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Preface

This volume presents selected papers from the 13th International Conference “Mesh
Methods for Boundary-Value Problems and Applications” that was held in Kazan,
Russia, during October 20–25, 2020. The conference was attended by scientists
from leading scientific centers engaged in mathematical modeling of nonlinear
problems, theory of numerical methods for solving differential equations and
inequalities, computer modeling, development training systems, and computational
experiments. The tradition of holding this conference originates from conferences
and schools conducted under the leadership of academician A. A. Samarskiy and has
had a significant impact on the development of computational mathematics and its
applications in various fields of knowledge, especially the theory of grid methods,
in global scientific centers. The conference is biannual (since 1996), and it is one of
the well-known international conferences in the area of mesh methods for boundary-
value problems.

With over 300 attendees, “Mesh Methods for Boundary-Value Problems and
Applications 2020” has been the largest edition of the conference series to date. The
program consisted of 7 invited speakers across the week, who are internationally
renowned researchers, along with 7 minisymposiums (of around 250 presentations)
dedicated to specialized topics in mathematical modeling of nonlinear problems,
the theory of numerical methods for solving differential equations and inequalities,
computer modeling, development training systems, and computational experiments
as well as 190 contributed talks. The goal of this book is to provide a good balance
between engineering algorithms and mathematical foundations. The content of these
proceedings is organized as follows. The main section criteria are based on the
recommendations of anonymous peer reviews from experts of the corresponding
fields. The content of these proceedings consists of refereed selected papers
highlighting the broad spectrum of topics presented at Mesh Methods 2020.

We would like to give special thanks to our local organizing committee for their
efforts in organizing and promoting the event. In particular, we would also like to
thank Mr. Ildar Badriev for his organizational efforts leading up to the conference,
as well as the administrative staff of the Institute of Computational Mathematics and
Information Technologies at Kazan Federal University for their help in coordinating

v
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the logistics of the event. We also thank many student helpers for their advice, help,
and support given to the delegates during the event itself, all of whom contributed
to the smooth running of the event.

Kazan, Russia Ildar B. Badriev
Kazan, Russia Victor Banderov
Pullman, Washington, USA Sergey A. Lapin
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Quantum Algorithms for String
Processing

Farid Ablayev, Marat Ablayev, Kamil Khadiev, Nailya Salihova,
and Alexander Vasiliev

Abstract In the paper, we investigate two problems on strings. The first one
is the String matching problem, and the second one is the String comparing
problem. We provide a quantum algorithm for the String matching problem that
uses exponentially less quantum memory than existing ones. The algorithm uses the
hashing technique for string matching, quantum parallelism, and ideas of Grover’s
search algorithm. Using the same ideas, we provide two algorithms for the String
comparing problem. These algorithms also use exponentially less quantum memory
than existing ones. Additionally, the second algorithm works exponentially faster
than the existing one.

1 Introduction

Possibilities of quantum speedup for string matching problem have been inves-
tigated during the last decades by different authors [19, 21, 22]. Most of these
algorithms are based on Grover’s algorithm [4, 9] for search through unstructured
data.

In the paper we consider a problem of searching any occurrence of a string w
of length m in a string s of length n. The best known classical algorithm for this
problem is Knuth-Morris-Pratt algorithm [15]. Time complexity of this algorithm
is O(n + m). Quantum algorithms for this problem are typically considered in
the query model [1, 2, 20]. Here the algorithm has access to an oracle (the
unchangeable part of memory that holds input data) and complexity is a number
of queries to this oracle. In the early 2000s researchers obtained one of the first

F. Ablayev · M. Ablayev · K. Khadiev · A. Vasiliev (�)
Kazan Federal University, Kazan, Russian Federation

Kazan E. K. Zavoisky Physical-Technical Institute, Kazan, Russian Federation

N. Salihova
Kazan Federal University, Kazan, Russian Federation

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. B. Badriev et al. (eds.), Mesh Methods for Boundary-Value Problems
and Applications, Lecture Notes in Computational Science and Engineering 141,
https://doi.org/10.1007/978-3-030-87809-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87809-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-87809-2_1


2 F. Ablayev et al.

results on quantum algorithms for the problem [21]. This algorithm has query

complexity O(
√
n log

√
n
m

logm + √
m log2m). Later in 2017 the algorithm [19]

with query complexity Õ(
√
n
m

2O(
√

logm)) was presented. In 2020, Soni and Rasool

[22] suggested an algorithm with O(n logn) query complexity. Note that, these
algorithms have time complexity (or circuit complexity) logarithmic times larger
than query complexity.

