as possible,
but at the same time it is mistaken, mistakenly attributing instances of other classes

to the fifth and ninth classes.

After that the experiment was conducted in which the percentage of examples of
each class coincides with the ratio in the original data set. Thus, conditions have
been artificially created that correspond to the frequency and importance of the
classification of individual private classes (Table 4).

Table 5 shows the percentage of examples of each class in the original training
and test samples.
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Table 5 Percentage of examples of each class in the original training and test samples

Class name Number of examples Number of
(corresponding in the training Percentage examples in the test ~ Percentage
number) sample, pcs. (%) sample, pcs. (%)
Analysis (0) 2000 1.1 677 0.8
Backdoor (1) 1746 0.99 583 0.7
DoS (2) 12,264 7 4089 4.2
Exploit (3) 33,393 19.04 11,132 13
Fuzzers (4) 18,184 10.37 6062 7.25
Generic (5) 40,000 22.81 18,871 22
Normal (6) 56,000 32 37,000 44
Reconnaissance (7) 10,491 5.98 3496 4
Shellcode (8) 1133 0.64 378 4
Worm (9) 130 0.07 44 0.05
Tablg 6 Results of Acc (%) Time (s)
experiment 4
C-SVM 61.12 2961.08
Modifl  63.70 4475.71
Modif2  84.09 7843.45
Modif3  81.15 69,544.02
Modif4  63.58 5304.42

After our analysis of the obtained results, the following conclusions were drawn.
It was noted that all classifiers define the fifth class well, but at the same time they
mistakenly attribute objects of other classes to it. When using the same number
of examples of each class in the training sample and in the test and validation
samples, the accuracy of the methods is significantly reduced. Also, an experiment
that minimized the presence of fifth class also did not improve the classification
accuracy. Examples erroneously refer to normal traffic, which poses a threat to
computer security; when using the percentage of examples similar to the original
data sets, the accuracy of the methods practically does not differ from the results
obtained in experiment No. 1, in which the samples were created by randomly
choosing the required number of examples. Methods are best at recognizing normal
traffic, with most examples of other classes erroneously categorizing as “Generic”
attacks. This may be due to the similarity of signs of different types of attacks.

Experiment 3 This experiment consisted of a multi-stage classification procedure,
in which at each step a classification of three classes was made, with the fifth and
sixth classes present in all tests. Table 6 shows the results obtained during this
experiment.

Tables 7 and 8 show the average values of the Precision and Recall characteristics
for Modifications 2 and 3, respectively.

According to Table 7, it can be seen that Modification 2 (Modif2) does not
predict the ninth class, Modification 3 (Modif3) determines them, albeit with low
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Table 7 Average value of Class Precision Recall Class Precision Recall
metrics for Modification 2 0 95.6 90.5 s 78.8 290
(Modif2) ) ) ) )

1 96 93.3 6 75.4 80.3

2 94.1 65.3 7 84.3 51.2

3 67.4 95.6 8 53.8 56.3

4 70.1 94.2 9 0 0
Tabl? 8 Average mgt\rics for Class Precision Recall Class Precision Recall
Modification 3 (Modif3)

0 74.1 92.1 5 71.4 93.2

1 91.2 94.1 6 76.5 64.2

2 86.4 73.8 7 64.2 63.7

3 67.4 74.6 8 64.4 70.3

4 70.1 77.8 9 8.2 14.4

Table 9 Comparison of the accuracy of the methods

Classes Acc. Modif2 (%) Acc. Modif3 (%) Acc. C-SVM (%)
0,5,6 91.46 84.67 34.63
1,5,6 92.34 90.85 62.65
2,5,6 82.68 82.37 61.68

accuracy (Table 8). Moreover, in both modifications the zero, first and second
classes differ best from the fifth and sixth classes. Table 9 shows the average value
of the accuracies for the series of experiments with the best result of Modification
2 (Modif2) and Modification 3 (Modif3). In this experiment, Modifications 2 and
3 (Modif 2 and Modif 3) showed good results, with a low accuracy of the classical
SVM-method (about 60%), the accuracy of the modifications reached 95%. The use
of such a multi-stage scheme has significantly improved the classification accuracy,
the best results were shown by Modif2 and Modif3. Both modifications only take
into account the error without considering the width of separating strip. This may be
due to the fact that features of different classes have similar meanings and therefore
classifiers easily mistakenly classify objects of different classes as the most common
classes. With the sequential classification of the three classes, classifiers manage to
more accurately determine the predicted class.

6 Conclusion

Thus, on the basis of the of the experiments, it was found that the approaches of
multicriteria optimization in the formulation of optimization models of the SVM-
method make it possible to increase the accuracy of the classifier even in cases
of poor class separation. Despite the formulation of an optimization model based
on the binary classification problem, this approach is applicable to the multiclass
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classification problem. And also on its basis, it is realistic to make multi-stage
classification algorithms, the use of which, on the example of the intrusion detection
problem, showed a significant increase in the classification accuracy.

Acknowledgment This paper has been supported by the Kazan Federal University Strategic
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Abstract True deformation diagrams are constructed using an iterative procedure
of updating the strain intensity—stress intensity relation proportionally to the relative
difference in the values of axial forces as obtained numerically and experimentally
for an inhomogeneous stress-strain state, accounting for necking, up to rupture.
The procedure requires multiply solving the problem, which is a time-consuming
computational task. Two scenarios of analyzing a boundary-value problem are
considered. The first scenario involves analyzing the entire direct problem over
the whole loading interval; in the second one, the entire loading process is
subdivided into several intervals defined by discrete values of an experimentally
found generalized displacement—generalized force relation. At each small interval,
a deformation diagram is constructed, using a nonlinear extrapolation procedure. At
the end of each interval, the difference between the calculated and experimentally
determined generalized forces is checked, and the stress intensity value is iteratively
updated. The presented numerical studies show that constructing a deformation
diagram with accuracy less than 1% according to the first scenario required 5—
10 repeated analyses of the direct problem, whereas in the second scenario not
more than two direct analyses suffice. Monotone convergence of the considered
algorithms is examined using a number of problems.
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1 Introduction

The current state of the art in numerical analyses of strength of structural parts
and elements requires reliable data on material behavior (deformation diagrams,
ultimate strain and strength characteristics etc.). Obtaining such data with the
currently available instrumental means for high elastoplastic deformations of
material by way of direct experimental measurements is hampered by non-uniaxial
and non-uniform stress—strain states (SSS) in laboratory specimens due to high
deformations, as well as the presence of boundary effects etc. The identification
of deformational and strength properties of materials, in this case, is done using
analytical [1, 2] or numerical approaches [3—13] which make it possible to determine
the characteristics of SSS and representing the deformation diagram as exponential
functions, using indirect experimental data (forces and displacements). However,
the use of analytical methods often strongly limits specimen geometry and type of
loading and involves force and kinematic assumptions for the parameters of SSS
[14]. The issue of describing diagrams of elastoplastic deformation up to failure has
not been studied well enough by now.

In this connection, the study of material properties under high elastoplastic defor-
mations calls for developing an experimental-numerical approach devoid, to a large
degree, of the limitations of experimental-analytical methods. An experimental—
numerical approach involves experimenting and full-scale (in the framework of
mechanics of solids) computer modeling of deformational processes in a laboratory
specimens or structural elements and iteratively elaborating on the deformation
diagram.

All the above-said makes topical the studies aimed at developing methods of
computer modeling of deformation and failure processes of standard laboratory
specimens, as well as effective algorithms of identification of deformational and
strength characteristics of elastoplastic materials in the conditions of high strains.

2 The Experimental-Numerical Approach

In a general case, to determine mechanical constants and to construct a deformation
diagram of a material, a goal function is formed that describes the differences
between full-scale and numerical experiments. Then, an iterative process of deter-
mining mechanical constants and material relations is constructed.

It is required to find a set of parameters of the equation of state b =
(b1, ba, ..., by) providing the best agreement between the solution of the problem
and the numerical results. To this end, such parameters as modulus of dilatation K,
shear modulus G, yield strength o7, stress intensity for a fixed value of accumulated
plastic strains o;(x) and others can be used. To find the sought parameters, it
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is necessary to minimize the function that is the value of mean square deviation
between the numerical and experimental results:

N
c(by =Y (p§" = p§Hy? (1

j=l1

where p;xP is the value of the comparison parameters determined experimentally

and p;‘f“lc is the value of the comparison parameters obtained numerically. Forces,

displacements, stresses, strains, etc. can be used as comparison parameters. The
limits for sought parameters b; in the search area are defined by equations of
an initial boundary-value problem, whereas the boundaries of the search area are
determined based on experimental facts and physical principles. The analysis of the
problem in question depends, to a large degree, on the choice of the optimization
algorithm. When choosing among available algorithms and developing new ones,
special features of problems being analyzed must be accounted for. In the case
considered, the limits are verified by numerically analyzing a nonlinear initial
boundary-value problem, which is a huge computational task. That is why time
spent to analyze one version, the choice of the initial approximation, and the
convergence rate of the numerical process are all very important. It is appropriate
to reduce the general problem to a succession of particular problems with one or
two comparison parameters. An initial approximation is determined by analytically
or numerically analyzing an idealized problem. One of the possible optimization
algorithms is the method of successive approximations of the sought parameters
that is based on parameter updating according to the relative difference between the
experimental and numerical values.

Based on the experimental-numerical approach [15], the present authors have
developed methodologies and algorithms of analyzing deformational and strength
characteristics of elastoplastic materials subjected to various loading types: tension
of cylindrical rods and shells [15, 16], torsion of rods [17], kinetic indentation
of specimens with a sphere [18] and dynamic compression of tablet-shaped
specimens [19]. In what follows, the efficiency of using experimental-numerical
approach [15] is considered, as applied to analyzing solid cylindrical specimens
loaded in tension.

3 Constructing Deformation Diagrams of Elastoplastic Rods
Loaded in Tension

True material deformation diagrams are constructed by iteratively updating the
relation between e; (strain intensity) and o; (stress intensity) over the entire
deformation process in the specimen. To this end, at each iteration of the numerical
analysis of a tensile specimen problem, the relation between axial forces determined
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experimentally, F,y, and numerically, Fegie, B = Fexp/Feaic, for the same
elongation of the specimen is analyzed. Then a functional relation between maximal
strain intensity in the bulk of the specimen e and the corresponding elongation is
established. The diagram is iteratively updated according to the formula o;(e}) =
Boi(e}) until the experimentally and numerically determined relations of axial
forces agree to a prescribed accuracy. The entire deformation diagram is updated
at a time. In this connection, it is necessary to analyze multiply the direct problem
and to process the results obtained, which is quite a time-consuming computational
chore. The introduced algorithm makes it possible to use any available solver of
direct problems without any modifications. The studies showed that, for the iteration
procedure to converge, it suffices to assign any convex deformation diagram of a
hardening material.

Let us consider the application of the algorithm to the problem of cylindrical bar
tension. The experimental specimen was made of class 12H18N10T austenitic steel
with the following dimensions: initial radius of the working part Ry = 5 mm, the
initial length of the working part Ly = 60 mm. In the finite element model, one end
of the rod was assumed rigidly fixed and the other one moved at a constant velocity.

An initial approximation of the true deformation diagram was defined by o; e;
in the assumption of incompressibility of the material and uniform deformation of
the working part according to the experimentally determined relation between axial
force F and elongation AL of the rod according to the following formulas:

l l—i-AL F 1+AL 2)
e =In ,0; = ,
! Lo ! A Lo

where F is the axial force at the end, A is an initial cross-section area of the
specimen, AL is the displacement of the end in the course of loading.

The deformation diagram was iteratively updated until the experimentally and
numerically determined axial forces agreed to the accuracy of 1%. The true
deformation diagram (curve 1) obtained in the process of updating is depicted
in Fig. 1. The studies showed that one iteration step suffices up to the moment
of necking and five iterations are sufficient after necking and up to rupture. The
following designations are used in the figure: ¢ = o;/or, ot is the yield strength of
the material.

The deformation diagrams constructed using experimental-analytical meth-
ods [1] and [2] practically coincide and are represented in Fig.1 by curve 2.
Figures 2 and 3 show the displacement of axial circumferential and radial stresses
(07, 00,0r) and strains (ez, eg, e,) over a minimal cross-section of the speci-
men after the loss of stability of plastic deformation, as determined using the
experimental-numerical method (black curves) and using [1, 2] (gray curves).

It is to be noted that experimental-analytical approaches [1, 2] are based on
the assumption that the values of the circumferential and radial strains along the
radius of the minimal cross-section of the neck are the same and equal to a constant
value. The presented numerical analyze reveal (Fig.2) that the difference between
the axial stresses along the radius of the minimal cross-section of the rod is less
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Fig. 1 True deformation diagrams constructed using the experimental-numerical method (curve
1) and the experimental—analytical method (curve 2)
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Fig. 2 Relations for axial, circumferential and radial stresses (o, 0y, 0,) obtained using the
experimental-numerical method (black curves) and methodologies [1, 2] (grey curves) over the
minimal cross-section of the specimen after the loss of stability of plastic deformation

than 11%, whereas the difference between the circumferential and radial stresses is
more than 50%. The radial and circumferential strains in the neck are not constant
and not equal to each other (Fig. 3), as was assumed in analytical approaches [1, 2].
The circumferential stresses over the free surface of the specimen become negative
after necking (Fig.2). Thus, the use of experimental-analytical methods results in
pronounced inaccuracies in constructing deformation diagrams of materials with
large deformations at the pre-failure stage.

The use of the above experimental-numerical method is a fairly time-consuming
computational task, several times longer than the time for analyzing a direct problem
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Fig. 3 Relations for axial, circumferential and radial strains (e, ep,e,) obtained using the
experimental-numerical method (black curves) and methodologies [1, 2] (gray curves) in the
minimal cross-section of the specimen after loss of stability of plastic deformation
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Fig. 4 Iterative construction of the deformation diagram (grey line): 1—initial approximation;
2—-10—iterations 1-9, respectively

of a tensile rod once. To assess the effect of accuracy of constructing deformation
diagrams on the time consumption of the computational process, the problem of
tensile loading of a solid cylindrical rod is considered. The rod is made of the perlite
class steel with the following dimensions: initial radius of the working part Ry =
5 mm, the initial length of the working part Lo = 60 mm. A deformation diagram
was constructed to the accuracy of axial forces of 0.1% and 1%. Figures4 and 5
depict the process of constructing the diagram and the related variation of the axial
force for the accuracy of 0.1%.
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Fig. 5 Variation of the axial forces obtained with the iteration procedure: 1—initial approxima-
tion; 2—10—iterations 1-9, respectively

The problem was numerically analyzed five times after achieving the accuracy
of 1% on the axial forces, and ten times with the accuracy of 0.1%. It is to be
noted that, to construct the before-necking part of the diagram with an accuracy of
1%, only one iteration step is sufficient with the initial approximation defined by
formulas (2). Thus, computational expenses on constructing a deformation diagram
are doubled to reduce the inaccuracy by ten times. Updating the entire deformation
diagram and multiply repeated direct numerical analysis of the problem results in
large consumption of computation time. The authors of [20, 21] use piecewise-
linear approximation for constructing true deformation diagrams of elastoplastic
materials. This involves multiplying repeated analyses of a direct problem at each
stage of piecewise-linear loading. The authors do not characterize the accuracy
of constructing deformation diagrams but give the number of direct analyses of
the order of five iterations. The successive approximation algorithm itself is not
presented. It is evident that, in the sense of computational expenses, it has no
advantages over the above considered one.

4 Modification of the Algorithm of Constructing
Deformation Diagrams

To increase the efficiency of the algorithm, it is appropriate to use a nonlinear
extrapolation procedure. The computational process of modeling the loading is
subdivided into several stages n = 1, N. The number of states N is equal to the
number of points in the tabular representation of the experimental axial elongation—
axial force relation, and the constructed true deformation diagram will comprise the
same number of points. In the course of computations, the value of the deviation of
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the computed axial force from the experimental one is checked at the end of each
stage. When the deviation exceeds a prescribed value, the true deformation diagram
is updated according to formulas o;(ef) = Bo;(e). When the required accuracy
is reached, a new point o;(¢;) is entered into the table of the true deformation
diagram. After that, the extrapolation procedure is applied, using last points of the
constructed part of the deformation diagram. It should be noted that the initial part of
the deformation diagram including the first three loading stages is determined using
the iteration procedure [15] without extrapolation. The implementation of nonlinear
extrapolation of the deformation diagram requires more than three reference points
(m = 3). At the same time, for loading stages n < m it is assumed that n = m. The
extrapolation procedure is first done for the similarity number of the non-uniform
deformation processes in the form of a power function, using the least-square
method. Here K is
1 doi(e)

K(ei) = oiler)  de; 3)

Then the deformation diagram is extrapolated with a given exponential relation,

€

oi(e;) = oi(ej)exp ( f Kde; ). Figure 6 presents the results of extrapolation of the
Ci

deformation diagram and parameter K.

It is noted that the deformation diagrams are defined by monotone increasing
functions with a decreasing derivative, which makes it possible to determine to a
high accuracy the initial approximation of the diagram for the next loading stages.

The effect of the number of extrapolation points 7 on time consumption of

constructing deformation diagrams after reaching the accuracy of 0.1% for the

q 1 K

2,0 1 - - - 10
-
-
-
-
1,8 1 1 ey 1 18
-
/ -
1,6 +— 6
1,4 +————~4— b L 1 +4
1,24 - | l l L2
1,0 - | _| 10
0 0,1 0,2 0,3 0,4 0,5 ¢

Fig. 6 Extrapolation (dashed lines) of the relation for K (grey curve) and the deformation diagram
(black curve)
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Fig. 7 Variation of relative parameter §; characterizing the degree of time spent on constructing a
deformation diagram as a function of number of extrapolation points m/N for N = 90 (curve 1),
N = 130 (curve 2) and N = 180 (curve 3)

axial force was numerically investigated. The experimental relation for axial forces
was approximated by N = 90, N = 130 and N = 180 points. Figure 7 shows
the variation of parameter §; = ¢/T characterizing the degree of time spent on
constructing a deformation diagram in relation with time spent on one direct analysis
of the problem as a function of the used number of extrapolation points m/N (T
is time spent on one direct numerical analysis of the problem, ¢ is time spent on
constructing a deformation diagram).

Maximal efficiency of the introduced algorithm is achieved in the case when
number of extrapolation points m amounts to about 12% of total number of
points approximating the diagram. With the increasing number of stages (points
approximating the diagram) the iterative procedure of constructing a deformation
diagram is practically reduced to a single direct analysis without using the iteration
procedure (§; — 1), which increases the effectiveness of the present algorithm.

Figure 8 presents the results of variation of the number of direct analyses of the
problem r, at the n-th stage as a function of parameter (n/N) for N = 20 and
N = 110. The columns in Fig. 8 characterize the corresponding loading stage.

For numerous of loading stages (more than N = 100 points approximating the
diagram) any iteration procedure becomes unnecessary in view of high accuracy of
extrapolation. If it is necessary (for r, = 2, Fig.8), only one updating of the true
deformation diagram is sufficient at a current loading stage without repeating the
analysis of the problem. It is to be noted that the present algorithm substantially
(up to 10 times) increases the efficiency of the earlier developed methodologies
of constructing diagrams of deformation of elastoplastic materials. This, in its
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Fig. 8 Distribution of the number of direct numerical calculations r,, at the n-th stage for N = 20
(a)and N = 110 (b)

turn, considerably increases the potential of studying deformational and strength
characteristics of elastoplastic materials for various types of loading: the tension of
cylindrical rods and shells, torsion of rods, kinetic indentation of specimens with
a sphere, dynamic compression of tablet-shaped specimens and a number of other
problems. In view of monotone convergence of the iteration process of constructing
deformation diagrams, inaccuracy of the experimental-numerical methodology is
mainly determined by the field of application of the mathematical model of
elastoplastic material being used and the type of loading (simple, complex).

Acknowledgment Work was supported by the Russian Foundation for Basic Research (project
No. 20-08-00667-a).
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Cubic Spline on a Bakhvalov Mesh )
in the Presence of a Boundary Layer e

Igor Blatov, Elena Kitaeva, and Nikita Zadorin

Abstract The problem of cubic spline interpolation on the Bakhvalov mesh of
functions with region of large gradients is considered. Asymptotically accurate
two-side error estimates are obtained for a class of functions with an exponential
boundary layer. It is proved that the error estimates of traditional spline interpolation
are not uniform in a small parameter, and the error itself can increase indefinitely
when the small parameter tends to zero at a fixed number of nodes N. A modified
cubic spline is proposed for which uniform estimates of the order O(N~*) have
been experimentally confirmed.

1 Introduction

Cubic splines are widely used for smooth interpolation of functions [1, 2]. When
using difference methods to solve singularly perturbed problems are used strongly
nonuniform grids. In this case, there is a need to restore function for all values of the
independent variable. In the case of a piecewise uniform grid of G. I. Shishkin [3], in
[4] error estimates of cubic spline are obtained. It is shown that the convergence of
the interpolation process is nonuniform in a small parameter. To achieve uniform
accuracy with respect to a small parameter, it is proposed to shift one of the
interpolation points.

In this paper, we study the cubic spline interpolation [2] on the mesh of N. S.
Bakhvalov [5], which dense in the boundary layer. Error estimates are obtained,
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which, however, are not uniform in a small parameter €. It is shown that for
& — 0 the interpolation error has unlimited growth, and the development of special
interpolation methods for this class of problems is important. There is offered a
modified interpolation spline for which experimentally established uniform in ¢
convergence.

Introduce the notations. Set the mesh of interval [0, 1] :

Q={x,:xp=xy_1+hy,n=12,....,N, xo = 0, xy = 1}.

Denote by S(£2, k, 1) the space of polynomial splines of degree k of defect 1 [2]
on the mesh 2. If necessary, we consider the partition €2 extended to the left of the
point 0 with the step 71 = x; — x¢ and to the right of the point 1 with the step
hy = xy —xny-1. Weset h = 1/N. By C and C; we mean positive constants
independent of the parameter ¢ and the number of grid nodes. In this case, the same
symbol C; can denote different constants. Will write f = O(g) if the estimate
Ifl < Clgland f = 0*(g) if f = O(g) and g = O(f). Cla, bl, Lala, b] -
spaces of continuous and quadratically summable on [a, b] functions with the norms
Il - lIcra,p) and || - || 2,[a,5] accordingly, (-, -) is the scalar product in L>[0, 1].

2 Formulation of the Problem and Main Results

Let us a function u(x) be decomposed in the form of the sum of regular and singular
components:

u(x) =q(x)+ ), x € [0, 1], ey

where for some C
) ) Cr —axse ;
g’ ()| < Cp, [PV (X)) < o € ,0=<j =<4, 2

where the functions g(x) and ®(x) do not explicitly given, « > 0,& > 0.
Decomposition (1) holds for the solution of a singularly perturbed boundary value
problem [3].

We set the grid of the interval [0, 1] based on [5].

Let us

(1 4e. 1
a:mln{ , In }

2 a ¢
ife<e lando =1/2ife > e 1.

When o < 1/2, we define mesh nodes of €2 as

xy =gm/N), n=0,1,..., N, 3)
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where

o) = —‘(‘jln[l—Z(l—s)t],Ogts >
o+ Q—11-0), 1/2<t<1.

When o = 1/2, we define a mesh 2 as uniform with the step 2 = 1/N.
Let us estimate the error of the cubic spline g3(x, u) € S(£2, 3, 1) on the mesh
2 defined from interpolation conditions

30, u) = u(x,), 0<n <N, g50,u) =u’(0), g5(1,u) = u'(1).

We state the main results in the form of theorems.
Theorem 1 There are constants C4, C5 and B > 0 that are independent of ¢, N
such that for ¢ < C4N~" the following estimates hold
N 0<n<N/2-2,
I 836 ) =u@) ety < Cs 4 N (14 J)+ Lon=5 =1, @
N2 ,=B(n=N/2) L 1/N* N/2 <n.

&

The following theorem shows that the estimates (4) are unimprovable.

Theorem 2 Let &(x) = e/ Then there are constants Ca, Cg, B > 0
independent of €, N such that for ¢ < C4N~" lower bounds will be valid

N7 gw-np N
| g3(x, @) — D(X) llcpxy,x0q11= Co . € ! C <n<N-1. (5

3 Auxiliary Results

Below, without loss of generality, we assume that in (2) « = 1, since the general
case reduces to this by replacing ox = y with preservation of estimates of the
form (2).

Lemma 1 With o < 1/2 sequence h, for n < N /2 monotonically increases and

0*(1\]/5_,1)7 1<n<N/2-1,
hn =1 O*(eln(1+ ), n=N/2, (6)
O*(1/N), N/2+1<n <N.

The proof follows from (3) and the definition of g ().
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Let
X —X,
-Xn+l_nxn’ X € [xnaxn-i-l]a
— Xn42—X _ _
Nn,l(x) - Xnt2—Xnil’ X € [-xn+17-xn+2]7 1 S n S N 15

0, x & (xn, Xp42)

is B-spline of first degree, then

1
Il Nt llzo0.11= 7 (hnt1 + hai2) V2,

thus, in view of Lemma 1

O*((e/(N/2 —n)1/?), 0<n < N/2 -3,
I Nu.t llzoo.1={ O*((eIn(1 + ")NV/2), n = N/2 -2,
O*(h'/?), NJ2—1<n<N-—1.

Let Nyi(x) = Npy1(x)/ || N 500,110 <n < N —2 Forn = —1 and
n=N-—1weset N_1,1(x) = No,1(x +h1),Ny_1,1(x) = Ny-2,1(x — hy).
Then, taking into account the last two formulas we get

i 0*((e/(N/2—n))"1/%), 0<n < N/2-3,
I Nut o= § O*((eIn(1 + ")71/2), n = Nj2 -2, ©)
O*(h~ Y%, NJ2—1<n<N-1.

Let e(x) = g3(x, @) — ®(x). We study the function e”(x) = g5 (x, ®) — ®"(x).
According to [6, chapter 5] g5(x,®) = P®"(x), where P is the projector
on L[0, 1] orthogonal to S(€2, 1, 1). Denote by gﬂl(x) € S(2,1,1) the linear
interpolant ®”(x) at the nodes of the mesh, and through g7 (x) a function from
S(2, 1, 1) equal to gﬂl(x) for x € [0, xn/2—2] and zero for x € [xn/2-1, 1]. It’s
obvious that g/ (x) € S(€2, 1, 1). Then we have

e’(x) = P(®"(x) — gl (x)) + (g1 (x) — D" (x)). 3
We represent the function P(®”(x) — gl (x)) in the form
N—-1

P(@"(x) = gl(x)) = Y ayNy1(x).

n=—1
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From the conditions of orthogonality of the difference g5 (x, ®) — ®”(x) and the
space S(€2, 1, 1) we obtain a system of linear equations for coefficients

N-1
Y (N1, Ni) = (@7 — g, Ng1), =1 <k < N — 1,

n=—1
or in matrix form 't = F, where I' = {yu} = {(1\7,,,1, Iclkﬁl)}—Gram matrix

of normalized B-splines, F = (F_1, Fy,---, Fx_1)7, Fj = (9" —gl, Nj). It’s
obvious that 0 < y < 1.

Lemma 2 The matrix " has the form
I' = tridiaglay, ¢y, by}, —1 <n <N —1,a_1 =by_1 =0, )
nt1 =bp=0"1)>0,0<n<N-2,n#N/2-3,n#N/2-2, (10

anj1 = byjps = 0*<<sln(1 ~|—h/8))1/2)’

h
1 172
_ _ *
anj2-2 =bnjr-3 = O ((m(l +h/s)) ) an
cn=1,0<n<N-=2c_1 =cy_1 =1/4/2. (12)

The matrix T" has strict diagonal dominance over rows with a prevalence index

1//2.

The proof is obtained by direct calculation of the integrals taking into
account (6)—(7).
Denote by cond,I" the spectral condition number of I

Corollary 1 The matrix I has the form

r— (Fn F12> ’
21 oo
where I'11, I'22 are tridiagonal square matrices of order (N /2) x (N /2) and (N /2+
1) x (N/2 + 1) respectively, with strict diagonal line prevalence with a prevalence
index of 1/\/2, condI' = O(1), condrT';; = O(1),i = 1,2; matrices I'1» and

21 are rectangular matrices with the only nonzero element of order O*((¢ In(1 +
h/g)/ h)'/?) in the left lower and upper right corners respectively.

The matrix I'1; has the form

- (f'n f‘12>
11 = a3 KaS )
Iy '



44 1. Blatov et al.

where I'11, is the tridiagonal square matrix of order (N/2 — 1) x (N/2 — 1) with
strict diagonal predomlnance in rows with predominance of 1/+/2, [y =11y =
(0---0 anj2-2), I‘12 = le—matrlces with the only nonzero element of order

O*((n(1 + h/e)~'/?).

Lemma 3 The matrices T'11, ', f‘u are invertible, and for elements )7;}(, i=1,2
of inverse matrix the estimates |y,;| < Ce PI"=K hold and similar estimates hold
for elements of '11. Here C, B are independent of N, ¢.

Proof Invertibility of the matrices I'11, I'25 and element estimates follow from strict
diagonal prevalence with a prevalence index of 1/+/2 and Demko’s theorem [7]. O

Lemma 4 For the matrix Fﬁl, following representation holds
-1 l:ll l:12
o = (f P ) ’
21 122
where elements )72?C of matrix T j for some B > 0, independent of ¢, N, satisfy the
estimates
- 11 —Bln—k| _ AT
Vi | = Ce s —l=nk=N/2-3;Tnl=C, (13)
1741 < An(l +h/e)~2Ce P = N2 -2, -1 <k <Nj2-3,i=1,j =2
k=N/2-2,-1<n<N/2-3,i=2,j=1. 14)

Proof Using the Gauss block method, we find

(11~|-I‘11I‘12I‘ Pl f N NP i )
r F21F11

F71

1 = (15)

=

where ' = f‘zz — f‘zlf‘ﬁlf‘lz. Here, the reversibility of all blocks and uniform
in &, N the boundedness of the norms of all inverse matrices follows from the
corollary 1. This implies that I'~! is also uniformly bounded in the norm. From
the Demko’s theorem [7] we obtain that the elements of the matrix f‘fll satisfy
estimates of the form (13). With this estimates (13)—(14) follow from (15) and the
corollary 1. O

Lemma 5 The following representation is valid

F1=<1f11 1?12)
[y I )7
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where the elements )72?C of matrices l:ij for some B > 0, independent of ¢, N, satisfy
estimates

Pl < Ce P 1 <k < N2 =3; |52 < Ce PIHI,
N/2—1<n,k<N—1, (16)

1711 < (n(1 + h/e)) " 2Ce K n=N/j2—2,-1 <k <N/2-3
ork=N/2—2—1<n<N/2-3, (17)
|7m] < Cle/m)!2e=Pn=K, (18)

where =1 <n < N/2—-2 N/2—-1<k=<N-—-1lfori=1,j=2,-1<k=<
N/2=2,N/2—-1<n<N-1lfori=2j=1

Proof Using the Gauss block method similarly (15), we find
1= Fll + Fll F12F 1“211“1’1 ?FU F12F (19)
—0ry ! r- ’

where ' = Iy — I‘21I‘1_11F12. Here, the reversibility of all blocks and uniform in
&, N the boundedness of all inverse matrices follows from the corollary 1. From [7]
it follows that the elements of the matrix I’ 1_11 satisfy estimates of the form (16),
therefore, by the form of the matrices I'12, I'21, the elements of the matrix r
satisfy the same estimates. But for matrices having an inverse matrix, bounded
in the spectral norm by a constant independent of the order of the matrix and the
parameters that determine its elements, in [8] proved that the elements of the inverse
matrix ['~! satisfy the same estimates, possibly with other constant 1 € (0, 1),
which is also independent of N, €. It was also proved that elements of the product
of two matrices, satisfying estimates of the form (16), satisfy the same estimates.
From here estimates (16) follow.

The estimates (17) follow from (19), Lemma 4, corollary 1 and estimates of the
form (16) for the elements of ! Letus prove the estimates (18) fori =1, j = 2.
Let

I '=@Fuw. N2—1<nk<N-1},
T2 ={yuk,1<n<N/2-2,N/2—1<k <N -1},

Fﬁl = {)7,,1,(1, 1 <n,k < N/2—2}. Since the matrix I'1» have only nonzero element
Y(N/2—2)(N/2—1), then, multiplying matrices, we find elements of matrix INPE )7nlk2 =
77,11(11\,/2,2)V(N/2—2)(N/2—1)77(N/2—2)k- Hence, given the estimates (14), (11), (16) for
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the first, second and third factors, respectively, we get (18). Fori = 2, j = 1, the
estimates are obtained by virtue of symmetries of I'~!. The lemma is proved. O

Lemma 6 Foranye € (0, 1), N, the following estimates hold

O e~de ™41/%), 1 <n<N/2-3,
Fu =1 O((eln(l + h/e)) 2= le=Nn-1/8) = N/2 -2, (20)

O(h~1Pe7le™™/%) N/2—1<n<N-1.

The proof is obtained by direct calculation of the integrals with taking into
account (7) and estimates of the error of linear interpolation.

Lemma 7 For the cgeﬁ‘icients ay in the decomposition of P(®"(x) — glI(x))
through the basis of Ny 1(x) the following estimates hold

0K e~de /%), 1 <n<N/2-3,
an =1 O((eln(l + h/e)) V2= le=Nn-1/8) = N/2 -2, 21

O(h= 127 le=Np-1/eq=B=N/DY "N /2 1 <n <N —1.

Proof Wehavea = ' 'F.Seta = («V, a®, V), where dim(aV) = N/2—1,
dim(@®) = 1. Then according to Lemma 5, forany n € [—-1, N/2 — 3]

N/2-3 N-1
(1) =0p = Z Vnk Fy +yn(N/2 Z)FN/Z 2+ Z Vnsz (22)
k=—1 k=N/2—1
By virtue of (16)
N/2-3 N/2-3 n s/
k=1 k=1 n+l

(23)

Further, since i/ h, < 1 and k < n, taking into account (6), we have

n n
3 efﬂ\nfkle%xmfw/e(hk+1)5/2 Z Blk—n) Z?*/!Hhx/e(hkﬂ)m
Pl hnt1 hnt1

N/2—n+1

n
< Z ePk=m) ,CIn N 4ty
k=—1

n n
(N2 —n+1\C _
ZZ ﬁ(kn)( <Z Bk=m) _k + 1)C < Cy 24
= N/2—k—|—1) == (ke E=CGe @Y



Cubic Spline on a Bakhvalov Mesh in the Presence of a Boundary Layer

47
N/2-3
Z e_ﬂ‘"_”g—(xkﬂ—xnﬂ)/s(hk+1)5/2
k=n+1 hnt1
N/2-3
—B(n— N/2 —n\5/2
< Z e B k)(N/z_k) <Cy. 25)
k=n+1

By virtue of (17), (20) we have

N C e\1/2 hy—1/2
|ynl(1N/272) Fnjp-al < M hzfle—xn+l/£84exn+1/s(h) PU=N/2) (8 In 8)

C

1 _ h\—1/2
x e Np2-1/E o hifle_xn+l/583hn_’5_{2e_(xn+l_XN/Z—I)/S (8 In 8)

&

o B2 o €52 e—xn+1/s< € )1/2
= g4 ntl hin(h/e)
N2 — )32 BlIn=N/2 i —xnp-n)/e o €1y
X (N/2 —n)“e e 4

22 emHnnfe, (26)

Taking into account (18), (20), we have

N—1 s/ N—1 s/ 12
~12F 2 n 4 2 n
‘ § Ynk k‘ < . h 18 Xnt1/e E &'h 1 ex +l/5< )
k=N/2—1 k=N/2—1

xeBIn=klj=1/2,=1 )=xi/e c

5/2 —xur1/e
—84hn+1€ "

1/2 C
x 3 (‘9) (N/2 = n)>2etinsi=s0)feg=fin—kl — ©1p312 gmvnsafe
k=N/2—1 &

x 3 (5 )1/2(N/2_n)S/Zef(ﬂ/2)\an/2|e(xn+1ka)/ee(fﬂﬂ)lnfk\
k=N/2—1

c = c
< 2352 s /e Z e~ B/2n—kl < jhifle*xnﬂ/e‘

4 "n+1
€ k=N/2—1 €

27)
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Further,

N/2-3 N—1

2 ~11 ~11 ~12
a® = 3" o Fe + P ey iveen FNe2 D T panFe
ke=—1 k=N/2—1
(28)

Similarly, we have

N/2-3

- h\—-1/2 | _
‘ Z V(11\1//2—2)ka‘ §C<€ln£) g le—n2-1/¢
k=—1

N/2-3
h\1/2 h\—1/2 1
x 3 <gln€) exN/zfl/r:g(]ng) efmzv/sz|hz/+2184eka+l/e:
k=—1
N/2-3

h\—1/2
C(slng) g le ™ N2-1/E Z e_s/zhifle_ﬂw/z_k‘
k=—1

N/2-3

Xe*(karlfo/z,])/e < C1 (8 In h)—l/zsfle*XN/2—1/8 Z (N/2 1= k)*5/2
&
k=—1

h\—1/2
x e PNk (N 2 — j 4 1)C < cz(g In ) gl N-1/E, (29)
&

Since the norm I'"! is uniformly bounded, we have |V(11\}/2—1)(N/2—1)| < C.
Therefore, taking into account (20), we have

. hy=12 | _

N—-1

hy\—1/2
Z 37(11\%/2—2)ka‘ =< C(S In ) s Lg=XN/2-1/8
k=N/2—1 e

Z (s In il)l/zsexN/Zfl/g (s In il)l/z

k=N/2—1

—1/2
e~ Le—n-1/¢

xeXN/zfl/S(;)1/26—/3\N/2—k|h_l/zg_le_xk/s = C(s In h)
€
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Nl e e\12 h
~ Z e*(xk*xN/Z—l)/€<h In h) e PIN2=Kl < ¢, (8 In )
k=N/2—1 ‘

—1/2
/ gl ¥N2-1/¢

= —BIN/2—k c =172y
x 3 e PPNy k1) §C2<eln ) g~lemNn-1/e 3]y
k=N/2—1 €
Finally,
N/2-3 N—1
Ot(k) = Z )7,12](1Fk+)7,12(11\//2,2)FN/272+ Z 37,,2/3Fk, (32)
k=—1 k=N/2—1
N/2-3
‘ Z )7,3/3Fk‘ < Ch 121 gmxNp1/6 = B(1=N/2)
k=—1
& 12 N2y (ENY?, 572 —a
x Y h'eennni/eebin />( ) /e 4o/, (33)
h
k=—1
N/2-3
) hl/zgexwzfl/eeﬂmfzv/z)(8)”zhiﬂg*zxewﬂ/e
k=—1 h
N/2-3
= > 1/ =512P N/ glxn 1 —xisn) e
k=—1
N/2-3
<Ci Y, 2= PLENDWN2 k-1 <O, (34)
k=—1

|77712(11V/2—2)FN/2—2| < Ch—12g=1g=xnp-1/8 y=B=N/2)p1/2 o

1/2

N1/ B(1=N/2) ( Z) e BN/

(8 In h)*l/zg—le—xmfl/s _ Ch—l/zg—le—xN/zfl/se—ﬂ(n—N/Z)(1n (h))*m -
€ ) -

Ch= 121 g=xnp1/ g=B(1=N/2). (35)
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N—-1
Z J7nzk2Fk‘ < Clh*1/28*le*XN/zfl/Se*ﬂ(n*Nﬂ)X

k=N/2—1
N-—1
Z h1/2€eXN/271/8813("*1‘1/2)e*ﬁln*k\hfl/%*le*xk/ei (36)
k=N/2—1
N-1
Z h1/2ce"N/a-1/8 oB(n=N/2) ,—Bln—k|p=1/2 =1 ,—xi /e _
k=N/2—1
N-l XNj2—1=%
Z o VT BO=N/2) ,—Bln—k| (37)
k=N/2—1

We represent the last sum as

NT i n N—1
Z o VT B(i=N/2) j—BIn—k _ Z ()4 Z (-)=%, 4.
k=N/2—1 k=N/2—1 k=n+1
Then
n X —X, n
= ) e NRUR B=N/2) 3 o~ =N/D " +BG.=N/2)
k=N/2—1 k=N/2—1
- h
k=N/2—1
if h/e > 2. Further,
N-1 | . N—1
5, = Z o VT BCn—k=N/2) _ Z o~ k=N/Dt+k+N/2=2n
k=n+1 k=n+1
If h/e > B, then we get
N—1
Ty Y e <y (39)
k=n+1

The statement of the lemma follows from (22)—(39). |
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Lemma 8 There are constants C > 0, 8 > 0 that are independent of ¢, N, such
that the estimates hold

n+1€
|| P(q)// - gI)(x) ”C[x,,,x,,H]: 0 821n(1c‘+h/£)67XN/271/8)7

n
XN/2-1 N
1 _— —Bn=Y1\ N
0<€he e e 2t), 5 =n<N.

oS n2 *Xn/f), 0<n<?i -2
£

(40)

Proof Since at each node x,, there is different from zero only one B-spline N,_1 1,
then the equality holds

P(®" = gI)(xn) = 1 Npo1,1 ().

Hence, from Lemma 7 and estimates (7), the assertion of the lemma follows. |

Lemma 9 The following estimates hold

N

C _
€ () | Clammn] < 84/13“6 /e 0<n< 5 —2. 41)

Proof By virtue of (8), (40) is enough to evaluate || g1 (x) — ®"(x) lc[x,,x,.]- But
an estimate of this expression of the form (41) follows from the estimate of linear
interpolation errors on the segment [x,, x,41]. O

4 Proof of Theorems

Theorem 1
Proof According to [2] for the interpolating cubic spline g3(x, u) € S(£2, 3, 1), the
estimate holds

g3, w) —u()l < o I u® licro.) max k. (42)

384

According to (1) g3(x, u) = g3(x, g) + g3(x, ®), and by virtue of the conditions (2)
and (42) we have

| 83(x.9) = q() lcio.n= € maxhy, < CN™*. (43)

It remains to evaluate || g3(x, ®) — ®(x) |lc[x,.x,4,]1 fOr each grid interval. When
o = 1/2, the parameter ¢ is limited by positive constant below, so according to (42)
the spline g3(x, ®) has an error of the order of O(N -4 uniformly in ¢. Therefore,
we will assume below thato < 1/2.
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First, we prove the estimates (4) for n < g’ —2.Sete(x) = g3(x, P) — d(x).
Since e(x,) = e(x,4+1) = 0, then considering e(x) as the solution of the problem
¢’ (x) = ¢”(x) with zero boundary conditions on interval [x,, x,+1], we get

Xn+1
e(x) = / G(x,s)e (s)ds,

n

where

G()C S) _ 1 (-x _xn)(xn+1 - S), Xn S X S S,
’ Tt L (s = xp) (K1 — %), § <X < Xpyg

is Green function. Since |G (x, 5)| < Xy4+1 — Xn = hp+1, from (41), (6). (3) we get
Al " 2 /"
I e(x) Dcrxyxu11 < hn+1/ le"()lds < hyyq |l e () lIcrx,, 1=
Xn

_16C (N/2—n+eN)* _Ci

c _ n
e xn/é‘h4 (1_2(1_8)N)4 — N4 (N/z_n_ 1)4 < N4‘

<
g = (N/2 — )t

Taking into account the estimate (43), we obtain the estimate (4) for n < 2’ - 2.
Forn > N/2 — 1 we have

Xn+1
I eCx) e, xe = Chn+1/ le" (s)|ds <
X

n

Xn+1 P Xn+1 /)
Chopr ([ 100 ids + [ 1505, 0yids). (44
X, X,

n n

Forn = N/2 — 1 we get
Xn+1 C Xn+1 . C o
f | (5)lds < 2/ eids < e <
Xn €% Jxn &

Considering (40) and g1 (x) = 0 for x > xy/2_1, thus P(®” — gI)(x) = g5 (x, D),
we obtain

£N4,n=N/2—1. (45)

Xn+1
/ |85 (s, @)|ds <
Xn

1 C

Nt = oy "=N2-1

(46)

1
Celn(1+h —INp-1/8 < Cg .
eln(1 + /S)szln(1+h/s)e <Ces
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Similarly for n > N /2 we have

Xn+1 C Xn+1 ¥ C xn C XN/2 n=XN/2
/ |9 (s)lds < 2/ etds< Cot = G L
Xn & Xn & I
< C N—4e—(n=N/D)¢ < C14 o—BO=N/2) 47
& eN
Xn+1 1 3 B N 1 - y
/x |g5 (s, ®)|ds < Chehe wpei/eg=Bli=51 < cg . e Bin—N1| _
C N
—Bln—"51
eNa€ (48)

From (44)—(48), Lemmas 1 and (43) estimates (4) for N/2 -1 <n < N — 1
follow. Theorem 1 is proved. O

The proof of Theorem 2 is based on lower bounds for || e(x) |c[x,,x,.] for
n=N/2—2andn = N/2 — 1 in the case ®(x) = e */¢ and is carried out
similarly to the proof of Theorem 4 from [4]. This proof is based on lower bounds
for the elements of the matrix I'y>. The matrix I'y; in the case of a Bakhvalov mesh
corresponds to a segment of a uniform partition and for ¢ < CN~! is completely
similar in properties to the matrix ['2; from [4].

S Results of Numerical Experiments

We define the function of the form (1):

TX _x
u(x) = cos ) +e ¢, x €]0,1].