At the same time, researchers did not pay attention to the size of the quantum
memory that we should use for algorithms (a changeable by algorithm part and the
unchangeable part that oracle holds). Due to our analysis, all of these algorithms use
O(n+m) quantum bits (including the unchangeable part of the quantum memory).
Due to the restricted resources of the current and near-future devices, the quantum
memory size, even unchangeable, is an important question.

In the paper, we provide a quantum algorithm for solving string matching prob-
lem with O(

√
n(logn+√logn+ logm · (log logn+ log logm))) time complexity

and O((logn)2 + logn · logm) qubits of memory (Theorem 1). The algorithm is
based on Grover’s search algorithm, the idea of hashing (or fingerprinting method
[8]) and ideas of Rabin-Karp algorithm [13]. The algorithm is not a query model
algorithm but a quantum circuit algorithm that can be used as a part of other
more complex algorithms for other problems. Many known algorithms like [10]
use similar motivation. Our algorithm assumes that the initial state is prepared. At
the same time, this initial state can be prepared approximately as fast as loading data
to unchangeable memory for oracle.

Additionally, we use the same ideas for comparing two strings u and v in
lexicographical order. The existing algorithm [14] uses modifications [16–18] of
Grover’s search [9] and compares two strings with query complexity O(

√
k), time

complexityO(
√
k log k) and usesO(k) qubits of memory, where k is the minimum

of lengths of two strings. Here we use the idea with hashing and provide two
algorithms. The first one has O(

√
k log k) time complexity and uses O((log k)2)

qubits (Theorem 2). The second one has O((log k)2 log log k) time complexity
and uses O((log k)2) qubits (Theorem 3). Both algorithms have an exponential
advantage in memory and the second one has an exponential advantage in speed.
At the same time, the second algorithm is more complex.

The structure of the paper is the following. Section 2 contains preliminaries. We
present an algorithm for string matching in Sect. 3. Section 4 contains algorithms
for comparing two strings. The conclusion is presented in Sect. 5.

2 Preliminaries

Let us consider a string u = (u1, . . . , u�) for some integer �. Then, |u| = � is the
length of the string. u[i, j ] = (ui, . . . , uj ) is a substring of u.

In the paper, we compare strings in the lexicographical order. For two strings u
and v, the notation u < v means u precedes v in the lexicographical order.
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In the paper, we consider only binary strings. At the same time, all results can be
easily modified for a non-binary alphabet.

2.1 Rolling Hash for Strings Comparing

2.1.1 Rolling Hash

The rolling hash was presented in [8, 13]. For a string u = (u1, . . . , u|u|)we define a

rolling hash function hp(u) =
(∑|u|

i=1 ui · 2i−1
)

mod p,wherep is a prime integer.

2.1.2 Fingerprinting Technique for Comparing Strings

We can use the rolling hash and the fingerprinting method [8] for comparing two
strings u and v. Let us randomly choose p from the set of the first r primes, such
that r ≤ max(|u|,|v|)

ε
for some ε > 0. According to the Chinese Remainder Theorem

and [8], if we have hp(u) = hp(v), then u = v with error probability at most
ε. If we invoke a comparing procedure δ times, then we should choose a prime
number from the first δ·max(|u|,|v|)

ε
primes for getting the error probability ε for the

whole algorithm. Due to Chebyshev’s theorem, the r-th prime number pr ≈ r ln r .
If r = δ·max(|u|,|v|)

ε
, then pr = δ·max(|u|,|v|)

ε
· (ln(δ)+ ln(max(|u|, |v|))− ln(ε)) and

it can be encoded using O(log(δ)+ log(max(|u|, |v|))− log(ε)) bits.

2.1.3 Comparing Strings Using a Rolling Hash

For a string u, we can compute a prefix rolling hash, that is hp(u[1, i]). It can be
computed in O(|u|) running time using formula

hp(u[1, i]) =
(
hp(u[1, i − 1])+ (2i−1 mod p) · ui

)
mod p and hp(u[1 : 0]) = 0.

Assume, that we have computed prefix rolling hashes for two strings u
and v. Then, we can compare these strings in the lexicographical order in
O(log min(|u|, |v|)) running time. The algorithm is following. We search the
longest common prefix of u and v. Let lcp(u, v) be an integer x such that
u1 = v1, . . . , ux = vx and ux+1 �= vx+1. In the case of u is a prefix of v, then
lcp(u, v) = |u|. In the case of v is a prefix of u, we have lcp(u, v) = |v|. Notice,
that for any integer mid ∈ {1, . . . ,min(|u|, |v|)} the following two statements are
true.

• If mid ≤ lcp(u, v), then u[1,mid] = v[1,mid], and hp(u[1,mid]) =
hp(v[1,mid]).
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• If mid > lcp(u, v), then u[1,mid] �= v[1,mid], and hp(u[1,mid]) �=
hp(v[1,mid]) with high probability.

Using binary search we find the index x such that hp(u[1, x]) = hp(v[1, x])
and hp(u[1, x + 1]) �= hp(v[1, x + 1]). In that case lcp(u, v) = x. After that, we
compare ut and vt for t = lcp(u, v) + 1. Then, we get the following cases:

• If ut < vt or t = |u| < |v|, then u < v.
• If ut > vt or t = |v| < |u|, then u > v.
• If |u| = |v| = t − 1, then u = v.

Binary search works in O(log(min(|u|, |v|))) running time.

2.2 Problems

String Matching Problem
Given a string (text) s = (s1, . . . , sn) of length n and a string w of length m, where
m ≤ n, one needs to determine the index of the string w occurrence in the text s.
Formally, the task is to find the index d such that w = (sd . . . sd+m−1).

We use the following notations. Let T (s) = (s1, . . . , sn−m+1), where si =
s[i, i + m − 1] for i ∈ {1, . . . , n − m + 1}. T (s) is a sequence of substrings of
length m. Let N = n−m+ 1.

String Comparing Problem
Given two strings u and v. The problem is comparing these two strings in
lexicographical order. Formally, we want to determine one of three options:

• If u < v, then the result is −1.
• If u > v, then the result is +1.
• If u = v, then the result is 0.

2.3 Basics of Quantum Computation and Computational
Model

The main difference between quantum computation and the classical one is
manipulations with quantum bits (qubits). A state of a qubit is a vector from two-
dimensional complex Hilbert space. We can represent it using Dirac notation as
|ψ〉 = a|0〉 + b|1〉, where |0〉 and |1〉 are unit vectors, and a and b are complex
numbers such that |a|2 + |b|2 = 1. We can use two kinds of transformations:
transition and measurement. The transition is multiplying a vector of state to
2 × 2 unitary matrix. The measurement is obtaining 0-result with probability |a|2
and 1-result with probability |b|2. Similarly, a state of a register of q qubits is a
vector from 2q -dimensional complex Hilbert space, and is traditionally denoted as
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|ψ〉 = ∑2q−1
i=0 ai |i〉, where

∑2q−1
i=0 |ai|2 = 1. Transformations are defined in an

analogous manner.
A quantum circuit is a circuit that uses four types of gates that are 1-qubit

Hadamard gate (H -gate), T -gate and S-gate; and 2-qubit CNOT -gate. That are

T =
(

1 0
0 eiπ/4

)
, S =

(
1 0
0 j

)
, H = 1√

2

(
1 1
1 −1

)
, CNOT =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ .

An algorithm’s time complexity is the size of a circuit that uses only presented gates
and implements the algorithm.

The standard form of the quantum query model is a generalization of the decision
tree model of classical computation that is commonly used to lower-bound the
amount of time required by a computation. Let f : D → {0, 1},D ⊆ {0, 1}M be
an M variable function we wish to compute on an input x = (x0, . . . , xM−1) ∈ D.
We have an oracle access to the input. That is implemented by storing the input into
an unchangeable part of quantum memory |x〉. The oracle access is realized by a
specific unitary transformation usually defined as |i〉|φ〉|ψ〉|x〉 → |i〉|φ ⊕ xi〉|ψ〉|x〉
where the |i〉 register indicates the index of the variable we are querying, |φ〉 is the
output register, and |ψ〉 is some auxiliary work-space. An algorithm in the query
model consists of alternating applications of arbitrary unitaries (that are independent
of the input) and the input-dependent query unitary, and a measurement in the end.
The smallest number of queries for an algorithm that outputs f (x) with probability
≥ 2

3 on all x is called the quantum query complexity of the function f .
More information on quantum computation and computational models can be

found in [1, 2, 20].

3 Quantum Algorithm for String Matching Problem

Firstly, let us present Grover’s search algorithm because we use its ideas as a base
for our algorithm.

3.1 Grover’s Search Algorithm

Definition 1 (Search Problem) Suppose we have a set of objects named
{1, 2, . . . ,M}, of which some are targets. Suppose O is an oracle that identifies
the targets. The goal of a search problem is to find a target i ∈ {1, 2, . . . ,M} by
making queries to the oracle O.
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Remind that Oracle is implemented by accessing an unchangeable (by the algo-
rithm) part of the quantum memory.

In search problems, one will try to minimize the number of queries to the oracle.
In the classical setting, one needs O(M) queries to solve such a problem. Grover,
on the other hand, constructed a quantum algorithm that solves the search problem
with only O(

√
M) queries [9], provided that there is a unique target.