The tables show the maximum errors of spline interpolation calculated at nodes
of the condensed mesh obtained from the original computational mesh by dividing
each of its mesh intervals into 10 equal parts. Table 1 shows the errors for the
traditional cubic spline g3(x, u). The errors confirm the estimates of Theorems 1
and 2. The table shows that the error increases with decreasing ¢ for fixed N.

Due to the non-uniform in & convergence of the cubic spline g3(x, u), we
construct a modified interpolation spline. We use an approach [4], where cubic
spline on the Shishkin grid is considered. We define x, = (x, + x,41)/2,n €
[N/2—-1,N/2], X, = x,n € [0, N/2 —2]U[N/2 41, N]. Let us gm3(x, u) €
S(£2, 3, 1) be cubic spline determined from conditions gms(x,, u) = u(x,), n €
[0, N1, gm5(0, u) = u'(0), gm’s(1,u) =u'(1).

The results of Table 2 for the modified spline gm3(x, u) show the uniform in ¢
error of order 0(1/N4).
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Table 1 The error of cubic interpolation spline g3 (x, u)

N
e 16

1071 1.33.
1072 1.72-
1073 4.82-
107*  6.35-
1075 7.22-
1076 7.73.
1077 8.06
10-%  83.1

1074
10~*
104
103
1072
107!

32

1.02 -
1.06 -
1.37 -
1.88 -
2.19 -
2.38 -
249 .

2.58

1073
103
1073
104
103
1072
107!

64

6.99 -
6.74 -
7.04 -
545
6.62 -
7.28 -
7.70 -
7.98 -

1077
1077
1077
10-6
1073
1074
1073
1072

128

4.52 .
7.95 -
4.38 -
1.56 -
1.98 -
222
2.37-
247 -

Table 2 The error of modified cubic spline gm3(x, u)

N
e 16

10-' 221
1072 1.67-
1073 1.89.
1074 225.
1075 2.46-
1076 2.58.
1077 2.66-
1078 2.71-

6 Conclusion

32

1.85-
1.09 -
1.10 -
1.35-
1.51-
1.60 -
1.65 -
1.68 -

64

1.35-
1.00 -
6.49 -
8.05 -
9.19 -
9.84 -
1.02 -
1.05 -

10-6
10-¢
1077
1077
1077
1077
10-6
10-¢

128

9.09 -
1.16 -
4.06 -
4.74 -
5.57-
6.05 -
6.33 -
6.50 -

256

2.89 -
8.80 -
271 -
445 .
5.86 -
6.76 -
7.29 -
7.64 -

256

5.02-
1.45-
2.59 -
2.77 -
335
3.71 -
391-
4.03 -

107°
10-°
1070
1070
10-8
1077
10-°
103

1. Blatov et al.

512

1.82-
8.12 -
1.64 .
1.72 -
1.71 -
2.05 -
2.24 .
2.36 -

512

3.78 -
1.47 -
. 10710

2.16

1.61 -
2.00 -
2.26 -
241 -

10710
10~?

10—10
10—10

10—6

10—10
107?

1071
10—10
10~10
10~10

2.5.10710

The error of interpolation by a cubic spline on the Bakhvalov mesh in the presence
of an exponential boundary layer is estimated. It is proved that for a given number of
mesh nodes, the interpolation error can grow unlimitedly with decreasing value of
a small parameter. The results of computational experiments are consistent with the
obtained error estimates. The cubic spline was modified on a Bakhvalov mesh and
numerically shown that the resulting spline has an error of the order of O(1/N%)
uniformly in € and N.
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On Exact Penalty Operators )
and Penalization Methods for Elliptic e
Unilateral Problems with Piecewise

Smooth Obstacles

Rafail Z. Dautov

Abstract The aim of this paper is twofold: firstly, to prove that for piecewise
smooth obstacle, the elliptic variational inequality of the first kind corresponding
to a unilateral problem can be reformulated as a variational inequality of the second
kind with a continuous functional and, secondly, to obtain accuracy estimates
of penalization methods for such obstacle problems for a wide class of penalty
functions. The accuracy estimates obtained in the current paper are of the same
order as known estimates for smooth obstacles.

1 Introduction

Many phenomena in physics, biology, and finance can be described by partial
differential equations that display a priori unknown interfaces or boundaries. Such
problems are called free boundary problems. One of the simplest and the most
important free boundary problems is the obstacle problem, in which, at least
formally, a function u solves a partial differential equation on the set where it is
strictly greater than a given function ¥, and equals this function elsewhere.

The prototype of problems that we will consider here is the linear obstacle
problem with the obstacle ¥ € H!(£2). In this problem we are looking for a function
u in H'(€2) which satisfy the following relations:

—Au—f>0 inQ, u=up onadf2,
u >y inQ,
(—=Au— flu—1y) =0 in Q.
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This problem is equivalent to the variational inequality of the first kind

uek: /Vu-V(v—u)de/f(v—u)dx Vv eKk, (1)
Q Q

where up € HY(Q),
K={veup+H}(Q):v>y onQl.

Penalization techniques have been widely used in the study of obstacle problems
(see e.g. [1-4]). The penalty methods are the basis of many well-known approximate
methods for their solution and also used to demonstrate the existence and regularity
of solutions. For problem (1) they consist of substituting the variational inequality
by a family of nonlinear boundary value problems of the form!

{_Aue‘i‘ﬁe(xv”e_W):f in €2,
Ug =up onoas2,

where B; is a penalty function, & > 0. The regularity of the solution of problem (1),
as well as the accuracy of the penalty methods, are fairly well studied when

feLl*Q), Ay eLl*Q). )

There are different choices of penalization. Notable examples of penalty func-
tions are [2, p. 368], [4, p. 107]

)
Be(xD) == 17, Be(x.0) = (=AY = )70:(0), 3)
where 1~ = max{—t,0}, t* = max{t, 0} are negative and positive parts of ¢,

respectively; 6, is a sequence of Lipschitz functions which almost everywhere on R
tends to 0 as ¢ — 0, where

-1, <0
0(t) = e 4
® {0, t > 0. “®
Under conditions (2), (3) the following estimates are valid
e — el < Ce,  u—ucllg g < Ce'’?, (5)

where the constant C does not depend on ¢.

1 Often talk about the regularization method if the function 8; : & x R — R uniformly over &
bounded and about the penalty method otherwise.
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Many different penalty functions S have been found over the years (see, for
instance, [5-7]). Wide class of penalty functions guaranteeing estimates (5) are
indicated in [8]. In this article, it is proved that under conditions (2) inequality (1)
can be reformulated as the following variational inequality of the second kind: find
u € H} () such that

/Vu-V(v—u)dx—i—j(v)—j(u)Z/f(v—u)dx VveHb(Q), (6)
Q Q

where H) (Q) = up + H}(Q),

i@ =/g(X)x(v—1/f)dx, g elX@: g= (=AY — T in @
Q

and x belongs to some set of continuous functions on R. Variational inequality (6)
can be equivalently written as the inclusion

ue Hy(Q): —Au+pu—y)>f ingQ, 7

where (v — 1) is the subdifferential of j (v).2

The operator 8 : L%(Q) — L%*(Q) in (7) has been named an exact penalty
operator. Penalty operator . is obtained by its regularization. It is also proved in
[8] that the second estimate in (5) can be improved to O (¢3/*) in some cases.

This article is devoted to a generalization of the results [8] for the case of
piecewise smooth obstacles, which includes an important subclass of polyhedra.
We are not aware of any published work in which accuracy estimates of penalty (or
regularization) method for problems with such obstacles were obtained.

The outline of this work is as follows. In Sect. 2, we formulate the original
obstacle problem with a strongly monotone nonlinear operator. In Sect. 3, we
reformulate it in the form of a variational inequality of the second kind and define
the exact penalty operators. In the last Sect. 4, we define a penalty problem and
obtain accuracy estimates.

We hope that the exact penalty operators obtained in this work will be useful
also in studying the regularity of the solution of elliptic unilateral problems with
piecewise smooth obstacles.

21n [8], the case ¥ = O was considered. Under conditions (2) inequality (1) comes down to this
case by shiftu — u —y and f — f + Ay
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2 Formulation of the Problem

The scalar product in R” is denoted by & - i for all £, n € R", |&| = (£ - £)'/2, while
(-, -) is generically used to indicate a duality pairing of the relevant function spaces.

2.1 Functional Spaces

Let p € [1, oo]. For an arbitrary domain D C R", n > 1, we use the traditional
notations L? (D) for the Lebesgue space with the norm

”v”€p(D) = / |v(x)|de, 1<p<oo,
D

lvllLeo(p) = ess sup |v],
Q

and W,’ﬁ(D) for the Sobolev space of order k > 1 of functions which weak
derivatives of order < k belong to L?(D):

Wi(D) = {u € LP(D) : D\*'u e LP?(D), |a| <k}.

The norms on it are denoted by || - ||W§( p) and defined by the relation

ol o) = 2 1DVl by

o] <k

We use the notation H¥(D) = Wé‘ (D) and denote by HO1 (D) the Sobolev space
of the functions that vanish on the boundary d D, endowed with the norm

5 12
el gy = (/ Vul dx) .
D

Let H- (D) be conjugate to H(} (D) space,

(f.m)
||f||H71(D) = sup .
netd oy 1Ml o)

Recall that v~ € H'(Q)if v € H'(Q),and Vv~ = —Vv in S = {x € Q :
v(x) <0}, Vv~ =01in Q\ S (see e.g. [4, c. 50]).
In what follows, C will denote a positive constant that may vary from line to line.
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2.2 Original Obstacle Problem

Let 2 C R" be a bounded domain with Lipschitz boundary €2, n > 1. Consider a
sufficiently smooth vector field (ag,a) : 2 x R x R" — R x R" and let A be an
operator acting from H L(Q) into H~1() defined by
Au = —diva(x,u, Vu) + ap(x, u, Vu).
Forany u € H'(Q)andv € HO1 (2) we have
(Au, vy = / (a(x, u,Vu) - Vv 4+ ap(x, u, Vu)v) dx.
Q
Let ¢ (the obstacle) and up (the boundary datum) be given functions in H L)

with ¥ < up a.e.on €2, Hll)(Q) =up—+ H(} (2). Let the convex set K in H($2) be
defined by

K={veH)Q): v>y ae. onQ).

Consider the following variational inequality of the first kind.

Problem (Py) Find u € K such that

(Au,v—u) >0 Vvek. ®)

2.3 Restrictions on the Operator A

We will assume that the vector field a(x, s, &) = (a1(x,s,§),...,a,(x,s,§)) and
the function ap(x, s, &) satisfy the following assumptions:

(Hy) a; € WL(Q) x CY(R) x C'(RY), i=0,....m;
(Hy) fora.e.x € Qandforalls € Rand & € R"

la(x,s, &)l < C (Is|+1&1);
lao(x, s, &) < C (If ()| + sl + &),  f € L*(Q);

(H3) fora.e.x € Qandforalls,t € Rand&,n € R"

(a(x,s,éj) - a(-xa t’ '7)) : (S - 77)
+ (ao(x, 5, &) — ap(x, t, M)(s — 1) > a | — n|?,

where o = const > 0.
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The existence and uniqueness of a solution u# to the problem (Pp) under
conditions (H1)—(H3) are well known [2, p. 247, Theorem 8.2].
Note that in the case of linear functions

a(x,s, &) = A(x)é,
ao(x, s, &) = ao(x) s — f(x).

conditions (H;)—(H3) will be satisfied if

Ae WL(Q R™™), ap(x) € L®(Q), f e L*(Q);
AX)E-E > alE)?, ap(x) >0 ae.in Q.

Condition (H3) immediately implies that

(Au — Av,u —v) 2a||u—v||ilé(9). 9)

forallu,v e H [1)(52). Additionally,

(Au — Av, (u —v)") < —a||(u —

< D AP (10)

forall u, v € H'(Q) such that (u — v)~ € H} (). Indeed, puta(u) = a(x, u, Vu),
ag(u) = ag(x, u, Vu). Then

(Au — Av, (u —v)~) = — / ((a(u) —a())-V(u —v)

{xeQ: u(x)<v(x)}

+(ao(u) — ap(v))(u — v)) dx

sco [ VuevPar = a0 By,
{xeQ: u(x)<v(x)}
2.4 Restrictions on the Obstacle
Let us formulate additional conditions on the obstacle. Let {21, 22, ..., Q,}, m >

2, be a partition of 2 such that each subdomain €2; has a Lipschitz boundary 9€2;,

m
QNQ;=0forisj [(Jou=a

i=1
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We will assume that the obstacle is piecewise smooth:
(Hy) ¥ € CON(Q). Ylg eCM (@), 1<iszm.

Let {I'1, 'z, ..., 'y} be the set of all common parts of boundaries 9€2; and
0€2; of the neighboring subdomains €; and ;,1 <i # j < m.Oneach I'y =
0€2; N 982 we define the function

he(x) = ax, ¥, Vi) - ni(0)lg, +alx, ¥, V) -nj(x)lg

M
where n; (x) is the outward normal unit vector at the point x € 9€2;. PutI" = | J Tk
k=1
and define

§ELT(Q): glo, =AYl 1<i=<m;
heL®T): hir,=h, 1<k=<M.

Conditions (H1) and (H4) imply that functions g and 4 are well defined. According
to the definition of these functions, we have

(A, v) =/gvdx—|—/hvdx Vv e H ().
Q r

Note that if the obstacle is smooth, say ¥ € C“(Q), thenh = 0.
We define the functional (Ay)* € H~1(Q) by the equality

((Ay)E, v) =/givdx+/hivdx Vv e H)(Q). (11
Q r

Since HO1 () c L*(IN), it is easy to see that

IAY)E 1) < € (18T 2 + I1hE 1 20y

3 Equivalent Inequality Without Constraints

Let j be the indicator function of the convex set K

... )]0, wveKk,
j) = {—i—oo, vé¢ K. (12)

The original variational inequality (8) can be represented in the form of an inequality
without constraints.
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Problem (P) Find u € H)(R) such that®
(Au,v—u)+ j) — ju) =0 Yve H)Q). (13)

In this inequality, we replace the functional j with a functional having better
properties. To this end, we introduce the class J (¥) of convex lower semicontinuous
(I.s.c.) functionals j : Hll)(Q) — R such that

(a) j(v) =0 for functions v € K;
(b) j(v) = ((AY)T, (v —)7) forall ve HL(Q).

The following theorem is the first of our main results.

Theorem 1 Let the assumptions (Hy)—(Ha) be satisfied and let j € J (). Then
problems (Py) and (P) are equivalent.

Proof Let u be a solution to Problem (P). Since the solutions to problems (Py) and
(P) are unique, it suffices to prove that u is also a solution to (Py).

Let us prove thatu € K. By choosingv=u+ @ —v¥) " =¥ +u—y)" € K
in inequality (13) and by taking into account properties (a) and (b) of the functional
J, we obtain the inequalities

(Au, (u—y)7) = jw) = (AT, (w —¥)7).
Hence, taking into account estimate (10), we have
e ll@ = 0) 7l g = (Au =AY, (= y)7)
> (AT =AY, (u —¥)7) = ((AY) ", (u — ) ") = 0.

Therefore, (u — )~ = 0,1i.e. u € K. Choosing v € K in the inequality (13), we
see that u is a solution to the original problem (Pp). O

3.1 Exact Penalty Operators

The above-introduced class J () is quite large. Note that the indicator function (12)
of the convex set K also belongs to J (). For the considered class of operators A
and the set K we can select in J (1) a subset of convex and continuous functionals.

3If j is a convex l.s.c. functional, then conditions (H;)—(H3) are sufficient for the existence and
uniqueness of a solution of problem (P) [2, p. 251, Thm. 8.5].
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To do this we define a function 6(¢) on R such that

=0, t >0,
6 € C(—o0, 0] is non-decreasing, 6(¢) { < —1, t <0, (14)
>at—+b, |t|large,

where a > 0, b € R. Note that the maximal among functions (14) is defined in (4).
We also define function ® € Cf)o’é (R) and two function G, H on :

Q@) = fIQ(t) dt,
0

Gel®(Q): G=>gtinQ,
Hel>®*T): H=>h"onT.

We denote by Jr () the set of functionals H 1(©Q) — R of the form

J() =/G(X)®(U(X)—Iﬂ(X))dX+/H(X)®(v(X)—lﬂ(X))dX- 15)
r

Q

From the definition of function ® it follows that j is continuous functionals
(Lipschitz continuous if ¢ = 0 in (14)). Since ®(¢) = 0,ift > 0and O(r) > ¢t~ in
R, then properties (a) and (b) are satisfied and Jr (¢) C J(¥).

The function ®(¢) has no derivative only for = 0, so its subdifferential is easy
to calculate. It is equal to

0, t >0,
00 =116(0),0], t=0,
0(t), t <0.

The functional j defined in (15) is the sum of the two convex continuous func-
tionals on the whole space H!(2). Therefore, according to the Moreau-Rockafellar
theorem, his subdifferential can be calculated as the sum of subdifferentials of the
functionals on the right hand side of (15).

We define in H' () the multivalued operator 8 by the equality

(Bu), v) =/G8®(u)vdx+/H8®(u)vdx, v e HI(Q).
Q r

Then 0 (#) = B(u — ) and problem (P) will be reduced to the inclusion
ueH)Q): Au+pu—1y)>30.

The operator 8 will be called the exact penalty operator.
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4 The Penalty Problem

We approximate the non-differentiable functional j € Jr (i) by a sequence j. of
differentiable ones.

To this end, we approximate the function 6(¢) (or 0®) by continuous functions
0¢(t) nondecreasing on R so as to ensure that 6,(t) = 6(¢) fort < —ej and ¢ > &3,
where 1, & > 0, and ¢ = max(eq, &2). We set

O (1) = ft%(t) dt,
0
Je@) = [GO(v—yY)dx + [ HOp(v—¢)dx (16)
Q r

(Be(W), w) = [GO(v—Y)wdx + [ HO(v—y)wdx,
Q r

where v, w € H 1(Q). Note that ®, is a small perturbation of ®, since
() — O ()] < |0(—eD)|(e1 +€2), T€R. a7
The penalty problem is defined by
Problem (P;) Findu, € H })(Q) such that
(Aue, v —ue) + je(v) — je(ue) =0 Vv e Hp(Q). (18)
This problem is equivalent to the equation
ue € Hp(Q): Aug + Be(ue — ) =0,

since functional j, is differentiable and j, = B.
The following theorem is the second of our main results.
Theorem 2 Let the assumptions (Hy)—(Hy) be satisfied, and u and u . are solutions

to the problems (Py) and (P;), respectively. Then

= C(e1) (&1 + £2), 19)

2
”I/l — Ug ”H()l ()

where

Cler) =2|9(—81)|</de+/de>.
r

Q
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Proof According to Theorem 1, u is also a solution to inequality (13). We take
v = u, in (13) and v = u in (18), and add the two resulting inequalities to obtain

(Au — Aug,u —ue) < (j(ue) = je(ue)) + (Je () — j@)). (20)

From the definitions (15), (16) of the functionals j, j. and the estimate (17)
immediately follows

i) — je)| <0.5C(e1) (1 +e2) Yve H(Q). 1)

We use (21) to estimate the right-hand side of (20) from above and (9) to estimate
the left-hand side from below. As a result, we get (19). |

4.1 Examples of Penalty Functions

The penalty function is defined by the functional parameters G, H, 6 and 6,. We
indicate the following two ways of choosing G and H:

(i) G=lg Lo, H=Ih"llror):
(ii) G=g", H=h".
The method (i) is computationally simpler than (ii). The functions 6 and 6, are more

important. They can be chosen independently, or they can be consistent. Let’s look
at some examples.

Example 1 First, we select the 6 function and then we regularize it to obtain 6;.

Let 6 be maximal among functions (14), i.e.,

—1,t <0,

Q(t)z{o t>0.

We define the function 6, by setting &1 = 0, g2 = ¢:

-1, t <0,
O:(t) =1t/e—1,0<t <e¢,
0, t>e.
In this case 6(—e1) = —1, and estimate (19) takes the form

lu — el gy ) < C '/ (22)
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Example 2 1f 6, was originally selected and 6.(¢) = 0 if ¢+ > 0, say, in the classic
way 6, (1) = —t~ /e, we can choose

) t/e, t<-—g,
e(t)z{mm{@e(t),—l},tSO, e, 0 =1_1 _e=i<o0.
0, t >0,
0, t>0

This function satisfies all conditions (14) and 6 is its regularization, &1 = ¢, & = 0.
In this case also 6(—&1) = —1, and estimate (19) takes the form (22).

The same can be done with another choice of function 6., known from publica-
tions.
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Accurate Simulation of Guided Waves m)
in Optical Fibers Using Finite Element St
Method Combined with Exact

Non-reflecting Boundary Condition

Rafail Z. Dautov and Evgenii M. Karchevskii

Abstract We present an analysis of numerical results illustrating the potentials of a
new method for calculating guided waves in optical fibers and dispersion curves of
corresponding eigenvalues. The earlier proposed finite element method is based on
a special exact non-reflecting boundary condition and mathematically justified. For
linear Lagrangian elements, the analysis demonstrates that the speed of convergence
of the presented algorithm is quadratic, which corresponds to previously obtained
theoretical estimates.

1 Introduction

Problems of guided waves in optical fibers arise in mathematical and numerical
modeling of light propagation in photonic circuits (see, for example, [1]). Mesh
methods are used extensively to solve these important applied problems (see, for
example, [2-6]). A finite element method for calculating guided waves in optical
fibers and dispersion curves of corresponding eigenvalues was proposed in [7]. To
this end, the vector electromagnetic problem for eigenwaves (particular solutions
of the homogeneous Maxwel Equations of a special form), originally formulated
on the plane, was reduced to a convenient for numerical solution linear parametric
eigenvalue problem posed in a circle [7]. It was achieved using a specially tailored
exact non-reflecting boundary condition.

A theoretical study of the accuracy of the approach proposed in [7] is done
in [9]. The study of properties of the dispersion curves and the solvability of the
obtained problem is based on the spectral theory of compact self-adjoint operators.
Error estimates for approximating eigenvalues and eigenfunctions are derived. This
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strong mathematical justification of the proposed numerical method is done on the
base of general results of the abstract theory developed previously in article [8] to
make the analysis of the continuous problem and the corresponding error analysis
of the discrete problem. Earlier, we used a similar approach to solve the problem for
surface eigenwaves of weakly guiding optical fibers [9].

The purpose of the current work is to investigate numerically the accuracy of the
proposed in [7] and theoretically justified in [9] computational scheme. We present
numerical results for waveguides of classical cross-sections (circular, square, and
rectangular) as well as for waveguides of more complicated forms. Analysis of
numerical results for linear Lagrangian elements demonstrates that the speed of
convergence of the proposed algorithm is quadratic (with respect to the eigenvalues),
which correspond to the theoretical estimates derived in [9] for elements of arbitrary
order.

2 Theoretical Background

As usual (see, e.g., [10, 11]), we assume that the fiber is infinitely extended along
its axis and is perfectly cylindrical. The refractive index n of the fiber is a real-
valued function of only the transverse variable x = (x1,x2) € R2. The core of
the waveguide, i.e., the domain €2;, in the plane (x1, x2) is bounded, contains the
origin, but is not necessarily simply connected. Within the cladding €, = R*\;,
we have n = ny, = const > 0. We also suppose that

inf n(x) > ne, ny = sup n(x) > nee. €))]
xeR? xeR2

A variational statement of the problem is given in [12] and looks as follows: find
all values of (8, k) € A together with corresponding nonzero vectors H € V3(R?)
such that for all H' € V3(R?) the next equality holds:

1 I . 2
/RZ (nertﬂH -rotgH’ + n2, divgH leﬁH/> dx =k /RZ H-H'dx. (2)
Here, 8 and k are propagation constants and wavenumbers of guided waves,

A ={B.k): B/ny <k < B/nco, p>0}. 3)

The Sobolev space V3(R?) and the differential operators rotg and divg are intro-
duced in [12].
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Another formulation of the problem (2) based on an exact nonreflecting boundary
condition derived from the analytical representation for solutions of equation (2) in
the domain Q4 = R2 \ @,

e¢]

K, (pr) . 1 [ »
Hy(x)= > K:(pR) an(H) e, an(H) = /0 H|,_ge " dg,

n=—oo

“)

was proposed in paper [7]. Here, (r, ¢) are the polar coordinates of x, K, (r) is
the modified Bessel function of the second kind of order n. By 2 we denote the
computational domain, namely, a circle such that ; C Q.

The original problem (2) was reduced in [7] to the equivalent linear eigenvalue
problem of the form

A(p)H = B*B(p)H )

in the circle Q2. Here, the eigenvector H = (Hj, Hy) represents the first two
components of the magnetic field intensity vector H, the eigenvalue is B2, the
parameter p is the transverse wave number

p = (B2 —Kns)'/?, (6)

the operators A(p) and B(p) are nonlocal and self-adjoint, B(p) is compact.
Let

K={B.p):B>0, 0<p<\/1—(noo/n+)2ﬂ}. (7

If (B,k) € A, then p is real and positive, and formula (6) defines the one-to-one
correspondence between the sets A and K.

A Lagrangian finite element method for solution of equation (5) was proposed
in [7]. Numerical calculation of operators of the discrete analog of problem (5) is
quite economical [7]. Corresponding theoretical estimates were obtained in [13] for
elements of arbitrary order m. It was proved in [13] that the speed of convergence
of the proposed algorithm with respect to the eigenvalues and eigenvectors has
order 2m and m, respectively. Particularly, for linear Lagrangian elements it is
quadratic for eigenvalues.

3 Numerical Results

In this section, we illustrate the theoretical results [9] on the speed of convergence
proposed in [7] finite element method by numerical experiments with linear
Lagrangian elements.
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3.1 Circular Waveguide

The exact solution of problem (2) obtained by the separation of variables method
is well known for circular waveguides with constant refractive index (see for
instance [10, 11]). Therefore, as a first numerical example, we took the circular
waveguide with radius 1. The radius of the domain Q was taken 1.5 and n, = /2,
nso = 1 (see an example of the triangulation of the computational domain €2 in
Fig. 1).

The left panel of Fig.2 shows the first seven dispersion curves 8 = B(p) of
the reduced problem (5) calculated using a mesh with N, = 2493 nodes and with
the number of Fourier harmonics N = 10. The solid lines is the exact solution

Fig. 1 Triangulation of the computational domain €2 for a circular waveguide. Here, R = 1.5 and
Ny, = 146

- N (] » o o ~ o]
- N w S [$)] (o2} ~ oo

OO

2 1 6 8
p k

=°
-
N
wl
E
(4]
=3
~

Fig. 2 The first seven dispersion curves 8 = B(p) (left panel) and 8 = B(k) (right panel) for a
circular waveguide
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Table 1 Circular waveguide: N\ Np(nr)  45(16) 330(52) 1125(92) 2881(152)
dependence of
e = 1215y — B11/1Ba on the 1 0.640 0748  0.631 0.668
parameters h and N for p = 1 3 0641 0748  0.631 0.668
5 0.641 0748  0.631 0.668
7 0.641 0748  0.631 0.668
15 0.642 0748  0.631 0.668

and the dots is the computed solution. The dashed line is the boundary 8 = kop
of the domain K. All the dispersion curves are above of this line. The right panel
of this figure presents the first seven dispersion curves § = B(k) of the original
problem (2). The dashed lines are the boundaries 8 = kn4 and B = kneo of the
domain A.

Now we present the results of the analysis of the speed of convergence of the
proposed algorithm with respect to number Nj, of mesh points and the number N
of Fourier harmonics. For given p = 1, we calculated approximate solutions 8"
and compared them with exact solutions 8. The numerical results are presented in
Table 1 for ,Bff. Observing this table, we conclude that it is enough to take N = 1
or N = 2, then we have |84 — ,Bf(|/|,84| ~ 0.7h2. Here, Nr is the number of nodes
on the boundary I' of the domain 2.

3.2 Square Waveguide

The next example is a square dielectric waveguide. We choose it since results of
physical experiments are known for this optical fiber (see [7] and references therein).
The side of the square is 1, the radius of the circular computational domain Q2 is 1.5,
ny = ~/2.08, no = 1 (see an example of the triangulation of € in Fig. 3).

The left panel of Fig. 4 shows the first four dispersion curves 8 = B(p) of the
reduced problem (5) calculated using a mesh with N, = 2500 nodes and with the
number of Fourier harmonics N = 10. The bottom curve corresponds to the multiple
eigenvalue 81(p) = B2(p). The two other curves are intersecting. The experimental
data are marked by dots and match well with numerical solutions. The right panel
of this figure presents the corresponding solutions 8 = S(k) of problem (2).

Now we present the results of the analysis of the speed of convergence of the
proposed algorithm with respect to the parameters N and N for given p = 1.
Any exact solution for square waveguide does not known. Therefore as an “exact
solution” we use the approximate solution computed on the mesh with N = 6000
(nr = 212). The numerical results are presented in Table 2 for ,Bél. Observing this
table, we conclude that it is enough to take N = 3, then we have |83 — ,Bél|/|,83| ~
1.6h%.
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0.5¢ J

-15 -1 -0.5 0 0.5 1 1.5

Fig. 3 Triangulation of the computational domain €2 for a square waveguide. Here, R = 1.5 and
N, =151

9r o
8t 8r
7t 7t
6F o
5 st g O
4r af
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2f < 2f
1L BI(P)ZBZ(P) 1F
S 1 2 3 4 s ¢ % 2 i 6 8
p k

Fig. 4 The first four dispersion curves 8§ = S(p) (left panel) and 8 = B(k) (right panel) for a
square waveguide. Here, 81 (k) = B2 (k)

Table 2 Square waveguide: N\ Np(nr) 31(16) 341(50) 1012(92)
dependence of

€:h72|,33 —,3;’|/|,B3|0nthe 1 2.26 1.60 1.61
parameters s and N for p =1 3 2.27 1.61 1.64
5 2.27 1.61 1.64
7 2.27 1.61 1.64

15 2.27 1.61 1.64
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3.3 Rectangular Waveguide

Another example with known results of physical experiments is a rectangular
dielectric waveguide (see [7] and references therein). The sides of the rectangle are
1.5 and 1, the radius of the circle Q is 1.5, ny = \/2.08, Neo = 1 (see an example
of the triangulation of the computational domain €2 in Fig. 5).

The left panel of Fig. 6 shows the first four dispersion curves B = B(p) of the
reduced problem (5) calculated using a mesh with N, = 2179 nodes and with
the number of Fourier harmonics N = 10. The experimental data are marked by
dots and again match well with numerical solutions. The right panel of this figure
presents the corresponding dispersion curves 8 = B(k) for the original problem (2).

0.51 1

-15 1 -0.5 0 0.5 1 1.5

T wr
=

Fig. 6 The first four dispersion curves 8§ = B(p) (left panel) and 8 = B(k) (right panel) for a
rectangular waveguide
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Table 3 Rectangular

. N\ Np(nr) 40(17) 304(50) 1016(92)
waveguide: dependence of

e = 121 — BU1/1Bs] on the 1 136 0987 0327
parameters 4 and N for p = 1 3 1.39 1.19 1.04
5 1.39 1.19 1.05
7 1.39 1.19 1.05
15 1.39 1.19 1.05

For this case, we also present the results of the convergence analysis of the
proposed algorithm with respect to the parameters Nj and N for given p = 1.
As for the previous example, any exact solution does not known. Therefore again,
as an “exact solution” we use the approximate solution computed on the mesh
with N = 6015 (np = 212). The numerical results are presented in Table 3 for
,Bé‘. Observing this table, we conclude that it is enough to take N = 5, then we

have |83 — B1/1B3| ~ 1.1h%.

3.4 Three Circle Shaped Waveguide

Let us consider a waveguide with a more complicated cross section, for which we
do not have any exact solutions or experimental data. The domain €2; consists of
three circles that touch each other. The radius of each circle is 0.4. The radius of
the circle Q2 is 1.5, ny = N 2, no = 1 (see an example of the triangulation of the
computational domain €2 in Fig. 7).

Fig. 7 Triangulation of the domain 2 for a three circle shaped waveguide. The radius of each
circleis 0.4, R = 1.5, N, =243
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Fig. 8 The first six dispersion curves 8 = S(p) (left panel) and 8 = B(k) (right panel) for a three
circle shaped waveguide

Table 4 Three circle Shaped N \ Nh (nr) 78(16) 335(50) 1093(90)
waveguide: dependence of

e = 2|84 — BI|/|Bs] on the 1 05 233 925

parameters i and N for 3 0.619 1.67 1.56

p=1 5 0.62 1.67 1.57
7 0.62 1.67 1.57
15 0.62 1.67 1.57

The left panel of Fig. 8 shows the first six dispersion curves 8 = B(p) of the
reduced problem (5) calculated using a mesh with N, = 2226 nodes and with the
number of Fourier harmonics N = 10. The first and the fifth curves shown in the
figure correspond to the multiple eigenvalues B1(p) = B2(p) and B5(p) = Bs(p),
respectively. The right panel presents the corresponding solutions 8 = (k) of the
original problem (2).

Now we again present the results of the convergence analysis of the proposed
algorithm with respect to the parameters N, and N for given p = 1. Clearly, any
exact solution does not known, hence as an “exact solution” we use the approximate
solution computed on the mesh with N, = 6006 (nr = 216). The numerical results
are presented in Table 4 for ﬁi‘. Observing this table, we conclude that it is enough
to take N = 5, then we have |84 — ,Bffl/|,34| ~ 1.6h>%.

Figure 9, for given p = 0.2, presents isolines of absolute values of the
eigenfunctions (|H| = (H - H)'/?) corresponding different eigenvalues 5.



78 R. Z. Dautov and E. M. Karchevskii

p=1.6124 p=1.6124 B=3.4557

Fig. 9 Three circle shaped waveguide: isolines |H|, N = 5032, N = 10, p = 0.2
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Simulation of Dynamic Response )
at Resonant Vibrations of a Plate e
with a Viscoelastic Damping Coating

Vyacheslav A. Firsov, Victor M. Shishkin, and Ruslan K. Gazizullin

Abstract A technique for determining the dynamic response at resonant vibrations
of a rectangular plate with a soft viscoelastic damping coating is proposed. This
technique is based on finite element approximations and linear physical equations
of a viscoelastic solid. The material of the plate and damping layer is isotropic.
It is believed that the plate with the damping layer is deformed according to the
classical Kirchhoff-Love hypotheses. A special rectangular finite element with
a low-modulus damping coating has been developed to model the inertial, stiff
and damping properties of the marked plate. The system of resolving equations
for plate vibrations in the resonance zone is obtained. Numerical experiments on
approbation and estimation of reliability of the offered technique and the developed
finite element are carried out.

1 Introduction

The value of acceptable vibration of any structure of a particular purpose is
determined by its impact on the strength characteristics of the structure and its
elements, on the performance, health, and well-being of people somehow associated
with them, the operation of the equipment installed on it, etc. In terms of strength
characteristics, one of the most dangerous modes of dynamic deformation of
structures is a resonance, implemented in the structure when the frequencies of its
natural vibrations coincide with the frequency of external cyclic impact. At such
mode of loading, as it is known, amplitude values of dynamic stress-strain state
parameters increase manifold. Their correct and reliable theoretical determination
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with the accuracy necessary for practical purposes requires proper consideration in
the calculated ratios of damping properties of structural materials caused by internal
friction. To date, extensive scientific literature has been devoted to the methods of
their determination and construction to describe the corresponding mathematical
models.

Modern thin-walled structures have a sufficiently dense spectrum of natural
frequencies and can operate in a wide frequency range of disturbing forces. These
factors make it difficult to use traditional methods of resonance tuning out and the
use of various types of damping devices. This is especially true for aircraft structures
and devices, where the use of such methods and devices is almost impossible.
Hence, the ability of the structure to dampen dangerous resonance vibrations itself
preventing the occurrence of significant displacements and overloads becomes
critical. However, it should be noted that the majority of structural materials
(metals, their alloys, and composites), along with their high strength and rigidity,
have a very low damping capacity [1], and for many structures the main reason
for energy dissipation at resonance is friction in the junctions of their individual
elements (structural damping). It is important to note that the latter is a difficult
prediction factor. Therefore, in order to increase damping parameters and reduce the
dynamic intensity of thin-walled structures, their elements are often manufactured
as two-layer structures consisting of a rigid hard layer and a relatively low rigid
coating with high damping properties. Such elements are now widely used in
aircraft and shipbuilding, automotive, civil and industrial buildings, in the design of
devices to reduce their overloads in which various elastomers, mastics, and polymer
compounds are used as damping coatings [2].

2 Rectangular Finite Element with Viscoelastic Damping
Coating

The element consists of two layers (Fig. 1): a rigid isotropic layer 1 and a soft
damping layer 2 (Fig 1a). The element is under the action of a surface dynamic load
q(x,y,t). Since the viscoelastic damping layer is soft, it can be assumed that the
element is deformed within the classical Kirchhoff-Love hypotheses. The nodes of

a b
4 q(x..0) w, Z 4 w,
| lTx'
¢ VE———— 275 th Ya WAL ,f: U
7 ! A 3 \
il 9 0o
i 7 %A
— v
7/ 2 1 2
N 7 a———— “ Vs Vel el . NG
2a : \‘9] ? \‘92

Fig. 1 Rectangular finite element of a two-layer plate
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the element are located on the middle surface of layer 1. Eachnodei(i = 1,2, 3, 4)
has five degrees of freedom (Fig. 1b): deflection w;; displacements u;, v; in the
plane Oxy and angles 6;, ¥; of rotation about the axes Ox, Oy, respectively. Let us
introduce vectors

up vy w1 01 Y1
u v w 0

u={"2t, v={"t  w=1"1, ="' y= V2
u3 U3 w3 03 Y3
U4 V4 wy 04 (2

The displacements u, v of an arbitrary point of the middle surface of an element are
approximated by the expressions

u=Su, v=S>Sy, (1)

where S is the row matrix of basis functions H; (i = 1, 2, 3, 4) depending on the
dimensionless coordinates § = x/a and n = y/b of the element:

Hi=0-80-n/4; H=~0+8§80-n/4;
Hy=(0+80+mn/4; Hi=(1-8§€I+n)/4.

Dependencies (1) can be represented as a single matrix expression

{”} = Hr,, )
v

where

H_[H10H20H30H40

, Fog = (U] V] U2 V2 U3 V3 U4 V44,
0H10H20H30H4:| o = {u1 vi uz v2 U3z v3 U4 v4}

To reproduce the bending state of the plate, we define the deflection w in the
form

w = ch,

f={1xy x2 y2 Xy xzy )cy2 x> y3 x3y xy3}, 3)
c={co c1 c2 3 c4 ¢5 C6 €7 C§ C9 C10 Cl1}.

The angles of rotation of the cross-sections of the plate with coordinates x and y in
accordance with the accepted hypotheses are determined by the expressions

ow  Aff ow  ofT
= C, ‘(//‘ = =
dy ay ax ax

0= c. “)
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Element nodes have coordinates x; = —a, y1 = —b, xo = a, y; =
—b, x3 =a, y3 =b, x4 = —a, ys = b. Substituting these coordinates into
expressions (3) and (4), we obtain a system of 12 linear algebraic equations

Fe=rg (5)

with a matrix F depending on the coordinates of the element’s nodes and the right-
hand side rg = {wy Y1 61 w2 Y2 62 w3 Y3 63 wa Y4 64}, After finding the
vector ¢ from system (5) and its substitution in approximation (2), we come to the
expression

w = fTF_ll'ﬂ,

From here, we can find the basis functions that determine the relationship between
the deflection w and the components of the finite element vector rg:

Ni=f'F; (j=1,2,...,12).

Here F; are the j-th columns of the matrix F~! inverse to the matrix F.

However, it should be noted that the procedure for analytical inversion of the
matrix F using traditional (manual) technologies is practically unrealistic. The
solution to the problem can be found in the application of symbolic calculation mode
of the mathematical package MATLAB [3], which makes it possible to quickly find
the functions N;:

Ni=@Q—3&-3n+4n+& +n —&n—&n)/8,
Ny=a(l—&—n—E +&n+En+& -8,
N3=b(l—&—n—n*+&n+&n*+n —&n’)/s,
Ny=Q+3-3n—4n—& +n +&n+&n)/8,
Ns=a(-1—&+n+& +En—En+8& -8,
Ne=b(l+&—n—n"—&n—En’+n +E&n)/8,
No=@Q+3E +3n+4n—& —n’ —&n—&n)/8,
Ng=a(-1—&—n+& —&n+En+& +&n)/8,
No=b(-1—&—n+n"—&n+&n*+n +&n°)/8,
Nip= Q=36 +3n—4n+& — 1’ +&En+£n)/8,
Nii=a(l—E+n—E —En—En+8& +&7)/8,
Nip=b(—1+E—n+n"+&n—&n"+n’—&n)/8
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Having functions N}, the deflection w can be represented as
w=Nrg =[Ny N2 ... Ni2Irg (6)

According to the Kirchhoff-Love hypotheses, it can be assumed that each layer
of the plate is in a plane stress state with normal stresses oy, oy, and shear stress
Tyy. These stresses correspond to strain &y, &y, and shear angle y,, determined by
geometric relationships

9 dw u 9w 9 dw v w
Ex = u— = - , &y = v — = — s
T ox “ox ax  Cax2 Y dy . dy dy ¢ 9y?
9 w N 9 dw dv N ou_, 3w
= v— u— = - .
Vay ox . ay ay ¢ ox dx  dy ¢ 0x0dy
The z coordinate for layer 1 varies within the —h1/2 < z < h1/2 limits, for layer

2 within the h1/2 < z < h1/2 + h limits. It is convenient to write the presented
dependencies in dimensionless coordinates & and n of the element:

o bow 1w L 1w
YT g ae Ca2 982 YT poan b2 oapr’
18v+18u 27 9%w
a 3 b 9y ab 0Edn’

(7
Yxy =

Let us introduce the vector € = {&; &, yxy} and differentiating operators

1La o 19
AT — | a % b AT — 1 92 1 92 2 3
= 1 9 laag > B T | a2 9g2 b2 9n? ab d9tdn |
a

Taking this into account, dependencies (7) can be represented as a single matrix
expression

€= A, {Z} — zAgw. (8)

Substituting then representations (8) and (2) into (6), we obtain the connection
between strains and nodal displacements of the finite element:

€ = AgHry — zAgNrg.
The resulting expression can be represented as

& = Bal'a — ZBﬂl‘ﬂ, (9)
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where
B, =AH= [Boz,l B, 2 By 3 Ba,4] s Bﬁ = AﬂN = [Bﬂﬁl Bgo ... B/S,lZ] .

Blocks By, (i = 1,2,3,4) and Bg; (j = 1,2, ..., 12) are defined by
expressions

L oH g 1 3H ) 2 2
Bl —|a % b ooy Bl . —| L &N 1 &N;j 2 9N; (10)
o, 0 11) 08Hi 1 081? * B a2 9g2 b2 oan? ab dxidn |
n o a

The material of the rigid and damping layers of the plate is considered isotropic.
To take into account the elastic and damping properties of the material, linear
physical dependences can be used

o =Die + Dy ié, (11

representing a generalization of the well-known Kelvin—Voigt model [4, 5] for the
case of a complex stress state of the material. Here oy = {0y 0y Txy} i k=1, 2
are stresses in k-th layer of the plate; Dy, Dg ) are the stiffness matrix and
the damping matrix of the material of this layer, respectively. For an isotropic
viscoelastic material in a plane stressed state, the matrices Dy and D, will be
as follows:

Ex/(1—v3) Epvg/(1—v3) 0
D= | Exve/(1—v}) Ex/(A—vd) 0 |
0 0 Gy

Eide /(1= v7)  Exdevi/(1=vp) 0
D= | Exdesvi/(1=v0) Exdes/(A=v)) 0
0 0 8y kG

Here Ey, Gy, ¢ k, 0k are elastic moduli and logarithmic decrements of vibrations
of the layers’ material, respectively, under tension-compression and shear; vy are
Poisson’s ratios; w is the circular frequency of material deformation. Taking into
account (9), dependences (11) are obtained as follows:

0 =Di(Bury — zBgrg) + Dg i (Bory — zBgip). (12)

The first summand in (12) represents the elastic part of the stresses, which linearly
depends on the nodal displacements r,, and rg of the element, the second summand
is the inelastic part arising from the damping properties of the material and linearly
depending on the nodal velocities ¥, and Ig.
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Let us write down the virtual work of the elastic part of the stresses in the rigid
layer of the plate on the virtual strain de of this layer:

/2 a b
SA] = — / / /83TD1(Bara — zBgrg) dxdydz.
hi/2 —a —b

Substituting here relation (9), we obtain

hi/2 a b
_ TpT TpT
§A] = — / / /(SraBa — Z(SrﬁBﬂ)Dl(Bara — zBgrg) dxdydz.
hi/2 —a —b

After integration over the z coordinate, the last expression takes the form

a b h3
8A; =—h15r§/ fBOT‘DlBadxdyra—léarE
b

—a —

a b
/[B/STDlB,gdxdyrﬁ. (13)
b

20
Let’s introduce a vector r® = {r, rg} containing all nodal displacements of the

finite element. Taking into account this vector, expression (13) can be reduced to
the form

T
SA| = —5(r(">) K;r®

where K is the block-diagonal matrix representing the contribution of layer 1 to
the stiffness matrix of the finite element:

Kl _ |:KOtOl,1 0 i| )

Blocks Kgq,1 and Kgg 1 defined by expressions

a b 1 1
Kyo1 = h1/ fBO{DlBadxdy = hlab/ BIDBydtdn, (14)
—a —b -1 -
b
B[ [ Iy r
Kgs1 = 12/ /BﬂDlBﬁdxdy = 12ab/ /BﬂD1Bﬁd§d7}. (15)

—a —b 1 -1
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From expressions (10) follows that the product B/ DB, quadratically depends
on the dimensionless coordinates £ and 7 of the element. In this case, the Gaussian
formula [6] with two points in each coordinate direction can be used to calculate the
integral in (14) accurately.