The algorithm uses additional logM qubits for indexing element in a state
1√
M

∑M−1
t=0 |t〉 and one additional qubit |ξ〉 in a state 1√

2
(|0〉 − |1〉). On step of the

algorithm is applying two operations: Grover’s diffusionD and a query to oracleQ.
The matrixD can be implemented using logM gates due to [9].

The matrix Q is a transformation that converts |t〉|ξ ⊕ f (t)〉 = (−1)f (t)|t〉|ξ〉,
where f (t) is a Boolean function that shows whether t-th object is target.

After O(
√
M) iterations, the algorithm measures the quantum register and

obtains the index of the target object with high probability. If there are no target
objects, then the algorithm returns any object with equal probability.

When the number of targets is unknown, Brassard et al. designed a modified
Grover algorithm that solves the search problem with O(

√
M) queries [4], which is

of the same order as the query complexity of the Grover search.
The algorithm repeats Grover’s search algorithm for log2(

√
M) times. It does

2j iterations on j -th repetition. Such behavior allows us to obtain one of the target
objects with a probability at least 1/2.

3.2 Our Algorithm

Let us choose a prime p from the first δ·m
ε

prime numbers, where 0 < ε < 1 is some
constant and δ = N because we will have N hashes of substrings of the string s.
Additionally, we will use a hash function hp, that is discussed in Sect. 2.1.

Assume that the initial state for our algorithm is the following one

|ϕ〉 = ∣∣hp(w)
〉⊗

log2 N⊗
t=1

1√
N

N−1∑
a=0

|a〉 ⊗
∣∣∣h(sa+1)

〉
. (1)

3.2.1 Unique Target Case

Firstly, assume that there is only one position d such that sd = w. In that case, we
use only the following part of the quantum register.

∣∣ϕ′〉 = ∣∣hp(w)
〉⊗

(
1√
N

N−1∑
i=0

|i〉 ⊗
∣∣∣h(si+1)

〉)
.
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Let us have a function f : {0, . . . , N − 1} → {0, 1}, such that f (i) = 1 iff
hp(w) = h(si+1). We will discuss the implementation of the algorithm for f later.

Then, we can add additional qubit |ξ〉 in a state 1√
2
(|0〉− |1〉) and applyO(

√
N)

times D and Q matrices to.
∣∣ϕ′〉 state. Here D is the Grover’s diffusion and Q is the

transformation that works in the following way:

Q : |i〉
∣∣∣h(si+1)

〉∣∣hp(w)
〉|ξ〉 → |i〉

∣∣∣h(si+1)
〉∣∣hp(w)

〉|ξ ⊕ f (i)〉 =

= (−1)f (i)|i〉
∣∣∣h(si+1)

〉∣∣hp(w)
〉|ξ〉

So, using the idea of Grover’s search algorithm, we can do O(
√
N) iterations of

D and Q and after that measure the quantum register and obtain the index d such
that hp(w) = h(sd+1).

Let us discuss, the implementation of the function f . The computation of f (i)
is equivalent to the problem of checking equality of two strings z = hp(w) and
z′ = h(si+1) that are stored in quantum memory. Let us define a function gi :
{0, . . . , �log2 p� − 1} → {0, 1}, where gi(j) = 1 iff zj �= z′j . In other words, we
mark the indexes of unequal symbols of two strings. We can say that f (i) = 0 iff
there is j ∈ {0, . . . , log2 p} such that gi(j) = 1.

Let us solve this problem using Grover’s search algorithm. In fact, we have
two strings in unchangeable memory, and using additional O(log logp) qubits can
implement Grover’s search algorithm for searching an index j1 such that gi(j1) = 1.

If the Grover’s search algorithm finds j1 and gi(j1) = 1, then f (i) = 0. If the
result index j1 is such that gi(j1) = 0, then f (i) = 1.

Note that for a standard version of Grover’s search algorithm, function f should
be computed with no error. At the same time, our version of the implementation
of f can return a result with constant error probability. That is why we should
use the modification of Grover’s search algorithm [11] for bounded-error oracle.
This algorithm uses the generalization of Grover’s search algorithm that is called
Amplitude Amplification [5].

Lemma 1 The presented algorithm solves string matching problem for unique tar-
get with bounded error, hasO(

√
n(logn+√logn+ logm ·(log logn+ log logm)))

time complexity and uses O(logn+ logm) qubits of memory.

Proof Due to description of the algorithm, it finds the index i such that f (i) = 1,
i.e. hp(w) = h(si) with constant probability. Let us say that the probability of
success is at least 0.5. Due to choice of p and results that discussed in Sect. 2.1,
The fact hp(w) = h(si) means w = si with probability at least 1 − ε. So the
total probability of success is 0.5 · (1− ε). If we want a bigger success probability,
then we can repeat the process several times and choose the major result. A similar
technique was used, for example, in [3, 12]. Constant times repetitions increase the
total time complexity and memory size only in constant times.
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Let us discuss the time complexity of the algorithm. Due to [9], the time
complexity of Grover’s algorithm is O(

√
M logM) in a case of searching the

target element among M elements and constant time implementation of the oracle.
In fact, the time complexity of all Grover’s diffusion operators is O(

√
M logM)

and all Oracle operators is O(
√
M). The modification with bounded-error oracle

[11] has only constant time bigger time complexity. In our case M = N and
the oracle is complex. The implementation of f function has O(

√
logp log logp)

time complexity because there are log2 p objects for search. Hence, the total time
complexity is O(

√
N logN + √

N · √logp log logp). Here p = δ·m
ε
= N ·m

ε
and

O(
√

logp log logp) = O((logN+logm−log ε)0.5 ·(log(logN+logm−log ε)) =
O((logN + logm)0.5 · (log logN + log logm)). Therefore, the time complexity is

O(
√
N logN +√

N · (logN + logm) ·√logp log logp) =

= O(√N logN +√
N(logN + logm) · (log logN + log logm)) =

remember that N = n−m, therefore

= O(√n(logn+√
logn+ logm · (log logn+ log logm))).

Let us discuss the memory complexity. The main part of the algorithm requires
O(logN + logp) qubits. Additionally, we need O(log logp) for Grover’s Search
that implements the function f . Therefore, the total complexity is

O(logN+logp+log logp) = O(logN+logN+logm+log logN+log logm) =

= O(logN + logm) = O(logn+ logm).

Finally, we have proved the claim. ��

3.2.2 Multi-Target Case

Let us consider the general case when the string w can occur in s several times.
As mentioned in Sect. 3.1, we should repeat our algorithm log2N times with a
different number of iterations. For several repetitions of the algorithm, we should
have an unchangeable part of a quantum memory that holds all hashes hp(si). At
the same time, our algorithm destroys the quantum state that holds the required data.

Therefore, we should have log2N copies of our state that allow us to repeat the
process several times. That is why we use the initial state in the (1) form.

Let us analyze the complexity of the algorithm.

Theorem 1 The presented algorithm solves string matching problem with bounded
error, hasO(

√
n(logn+√logn+ logm · (log logn+ log logm))) time complexity

and uses O((logn)2 + logn · logm) qubits of memory.
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Proof Due to Lemma 1, the algorithm for unique target solves the problem with
bounded error, has O(

√
n(logn + √

logn+ logm · (log logn + log logm))) time
complexity and usesO(logn+ logm) qubits of memory.

Let us discuss time complexity. Due to [4, 9], if we do b iterations of the
Grover’s search algorithm for M elements, then time complexity is O(b logM).
In our algorithm we do 2j iterations for j -th step, where j ∈ {0, . . . �log2

√
M�}

and M = N . Therefore, similar to the proof of Lemma 1, we can show that time
complexity is

O

⎛
⎝

log2
√
N∑

j=1

2j
(

logn+√
logn+ logm · (log logn+ log logm)

)
⎞
⎠ =

Due to the properties of the sum of geometric progression and N = n−m, we have

= O
(√
n
(

logn+√
logn+ logm · (log logn+ log logm)

))
.

We have log2N copies of qubits. Each of them is used for a single invocation
of the algorithm for a unique target. Therefore, the total memory complexity is
O(logn(logn+ logm)) = O((logn)2 + logn · logm). ��

4 Quantum Algorithm for String Comparing Problem

Let us discuss the algorithm for String Comparing Problem. There are two
algorithms. The first one is based on Grover’s search algorithm that was discussed
in Sect. 3.1. The second one is faster and based on comparing strings using Binary
search algorithm and rolling hash that was discussed in Sect. 2.1, but it requires a
more complex initial state.

4.1 The Algorithm Based on Grover’s Search Algorithm

Let k = min(|u|, |v|) for strings u and v. As it was discussed in Sect. 2.1, for
comparing two string u and v, it is enough to find the Longest common prefix. We
can use an idea similar to [12, 14]. Let us consider a function g′ : {1, . . . , k} →
{0, 1} such that k = min(|u|, |v|), g′(i) = 1 iff ui �= vi . If we found the smallest
lexicographical element of the sequence (1 − g′(i), i) for i ∈ {1, . . . , k}, then it
corresponds to the minimal argument i1 such that g′(i1) = 1. Such idea is used in
[12, 16–18] algorithms for searching the first target object.