11 )
| [Bipibaazan - S S B mD B, 100 Pr (16
-1 —1

m=1 n=1

where &1 = n; = —0.57735 and & = np = 0.57735 are coordinates of Gaussian
points; Q1 = Q2 = P; = P, = 1 are weight factors. In the product BEDlBﬁ,
the largest sum of the degrees of coordinates £ and 7, as again follows from (10), is
equal to four. Therefore, to accurately calculate the integral in (15), it is necessary to
take the Gaussian quadrature with three points along each of the element coordinates
& and n:

1 1

3 3
[ [BiDipdean =Y 3 B G nDBsG 110 Pe A7)
m=1 n=1

-1 -1

& =n = —0.77460; & = ny = 0; &3 = n3 = 0.77460; Q2 = P> = 0.88888;
01 = Q3 = P = P3; =0.55555.

Similarly, the contribution to the stiffness matrix of the element of the second
(damping) layer is obtained:

K2 _ |:Kowt,2 Kaﬂ,2:| :

Kls, Kpso
11
Kyw.2 = hoab / / BID,B,dtdn; (18)
—1-1
1 I 1 1
Kop2 = =, 1 <h‘ + 1) ab/ /BgnzBﬁdgdn; (19)
g -1 -1
1 1
h3 ht Iy T
Kppo = 3h2 +6, " 44 ab/ /BﬁDgBﬁdédn. (20)
2

-1 -1

The integrals in expressions (18) and (19) are found at the same Gaussian points
and weight factors as in formula (16). The integral in (20) is calculated by the
formula (17) with the replacement of the matrix Dj in it by the matrix D;.
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The complete stiffness matrix of a finite element is obtained by summing the
contributions of the rigid and damping layers:

K© — |:Kac(,l 0 i| n Koo,2 Kog 2
0 Kgpi Kl; 2 Kppo

In a similar form one can record a finite element damping matrix:

o Coo.1 0 Cua,2 Caﬂ 2
Cc@ = [ ac } + ’ e
0 Cgpa Cls Cpp2

The matrix C® blocks are found according to the same formulas as the correspond-
ing matrix K blocks with the replacement of stiffness matrices Dy (k = 1, 2) in
them by damping matrices D, x of the material of layers 1, 2 of the element.

Let us proceed to the construction of the finite element mass matrix M©), When
building this matrix, we can consider that the volume forces of inertia are caused
only by accelerations w in the direction of the 0z axis of the element. Let us write
down the virtual work of these forces on virtual displacements w of the element:

a b
SA = —hp/ /5w W dxdy. Q1)
b

—a —

Here h = h1 + ho and p = (p1h1 + p2h2)/ h are the thickness and average density
of the element, respectively. To represent the displacements w when determining the
inertial forces, we can take a bilinear approximation similar to representations (1):
w = Sw. Substituting this approximation into (21), we obtain

a b
8A = —hpSwT/ /STdedy\'i'.
—a —b

The last expression can be represented as
SA = —swI M,

where

a b 1 1

Mga:hpf sTdedyzhpab/fsTSdsdn.
—a —b -1 -1
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The integral in the resulting expression is calculated using the Gauss formula with
two points in each coordinate direction:

11

2 2
[ [sTsdzan=3" 38" €. 1SEn. 10uF. @2)

15 m=1 n=1

It should be noted that the resulting matrix Ml(f) is constructed concerning the
nodal displacements w; (i = 1, 2, 3, 4) of the finite element and has dimensions of
4 x 4, and the total mass matrix M© of the element should have dimensions of
20 x 20 (in accordance with the number of nodal displacements in vector). To form
the required matrix, one can use the procedure

T o
M@ = LT MYL,
where L is a control matrix of 4 x 20 size :

00000000100000O0O0OO0OO0O0O
000000000O0O0O100O0O0O0OO0O0O
000000000O0O0O0O0O0O100O0O0O
00000000O0O0O0O0OOOOOOT1IO0O

L=

It remains to form the vector of external nodal forces (load vector) of the finite
element, which can be obtained from the expression for the virtual work of the
surface load g (x, y, t):

a b
5A = / /Sw q(x,y,t)dxdy. (23)
—a —p
We represent the surface load and deflection w in the form

q(x,y,1) =8q(), w=Sw.

Here q(¢) is the vector of g(x, y,t) values at the nodes of the finite element.
Substituting these representations into expression (23), we obtain

a b
SA = awf /STdedy q().
b

—a —
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Hence, the components of external nodal forces in the direction of displacements w;
of the element are obtained

a b 1 1
P (1) =/ /STdedyq(t) =ab/ /sTsczgdnq(t).
b

-1 -1

—a —

The integral in the last expression is calculated by the formula (22). To form the
load vector of the finite element relative to the nodal displacements r'® one can use
the previous control matrix L:

PO =LTPY ().

3 Formation of Solving Equations System

To obtain the motion equations of the finite element model of the plate, one can use
the Lagrange—d’ Alembert principle

— 8r'M¥ — 8r' Ck — 5t Kr + 6r'P(t) = 0, (24)

where M, C, K, r, P(¢) are mass matrix, damping matrix, stiffness matrix, nodal
displacement vector, and external nodal force vector of the noted model respectively.
As vector dr components are independent and not equal to zero, then from (24)
follows the system of equations of motion of the plate

Mr + Cr + Kr = P(7). (25)
Let us consider resonant vibrations under the action of a load P(t) = Ppe'?!
with amplitude Py and frequency p = w;, where w; is one of the free vibrations

frequencies of the plate. In this case, the vibrations of the plate occur in mode F;
corresponding to the frequency w;:

r:sj-(t)Fj, (26)
where s;(7) is the generalized coordinate. Substituting (26) into the system (25)

and then applying the procedure of the Bubnov—Galerkin method, we come to one
equation for the coordinate s ():

mjlv'j +Cj.§‘j —i—kij:p()’jeipt 27
with modal parameters

mj =FMF;, c¢; =F/CF;, kj =F/KF;, py;=F]Py.
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The solution to Eq. (27) will be sought in the form
sj(t) = so,je' P70, (28)

where ¢; is the phase shift of the coordinate s (¢) relative to the load vector Pye'P!.
Substituting (28) into Eq. (27) and then canceling the common factor e'?!, we arrive
at the system of resolving equations

[k./ —p’mj  pe; } {Sa,./} _ {po,,/} (29)
. . 2. N ’
pej —kj+ p°mj | |sp,; 0

where s, ; = s0,jC08¢;j, 5p,; = so,j sin¢;. From system (29) components s, ;
and sj_ jare found. After that one can determine the amplitude so ; and tg¢;: so,; =

2 2 . R . .
\/sa’j + 5, 5180 = Sb,j/Sa,j -

4 Determination of Stress Amplitudes in Finite Elements
Under Resonant Vibrations of a Plate

Since the modulus of elasticity of the rigid layer of the plate is much higher
than the modulus of the damping layer, and the strains of the layers are of the
same order, the strength of the plate is mainly determined by the rigid layer. The
basis for determining the stress amplitudes in a given layer can be the previous
dependence (12) (the index k, which means the layer number, is hereinafter
omitted):

0 = {0y 0y Tay} = DBery — zBgrg) + D, (Boty — zBgip).
Let us introduce the notation
Dp =D[B, —zBy |, Dgs =Dg[By —zBq .
Taking into account these designations, the stresses o can be calculated directly

through the vector of nodal displacements r'® = {r, rg} and the vector of nodal
velocities 1) = {i rg} of the finite element:

0 =Dpr¥ +D, . (30)

At the steady resonant vibrations of the plate, expression (30) can be represented
in the complex form:

diag[ei(pt*”)]a(()e) = Dp + ing,B)diag[ei(pt*‘p)]r(()e).
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Here i is an imaginary unit; or(()e) and r(()e) are vectors containing amplitudes

of stresses and amplitudes of finite element nodal displacements, respectively;
diag[¢!(P"~7)] and diag[e! (P’ ~9] are diagonal matrices with ¢!’ =) and ¢! (P! —%r)
elements; y; and ¢, are phase shifts of vector a((f) and r(()e) components relative to
the load vector of the finite element model of the plate. After simple transformations
and reduction of the common factor ¢'P', we come to the expression

Ga+ioy=Dp+ipDgp) ) +iry), 31)

where the notation is introduced:

0, = diaglcos ylo\; o) = diaglsin y]o;

rl® = diag[cos ¢] r(()e); rl(f) = diag[sin ¢] r(()e).

The vectors o, and o, contain, respectively, in-phase and ortho-phase (shifted
by m/2) with respect to the load components of the stress amplitudes. From
expression (31) it follows:

o, =Dprl® — ng,Brée); oy = DBr,(f) + pDg pr'd.

This makes it possible to determine the stress amplitudes aée) and phase shifts y;
using the formulas

_ 2 2 R , .
00,j = \/oa’j +o, ;. tgyj= 0b,j/0a,j -

S Numerical Experiments

A rectangular plate with dimensions of 960 x 580 mm, consisting of a rigid layer
1 and a low-module damping layer 2, hinged along all edges is considered. The
material of the rigid layer is aluminium alloy D16AT, the material of the damping
layer is mastic ADEM-NSh. The thickness of the plate layers: 717 = 1,8 mm;
hy = 0,4 mm. Characteristics of D16AT alloy: Young module £ = 7.2- 1019 N/m?;
Poisson’s ratios v = 0.3; logarithmic decrement of vibrations § = 0.0054; density
p = 2700 kg/m*. ADEM-NSh mastic characteristics: E = 5.4-10° N/m?; v = 0.28;
8§ = 0.75; p = 1150 kg/m>. The resonant surface load ¢(f) = gocos pt with
amplitude g9 = 64.5 N/m? and frequency p = w; = 114.16 s~!, where o, is
the frequency of the main tone of the plate’s free oscillations, found by inverse
iterations [7, 8]. The finite element model of the plate consists of 60 identical
elements (10 elements in the long side direction and 6 elements in the short side
direction).
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Fig. 2 Deflection amplitudes wq (a) and stress amplitudes o, ¢ (b), 0y,0 (¢) and 7y o (d) on the
lower surface of the plate at resonance at the frequency p = w

Figure2 shows the amplitudes of deflections wg, the amplitudes of normal
stresses ox,0 and oy o, as well as the amplitudes of the shear stresses 7,0 on the
lower surface of the plate at resonance. The results presented are in qualitative
agreement with the concept of the operation of the plate under the given conditions
of its loading and fixing.

The strongest criterion for evaluating the reliability of the obtained results can be
the fulfillment of the condition of energy balance at resonance. This condition is the
equality of scattered energy AW in the volume of the finite element model of the
plate for one cycle of oscillations and of the full work A of external nodular forces
P(¢) during the same cycle: AW = A. For determination of AW we can use the
damping matrix C and the amplitude node displacements vector rg [9]:

AW = mprl Cry. (32)

Full work A is the summation of external nodal forces P;(¢) on one cycle of
oscillations is:

27 /p

A:Z / P (t) i (1) dt.
L
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Here Py (¢t) = Po cos pt, ri(t) = rorcos(pt — @k). After integrating the product
Pr (1) 7 (1) we get

A=m Z Pox-rpr = TL’PgI'h. (33)
k

Calculations carried out according to formulas (32) and (33) for the considered
two-layer plate confirm with high accuracy the fulfillment of the energy balance
condition: AW = 0.44399 N - m; A = 0.44399 N - m.
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The Limit Theorem on the Trajectories )
Distribution ik

Farit G. Gabbasov, Aleksandr V. Gerasimov, Vyacheslav T. Dubrovin,
R. M. Askhatov, and Maria S. Fadeeva

Abstract In mathematical modeling wide range of mathematical methods and con-
cepts are used, in particular, ergodic theory which studies the statistical properties
of motions in measure spaces (dynamic systems). The paper considers a dynamic
system generated by measure space transformations. The central limit theorem with
a convergence rate estimate for the trajectories distribution of a finite-dimensional
torus is extended into transformations that are not ergodic.

1 Introduction

In mathematical modeling (for example, in studies of the deformation and motion
of bodies, filtration, low-temperature plasma, etc. [1-8]) it becomes necessary to
use dynamic systems generated by a wide range of measure spaces transformations.
Analysis of the statistical properties of such systems is a topical problem not only for
mathematicians but also for specialists from other industries. The results obtained
in this research are an extension of dynamic system studies presented in [9-11].
They considered the dynamic systems generated by measure space transformations
(automorphisms, endomorphisms). The history of the issue is as follows. In 1964
V.P. Leonov [12] proved the following central limit theorem.

Let X is a k-dimensional torus, mes(.) is an invariant measure on it. Aside from
the algebraic properties of X, mes(.) can be identified with the Lebesgue measure
defined on the hypercube Xy = {r : t = (1, --- , %), 0<H <1,--- ,0 < < 1}
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of the k-dimensional Euclidean space R¥. It is known that any measure-preserving
algebraic torus endomorphism is defined using a nondegenerate integer matrix W by
the convention 7t = tW, t € X;. Let W be an integer matrix. Among the roots of
its characteristic polynomial, there is no one of unity. In this case the endomorphism
T is ergodic. Suppose that the real-valued periodic function f(#) with a period of

1 for each argument satisfies the following conditions f f)dt =0, f f2(ndt <
Qi Qi

oo and there is given a restriction on its integral modulus of continuity: for some

A,e>0

2
max sup f|f(t1,~-~ it AR tin, e ) — £, )| di < Allng| T2 E
lfifk(]fhf&

2
n
Next, if 02 = lim [ ,ﬁ(Z f(th)> dt > 0,
n—o00 o k=1

n X
then nlgrgo mes {t it e Q, Gj/n mXZ:I faEwWm™y < x}=J;n _{o e*uzdu. After this,
it is reasonable that the question of studying the convergence rate in this limit
relation arises. Articles of authors of this work were devoted to this. The results
were obtained for the case of matrices W when all roots of their characteristic
polynomials are greater than unity in modulus. Such matrices stretch Euclidean
space in all directions. Exactly this matrix property makes it possible to obtain the
property of the correlation exponential decay from simple geometric considerations
and to apply the theory of summation of weakly dependent random variables to
the studying problem. There were obtained the convergence rate estimates of the
following orders O (In n/n'*), 0(1/n'2=%), O(Inn/n'/?). The estimates are given
in chronological order. The results of these works can be extended to a certain class
of other transformations. This work is devoted to this.

2 Statement and Proof of Results

Let define the transformation ' = rWof the Euclidean space R* using a certain
set of functions: 'y = ¢1(f1, ..., %), ..., 'x = (1, ..., ). Let the following
conditions are fulfilled:

1. {tW} = {{r} W} where is the sign of fractional unit.

2. Functions ¢;,i = 1, ..., k and their partial derivatives are bounded in absolute
value by some constant, and Jacobian of W is equal to a constant value J. Besides,
|J| > 1.

3. There is a number § > 0, for which ||tW — t/W|| > (1+96) ||t -t
where |||| is the designation of a vector length in RE.

, t,1' € Rk,
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4. There is a number p € (0, 1), such that sup ||dsW| / |lds|| < (1 — p)|J|, where
ds = (dty, ..., dt) if the arc differential-vector of any smooth curve in R¥ (by
smooth curve it is meant a curve with a tangent at any point), and sup is taken
along any such curve.

S.\f0) — fa@)| <Al —1|% 1, t' € Q. where |t]| =] +... +1Z.

Using the transformation W let define the transformation of torus T which can be
identified with the unit hypercube in R¥ according to the rule: Tt = {tW}, t € Q.

Theorem 1 Under the preceding foregoing rules, the following relation is the case:
n

F,(x) = mes {t 1t e Q, Uj/n > f(TMr) < x} = ®(x) + 0(nt=99), where
m=1

o X
ol = nlingo 740 x2dF,(x), ®(x) = leﬂ 7{(} e‘“zdu, and f(t)is a real-valued

periodic (with a period of 1 for each argument) Lebesgue square-integrable function

that satisfies the Lipschitz condition 5 and relation [ f(t)dt = 0, and ¢ is an
Qe
arbitrarily small positive number.

Proof Condition 1) is necessary for Tt = {th} ,d=1,2,...Dueto conditions
3 and 4 the following lemmas can be proved. O

Lemma 1 Let g(t) satisfies the Lipschitz condition 5, and h(t) is a square-
integrable on R¥ function, such that B? = f h2(t)dt < oo, h(t +r) = h(r) for
Q
any integer vector r. Next, if conditions 1-4 are fulfilled for the transformation
W, then the following equality is correct: f gMh(T9r)dt = f g(®)dt f h(t)dt +
Qx Q Qi

O(|J|79% + 0%9) where ¢ > 0 is a sufficiently small fixed number, 0 = 1/(1+§), 8
is from condition 3), the constant in the symbol “O” depends only on the constant
A in Lipschitz condition, on the root B of the integral, on the matrix W and the
dimension k.

Proof Letus write [ g()h(tW9)dt = |J|79 [ g(tW~9)h(r)dt. The transfor-
Qe QW4

mation W carries a unit cube into a certain area Q; W. Here and elsewhere R® g

a lattice of integer points from 2 W?. We represent the integration domain Q; W9

as QW7 = AgJ (U, Ar) where the backbone of Ay is a union of the lattice R®

parallelepipeds having at least one common point with the boundary of area ; W1,

and A, runs through all remaining lattice parallelepipeds. According this

[ W Hh@ydr = f gUW = Dh(n)dt + 3 [ gtW™Dh()dt.

QW4 roA,
Further, because of per10d101ty [ g@W™Dh(t)dt = [ g((t + r)W~9)h(t)dt,
Ay Q.
where r = (rq, ..., ry) is a vector. It is necessary to shift A, by this vector. Then,

it holds the position of unit cube €2 at the origin. Due to condition 3) we have
Ht _ H > (1496 HtW*1 - t’WH, HtW*1 - t’WH <.l Ht -7 H Repeating q
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times yields that HtW‘q —fw H < (1+15)q t—1 H and HtW_q H < (1+15)q Izl
for all t from . Therefore, sup [t W=7| < sup [|t]|677 = Vk679,6 = 1/(1+5),

e 1€

whence it follows that

[ gt + )W DHh@t)dt — grW=9) [ h(r)dt
Qi Qe

0O ) or| [ g(W Dh(t)dt —grW=9) [ h(t)dt| = OO~ *9).
Ay Qe

Further, since the volume of domain ;W7 is equal to [J|?, and the curve
bounding this domain is smooth, then it follows that P, < [J|9(1 — p)? from
the condition 4) restricting the increase of perimeter P, of the area ;W in
connecting with an increase of q. Hence, there is some sufficiently small positive
number gy such that mes(Ag) = O(P;) = O(|J|979%). Using it and Lipschitz
condition 5) there is a result [ g¢W~9)h(t)dt = O(]J|979%). After that, taking

Ao
into account that the number of integer points in R® g Ny = O(|J)9 — |J|172%0),
let substitute the estimates that we obtained and get f gW=DHh(t)dt =
QW4
f h@)dt(Q_g(rWw=9) 4+ O(|J|179%0 + |J]|96*9) By mean-value theorem there is a
Q. r
pointx, € A, W7 that g(x,) = |J|? [ g(r)dt. Since
AW4
g(x,) = grW9) + 0(6), then [ g(W h(1)dr =
QW4
|J|9 f h(t)dt f g)dt+O(|J|179%0 4| J|96%Y). In the obtained expression
Q U, A, w—a
let replace f g(t)dt to f g(t)dt. The replacement error will go into the
U, arw-e S
remainder, since [ g(t)dt = [ g(t)dt + O(]J| 7). Here we used the fol-
U, arw-e S

lowing estimate mes(Qx/ |, A-W™9) = |J|~%04. The next formula is the result of
replacement: [ g(t))h(T9t)dt = |J|? [ g(t)dt [ h(t)dt + O(|J|779%0 + |J|70%9)

Q Q Qe
which leads to the completion of the proof. O
Lemma 2 There are numbers ki < ky < ... < ky. In that case, if k11 —
% m v
km = A, then | [o, ] Fawkiydr— Jo, T1 fawkiyde Jo, T1 fawkiydr | <
i=1 i=1 i=m+1

(const)”@f‘ where 0 < 01 < 1 and depends on A and « from condition 5, as well as
on § from condition 3) and the Jacobian |J| of the transformation W.

1% v
Proof Let us write [ [[ fGW)dt = |J|7*n=¢ [ T] faWk—n=a)dz.
Qk i=1 Qkam+g i=1
Here ¢ = [2)/3]. As before, R® is a lattice of integer points from 2 Whntsg,
Ao is a union of the lattice R® parallelepipeds having at least one common point
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with the boundary of area ;W& and A, runs through all remaining lattice
parallelepipeds. Then,

S N G M)
Q Whin+g i=1
|J|_"'"_g/l_[f(tW" k’"_q)dt—l—lJl_k'”_gZ/Hf(th —kn—ayqt —
Ao = 1 A, = 1
= |J| k= gZ/l—[f((t—i—r)Wk “kn=ay ]"[ fawki—kn=a)qy
r Al i=m+1

+0(|J|7€0(km+g))

where g is a sufficiently small fixed positive number. Due to condition 3) the
m

function fo(r) = [] f((z+7r) Wki—km—4y satisfies the Lipschitz condition with
i=1

m
constants A — (2A + 1)", @ — «. Actually, fo(r+h) = [] f(( + r)Wk"_k"’_q—i—
i=1

m
hWhi—kn=a)y = TT (f((t + r)Wki—kn=d) 4 p; A|hWki~kn=a||*) (2) where |p;| <
i=1

1, i = 1,...,m However, if |x;| < A, |&/| < &, then ]_[ (xi +&) — ]_[x, <
i=1
e(1 +2A)™, that in application to right-hand side of (2) gives | f2(t + h) — f2 M =<

2(1 +2A)". Let apply Lemma 1 to the integral under the sum sign in (1),

replacing in the estimate of the lemma A by (2A 4+ 1)” and setting g(¢) =

m v

[T £ +nWh=tn=a) h@) = T] faWS70), g = ki1 —kn — g. Since

i=1 i=m+1

km+1 — km > [A/3], then ¢ > [A/3] by the definition of the number g, and

by Lemma | [ g(0)h(T9t)dt = [ g(t)dt [ h(t)dt + O((1 + 2A)2(|J|He03 4
Q Qe Qe

901)»/3).

Next, we substitute the result expression into (1):

f H fawhydr = )

lel

v

:|J|’k’”’gZ(/ ]_[f((t+r)w"i*km*‘1)dtx/ [T rewk"—0ar4

Qe i=1 o i=m+1

+O((1+24)2 (|70 467 + 0 (g |70l ®) =
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=|J|*’<m*g2/]_[f(tw"i*"m*q)dtx/ [] rewt—*n—9drt
i=1

r Ay j = Qi i=m+1

F(1+[T]750) - O((1 4 24)27 (| T |70 4 9**/3)) 4 O (|J |~ FotkmT8))

Further, since

Z / qf(lwki—km—q)dl = Z mesA,Wl/_(km"‘g) / nf(kai)dt —
N r

rr = A, W—km+g), i=l1
3)
m
= |J[fmts / [Traw*)ar
U, arw-tmte =1
m
= IJI"'"+g(/ [[raw*)ar + o(|—cotntely),
o, =1
then the next will follow from (3)
v
/nf(th")dt =
Q i=1
m %
=/]_[f(tw’<f)dtx/ [] rewtar+
Qur i=1 o i=m+1
H A T750) - O+ 242 (1[40 4 69%3)) O (|| ~F0kn+8)) =
m Vv
=/l_[f(thi)dtx/ [1 rewkde+ oo
kr =1 Qp i=m+l1
Lemma 2 is proved. O

Lemma 3 The following relation is the case:
1 . m m _ 1 - m
oo lew )—ff(rw an=_ . lew )+ 0(1/+/n).
m= Qk m=

Proof Since the transformation T = {th}, d = 1,2,... does not remain

the Lebesgue measure on 2, then [ f(tW)dt # 0, except that [ f(t)dt = 0.
Qi Qe
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But it is easy to get around the difficulty that appears in this case. It can be done

by considering functions f(tW™) — f f@w™dt,m = 0,1,2,.... instead of
Qe

functions f(+W™) in all calculations. Let us show that

/f(tW")dt = 0(e %), “4)

Q

where a > 0 is a constant. Indeed, just as at the beginning of the proof of Lemma 1,

we write f faWhdt = |J|71 [ fyde = |J~ q|(f fdt + Y [ f(odt.

QW4 rA,

Further, since [ f(ndt = [ f(t+r)ydt = f f(t)dt =0, [ fdt =
r Qe Ao
O(|J|979%0, then the validity of (4) becomes 0bV10usly and the statement of
Lemma 3 follows from this. Lemmas 1 and 2 show a weak dependence of terms
in the sum S, = 27:1 f(T/t). We denote the vth semi-invariant of this sum by

Xo(n), e, xu(m)= 0 In [ exp(z Yj_y fFW )dt |.—. o

Lemma 4 The estimate x,(n) = O(n). is the case for fixed v, 2 < v < w, where
w is a sufficiently large positive number.

Proof This lemma is proved using Lemmas 1 and 2 as in [13]. O

Lemma 5 The estimate [o (31, FaW)Y2Ydr < KoM+ 1)1 +

QK(M +1)¥), is the case for fixed v, 1 < v < w, wherel < 60 < 1,M =
[m/K], K— is any number from the interval (1, m/3). Here [a] is the designation
of the integer part of the number a. The lemma is proved in the same way as in the
article [1-9].

Proof The proof of the theorem uses probabilistic terminology and tools. The
theorem is proved using methods of summation of weakly dependent random
variables based on the idea of S.N. Bernstein. He proposed to split the sums of
weakly dependent random variables into long and short partial sums. The result
of such kind separation is the fact that long sums become almost independent,
and the contribution of short sums is small to the total distribution. Let us denote
E&i=Ff (T7). The sum of the distribution of which is the problem of this studying
is Sy = >j_;&;. Let Q and N be natural numbers increasing together with
n. They fulfill the condition |n — p(Q + N)| < p. The sum S, is dividing

as follows: S, = /O (Zp—i-zg) VO Z, (Y + «/QZ/ 1yj where

vi = (1/V0Q) Zeri E(—1)(Q+N)+r> yj = (1/V0) >N, EiQ+(j—DN+rs -
y2+1 = Y i&p+Ny+re Let, further, 2, = 30, §;, where Ji,.... 9,
are quantities satisfying the following properties: mes {t i€ Qp, Yk < x} =
mes {t :1 € Q, yk < x} [q exp(iZ,//p)dt = ]_[5’:1 Jo, exp(3j//p)dr. The
second property shows that the quantities y1, ..., J, are, as it were, independent
random variables (in terminology of probability theory).
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2
2.1y _ e .
2= [ (] ane)
Fp(x) =mes(t:1 € Q, zp <x0(Q)/p),

We denote Fp(x) = mes (t:1€Suzp <x0(Q)/p),

fp(l)=/Q exp(ilzp/(0(Q)/p)dt
k

Foll) = /Q exp(il2,/( 5(Q)y/p))d.
k

Letters Cj,w; will denote positive constants which are independent of p, O, N.
Using Lemmas 1 and 2 it is possible to obtain the following

1) = Fo 0| = C1V/p/Q exp(~CaN) )
We assume that N = n!/®1 @ = ©°7°. Then, (5) will be written as follows:
£ = fo 0] = Cay/p/ 00 ©)

Next, we bring to use the function G, (x) = ®(x) ~|—Z'/’.:1 Pk(—d>)/pj/2, where
)k+2q
1

) Z My --hig ®("+24)(x) @(r)(x) —

k
—1
P(—®) =Y ¢ kil kg
g=1

ki>3
ki+...+ky=k+2q

= (1/\/271)(—1)’_1H,_l(x)e_xz/z, H(x) are Chebyshev-Hermite polynomials,
A = xr/0"(Q), xr is the rth semi-invariant of y;. It is obvious that

Fp0) = G| = |[Fo0) = B + [ Fy) = G| . @
Further,

‘F,,(x) _ ﬁ,,(x)‘ < 1/V2L(Fy, ) + max ‘ﬁ,,(x) — Fy(x + Ax)| (8)

where L(F), F p)-is the distance between distribution functions in the Levy metric;
|Ax| = L(F,, F,)/~/2. It is known that

L(Fp. Fp) < Un [ | o0 = fp0de/t + 2emU/U U > .

Choosing U = n®? and applying (6), the following will be received

L(F,, Fy) < C4plnn/n® )
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The next follows from (3)—(5)

|Fp0) = Fp)| = €5 (Vp/@n™ + plnn/n®) (10)

Let us estimate ‘ﬁp(x) — Gyp(x)|, using the inequality ‘fp(l) — gvp(l)‘ <

c)e R 4 PO T ) < Ty = po?(Q)/ B0 +3)r) ) (0,
for the characteristic function fp 0.

Here, g,, (1) = e P21+ Z‘]’-zl P;j(il)p~I/?) is the Fourier-Stieltjes transform
of the function G,p(x) = ®(x) + 2521 Pk(—CI>)/p//2. We use the Esseen
inequality

A T A
Fp(x) = Gyp(x) 524H/(7TT)+1/7TfT ‘fp(l)_gvp(l) /ldl, Y

where H > 0 is a constant. O
Next, it will be necessary to define the following.

Lemma 6 If equality F,,(x) = ®(x)+ O nm =% /(14 |x|")) holds for some a, 0 <
o <0,5, and some y, y > I, then there exist numbers S, 5,7 > 0,0 < e < a/2,
such that  max | fn(D| < 1 — 8 for sufficiently large n.

T <||=Bn*~

Proof The lemma is proved using the proximity of the characteristic functions f; (/)
and the normal distribution, as in [13] |

We choose T = g0 Q" *T,p, &0 > 0 and estimate the integral

1 = f_TT ‘fp(l) — gvp(l)‘ /1 dl. The estimate is carried out in the same way as
in [9] using Lemma 6. Currently, I = O(I/Tv‘j;rl + 1/p®*D/2 4 1/T). From
this estimate and from (7), (10), (11) the next will be obtain |Fp (x) — Gyp (x)| =
O/ Ty +1/(Q* ¥ Typ)++/p/QInTypn =341/ p*+1/2) Letus replace F(x)
with the distribution function mes {r : 1 € Q¢, Y1, F(T)/(0(Q)/pQ) < x}
and estimate the result error as in [9] using Markov inequality and estimate from

Lemma 5.
Polynomials Py (—®) which are part of G, (x) will be estimated using Lemma 4.

So, Gyp(x) = P(x) + O(ijle_x2/2x3jQ_//2). Further, we choose v =
'3, p = [n1720/C0=D] and Q from the condition [n — (Q + N)| < p. This
condition also implies «/n/(pQ) = 1 + O(N/Q). Considering all of this and the
fact that 6%(Q) = o + O(1/Q), it will be as in [9] and [13]:

Fy(x) = ®(0) + O(nes 4050 /(1 4 [x|")) s = Yooy =02 (12)
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Lemma 5 is not used for « = 0. If « = 0, then (12) transforms into F,(x) =
11

d(x)+O0me+ */(1 4 |x]")). Now let us take & = 1/wsq — 1/4 and get F,(x) =
3 1

®(x)+0m s 3 /(1+]|x|")). Continuing this process by successive approximations
the statement of our theorem will be obtained (it will be for sufficiently large w).

3 Conclusion

The obtained estimates for the convergence rate in the central limit theorem require
the fulfillment of condition (1)—(4). Subsequently, adding conditions and improving
the method of proof, it is possible to perfect this estimate. There is also the
possibility of proving limit theorems with large deviation and multidimensional
theorems.
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Design of the Best Linear Classifier m)
for Box-Constrained Data Sets ik

Zulfiya R. Gabidullina

Abstract We construct a binary linear classifier for n-dimensional data sets with
the special box-constrained structure. Data sets with this structure arise naturally in
many real-world areas. We apply a linear separability criterion proposed in J. Optim.
Theory Appl. (2012, https://doi.org/10.1007/s10957-012-0155-x). The Minkowski
difference of the two data sets allows us to reduce a two-class classification problem
to the problem in more easy to solve form. The greatest benefit of this reduction
is that it allows to compute the parameters of a linear binary classifier by way
of exact formulas. For this reason, a proposed framework has low computational
costs. We rigorously prove that the developed linear classification model provides
the possibility of constructing the data separator (or pseudo-separator) which really
has the best estimate of its thickness. There are studied both regular and singular
cases of separability arising in the theory and practice of linear classification of data
sets.

1 Introduction

The data classification problem has numerous applications in a wide range of data
mining tools. Our study is motivated namely by applications in many real-world
areas. Indeed, the necessity of classifying the box-constrained data sets can naturally
arise, for instance, in the problems of credit scoring and medical disease diagnosis.
A useful systematic survey of the existing literature related to the data classification
problem is contained, for example, in [1-6] (see also the references therein).
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For linear binary data classifying, the model of a supervised machine learning
type can be described as follows:

1. For the two given training data sets (sets of objects with some characteristics—
feature values), construct a linear binary classifier which makes a classification
decision based on the training instances.

2. For a new unlabeled test instance, decide a class membership, i.e. identify class
label.

Thus, the data classification process consists of the two main phases: (1) training
phase, (2) testing phase.

The rest of this paper is organized as follows. In Sect. 2, we propose the auxiliary
procedure for counting the vertices of the box-constrained set, the exact algebraic
formula of the Minkowski difference of two sets given by box constraints. In Sect. 3,
we propose the explicit formulas for computing the features weights corresponding
to the best linear separation margin of sets. In Sect. 4, we construct a linear binary
classifier and present a linear binary classification model. In addition, we rigorously
justify the assignment criterion. In Sect. 5, there are drawn some conclusions.

2 The Minkowski Difference of Two Sets with
Box-Constrained Structure

In this paper, we discuss the problem of the binary data classification in the case
of the box-constrained sets. A box constraint on x € R” is usually given by the
bilateral linear inequalities which restrict all variables to be in some intervals. Our
approach consists in a reduction of the two sets separation problem to the problem
of separating the origin of the Euclidean space from the Minkowski difference of
these sets. The main benefit of this reduction is that it allows to calculate all the
parameters of a linear binary classifier with the help of exact formulas. For this
reason, the computational costs of a proposed framework are low.

We first note that in [7] there was proposed the exact formula of the Minkowski
difference for the convex polyhedra given by the constraints of the general form.
This section is devoted to the explicit algebraic expression of the Minkowski
difference for the case when the both operands under this operation are determined
by specific box constraints. By the way, let us notice that the obtained Minkowski
difference formulation can be useful for the data analysis algorithm presented in [8].

Let be given the two following different sets:

L={zeR":aq; <zi <b;,Viel},

M={peR":¢ <p; <d;,Viel}, (1
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where I ={1,2,---,n}, z=1(21, 22, --+» 2Zn), P = (P1, P2, ..., pn). Let the
upper and lower bounds on the variables a; & b;, Vi € I be any real numbers such
that a; < b;. We make the analogous assumption about e; &d;, Vi € I: ¢; < d;.
By construction, the sets L, M C R" are convex and compact.

Let us describe an auxiliary procedure which will be often employed below.

Procedure (Count of the Vertices of the Box-Constrained Data Set)
Require: n-dimension of the space.
Require: m = 2"-the number of vertices of

D={xeR":.g<x; < fi,iel}.

Require: lower bounds g = (g1, &2, ..., gn) for n variables.
Require: upper bounds f = (f1, f2, ..., fu) for n variables, g; < f;, Vi € I.

1. Declare the n-dimensional vector y = (y(1), y(2), ..., y(n)).

Execute the loops presented below, setting that 71, 12, ..., In are the con-
trol variables for the n loops, respectively. For these variables, there are initial
the following values: g1, g2, ..., gn. Likewise, fi, f2, ..., fn represent the
final magnitudes of them. Due to syntax of the procedure pseudocode, to update
the loop control variables, we use f1—g1, f2—g2, ..., fu — &n, respectively.

2.D0 Il =gy, fi, fi—&
3. y)=11
4. DO I2=g, fr, o—&
5. y2)=12
6.
7. DO In:g_n, Jos fn— &n
8. y(n) =1In
Having got all the coordinates of the vector y, we can print them.
9. PRINT(y)
10. END
11,
12. END
13. END

As a result of executing the above described procedure, one obtains a complete
list of all 2" vertices of some n-dimensional box-constrained set D . The fact is
demonstrated in the following elementary example.

Example 1 (Vertices of the Unit Cube in R3) Clearly, the unit cube, consisting of
the vectors x € R3 satisfying the constraint —1 < x; < I, Vi = 1,3, has the
following eight vertices:

(_11 _11 _1)1 (_17 _11 1)7 (_11 17 _1)1 (_17 11 1)7

( 17 _17 _1)7 ( 11 _17 1)1 ( 17 17 _1)1 ( 17 17 1)‘
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In general, the previous example illustrates how the above described procedure has
established the order of combining the lower and upper bounds used in a linear
bilateral inequality system describing some concrete box-constrained set.

For definiteness as well as simplicity of representing the further results, we utilize
the already mentioned procedure for counting the vertices of sets L and M. In what
follows, the first and second columns correspond to the full vertex collections of L
and M, respectively. We introduce notations for the vertices of sets L and M : vl.L
and le, i=1,2,..., m, respectively.

(a1, az, ..., apn—2, an—1, an), (e1, e2, ..., en—2, en—1, €n),
(a1, az, ..., ap—2, an—1, by), (e1, €2, ..., en—2, en—1, dn),
(a1, a2, ..., an—2, bn—1, an), (e1, €2, ..., en—2, du—1, €n),
(a1, az, ..., an—2, bn—1, by), (e1, €2, ..., en—2, dy—1, dp),
(a1, b2, ..., by—2, an—1, an), (e1, d2, ..., dn—2, en—1, €n),
(a1, b2, ..., bp—2, an—1, by), (e1, d2, ..., dn—2, en—1, dn),
(a1, bay ..., bp—2, bp—1, an), (e1, da, ..., dy—2, du—1, en),
(a1, ba, ..., bp—2, byp—1, by), (e1, da, ..., dy—2, du—1, dn),
(b1, az, ..., ap—2, an-1, an), (di, ez, ..., en—2, €n—1, €n),
(b1, az, ..., ap—2, an—1, by), (di, ez, ..., en—2, en—1, dp),
(b1, a2, ..., an—2, bn—1, an), (di, ez, ..., en—2, dp—1, €n),
(b1, a2, ..., an—2, bn—1, by), (d1, ez, ..., en—2, dp—1, dn),
(b1, b2, ..., by, ay—1, an), (di, da, ..., dpn—2, en—1, €n),
(b1, b2, ..., byp—2, an—1, by), (di, da, ..., dp—2, en—1, dp),
(b1, b2, ..., by—2, by—1, an), (di, da, ..., dy—2, dy—1, €n),
(b1, bay ..., bp—2, byp—1, by), (di, dy, ..., dp—2, dp—1, dy).

The Minkowski difference of some two sets L and M is

L-M:={a—b: a €L, beM}.
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For L, M C R”", itis not hard to prove the following equality:

min {c,d) = min (c,a) —max {(c,b) VceR". 2
deL—M ael beM

This equality justifies our approach which consists in a reduction of the two
sets separation problem to the program of separating the origin of R"” from the
Minkowski difference L — M.

Let us remind below the two important theorems which will be very useful for the
formulation and justification of an explicit formula of the Minkowski difference of
two box-constrained sets. We are not able go further without defining the following
auxiliary set:

P={xeX: fikx)<b,,keK}, K={1,2,---,r}, 3)

where fi(x), k € K are arbitrary real-scaled quasi-convex functions defined on a
convex set X C R”. Here, by, Vk € K are some scalars. A function f(x) is said

to be a quasi-convex on a convex set X if and only if [S¢, f ]f(” is a convex set for
all d e R!, where

(59, /1 =l e X © f() <d).

Here, the set & is convex as an intersection of the convex sets [Sh" , fk])L(", keK.

Theorem 1 (Minkowski Difference When the Two Sets Under the Operation
Are Given by a Constraint System and an Abstract Constraint, Respectively
[91, p. 716) Let be given an arbitrary nonempty set WV C R", the set ® # @ be
defined by (3), X =R", then ® — WV = &y, where

O =xelR": fitx+y) <by, ke K, ye ¥}

- VU={geR':g=x—y,xed, yec ¥}
Theorem 2 (Minkowski Difference for Both Polyhedra Given as the Convex
Hull of a Finite Collection of Some Given Vectors [10], p. 552) If A =

conv{zitien,, h=1{1,2, ..., l_}, B = conv{pj}jes, J1 =11, 2, ..., m}, then
it holds A — B = conv{z; — pjlien,jes-

Our objective now is to prove the explicit formula, when the both sets under
consideration have the box-constrained structure.

Theorem 3 (Minkowski Difference When Two Sets Under the Operation Are
Given by Box Constraints) Let be given the arbitrary nonempty sets L and M
defined by (1), then L — M = ®;, where

dry={xeR':a—d<x<b—e} 4)

L-M={xeR':x=z—p,z€L, peM}.
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Proof
Part 1.  We will first verify the inclusion L — M C &,. According to Theorem 1,
it holds immediately

L-M={xeR':a<x+y<b,e<y<d}.
Without loss of generality, we choose some arbitrary x € L — M. For any
y € M, we then obtain

a—-y<x=<b-y
_dS_

Consequently, there is obviously fulfilled the following inequality:
a—d<a—-y<x<b—-—y<b-—e,

ie. x € ®y. Through the arbitrary choice of x € L — M, we conclude that
L—MC o,.

Part2. Now, we need only check that the opposite inclusion is valid too. Taking
into account the construction of the set ®,, applying the procedure of counting
its vertices, we can state that @, has the following vertices:

(@ —di, ax—d, oy Gpp —dp—2, an—1 —dy—1, an —dy),
(a1 —dy, ax—d, s p—2 —dp—2, ap—1 —dy—1, by —ey),
(a1 —dy, ax—d, s p—2 —dp—2, bp—1 —ey—1, ay—dy),
(a1 —dy, ax—d, s p—2 —dp—2, bn—1 —en—1, by —ey),
(@ —di, by—en, » bpo—en—2, an—1 —dp-1, an—dy),
(@ —di, by—en, s bp2—en—2, a1 —dp-1, bn—en),
(@ —di, by—en, s bpo—en—2, bp_1—en—1, an—dy),
(@ —di, by—en, s bpo—en—2, bp_1—en—1, bnp—en),
(b1 —e1, ax—d, s ap—y —dp—2, au—| —dy—1, an—dy),
(b1 —e1, ax—d, s ap—y —dp—2, ap—1 —dp—1, by —ey),
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(b1 —e1, ax—da, ..., ay-2—dy-2, bp-1—en—1, an—dy),
(b1 —e1, ax—da, ..., ay-2—dn-2, bp_1—en—1, by—en),
(by—e1, br—e, ..., by2—en—2, ap-1—du-1, an—dy),
(by—e1, br—e, ..., byp2—en—2, ap-1—du-1, by—ey),
(by—e1, br—e, ..., byn2—en—2, byu—1—en-1, an—dy),
(b1 —e1, ba—er, ..., bp2—en—2, by_1—en—1, by—ey).

Let us note that the quantity of the vertices of ®; is m = 2". Due to Theorem 2,
it holds

L M
L — M = conv{v;” — v; Vi, jell, 2, .. m)-

Thus, the set L — M represents the convex hull of the m? vectors. Obviously, the
vertices of the set @, belong to this sequence of the vectors forming L — M. By
virtue of L — M being convex, it contains any convex combination of the vertices
of ®;. Therefore, L — M include ®;. This evidently means that the inclusion
®, € L — M is valid. From the forward and backward inclusions justified earlier,
we deduce then that L — M = ®,. That is what we want to prove. O

3 Calculation of Normal Vectors for a Binary Linear
Classifier

We further explore in depth the question of how to calculate a normal vector for
a linear classifier in the regular and singular cases of the sets separability. Namely,
we consider the events when the two considered box-constrained data sets are: (1)
strongly linearly separable; (2) non-strongly linearly separable; (3) inseparable.

In the first case, the sets separation problem can be solved, for instance, applying
the optimization methods presented in [11-17]. In the first event, there can also be
utilized the framework which is very similar to the successive projections methods
described, for instance, in [18, 19]. For the second and third cases see, for example,
[20, 21]. There can be also used the methods of solving the maximin problem
(see the details, for example, in [15, 22]). However, the specificity of the training
sets structure allows one to solve the separation problem very easy using the
exact formulas. Here, we rigorously justify that the vector of the features weights
computed by the exact formulas really provides the best data sets separation (in a
sense of optimality of the appropriate separation margin).
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Here, we apply the concept of “linear separability”, so we have to remind at least
briefly the meaning of this term for concreteness. The two pattern sets A and B
are said to be linearly separable, if and only if there exists some non-zero vector
¢ € R”" such that:

b in (c,a). 5
max (c )51{1116121 (c,a) (5)

To define the strong separability of the objects in concern, the inequality (5) should
be fulfilled strictly.

Our first goal is to compute, applying the explicit formula, a normal vector of the
supporting hyperplanes determining the best linear separator for the training data
sets. According to Theorem 3, the set L — M is also given by box constraints.
Under our conditions, this is the reason why L — M is a convex and compact set.

Let ¢* be a solution of the problem

l\n}ﬁ_}ﬁ tr—m(c), (6)

where 17 _py(c) = ilflfM (c, x). By virtue of continuity on the whole space, the
xel—

linear function (c, x), ¢ € R”" furnishes its infimum on the compact set L — M.

Therefore, it is fulfilled inf (c,x) = min (c,z). Let x* be the optimizer of
xeL-M xeL-M

the following problem

min {c, x) @)
xeL-M

for some ¢ € R". The above facts obviously implies that x* € L — M. Let us note
that we will utilize further a linear separability criterion introduced in [22]. This
criterion is closely connected with problems (6)—(7).

Lemma 1 (Auxiliary Fact) Ifx* € L — M is the solution of (7), then

(¢, x*) = i_ln%in . {c,v

For the proof details of the similar lemma in the more general setting, we direct the
interested reader to [23] (see Lemma 13, p. 40). From Lemma 1, it follows that

tr—m(e) = min (c,vFM).
i=1,2,....m

Definition 1 (Separator) If for some ¢ € R” one has f;_p/(c) > 0, then the set

S = {x e R": yu(© = (e.x) = (@),
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formed by parallel hyperplanes m(c, yr(c)) and m(c, ypm(c)) is the strong se-
paration margin for the sets L and M, where yr(c) = milr} (c,2), ym(c) =
F4S
maMx (c, p). The set S(c) is called a separator (for details, see [22], p.161).
pE
By the way, taking into account the list of vertices of L — M, according to
Lemma 1, we evidently obtain y7(c) = min {c, vl.L), ym(c) = max (c, le).
i=1l,m =1, m

Here, the hyperplanes 7 (c, yr(c)) and m(c, ym(c)) are supporting to L and M,
respectively. The thickness of the separation margin S(c) is determined by the
distance between its boundaries.

For separable data sets, the idea of maximizing the distance between two
supporting hyperplanes has achieved widespread use in practice and theory of SVM,
too.

Definition 2 (Pseudo-Separator) If for some ¢ € R" itholds f7_p(c) < 0, then
the set

P = {x eR": 710 = (e.3) = 7m0

is called a pseudo-separator.

Recall that the term “pseudo-separator” was introduced for the first time in [22] (p.
161). The set P(c) represents the margin of unseparated points of sets. In the theory
of data classification, the similar margin is usually called the margin of misclassified
points, or for short, the misclassification margin.

In the degenerate case of the linear separability, i.e. if for some ¢ € R"\ {0}
it holds 77 _p(c) = 0, then S(c) = P(c) = n(c, y(c)), where y(c) = yrL(c) =
ym(c). Therefore, the set S(c) = P(c) is the degenerate separator, because this
separator degenerates into a hyperplane. As it will be demonstrated below, the
thickness of the degenerate separator equals zero.

By construction of S(c¢) and P(c), to calculate the thickness of the geometric
margin one has to determine the distance from m(c, yr(c)) to m(c, ym(c)) :
p(m(c, yL(0), m(c, yu(c)).

Now, the following theorem will justify this fact.

Theorem 4 (Thickness of the Separator or Pseudo-Separator) If ¢ € R"\ {0},
then the thickness of geometric margin formed between the parallel supporting
hyperplanes of the sets L and M (m(c, yL(c)) and m(c,ym(c)), respectively)
is equal to

p (T (e, yr.(©)), T(c, ym(e))) = |t —u (”2”) I ®)
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If ¢* is a maximizer of problem (6); then, based on a linear separability criterion
introduced in [22]), the data sets L and M can be characterized as

* strongly separable when #7_p(c*) > 0,
* non-strongly linearly separable when 7 _p(c*) = 0,
* inseparable when 77 _ps(c*) < O.

Moreover, the optimality of the thickness of geometric margin is provided by virtue
of Theorem 4 and the formulation of problem (6). Indeed, if the sets L and M
are strongly separable, then having solved the problem (6) one can maximize the
separator thickness of the sets L and M. Obviously, the thickness of the degenerate
separator will be equal to zero. If some sets are linearly inseparable, then the prob-
lem (6) is equivalent to the next problem

c

a

C
max n o ipem(, )l
ceR"\ {0}

153 M( n —fr ¢ )= mi
ceR™\ (0} llcll

— = mi —M(
llcll ceR™\ {0} llcll

which provides one that there will be found a pseudo-separator having a minimal
thickness for the considered sets.

Let us remind the well-known definition of the term “projection” which will be
very useful below in the study.

Definition 3 (Projection) The point Pp(p) € D is called a projection of the point
p € R" onto D if and only if it holds

IPp(p) — pll < llx — pll. Vx € D.

Due to Definition 3, Pp(p) is the point of D nearestto p among other points of
D. If p € D, then it is obviously fulfilled Pp(p) = p. As is widely known, if D
is a nonempty convex and closed set in R”, then any point p € R" has a unique
projection onto D. In the context of the sets linear separability, we are interested
mostly in projecting the origin of Euclidean space onto the set given by the box
constraints.

It is well known from convex analysis that if the origin of Euclidean space 0 =
0, 0, ..., 0) does not belong to some box-constrained set

D=xeR":gi<x; < fi,i€l},

then the coordinates of its projection w = (wi, wy, ..., w,) onto the set D can
be calculated by an exact formula. For projecting the origin, we represent further
the reformulation of the universal rule (see, for instance, [24], p.196) developed for
projecting any point of R” onto some box-constrained set:

gi, ifgi >0;
w; =13 f;, if f; <0; C)]
0, ifgi<0</fi iel.
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Using the exact formula (9), we can therefore calculate P;_j7(0), which denotes a
projection of the origin of R” onto L — M.

The next results immediately give the possibility of evaluating the thickness of
the separator with help of Pz _j/(0).

Lemma 2 (Relationship Between the Solution of (6) and Projection of the
Origin of R" onto L — M [23], p. 40)

L If tp_pm(c®) >0, v=c*tp_pm(c*), then it holds Pp_p(0) = v,
2. IfthM(C*) <0, then Pr_3(0) = 0.

For L and M being strongly separable, the previous lemma yields that there is
automatically fulfilled the following equality:

Pr_p(0) o
IPL—_a (0)] .

For strongly separable sets, this means that the maximum separator thickness
corresponds to the normal vector Py _7(0)/||PrL—2(0)]|.

For the exceptional case when the origin of R” belongs to some set D, we need
first to introduce a new term “pseudo-projection” as follows.

Definition 4 (Pseudo-Projection) We shall call the point f’bd( py(v) € D apseu-
do-projection of the point v € D onto bd(D) if and only if it holds

IPpa(py () — Il < llx — 3ll, Vx € bd(D),

where bd(D) stands for the boundary of D.

Clearly, f’bd(D) (0) = 0 if and only if 0 € bd(D). Let us consider further the case
where (0 € D) & (0 ¢ bd(D)), i.e. 0 € int(D), Here int(-) stands for interior
of the set D.

In the event of dealing with the set D having the box-constrained structure, to
compute f’bd(D) (0) we need to project the origin of R” from inside onto the 2n
facets of D. By assumption, it obviously holds g; < 0 < f;, Vi € I. Each pair of
the facets corresponding to some variable x;,, i1 € I evidently has the same normal
vector as the pair of hyperplanes 7 (c, g;;) and m(c, fi;): ¢ = (c1, €2, ..., ¢n),
where (¢;; = 1) & (¢; =0 Vi € I, i # i1). Moreover, the afore-mentioned normal
vector is orthogonal to the corresponding facets of D. This fact allows one for the
purpose of pseudo-projecting to make use an exact formula, which is well known
from convex analysis to project the origin of R” onto the hyperplane. Specifically,
we apply this formula n times by setting:

8i if |gil < fis
wi =gV fi, if lgil= fi; (10)
fis if |gil > fi; iel
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After calculations of w;, Vi € I, we determine the index ip € I for which there

will be attained the minimum among the values of |w;|, i € I: melln |w;| = |wi,]|.
L
If there are several indices i € I for which |w;| is minimal, one can choose any
of them. Then, it should be constructed w = (Ww;, Wa, ..., W,) in such a way that
(w; =0 Viel, i#i) & (Wi, = w;,). Thus, f’hd(D)(O) = w. By construction,
it immediately holds min |lw| = ||I~)bd(D)(0)||-
webd (D)

With the help of Example | we may obviously observe that a pseudo-projection
can be not uniquely determined. Indeed, there are six points (projections of the zero
vector onto the six facets) satisfying to the definition of the pseudo-projection of the
origin onto the boundary of the three-dimensional unit cube. All of these points are
equivalent to each other in the sense of having the same Euclidean distance between
the origin of R” and each of the six points. Namely, this identity allows one to select
and apply any one of these points as a pseudo-projection.

One of our goals here is to calculate a normal vector of a pseudo-separator for
the case when 0 € int (L — M). From above, it follows that as such a normal vector
there can serve the following normalized one:

¢* = —Ppar—11)(0)/IPoacz—ar)(0)]].

By construction, the thickness of the pseudo-separator corresponding to this support
vector will be minimal, since it equals ||I3bd( - (O]

Let us consider now the next case, namely when the origin of R"” lies on the
boundary of some box-constrained set D, or briefly, 0 € bd(D). In this event, at
least for one index i € I itevidently holds g; =0 < f; or g < 0= f;. If there
are several such indices, then one can choose any of them, for instance i; € I. We
construct the classifier normal as follows

0, if (el & (i #iy);
ci=1-1, if (i=i)&(g <0=f); an
1, if(i=iD&(g =0< f).

By construction, we obviously obtain the degenerate case of the linear separability
between the origin of the space and the set D. These objects are non-strongly
linearly separable, so for this reason the linear separation margin has the null
thickness.

4 A Linear Classification Model

To perform the linear binary classification of data sets, we need to construct a linear
classifier based on some training sets. The term “linear classifier” is well known
and widely used in the theory and practice of data classification. A linear classifier
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is generally defined for solving binary classification problems. It may be obviously
interpreted as a rule, which assigns a test instance to some particular class of data.
Let us first define a studied term “linear classifier”.

Definition 5 (Linear Classifier) For some given ¢ € R"\ {0}, we shall say that
f :R* = R! is a linear classifier for the two data sets L and M if and only if it
holds

f(x) = (c, x) —y(c), where y(c) = vL(©) +ym(c)

2 bl
. L M
yo = min (¢, vb), yur = max (c, v}).
i=1l,m i=1l,m

For the data classes L and M, the hyperplane m(c, y(c)) divides the separation
margin (separator or pseudo-separator), corresponding to the normal vector ¢, in
half. For the linear function f(x), the level set

[S%, flgr i= {x € R": f(x) =0}

obviously coincides with the hyperplane m(c, y(c)). This hyperplane also divides
the Euclidean space into two closed linear subspaces. One of these subspaces
includes the class L and another one contains the class M.

Procedure (Construction of a Linear Classifier)

1. Using (4), construct the Minkowski difference L — M.
2. Project the origin of R" onto L — M by (9).
If ||[PL—_p(0)]| # O, then calculate ¢ = Pr_p(0)/||PL—p(0)].
Else determine the pseudo-projection f’bd( L—m)(0) by (10).
If [[Ppar—m)(0)]| # O, then calculate ¢ = —Ppa(L—m)(0)/IPpacr—a1)(0) |-
Else use the formula (11) for calculating the normal vector c.
3. Applying Definition 5, construct f(x).

The goal now is to build up a linear binary classification model. It may be
determined as follows:

1. Construct a linear classifier f(x).
2. Use an assignment criterion in order to decide class membership.

2.1 Assign a new unlabeled instance x € R" to the class L, if f(x) > 0.

2.2 Assign a new unlabeled point x € R" to the class M, if f(x) <O.

2.3 If for x € R" it holds f(x) = 0, then this new object can equivalently be
considered as a member of both the first and second class. For unambiguity, the
unlabeled instance may be assigned to only one of the classes.

It is time to justify the assignment criterion utilized above in the linear clas-
sification model. We first explore the inseparable case. Due to the applied linear
separability criterion, it evidently holds y;, < yy = yL < y(c) < ym. By
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definition, (c, z) > yr, Vz € L and {(c, p) < ym, Vp € M. When for some
new instance x € R" we observe the positive value of the linear classifier, this new
object should be assigned to L, since it holds 0 < f(x) < {c, x) — yr. If for the
unlabeled object the value of f(x) is negative, then we decide that this instance
belongs to M, because (c, x) —ym < f(x) <O.

Investigate now the case when the training classes are strongly separable.
According to the linear separability criterion, it is obviously fulfilled

ymM <vyL = vm <y() <yL.

This implies that (c, z) > yr > y(c), Vz € L and (c, p) < ym < y(c), Vp € M.
Consequently, (f(z) > 0,Vz € L)Y&(f(p) < 0, Vp € M). If for some new
object x € R”" there is observed the positive value of the linear classifier, then we
assign this new instance to L. When for the unlabeled instance the value of f(x)
is negative, then we conclude that this object belongs to M.

Consider now the case of non-strongly linearly separable training data sets.
Owing to the linear separability criterion, one has

ymMm <yL = ym <y() <L

This immediately yields (c, z) > yr > y(c), Yz € L and (c, p) < yu < y(c),
Vp € M. Therefore, (f(z) >0, Vze L)&(f(p) <0, Vp € M). If for some new
object x € R" the linear classifier has the nonnegative value, then we decide that
this new point is a member of the first class. When for the unlabeled point the value
of f(x) is nonpositive, then we conclude that this object falls into the second class.

The principal, for the purposes of practical and theoretical applications, questions
that immediately arise are what a linear classifier can be identified as the best one
and what it means for the data classification model. To exactly answer these basic
questions, we may solve, for instance, the problem (6) and verify the objective
function optimal value: 77 _ps(c*). Is the function value positive, equal to zero,
or negative? The analysis shows what type of linear separability takes place for the
separated box-constrained data sets. This also allows to detect with which one of the
situations we will face. The cones of generalized support vectors (see, for instance,
[9]) are empty, and may be some of them are not. Due to special box-constrained
structure of the data sets being classified, there is no need to utilize the complex
optimization framework for calculating the classifier weights of the features. For
this purpose, we propose to apply the exact formulas. This makes classifying new
test data to be fast. To perform a classification, all we need to do is calculate the
linear classifier value and analyze its sign. This sign is crucial for the assignment
criterion which is verified for deciding the class membership of new test objects.
We evaluate the treated linear classifier as the best among those of others, since its
normal vector corresponds to the optimal separation margin (separator or pseudo-
separator) between the training data sets. By construction, the thickness of the
separator is maximal in the separable case. For the inseparable event, the thickness
of the pseudo-separator is minimal.
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5 Conclusions

In the paper, we reduce the binary problem of sets separating to the problem of
separating the origin of the Euclidean space from the Minkowski difference of
sets being separated. This approach requires the presence of the exact algebraic
expression for the Minkowski difference of box-constrained sets. Finally, we note
that the realization of the presented linear binary classification model has low
computational costs, since it is carried out by the exact formulas. There is no any
need in applying the complex optimization framework. We propose the explicit
formulas for computing the normal vector as well as threshold of the linear classifier.
We provide the full justification of the assignment criterion for testing the unlabeled
instances. The treated linear classifier is estimated as the best one due to optimality
of the thickness of the appropriate separation margin between the training data sets.
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Patient-Specific Bone Organ Modeling )
Using CT Based FEM e

Oleg Gerasimov, Nikita Kharin, Evgeny Statsenko, Dmitri Mukhin,
Dmitri Berezhnoi, and Oskar Sachenkov

Abstract The article presents an image-based method for numerical modeling
of the inhomogeneous structures. Such an approach allows taking into account
the material anisotropy during the integration by using the weight function. The
implementation of this method includes the hypothesis of the correlation between
the image data values and elastic properties of the material. A modeling of the
specimen was based on the use of an eight-node 3D finite element of the continuous
medium with bilinear approximation. In the work the distal part of the rat femur
was modeled, the displacement field was calculated and the stress-strain state was
locally averaged. In order to assess the reliability of the volumetric averaged stress
state, the estimation of the strain energy error was performed.

1 Introduction

Numerical modeling became the most commonly used technique in various fields
of scientific research at the moment. The practical application of the image data
is a promising direction to assessing the behavior of heterogeneous structures
under the external influence [1, 2]. The image-based modeling allows simulating
the mechanical properties of the multi-connected porous materials [3-5]. Similar
problems are especially relevant to the orthopedic clinical practice [6-8]. The
obtaining information about the patient bone properties from the personal image
data has a significant influence on the upcoming treatment quality at the diagnostic
stage.
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There are several approaches to modeling mechanical properties based on the
image data. Firstly, this includes an approximation of the inhomogeneity by the
construction of the mean intercept length distribution and its approximation by the
least square method [9—12]. In this case, physical relationships are formulated in
terms of the tensor of elastic constants and the fabric tensor. A second approach
includes the reduction of the material anisotropy to the orthotropy by determining
constants from numerical experiments [13—15]. In the work, a third method to
estimating the behavior of the inhomogeneous structures is considered.

The main imaging approach for these medical cases is performing a computed
tomography, which involves creating a digital prototype of the investigated domain.
Data of such a procedure are a 3D integer array, that contains values characterizing
the permeability of the material in the microelement of volume. These values can be
interpreted according to the quantitative Hounsfield scale of X-ray density. Thus, a
digital prototype represents a structure of the porous medium element as a set of the
elementary micro volumes, in each of them the percentage of the bone fraction is
determined. According to these data and using some approximate method, a discrete
mechanical model of the inhomogeneous medium element can be constructed [16—
19].

The highest calculation accuracy can be reached in the case of modeling each
microvolume of the continuous medium as one finite element [20-25]. However,
this approach is resource intensive in problems of discrete modeling, postprocessor
analysis, and, especially, at the processor computing stage. Therefore, it seems
appropriate to increase the size of the finite elements. That allows considering each
microvolume belonging to the element domain as a neighborhood of the integration
node of the local stiffness matrix. Nevertheless, the question of determining a
quantity of the integration points in each direction remains unclear. A small density
of computed tomography data in the integration domain can lead to low calculation
accuracy. The middle rectangle method can be used as the simplest integration
method. However, the use of a large number of integration nodes, on the one hand,
increases accuracy of the integration within the finite element, but on the other hand
may reduce the flexibility of the whole model because of a small number of finite
elements.

The purpose of the work is to implement a static calculation method for
the elements of a porous structure based on the 3D isoparametric bilinear finite
element of a continuous medium, built on its digital prototype revealed according to
computed tomography data.
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2 Materials and Methods

2.1 The Main Relations of the Finite Element Method

A well-known technique for constructing an eight-node 3D isoparametric finite
element of a continuous medium with a bilinear approximation of the geometry and
displacement field in the local coordinates was used [26]. Within the isoparametric
concept for a geometry approximation (radius-vector {r} of the point) and initial
displacements (displacement vector {6} of the point) the same system of functions
is used:

X 8 Xn
r={rl=1yt =2 v NalEm) )

z n=1 Zn

u 8 Up
O={0)={vt=> {vagNu&n0), )

w n=1 [ wy,

where N, (€, 1n,¢) = é (A +&,6)(A +nn) (1 + £,¢)—known linear shape functions;
&n, Nn, Ln—local node coordinates of the finite element; u, v, w—displacement
vector projections to the orts x, y, z of the global coordinate system. Relations (2)
can be written in a matrix form:

{0} = [NI{6°} 3)

where [N]—matrix of the approximating functions, {#°}—vector of the node
displacements.

Components of the linear &y, €yy, €;; and shear yyy, ¥y, ¥x; strains describe a
medium deformation. These components are represented as a reduced strain vector
{e} and expressed in terms of displacements (2) by the well-known Cauchy relations
[26]:

au av Jw
Exx = o’ Eyy = ay’ €2z = 9z
4)
_8u+8v _8v+8w _8u+8w
Yo =y Toax M T T ey YT g T e

which, in turn, can also be written in a matrix form

{e} = [L){0}, ®)
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A Cauchy stress tensor represents the stress state in the form of components of
normal oy, 0yy, 0z, and shear Ty, Ty;, Ty, stresses, which, as well as the small-
strain tensor can be written in a reduced stress vector {0} form. A Hooke’s law, that
relates the reduced stress and strain vectors represents in the form

{o} = [Dl{e}, ©)

where [ D]—matrix of elastic constants of the homogeneous body, which can be
represented as

(N

oT oo oo
T oo o oo

In this case, [ D] is an elasticity tensor for the isotropic material; A and u—Lame
constants defined in terms of Young’s modulus E and Poisson’s ratio v as

E 2uv

Toa4w T oo ®)

u

The stiffness matrix of the finite element is calculated according to the well-
known relations [26]:

(K] =/V[B(r)]T[D][B(I')]dV, €)

where [B(r)]—matrix connecting a reduced vector of small strains and vector of
node displacements:

{e} = [B(D]{0°}. (10)
In local coordinates, relation (9) can be written in the form

1 1 1
[K"]=/1/1/1[B(s,n,o]T[D][B@, 0 ONE . Oldednde. (1)

where |J(§,n,¢)| is a determinant of the Jacobian matrix of the coordinate
transformation.
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2.2 Digital Prototype

A digital prototyping involves mapping a dataset to some element of the calculation
area. Such a dataset is determined by a 3D structure, that contains the color intensity
of the microvolumes composing the computational domain. These intensity values
obtained by the computed tomography reflect X-ray density according to the
Hounsfield scale [27, 28]. The process of creating a digital prototype implies
dividing the investigated sample into a large number of virtual microcubes (voxels)
the size of Ax x Ay x Az and with center coordinates at xx, yk, zx. The linear sizes
Ax, Ay, Az generally are equal to each other and are defined by the resolution of a
computer tomograph.

The values of computed tomography data corresponding to the voxel are
binarized over the defined threshold, which can be calculated, for example, by
the Otsu method. Such a procedure allows separating dense bone structure from
the substance in the pores: values above the threshold determine the bone tissue,
below—the pore.

2.3 Integration Based on Computed Tomography Data

The Gauss integration method is used in the case of calculating the local stiffness
matrix of the isotropic continuous medium. The porous medium force to use the
middle rectangle method. A finite element of the porous continuous medium, as
well as for the isotropic case, represents a convex hexagon with single-curved four-
node lateral surfaces. Integration points in the element are geometry coordinates of
voxels from a model digital prototype.

Let us introduce into consideration the space of the continuous material 2
(Fig. 1a), the discrete space of computed tomography data €’ (Fig. 1b) and the
space of the finite element mesh ¢ (Fig. Ic). Thus, it is possible to define some
weight function w(r), which values can be characterized by the space point based

2]

a b

Fig. 1 Spaces under consideration: (a) space of the continuous medium €2; (b) discrete space of
computed tomography data Q'; (¢) space of the finite elements Q¢
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on computed tomography data. A relation connecting the elementary volume of the
continuous space €2 and discrete space €’ can be written in the form

dV' = o(r)dV. (12)

In this case, passing from the integral over the space €2 to the integration over the
discrete space 2, subject to the formula (12), digital form of the integral (11) can
be written as

I J K
szzgww&MM%wm}
i=1 j=1k=1 (13)

NI Einjs sl @i, nj, GodEdndg

where &;, n;, {r—local coordinates of the integration points; A&, An, A{—step
size in three directions in the local coordinates; w(&;, n;, {x)—weights of the
quadrature formula determined by a value of computed tomography data at the
integration point; /, J, K—number of quadrature points along each local coordinate
inside the finite element.

2.4 Stress-Strain State

In order to determine the stress-strain state, the following approach for the local
averaging over the finite element volume is introduced [29-31]. In the case of a
standard stress calculation procedure [32, 33], the finite element method uses the
relation (6), where the deformations were expressed by the previously introduced
formula (10).

Let o be an obtained from the finite element calculation arbitrary component of
the stresses. This component is defined by the relation (6). An approximation of the
corresponding smoothed value o over its node values within each finite element is
introduced:

R
=) Nieg = (V)T (o), (14)
n=1

where R—number of the finite element nodes. Approximation coefficients {cxo} are

found from the condition for a minimum square deviation of ¢° from & defined by
relation

@:/e (ao—ﬁ)zdve%min. (15)
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Substituting expression for the smoothed value (14) into the minimum square
condition (15) the following system of linear equations relative to the node values
of the function ¥ is derived:

(a1 {a"} = (o, (16)
where

[d]:/ (NHNYTave, (b} = | (N}GdVe. (17)
Ve V(’

A similar procedure is applied to each component of the stress vector. The next
step is an integration of the found functions of the volumetric stress approximation
for each finite element. As in the method defined by the Eq.(13) the stress
integration is performed with a weight corresponding to the computed tomography
data at the integration point:

(5} = Vl / {ao}dVe/ (18)

where {o}—stress vector averaged over the finite element volume based on its
computed tomography data.

2.5 Error Estimation

The usual continuity assumption used in displacement based finite element formu-
lations results in a continuous displacement field from element to element, but a
discontinuous stress field [34, 35]. To obtain more acceptable stresses, the averaging
of the nodal stresses is done. Then, returning to the element level, the stresses at each
node of the element are processes to yield:

[Aa,i] ={o7} - {a,i] ; 19)
where {Aa,’; }—stress error vector at node n of finite element i, {0, }—averaged

stress vector at node n obtained by:

{ oy } = i , (20)

N'—number of finite elements connecting to node 7, {a’

4 }—stress vector of node
n of finite element i.
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Then, for each element, the energy error is calculated as:

Ei::; (A} D17 {Ac)d Ve, 21
Ve

where Ei—energy error for finite element i, V¢—the volume of the finite element,
[D]—elasticity tensor, {Ao} — stress error vector at points as needed, which is
evaluated from all {Ao;,} of this finite element.

At the last stage of error estimation, the energy error can be normalized against
the strain energy:

X El 2
Ei=100-(_""_ ), 22)
Ui+ E;

where E;—percentage error in energy norm, U;—strain energy of the element
determined by the similar integration over the discrete space '

azf{aﬂamw (23)
VE

Thus, having estimated the energy error as a percentage, it is not difficult to
determine the areas with the most reliable results of stresses and strains. The analysis
of the stress-strain state in the future will be carried out definitely in these domains.

3 Results and Discussion

3.1 Meshing

The model problem is based on computed tomography data of a rat’s femur. In
this case, a distal part was used (Fig.2a). Since the geometry of a specimen
is non-trivial, the special approach to approximate the form by a finite element
mesh was proposed. Computed tomography of the object is embedded into the
regular rectangle mesh, which completely covers the sample geometry. At the
preprocessor stage, a bone fraction of each finite element based on binarized
computed tomography data is calculated. Then, the elements containing less than
5% of the material are removed from the mesh. Therefore, the remaining finite-
element model has an optimized geometry to the computed tomography data of the
investigated object (Fig. 2b, c).
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a b c

Fig. 2 Geometry approximation: (a) CT data view (Avizo); (b) and (c¢) superimposed finite-
element mesh (>5% of bone)

3.2 Scanning

Scanning was performed using the micro-/nanofocus X-ray control system for com-
puted tomography and 2D inspection Phoenix V | tome | X $240 in the laboratory of
X-ray computed tomography of the Institute of Geology and Petroleum Technology
of Kazan (Volga region) Federal University. The system is equipped with two X-
ray tubes: a microfocus with a maximum accelerating voltage of 240kV with a
power of 320 W and a nanofocus with a maximum accelerating voltage of 180kV
with a power of 15W. Datos | x reconstruction software was used for primary
data processing and creation of a three-dimensional (voxel) model of the sample
based on X-ray images (projections). The sample fixed in the holder was placed
on the rotating table of the X-ray computed tomography camera at the optimal
distance from the X-ray source. The survey was conducted at an accelerating
voltage of 90-100kV and a current of 140-150mA. The study area size was
8.73029%x7.62519x10.71947 mm, the number of voxels in the direction of the
corresponding coordinate axes Ox, Oy, and Oz—790x 690 x970, the voxel size—
11.0513wm.

3.3 Modeling

A numerical experiment was carried out for uniaxial compression. The nodes of the
lower face, closest to the diaphysis, were fixed in displacements along the direction
of Cartesian coordinate axes. A uniformly distributed load was applied to the upper
edge of the distal area. In the case of a coarse mesh, the load was distributed over
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the top nodes of the first layer of finite elements. In the case of a fine mesh, the
load was distributed over the first two layers of finite elements, which is determined
by the relief surface of the upper section. Young’s modulus was 2 GPa, Poisson’s
ratio—0.3, the applied force—30 N.

3.4 Solution

Figure 3 shows the distribution of longitudinal displacements obtained using
two types of meshes. A mesh with numerous elements approximates the sample
geometry much more accurately. However, in this case, due to the peculiarities of
integration based on computed tomography data, significant surges in the nodal
values for hollow elements are observed. This defines a large variation in the
maximum displacement values.

The stress-strain state was locally averaged over the nodal values of each finite
element based on the data of its computed tomography (Fig.4). The results of
solving the test problems showed that the mesh refinement has a greater effect on
the solution convergence than the increase in the integration points. Due to this fact,
an increase in the number of finite elements makes it possible to more accurately
determine the concentrators in the stress-strain field without significant losses in the
integration accuracy.

~  9e04 0 0001 0.002 3.e-03 ~ 2904 0002 0004 63003
% — — .XJ — U
a b

Fig. 3 Displacement field of the rat distal femur along the z-axis (mm): (a) 375 elements; (b) 2411
elements
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Fig. 4 Stress field of the rat distal femur along the z-axis (MPa): (a) 375 elements; (b) 2411
elements

3.5 Error Estimation

A comparison of the results presented for two finite element meshes requires
an assessment of the obtained solution acceptability. For this purpose, a local
calculation of the energy error was made for each finite element separately, based on
the nodal stresses averaged over the entire mesh. The value obtained in this way was
normalized against the strain energy calculated by a similar method of integration
over the discrete space of computed tomography. Figure 5 shows the distribution
field of the normalized energy error in percent.

The obtained results of the assessment make it possible to determine the areas
with the smallest values of the energy error. Thus, for further comparative analysis
of the stress state, a cross section from the blue range in the diaphysis area was
selected (Fig. 6).

Figure 6 shows the stress field in the direction of the longitudinal z-axis. In
a model with many finite elements, the compression stress is 45% less and the
tensile stress is 25% less. The difference in values can be determined by the
increased stiffness of the structure in case of a coarser mesh. Various approximation
of the object geometry can also have an effect. This is directly related to the
nature of filling finite elements with computed tomography data since integration
is determined by non-zero values. The general view of the stress distribution in the
study area is similar for both models. The calculation time for a model with a coarse
mesh is 11 min, and for a model with a more accurate approximation, it is 13 min.
Taking into an account the results obtained and the calculation time, it should be
concluded that thickening of the grid in the areas with the highest energy error is
preferred.
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Fig. 5 Normalized energy error field of the rat distal femur (%): (a) 375 elements; (b) 2411
elements
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Fig. 6 Average stress state in the cross section of the rat distal femur along the z-axis, z = 8.575576
(MPa): (a) 375 elements; (b) 2411 elements

4 Conclusion

The article presents one of the possible approaches to describing the deformation
processes of inhomogeneous media under the influence of external loads. The
method consists of modeling the structure of the investigated area based on its digital
prototype. Such an approach allows estimating the behavior of porous objects based
on the material optical density. For this purpose, a discrete space over the object
image was introduced. The main modeling tool, in this case, is determined by the
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integration of a local stiffness matrix with a weight function, the values of which
are determined by computed tomography data. Thus, the numerical model allows
taking into an account the volumetric distribution of the material properties over the
volume of a solid finite element.

To estimate the influence of computed tomography data on the convergence of
the proposed numerical technique, the test problems were solved. The obtained
results were used to determine the relation between the number of integration
points inside the calculation domain and the degree of model approximation based
on area meshing. According to the analysis of the test problem solution, two
numerical models of the rat distal femur with different degrees of approximation
were constructed. In this case, a special approach to approximation of a regular
rectangular finite element mesh was applied to the sample geometry. Such a method
allows avoiding difficulties in the meshing of the nontrivial volumes by removing
the empty elements based on a percentage of the material fraction. The possibilities
of this method are restricted by the minimum size of the finite element of the initial
mesh providing the absence of separate elements.

In the process of solving, a locally averaged stress-strain state of the bone sample
was obtained. Calculations were made based on a similar method of integration
by discrete space of computed tomography. In order to estimate and compare
the obtained results, the calculation of energy error was made for each element
separately. In this case, the energy error was normalized against the strain energy,
which made it possible to determine acceptable areas for analysis with a small
percentage of the error.

The paper presents a comparative analysis of the model problem solution for
two types of finite element meshes. The obtained results reflect the influence
of the accuracy of the numerical model approximation and also illustrate the
dependence of displacements and stress-strain state on the material structure. It
was found that an increased degree of approximation allows better determination of
stress concentrators and provides more accurate results compared to a coarse mesh
consisting of larger finite elements. The presented numerical approach justified the
possibility of calculating objects with a porous structure of individual origin.

In the future, it is suggested to consider the ways of finite element mesh
thickening for better approximation at the areas of energy error concentration.
The studies can be extended using a different type of computed tomography data
processing as well as an improved formula for numerical integration. It is also
of interest to use other types of finite elements. The data obtained using such an
approach can be used to assess the strength of the material at quasi-brittle fracture
under static loading of inhomogeneous structures.
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Parallel Algorithm for Solving Problem )
of Electromagnetic Wave Diffraction e
by a Tooth-Shaped Plate

Dinara Giniyatova, Dmitrii Tumakov, and Angelina Markina

Abstract In the present work the problem of plane electromagnetic wave diffrac-
tion by a thin metal tooth-shaped plate is considered. A numerical algorithm
is developed using the method of moments with OpenMP and NVIDIA CUDA
technologies implementation. The results of numerical modeling of a plane wave
diffraction by the symmetrical four-tooth-shaped thin metallic plate is shown. A
comparative analysis of the performance for CPU and GPU is carried out. It is
shown that the method of moments implementation by graphical processor provides
a sufficient gain in the performance.

1 Introduction

The problems of diffraction of electromagnetic waves arise in the study of various
kinds of complex electrodynamic systems. For their analysis, it is necessary to use
strict analytical methods of applied electrodynamics [1-3] or approximate numer-
ical methods [4-6]. To date, the following methods are widely used in specialized
software: the moment method (MoM), the finite element method (FEM) [7], and the
finite difference method in the time domain (FDTD) [8]. All these methods lead to
the need to solve complex systems of linear algebraic equations, the order of which
directly depends on the desired degree of accuracy of solving the problem. The use
of effective numerical methods and new computer technologies make it possible to
solve similar problems within an acceptable time. A promising technology, from the
point of view of calculation time, is a parallel computing on a graphics processor
(NVIDIA CUDA) [9-12]. In the present paper, we consider a parallel algorithm for
solving the diffraction problem by the method of moments on CUDA.
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As is known [13, 14] the problem of diffraction of electromagnetic waves
on a perfectly conducting surface can be described by the operator equation for
the current surface. The operator can be a linear integral or integro-differential
operator, and integration is carried out over the entire diffraction surface. To solve
such equations, the method of moments is used. Harrington and his monograph
“Field Computation by Moment Methods” described the method of moments most
fully [15]; the current state of the method of moments in electrodynamics problems
is described in the monographs by Sadiku [16] and Gibson [14]. In addition, a
number of works are devoted to the mathematical justification of this method and
the convergence of the approximate solution to the exact one [17]. As already
noted above, the separation of the diffraction surface into small finite regions leads
to the construction and further numerical solution of systems of linear algebraic
equations of a very high order. On the other hand, this class of tasks lends itself
well to parallelization, and the architecture of the graphic processor (GPU) is well
optimized for parallel data processing.

For plates with complex geometry, the triangulation of the area is carried out by
any triangulation method [18]. For some surfaces that have a number of features,
such as comb-shaped plates [19], the triangulation algorithm can be accelerated.
In the present paper, the fast triangulation of such a plate are considered by using
OpenMP.

2 Diffraction Problem Statement

We consider the problem of electromagnetic field diffraction on a perfectly con-
ducting thin plate of an arbitrary shape (see, for example, [20]). Let @ C R? be
a bounded domain with a piece-wise-smooth boundary I" consisting of a finite
number of arcs of the class C* converging at non-zero angles. The problem of
diffraction of an external electromagnetic field E°, H? on a perfectly conducting
plate €2, located in free space with a wave number k, k2 = e W, consists in the
determining scattered electromagnetic field

E.H e CAR*\ Q) [ C(RL\Ty) (| C(R\ Ty) (1)
>0 §>0

satisfying homogeneous Maxwell equations:
RotH = —ikE,
. 2)
RotE =ikH, xe€ R \Q

boundary conditions for tangent components of the electric field on the plate surface:

E.lo=—E'q (3)
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conditions of finite energy in any limited amount of space:
E.H e L}, (R )

and conditions at infinity:

aar (5) — ik <f1) =o(r 1, (5) =00™YH, rix| > oco. (5)

For the full field, E'”' = E°+ E, H'"' = HY+ H. We assume that all sources
of the incident field are outside of the plate €2 so that for some § > 0

E' e C®(Q), Qu=1{x:|x—y| <8 yeQ) ©6)
whence it follows that
Ellq e C¥(Q). (7)

Often, either a plane wave or an electric or magnetic dipole located outside of 2 is
considered as an incident field. In this case, conditions (6) and (7) are satisfied. The
field E°, H? is a solution to the system of Maxwell equations in free space without
a plate.

One of the approaches to solving the problem (1)—(7) is to reduce it to an
integrodifferential equation on a plate [13]. This method is often called the surface
current method.

Now let S be the open surface of a perfectly conducting plate with the unit normal
n. By E' we denote the electric field defined to be the field due to a source in
the absence of a plate. It induces a surface currents J on S. Since S is an open
surface, we consider J as the sum of the surface currents on opposite sides of S
and, therefore, the normal component J should vanish on boundaries of S. The
scattered electric field E® can be computed by the formula [14]

E’ = —iwA -V, ®)
where A and & are the vector and scalar potentials, respectively. It is known [14]

that the potentials are related to the excitatory current through the Green’s function.
In free space, the following formulas are valid

Mm=ufumeﬂM& ©)
S

®(r) = i /oG(r, r)ds’, (10)
s
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where Green’s function defined as

. J
efzklrfr\

G 5 / = )
rr) 4 |r —1/|

k = w,/me = 2w /1 (A is a wavelength) and |r — r'| is the distance between the
arbitrarily located observation point r and the source point r’ on S. The surface
charge density o is related to the surface divergence of current through the equation
of continuity

Vs - J = —iwo. (11)

The boundary condition for the electric field in the case of the perfectly conducting
surface is

n x (El + E‘&) = 0, (12)
whence, using (8) we obtain the integro-differential equation with respect to J
- Eian = (—iwA —V®)y,, res. (13)

Together with (9)—(11), Eq. (13) is the so-called the electric field integral equation
(EFIE). Sometimes in the literature, Eq. (13) is called the equation in terms of mixed
potentials (Mixed Potential Integral Equation). Nevertheless, hereinafter, we will
use the term EFIE, implying Eq. (13), taking into account (9)—(11).

3 The Method of Moments

The method of moments (MoM) (see [14, 15]) is one of the most popular and
powerful methods for electrodynamic modeling. Typically it is used for the analysis
of electrically small flat structures made of metal, dielectric inclusions are allowed.
Often it is applied to calculate surface currents on plane metal or dielectric structures
when emitted in free space. The main practical advantage of the method of moments
is that it is necessary to discretize (cover by patches) only metal component of the
modeling structure, since the current distribution on metal surfaces is considered as
an unknown quantity. Note that in other methods the main unknowns are usually
electric/ magnetic fields, which are presented in all solution space. As a result, the
“planar” mesh in MoM is much simpler and smaller than the equivalent “volume”
mesh required for FEM and FDTD modeling. In fact, the method of moments is a
way to solve Maxwell’s equations written in the integral form (EFIE, MFIE) in the
frequency domain.
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We describe the basic idea of the method of moments. As it has been discussed
earlier, the method of moments is a general technique for solving operator problem
in the common form

Lf =g, (14)

where L is a linear operator, g is the known source function or excitation, f is
an unknown function to be determined. In our case, L is an integro-differential
operator, f is an unknown current function J, and g is a known excitation source
(incident field E?) . We approximate the function f as the series expansion of N
basis functions f; with unknown weight coefficients ¢, yet to be determined:

N
£ anf (15)
n=1

When (15) is substituted in (14) using the linearity of the operator L one obtains

N
Y anL(fa) ~g. (16)

n=1

The basis functions f; are chosen to correctly model the expected properties of
the unknown function f and could be scalars or vector depending on considered
problem. Next, both sides of (16) are multiplied by known testing or weighing
function and the result integrated over a spatial area. The described procedure is
called inner product or moment between the basis functions f,(r’) and the test
functions g, () and defined as:

(&m» fn) Z/ &m(r) / fn(r/)a m=1,N, (17)
8m In

where the presented integrals can be linear, surface, or volume depending on the
type of basis and test functions.

We require that the scalar product of each test function with the residual function
be zero, then

N
Y anlgm L(f) = (gm g), m=1,N. (18)

n=1
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Equation (18) represents a system of linear algebraic equations for unknown
coefficients o, and in matrix form can be written as Za = b, where

(g1, L(fD)) (g1, L(f2)) ... (g1, L(fN))
7 — | (82 LUM) (82, L(f2)) ... (82, L(SN))

(gn, L(f1) (gn, L(f2)) ... (gn, L(fN))

(glﬂ g> o]
b— (82, 8) A= |®
(gn, &) ay

SLAE (18) could be solved using various numerical methods, Gaussian elimination
or similar techniques like a version of LU-decomposition. Note that in the method
of moments the resulting matrix of the system is compact but completely filled, in
contrast, for example, to the methods based on differential equations whose matrices
are huge and sparse.

Solving (18), we determine the unknown coefficients ¢, by which the desired
function f is reconstructed. Thus, f = (f, Z’lb), f= (M, ..., fN)T. This
completes the procedure of the method of moments.

3.1 Basis and Testing Functions

The basis and testing function could be arbitrary. However, to provide an efficient
solution the basis function should be selected such that the relatively small number
of functions will guarantee a well approximation. The testing functions should
provide a reliable measure of discrepancy between two side of (16).

One of the most popular basis functions used in calculating the surface current
are the so-called RWG functions proposed in [21]. They are conveniently used to
search for an approximate EFIE solution when the surface of a perfectly conducting
body is divided into elementary triangular patches. We will use standard terms, such
as a face, to denote the surface of an elementary triangular patch, an edge (boundary
edge) to indicate one of its sides, and a vertex to indicate the vertices of a triangle.

First of all, we note that each basis RWG function is associated with one inner
edge and vanishes everywhere on S, except for a pair of triangles adjacent to this
edge. Figure 1 shows two such triangles, 7} and 7, adjacent to the n-th edge.
Points belonging to the triangle 7," can be described both in global coordinates
by the radius vector r, and in local coordinates using the radius vector p, defined
relative to the free vertex of the triangle 7,". A similar remark is also true for the
triangle 7, with the only difference being that the vector p, is directed from the
point belonging to the triangle to the free vertex 7,,. The choice of “positive” and
“negative” triangles is arbitrary, given that for the entire cycle of calculating the
surface current, it will not change.
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n-th edge

Fig. 1 Triangle pair and RWG parameters associated with inner edge n

Basis function associated with the n-th inner edge defined as:

b+ +
QA+ Py, TETT,
Mﬂ=2?g,rﬂﬁ (19)
n
0, otherwise,

where [, is the length of the n-th edge, A and A, are the areas of the triangles
T," and T, , respectively. The properties of RWG functions are described in
detail in [21]. Following the method of moments, we represent the surface current
everywhere on S in the form of an approximate formula

N
J =) anfulo), (20)

n=1

where N is the number of inner edges.

The next step in the method of moments is the testing procedure or multiplying
the original equation by testing functions. Generally speaking, for the testing
procedure, it is permissible to use any functions. However, their choice of a specific
problem is crucial. One of the most effective methods is The Galerkin method, when
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the same basis functions are chosen as test functions. This ensures that the boundary
conditions are observed throughout the solution area, and not just at discrete points.
Therefore, we take the same RWG functions as test functions. We define the scalar
product as (f, g) = fS f - gdS and test the Eq.(13) by the RWG functions. We
obtain

(E', fn) = i0(A, fin) + (VO, fn). 21

Using methods for calculating the surface integral and the f,, property at the S
boundaries, the last term in (21) can be written as

(VO, fin) = —/@VS - fmdS. (22)
S
Then, using
In n
A,J[’ rel,’,
Cf = In -
Vs fn=1- _ refT

n

0, otherwise,

the integral in (22) can be approximated as follows

1 1
/@Vs~fmdS=lm A,J;/q)ds_Am/q)dS

S T, Ty

= [ — o). (23)

In (23), the average value of ® for each triangle was replaced by the value @ in the
center of mass of the triangles. Using similar arguments, we can approximate the
terms in (21) containing the vector potential and the incident field. We show this by
the example of the term (E', f,,):

. . I 1 . 1 :
(E’,fm>=/E’~fmdS= - +fE’-pn+1dS+ _ /E’-p,;ds
2\ An An
S T, T,

by /o o
=" (E chHpst + E'(r;,;)p;,;). (24)
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Thus, applying the testing procedure for EFIE by RWG functions, with (22)—(24),
we obtain an equation

c—

: Jo _ P ¢ o
iwly, [A(I‘f,:“) ’ + A()) ’ }+lm[<l>(rm+) — O(r;, )]

c—

. o+
—1, [E’(rf,j)p'; ~|—E’(rfn_)'0’£’ } (25)

that is valid for each inner edge, m = 1, N.