We can use the Dürr-Høyer algorithm for minimum search [6, 7]. Let us briefly
present its idea in Sect. 4.1.1 and then present algorithm itself in Sect. 4.1.2.
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4.1.1 Dürr-Høyer Minimum Search Algorithm

The problem is searching for the index of minimal element among (a1, . . . , aM} for
some positive integerM .

The algorithm contains several phases. The 0-th phase is an assumption that
minimal element y0 is any element. On i-th phase, we have an assumption that the
minimal element is yi . Then, we run the Grover’s search algorithm for searching
for a smaller than yi element. We consider a function gi : {1, . . . ,M} → {0, 1}
such that gi(j) = 1 iff aj < yi . The algorithm finds any argument j such that
gi(j) = 1 and updates the assumption of the minimum by assigning yi+1 ← aj ,
where gi(j) = 1.

Due to [7], the expected number of phases is O(logM). At the same time, the
expected number of all iterations of all invocations of Grover’s search algorithm
is O(

√
M). Due to Markov’s inequality, if the algorithm stops after 3 times more

phases than the expectation, then we get a result with bounded error.
Note that used Grover’s search implementation is the algorithm for multi-target

case.

4.1.2 The Main Part of the Algorithm

Assume that the initial state for our algorithm is the following one

|ϕ〉 = |ξ〉
3 log2 k⊗
i=1

log2 k⊗
t=1

1√
k

k−1∑
a=0

|a〉 ⊗ |ua〉 ⊗ |va〉, |ξ〉 = 1√
k

k−1∑
a=0

|a〉 ⊗ |ua〉 ⊗ |va〉.
(2)

As in Sect. 3, we implement Grover’s search algorithm on our state. Let us
discuss i-th phase of the algorithm. We use

log2 k⊗
t=1

1√
k

k−1∑
a=0

|a〉 ⊗ |ua〉 ⊗ |va〉. (3)

Let i = 0. We invoke Grover’s search algorithm on the quantum state and find
any j1 such that g(j1) = 1. Note, that computing g have constant time and memory
complexity because it is comparing two qubits for equality. Then, we store 1−g(j1)

to a qubit
∣∣φ0

〉
and we denote the obtained index as a qubit

∣∣ψ0
〉
.

Let us consider the case of i > 0. Assume that we have a function comp :
{0, 1} × {1, . . . , k} × {0, 1} × {1, . . . , k} → {0, 1} that compares two pairs (q, i)
and (q ′, i ′) in lexicographical order, i.e. comp(q, i, q ′, i ′) = 1 iff q < q ′ or
(q = q ′)&(i < i ′). The function can be implemented in constant time and
memory complexity because each value is a single qubit. We can say that gi(j) =
comp(

∣∣φi 〉, ∣∣ψi 〉, ∣∣1− g′(j)〉|j 〉). Using the state (3) and
∣∣φi 〉∣∣ψi 〉 we can implement
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multi-target Grover’s search as in Sect. 3. After measurement we obtain a result
index j and value of the function g(j). Then, we store them to the register∣∣φi+1

〉∣∣ψi+1
〉
.

Then, we do 3 log2 k phases using new copies of the state (3). Finally, we obtain
the minimal index i0 of unequal symbols. We can access to i0-th element of state |ξ〉,
compare ui0 and vi0 , and return the answer according to the discussion in Sect. 2.1.
For accessing to i-th element, we can swap it with 0-th element using CNOT gates
and then apply Hadamard transformation for collecting whole amplitude in 0-th
element. These operations requireO(log k) time complexity.

Theorem 2 The presented algorithm solves string comparing problem with
bounded error. It has O(

√
k log k) time complexity and uses O((log k)3) qubits

of memory.

Proof The algorithm solves the problem because it implements the idea from [14].
The probability of success is constant because of the properties of the Dürr-Høyer
algorithm for minimum search [6, 7].

Let us compute time complexity of the algorithm. Due to the properties of the
Dürr-Høyer algorithm, the total number of iterations of all invocations of Grover’s
search is O(

√
k). Time complexity of computing g(i) and comp are constant.

Therefore, the total time complexity is O(
√
k log k).

Let us consider the memory complexity. We need O((log k)3) qubits for
state (2). ��

4.2 The Algorithm Based on Binary Search

Let us implement the idea with the Binary search algorithm that was discussed in
Sect. 2.1.3.