3.2 Obtaining the System of Linear Algebraic Equations

After inserting the expansion for the surface current (20) into Eq. (25), we obtain
a system of linear algebraic equations (SLAE) of size N x N, which can be
represented as

ZI=V, (26)

where Z = [Z;,] is the N x N matrix, I = [«,] is the column of unknown
coefficients, V = [V}, ] is the column of the known right-hand side. The elements of
the matrix Z and the column V are determined by the following formulas:

,OC+ pc—
Zn =In |:la) (AZn : I; + An_m : V2n ) + ch_m - CDZH:| ’ ©2))
c+ c—
V=l (B -7 4B ) (28)
2 2
where
e, v
+ w e ikl —r
Apn = i f f (@) o+ ds’, (29)
S [rp, —1r'|
ot
n 1 , —ik|r,, —r'|
D,y = — ) V. fu () ds’, 30)
4reiw § et ,
S |I'm —-r |

+ .ot
E, = E\(ry, ). (31)
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After defining the elements of the moment matrix Z and vector V, we can solve the
resulting system (26) with respect to the vector of unknown coefficients o, by one
of the well-known methods for solving SLAEs.

4 Algorithm for Solving the Problem

The numerical solution of the problem can be conditionally divided into three main
stages. At the first stage, we build a triangular grid of the plate surface and the array
of RWG elements. At the second stage, we compute the elements of the moment
matrix and derive the final SLAE; at the third stage, we solve the SLAE and build
the required function.

A numerical method for solving the problem of diffraction by a rectangular metal
plate proposed in [22]. In the case of tooth-shaped plates, at the first stage, we divide
the original area into a set of rectangles with common boundaries. In the case of the
four-tooth-shaped plate shown in Fig. 2 on the left, the original area is divided into
seven rectangles: Py,..,Ps.

For each rectangle we build a triangular mesh and generate an array of RWG
elements. The boundary points of the triangulation for adjacent rectangles should be
selected so that these points are common. To speed up the first stage of the program
the OpenMP technology is used. In this case, the rectangular areas are processed
in parallel by the corresponding threads (processor cores). After the threads are
finished, we get an array of RWG elements that are generated separately for each
rectangle. The array does not contain elements that consist of triangles located on
the common boundaries of rectangular regions.

Next, in the sequential part of the program, we construct the boundary RWG
elements and add them to the previously generated array (see an example of such

€CPU : OpenMP
P2 Pe ANANR
Py Ps Ps
Po Ps | U
Py
CPU 5
Po

Fig. 2 RWG-mesh implementation scheme for tooth-shaped plate
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element given for the boundary between the rectangles Py and P; on the bottom
right of Fig. 2). Thus, after the first stage of the algorithm, the original tooth-shaped
area is completely covered by the RWG mesh.

The next part is the calculation of the moment matrix elements by the for-
mulas (27) and (28). This is the most laborious and time-consuming stage.
However, each element of the moment matrix could be calculated independently.
Consequently, the second stage of computations is easy to parallelize. For these
purposes we use a graphics processor. An array of RWG elements is copied from
RAM to video card memory; then each thread computes the corresponding matrix
element.

The SLAE solving is carried out on the CPU by the Gaussian method after
copying the moment matrix and the right-hand side from the GPU. Then the current
vector on the plate is approximated using the formula (20).

5 Numerical Results

The calculation program is written in the programming language C using OpenMP
and C/CUDA, provided by NVIDIA, which implements support for the CUDA API
for compiling code that runs on a GPU. When launching the main computing core,
which is responsible for calculating the elements of the moment matrix, a two-
dimensional grid of blocks and two-dimensional blocks were used. This approach is
convenient since the moment matrix is represented in memory as a two-dimensional
data array.

For calculations, we used a personal computer with the Intel Core 13-5005U
processor (2 GHz), RAM is 4 GB with the graphics accelerator GeForce 920M.

The case of normal incidence of an electromagnetic wave with a wavelength A
is considered. The calculations are performed for a metal perfectly conducting plate
with the following parameters: width—0.91, height—0.675, tooth width—0.34,
tooth depth—0.225A.

Figure 3 shows the distributions of the absolute values of the current component
J » on the surface of a symmetrical four-tooth-shaped plate along the lines parallel
to the axes Ox and Oy. The grid covering the tooth-shaped plate consists of 252
triangles, which corresponds to 345 RWG elements.

Distribution graph |J.| (on the left in Fig.3) is plotted along the lines y =
0.3375A and y = 0.5625A. This component of the vector J is normal to the
boundaries, and its values vanish at the edges. The values of the blue graph,
corresponding to line B, also take zero values in the place where there is no metal.

The right part of Fig. 3 shows the graphs of the |J .| distribution along the lines
x = 0.15A and y = 0.45A. In this case, the current component | J .| is tangent to the
boundaries and its values tend to infinity at the edges of the plate. | J .| takes zero
values outside the metal (see blue line).
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ACUTALONG A
LINE"B"

i

ACUT ALONG THE -
LINE "A

ACUT ALONG A
ACUT ALONG THE Pe
LINE 'B" LINE "A

Fig. 3 Distribution of the current on various lines

Table 1 Time required for computing moment matrix on CPU and GPU

Number of RWG elements Time on CPU (s) Time on GPU (s) Acceleration

225 2.80 0.71 3.93
587 15.19 1.40 10.84
1115 52.83 3.43 15.40
1443 95.63 5.95 16.06
1813 159.84 9.92 16.08

Table 1 summarizes data on the number of RWG elements (depends on the
degree of area discretization) and the computation time required on CPU and GPU
to generate the moment matrix for a different number of these elements.

Maximum 16x acceleration of GPU performance over CPU is achieved on a large
number of RWG elements.

6 Conclusions

In this paper, the parallel algorithm for solving the problem of electromagnetic
wave diffraction on tooth-shaped plates is proposed. The problem is reduced to the
electric field integral equation (EFIE) and solved using the method of moments. For
basis functions and testing procedure RWG functions are used. Two main stages in
numerical algorithm—the construction of the RWG-mesh and the calculation of the
moment matrix elements are discussed.

For the parallel implementation of the first stage, the OpenMP technology is
used, and the elements of the moment matrix are calculated on the GPU using
the CUDA technology. An almost 16-fold the acceleration of calculations on the
video card is obtained. The numerical results of the algorithm for a symmetric four-
tooth shaped metal plate are obtained. They show good correspondence with the
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results of previous work. Thus, the proposed parallel algorithm can be applied to the
plane wave diffraction problems by the screens of complex shape with rectangular
boundaries. Also, the proposed algorithm can be used to speed up the design of
tooth-shaped antennas [23, 24].
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On Convergence of Explicit Differential )
Scheme for Solving One Parabolic e
Equation with Double Degeneration

and Nonlocal Space Operator

Ludmila Glazyrina, Olga Glazyrina, and Maria Pavlova

Abstract We consider the initial-boundary value problem for nonlinear parabolic
equations. This type of equation can be classified as a parabolic equation with
double degeneration: degeneration can be present in space operator, and a nonlinear
function which is under the derivative sign with respect to the variable 7, may not
be separated from zero. The space operator of the considered equation nonlinearly
depends on the sought function, its gradient, and the non-local (integral) solution
characteristic. This problem has an applied nature. Such equations appear, for
example, in modeling the process of bacteria population spreading. In the present
paper, we propose and investigate the explicit differential scheme. A priori estimates
are obtained, and the convergence of the constructed algorithm is proved. The
current work is a continuation of the research begun in our previous works, where
the convergence of the explicit difference scheme in the case when nonlinearity
is present only in the spatial operator have been investigated, for a problem with
double degeneration, an approximate method has been studied. That method was
constructed with the use of semidiscretization with respect to a variable ¢ and
the finite element method in the space variable with lowering nonlocality to the
lower layer, the existence of an approximate solution and the convergence of the
constructed algorithms was proved.
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1 Statement of the Problem

Let the €2 be bounded domain in the space R", I is its boundary, 2, Q7 = Q x
(0, T). In the domain Q7 consider the initial-boundary value problem

o) 0 B
ot _Z;axi (kl(X,M,VM,BM)) _fs xeQ, te (0, T), (1)
u(x,0) =up(x) xe€Q,  ux,n=0 xel, tel0,TI. @)

Here k;, uo are known functions, B is an operator of the form

Bu(t) =/g(x,u(x,t))dx, 3
S'Z/
g is a given function, ' is a domain that is contained in 2 or coincides with it.

We assume that function ¢(£) is an absolutely continuous, strongly increasing
function and it satisfies the following inequalities for arbitrary £ € R!,

&

bo | & 1% —by < D(E) = fgo’(t)rdr <by|E|" +b3, a>1, 4)
0

| &) |<bi | & %" 4bs, ®)

@' (©)E) >0, (6)

here b;; are constants such that following inequalities are correct
boi >0, b1; =0, byi >0, b3; =0, bsj >0, b5; >0,i=1,2,

functions k; (x, &y, &,v), i = 1, ..., n, are continuous with respect to &y, v and &,
measurable with respect to x and for arbitrary x € Q, §,v € R, él, & 2,5 € R"
satisfy the following conditions

n
| ki(x.E0. 6. v) |<do Y & 1P +di. do>0, di =0, p>1. (7
j=1

Y ki(x,E0.E,v)E =dr Y | & |P —d3, dy>0, d3>0, )

i=1 i=1

n

> (kiCx, 0.8 v) — ki(x, &, 8% 1)) & — &) = 0. 9)

i=1
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Let’s note that condition (7) implies that the operator L, acting from W; ()
p

into Wl;l (2), where p’ = 1 is bounded. The conditions (8) and (9) provide,

respectively, the coercivity and monotonicity with respect to the gradient of the
operator L.

We assume that the function g(x, £), defining the operator B, is continuous with
respect to &, measurable with respect to x and satisfies the following condition

lg(x, &) < go(x) + &) for almost all x € €2, (10)

where g is a function integrable over €2, s > 0.

Space operators with non-localities of the form (3) arise, for example, in the
mathematical describing the diffusion of bacteria population when it is assumed that
the propagation speed at a point is specified by the global state of the environment
(e.g., see [1-3]).

Definition 1 A functionu € L,(0, T; W;(Q)) () Loo(0, T; Ly (£2)) such that

0
u(x,0) =up(x) almost everywhere in €2, </;(tu) € Ly(0,T; W;l(Q)),

will be called a generalized solution of problem (1) and (2), if for any function v

from the space L, (0, T’; W;(Q)) the integral identity holds

T

T n T
/<a¢(”) >dt~|—//2k,~(x,u,Vu,Bu gv dxdt / dt,  (11)
0 ' 0

OQI=1

here (g, v) is the value of a functional g from W;l (€2) on element v from W[% (2).
When obtaining the results presented in this article, we use the technique from the
papers [4—6]. The current work is a continuation of the research begun in the works

[7, 8].

2 Auxiliary Results and Notation

In what follows, we will assume that the domain €2 is a n-dimensional paral-
lelepiped: Q2 = {x eER,: 0<x; <1I;,i = 1,2,...,n.}. On Q construct a
uniform mesh wy with a mesh step 4; in the i-th direction, h = (hy, ..., h,), h =
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min £;. We will assume that there is a constant ¢ such that 4 < ch, h = max h;.
1<i<n 1<i<n

We denote

l.
a)hz{x=(x1,...,xn)es2: x; = jhi, j=0,...,N;, N,-:h' }
i

yvh=wpNT, o =wp\yh.

On [0, T'] we construct a uniform mesh with a step 7:

T
U)r:{IE[OgT]:t:jrsjzos"'vaM: }1 a)'L’:wT\{O}‘
T

We denote by H the set of mesh functions defined on w, ;1 are the functions
from H, that equal zero on y. Let further r is the n-dimensional vector with
coordinates r; = £1, V,y(x) = (0r,¥(x), 0,y (x), ..., 0r, Y (X)),

)’xi(x)v ri = +17

O,y (x) = {yxl. (x), ri = —1.

Let us denote by H,.(x) a mesh cell w,, which contains all the mesh points
participating in the notation of operator V,y(x), o, is the set of points x € w,

at which the operator V, y(x) is defined. In the space of mesh functions [?1 introduce
the following norms and scalar products

G =Y Hy@oe),  Dyoul=1729 Y (o).

XEwy

n
Iy =0y 17,07, Iy ,= /29 )% (1 d,y 17, Dy,
roi=l1
Iy lp=sup 20
w0 IV ll4p

here H, = mes H,(x).
For mesh functions, we define piecewise constant extensions x and ¢ each
M,z(x) = {z(x"), x' € w,, x € H(x)},
O w) ={wk),t =kt, k- Dt <t <krt},
Mtw() = {w(), t =kt kt <t < (k+ D7},
Mfw=0',w, I w=I TI,w.
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Lemma 1 (See [4]) If (&) is an absolutely continuous increasing function, then
the following inequality holds

(&) —p(m)E > ®(E) — (n), VYE,neR. (12)
Lemma 2 (See [4]) Let o > 2, function ¢ satisfies the condition (4) and besides
¢'E) =be |5 1“2 bg>0. (13)

Then for any constant 0 > 1 there is ¢ = const > 0, such that for any &, € R
the inequality holds

(&) —em)©O& — O — Dn) = @) =P +c|§—n|*. (14)

Lemma 3 (See [4]) Let ¢ (&) be an absolutely continuous, monotonically increas-
ing function satisfying the conditions (4)—(6). Then for any function v such that

ol
v e LyO0.T: W, () ) Lool0. T: La(R)), (15)
d
Y e Ly, Wy @), (16)
ol
v(x,0) €W, () () La(R). (17)

the following equality holds

T
/(a(p(v),v)dt = fim | f fd>(v(t))dxdt—f¢(v(0)>dx- (18)
ot A—0 A

0 T2 Q 2

It is easy to check the validity of the following lemma.

Lemma 4 (See [4]) Foranyy GI?I the inequality holds
Iy l4p=<tally lla: 19)

cd/n c{/n

where )“":h1+n(p—a)/ap’ if p>a and Ay = h ifl<p<a.
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3 Construction and Investigation of an Explicit Difference
Scheme

For the problem (1) and (2), consider the explicit difference scheme
o (y) + Ay(x, 1) = far (x,1), x € wp, 1 € w\{T}, (20)

y(x,O):yo(X), y |Vh:0'

Here A is a difference operator acting from I?I to I?I , defined by the relation
1 n
[y, wl =, Y (@i, ki, Vry, Buy), driw)yr,
roi=1

where Bpy(t) = BQ2™" ) _I1,y(#)), yo a difference analog of u¢ such that
r

[ryo = uo in Lo (), 21

fnr 1s a mesh function, that is an approximation of the original equation right side,
which we define as follows

1 " o
Ufies 01 =, S (e ) Yo €H,

roi=0
where

t+7

1
tmes(H,(x))/ / fi(¢,n) dédn.

r Hy(x)

Bov =0, S0 =

Conditions (7)—(8) on the coefficients k; provide continuity, boundedness:
—1 -
I Ay l-p<colly Iy, =+ ¢ (22)
the coercivity of the operator A :
[Ay,y1=da |y I}, —ds, (23)
with constants do > 0, d3 > 0, co > 0, ¢ > 0, independent on h and 7. The

unique solvability of the difference scheme (20) follows from the condition that the
function ¢ is strictly monotonic.
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Lemma 5 Let o > 2, function ¢ satisfies the conditions (4)—(5) and besides

uo € La(Q), [ € Lg(0, T3 W, '), q = max{e, p'}.

Then for any
h(x
c , l<p<a,
oapa/p
T = hp%nflpfa)/a (24)
c , D=z«
2Pn

for the solution of the difference scheme (20) the following a priori estimates hold

t/
Y Tyl ,= const, (25)
=0
max || y(t') ||§ < const, (26)
t'ew,
t/
>ty i< const Vi €, (27)
t=0
1 T—kt
kr Z tle(y(t + k1)) — (¥ (1), y(t + k) — y(1)] < const (28)
t=0
Vk € {1,...,N}.

Proof Multiply both sides of (20) scalar in H by t(0y — (6 — 1)y), where the
constant 6 > 1. As a result, we get

t[e(y), 09 — (@ — Dyl + t[Ay, 09 — (0 — Dyl = [ fhr, 09 — (6 — 1)y]
or

[ (y), 09 — (0 — D)yl + t[Ay, y] =
= [ fir, Y1+ T20L fur, yi1 — T20[Ay, y1]. (29)

Using Lemma 2, we estimate the first summand in the left-hand side of the Eq. (29)

tl@i (1), 09 — (0 — Dyl = [®F) — P(y), 1T+ || ye g - (30)
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To estimate the first two summands on the right-hand side of (29) we use HAdlder
inequality, e—inequality and a difference analog of the Friedrichs inequality, as a
result we have

Tl fies ¥1 < rZufhf,up 1(1+c9)r||y||ip, (31)
81]7 j=0
aa+1
rz[fhf,yt]s rZufhf,n za Ay IS, + 1y ) < (32)
aa+1
< rZu Fuej 1% za (1 +ca)rd Il ye Il +eiT,

here cgq is the constant from the difference analog of the Friedrichs inequality.
From (22) follows that

—1 _ _
T20[Ay, yil < T20(co | y 15, +¢0) Il yi l4p=T+7°0c0 [ 31 ll4p.  (33)

Further, using (30)—(33) and the coercivity of the operator A, from (29) is easy to
obtain

(@) — D), 1+t [ yr Ml +dat | y I}, —d3T <

rZufhf,u” 1<1+c9>r||y||ip+
81 P j=0

1 " , sgr““
+ a/a/f Z | fhe,j ||‘;,/ + o Q+crg Iy llg +1 +c1t. (34)

Let p > «. We estimate I using HAdlder’s inequality and Lemma 2, as a result
we obtain

1< 72 Iy 120y 158, a1l vt Nl

IA

2ol Il y 120 A8 1y 187 vy o<
.L_goz' .L,ot+1(c 9)0{)\17
3 p 0 o _
= ik, + e Iy 12741 ye 1. (35)
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Substituting (35) into (34) and summing the resulting inequalities over ¢ from 0 to
t' € &, we will have

[Py, 11+ (Mz e (14+8) )Zr Iy 15, +
i 2b
+ ( 2(2+csm°‘ (cot)* " Ny (@) 157 )r“ Iy g <
=0 Ol€3
o S0 s 1+
&1 P =0 Jj=0
Z I e (@) 1% +[@G©)), 11+ 3. (36)

First, let us prove that (36) implies the estimate

Iy 1g < (Z Zu Fie i 0 117 +Z Zu e (0 1%

t=0 j=0

+[P(y(0)), 1]+ 1) =m“ vt € @y, (37)

where ¢, m are constants independent of h and 7. For f/ = 0 estimate (37) holds.
We assume that (37) is valid for all ¢’ < t1; t, 11 € w,. Let us prove that (37) holds
for ¢’ = t; + 7. To do this, write inequality (36) for ¢’ = #; + 7, considering, that
I y@) %< m® Vi <,

p o 1
] py_ %3 P
[D(y(11 + 1)), 1]+ <d2 - Arep— ) gr Iy %, +
80{
+(E— T 22+ - (coe>°‘ pm )Zr“ Iy lg<

Z Z | fie s ) 115

1on j=0

3l

1
+ 00T Zu Fuej @) 1% +ID(¥(0)), 11+ c3. (38)

Ol
2 t=0 j=0
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Choosing €1, €2, €3, h and 7 so that

/
o

8{) &3
d— '(A+cy)— > =68 >0,
P o

_ & Al
—T 2 Q2+cary = (c0®)* ,mPT" >8>0, (39
o Ot83

and using the condition (4), of (38) is easy to obtain (37) for ¢/ = #; + t.
Therefore, the estimate (37) will be valid for any ¢ € @;. From (36) and (37)
the estimates (25)—(27) follow. Note that the constant ¢ in (24) is chosen so that the
inequality (39) holds.

Similarly to the way above, it is easy to verify the validity of estimates(25)—(27)
inthecase | < p < a.

Let us further prove the validity of the estimate (28).To do this, we sum both
sides (20) over 7 from 7 to 7 + (k — 1), then multiply the resulting equality scalarly
in H by 7(y(f + kt) — y(¢)) and again sum over f from O to T — k7, as a result we
will have

—kt

Z lp(y( + k1) — 9(y(D), y(F + k1) — y(D)] =

1 T—kt i+(k—1)t

— 2 2 Ay, yE kD) - y@1+
=0 t=t

T kt t+(k—1Dt

+ Z Z Tlf, y( +kt) — y(D]. (40)

Using the boundedness property of the operator A, HAfilder’s inequalities and (33),
from (40) it is easy to obtain

T—kt

Y tleE +kD) — p(y(@), y(F +kt) — y(D] <

=0

kt

T—kt

<c Z T | y@ ||+,,+ Z Zu Sire @) 17

t=0 j=0

From the last inequality and (25) it follows (28). The lemma is proved. |

The a priori estimates (25) and (26) imply the boundedness of the set {l'lfE ¥}
in the spaces L,(Q7) and Lo(0, T; L2(£2), as well as the boundedness of the set
{njta,,. v} in the space L,(Qr). Due to the weak compactness of bounded sets in
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reflexive spaces and the *-weak compactness of bounded sets in Lo (0, T; Ly(£2)

subsequences {h(m)}fnozl, {rm}fnozll and the element u, which belongs to

L,(0,T; W,ﬁ (2)) N Loo(0, T; L2(2), such that for ™, 7, — 0, exists there

MFy = u in L,(Qr), 1)
ou .
M50,y =, in L,(Qr), (42)
0x;
My — u *-weakin Loo(0, T; Ly (S2). (43)

Using the estimates (26), (27), (29) and the mesh analog of the compactness theorem
(see [4], lemma 9), it is easy to confirm the existence of subsequences {h(’") }:,o:p

{Tm}_,, for which, along with (41)~(43) the limit relation of the form below holds

m=1’
H,iy — u almost everywherein Q7. (44)

Further, the condition (7) and the estimate (25) imply the boundednessin L, (Qr)
of the set {IT¥k;(x, y, V,y, Byy)} forany i € {1,2,...,n}. Therefore, there are

K; € L, (Qr) and sequences {h(’”)};o:l, {tm}zlozl such that
ki (x, y, Vry, Byy) = K; in Ly(Qr). (45)

For s < o from (26), (44) and Lebesgue’s theorem on passage to the limit, it is easy
to show that

N*B(y) — Bu in L0, 7). (46)

Theorem 1 Let the functions ¢, k; satisfy conditions (7)~(9) and (13), « > 2 and
the inequality (24) holds. Let, in addition, for T, h — 0

™k —- 0, if p>a, g > 0, if l<p<ao. 47)

Then for any function f € Ly(0,T; Wl;l(Q)), where ¢ = max{«’, p'}, and the
ol
function ug, € Ly(Q)( W p () subsequence of piecewise constant extensions

of the solution to the difference scheme (20), defined by the relations (41)—(46),
converges to a generalized solution of the problem (1)—(2).

I'In what follows, for the selected subsequences we will keep the notation of the sequences
themselves.
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Proof of this theorem is close to the proof of Lemma 3 from ([7]). Therefore, we
present here only fragments of reasoning different from Lemma 3.

Let’s scalarly multiply the difference scheme (20) by tz, where z —the drift
of the function z from C*°(0, T; C§°(R2)), z(x, T) =0 and sum over ¢ from 0 to
T — t. Asaresult, we get

T—t T—t T—-t
Y tlenzl+ Y tlAy, 2l =) tlfur. 2l
=0 =0 =0

We transform the first summand by using the formula for summation by parts. We
write the resulting equality using piecewise constant extensions in the form of the
integral identity

T

1

on Z { - / / I eI, (zp)dxdt +
0 Q

r

=

T
+ 2 e, vry,an,*ar,.zdxdt} -
i=1 0

Q
T
1 n
= Z // 1} fri 18y, zd xdt. (48)
Ti=lo g
In the equality (48), we pass to the limit as 7, & — 0. As a result, we will have
T
0z -
- ¢u) , dxdt — [ ¢(uo)z(x, 0)dx +
0 Q Q
an T ~ T
0z -
+ // K, dxdt= /(f, z)dt. (49)
; ax;
=1y Q 0

Following ([7], lemma 3), from (49) it is easy to obtain that

T
dou) _ - 3z B
7 2t +) ://K,aXidxdt_

=10 g

St~

T
ol
= /(f, dt Ve L0, T; W, (Q) (50)
0
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and, besides, u(x, 0) = up(x) almost everywhere in 2. Let us prove further that

Zf/ dxdt Z//k(x u, Vu, Bu) dxdt (51)

tlo tlo

ol
for any function z from L,(0,T; W » (£2)). To do this, we consider the following
inequality

[9($) — e, $1+ Y tlki(x, y, Vy, Buy) — ki(x, VD, Byy)), 9, (y — 9)] =
i=1

> [®() — P, 11, (52)

where y is the solution of the difference scheme (20), v(x, t) is the drift of the
function v(x, t) € C*°(0, T; CSO(Q)) to the points of the mesh @, x @. The validity
of (52) follows from (9) and the Lemma 1. Considering that the function y satisfies
equality (20), we rewrite inequality (52) as follows

n

[fes $1+ LAy, il = Y _[kiCx, yVD, Biy), (v — D)]—
i=1

- 1
= ki, yVy, Buy), 3,012 _[®() — (), 1].
i=1

Using the extension IT,", we write the last inequality forall 7 € [0, T] and integrate
the resulting inequality over the segment [0, ¢'], ¢ € [0, T]. As a result we will
have

t/
1 - .
Jith) = o Z/{m:rfhr, mhy) — Z/ I ki (x, y, Vy, Byy)ITF 9, ddx —
Ty =19

- Z/mk (x, V0, Bpy)IT1 8, (y — D)dx}dt + (53)
i= IQ

T—t

+Zr [Ay, yi] 1= znZ / / (@I $) — ST y)}dxdt.
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Further, using the [7] methodology, when the condition (47) holds we establish the
validity of the limit equality

T—-t
lim > 7?|[Ay. y]| =0. (54)

T,
t=0

Let us notice, that

/

t

t'+1
iff{cb(nf&)—cb(njy)}dxdtzi f /(D(H:ry)dxdt—/cb(uo(x))dx.
Q t Q Q

0

Let further t* be a mesh point w,, belonging to (¢', t' + 1], u(t') = (' +t—1*) /7,
A—linear extension with respect to . Using the convexity of the function ®, we
have

t'+1 t'+1

1 1
. / /cp(njy(t))dxdt - T{ / /cb(njy(t))dxdt
' Q ™t Q
)
+ / / ¢<ny(r))dxdr} -
t Q
= u(t) / O, y(t*)dx + (1 — u(t) / S y* — hdx = (55)
Q Q

= / {M(I/)q)(l'lry(t*))dx + 1 = p@)NPIL,y(* — T))} dx =

> /CD(Hr(M(t’)y(t*) + 1 = p@)y* —0))dx = / DA (y(t")) dx.
Q

Q

Let us prove further that

H;’_(kl(-xa yavi’ﬁthy)) - kl.(xau7VI_)’ Bu) in Lp/(QT) (56)
We denote
J = / |T1;} (ki (x, y, Vi, Byy)) —k,»(x,uva,Bu)V" dx dt . (57)

Or
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Limit relations (44) and (46), smoothness of the function v and continuity of
ki(x, &, n,v) for each of the arguments allow us to assert that the integrand function
in (57) tends to 0 as #, T — 0O almost everywhere in Q7. In addition, from the
estimate (7) it follows that

T (ki (x. y, Vb, Bry)) — ki, V5, Bu)|? <

- —p—1 av p—1 P
<(do)_ {lon| I 2

i=1

/

The right-hand side of the last inequality, due to the smoothness of v is a function
integrable over Qr, therefore, by the Lebesgue theorem on the passage to the limit
J — Oforr, h — 0, it means that (56) holds.

From the inequalities (53)—(55) it follows that

hm Jf(t) > lim CD(Afl'Ir(y(t’))dx—/CD(uo(x))dx. (58)
T,h—0
Q

From the relations (41)—(46) and (56) it follows that

t
T’llirgofr(t ) = r};rgoff(t )=J({) = /{<f, u)—
0

_ Z[ K; gv ldx - Z/ki(x,uVﬁ, Bu)a(uax_i ﬁ)dx}dt. (59)

i:lQ l:lQ

Considering (50), we will obtain

J(t)_/{a‘/’(”), —i—Z[(K—k(vaB)( D yxyde. (60)

119

Substituting (59), (60) in the inequality (58) and integrating the result over ¢’ from
T —XAtoT, A= const >0, we will have

T T
/J(t/)dt’z/ lim /CD(AIH,(y(t’))dxdt’—A[CD(uo(x))dx. ©61)

7,h—0
Q Q
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The convexity of the function ® (&) implies the weak lower semicontinuity on

L (£2) of the functional / @ (w(x))dx. Therefore
Q

T
/ lim f O (AL, (y(t))dxdt > f / O (u(t'))dxdt'. (62)
T—A\ Q Q

7,h—0
T—

>

We transform the left-hand side of inequality (61) using the mean value theorem.
The application of this theorem is admissible, since the function J (') is absolutely
continuous with respect to #’. Considering (62), we will obtain

T

A (F) = / /@(u(t’))dxdt’—A/@(uo(x))dx,

T—r Q Q

here f € [T — A, T]. We divide both sides of the last inequality by A and pass to the
limit as A — 0, as aresult we get

T T " )
/<a(g(tu),u>dt+//Z(K,~ — ki(x, u, V1, Bu))a(uax_i ® fxdr >
0 0 Q i=1

T
> lim | f /q)(u(t,))dxdt/_/cb(uo(x))dx.
r—0 A
T—x Q Q

The last inequality and the 3 lemma imply
/T /T
00

Assuming in the inequality (63) first v = u 4+ Aw, and then v = u — Aw, where
1

A = const > 0, w is an arbitrary function from L, (0, T; I/?/p (R2)), it is easy to
obtain equality (51). The theorem is proved. O

~ Y dxdi > 0. (63)

Xi

/Z(K,- — ki(x,u, Vi, Bu))a(ua

o i=l1
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The Program System for Design )
Optimization of Data Transmission s
Networks

Vadim M. Gostev

Abstract The paper aims at analyzing the problem of data transmission networks
(DTN) design and the description of DTN design process using the design optimiza-
tion system (DOS). Methods and technologies of structure and parameters synthesis
of DTN on the DOS base are considered.

1 Introduction

Data transmission network (DTN) is the structural core of a geographically dis-
tributed wide-area computer network. DTN is a backbone communications mesh
subnet that provides information exchange between servers and workstations.
The basis of DTN is formed by communication nodes that interconnected by
communication links. Nodes manage transmission processes of data streams on
DTN and are usually implemented on the basis of high-performance multi-protocol
routers.

The cost of a router depends on its performance (throughput) measured by the
number of packets processed per unit of time, as well as on the quantity, types
and speed of interfaces, types and versions of supported protocols. Communication
links are created usually on the basis of dedicated (leased) channels of digital
communication systems. The cost of channels renting mostly depends on their
capacity and the distance between the connected points (nodes of data transmission
network).
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2 The Process of Data Transmission Networks Optimization

Among many problems that arise during the DTN life cycle, the problem of
system (conceptual) design takes a special place. The quality of decisions that are
made during design process largely determines the efficiency of the functioning of
information systems created on the basis of a wide-area computer network.

The DTN design process includes the following stages. First, it is necessary to
choose the topological structure of the DTN, that is to determine the number and
location of communication nodes and also to determine for each node with which
other nodes it will be directly connected by communication links. In the second
stage, there is a need to select main routes of data packets transferring between
each pair of nodes. The third stage is making a choice of routers throughput and
communication links capacity.

The value of router throughput directly influences the choice of a specific
router model from the range of available devices (by comparing their character-
istics such as cost and throughput) for installation in each communication node.
Communication link capacity influences on the characteristics of communication
equipment installing in nodes and thus influences the cost of installation or renting
of communication link.

The main criteria for estimating a data transmission network project are:

— expected time characteristics of data transmission—average and maximum
delays of messages and packets in DTN; those delays determine the wide-area
computer network response time (quality of service for DTN subscribers);

— throughput (overall performance) of DTN;

— cost characteristics, including capital costs of the communication nodes equip-
ment, as well as operating costs (the cost of renting communication channels,
cost of network administration).

The choosen values of parameters of routers and communication links must be
conformed with each other and ensure the compatibility of all DTN components by
protocols and interfaces. In addition, during the development of the DTN project,
it may be necessary to provide a reserve for connecting of new subscribers to DTN
and take into account the forecasted dynamics of the increase of external load as
well as the phased development of the network parts.

The making of all design decisions is interdependent and requires taking into
account a large number of factors. For example, the choice of DTN topology affects
primarily the cost of the network. However, this choice, together with other design
decisions, also affects the reliability of the network and the values of the time delays
during the transmission of packets through links from sources to destinations. The
choices of routers throughput and links capacity determine the cost of the network
and packet delay. Without solving the routing problem (and hence the distribution
of data streams over nodes and links), packet delays cannot be calculated. So project
quality criteria usually conflict with each other. For example, it is difficult to find a
compromise between the amount of funds allocated for the development of a DTN
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and such technical characteristics as reliability, average packet delay time and DTN
throughput.

Thus, the problem of DTN design is a complicated multicriteria problem, which
is characterized by a complex nature, inconsistency, and poor formalizability of the
set of requirements for the designed object, the need to carefully consider numerous
interrelated factors of various natures. A comprehensive solution of this problem
requires the development of adequate mathematical models, computationally effi-
cient methods and technologies that would allow taking into account the most
important requirements for modern DTN (for the formation and optimization of
the project).

3 The Data Transmission Networks Design Optimization
System

The complexity of the DTN design problem does not allow formulating one
common mathematical task (in general statement) that describes the whole problem.
As noted, for example, in [1], “the DTN optimization problem is so complicated
that there is no hope of solving it in general terms”. In such circumstances,
interactive human-machine technologies can help to cope with the complexity of
this problem [2]. A number of such technologies are implemented in the data
transmission network design optimization system (DTN DOS) [3]. The technologies
provide versatile support for the activities of a human in the design process, i.e.
during the searching, forming and estimating the effectiveness of solutions to the
problem under our consideration.

DTN DOS provides the designer with a set of tools that help him to develop and
to evaluate versions of design solutions. The design process (as a decision-making
process) is based on a combination of abilities of human-designer (his ability
to solve informal problems, his experience, knowledge, understanding of specific
project situation) with the computing capabilities of a computer. That human-
computer interaction allows solving complex mathematical problems of analysis,
evaluation and optimization as components of the general DTN design problem.

The system allows solving the problems of structural-topological and parametric
design of DTN, performing calculations and evaluating the parameters of projected
networks based on the use of their models, comparing various design solutions and
assessing their effectiveness, optimizing design solutions in terms of cost, reliability,
performance and time delays. The system provides support for a multi-stage iterative
man-machine design process with the ability to repeatedly perform individual stages
and solve individual problems in order to correct, refine and optimize previously
adopted design solutions, as well as the implementation of design methods with
varying levels of complexity. At the same time, the system provides the designer
with a user-friendly interface that meets modern requirements (graphical display of
projected networks in a multi-window mode, tools for working with versions of the
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projected network, means for supporting technologies for automatic completion of
partial solutions, means for automatically improving existing solutions).

The process of designing a data transmission network based on a design
optimization system includes the following main stages:

1. structural and topological design (STD);

2. routes selection (RS)—the choice of routes for data transmission between
communication nodes;

3. capacity selection (CS)—the choice of throughput capacities of nodes and
communication links;

4. the estimation of quality and efficiency (EQE) of the designed DTN.

The design process is supported by a complex of functional and supporting
subsystems of the DTN DOS.

Functional subsystems implement the solution of design problems (in automatic,
manual and hybrid modes) at the appropriate design stages.

The subsystem of structural and topological design includes a set of programs
that implement methods for optimizing the design of the topological structure of
DTN and tools for supporting manual design (building the initial network topology,
its further completion, improvement). Within the framework of the subsystem,
algorithms for solving the following basic problems are implemented: construction
of the initial topology, construction of a graph with a given degree of vertices,
construction of a graph with the minimum total length of the shortest paths between
all pairs of vertices under a cost constraint, algorithms for optimal completion and
improvement of the topological DTN structures.

The route selection subsystem includes a set of programs for solving data
flow routing problems: a flow deviation method to minimize the average latency,
maximum delay minimization algorithms, the shortest path algorithms, various flow
distribution methods aimed at increasing the DTN throughput.

The capacity selection subsystem includes a set of programs that implement
methods for the optimal selection of communication links capacity and nodes
throughput as well as tools for completing and improving DTN design versions.

Supporting subsystems maintain the operation of functional subsystems. The set
of supporting subsystems forms the system environment (shell) of the design opti-
mization system. The main functions of the system environment are design process
management, data management, implementation of the man-machine interface. The
design optimization system includes the following supporting subsystems: monitor
(design process control subsystem), support subsystem for working with versions
of design solutions, data management subsystem, graphic display subsystem,
subsystem of means of interaction between the designer and the system.
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4 The Estimating Quality and Efficiency of the Data
Transmission Networks

The complexity of the problem under consideration, the large number of parameters,
conditions and restrictions of various levels of detail do not allow describing
and investigating the designing DTN in full enough within the framework of a
unified mathematical model. To increase the efficiency of the design process, the
integrated modeling technology is implemented in the design optimization system
(DOS): in the process of forming and analyzing solution versions, both analytical
and simulation models are used. On the basis of analytical models, the following
functional subsystems of DOS are built: structural and topological design, routes
selection, capacity selection.

The use of analytical models makes it possible to relatively quickly form a
complete version of the DTN project using optimization algorithms of various
complexity levels. However, as a rule the relatively high speed of these algo-
rithms is achieved due to a number of simplifying assumptions. In particular, a
continuous distribution of the lengths of transferring packets (and, therefore, a
continuous distribution of the time processing of packets in the nodes and links), the
independence of the packet lengths, the absolute reliability of the DTN elements,
the independence of the packet delays in all transit elements of the route are
assumed [4]. These assumptions reduce the accuracy of the design characteristics.
In a such situation to evaluate whether this accuracy is within acceptable limits
and to outline the boundaries of the scope of analytical models it is possible
using simulation modeling [5, 6]. Simulation models can be used to substantiate
and verify the developed analytical models of DTN elements, to evaluate the
effectiveness of heuristic algorithms based on analytical models, and also to evaluate
the effectiveness of DTN projects developed on the basis of analytical models. The
use of simulation models is time-consuming to obtain results, however, it allows one
to abandon some simplifications and to obtain more accurate estimates of the DTN
characteristics versus analytical models.

The integrated using of analytical and simulation models forms the basis for the
technology for estimating the quality and efficiency (EQE) of designed DTN. That
technology implemented in the EQE subsystem of the DTN design optimization
system.

The EQE subsystem provides a solution to the problems of calculating the
characteristics of projected networks and criteria for estimating the quality of
their functioning with a different character of the distribution of external load on
the network. The criteria are average and maximum packet delays, estimates of
the maximum throughput and cost of the projected network. The subsystem also
provides a solution the problems of failures modeling in the operation of networks
and estimating the quality of the functioning of networks in these conditions, what
makes it possible to identify the “bottlenecks” of a particular version of the network.

DTN simulation models are built automatically by a special model generator
included in the EQE subsystem. The generator input receives an information model
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of the DTN created by the designer at the previous stages (structural and topological
design, routes selection, capacity selection). Analyzing the DTN parameters, the
generator forms a model in the GPSS language. The model simulates those functions
of communication nodes that reflect the key aspects of routing algorithms and the
main functions of the network protocols: packet queuing, packet header analysis,
packet processing, selection of the outgoing direction of packet transmission in
accordance with the routing procedure. This takes into account the packet delay
in the node during the time takes to complete these operations. At the process of
automatic generation, libraries are used that contain models of individual functional
modules of the communication nodes and communication links, as well as models
of external data sources (servers and workstations). The resulting model is passed
to the input of the GPSS interpreter.

The output characteristics obtained as a result of the simulation experiment
are the average packet delay time, standard deviation from the average packet
delay time, packet delay distribution functions, the number of packets processed
by each communication node, the number of packets transmitted, average lengths
of queues and average values waiting time in each communication node, the load of
communication links and processors of the routers at every communication node.
Analyzing the simulation results, designer can correct the current version of the
DTN project (change the topology, routes, nodes throughput, links capacities, packet
sizes) and repeat the simulation stage using the means of the EQE subsystem of
DTN DOS.

5 Mathematical Models and Methods for Data Transmission
Networks Design Optimization

For a comprehensive solving to the general problem of DTN design and for solving
of particular problems of optimization of design solutions various methods and
technologies are proposed.

Let the DTN topology be defined by the graph G = (V, U), where the set of
vertices V = {v1, v2, ..., v,} represents the set of DTN communication nodes, the
set of edges U = {uy,us, ..., u,} represents a set of communication links. We
denote by ¢k, k = 1, m the capacities of communication links, by fi, k = 1, m—
flow rates through links, through y—total DTN traffic.

In [4], an estimate of the average delay of messages on communication links via
DTN is given:

1 Jie
T = , 1
Y,;Ck—fk )

which occurs when certain, sufficiently stringent, assumptions are met (Kleinrock
regularization, see [4]).
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The DTN design problem is formulated as follows. For the set of nodes V =
{vi,v2,...,v,} and for the external flows matrix I' = (y;;) it is necessary
to find: 1)the set of edges U = {uj,u2,...,uy} describing the DTN links
structure; 2) the links capacities ¢ = {c1, c2, ..., cn}; 3) the flows’ distribution
f=1{f1, fo, ..., fm}, corresponding to the matrix I' = (y;;), which minimize the
total cost of the DTN when the average delay T is limited and a given degree of
graph G = (V, U) connectivity is ensuring.

The software of DTN design optimization system includes:

1. some well-known, proven mathematical models, numerical methods and algo-
rithms for solving problems of analysis, estimation and optimization DTN [6-9,
11-13];

2. a number of new mathematical models, methods and technologies for DTN
design optimization [2, 3].

The relevance of the development of new methods and technologies is deter-
mined for the two following reasons.

Firstly, “old” methods do not take into account delays in communication nodes.
This can be explained by the fact that communication links in “early” DTN had
relatively low throughput, while processors in the nodes had a relatively higher
productivity. And the communication links were the “bottlenecks” that had a
decisive impact on the overall DTN throughput. In modern conditions, when high-
speed digital links are used in DTN, delays in communication nodes can have the
same order of magnitude as delays in links. Therefore, in the DTN design process,
it is also necessary to ensure control of nodal delays.

Secondly, the well-known methods for optimizing the DTN design, in particular,
methods for the optimal choice of links capacities are practically unsuitable for
solving problems of DTN design with an asymmetric load on the network while
exactly this case is typical for modern wide-area computer networks.

6 An Example of Integrated DTN Modeling

Among the characteristics of DTN the most important place is occupied by the
values of packet delays. In [2], a method for estimating the average delay of packets
is proposed. The method is taking into account the delays in the communication
nodes. In this case to estimate the delays in the communication links well-known
approaches based on the use of the M/M/1 and M/D/1 models are used. A similar
approach is used to estimate packet delays in the communication nodes.

Based on the M/M/1 model, i.e. consider that the input stream of packets for
processing by the processor of the communication node is Poisson with intensity
A, and the processing time is 1/g considered as a continuous random variable
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distributed exponentially with an average value, then the average packet delay in
a separate node will be expressed as

1 1

= , 2
qg—* q—ug

Om =

where g = A/u is the average value of the flow through the node in bit/s. Here, too,
the flow admissibility condition must be met: g < g /u.

Since the processing of packets in the communication nodes usually consists
in performing operations that are the same for all packets regardless of their size,
we can assume that the processing time is constant for all packets and depends
only on the processor’s performance. Therefore, it is possible to consider a separate
communication node as an M/D/1 system, at the input of which a Poisson flow with
an intensity A arrives, and the service time is constant, equal 1/g (therefore, the
service rate is g packets per second). Then the average packet delay in a separate
node can be calculated as

1 1 1 1
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Note that 6p = (1 — p/2)0p, where p = ug/q - the average load on the node,
and for 0 < p < 1 takes place 0, 560y < 0p < 6y < 20p.

To evaluate the proposed approach (to check the adequacy of the analytical
models), a series of computational experiments were carried out on the basis of
the DTN DOS to calculate the characteristics of the DTN in order to study the
dependence of the average packet delay time on the nature of the external load on
the network. For networks with a different number of communication nodes (from 4
to 50), the change in the volume and structure of information flows from DTN users
was modeled. Cases of symmetric and asymmetric external load on DTN, various
laws of distribution of intervals of the arrival of packets from external sources, as
well as service time (packet processing) in nodes and efficiency were considered.
The result of one of the typical experimental is as follows. Here, the dependencies
of average delays on the total load on the DTN are obtained for a network of 10
nodes (packet size is 1500 bytes). For the projected DTN with a limit on the average
packet delay of 6 ms at a total load (global flow) of 120 Mbit/s, a series of tests
was carried out using the EQE subsystem. Four methods for assessing delays were
used: analytical and simulation modeling of the control and efficiency using the
M/M/1 and M/D/1 models. The experiments have shown that the proposed method
for analytical evaluation of delays in DTN at nominal (design) external load gives
results that differ from the results of simulation by 5-10%, and can well be used in
the early design stages for a quick estimation of quality and efficiency functioning
of the developed versions of DTN. For a more accurate assessment and forecast
of the “behavior” of the network (especially when the rated load is exceeded), the
means of the EQE subsystem can be used.
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7 The DTN DOS as Basis of Electronic Scientific
and Educational Complex (ESEC)

In order to improve the quality of e-learning the concept of formation and develop-
ment of the system of electronic scientific and educational complexes (ESEC) was
developed [10]. The main objective of such a system—to ensure the information
integrity of the university’s scientific and educational space and its integration into
the global information space on the basis of a new generation of electronic scientific
and educational resources. ESECs should provide comprehensive information
support of the educational process, as well as the integration of research and
educational activities. The structure of a typical ESEC includes: problem-oriented
portal; digital library; tools for collaboration (collective project activities as part of
studies, independent research work of students, joint research activities of teachers
and students).

An example of the implementation of the concept of ESEC is an Electronic
scientific-educational complex “Data Transmission Networks Design Optimiza-
tion”. The complex provides comprehensive support for research and educational
activities in the field of computer networks—on classroom training sessions with
the use of modern educational technologies (on lectures, seminars, etc.) and to self-
teaching and research work of students. Information support of the educational
process on the basis of ESEC made via the portal “Advanced Information and
Communication Technologies”. The portal provides access to a range of electronic
teaching materials (work programs, lecture materials, manuals, links to electronic
resources) for a lot of courses in “Advanced ICT” area.

For the implementation of the relevant technologies and the organization of
educational and research work in the field of computer networks, the DTN DOS
is included in ESEC “Data Transmission Networks Design Optimization”. The
basis for organizing of training sessions using the DTN DOS is the creation of
problem situations, through which students are involved in the problem solving
process. Here, the transition from the principle of mastering knowledge through
repetition and memorization to the principle of mastering knowledge in the process
of independent intellectual activity of students is realized. Working with the
system, students can study the composition and structure of DTN, master the use
of simulation methods, methods of optimizing design solutions and also study
and apply in practice the principles of a systematic approach to the design of
complex objects. The implementation of these works gives a significant teaching
effect, since in parallel with the study of architecture and methods of designing
computer networks, students deepen their knowledge and develop skills in the field
of simulation, system and applied programming.
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8 Conclusion

The program system for design optimization of data transmission networks allows
solving the problems of structural-topological and parametric design of DTN. The
system provides support for a multi-stage iterative man-machine design process
with the implementation of design methods with varying levels of complexity. The
software of DTN design optimization system includes both well-known and new
mathematical models, methods and technologies for DTN design optimization.

An integrated approach to modeling allows within the framework of a unified
DTN design process to use the advantages of analytical (at the stages of forming
and adjusting the project) and simulation (at the stage of estimating the quality
and efficiency of the resulting project) models. Along with direct application in the
process of DTN design, this approach can be used to justify and verify the developed
analytical models. An example of such use is the experimental substantiation of a
heuristic method for estimating packet delays in DTN.

In addition, the DTN DOS serves as a technological basis for further development
of the ESEC concept including methods for designing and creating hardware,
software, information, and organizational support for ESEC, experimental assess-
ment of the labor intensity of implementing the developed ESEC architecture and
estimating the effectiveness of new educational technologies.
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Mathematical Modeling of Transient )
Processes in Circular Channel e
with the Boiling of Refrigerant-113

Damir A. Gubaidullin and Boris A. Snigerev

Abstract The two-fluid model has been extensively used in modeling boiling flow
of water, however, there are few equivalent studies of boiling flow of cryogenic lig-
uids. In the present study, the two-fluid model was developed with by incorporating
new closure correlations, then boiling flow of liquid refrigerant-113 in a vertical
annulus tube was numerically simulated using the modified model. Comparison
with experimental data shows that the modified model is satisfactorily improved
in accuracy. This study demonstrated that the following parameters and models are
important for accurate prediction: the lift force, the bubble diameter distribution and
the active site density, among which, the active site density has the most significant
effect.

1 Introduction

Boiling flows are frequently found in industry and engineering due to the large
amount of heat that can be transferred within such flows with minimum temperature
differences. In the nuclear industry, boiling affects in different ways the operation
of almost all water-cooled nuclear reactors. Recently, the use of computational fluid
dynamic (CFD) approaches to predict boiling flows is increasing and, in the nuclear
area, numerical methods is being developed to solve thermal hydraulic safety issues
such as establishing the critical heat flux, which is perhaps the major threat to the
integrity of nuclear fuel rods [1, 2]. In recent years, the advances in computational
technologies have allowed flow boiling simulations faster than before. Generally,
according to the problem specifications, objectives and characteristics, there are
some important models for numerical simulation of two-phase flow and boiling
heat transfer in channels. Most often, numerical study of two-phase flow is based
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on Eulerian- Eulerian mathematical approach. This approach considers the liquid
phase as a continuum phase and the particles phase (vapor bubbles in boiling
flow) as another continuum phase. Then, the conservation equations are solved by
considering interphase forces and exchanged heat on a control volume for both of
phases [3-7].

With the aim of predicting the boiling process, different wall boiling models
have been incorporated in modern CFD codes. For two-fluid averaged models, these
approaches are in the large majority based on the Rensselaer Polytechnic Institute
(RPI) boiling model from Kurul and Podowski [8], where the heat flux from the wall
is partitioned between the mechanisms responsible for the heat transfer process,
these being single-phase convection, quenching and evaporation. In recent years,
many authors have used more or less refined versions of the RPI boiling model
to predict boiling flows [9, 10]. After departure from the heated wall, the bubbles
join the bulk of the flow and the size distribution of these bubbles, polydispersed in
general, governs interphase exchanges of mass, momentum and energy. Therefore,
in models of these flows, knowledge of the average diameter of the bubbles is
required in many closure relations, and additional models have been used to predict
the average bubble diameter distribution. Initially, bubble size was derived from
experimental data or empirical correlations of subcooling in the liquid phase. Some
key wall boiling parameters, including the nucleation site density (N, ), bubble
departure diameter (D,,) bubble departure frequency (f), are used to close the
model. These parameters should be carefully identified due to the significant impact
on the boiling physics as well as the local flow patterns of the two-phase flow
[11, 12]. The closure models of Ny, Dy, and f have been expressed by empirical
correlations. Since the correlations were obtained empirically from experiments,
their reliability is strongly dependent on the working conditions. In fact, for the
refrigerants at low pressure the variations of liquid properties with subcooling
and saturation temperature along the heated channel are relatively obvious. Taking
refrigerant-113 for example, when liquid subcooling varies from 0 to 40 K, density,
thermal conductivity, viscosity and specific heat at constant pressure increase by
6.7%, 13.5%, 57.1%, 4.7%, respectively. Moreover, the saturation temperature of
refrigerant-113 at low pressure varies evidently along the heated channel (for about
5K in a 3 m long vertical channel), which is closely correlative with the predictions
of local flow characteristics in subcooled boiling flow. Therefore, temperature
dependent properties and saturation temperature variation along the heated channel
should be given extra considerations in order to accurately simulate the process of
subcooled boiling flow.

In this paper, the accuracy of an Eulerian-Eulerian, two-fluid CFD model is
evaluated over database of subcooled boiling flows of liquid refrigerant-113 from
number of experiments are described in [13, 14]. The model applied the basic
theories of mass, heat and momentum transfer, Reynolds stress turbulence model
and a boiling model, derived using the heat flux partitioning approach. The database
covers a large range of conditions in subcooled boiling flows of refrigerants in
vertical annular channels. Overall, a satisfactory predictive accuracy is achieved for
some quantities of interest, such as the void fraction and the turbulence and liquid
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temperature fields, but results are less satisfactory in other areas, more specifically
for the mean velocity profiles close to the wall in annular channels. Agreement may
be improved with advances in the treatment of large bubbles and bubble break-up
and coalescence, as well as in improved modelling of the boiling region close to the
wall, and more specifically the bubble departure diameter, the wall treatment and
the contribution of bubbles to turbulence.

2 Mathematical Two-Fluid Model for Subcooled Boiling

In a two-phase mechanistic model, both the gas and liquid phases are treated as
continua, and two sets of conservation equations governing the balance of mass,
momentum and energy of each phase are solved. Consider the interfacial mass,
momentum and energy transfer, the governing equations for the two-fluid model
are given by Nigmatulin [1], Yeoh and Tu [11], Gubaidullin and Snigerev [15]:
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In the equation system (1) ¢ is time, ¢; and g, are continuous and dispersed phase
densities respectively, oy, o, are volumetric concentrations of gas and bearing
phase, A; is heat conductivity coefficient of k phase, g is gravity acceleration
vector, Wy = uiii + uzkj + usik is velocity vector k-phases, P is carrying phase
pressure, (efri is effective dynamic the viscosity of the k phase, M, is vector
of interphase interaction force, hy is enthalpy of k phase, T} is temperature of k
phase, Qy, is heat transfer between phases, 71/ is mass transfer rate between the
phases of / and g. To simulate turbulence, the Reynolds stress transfer model is
used, which includes the effective viscosity of the medium p.fy,;, determined by
the ratio perfr = fiam, + te, 1 + ppr,. To describe the additional dissipation
of the kinetic energy of turbulence by the pulsation of the bubbles, the viscosity of
wmpr, is entered [11, 16]. For calculation of w.sr,; applies the Kolmogorov formula,
and for ppy the ratio from [9] is applied
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The total interphase interaction force M;, plays a very important role when
modeling multiphase flows [1, 17]. The inter-phase momentum exchange was
accounted through the forces acting on the dispersed bubbles as:

M =—Mg = —(MgDi + MgLi + MgTiD + M;Z), 3)

where MP, MY MTP MW are inter phase momentum transfer contributions from
drag, lift, turbulent dispersion and wall forces respectively. The volumetric source
of the momentum exchange between the two phases due to the drag force exerted
by the liquid is given by

3 C
MP = prarerg d:’ g — w(u — w). @)

The drag coefficient Cp was calculated using the correlation of [8]. The lift force
that is experienced by bubbles due to velocity gradients in continuous phase was
estimated as:

M- = Crpag(ug — w) x V x uy. (5)

The Cp was calculated using the model proposed by Wang et al. [7]. The liquid
phase turbulence influences the vapor distribution and it was accounted by the
turbulent dispersion force model of [16] as M = Crppik;Va, where, Crp is
turbulent dispersion coefficient which may vary from 0-10. The wall force acts
opposite to the lift force and forces the bubbles to move towards pipe center.
Since bulk of the liquid is below the saturation temperature, bubbles formed at
the wall start condensing when they move inside. Similarly, evaporation can take
place in the bulk of the liquid. This interphase mass transfer was accounted by
including appropriate source and sink terms into the continuity equation. The rate
of evaporation is given by

_ hlgAlg(Tl - Tg)

(6)
hye

Wl[g

Further, ng + mg = 0. The interfacial heat transfer Qj, is given by Qj, =
higAg(Tsar — T7), where hy, is heat transfer coefficient calculated as [18] hje =
Nu;/dy and Nu is Nusselt number given by Nu = 2 4 0.6Re% Pr03. The
interfacial area is calculated as A;, = 60 /dp. For present work, since bubble
size was found to be almost constant, a constant mean bubble diameter was used
in the simulations. An additional source term active only at the near wall cells was
included to account for the vapor generation at the heated wall. It was calculated
using wall heat flux partitioning model as I'y = g.A;/h y¢ Ve Where V. is control
volume and Ay is heated wall area.
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According to Kurul and Podowski [8] wall flux partitioning model, the heat flux
between the heated wall and liquid is exchanged via three mechanisms

9 =4qq +ge+qc, (7)

where g4, g., q. are convective, evaporative and quenching heat respectively. At the
heated walls, bubbles are formed due to vaporisation of liquid at the nucleation sites
and the part of the wall heat used for this is called evaporation flux. Once bubbles
reach critical bubble size they detach from the wall, cold liquid replaces the space
occupied by bubbles and receives heat from the wall. This flux is called quenching
heat flux. The rest of the area of the wall, that is not covered with the bubbles, is
used for the single phase convective heat transfer. The quenching heat flux is given
by

4q = Aqhq (Tw — T1). (8)

The area available for quenching heat transfer is A; = 7N dj ep The quenching

heat transfer coefficient was calculated as hy = 21; f+/t/wk. The bubble waiting
time is given as, T = 0.8/fy.p. The evaporation heat flux is given by

de = 7'[/6d3€p,0[ JaepNhig, ©)]

where nucleation site density N was calculated as [19, 20] N = Nyer[(Ty —
Tsar)]'3% and bubble departure frequency was calculated as [21] fuiop =
(4g(o1 — pg)3 p1 dde,,)o's. The convective heat flux was calculated using following
correlation

01Cpu*

ge =1 —-Ay) T+

(Ty — To), (10)

where T7 is the non-dimensionless temperature. The system of Egs. (1)-(10)
describe the hydrodynamics and heat and mass transfer in the movement of
steam-gas-liquid mixture in thermal power engineering apparatuses of chemical
technology.

The simulations were carried out for an axis-symmetric geometry. A velocity
inlet condition was specified at the bottom and pressure boundary condition was
imposed at the top outlet. The no slip velocity boundary condition was specified
at the wall for the vapor and liquid phase. For vapor phase, some researchers have
argued that free slip condition is best suited and thus effect of free slip boundary
condition for vapor phase was also investigated. The k — e turbulence model with
bubble induced turbulence source term [16] was used to simulate turbulence in the
continuous phase.

The solution algorithm PISO was used to solve pressure-velocity coupling.
In this work, a combination of Gauss upwind, Gauss linear and Gauss limited
Linear schemes were used for discretization of spatial derivatives. For the time
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derivative, first order accurate Euler implicit method was used. The set of discretized
equations was solved by the generalised geometric-algebraic multi-grid (GAMG)
solver with Diagonal incomplete-Cholesky (symmetric) smoother for pressure and
the preconditioned bi-conjugate gradient (PBiCG) solver with Diagonal incomplete-
LU (DILU) pre-conditioner for the rest of the variables. The existing two phase
solver twoPhaseEulerFoam available for isothermal gas-liquid flows was further
developed to account for phase change phenomenon.

3 Numerical Results

The verification of the presented mathematical model was carried out by comparing
the results of calculations with experimental data. The data of experiments presented
in [14] were chosen, in which the boiling ascending bubble flow of subcooled liquid
refrigerant-113 at high pressure in a annulus tube with step heating (diameter of
heated inner tube D; = 15.8 mm, insulated outer tube Dy = 42.02 mm, height H; =
3660 mm, height of the heated section H, = 2750 mm) was studied. In the Table 1
the basic characteristics of gas-liquid flow at the inlet of the pipe are presented: Gy is
mass flow rate of liquid at the inlet of the pipe, P is pressure, gw is heat flux on the
wall of the pipe, T4, is saturation temperature of liquid, 77 ;y is water temperature
at the inlet, AT is degree of subcooling of liquid. Two-phase flow in a vertical pipe
is assumed to be axisymmetric, therefore for numerical simulation the calculated
the area consisting of a circular sector with a radius of ro = Dy/2 = 21.0 x 1073 m,
a length of L = 3.66 m and a solution angle of 40°. Numerical calculations were
performed on finite volume grids consisting of M, = 64,000, 124,000, 264,000
nodes of the computational grid. In the section of the plane xjx;, the number of
partitions by coordinates along the pipe axis and by length for different grids is
M; = 20 x 200, M> = 40 x 400, M3 = 60 x 600, respectively. The following
parameters of the liquid refrigerant-113 in subcooling temperature in range from 0
to 40K are set: density change in scope p; = 1423 — 1526 kg/m?, dynamic viscosity
coefficient u; = 340.8 - 1075 —535.8-107° Pa - s, the latent heat of vaporization is
Lig=13- 10° J/kg, constant pressure heat capacity for liquid and gas Cp =978
— 932J/kg K, coefficients of heat conductivity of medias k; = 0.57 — 0.65 W/m
K. Confidence in the predictions of CFD codes relies on validation of their results
against relevant experimental data. In this regard, it is important that models provide
accurate predictions over many experiments, with parameter variations as wide as
possible. Therefore, a database was built from 6 experiments from [14]. In this

Table 1 Characteristics of mode parameters of experiments [14]

P MPa G; kg/m?s qw kW/m? Toar C Tryn C
royl 0.269 568.0 79.4 85 42.7
roy3 0.269 784.0 125.8 85 52.0
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research work [14] the subcooled boiling of refrigerant R-113 in a vertical annulus
channel of 3.66m in length, 0.0158 m in inner diameter and 0.0422m in outer
diameter was testing. A laser Doppler velocimetry system allowed measurement
of the velocity field and the turbulent fluctuations, with an optical probe used to
obtain the void fraction and the bubble diameter. The liquid and vapour temperatures
were measured with micro-thermocouples. Measurements were taken at 0.269 MPa
and in the ranges 565-785 G kg/m2 s for the mass flux, 79.4-125.9 gw kW/m?
for the heat flux and 42.1-50.2 C° for the inlet temperature. Comparisons for the
experiment [14] are presented in Figs. 1 and 2.

In these, and subsequent figures, symbols are used for experimental data and
lines for model predictions. In annular channels (Figs. 1 and 2), the radial position
is nondimensionalized with the distance between the outer and inner radius and,

a) T b}
o g
o
0.3L° sor
b L
@ 2 1
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Fig. 1 Comparison of predicted physical variables against experimental data for case roy3 (1-
symbols experiment [14], 2-line calculation: (a) void fraction «; (b) temperature T)
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Fig. 2 Comparison of predicted physical variables against experimental data for case roy3 (1-
symbols experiment [14], 2-line calculation: (a) velocity of liquid u;; (b) velocity of gas u,)
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therefore, in the plots ro= (r — Ri)/(Ro — R;) = 0.0 identifies the inner wall,
whereas r = (r — Ri)/(Ry — R;) = 1.0 corresponds to the outer wall. Only the
inner wall is heated in [14]. In the following, discussion of the results is presented for
each physical quantity predicted. Even if the specific quantitative accuracy depends
on the particular experiment, the void fraction and temperature profile is generally
predicted with reasonable accuracy. In Fig. 1, temperature profile are well predicted
for [14], the only discrepancy being a minor underestimation void fraction in the
case of roy3. Compared with the experimental data, large discrepancy occurs at the
near-wall region for the axial liquid and vapor velocity profiles in the two predicted
results, and the discrepancy will be enhanced with high wall heat flux. As the wall
heat flux increases, high void fraction profile will be found in the bubble boundary
layer at the measurement plane, which makes the vapor bubbles move faster than
the bubbles in lower wall heat flux, and eventually develops the high predicted axial
liquid velocity profile with the action of the inter-phase drag force.

4 Conclusion

An Eulerian—Eulerian two-fluid CFD model, including a stress turbulence model
k — €, boiling model derived from the RPI heat flux partitioning approach, was
used to predict a database of subcooled boiling flows. The database includes 2
experiments of subcooled boiling flows of refrigerants in annular channels, and
covers a wide range of conditions. In the present work, existing twoPhaseEulerFoam
solver was developed further by implementing various boiling correlations, wall
heat flux partitioning model and energy equation. Also, different inter-phase
coupling forces and bubble turbulence terms were included in the code. The
modified code was used to simulate the boiling and predictions were verified using
the measurements of experiment [14]. The results were found to be in a good
agreement with the experimental data of this paper. The nucleation site density
was found to influence the vapor volume fraction distribution and wall temperature
significantly. Further investigations are being to performed to understand the effect
of bubble size on the vapor volume fraction distribution, in particular on sharp
change in vapor volume fraction near the wall. The present work provides the
basis to develop experimentally verified computer code solver to simulate boiling in
complex geometries in different chemical technology. Overall, the model confirms
the potential of CFD to provide detailed predictions of boiling flows and rather good
agreement with data was found in some areas, but others still require significant
improvements in model accuracy. At the present time, the general applicability
of the model is not entirely satisfactory. Even if built in a mechanistic fashion,
numerous empirical closure relations are required, not only for wall boiling, but
also for the turbulence models. This clearly limits the overall models general
applicability and, therefore, the development of more mechanistic closures is highly
desirable.
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Hybrid Methods for Network m)
Equilibrium Problems Shethie

Igor Konnov and Olga Pinyagina

Abstract In the present paper, we propose a hybrid approach for network equilib-
rium problems. This approach combines the methods of conditional gradient and
partial linearization. To apply the hybrid method, the whole set of origin-destination
pairs is arbitrarily divided into two parts, for one of them the subproblem of direction
finding is solved by the conditional gradient method, for the other, the partial
linearization method is used. We propose two variants of the hybrid method with
inexact direction finding and adaptive step-size choice.

1 Introduction

Network equilibrium problems are widely used in different areas such as telecom-
munication and transportation networks (for example, see [2, 3, 11-13]). These
problems have the simple feasible simplex-like sets and special decomposable
structure, therefore one can use modifications of the conditional gradient or partial
linearization methods (CGM and PLM for short), where the subproblem of finding a
descent direction can easily be solved without any iterative procedure [5, 9] or even
inexactly [7]. In addition, the adaptive step-size choice can also be applied (see [6]).

In the present paper, we propose a hybrid approach for the network equilibrium
problems, which combines CGM and PLM in the common iterative procedure. To
apply the hybrid method, we split the set of origin-destination pairs into two subsets,
for one of them the subproblem of direction finding is solved by CGM, for the other,
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PLM is used. We propose two variants of the hybrid method, the first one with
inexact direction finding and the second one with adaptive step-size choice.

2 Preliminaries

Let us remind the general schemes of CGM and PLM. CGM was originally
proposed by M. Frank and Ph. Wolfe in [4] for quadratic programming problems
and further developed in [8]. Let f : R” — R be a smooth function, D be a convex
closed bounded set in R". We consider the following constrained optimization
problem

Xmeilr)l — f(x) (1)

and the auxiliary linearized problem

min —> (f/(x), y). (2)
yeD

Under the given assumptions, both problems (1) and (2) have solutions, these
solutions are nonunique in general. We denote by Z(x) the set of solutions to
problem (2).

At the kth iteration of CGM, k = 0,1, ..., we have a point x¥ e D. We
solve problem (2) with x = x* and find a point £ e Z(xh). If x* e Z(x¥), the
necessary optimality condition for problem (1) holds, and it is a solution if f is
convex. Otherwise, we determine the descent direction d¥* = z*¥ — x*, choose the
step-size Ax € [0, 1], and take the next iterate xk1 = xk 4 aidk. The step-size
can be found with using a suitable exact or inexact line-search (or even without
line-search) approach.

The partial linearization approach was proposed in [10] for optimization prob-
lems and developed in [13] for variational inequalities (VI for short). This approach
has advantages when the objective function can be decomposed into two parts, one
of them is suitable for linearization, and the other is sufficiently simple. We will
consider the following optimization problem

xmeig — u(x) 3)

where the objective function . : R" — R is the sum of two functions pu(x) =
f(x) + h(x), the first of them f is smooth, the second one % is convex, and the
feasible domain D is a convex closed set in R”.

We now describe PLM for problem (3). Let us given a point x* € D at the kth
iteration, k = 1,2, .... Find z¥ € D as a solution to the auxiliary problem

min —> (f'(x%), x) + h(x),
xeD



Hybrid Methods for Network Equilibrium Problems 197

set d¥ = zF — x* and define the next iterate x*! = xk + Akdk, where the step Ay

can be found using a suitable exact or inexact procedure for the one-dimensional
minimization problem. The above-stated method converges to a stationary point of
the problem provided that the feasible set D is bounded.

When solving the network equilibrium problem by CGM or PLM methods, the
subproblem of finding a descent direction needs no iterative procedure [5]. The
special versions of CGM and PLM with inexact solution to the direction finding
subproblem were proposed in [6] and [7], respectively. In the present paper, we
propose a hybrid approach, combining these two methods in the general iterative
process.

3 Network Equilibrium Problems

Let us recall the formulation of the network equilibrium problem, which was
originally given in [3]. Usually, it describes a model of traffic or information data
flows.

Let V be a set of network nodes, A be a set of directed arcs (links). In addition, a
set W of origin-destination (O/D) pairs (i, j), i, j € V is given. For each O/D-pair
w € W aset of paths P, is given; each path presents a simple chain of arcs starting
at the origin node and ending at the destination node of O/D-pair. We denote by x
a variable flow value passing along path p, forall p € P, w € W.

Additionally, for each O/D-pair w € W a demand variable y,, is given. It presents
a flow outgoing from the origin and ingoing to the destination. We assume these
variables to be bounded from below and above with boundaries 0 < P, < py.

The network equilibrium problem is to find a distribution of the required demands
for all O/D pairs among the sets of paths by using a certain (equilibrium) criterion.

The feasible set has the form:

U=,y Z Xp=Yuw,Xp=20,pe Py, yw € [Vw, Ywl,w € W
PEPy,

The following incidence matrix with elements

! 1, if arc a belongs to path p;
Apa =

0, otherwise

gives the correspondence of paths and arcs.
Then the arc flow value is calculated as the sum of the corresponding path flows,
foreacharca € A:

fa = Z Z ApaXp. 4)

weW pePy,
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Let a continuous cost function ¢, be given for each a € A; it can depend on all
the arc flows in general. In addition, a so-called disutility continuous function 4,
is given for each O/D pair w € W. In the general case, the disutility functions can
depend on the whole demand vector y.

The path cost function is defined as follows:

gp(x) = Zapaca(f)a

acA

for each path p, where f is the vector of arc flows f,,a € A.

We denote by G and H the vectors with the components g,, p € Py, w € W,
and h,,, w € W, respectively.

For finding an equilibrium state of this network, one can solve the following
variational inequality: find an element (x*, y*) € U such that

(Gx™),x =x*) = (HO",y —y") =0 V(x,y)eU. 5
In what follows, we assume that each arc cost function ¢, depends on f, only,

VYa € A, each disutility function h,, depends on y,, only, Vw € W. Then the
mappings G and H are potential, and there exist the functions

Ja Yw
Ua(fa) = /ca(t)dt VYae A, oyu(y) = /hw(t)dt Yw e W.
0 0

Note that VI (5) presents the optimality condition for the following optimization
problem:

Eéilrjl — ¥ (u), (6)

where u = (x, y),

YY) =1 malfa) = Y owlw) p s

acA weW

fa,¥Ya € A are defined in (4). We denote by ¥* the optimal value of the goal
function in problem (6). Therefore, each solution to problem (6) solves problem (5).
The reverse assertion is also true, if, for example, the mappings G and —H are
monotone.
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4 Hybrid Methods for Network Equilibrium Problems

Auxiliary problem (2) of the ordinary CGM has the following sense for the network
equilibrium problem. At the kth iteration (k = 0, 1, ...) of the main process, we
have the vector of path flows x* and demands y*. We calculate the values of cost
and disutility functions g, (x5, hy(¥*) forall p € Py, w € W. The problem is to
find a vector ()Ek, yk) € U, which is a solution to the auxiliary linearized VI:

DD ey — 5 — b ()Ow —Fi) | 0. V. U, ()
weW | pePy

or the equivalent optimization problem

minU — Z gp(xk)xp — hw(yk)yw . )
x.y)e weW | pePy

We see that problems (7) or (8) can be decomposed into a set of independent
problems for each O/D pair. They can be solved using the simple algorithm from
[9]. We remind the scheme of this algorithm for solving such a separate problem.

Algorithm A B
For certain O/D pair w € W, we calculate a set of shortest paths P{; with cost values
8p (x*). Let Ay = &p "), ¥p e Pl]f). Then the following three cases are possible.

(1) If hy(Y*) < Ay, then set 35 = Py,
(2) If hy(y*) > Ay, then set 75 = .
(3) Otherwise we have hw(yk) = Xw, then choose any feasible demand
iy € s Yl
Distribute the demand value y{j} among paths p € }31]; (it is possible to associate
the whole demand with one path). Set )E;ﬁ =0Vpe Pw\ﬁf;.

In [5], the authors applied the partial linearization approach to the network
equilibrium problem with elastic demand. Let us remind its general scheme. We
suppose that iy, (y) = hy(yw), hy are monotonically decreasing functions, Yw €
w.

The auxiliary direction finding problem is described as follows. At the kth
iteration (k = 0, 1, ...) of the main process, we have the vector of path flows xk.
We calculate the values of cost functions g, (xk), forall p € Py, w € W. We intend

to find a vector (x¥, %) € W, which is a solution to the auxiliary linearized VI:

YD ephHe, =2 = (HGw =55 | 20 Y eU, )
weW | pePy,
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or to the equivalent optimization problem

minU — Z gp(xk)xp —op(w) | (10)
x,y)e weW | pePy

where hy,(yy) = o,,(yw). The above stated problems (9) or (10) can also be
decomposed into a family of independent problems for each O/D pair. Hence the
algorithm has the following simple scheme (see [5]).

Algorithm B

For certain O/D pair w € W, we calculate the set of shortest paths 131’; with costs
values gp (xk). Let &,y = gp "), vp e 151’;. Hence the following three cases are
possible.

(1) If hyy (Pw) < Ay, then set yw =
(2) If hy(Pw) > Ay, then set yw =
3) Otherw1se we have hy, () < Aw < hy(Py), then find the value of demand

X € [Pw, Yw] such that by, (55) = Ayp.

w e

l‘<< >

Distribute the demand value y,’; among paths p € 135] (it is possible to associate
the whole demand with one path). Set )zf, =0Vpe Pw\PL’f).

Now we intend to combine these two methods in a general iterative scheme.

4.1 A Hybrid Methods with Inexact Direction Finding

Let us arbitrarily split the set W into two subsets W1 and W5. In what follows, we
assume that /1, (y) = hy(yw), hy are monotonically decreasing functions, Vw €
Ws.

In solving the direction finding subproblem, for W; we use CGM, and for W,
we apply PLM. Then at the kth iteration (k = 0, 1, .. .) of the main process we can
formulate the following auxiliary problem of direction search in the form of VI

> [ Y gp@) = B = hy ) (w — yﬁ)} +
weW; | pePy

(11
> [ > gp )y — 25 = hy (M) (w — 95,)} >0 VY(x,y)eU,

weW, | pePy
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or the equivalent optimization problem

min —> > gp(h)xp — hy(F)yw
(x,y)eU
weW; _pePw
+ Y D &px, —oww) | - (12)
weW, _pePu,

In what follows, we will use the approach from [6, 7], in which the special versions
of PLM and CGM with inexact solution to the direction finding subproblem were
proposed.

At the kth iteration, we successively apply Algorithm A for OD-pairs w € W,
and Algorithm B for OD-pairs w € W, and try to find a sufficiently good direction,
which satisfies the condition

Yo DD gpak — &) — i FGE - 55 | = 8. (13)

weWk | pePy

Here WX ¢ W, 8 > 0 is a given tolerance. We vanish the missing components of
the vector (¥, 7%):

=0 pePyweW\W 3£=0 wew\wt

Therefore, we formulate the hybrid method for network equilibrium problems
with inexact solution to the direction finding subproblem.

Hybrid Method 1 for Network Equilibrium Problems (HM1)

Step 0. Choose an initial point u° € U, a sequence of tolerances {8;} \, 0,/ =
1,2,...,and numbers 6 € (0, 1), 8 € (0, 1).Setl = 1.

Step 1. Setk =0, vk =u!~1, (xk, y*) = vk

Step 2. Sequentially using Algorithm A for w € W; and Algorithm B for w €
W, find a set of O/D pairs WX < W and the vector ()?k , )7k) € U such that
condition (13) holds. If it is not possible, then set u’ = v¥, [ =1+ 1 and go to
Step 1.

Step 3. Set ¥ = (x*, y¥), d* = v* — v¥. Find the smallest nonnegative number
m that it holds

Y +0maky — y ) < pam iy’ (W), dv). (14)

Set Ay = 0™, v* 1 = v% 4 A,d¥, k = k + 1 and go to Step 2.
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The proposed algorithm has a two-level scheme. On the inner level, the objective
function is minimized within a fixed tolerance value and on the outer level, this
tolerance is decreased.

Now we substantiate convergence properties of the proposed modification,
following [7].

It is easy to see that the line-search procedure at Step 3 of HM1 is finite. In fact,
suppose that the line-search procedure is infinite, then (14) will never be fulfilled.
We obtain

o7 [w @ +0mah -y ] > B b, db),

forall m — oc. Taking the limit as m — oo we have (' (v%), d¥) > By’ (vb), d¥),
therefore (' (v%), d*) > 0. We obtain a contradiction to (13).

Now we prove the finiteness of the inner process of the algorithm in Steps 2-3
(see also Lemma 1 from [7]).

Lemma 1 The inner iterative process (Steps 2—3) of HM1 is finite.

Proof Let us suppose that the sequence {v*} is infinite at stage [. Due to (14) we
have ¥* < ¥ (5), y (¥t < ¥ (*) — B8k, therefore klim Ae = 0. Note that
—>00

the sequences {v*} and {#*} are bounded, then so is the sequence {d*}. We can take
subsequences {v%} converging to a certain point v and {d**} converging to a certain
point d as s — oo. In view of (13) we have

(W'(0).d) = lim (¢’ "), d") < 4. (15)

At the same time, (14) is not fulfilled for the value of step-size Ax/6. We have for
k= ks

Ot /)7 [ #0540 f0)d™) = w () | > By ), d*),

Taking the limit as s — 0o, we obtain
W @.d) = lim G, /07 [$ 0 + Gu/0)d™) = (") | = B/ (@), d),

hence, (1 — B) (¥ (v), d) > 0 that contradicts (15).

Now we are ready to prove the convergence properties of HM1 (see also
Theorem 1 from [7]).

Theorem 1 The sequence {u'} generated by HM1 has limit points, all of them are
solutions to VI (5). If the function v is convex, they are also solutions to optimization
problem (6).
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Within the proof of this theorem, we denote by {it/} the sequence of exact
solutions to problem (11) or (12). Note that by construction the sequences {u'} and
{i'} are bounded and have limit points. In addition, ¥ (u*) < Yt < yub),
therefore the limit llim ¥ (u') = exists. Take any limit point u’ = (x’, ') of the

— 00

sequence {u'}, denote by {u's} a subsequence converging to this point. Take any limit
point ii = (X, ¥) of the sequence {it'}, denote by {it’s} a subsequence converging to
this point. By construction due to the condition of return from the inner level of the
method to the outer level at step 2 for all / > 0 we have

(G, x! =&y = (HON, y' =) < 8. (16)

On the other hand, for a point it = (¥!, j') we get forall/ > 0

(G, x =3y = 3 hwOHOw =)

weW)
— Y hGD(w—5) >0 V(x,y) € U. a7

weW,

Since the functions /., Yw € W are non-increasing, from (16) we obtain

(G, x =%y = 3 hOHOL =7 — X he(GHOL, — 7)) < &

weW; weW,

Summing the two above inequalities and taking the limit as s — oo, we have

Jim (GGh)x =) = 2 M) w =) = T () w — yi) =

we W weWs
(G x =x) = 30 hw(MOw —yy) — 2 hw()Gw — yy) =0,
we W weW,

V(x,y)eU.
(13)

Now let us show that /1, (3y) = hy (yy,) Yw € Wa. Assume the contrary, let for
at least one w € W2 hy (¥p) # ha(yy,), then evidently

(hi(3s) — ha(yg), Yo — yg) <O. (19)

Then, on the one hand, taking the limit as s — oo in (16) and taking into
account (19), we have:

(GE), X' =) = Y ho(NGy = Fw) = Y, b)), — ) < 0.

weW; weW,
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On the other hand, taking the limit as s — oo in (17) and setting y = y’, we obtain

(GO, X' =) = Y hu( Gy = Fuw) = Y, hw(D (), = Fu) = 0.

weW, weW,

A contradiction is obtained, therefore Ay, (yy) = hy(y',) Yw € W, and from (18)
we have

(G(x/), X — x/) — (H(y/), y— y/) >0, V(x,y) e U.

Hence, the point u’ = (x’, y’) solves VI (5). In addition, if v is convex, then this
point also solves optimization problem (6), as desired.

4.2 A Hybrid Method with Adaptive Step-Size

In this section, we propose a variant of the hybrid method, which does not require
any iterative step-size line-search. The main idea of this approach [6] is a given
majorant step-size sequence converging to zero. In accordance with this majorant,
we take the next decreased value of the step-size only when the current iterate does
not give a sufficient descent, which is estimated with the help of an Armijo-type
condition.

Hybrid Method 2 for Network Equilibrium Problems (HM2)

Step 0.  Choose an initial point u e U, sequences {5;} \ 0, {rp} — 0,1, €
(0, 1), and number 8 € (0, 1). Set! = 1.

Stepl. Setk=1,p =0, vk = ulil, (xk, yk) = vk, choose an initial step-size
Ao € (0, 19).

Step 2. Sequentially using Algorithm A for w € W; and Algorithm B for w €
W, find a set of O/D pairs WK < W and the vector ()?k , )7k) € U such that
condition (13) holds. If it is not possible, then set u’ = vk, [ =1+ 1 and go to
Step 1.

Step 3. Set vF = (&K, 3%), d¥ = vk — ok, v} = vk 4 Ardk.

If

YT =y h) < By’ ), db) (20)
then set Axy1 € [Ag, Tp]. Otherwise set A1 = min{Ag, Tp+1), p = p + 1, take
Akt1 € (0, Vg41). Setk = k + 1 and go to Step 2.

First of all, let us prove the finiteness of the inner iterative process.

Lemma 2 The inner iterative process (Steps 2-3) of HM2 is finite.
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Proof Let us suppose that the sequence {vX} of HM2 is infinite at stage /. We note
that the sequences {v¥} and {#*} are contained in a bounded set U, hence they have
limit points. So is the sequence {d¥}. Then the two cases are possible.

Case 1. The Number of Changes of Index p is Finite Then we have A; > A > 0 for
numbers k large enough. Therefore we get from condition (20)
Y <y + By (09, d4) < v 0" + BRI ), d)

for k large enough. Since ¥ (v¥) > * > —oo for all k, we obtain

(W' b, d*y =o.

lim
k—o00
On the other hand, due to (13) (¢’ (v¥), d¥) < —8;, therefore
lim (v (%), d¥) < =8, < 0.
k— o0

We obtain a contradiction, hence the number of changes of index p cannot be finite.

Case 2. The Number of Changes of Index p Is Infinite In this case, there exists an
infinite sequence of indices {ky} such that v&+! = vk 4 )\ksdks and condition (20)
is violated:

YT =y ") > B (' (), a%).

At the same time, Ay, € (0, 7,1, Aky+1 € (0, 7p41] and pan;o 7, = 0. Hence,

lim Mg, = 0. Proceeding to the limit as s — oo in the correlation
§—>00

(i) T 5T = h) > By (W), d),

we obtain (' (v'),d")(1 — B) > 0, where v' and d’ are the corresponding limit
points. As we noted above, from (13) we have (1//’(1)"), dk) < —§y, therefore
(Y'(V),d")) < —8 < 0. We also obtain a contradiction, hence this case is
impossible, and the sequence {v¥} of HM2 cannot be infinite at stage [, as desired.

Theorem 2 The sequence {u'} generated by HM2 has limit points, all of them are
solutions to VI (5). If the function  is convex, they are also solutions to optimization
problem (6).

Proof follows the lines of Theorem 1.
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5 Numerical Tests

Combining CGM and PLM within a general scheme, we can obtain more flexible
implementations, which take into account the peculiarities of the initial problem. In
the following example, the hybrid method is more efficient by computational time
and the iterations numbers in most cases.

Let us consider a known network structure (Fig.1) [1] in which all arcs are
assumed to be bypass (i.e., each arc cost functions ¢, depends on the arc flow f,
only, forall a € A).

The cost functions are ¢, (f;) = 1 + 4 f,, Ya € A. The disutility functions are
hy(yw) = 30 — 0.5y, Vw € W. The lower boundaries of demand y,, are (2, 1, 1,
1, 1), and all the upper boundaries y,,, w € W are equal to 50.

We compared HM1 and the corresponding pure versions of CGM and PLM with
the Armijo-type line-search and inexact direction finding. The stop criterion has the
form (w’(ul), ul — 7y < A for given A > 0, where Z! is a solution to the problem

min — (¥'(u}), z) .
zeU
The parameters of methods are 6 = 0.5, 8 = 0.5, §o = 1, &;+1 = 0.56;. Applying

HM1, we use CGM for O/D pairs with odd numbers and PLM for even numbers .
The calculation results for different accuracy values are presented in Table 1.

Fig. 1 Network of 25 nodes, 5 O/D pairs (1-4), (2-5), (3-1), (4-2), (5-3)
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Table 1 Example 1, numbers of iterations and calculation time

CGM PLM HM1
A Iterations Time (ms) Iterations Time (ms) Iterations Time (ms)
0.1 2953 78 2578 78 2474 63
0.05 5853 187 5001 218 5032 156
0.01 39,005 1263 38,030 1108 19,979 608

6 Conclusion

In the present paper, a hybrid approach for the network equilibrium problems was
proposed. This approach combines the methods of conditional gradient and partial
linearization. The set of origin-destination pairs should be arbitrarily divided into
two parts, and the subproblem of finding the direction is solved by CGM for the
first subset of indices and by PLM for the second one. This approach allows us to
take into account the specifics of problems under consideration and it is promising
for further investigations.

Acknowledgement This work was supported by Russian Foundation for Basic Research, project
No 19-01-00431.
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Numerical Simulation of Water-Oil m)
Inflow into the Producing Well from e
Non-uniform Oil Reservoir

Vladimir M. Konyukhov, Ivan V. Konyukhov, and Leysan R. Ilyasova

Abstract Mathematical and numerical models of non-stationary mass transfer in
a water-oil mixture flowing into the bottom hole of a production well from a
layered-heterogeneous oil reservoir are developed. The model consists of two group
of differential equations. The first of them simulates a one-dimensional dispersed
oil-water flow with discrete oil droplets included in a continuous water phase,
and the second one—two-dimensional two-phase isothermal filtration governing
by Darcy’s law with taking into account the compressibility of phases and a
porous medium. To solve system of equations the finite difference schema is
developed. The mass transfer equations in the bottom hole and in the reservoir
are approximated upstream by implicit difference equations. The general system
of nonlinear algebraic equations is solved iteratively with the use of the original
method to calculate the pressure in the reservoir and Newtonian linearization. The
developed numerical model is implemented in computer software that allows to
carry out the numerical experiments with simultaneous visualization of the results
of calculations. The influence of the reservoir structure and its uncovering conditions
by the well on the characteristics of the process in the bottom hole of the well and
the transition time of mass transfer processes to a quasi-stationary hydrodynamic
regime are estimated.
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1 Introduction

Natural productive oil reservoirs, as a rule, have a layered-heterogeneous structure.
Filtration and capacitance and geometric characteristics of their layers may differ
significantly from each other [1-3]. The reservoir structure determines the intensity
and composition of filtration flows entering the bottom hole of the producing wells.

The processes at the bottom hole of the well, uncovering the reservoir, and in
the reservoir itself are closely interrelated [4, 5]. They are determined not only
by the reservoir structure and properties of the porous medium, but also by the
heterogeneity of the two-phase mixture that includes oil and water entering the
bottom hole.

In turn, the physical and chemical properties (density, viscosity, etc.) of these
phases are significantly different. In addition, at low speeds of the mixture, due to the
difference in phase densities, the effects of gravitational separation of water and oil
can occur in the two-phase flow. As a result, the water content gradually decreases
in the upper part of the bottom-hole of the well and increases in its lower part.
Water sedimentation and oil floating-up lead to changes in the effective properties
of the mixture—its density and viscosity (for example, the effective viscosity of the
mixture can rise almost tenfold with an increase in the water content from 10 to 60%
[7, 9]). The pressure distribution along the well becomes piece-wise linear with a
clearly defined breakpoint corresponding to the water-oil interface.

The length of the bottom-hole section of the well, the conditions for uncovering a
layered-inhomogeneous reservoir, the intensity and composition of filtration flows,
as well as the difference in viscosity and density of phases affect the mass transfer
and hydrodynamic processes in this area. Therefore, the water content of the mixture
entering directly into the lifting pipes of a low-yield well can differ within a few
hours from its average integral values, which are usually set as boundary conditions
at the inlet of these pipes.

Such a delay is especially important to take into account in the calculating
of transient processes when the well is put into operation after the repair of a
submersible pumping unit located near the bottom hole of the producing well. In
such a situation, the use of integral values in boundary conditions can result in
significant overstating of the water content at the pump inlet.

Because of this, the calculated working characteristics of centrifugal pump and
electric motor, which significantly depend on the composition and flow rate of the
mixture at the pump inlet (as well as the duration of their non-stationary operation
stage when the average integral oil content in the bottom hole has not yet been
reached) can be determinated with very large errors. As a result, these design
conditions may be unacceptable for normal operation of the pump unit, both due to
overloading or underloading of the motor and its insufficient cooling by the mixture
flow, as well as lead to subsequent incorrect impact from the surface control station
on the working regime of the unit (for example, an emergency shutdown of the
motor or the wrong change the frequency of its current) [13].
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The aim of this paper is to numerically study the features of non-stationary
mass transfer in the water-oil flow entering the bottom-hole section of a production
well from the layered-heterogeneous oil reservoir, to estimate the influence of its
inhomogeneity and uncovering conditions on the characteristics of these processes
and the time of their transition to a quasi-stationary hydrodynamic regime.

2 Mathematical Model

Let us consider the situation when the well has been filled with water before its
commissioning into operation. After turning the submersible pumping unit on, the
oil-water mixture begins to flow into the bottom hole from the reservoir. Figure 1
schematically shows a vertical cross-section of a symmetrical planar-radial layered-
heterogeneous reservoir uncovered by a producing well located on its left boundary.
The reservoir consists of layers of different thickness H; = y; — y;—1, absolute
permeability K; and dynamic porosity m;, [ = 1,2, ..., N. The total thickness of
the reservoir H = Hy + Hy + ...+ Hy.