Let k = min(|u|, |v|) for two comparing strings u and v. Let us choose a prime
p from the first δ·k

ε
prime numbers, where 0 < ε < 1 is some constant and δ = k

because we will have k hashes of substrings of the string u and v.
Assume that the initial state for our algorithm is the following.

|φ〉 ⊗
log2 k⊗
t=1

1√
k

k−1∑
a=0

|a〉 ⊗ |h(u[1, a + 1])〉 ⊗ |h(v[1, a + 1])〉, |φ〉 =
k−1∑
a=0

|a〉|ua〉
(4)

We can find the first a0 such that h(u[1, a0 + 1]) �= h(v[1, a0 + 1]) using Binary
search algorithm because of arguments from Sect. 2.1.3. On each phase, we should
access to some middle element with an index mid and compare h(u[1,mid + 1])
and h(v[1,mid+1]). For accessing to i-th element we can swap it with 0-th element
using CNOT gates, and then apply Hadamard transformation for collecting whole
amplitude in 0-th element. These operations requireO(log k) time complexity.
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Next, we should compare two strings of lengthO(logp) for equality. We can do
it using Grover’s search algorithm as it was done in Sect. 3. The time complexity
of this algorithm is O(

√
logp log logp) and memory complexity is O(log logp)

qubits.
Therefore, after log2 k steps of the Binary search algorithm, we obtain the

minimal index a0 such that h(u[1, a0 + 1]) �= h(v[1, a0 + 1]). If h(u[1, a0 + 1]) =
h(v[1, a0+1]), then u = v. If h(u[1, a0+1]) �= h(v[1, a0+1]), then we can access
to a0-th element of |φ〉 for accessing to ua0 . If ua0 = 0, then u < v and u > v

otherwise.

Theorem 3 The presented algorithm solves string comparing problem with
bounded error. It has O((log k)2 log log k) time complexity and uses O((log k)2)
qubits of memory.

Proof The algorithm solves the problem because it implements the idea from
Sect. 2.1.3.

Let us compute time complexity of the algorithm. There are O(log k) phases of
Binary search. Each phase requires comparing hashes in O(

√
logp log logp) and

accessing tomid-th element inO(log k). The final step is accessing to element with
O(log k) time complexity. The final time complexity is
O(log k · (√logp log logp + log k) + log k) = O((log k) · (√log k log log k +

log k)) = O((log k)2 log log k).
Let us consider the memory complexity. We need O(log k · (log k + logp) +

log k) = O((log k)2) qubits for state (4) andO(log logp) = O(log log k) states for
the implementation of two hashes comparing. So, the total memory complexity is
O((log k)2). ��

5 Conclusion

In the paper, we presented algorithms for two problems—String matching problem
and String comparing problem. The algorithm for the String matching problem
works as fast as the best-known quantum algorithm up to a log factor. At the same
time, our algorithm uses exponentially fewer qubits of memory. We have presented
two algorithms for string comparing problem. Both use exponentially fewer qubits
comparing to the best-known algorithm for the problem. The first one is based on
Grover’s search algorithm and uses more qubits than the second one based on Binary
search. The second algorithm works exponentially faster than the first one and than
the existing algorithm [14]. At the same time, the initial state of the second algorithm
is more complex compared to the initial state of the first algorithm.

The initial state of all algorithms is not just stored input in quantum memory.
At the same time, preparing this state is not much harder than storing input data in
quantum memory as is. Additionally, these algorithms can be used as a part of other
algorithms. A similar motivation is presented in different papers, for example, in
[10].
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Multicriteria Optimization Techniques
in SVMMethod for the Classification
Problem

Anastasia A. Andrianova

Abstract The paper considers the procedures for solving the multiclass classifica-
tion problem using a series of support vector machine optimization problems for
the binary classification problem in the multicriteria formulation. In the traditional
formulation, the objective function takes into account the width of the separating
the classes hyperplane and the function of the penalty for classification errors.
Multicriteria modifications of this problem allow us to study the influence of
each criterion separately on the classification error. For the problem of multiclass
classification, the use of the optimization problem of binary classification and
its modifications is carried out within the strategies of the “one against many”
or “elimination tournament”. The research of various procedures for solving a
multiclass problem is carried out using the example of the intrusion detection
problem.

1 Introduction

The classification problem is one of the most popular big data problems. One of the
ways to solve it, both in the case of binary classification and in the case of multiclass
classification, is the Support Vector Machine method (SVM) [1–3].

The main idea of the SVM-method consists of constructing the classes separating
hyperplane (linear separation case) or the nonlinear surface (for kernel approach). To
find it, the optimization problem is used, which is based on maximizing the width
of the classes separating “strip”. The constraint system of this problem includes
inequalities for all training samples, which provides the conditions for belonging
to the “correct side” of the separation, taking into account the sample class labels
and the possible classification error. In order to take into account classification

A. A. Andrianova (�)
Department of System Analysis and Information Technologies, Institute of Computational
Mathematics and Information Technologies, Kazan Federal University, Kazan, Russia
e-mail: Anastasiya.Andrianova@kpfu.ru