The coordinate axes Or and Oz are directed respectively along its roof and the
vertical axis of the producing well, the side surface of which is located on the left
boundary of the formation at r = ry. The origin (0, 0) is located in the upper-left
corner of the reservoir roof. Surfaces z = H and z = 0 of its bottom and roof are
impermeable. The boundaries y; (1=1,2,...,N — 1) of the layers are permeable, so
that they are hydrodynamically connected. The well can uncover all layers or only
some of them. The “permeable” (yr, yg) and “impenetrable” (I'y, ['g) parts of the
left and right lateral boundaries of the reservoir at »r = rg and r = R, uncovered
by perforation are shown in the figure as dashed and solid lines, respectively. To
describe the movement of a two-phase flow with incompressible continuous water
and discrete oil phases at the bottom hole and in the reservoir, a mathematical model
is developed that can be written as follows:

ap g duy
+ w2 z =q -9

: O0< z < H, t>0; €))
90z

Y e Tl et slinlie

H 4

W

Fig. 1 Vertical cross-section of the oil reservoir and the bottom-hole part of the producing well
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Here P is the pressure; ,o;‘, vi , Gy, i, ; and B; are the density, the velocity, the
mass flow rate (debit), the dynamic viscosity, the actual and volumetric consumed
concentration of i-th phase averaged over cross section Sy of the well (sub-indexes
1 and 2 denote the characteristics of water and oil, respectively); t is the time;
qi (z,t) = 2/roVy,i (ro, z, T) is the density of the mass filtration flow of the i-
th phase from the reservoir through the bottom-hole surface of the well; v, is the
drift velocity of the oil drops, a is their radius; C; is the Zuber-Findlay coefficient
[10, 11]; g is the gravitational acceleration; S is the water saturation of the mixture
in the reservoir; V., V; and Vi ,, V| ; are projections of the mixture and water phase
filtration velocity vectors on the and axes Oz and Or; u; and K are the viscosity
and the relative phase permeability of the i-th phase; K and m are the absolute
permeability and the dynamic porosity; f = K{ / (1 K*) is the fraction of water
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in the total filtration flow (Buckley-Leverett function); a7 and ar,; are volumetric
elasticity coefficients of the porous medium and i-th phase; S, is the irreducible
water saturation; S* is the limiting water saturation.

Equations (1), (2) and (3) describing the continuity of the oil phase, the integral
mass balance of the mixture, the conservation of momentum, and additional
relations (4) and (5) are developed on the base of general multiphase flow equations
(see, e.g., [7, 8] in the framework of the drift flow model [10, 11] without taking
into account inertia forces. They simulate a one-dimensional dispersed oil-water
flow with discrete oil droplets included in a continuous water phase.

Equations (5)—(9) describe two-dimensional two-phase isothermal filtration gov-
erning by Darcy’s law without taking into account capillary effects and gravity, as
well as taking into an account the compressibility of phases and a porous medium
[1, 2, 4-6].

To close the mathematical model (1)—(9), we must set the initial and boundary
conditions. Let there be no movement in the well and the oil reservoir at the initial
time t = 0, and the well is filled with water with a hydrostatic pressure distribution,
so that

v1(0,2) =12 (0,2) = v (0,z) =0; (10)
q10,2)=¢2(0,2)=0; G1(0,2) =G2(0,2) =0;

90,2)=80,2=0; p(0,2)=p}; P(O,z)=Py+gpjz,0<z<H,
(11)

where P (0,0) = Py (t =0) = PI(_)I is the bottom hole pressure in the well at the
level z = 0 of the reservoir roof at time T = 0. The function Py () = P (7,0) =
PI(_)I - W (7) in the considered problem is a given function of time 7 and it simulates
the pressure drop at the bottom hole of the well after turning the electric motor of
the submersible pumping unit on.

At the boundaries y,, of layers where the absolute permeability K has a
discontinuity of the first kind, the conjugation conditions [P] = 0, [V;] = 0,
[f]=0take place atz = yp,, m = 1, N — 1.

The initial conditions

(2,00 =5"(r,2), P(r,z,0) =Py +goiz, 0<z<H (12)

determine the state of the reservoir before turning the electric motor on, when the
pressure in the reservoir has the same hydrostatic distribution as in the bottom hole
part of the well. At the right boundary r = R, of the reservoir at t > 0, the pressure
P (R,, z, T) is determined by the initial hydrostatic distribution. At the left boundary
P (ro, z, ) it is calculated by solving the Eq. (3) at the bottom hole part of the well
at0 <z <H.

It should be noted that this article presents only some basic relationships which
define the characteristics of two-phase flows in the well and oil reservoir. A complete
set of special constitutive relations to close the equations is too large and it can be
found in our publications [4, 5, 12, 13].
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3 Numerical Model and Algorithm

The system of Egs. (1)—(10) is nonlinear and is solved numerically by the finite
difference method using iterative algorithms. To solve problems (6) and (7), we
introduce a grid Dy, in the reservoir area D = {z € [0, H], r € [r,, R/]} with a
constant step h, = (R, — r9) /N, along the Or axis and a variable step along the
Oz axis, where N, is the number of grid points along the Or axis. At the same time,
in each layer the step is constant and equal to h,, = H), / Nn,n =1..N, where N, is

the number of grid points in the layer. With such a construction of the grid, we have
n—1 n

he = hpate =14+ > N;...> Nj,n = 1..N. To improve the approximation
=1 =1

of the flows V and V;j in Eqgs. (6) and (7) we use an additional grid DLK shifted by

half-step along Or and Oz axes so that the exterior boundaries of its unit cells are

placed at the boundary of the filtration area D and at the boundaries y,, of layers.

N
The total number of grid points is N, - N;, where N; = )" N,. We also denote by t;
n=1
the points of grid along the time axis Ot with constant step /.. Conservative finite-
difference equations approximating the system (6) and (7) fori = 1..N,,k = 1..N;

with order O (h; + h2 + h?), can be written as:

i+1 j+1
AV = ricaphehearie - (P = Puc) [hes (13)
i+1 heh i+1 j oF j+1 j i j+1
A[Vl]{,:_ =mri_1p ;zTK {(J/: - J;j,x) + nT11 (Pij,: - Pij,lc) Ji{Kj+ };
(14)
J Jj+1 J.
Jij+l JiK’ PiK = PiK’ 1 /
; = : F i Jiw = Srdrdz; (15)
s +1 +1 . i,k
e : Ji{,( s P;{K > P;{Ky ri71/2hrhl( 5
i+ , j j+1 J+1Y . j+1 S JHl
Vi+1/2,l( - h"g (KK*)i+1/2,K (Pi+1,l( - Pi,l( ) ’ Vl,i+1/2,l( - fi+1/2,K Vi+1/2,l(’
(16)
vitl g pitl _ pitl). it L vith . an
ik+1/2 = Aik+1/2\ T el ik ) Lik+1/2 = Jiw4+1/2 Vik+1/2
In~! (k. /(2r0)) i—1/2=1/2;
=1 (Qi+1)/@i-1), 1<i<ig ;
i i >ip;

hK hK+l
Ajr12 = 2ri1ph + ,
petf R KiyKK;,(K Ki’KJFlK;,(K-H
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where A[V ] = Vit +Vicipe +Vier12+ Vie—1p2; &i is the correction coef-
ficients [4, 5] that take into account the logarithmic character of pressure distribution
in the vicinity of the well at the approximation of flows V/J:E}Z > 10h is the radius
of the vicinity in which the solution has the logarithmic singularity. The values

* ; : J _ J J
Kl.+1/2’K are calculated using water saturation Si+1/2,K =05(J5 .+ Jiw).

The pressure field Pl.{ : !is calculated from a system of implicit finite-difference

equations obtained from (13) by substituting the total flows V/ : J: 12 V/ : J: 12 (16)

and (17) defined for the water saturation values Sij+1 ey and Sl.] K41/2 from the
previous time point t;. The transport equation (14) is used to calculate the average

integral values Jl./ : ! (15) of water saturation in the unit cells.
The values of the water saturation Sijjll/z’ . and Sl.{ :}rl 2 arg defined with the use
of the fractional-linear interpolation through integral values Ji] : ! taking account the

flow direction. For example, if Vz]++1}2;c < 0, so that the liquid moves oppositely to
the direction of the Or axis from cell D; 41 . to cell D; , then

S: ) S: - ‘9* S Ji,Ka
F , Fe [Jl"'rl,I(a Ji,l(] s Si t e S ik < S: —&",

18
Jiser F & [Jivruc Jinc]. S+ 64 < Jise < Sf— &%, (19

Siv1/26 =

*
S*,K ’ Ji,K S SI( +€>k1

] 05 (Jictwe + Jise) i [Jim1.x v Jicte = ik,
105 (1 + Jix — (1 - Ji,fc)z/(l - Ji—l,fc)) s Jicie < ik

Here ¢* is a small value that does not exceed the expected error in calculating of
Si k5 €x 1s the parameter of schema that is no more than two-thirds of the amplitude
of the saturation jump. Conditions (18) characterize the finiteness of the velocity of
the oil displacement front by water (see [4]).

Water flows (16), (17) through the boundaries of elementary cells are calculated
from the values of the function Si]:f/z’ . and Si]’ :Jlrl 2 at the points of the grid D.
After calculating the pressure and water saturation, the mass flows q{ Il, qé’tl of
both water and oil entering the well through its side face are determined.

This allows us to proceed the numerical solution of differential equations (1)—
(5). These equations are solved using the implicit finite-difference scheme of the
first approximation order O (h; + h;) at points (7}, z,) of the same grid Dy,. The
oil transfer equation (1) is approximated upstream by an implicit difference schema
[14]. Thus:

%H — i j+190f{+l - ‘/’;ﬁti o+t it U{;l - Ué,tl—l_
h + V)« h — 42k T Pk h ’ (19)
T K K

. . .
Pt =PI hegplt! (20)
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' ' i+1 j
, . So [Pt —p! PIT P,
G]Jrl — G./+1 + K K _ K K + 21
K k—1 g hr hr ( )
JHL g+ JHL g+
q _ q + _
+hKSO)Oik 1,« 1,k—1 + hKSO,O; 2,k 2,k—1 :
2 2
. ) . . ) . R
:{-H — (p:{—H (pik _ pik) +:0T; ,3,{-'_1 zjgj—(l :{—H +(p’{+lvik /U,f—H; (22)
j+1 j+1 j+1 Gt
Jj+l _ A~ j+l1 j+1. JH K .
vy, = CL v+ Vi U = i1 i (23)
‘ ‘ ‘ So- (oF (L= B+ p3BLT)
j+1
o _L=B0 :g“2 (of =p3)  14x X = o/
bl T gt e 3¢ty 1+ 15x ’
(24)
j+1 ‘ j+1 j+1 - j+1
i1 =soot (1=l 6l =67 -6l (25)

I — (1 + ot (4+5x)/(1 + x))/(l +0.5<p£+1(1 +4x +5x2>/(1 +x)2>-

The developed general numerical model of interrelated processes in the well
and reservoir is a nonlinear system of algebraic equations. This problem is solved
by iterative methods. The method [4, 5] with a convergence rate of about 3—
5 iterations is used to compute reservoir pressure and water saturation. The
system of Egs. (19)—(19) governing the processes in the producing well is solved
by the Newton linearization method. The numerical model and algorithms are
implemented in computer software that allows carrying out the multi-parametric
numerical experiments to study the filtration processes in the reservoir and mass
transfer at the bottom hole of the well with simultaneous visualization o the results
of computations.

4 Results

The main results of our research can be formulated as follows.

Theoretical Results To compare the effectiveness of iterative methods, compu-
tational experiments were carried out for various cases of reservoir structure that
determine the character of dependencies of mass inflows and of water and oil into
the well. Based on the analysis of their results, the high convergence rate of the
Newton method for solving the problem in the well and the iterative method for
calculating pressure and water saturation in the reservoir (35 iterations) is shown.
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Studies of the convergence and stability of the difference schema using the Courant
criterion allow us to draw the following conclusions:

1.

the solution of the developed difference schema is stable and converges to itself;

2. the Courant criterion allows us to calculate the values of a variable time step,

which provide the possibility to compute the numerical solution in accordance
with this condition of its stability at each time moment. Simultaneously, the
counting time is significantly reduced (tenfold) in comparison with the calcu-
lations with fixed time steps over the entire time range of the problem solution;

. the practical multi-variant calculations can be performed with sufficiently large

steps of the spatial grid using the Courant criterion to determine the time step of
the difference schema.

Practical Results Based on the analysis of the results of calculations for different
variants of the development of the reservoir layers at the bore-hole zone and the
inflow of oil-water mixture to the well, taking into account the influence of the flow
structure, when C; = C¢ (¢, v, i), it is shown that that

1.

the spatial distributions of such basic characteristics of two-phase flow in the
bottom-hole zone of well as pressure, actual and consumed concentration, flow
rate, density and velocity of two-phase mixture, the velocity of individual phases
and the drift rate of oil drops are determined by the type of functions ¢; (z, 7) ,
q2 (z, t) and are usually nonlinear;

. the time to form the quasi-stationary composition of two-phase mixture inflowing

to the well pipe from its bottom hole zone can reach several tens of minutes and
is determined by length of this zone, structure of two-phase flow, the uncovering
conditions and filtration-capacitive characteristics of the oil reservoir. This effect
must be taken into account in calculation of the transient hydrodynamic processes
that occur during the commissioning of the non-operating producing well into
operation.

Conclusions

. The mathematical model, algorithms, and software are developed for calculating

interrelated non-stationary hydrodynamic and mass transfer processes during
filtration of a two-phase oil-water mixture in a layered-nonuniform oil reservoir
and its movement in the bottom-hole zone of a producing well.

. On the basis of computational experiments, the convergence and stability of

the numerical solution of the problem, as well as the features of non-stationary
processes in the reservoir and oil well during their transition on the steady state.
The duration of these processes is also estimated.

. High performance of computations with the use of the developed software is

shown.
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4. The obtained results are used in a cyber-physical system for modeling and
forecasting field technological processes of oil production, as well as training
the specialists working in oil industry.
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On Error Control at Numerical Solution m)
of Forth Order Elliptic Equations e
with Strongly Discontinuous Reaction
Coefficient

Vadim G. Korneev

Abstract The paper studies errors of numerical solutions to the equation AAu +
iy = f by classical, i.e., Cl-conform, and mixed Ciarlet-Raviart finite element
methods. We focus on the case of the element wise constant coefficient «2, which
chaotically varies between finite elements in the sufficiently wide range, and present
the guaranteed, robust, and computable a posteriori error bounds. For the classical
FEM’s, our bounds are robust for k2 € [0, ch’4], where ¢ = const and £ is the
maximal size of finite elements. One of their good properties is that at k = const
their coefficients coincide with ones in the not improvable in the order of the
accuracy a posteriori bound, obtained earlier especially for this case (Korneev,
2017). In case of a jumpihg « the coefficients are only insignificantly worse than
those at k = const while computation of the bounds does not require equilibration.
The a posteriori error bound for the mixed Ciarlet-Raviart method incorporates, as
a part of the estimator, the a posteriori error bound for the primal problem.

1 Introduction

We consider the problem

AAu+ou = f(x) ing,
(1.1)
u=20u/dv=20 onaf2,

with f € L*(2) and the first boundary condition and v being the internal normal
to the boundary. It is assumed that 2 is a polygon covered by the family of
the quasiuniform triangulations 77, defined for any # > 0 and each containing
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compatible triangles 7, r = 1,2, ..., Ry of “size” h > 0 with Q = UZi”lt,. It is
essential, that o0 = «2 is assumed to be element wise constant, i.e.,
o=o,=const for xet., r=1,2...,Ry, (1.2)

and satisfies only one restriction o < A, with A~! = O(h*) in many important cases.

Variety of numerical techniques, including conforming, nonconforming, mixed,
discontinuous Galerkin, and other types of numerical methods were studied in the
respect of a posteriori error bounds at their application to the biharmonic and the
thin plate in bending equations, as well as to the singularly perturbed equation
&2A%u — Au = f, see, e.g., [1-15]. However, less attention were paid to the
popular in applications problem of the thin plate in bending, resting upon Winkler’s
foundation, a particular example of which is (1.1). This is especially true for the case
when the subgrade modulus is discontinuous and has significant jumps. Aposteriory
error bounds for C!-conforming finite element solutions of the problem (1.1) with
the element wise constant o, varying arbitrarily between finite elements in the
segment [0, ch™*], ¢ = const, were derived quite recently in [16]. The present
paper improves the results of this work for C'-conforming finite element methods
and attempts to expand them to the mixed Ciarlet-Raviart method.

Itis necessary to note that a posteriori bounds for the 2nd-order reaction-diffusion
equations with the discontinuous reaction coefficient gained some attention in
the literature. However, it was restricted to the case of the subdomain wise or
finite element wise constant reaction coefficient that varies “mildly” between
neighbouring elements. A typical variant of such change is found in [17, 18], where
it was mainly motivated by the derivation of the a posteriori error bound alongside
with the sort of almost inverse bound, termed the bound of local efficiency. Results
of the present paper for C'-conforming finite element methods are literally (with
obvious changes) expanded to the 2nd-order reaction-diffusion equations and show
that the range of admissible jumps for obtaining robust a posteriori error bounds is
much wider, than it could be expected. At that, the price for widening this range
is an insignificant worsening of the coefficients in front of the typical norms in the
right parts of the a posteriori bounds.

Among the widely spread in practice a posteriori error bounds, there are two
types of them, namely the residual based bounds and the bounds based on the use
of the equilibrated flaxes/stresses/ stress resultants. A drawback of the first type
is that the derivation of the bounds heavily leans upon the approximation bounds,
and the coefficients in the former bounds strongly depend on the constants in the
latter. An example of such a bound for the approximate solution of the equation
AAu = f is found, e.g., in [13]. At the implementation of the second type bounds,
for each numerical solution, e.g., of the second order elliptic equation, one finds
a single testing flax. It is evaluated by some equilibrated flax recovery procedure,
which depends not only on the mesh, but also on the problem. This constricts the
universality of the bounds. Besides, the equilibration increases the diffusion type
error, and the value of the damage is seen only from the inverse like bound, the
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constants in which usually are not too optimistic. Thus, bounds of both types, which
have been intensively developing in several last decades, have their own restrictions
and their real accuracy needs to be checked by practice.

Consistent bounds of [19-21] belong to the most old class of a posteriori error
majorants and possess two important properties: (1) the order of accuracy of a
consistent bound is the same as for the corresponding sharp a priori bound; (2)
for the proof of the property (1), as well as for the calculation of the bound in
the practice, it is sufficient to use any testing fields of the flaxes/stresses/stress
resultants, which possess respective approximation properties, without resorting to
the flax equilibration procedure. In result, such bounds are more universal and their
calculation is simplified, because for providing the sharpness one can use any testing
flax, having the approximation properties not worse than those of the numerical flax.
Recovery procedures, providing such properties, are easy to find in the literature
for the reason that they were thoroughly studied and widely tested in the residual
type error estimators, see [22-25] and references there. In this paper, the technique,
used in [19-21], is adjusted for obtaining the a posteriori error bounds for a more
complicated class of problems and numerical methods.

The notations || - ||x, |- |x will stand for the norms and quasi-norms in Sobolev’s
spaces HK(Q) = Wé‘(Q) with the agreementthat |- |o = || - lo = || - ||. Additionally
we introduce the spaces H02(§2) = {v € H¥(Q) : v = dv/dv = 0 on I},
H}(Q,AA) = {v € H}Q) : AAv € L*(Q)}, and L2 (Q) = (L2(sz))4. In
relation with the problem (1.1), it is helpful to introduce the subspace M(2) =
{fm= {mk,l}%,lzl e L2(Q): m1,2 = my,1} of vector-functions m and the operators
D :H*(Q) - M(Q) and D* : M(Q2, D*) — L%(), defined as

D*m =

9 9

k=1 Xp0x
k=1 dxidx;

Dv—{ 9%v ]2 2 82mk,1
BXkaxl

where M(Q2,D*) = {m € M(Q) : D'm e L*(Q)}. If (1.1) is viewed as
the thin plate bending problem (at the cylindrical stiffness equal to unity and
Poisson coefficient equal to zero), vector-functions m = PDu have the meaning
of components of the bending and twisting moments acting in the plate. For this
reason and for brevity they are called moments. Where it does not cause confusion,
for norms || - || 2 in the spaces L2(-) we use the notation || - ||, so that |m]|| will
stand for [[ml|p2q)-

2 Cl-Conform Finite Element Method for Primal Problem

We assume that the finite element assemblage K, is defined on 2 and induces the
space V;(Q) = VI (Q) = {¢pp € C1(Q) : ¢h|rr €EPp, p=3, r=12,....,Rn}
and its subspace V), 0(2) = {¢pn € Vi(2) : ¢ = d¢py,/0v = 0 on 02}, which is
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used for solution of the primal formulation of the problem. Here #,, is the space of
polynomials of the degrees < p. For convenience, we define the norm in H 2(Q) as
05 =115 +1- 15

Leta(w, v) = (Dw, Dv), V(2) be the Hilbert space of functions with the scalar
product [w, v] = a(w, v) + (6w, v) and the norm [Jv|| = [v, v]'/?, and Vo(Q) =
fve V() :v=20v/dv =0 on dR2}. The weak form of the problem (1.1) reads:
find u € Vp(2) such that

au,v) + (ou,v) =(f,v), VYve V). 2.1)

The finite element solution from the space Vjy o(€2), denoted ufen, satisfies the
integral identity

a(ufem, v) + (Oufem, v) = (f,v), Vv e Vpo(L). 2.2

The proof of a posteriori error majorans is based on the fundamental properties
of the finite element method reflected in the approximation and inverse estimates
and on the adequate estimate of the value ,uf_erln = sup || Desemll/ ||k efem]|. In case of
o = const and, at some cost, in case of piece wise constant o, it can be replaced
by the much simpler estimate Mgl = sup || Des||/lles|l, where e = uo — u, u, is
the finite element function, which minimizes the norm ||9D(¢ — u)|| on the space of
functions ¢ € V}, 0(€2). With the use of the latter inequality, the a posteriori error
bounds for the C'-conform finite element method solutions to (2.2) were derived
in [16]. At that, the Aubin-Nitsche trick [26, 27] was one of the ingredients of the
proof and implied that the boundary <2 satisfies the condition for H*-solvability
of the problem at o = 0, Vf € L?(R). Clearly, this condition restricts the range
of problems, to which a posteriory bounds can be efficiently applied. In order to
obtain the a posteriory error bounds applicable to a wider range of problems, in
the current paper we avoid relying on the H*-solvability condition, but use some
additional properties of the finite element approximations. We assume the existence
of the projection operator Jj, : H*(Q) — V,(), in particular quasinterpolation
operator, which has the following properties:

@) ifv e Vy(Q), then Jpv = v;
(i) (v—Tpv) € Hy (), if vse € Ve(0Q) := [Va(D)]|5q:
(Iii) Yv € H*(Q), |lv — Ipvllrg < c@, s)h*||v|ls,q forr =0,1,2, and
s>20rs=23,.... <p+Lifve H(Q) = H}QH (Q);
(iv) |Tpvle < éving and [[Fpv]2e < élviae Yo € HX(RQ).
Above, c(s, 1), ¢ and ¢ are positive constants, depending on the constants in
the quasiuniformity conditions for finite element assemblage.

Theorem 1 Let u € HOZ(Q, AA), utem be the finite element solution, ugem €
Vino(R), and m € M(2, D*). Let, additionally, the linear operator 3, with
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the properties i)-iv) exist. Then for any o and o, satisfying the inequalities
0<o0 <o, =1/(c(0, 2)h2)2, the bound

Nittem — ull* < OM(0x, Ugem, m) , (2.3)
1
M0, ¢, m) = | D +mllf5 g + g If =00 =D’ mil7 g -

holds with

o — 2820, — (2 = 1)Omin 7 2.4)

0% + Omin

¢ = ¢+ 2¢2,0c(0,2) and the constant ¢y, from the inverse inequality (2.8), see
below.

Proof Fore = efem := ufem—u and Yw € V, 0(S2), by using the Galerkin property,
integrating by parts and by applying the Cauchy inequalities

(@.¥) < lollll¥ll  and (@1, Y1) + (P2, ¥2) <

< lllgul* + o 2 P12 v 1 + o llyl*1'/2,
we get

llell? = (De, De) + (e, €) = (De, D(e + w)) + (oe, e+ w) =
ODOv—m, De) — (Du —m, De +w) + (ge, e +w) =
Dv—m,De+w)—(f —ov—D"m,e+w) <
1Dv —m||[|De +w| + | f —ov—D*mlle +w| <
< [1ov—mi+ L1 —ov -0 mi2) ioe + wi + ol +wi2)
(2.5)

Let 7, be the operator of L? orthogonal projection on the space V}, 0(£2). Having
set w = —mpefem, We see that e + w = (I — mp)e =: ep and, therefore, for every
B € [0, 1] we can write

ID(e + w) |1 + oxlle + wl? = [|Deol? + oxlleol* < [|Deol>+
_ . B _ 2 ) B _ 2
+[U* o-mm(l + Omax (0« O'rnax)):l lleoll” + O‘mm(l + Omax (0« 0-max)) lleoll =

= || Deol|*> + Billeoll> + Baominlleoll?

where the notations Bj, Bj are obvious. (2.6)
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As it follows from the properties of the operators 3 and my, for ¢ — 7,¢ with
any ¢ € Hg(Q), there are valid the bounds

¢ —mndllo < liglo.
lp — mndllo < (0, 2)h* | Dllo . 2.7

1D(p — mad)llo < CllDllo .

in which the constant ¢ depends only on two constants from conditions of
quasiuniformity of triangulation. The proof is needed only for the last bound, and it
follows from the relations:

D@ — 7nd)llo < 1D(P — Tnd)llo + I1D(Trgp — mad)llo < I Dllo+
c2.0h 21846 — midlo < E1DPlo + c2.0h 21946 — llo + 16 — Tabllo| <
< (5 + 2¢2,0¢(0, 2)) 1Dé o,
where ¢; ¢ is the constant in the inverse inequality
1D — 7)o < c2.0h 9 — wllo (2.8)
Thus, we conclude that in (2.7)
¢=7C42¢,0c(0,2) .

Now, application of the second and third inequalities (2.7) to the first and second
terms in the right part of (2.6) yields

1Deoll? + oxlleoll> < (14 o7 B | Deoll* + ominBallefem|| <
(2.9)
<31+ 0, 'B) | Defeml?> + Bz llketeml -

The values of By, B depend on the choice of £, and it is not diffiult to notice that,
if there exists the solution of the equation

240, 'B) =B, (2.10)
then it is the optimal value of S. Indeed, there is the solution

~ (2- 872)0‘* — Omin

’3 = C O .
e (0% + Omin) (0% — Omax)
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Substituting this value of 8 in (2.9) and furder in (2.5) at w = mj,efem, we conclude
the proof. We have two expressions for ®, defined by the left and the right parts
of (2.10). Substituting the found B in any of them, we get the needed expression (2.4)
for ©. |

Remark 1 'We minimized the second multiplier in (2.5) by taking minimal coeffi-
cient 1 /o, from admissible and minimizing ® by means of the corresponding choice
of parameter 8. A more general situation of oy € [omax, 1], A = 1/(c(0, 2)/12)2 can
be treated in the same way and is resolved by

(1 —C72) + 2% (0% — Omin)

p=o
e (0% + Omin) (0% — Omax)

and
O 14 A1 =T + (0w — omin) @.11)
(o« + Omin)
We see that minimal ® of (2.11) is reached at maximal oy, i.e., at o, = A =

1/(c(0, 2)h?)?], and, therefore, is the same as in (2.4). At definition of ® and
o, we can take into consideration the real values of the norms in the right part
of (2.3). Let us denote these norms as N and N,. If the values N; and A=A,
differ considerably, this can improve efficiency.

For providing high accuracy it is important to pick up the testing vector-function
m with the components as close as possible to their exact values. It is usually done
with the use of the respective recovery procedures, in particular, the same as used
for the derivation of the residual type a posteriori error bounds. As it is noted in
the book [23] and several papers, flax recovery procedures demonstrated very high
efficiency at the use for evaluation of a posteriori error bounds for the finite element
solutions of the 2nd order elliptic equations. If attended for evaluation of (2.3),
on the basis of the finite element solution ufem, they produce m as an element of
some appropriate finite element subspace M (2) € M(£2, D*). The most popular in
the practice is the one called averaging procedure exemplified in [13, 28]. Another
efficient and optimal in the computational cost procedure for finding m is the least
squares procedure. In it, moments 1 ; are defined as L?(2) orthogonal projections
of the derlvatlves 92 “Ufem /9x;0x; upon the corresponding subspaces Mk 1(2) of the
space M(Q) e.g., Mk 1(2) = (me(Q) with appropriate p,, > p — 2.
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3 Ciarlet-Raviart Mixed Metod

The weak mixed Ciarlet-Raviart type formulation of the problem (1.1) reads, cf.
[29]: find the vector-function w = (v, u)T € H'(Q) x H (Q), H'(Q) = {¢ €
H'(Q) : ¢ =0 on R}, satisfying the system of the integral identities

(v,q) — (Vu,Vgq) =0, Vge HY(Q),
3.1
(Vv,Vg) + (ou,g)=(f.g). ¥geH (Q),

where (-, -) is the scalar product of vector-functions (z,y) = (z1, y1) + (22, y2) for
y=O1. ) andz=(z1,22)".

In general, for solving equations (3.1) two finite element assemblages, denoted
K u and Kj, ., are employed, which induce respectively the space U, (2) = {¢n €
C(Q2) : ¢h|r € Ppy» Pu =2, r =1,2,...,R;} and the space V() = {yy €
C(Q2) : 1ph|r € Pp,, Pv = 2, r = 1,2,...,Ry}. The mixed finite element
solution wi, = (v, un)T € Vi(R) x Un(Q), where Up(Q) = {¢n € Un(Q) :
¢n = 0 on 0%2}, satisfies the system of equations

(Uh, CIh) - (Vu/’ls th) = 0 ) VQh € V/’l(Q) )
(3.2)
(Vop, Vgn) + (oun, gn) = (f, grn), Vg eUn().
The error of the finite element solution, denoted
efem = (€y, eu)T €y =up —Uu, ey =V, + Au,
obviously, satisfies the integral identities
(el)aqh)_ <Veuavqh> =07 th evh(Q)a
3.3)

(Vey, Ven) + (0ew, gn)=0, Vg, e Up(Q),

Turning to the a posteriori error bound for the Ciarlet-Raviart mixed method,
we note that usual approximation properties corresponding to the degrees of
polynomials on finite elements are assumed for the involved in the estimation finite
element spaces:

(A1) Forany w € I-DII(Q) = I-OII(Q) N H(Q) the space Uh(Q) provides such an
approximation W = Gj_,w thatatk = 0,1and 1 <[ < p, + 1 we have

1@ — wle < cegh! ™ wli, ey = const, (3.4)
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where G, : H 1(Q) — th(Q) is a linear operator. Similar approximation

estimates hold for w € HY(Q), W € V4(R),k=0,1,and 1 <[ < p, + 1.
(Az) Forany w € HY(Q) := H'(Q) N HZ(), 1 > 2 the space V}, () provides

an approximation w = Qpw thatatk =0,1,2and2 <[ < p + 1 we have

W — wle < cgh! ™ wli, ey = const, (3.5)

where Qj, : Hoz(Q) = V50(£2) is a linear operator.

For the error of the solution by the mixed finite element method, we use the norm
1 2 2 21172
Betnll=_, {lleol? + NAneal? + 27} (3.6)

For any ¢ € V};, 0(2) and ey = ¢ — u we introduce A4 as the value, saisfying the
inequality

legl® < 2y 1 Deg 1> (3.7)

Lemma 1 Let the assumptions (Aq), & = 1,2, be fulfilled and wj, = (vp, up)' €
Vi (2) x Uy (2) be the solution to the system (3.2), it be any function from V5 (S2),
and m be any vector-function belonging to M(2, D*). Then at o and o satisfying
the inequalities 0 < o < o, < Aj the a posteriori error bound

Nesem < 11 AR un — @)1 + llvw — Apidll* + 2lx (up, — @) 1>+
(3.8)
+20M(oy, ii, m),
holds with ® = 1+ (04 — Omin)/Aj.

Proof Atany i € V) 0(S2), two first summands in the figure brackets of (3.6) we
transform to the form

| Aneul® + lcenl* = (Ap(un — i), Apey) + (o (up — it), ex)+

(3.9)
+(A(ﬁ - l/l), eu) + (G(ﬁ - l/l), eu) s
and in a similar way transform the rest terms:
lewl® + llkceu | = ((wn — AiD), ev) + (o (un — i), ew)+
(3.10)

+(A@W —u), ey) + (ot —u), e) .
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The function & can be considered as an approximation of the problem (1.1) and,
therefore, for || AZ||> 4 ||k &||? similar to the mentioned in Remark 1 bound (2.3) can
be used:

IAZI? + llxl* < OM(ow, i, m),
(3.11)
M(os, i, m) = |Dii +ml, o + ) I f —od —D*m|j, g

where ® = 1 4 (0% — omin)/A;. The proof of it follows the path close to the path of
the proof of (2.3) with the difference, caused by the fact that i does not possess the
Galerkin property. This fact causes also the difference in ®. Combining (3.9), (3.10)
and (3.6), the use of Cauchy inequality and the bound (3.11), result in the inequality

letemll*< {lun — @ll* + v — Anitll* + 2]l (i, — D> + 20 M(0x, i, m)} /2 x

X by UlAnedl + lleol? + 2lle |2},
(3.12)

from which the bound (3.8) follows. |

In general the value )\;1 is bounded by the constant c;1 from the Friedreichs

type inequality e [|¢]1> < | A2, V¢ € H' ().

The function & for the use in (3.8) can be defined at least in two ways: by the least
squares projection of u#;, upon the space V, 0(€2), i.e. 4 = mpup, or as u = Ejup,
where Ej, : Oh () = V5 0(L2) is the recovery operator, based on averaging and
described in [13, 28]. The testing moments m for the use in (3.8) can be defined on
the basis the function & by means of exactly the same recovery procedures as was
mentioned for moments m in (2.3).

Conclusion Guaranteed, reliable and computable a posteriori error bounds for
solutions of the problem (1.1) with constant coefficients by C'-conform finite
element methods were obtained in [15, 19, 21]. An additional feature of the problem,
which is taken into consideration in [ 16] and here and seems new even for the studies
of the conform methods for the 2nd-order elliptic equations, is related to the reaction
coefficient. It is assumed to be finite element wise constant and changing chaotically
between finite elements in a wide range. In this paper, we suggested another way
of the derivation of these a posteriori error bounds, admitting to improve their
coefficients. Desides, we removed the requirement to the boundary, arising from
the elliptic regularity condition on the subsidiary problem in €2, which appear
in the Aubin—Nitsche trick. The a posteriori error bound for the mixed Ciarlet-
Raviart method with relatively easily calculated constants was also presented,
which, however, assumes sharpening in the future research.

For simplicity, we restricted consideration to the polygonal domain Q C R2,
which is covered by the quasi-uniform (regular) triangulation. However, the results



On Error Control of Numerical Solutions 229

can be expanded to arbitrary sufficiently smooth domains. This is for the reason that
the techniques for constructing curvilinear CY%and C", n > 2, finite elements in [30,
31] and [31-33], respectively, allow one to create the finite element assemblages,
which exactly represent 2 by means of the special curvilinear finite elements, used
along curvilinear parts of the boundary. These finite element assemblages satisfy the
generalized conditions of quasiuniformity, see, e.g., [34, Section 3.2], and induce
the finite element spaces of classes C® and C!, which provide the same orders of a
priori bounds of approximation and convergence.
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On the Solvability of a One-Dimensional )
Problem of Filtration Consolidation e
with a Limiting Gradient

Alexander V. Kosterin, Maria F. Pavlova, and Elena V. Rung

Abstract It is considered that one-dimensional initial-boundary value problem
models the process of joint motion of a viscoelastic porous medium and a liquid
saturating the medium. In the filtration theory, this process is called filtration
consolidation. From a mathematical viewpoint, the model under study is a system of
nonlinear partial differential equations with respect to the pressure and displacement
of liquid in the pores. Herewith, the degeneration of the spatial operator is
allowed in the equation for pressure. The definition for a generalized solution is
introduced. It is proved that under certain assumptions for the solution smoothness
the generalized statement of the problem is equivalent to the original statement.
Using the semi-discretization method in combination with the Galerkin method and
the monotonicity method, the generalized solvability of the problem is established.

1 Introduction

Filtration consolidation is the process of interaction between the deformation
of porous medium (skeleton) and the filtration of liquid saturating the medium
under the influence of external forces. Herewith, if the pores of the medium are
not completely occupied by liquid, then it is unsaturated filtration consolidation;
otherwise, it is saturated filtration consolidation.

The problem of saturated-unsaturated filtration consolidation was studied, for
example, in [1-4]. In the above articles, existence theorems for generalized solu-
tions of several initial-boundary value problems of saturated-unsaturated filtration
consolidation were proved.

The foundations of the theory of saturated filtration consolidation were laid in
such works as [5-8]. In the works, mathematical models of filtration consolidation
were built, and studies of the models from the standpoint of continuum mechanics
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were carried out. A rigorous mathematical analysis of problems of saturated
filtration consolidation was carried out in [9]. The present article aims to continue
those studies, namely, here we intend to prove the generalized solvability of one
problem of saturated filtration consolidation with a limiting gradient.

2 Problem Statement

Let us consider a one-dimensional problem of consolidation of a saturated porous
medium on the interval 0 < x < L. We adopt a model of the filtration consolidation
process [10], which includes:

force balance equation

acf d
=+ P = pan, (1)
X 0x

— rheological relationship for a porous skeleton in the form of the Kelvin-Voigt law
[11]

de
f = . 2
o &x + 5 (2)
— equation of phases joint deformation (consolidation equation)
dq = 0&y
=0, 3
ax + at %)
— nonlinear filtration law
ap |\ ap
=— . 4
q g( 9 ) 9y “)

Here p(x,t) is liquid pressure in the pores, u(x,¢) is motion of the skeleton

. u
particles, o/ is effective stress in the skeleton [8], ex = 5 is deformation
X

component, g is filtration rate.

Substituting relations (2), (4) into Eqgs. (1), (3), we obtain the following system
of equations for the unknown functions u(x, t), p(x, t):

~ax \ax + 0x0t

9%u 9
axar  ox \8

2
d <8u 8u>+8p:f(x,t)7 5)
0x

ap _
) 7)o ®

ap
ox
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We assume that for ¢ € (0, T'] the following boundary conditions are satisfied

2

w0.0=0. M@+ won=o (7)
ox dx ot
p0, 1) =p(L,1) =0. (®)
The initial conditions are given as
u(x,0) =uo(x), px,0) = po(x). ©)

In what follows, we assume that the functions g(§), f (x, t) satisfy the following
conditions:

Aj. g(&)E, £ > 0 is an absolutely continuous in £, nonnegative, nondecreasing
function and there exist &y > 0, n, u > 0, such that at £ > & the following
inequality holds

n(€ —%o) = g(IEN = (s — o). (10)

A,. The function f (x, t) is continuous at (x, t) € Qr, where Q7 = [0, L]x [0, T'].

Note that the class of problems under consideration is rather wide and

includes, in particular, filtration consolidation problems with a limiting gra-
dient, when g(§) =0at&é < 8, 8 > 0.

3 Defining a Generalized Solution

o
Let V be the closure of smooth functions equal to zero at x = 0 in the norm of the

space Wz(l) (0, L), and let V1 be the closure of smooth functions equal to zero on the
boundary of the interval [0, L], in the norm of the same space.

Definition 1 By a generalized solution to problem (5)-(9), we imply functions
(u, p), for which the following conditions hold:

ue WO, T: V), pel0.T; V),

u(x,0) =up(x), p(x,0)= po(x) almosteverywhereon (0, L),
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and for any functions v € Wz(l)(O, T; 1;), z€ Ly0,T; 1;1) the following equality
is true:
L
/ 9% a%v N 0u
tooxor Joxar ~ Poxor T oxor©
0

T L
ap 0z av
dxdt = , dxdt. 11
+g< )axax}xt //f(xt)atxt (11
0 0

Theorem 1 Let u, p be a solution to problem (5)—(9) satisfying the following
conditions:

S t~—

ap
0x

ue w0, T; V), pela0,T; V),

then u, p are a generalized solution to the problem.
And vice versa, if u, p is a generalized solution to problem (5)—(9) such that

ux,n), p(x,1) e C?0,L) Vi e (0,7), (12)

then the functions u, p satisfy relations (5)—(9).

Proof Let u, p be a solution to problem (5)—(9). It is required to establish that u, p
satisfy equality (11).

. 0
Letv € Wz(l)(O, T; V). We multiply the equality (5) by the function Blt) and

integrate the resulting equality over x from O to L, ¢ from O to 7. As a result, we
obtain

T L ) . 8
I/l v

_//8 < axdr ) dxdt //f(x,t) 9t dxdt. (13)

00 00

Using the formula for integration by parts, we transform the left-hand side of
equality (13):

TLa 9 ([ 9 2 92

I/l v u u v
— dxdt = — dxdt
//a( axd1 p)at * //<8x+8x8t p)axazx
0 0 0 0

0
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Based on (13), (14) and boundary conditions (7), (8), the following equality holds

true
T L T L
// Y dxdt = //f( 0 %Y dxdr (15)
Foxor P) oxar " oy, et
0 0 0 0

Now we multiply equality (6) by the function z € L»(0, T'; V1) and integrate
the resulting equality over x from O to L, ¢ from O to 7. We apply the formula of
integration by parts and, as a result, we obtain

Ff ap |\ ap o

// PP O dr = 0. (16)
8x8t 0x ox 0x

00

It follows from relations (15) and (16) that the functions u, p satisfy equality (11).

Let us prove the second part of the statement of Theorem 1. Let u, p be a
generalized solution to problem (5)—(9) satisfying condition (12). Let us use the
formula of integration by parts to transform equality (11). We obtain

r 9 32 9
f N Y dxdr
dx oxar P) o
0
; 9
P
t
/{Bxat ax <g< ) 8x> }Zd“l
0
r 9 92 9 FF 9
u u v v
L,t L,t L,t)dt = dxdt. 17
+/(3x( ' axar )> ar 1) //fat * a7
0 0 0

0
Assuming in Eq. (17) that 81‘) = ¢, z = 0, where ¢—is an arbitrary function

S ~—

op

+ ax

St~—~

from CSO(QT) and taking into account the density CSO(QT) in Ly(Qr), itis easy
to show that (5) follows from (17). If in relation (17) we put v = 0, z = ¢, then
arguing in a similar manner, we obtain that (6) follows from (17).

Let us now prove that boundary conditions (7) are satisfied. Since (5), (6) are
proved, it follows from (17) that the following equality holds true for any function

= Wz(l)(O, T; ‘;)

T

/( 82 (L t)) 0 1 hdi=0
a ar ar 7

0
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whence, due to arbitrariness of v, the validity of the following boundary condition
is proved

2

ou d
L,t
8x( )—I—a

“L.y=0
xot

Theorem 1 is proved. O

4 Existence Theorem

Theorem 2 For any ug e‘;, Do e{?l there exists a generalized solution to
problem (5)—(9).

Proof Let us use the semi-discretization method in combination with the Galerkin
method. Let

@r={t=kt,0<k <M, Mt =T}

be a grid on the interval [0, T'], w; = @ \ {0}.

Let {¢;} and {y;} be full systems of basis functions in the spaces \; and ‘;1
respectively. Let also V" and V" be finite-dimensional spaces spanned by the system
of functions {g;}?_, and {v;}7_, respectively.

Definition 2 By the approximate solution to problem (5)—(9), constructed by the
method of semi-discretization in combination with the Galerkin method, we imply
the functions (4" (¢), p" (¢)) for which the following conditions hold:

wwev, pt@) eVl vVt € wy,

u"(x,0) =uo(x), p"(x,0) = po(x) almosteverywhere on (0, L),

and for any functions v"* € V", z" € V|' the following equality is true

¢ au"  dul\ ol avy  dul

u u; Vi an 9V U an
/{<3x+8x>3x p8x+8xz
0

ap" [\ ap" 97"
w50

ox

dx 0x
Here 0 = v(t + 1), vy = . O
T

L
}dx=/f(x,t) vldx. (18)
0
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Lemma 1 The Galerkin system (18) has at least one solution. O

Proof Obviously, it suffices to establish the existence of p”, #" satisfying (18),
under the assumption that p”, u" are known.

Since the choice of the functions v", 7" is arbitrary, the Galerkin system (18) is
equivalent to the following system

L ~n n n L
/ ou But ovy 8vt / 7,0 oldx,
Bx ox

0 0

; 0 ap" |\ ap" 97"

[ " Z g R V)

ax dx 0x
0

Approximate solutions are sought by the Galerkin method in the form

n
1 R 2
—ZE()%, =Y v
k=1

The unknown coefficients {,((i), k = 1,n,i = 1, 2 are determined by the following
system of equations:

L L
el 9
/{( ) (g)ﬁ)t — P ((pk)t} / (x, 1) (@r)rdx, (19)
0 0
L
du} A ap"
[ s ([
0

Let H: R* — R?" be a nonlinear operator such that the equation

p" Iy
) Pr v }dx —0. (20)
ox dx

H() =0

is equivalent to system (19)—(20). Let us make sure that R?" contains a sphere
centered at zero of finite radius, on which

H(Z), ) gan = 0.



238 A. V. Kosterin et al.

We have

L

(H(Z), ) gon =/<3u N au,) du' "

ax 0x ax
0

L - 552 L
+/g<‘ P )( p ) dx—/f(x,t)u;'dx. 21
ox ox
0 0

The first term on the right-hand side of equality (21) can be transformed to the form:
¢ au"  oul oul 1 1
u uy uy ~n2
dx =
/<3x+8x>3x * <r+t2)”u”1
0
1 2 ¢ ou" u" 1
u u
_ d 3. @22
<r+t2)/8x 0x x+r2 Iy 22)
0

L 2
2 v
Here || v ||1=f<a ) dx.
X

0
Using the Cauchy-Bunyakovsky inequality

1
(x,y) < 8lIxI* + 48nynz, (23)

from (22) it is easy to obtain the following estimate

L
on"  oul\ du} 1 1 12
dx > -6 "
/<8x+3x)8x x_<t+12 )||u||1
0

Using (23) and inequality (10), for the second term in equality (21) we have

L
ap" |\ (95" \2 . &g L?
nga )( )dxzm—&upﬂﬁ— 0
X
0

0x 44
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To estimate the last term of (21), we use the boundedness of the function f (&),
inequality (23), and the Friedrichs inequality. As a result, we obtain

L

ff(x,r)-u?dx <s|am )} +
0

C:ciL? cc
Rt 7L
4872 T 1

here CrF is a constant of the Friedrichs inequality, C is a constant such that
IfE. Ol=C  VEe[0,L], Viel0,T]

Substituting the estimates obtained in (21), we have

(HE), O = KO (118" 17 +11 5 1) = RO . 24)

K((S):min{(l + 12—28>,n—8},
T T

cc 11 /1 23\ C2C2L? 2821t
R((S):(TF— n <+ ))||u"||%+ PL LT

where

2 45\t 1?2 4872 48
Let §* be a constant such that for all 0 < § < §* the following inequality holds
K@) = B =const >0,

and § C R?" be a sphere centered at zero at which the right-hand side of
inequality (24) is non-negative. Then, by the topological lemma ([12], p. 66), there is
at least one solution to the Galerkin system inside this sphere. The proof of Lemma 1
is complete. O

Lemma 2 For the approximate solution (18), the following a priori estimates are
valid

/

t

max|lu" (VT <€, Y <lp"OIF < €, (25)
t t=0
t'—1 t 2
2 ou’
)R (TN HEyel o <C, (26)
= =0 X llLy0,L)
t'—1 ~ A 112
ap" ap"
Y e g(‘ p D p <cC. 27)
=0 3x a.x L>(0,L)
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Proof Let us assume in (18) v" = u", z" = p” and obtain

f L

u Bu;l au;l 3[3n )
/{<8x 3X>8x+g<‘ax >< )} / (x,)uidx. (28)
0 0

Note that
ou" duf _ au"™ 9 (a" —u" _ au™ 1 (ou"  ou"
dx dx  dx dx T C9x T\ dx ox
L faam\? 1 foum? N 2 (oul\? 29)
2\ ax 2\ ox 2 \ax )~
We substitute equality (29) into (28), multiply by T and sum the resulting relation
over ¢t from 0 to #' — 7 and obtain

t'—t

1 1 du
lu" (I — a3 + lul )17 + !
2 b2 e Z : Z 9x |l 2,00.1)
t'—1 L ap P L
+ZT/8<‘ )(ax)dngtff(x,t)-u?dx. (30)
0 = 0

O
From (30), taking into account inequality (10), we have a priori estimates (25)—
(26). Also, considering that
2 a[’)\n
ox

op"
§ 0x

we have estimate (27). The proof of Lemma 2 is complete. O

3

An 2
< Ip
0x

Lo L0.1)

Lemma 3 There exist function
we Wy, 7;v), peLy0.T: V)
and sequences {t}, {n} such thatatt — 0, n — 00
+,n +n du : S
Oru" —u, MTuf — o in L(0,T;V), 31

8H+I/l;l 92u

in L T;L L 2
9y oy M 2(0, T; Ly(0, L)), (32)

O p" — p in Ly(0, T: V1) (33)
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Here T1™ 7 is piecewise-constant filling of z :
NFz(r) = {z(kt) : kt <1 < (k+ Dr}.

Proof The validity of statements (31)—(33) follows from a priori estimates (25)—
(26) and the weak compactness of bounded sets in a reflexive Banach space. The
proof of Lemma 3 is complete. O

Lemma 4 Functions u, p satisfying relations (31)—(33) are a generalized solution
to problem (5)—(9). |

Proof Let the functions u, p satisfy relations (31)—(33), it is required to prove that
u, p satisfy identity (11). To do this, in (18) we put

t+1 t+t

1 1
v"(x,t)=T/5"(x,€)d§, Z"(x,t)=r fZ"(x,E)dé,

1 t

where v", 7" are functions from C*°(0, T; V") and C*(0, T; V|") respectively,
such that v"(x, T) = z"(x,T) = 0. We multiply (18) by 7, sum over ¢ from 0
to T — 7. The result, using the filling operator I1T, can be written in the form

T L
// 81'I+A" 81'[+u;1 81'I+v;’ HJrAnal'IJrv;’ 81'[+ut +3n
—p + I
ax 0x ax ax
00

T L
oIt p* oIt p" 3H+An .
I (‘ ’ ) }dx‘i //f(X,t) ntvdxdt. (34)
00

ax ax

From the boundedness of g and estimate (27) it follows that there exists a
function y from the space L»(0, T'; L>(0, L)) such that

oIl [;n
& 0x
Taking into account (31)—(33) and (35) in equality (34), we pass to the limit in
T — 0 and n — oo and obtain

T

92 92 92 92 9
/ {( u) v v+ uz~|—x Z}dxdt
0

axar ) axor  Poxor T axor dx
T L 9
= / f Fx, 1) a?dxdt. (36)
00

8H+[3" )
9 X in L(0,T; L2(0, L)). (35)

St~
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0

P p‘ To do this, we use the monotonicity
ax |/ ox
method. We write down the apparent inequality

u” Bv au" av" 1 92u
_ d > n T _ T 2
Z /( );(iix ax) ¥ 2, D =il o, 2

1
) IIM"(O) - O} = —, lluo — V" (x, 017,

Let us prove that x = g(

where v" is an arbitrary smooth function v € C*(0, T; V). From this inequality
and the monotonicity of the function g (&) it follows that

T—t

L
- ou"  9v" au" 9"
Zr — 9x 5 dx
pr i 0x [ X X
T— N ~ A N
ap" 92" 9 n __ sn
0x

+ Tt/L 02"
Bx 0x 0x 0x
0
—ﬂw—ﬂ@ﬂw%

=0

The last relation is equivalent to the following integral inequality

)dxdt

Il
St~
S t~—r

olltu?  AIlto! oIt (u — "
0x 0x 0x

8H+ﬁ"
8 ax

L

orItz"
[
0

—zwo—v%mow%

)arﬁ proTIT (p" —2")

t
0x 0x dxd

+
S —
St~

dxdt

o\m

OTI+zm JTIH (P — 2")
0x 0x
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We represent [ as the sum I = Iy + I, where
T L R
_// AT u "an+( — ")
o 0x
0 0
8H+ An
¢ (‘ ax
T L
B // 8H+”8H+(u — ")
ax
0 0

(‘ It z"
+ 8
ax

+

3H+ﬁ" oTI™ ([;n _ zn)
) ox ax

}dxdt,

+zn + —
) ol ot (p : )}dxdt.
ax 0x

To transform the first relation /1, we use equality (34) at v" = u" — V", p" =
p" — 7" and obtain

T L

//{ an+"an+( —v) T
ax

00

N Al ul —— ol u? oI tv"
ox ox 0x

AT u™ oIl N
! 4 feonmt (u" — "), tdxdt. (37)
ox ox !

In (37), we make the passage to the limit as t — 0, n — o0, taking into
account (31)—(33) and (35). As a result, we obtain

T L
9%u 92 (u — v) 9%v 9%u
I — + Z
© 9xar  oxdt 8x8t dxot
0 0

%u dv  du 9*v d(u—v)
— t dxdt. 38
oxar ox Tox axar TS0y, } o (38)

Using equality (36), the right-hand side of relation (38) takes the following form

T L
%u d(u —v) A(p —2)
1 dxdt.
e // {Bxat 0x X 0x o
0 0
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Apparently, from (31)—(33) and (35) for t — 0, n — oo we obtain

F o a 2\ 9z 9
12_)_//{ v (u—v)+g< ) z (p—z)}dxdt‘
dxot ox
00

0x 0x
Thus, it follows from the definition of I that

g 32 —v) 3 (u—v) N oz\o(p—2)

- - Z —Z
//{ axdt x +(X_g( >8x) ax }d’“”
00

—2||u0 —v(x, 0. (39)

0z
0x

0z
0x

In (39), we choose v = u + Aw, z = p + Ag, where A = const > 0, and w, g are
arbitrary functions from C*°(0, T; C*°(0, L)), where w(x,0) = 0 for x € (0, L).
As a result, we obtain

1 (ee(

T L
3w 9 X
+A2// w wdxdtz—2||w(x,0)||%=o. (40)
0 0

2
9
(p+Aq) 8qudt
ox ox

0x0

We divide inequality (40) by A and pass to the limit as . — 0, we obtain

2
9
PN a0,
ox | ox

Since ¢ is an arbitrary function, the inequality holds at ¢ = v and ¢ = —v, where
velO0,T,; W21 (0, L)) is an arbitrary function; therefore, we have

_ ap [\ ap
=8\ lax ox’
The proof of Lemma 4 is complete. O
The assertion of Theorem 2 follows from Lemmas 1-4. O
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1 Introduction

At the moment, the application field of NEMS sensors and devices is very wide.
Unique properties of NEMS devices have predetermined their use in physics, chem-
istry, biology, medicine, criminology, military and consumer technology, navigation
and control systems. Interesting properties of NEMS devices usually arise from their
active part behavior (including dynamic), which can represent various nano-objects
types, such as nano-rods, nanotubes, nano-beams, nanoplates and nanoshells, and
their various combinations. It is important to note that NEMS dissipates very little
energy and this makes them extremely sensitive to external influences, especially
thermal effects and noise fields. Nano-mechanics is based on theories that can
account for scale effects at the nano-scale level. Their good overview is given in [1].
One of such theories is the currently actively developed micropolar (asymmetric,
moment) theory [2-14]. The question of the temperature effects influence on the
nano-plates behavior is also considered in works [15, 16]. An important issue is the
existence of solutions for the nonlinear differential equation systems that describe
the mechanical structures behavior. For this, it is necessary to prove theorems
on the solutions existence. In the case of solving a nonlinear stationary problem,
approximate solutions are constructed using the Faedo—Galerkin method. In the
case of non-stationary problems, solutions are constructed using the Faedo—Galerkin
method, then a priori estimates of the energy type inequalities are established for
them [17-20]. In the works of these authors, theorems on the solution existence for
classical mathematical models were proved. In this paper, we consider evidence of
the solution existence for mathematical models based on the micropolar theory.

2 Formulation of the Problem

Let us consider the related problem of thermoelasticity, which determines the ther-
momechanical evaluation conditions for shallow micropolar homogeneous isotropic
shells in the Kirchhoff-Love hypotheses framework, taking into account the three-
dimensional equation of heat conduction and contact interaction (1)—(4)
Differential equations describing the shell element motion, obtained on the
basis of the Hamilton-Ostrogradsky variational principle, taking into account the
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micropolar theory, Karman’s theory and Cantor’s contact interaction theory, have
the form:

INk otk N Yy, 19%vk 8"
ax oy 2 9y2 T 2axay O a2
k k 2vk
INy, 9Tk B 19%Yk IRER e _, , 820k
dy ax 2 9xZ 2 09xdy a2’
2 gk
ZMk N =My, +282Hk L0 <Nkaw’<) L0 <Nkaw’<) +28T" dwk

dx2 9y?2 0xdy  dx \ * ox oy \ 7 dy dx dy +

k 2vk 2
TR O gk gk a0 0y
dy ox oxay ¥ Y Y 9xdy  dydx 0x2
92Xy 92wk wk
- ayjy 245 F2K (w1 —w? o 5) Y=ol ookt

ey

The three-dimensional heat equation in a coupled setting can be written as follows:

CodTt _a (9Th  9PTE TR | Ee 88§x+3€'§y = b
dx2 9y?2 972 To™"

To 3t To 1—v\ 8 ' 8
2
The boundary and initial conditions are chosen in the following form:
duk duk
k
=0, =0, =0,
u|r 95 Ir oy Ir
avk avk
o r =0, Ir =0, Ir =0,
ox ay 3)
dwk dwk
k
w =0, =0, =0,
Ir o Ir oy Ir
T |5 =
k k wh k
w t:t0=¢w(X,)’), at t:tozww(-xay)

k
u

t=ty = ’»”,f (x,y)
Jt 0 4)

k o k
t:t0=¢v(an’)’ ot t:f():l/fv (-xvy)

k t=ty =¢],; x,y),

vk

Tk t=ty — d)){{ (X, Y, Z)
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In the boundary value problem (1)—(4), the following notations are used.
Q = ka D = Dkv

where k-structure layer number; 5-gap between shells.
Q-rectangle (in plane Oy, ) with bound 9€2:

Q=(0,a)x(0,b), 2=][0,a] x[0,b], 0Q2=Q\Q;

D-parallelepiped in space Oy, with boundary plane 9 D:

h h h o h
D=@bx(-_, ), D=lablx|-_, |, aD=D\D;
272 272

01=Qx(t,t1); Q2=Dx(to,t1); I'=0Qx[tg,11]; S=09Dx[to,t1];

[f0, t1]— observation time span of shell evolution, ¢ € [tg, #1]. Classic strains and
moments, as well as higher order strains and moments:

ik
(fo, Nk, Tk> - /_hk (o)fx,o)l,‘y,offy> dz,
hk
(M, M, 1Y) = [ ) ok ok ok ) 2z,
n* n* n*
fo =/ mﬁxdz, ny =/ mﬁydz, szx =/ mlgxdz, x = y.
—hk —hk —hk

Nonzero stress tensor components:

E
ko _ k k —
Oy = 12 [sxx +v€yy], X<y,

Higher-order nonzero moments tensor components [21]:

El?
k k k k k k
(mxx’ mxy’ mzx) = 14v (Xxx’ Xxy’ sz) ’ x = y
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Deformation tensor components taking into account temperature effects:

k1wt 92wk
ek = + < ) — KAk — ¢ +a,T (x, y, 2);

ax 2\ ox 9x2
gk 1 fwk\? 92k
K o_ _ ko k k . 5
T gy T < dy > kywh =z 0 T ey, 2); ®
g Lot N vk N Jwk dwk 9wk
2\ 9y 0x dx 0dy Zaxay'

Torsional bending tensor nonzero components written for the case when the
displacement and rotation fields are not independent:

. 0%wk ' 32wk v 1 %wk 9%wky

Xxx = ;

axdy’ T Toayax’ KT o\ 52 T ax2

L%k %t P B L T
ey (o o) =0 (o)
4\ 0x dxdy 4 \ 0yodx ay

wk (x,y,1), uk (x,y,1), vk (x, y, t)—the required deflection and displacement func-
tions defined on the area Q1 = Q2 X [1, t1]; Tk(x, v, z, t)—the required functions
that determine the temperature field in the region Q> = D X [f,H1]; h > 0—
constant shell thickness; p > O—constant density of the shell material; E >
0—Young’s modulus; 0 < v < 0.5—Poisson’s ratio; [ > (0—additional material
length parameter associated with the bend-torsion tensor; & > 0—constant damping
factor; «—thermal expansion factor; 7p > O—initial shell temperature; Co > 0—
specific heat; A > 0—thermal conductivity factor; gf (x, y, z, t)—known functions
defined on area Q> and determining the bulk density of internal heat sources;
g¥(x, y, t)—known function of the transverse load intensity on the shell, defined
on the region; Q1; k’; , k]y‘—initial curvatures of the shells middle surfaces.

The notation of all the main functional spaces, norms and scalar products
correspond to those adopted in the works [22, 23]: L? (A)—Lebesgue space of
square-integrable functions; |-| ,—norm in Hilbert space L? (A), and (-, -) 4—dot
product in this space; H(} (A)—the subspace of the Sobolev space H' (A), in which
the dense set is the set of all functions of their C! (A) equal to zero near the
boundary 9A4; Ho2 (A)—the subspace of space H? (A), in which the dense set is
the set of all functions of their C? (A) equal to zero near the boundary 0 A.

(6)

Theorem 1 Let the boundary contour 02 have smoothness sufficient for the used
embedding theorems and the following conditions are satisfied: g* € L* (Q1), gf €
L% (Q2), ¢y, by &) € Hg (), ¥y, ¥ Wy € L2 (), ¢f € L* (D). Then:
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(1) there is at least one solution ’ﬁk, ok, wk, f‘k}for task (1)—(4), wherein

ik ok ik e 12 (to, n, HY (@)

awk aak 9ok
ar 9t ot
Tk e L2 (to,tl; HY (D))k -1,2

cL? (to, 1, L? (Q)) ©)

(2) an approximate solution to problem (1)—(4) can be found by the Bubnov—
Galerkin method, while the entire set of approximate solutions is weakly
compact in spaces corresponding to conditions (7), and its limit points deter-
mine the generalized solution of problem (1)—(4) ;

(3) the phase space V of the mechanical system defined by the boundary value
problem (1)—(4), with generalized solutions from spaces (7), is an infinite-

dimensional functional space of the following form V = (L2 (Q))6 x T, where
T —the configuration space of such a system, T = (Hg (Q))6 x (Hoy (D))?,
while for almost all t € [tg, 1],

{awk dak vk . ~k,fk}ev.

K 9 ,w,l/l,v
ot 0t ot

3 The Main Stages of the Theorem Proof

3.1 Construction of an Approximate Solution

Construction of an approximate solution to problem (1)—(4). Let functions
sequences { X:}}k}’{ Xﬁk},{ X,’}k} define a basis in the space Hg (£2) orthonormalized
with respect to the norm of L? (), and the sequence { ng} define the same
orthonormal basis in the space HOl (€2). Following the Bubnov—Galerkin method,
an approximate solution {w*", u*" vk Tk} of problem (1)-(4) will be sought in
the following finite expansions (sums) form:

Nwk Nk

wkn = Zgwkl(t)xwkl ()C, y) ’ Ukn = ngkl(t)kal ()C, y) s
=1 =1
€]
Nyk nTk

W' = Zgukz(t)xuk, (x.y)., T = Zngl(t)XTkl (x,y)
=1 =1
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Expansion coefficients are determined as solutions of the following Cauchy problem

for an ordinary differential equations system:

g
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4
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ax2

kn
yZ’

ax2
a2wkn

at?

/

k
lewk

).t
),

' awkn
’leu,k)D+8p< at
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In 9 L = 1, nyk, Lk = 0, nyk, lyk = 1, nyk, ITk = 1, n7r. The initial conditions
will take the form:

Nwk

wh (6, 3. 10) = @l Bhe =) QwkiXwkis Bl — buk  from HE (),
=1

9 wkn Nwk

5 GOV =Vie V=) buuXuns Vg > Yuk from Hy (),
=1

Nuk

WLy t0) =P G =D duiXukl: Bl — buk  from Hj (),
=1

aunk Ruk
5 OV =V Vi =) buuXuw, Vi~ $u from Hy (),
=1

Nk

vy 1) =@ Bl =D awixw Ol — ¢uk from Hi (),
=1

vk il
o OV =Vl V=) bukxer, Wi~ Yok from Hy (2),
=1

Tk
T,y 2. 0) = Qs Bf =Y aruxri,  $p — ¢rx from Hy (D)
=1
(10)
or
08wkl
uklyy (10) = Quwklyy» 'gt “(10) = bukiyy,
08ukl,
Sukly, (10) = Quki,y» gt “ (t0) = bukiy»
agvklvk
8ukly, (10) = Qukiy o (to) = bkl  8Tkiry (10) = ATkipy

In this case, the “arrows”l in (10) indicate the convergence according to the
corresponding norms. The solution of the Cauchy problem (9)—(10) on some interval
[to0, 4], t, < t1 follows from the Schauder Yu theorem [17, 24]. In general, this
corresponds to the Peano’s theorem proof on the solution existence to the Cauchy
problem for an ordinary differential equations system. For the shell theory problem
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a detailed proof of such a theorem is given in the works of Kirichenko V.F.
[19, 20]. It is taken into account that the functions ft:)” [/q g* (x,y,1) x{;]w dxdxdt
belong to the space H' ((fo,#1)) and, therefore, belong to the space C ([tg, #])
[25-27]. And also from the indicated Cauchy problem solvability it follows that
Buklyy > Qukly» 8okl » 8Ty € H? (10, 11)).

3.2 The Priori Estimates

Let us obtain a priori estimates for the approximate solution constructed by the

Bubnov—Galerkin method. We multiply the equations of the system by dgzlktl“",

dgukl,y, dgukl

i wk | 8Tkl respectively, then sum the result:
1 auk"2+ avk"2+ qw 2+ E P, E |,
&y
200 |7 ar |, e |, P e |, 1= 1Pl T2 [Plp
2E 2 2 2 2
k k k k k k
+2v( ”,s;%y)D+ ol D+‘m2x D+‘m’;y o+ ‘mﬁy + ‘mﬁz +
a2 Co ol dwkn |? aTkn |? aTk" 2 Jarkn)?
Hmi |+ T +pe +A +
T a |, ax |, b | oz |p

9 kn
:FK‘S” (wln _ w2n _ 8) , l;)t ) [( xx Tnk) +

k
() )
t D —V
dwkn

In expression (11), we write the components of the stress tensor through the
components of the strain tensor (5), and the components of the moment stress tensor

(1)
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through the components of the bending and torsion tensor (6). Integrating the result
over the segment [, ¢] € [to, ¢,], we obtain the following inequality:

2 2 2

1] |aukr N avkn N dwkn LB P E |
217 o 1,77 e |, e |, T2 1—v2 1*p
2F 2 2 2 2 2
k nk k k k k k
+2v (8;1)" ;)) +1 +v S;Zy D+‘m§l‘x D+‘m’;y D+‘mﬁy D+‘mﬁz D+
2 C 1 kn |2 n (1orkn |
+‘m'yl’; n ‘T"” }—i—ps[ drﬂ/ ‘ +
D 0 ot |p 0 ax |p
2 2
aTkn aTkn t 9 kn
‘ ‘ dt—i—/ (;Kw (wln—w2"—8>, v ) dot
Wy Ip Iz Ip o it Jp

k
+Eaf/ agxx Tnk) + de Eyy Tnk dt— Ea /tl (Tnk agl;x +
1—v Jy, ot D ot b 1—v Jy, ot Jp
dek L[ aut o) |
Tk Y dt =
+< ot b ‘ 2 P

vk (1 2 dwkn (1 2
5 +p (o) +p (to)

D ‘m D ‘m

D

2
k
b 5wl E ekl +2v( (t0) &% (1)) +
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By virtue of (10), the sequences {¢y,}, (Vi) (@) (Vi) (nds (il
{ T k} are convergent in the norms of the indicated spaces and, therefore, bounded

with respect to such norms. Taking into account this fact, theorem conditions and
inequality (13), expression (12) takes the form (14).

1 1
lab| < 2a2 + 2b2 Ya,b € R (13)
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The priori estimates presence given by the methods proposed in [27] allows us
to extend the solution of the Cauchy problem (9)—(10) to the entire interval
[0, #1]. And also to conclude that the sets of approximate solutions to problem
{w"k, u"k, vk, Tk} (8) obtained by the Bubnov-Galerkin method are weakly

compact in the spaces from conditions (7). The sets {w"", u'k yk T"k} satisfy
the conditions:

The sets ’w""] , {u"k] , ’v""] are limited in L2 (to, H, Ho2 (Q)) ;

dw"k du"k vk Lo ) 1
The sets , , are limitedin L (to, 11, Hy (Q)) ;
ot ot at

The set ’T"k] is limited in L2 (to,tl,HOl (D)).
(15)

3.3 Transition to Limit

All spaces from conditions (15) are Hilbert spaces and, therefore, all bounded
sets from (15) are weakly compact in the corresponding spaces [28]. Thus,
from the sequences {w"k ,u'k ik, T""} we can distinguish weakly converging
subsequences such that:

’w”k] — 0" _weaklyin L2 (to, n, Hy (Q)) ;

Gk 3k o 1 .

{ o } - 70 —weaklyin L (to, f, H] (Q)) :
iunk} — % weakly in L? (to, 1, HO2 (Q)) ;

{ag‘:k} N 3§:k _weakly in L2 (to, f, H} (sz)) ; (16)
’v"k] — " _weaklyin L2 (to, 1, H (Q));

{8;jk} N ag:k —weaklyin L2 (to, . H] (Q)) :
iT"k} — T weakly in L? (to, 1, Hol (D)) .

In this case, the limiting properties of the generalized derivatives are taken
into account [29]. In [17] a well-known proving method that functions

{ﬁ)"k, ank, gk f‘"k} are a generalized solution to problem (1)—(4) is given.
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To conclude the theorem proof, note that the configuration space of the mechan-
ical system (in the considered shell form) defined by the boundary value prob-
lem (1)—(4) with generalized solutions from spaces (7) is the infinite-dimensional
functional space V of the form (L? (Q))6 x (H§ (Q))6 x (Ho (D))? (from point

~k ~k ~k ~ - - ~ .
35‘; , aé‘t , ?)avt Jwk, ik, oF, T* Y from this space

specify the mechanical system position with a mathematical model in the form of a
boundary value problem (1)—(4).

3 of the theorem), since elements !
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Component-Based Software Model )
for Numerical Simulation of Constrained <&
Oscillations of Liquid Drops and Layers

Igor Kuzmin and Leonid Tonkov

Abstract The study of microhydrodynamic processes have not only practical
significance, but also have a wide field for theoretical approaches and numerical
investigation. The article deals with a numerical investigation of constrained oscil-
lation of a liquid drop on a substrate, which harmonically oscillates, and oscillation
of the liquid layer located on the surface of a bending plate. Forced vibrations of the
cantilevered plate are excited by the piezoelectric element. The mathematical model
is based on a system of Navier—Stokes equations for an immiscible incompressible
two-phase mixture. The problem of numerical simulation of the interaction between
a deformed solid and a fluid layer is a Fluid-Structure Interaction problem and
requires a solution of both the elastodynamic and the hydrodynamics equations.
The partitioned approach to solving fluid-interaction problems is one of the most
common. Its allows solving each of the physical problems independently, using
specific numerical schemes and a proprietary parallelism model. The elastodynamic
problem taking into account geometric and physical nonlinearity is solved by
the finite element method. The proposed mathematical models allow us to study
the dynamics of the free surface of small liquid volumes and the processes of
redistribution of a liquid layer on a flexible vibrating base.

1 Introduction

Understanding multiphase flow at low Weber numbers is of considerable importance
in a variety of environmental, industrial, and engineering applications such as
atomization of the fuel, contaminant cleanup, fluid absorption, and separation in
porous media and many others. However, accurate numerical simulation of such
flows is a tricky computational problem when interfacial tension effects become
dominant.
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Mesh-based numerical methods are conventionally considered, as the preferred
approach for most applications, however, is the need for an algorithm to determine
the shape of interface boundary and its evolution with time.

One of the widespread approaches to solve the investigating problem is repre-
senting a bulk as an immiscible incompressible two phase mixture described by
Navier—Stokes equations with the dynamic equilibrium condition at the interface
and subsequent application algorithm, that represents the interface implicitly by
marking the fluids on both sides of the interface, using a scalar indicator function
such as a volume fraction (Volume-Of-Fluid method) [1].

The main advantage of this approach is that it does not require complicated
interface tracking algorithms. This is important for modeling two-phase flows
through complex geometries with large interface motions and interactions. The
surface tension force and the contact angle effect arise from the calculation of
interface normal vector ny = Vo/|| V| and curvature K = V - ng.

The prediction of a liquid droplet natural frequencies and free surface shapes
under constrained oscillations are extensively studied by analytical [2], numerical
and experimental [3] methods. Consider these problems as the convenient testing
tool of verification and validation numerical methods and algorithms for capillary
simulation of the flows with a free surface.

It is of interest to investigate the interaction of the liquid with elastic bodies when
bending vibrations are caused. Usually, for investigating the instability in liquid
drops or layers, rigid substrate is used, which vibrates with the same amplitude
along the entire contact area. The vibrations of bodies such as beams are bending
vibrations with distributed amplitude. At high frequencies of the bending vibrations
of beams, the length of the bending waves in them is comparable to the sizes of the
region of the contact with a liquid layer and distributed vibrations can appreciably
influence the liquid behavior. In our previous studies [4, 5], we investigated the
interaction of a thin plate that performs bending vibrations and liquids at the
interphase boundary.

2 Mathematical Model and Numerical Method

2.1 Liquid Dynamic Equations

The equations of motion for an isothermal, immiscible incompressible two-phase
mixture flow of Newtonian fluids can be written using a single-fluid continuum
approach as follows:

apv
+V-(pvw) = —-Vp+ V. 141,
ot (D

Vv =0,
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where v is velocity vector, total pressure p is the sum of dynamic and hydrostatic
pressure, T = (Vv 4 VvT) is viscous stress tensor, fsy is surface tension force per
unit volume. The density and viscosity are defined by

p=ap+(—a)pg. p=am+ - @

where subscripts «/» and «g» denotes liquid (@ = 1) and gas (@ = 0) phase
respectively. The scalar indicator function « is evolved with an advection equation
of the conservative form:

% V. @ =0 3)
8t+ - (av) = 0.

Volume-Of-Fluid method (VOF), defined by Eqgs. (1)—~(3) is mass conservative,
computationally efficient and flexible for treating complex interface shapes. There-
fore, the VOF-method is a popular and powerful tool for the direct numerical
simulation of immiscible two-phase flow.

2.2 Advection of Indicator Function

By its definition, the indicator function has the form of a step function in the
continuum limit, while numerical approximation of convective terms in Egs. (1), and
(3) leads to smear function jump. Let us distinguish among the other two general
approaches to deal with this problem. One of them is using a low-dissipative scheme
with Van-Leer limiter for the approximation of convective terms, the other is an
introduction of artificial compression term.

The last approach leads to the following form of advection equation (3):

Z‘: + V- (@) +V-(@l—a)v,) =0, 4)

where v, is a compression velocity, the value of which is based on the scaled
maximum fluid velocity magnitude in the transition region.

2.3 Calculation of Interface Curvature and Normal Vector

The solution of Eq. (4) updates the indicator function in such a way that the interface
remains as sharp as possible. The reverse side of this is cumulative errors of capillary
forces due to the unstable calculation of the normal vector and interface curvature.

For more accurate and stable calculation of the normal in cells near the interface,
we first use smoothing of the indicator function procedure. This is numerically done
using the following relationship:

ol = Cr((ed)e) +(1—Cr)od, @l =a. i=0.1.....N, 5)

S
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where the first operator (-)f means that the field values interpolated from the cell
centers to the face centers and the second operator (-). means that the field values
at cell centers calculated by averaging values at face centers. A value of Cy. = 0.5
and N = 2 is used in present simulations.

The smoothed indicator function «; is then used to obtain the interface normal
vectors ny = Vo, /|Vag| at cell centers. The next step is to calculate interface
curvature K = V -n; in accordance with the control volume method, the divergence
of the vector function is calculated as follows:

1 V(xq:|
V.-n, = ‘ Sy,
' WZquff

feSi

where for each grid block i, V; is its volume, S; is set of its faces, Sr is the outward
vector area of the face.

Direct calculation of gradient Vo with subsequent normalization leads to
nonzero vectors ng outside the transition region. To deal with this problem, an extra
filtration procedure is used for dummy face flux ¢ = Vog - S . This filtering will
explicitly set the dummy fluxes ¥ to zero when their magnitude is of the order of
the numerical errors. The filtered flux reads:

¥ = ¥ — max(min(y, i), =), (©6)

where 1/, is a threshold value below which flux v is set to zero. The threshold value
is chosen as ¢, = Cy|S¢||Vas| s, where [Vay| f is the average gradient magnitude
over all faces where they are non-zero. The filtering coefficient should be chosen
sufficiently small. In our simulations, we use Cy, = 0.01 = 0.03.

Once the interface curvature is computed, we smooth the calculated value in the
direction normal to the interface, similar to that suggested in [6].

2.4 Equation of Motion for Elastodynamics of the Plate

The equations of motion of elastodynamic problem in the Lagrangian formulation,
in the general case, take the form:

92u

NV FS) 4 pf

'Oaﬂ ( )+ p

u(io) = w’, o) = W, ™
n, - (F-S) = p,

where u—displacement vector, py, V—density and divergence operator in the
reference configuration, f, p—vector of mass forces and pressure, F—deformation
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gradient, S = F~! . o - F~T det F—symmetrical stress tensor of Piola—Kirchhoff,
o—Cauchy stress tensor.

The elastodynamic problem taking into account geometric and physical nonlin-
earity is solved by the finite element method. The integration of elastodynamic
problem equations is performed by the explicit scheme takes into account the
dissipative properties of the system [7].

The taking into account the influence of the liquid mass distribution on the plate’s
vibrations is based on the weak coupling algorithm. In this case, the coupling
of solutions between the two problems is performed at the interface boundary
between fluid and structure. The considered mathematical model makes it possible
to reproduce the characteristic features of the liquid layer distribution on the plate
surface.

3 Programming Model

The distributed programming model is based on the ZeorC Ice [10] middleware,
within the client-server model. The FEStudioFSI client application is connected
with other applications and implements the logic of the entire program.

In the case of a strong coupling approach, the client are synchronized data
transfer, performed parameter adjustments, and checked the convergence of the
iterative process of solution coupling on the interface boundary.

In the considered model, servers are applications that solved individual physical
problems. The client stores information about the proxy objects of the servers
(Fig. 1), each of which, being an Ice-object, provides a unique external name, and
hides all low-level details of the process of data exchange with the corresponding
Server.

Client Side Server Side
— Ice::Object 1O interpolation 1 Ice::Object 4_ Interpolation_Solver
e —@» Ice:Object 1O Deformation || lee:Object ] Defomation_Solver
L— Ice::Object O csp Ice::Object ] CSD_Solver
D ——— Ice::Object O CFD Ice::Object ] CFD_Solver

Fig. 1 The distributed model for coupling independent applications
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Instances of the CFD_Solver server responsible for solving the fluid dynamics
problem are implemented using the OpenFOAM library. The solution to the
elastodynamics problem is carried out by the CSD_Solver server, implemented
within the FEStudio [11] package.

The Interpolation_Solver server is responsible for interpolating data and trans-
ferring it between servers that provide a solution to physical problems. The
Defomation_Solver server performs the mesh deformation required to solve the
fluid dynamics problem.

The described mechanism for building an application on the Ice infrastructure
allows us, by replacing objects, to obtain a distributed object-oriented program
that allows us to solve a specific FSI problem. This approach provides the greatest
flexibility and allows you to combine independent applications that only need to use
the appropriate API.

ZeroC Ice is object-oriented application software. It provides the means for
developing object-oriented distributed applications. Clients are active entities that
request certain services from the server. Servers are passive entities that provide
services in response to client requests. The Ice programming model is based on the
concept of an Ice-object. It is an abstraction that can respond to client requests, run
on a single or multiple servers.

Each Ice-object has a unique identifier and a set of interfaces—facets. To call
an Ice-object, the client needs to use a proxy. Proxy is a client-side local address
space agent of an Ice-object. The proxy code for a specific programming language
is generated by the Slice compiler, which is a standalone tool of Ice-workflow. A
proxy encapsulates the information required to invoke an Ice object: the server’s
physical address, object ID, and optionally a facet ID.

Remote call of methods that are implemented on the server-side is done through
the generated proxies. Besides, the client provides the consistency of information
common to the interacting servers, for example, the displacement vector and the
pressure at the interface boundary.

On the server-side, the behavior of Ice objects is implemented using servants. A
servant is an instance of an implemented class. The basic servant code is generated
by the Slice compiler, the developer is required to implement the class methods that
correspond to the operations from the Ice-object interface.

When a call comes in, the Ice runtime environment at the server side finds the
servant corresponding to the callable object and delegates call handling to it. Each
of the servers implements the methods necessary for the distributed solution of
the FSI problem: calculating displacements (CSD_Server servant), determining the
pressure field (CFD_Server servant), transferring the obtained solutions to the client,
obtaining new data on displacement and pressure required for the next solution step,
etc.

Figure 2 shows the distributed model of the FEStudioFSI application. It is a set
of several Ice-objects corresponding to OpenFOAM servers, FEStudio servers, and
FEStudioFSI clients.

The Ice environment is supported both synchronous and asynchronous calling
models. In the latter case, the client, calling the object using a proxy, along with the
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Server Client Server
_) .
OpenFoam FEStudioFSI FEStudio
3 1

[ IceAPI | cem [ Proxy [ icearl || cers | IceAPI ]
[ Server Ice Core ClientCore Server Ice Core

. Mesh ‘.‘ Mesh .
> [«
. Pressure ‘. Pressure ‘.
> >
.4 Displacement .‘ Displacement .
< <

Match solution

Next time step

Fig. 2 Distributed model for FSI problem

usual parameters of the operation, sends the proxy a special callback object. After
calling the proxy, the control is immediately returned to the client. When the call
to the object completes, the client-side Ice runtime invokes the callback method,
passing it the results of the call or exception.

4 Results and Discussion

First, we consider a three-dimensional droplet of volume 87 1 positioned on a
cylindrical substrate with radius R = 4mm that oscillates along vertical axe O,
due to harmonic force, produced by a piezoelectric transducer. The feature of the
process is the droplet pinning on the substrate with a cone cavity with cone-angle
B = 140°. In this case, we carried out both an experimental study and numerical
simulation. The experiments were conducted with the use of a facility a detailed
description of which is presented in [4]. In the experiment, zonal mode (4.0) (Fig. 3
b, e) and tesseral mode (3,1) (Fig.4 b, e) was obtained in the excitation frequency
range from 38 to 45 Hz. In the numerical experiments, the value of the substrate
oscillation frequency was 40 Hz.

Computational block-structured grid was generated by rotating a 2-D flat grid
around the axe of symmetry to become a three-dimensional grid containing
1,752,500 hexagonal cells. It should be noted that in the numerical experiment it
is necessary to initially introduce small asymmetry in the forcing vibrations of the
substrate to achieve the non-axisymmetric (tesseral) mode of the drop oscillations.
Both the experimental and numerical drops experienced similar free surface shape
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(d)

Fig. 3 Zonal oscillation mode (4,0). Calculated (a), (d) and observed (b), (e) free surface shape
of the drop jointly with magnitude of the Umov—Poynting vector field (c), (e); when the phase of
the oscillation (a)-(¢c) ¢ =0, (d)-f) p =7

() (e) ()

Fig. 4 Tesseral oscillation mode (3,1). Calculated (a), (d) and observed (b), (e) free surface shape
of the drop jointly with magnitude of the Umov—Poynting vector field (c), (e); when the phase of
the oscillation (a)-(¢) ¢ =0, (d)-(f) p =7

(Figs.3 and 4) and close values of maximum and minimum drop heights. Drop
height was measured from the top cross-section of the substrate.

For a more thorough analysis of the numerical solution, the Umov—Poynting
vector field was constructed. The Umov—Poynting vector v(p + pvv/2) describes
total energy flux in liquid. Figures 3c, f and 4c, f shows the magnitude of the energy
flux in the corresponding phase of the oscillation. One can see that, for both zonal
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C oA { wmm

b

o (a) (b)

Fig. 5 The droplet of vacuum oil on the vibrating plate in the experiment described in [9] (a) and
calculated results (b)

and tesseral modes, the most intense energy flow occurs at the top part of the drop
near the interface surface.

Despite the pinning of the drop, the low-frequency eigenforms obtained in the
experiment and reproduced by the numerical simulation are close to those shown
in [8]. The developed numerical scheme allows to obtain a detailed structure of
microflows in an oscillating drop and contribution of different mechanisms to the
transition from one mode to another.

The taking into account the influence of the liquid mass distribution on the plate’s
vibrations is based on the weak coupling algorithm. In this case, the coupling of
solutions between the two problems is performed at the interface boundary between
fluid and structure. The considered algorithms for implicit coupling were used to
numerical simulation of the physical experimental investigation of the interaction of
the vibrating console plate with a layer of viscous liquid deposited on its surface
[4]. Forced vibrations of a plate with a frequency of 4.5kHz are excited by a
piezoelectric element, with a cantilevered plate.

Figure 5a shows the result of the experiment [9] performed for the vacuum oil
with and Fig.5b shows the result of numerical simulation. At the excitation of
vibrations, viscous liquids applied as a thin layer on the plate surface initially flow
to the plate surface areas with the antinodes of vibrations taking a convex form.

The coupled solution of the problems is carried out on hexahedral non-matching
meshes with a size of 1,300,000 cells for the fluid dynamics problem and 23,000
cells for the elastodynamic problem. The point-concentrated force is applied at the
center of the piezoelectric element. It is important to note that the vibrations of a
thin plate in the form of the superposition of longitudinal (see Fig. 6)) and transverse
waves allow obtaining stable droplet patterns (see Fig. 6, + = 0.16) which cannot be
formed on a rigid substrate.

Compared with the experiment in numerical simulation, the destruction of a thin
liquid film between droplets formed at antinodes occurs more slowly. This is a
feature of the numerical solution of the advection equation of the indicator function
near the wall.

The study showed that the topological features of the distribution of the fluid
are determined by the peculiarities of the bending vibrations of the plate. The
comparison of the results of numerical simulation with the experimental data allows
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Fig. 6 The distribution of liquid over the surface of the plate and the longitudinal bending of
the plate at different times in numerical simulation: (a)—(d) r = 0.04s, t = 0.08s, t = 0.12s,
t=0.16s

us to conclude that the numerical methods and algorithms used to describe the
processes of interaction between the liquid layer and the vibrating plate quite
accurately.
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Modeling of Long-Term Strength )
of a Rod Under Creep Conditions e
and Finite Deformations

Evgenii B. Kuznetsov and Sergey S. Leonov

Abstract The paper investigates the process of creep and long-term strength of a
long metal rod of circular cross-section, taking into account the finite deformations.
Deformation of the rod describes by nonlinear transport equations, and the creep
process describes by equations of the kinetic creep theory. An analytical solution to
the problem is given for the case of constant stress.

1 General Model

We use the finite deformation model [1, 2] to describe the medium’s motion, in
which differential transport equations specify reversible and irreversible deforma-
tions. In the spatial case, the constitutive kinematic relations of the model in the
Euler variables have the form:

1 /0u; Ou; Oduy du
dij _ i + J k OUk _
2 ax./' ax,' ax,' ij

= ejj + Dij — ,€ik€kj — €ikPkj — Pik€kj t+ €ik Pks€sj,

2
de,'j 1
g = & i + rikekj — eikrkj — 2[(€ik — Yik + Zik)ekj+

+eik(erj — vij + zkj)],
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dpij
ar Yij — PikTkj + Tik Pkj — PikVkj — Yki Pkj>
1 dy; v; 1 du; ou; ou; (1)
gjj = swij = (Vi j—vji),vi = = Vi,
Y 2(axj ax,») i =iy TV == +axj /

rij = wij + Zij(€ks, Eks),

—1 2
Zij = A [(Simemj - eimgmj)B + B(Simemnenj - eimemngnj)+
+eimEmnenkekj — eimemngnkekj]s

1 1
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E> = ejjeji, E3 = ejjejie;.

A=8—8E|+3E} — E; —

All indices in relations (1) vary from 1 to 3, u#; and v; are components of
vectors of displacements and velocities of medium points, d;; are components of
the total deformation tensor (Almansi deformations), ¢;; are linear components of
the tensor of reversible deformations (elastic deformations), p;; are components
of the tensor of irreversible deformations (deformations of creep or plasticity), r;;
are components of rotation tensor, &;; and y;; are the components of the total and
irreversible deformations rates, ¢ is time.

As in the classical theory, the stresses in a medium are entirely determined by
reversible deformations

0ij = —podij + 3jff (6ij — eij),
W= —2uly —ph+bl}+®—whh—xI +... 2)
I = e — éekseska I = exses — epsesrenr + Alteksestetnenk-

In relations (2) o;; are components of the Euler-Cauchy stress tensor, pg is
additional hydrostatic pressure, W is the elastic potential; p is a module of shear
of the investigated material; b, x are elastic modules of higher order.

2 Tension of the Circular Cross-Section Rod

Consider a metal circular cross-section rod, the length of which is many times
greater than its cross-section. An constant tensile force applied to the rod sets the
stress o at the initial time moment. The rod is under creep conditions. In this one-
dimensional case, the indices for the corresponding functions can be omitted. Then
the first equation of system (1) takes the form

du 1 [ u\> 1
d=_ — =e— _®+(1—e?p. 3
ox 2<8x> e - ©)
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In relation (3), e is a linear part of the elastic strain tensor, e — éez are the

reversible components of the Almansi total strain tensor d. Introducing the notation

= gﬁ, we obtain the quadratic equation

2 -2+ B =0, 4)

where B = 2¢ — e +2(1 — e)?p.
Equation (4) has following roots

(8”> —1++1-B, (a”) —1-+1-B.
ax /4 ax /5

According to (1), the rate of total deformations can be calculated by the formula:

d ou 1—e de dp
= = 1-2 1-— . 5
©7 drox :F\/1_3<( p)dt+( e)dt> ©)
In this case, the equation of elastic strains transfer (the second equation of
system (1)) takes the form

d

df=(1—ex8—y%, ©6)

where y¢ is a creep strain rate. We exclude from Eq. (6) the total strain rate & using
Eq. (5). Then, taking into account that the creep strain transfer equation p°, the
third equation of system (1), has the form da{’: = (1 —2p°)y°, 