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. B. Badriev et al. (eds.), Mesh Methods for Boundary-Value Problems
and Applications, Lecture Notes in Computational Science and Engineering 141,
https://doi.org/10.1007/978-3-030-87809-2_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87809-2_2&domain=pdf
mailto:Anastasiya.Andrianova@kpfu.ru
https://doi.org/10.1007/978-3-030-87809-2_2


16 A. A. Andrianova

errors, which is especially important when classes are not separable by the using
surface, the objective function is complemented by a penalty term, which depends
on the errors for each of the samples of the training dataset. Thus, we obtain an
optimization problem of a large dimension. In this paper, other ways of formulating
the objective function of SVM optimization problem will be considered. The main
attention will be paid to the minimization of the different types of the classification
error functions including multicriteria models for binary classification problem [4].

Several optimizing classification models will be formulated. For them, the
results of an experimental study are given to obtain conclusions on the possibility
of improving the accuracy of a classification and reducing the computational
complexity of the optimization problem. The experiments were performed on
known datasets [5, 6].

Also, methods of applying the multicriteria approach to solving the problem of
multiclass classification [7] are considered by the example of solving the problem
of intrusion detection [8].

2 Optimization Problem of SVM in a Multicriteria
Formulation

In the general form for an arbitrary dataset, the classical classification method
C-SVC (Common-Support Vector Classification) defines a hyperplane as a solution
to the following optimization problem:

min → 0.5 ‖w‖2 + C
K∑
i=1

εi (1)

with the following constraints:

yi(w
T ϕ(xi)+ b) ≥ 1− εi, i = 1, . . . ,K, εi ≥ 0 i = 1, . . . ,K,

where K is the size of the training sample, {xi, yi} i ∈ K—training sample where
yi ∈ {−1, 1}—class labels. The variables of the problem are the parameters of the
separating hyperplanew and variables of the error that estimate the i-th example of
the training sample is assigned to the wrong class εi , C > 0 is the penalty constant.
Objective function (1) combines maximizing dividing bandwidth and minimizing
error.

The following cases, which depend on the value εi , are possible. If the class
is correctly defined then εi = 0. Another case is when the sample lies in the
separating strip, here 0 < ε ≤ 1. If the class is defined incorrectly εi > 1, then
the error estimation is proportional to the distance from the classified object xi to
the hyperplane. The function ϕ(x) is called the kernel and allows us to consider not
only the linear separability of classes.
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Let us describe four models in which used combinations of two criteria instead
of the classical objective function. In this modification (2), (3) of the method, the
main criteria are separating strip width and total error. The second most important
criterion is the maximum of the examples errors.

Modification 1 (Modif1):

min → 0.5 ‖w‖2 +
K∑
i=1

εi (2)

min → max(εi) (3)

with the following constraints:

yi(w
T ϕ(xi)+ b) ≥ 1− εi, i = 1, . . . ,K, εi ≥ 0 i = 1, . . . ,K,

Let us consider the second modification (4)–(5) of the classical method. Let
us pass from the problem of maximization the width of the separating strip to
minimizing the error function. The second most important criterion is the maximum
error.

Modification 2 (Modif2):

min →
K∑
i=1

εi (4)

min → max(εi) (5)

with the following constraints:

yi(w
T ϕ(xi)+ b) ≥ 1− εi, i = 1, . . . ,K, εi ≥ 0 i = 1, . . . ,K,

Let us show another modification which is based on the separation of two types of
classification errors. As discussed above, a positive error is possible in two cases:

1. 0 < εi ≤ 1, if the sample lies in the separating strip. This is equivalent to a
state of uncertainty, the classifier is more likely to choose the class, closer to the
border of which the object is located;

2. εi > 1, if the class is defined incorrectly. This is a more serious error compared
to the first type of error.
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Modification 3 (Modif3):

min → c

K∑
i=1

εi + C
K∑
i=1

μi (6)

min → max(μi) (7)

with the following constraints:

yi(w
T ϕ(xi)+b) ≥ 1−εi−μi, i = 1, . . . ,K, 0 ≤ δi ≤ 1, μi ≥ 0 i = 1, . . . ,K,

Let us denote the error variable as the sum of two variables εi = δi + μi , where
0 ≤ δi ≤ 1, μi ≥ 0. In this case, the following outcomes are possible:

1. εi = 0, the object is classified correctly. Then δi = 0, μi = 0 (the object is
classified correctly);

2. 0 < εi ≤ 1, the example falls into the dividing strip. Three cases are possible
0 < δi ≤ 1 and μi = 0; another one 0 ≤ δi ≤ 1 and 0 < μi ≤ 1 with the
constraint δi + μi ≤ 1; and the last case δi = 0 and 0 < μi ≤ 1;

3. εi > 1, the object is classified incorrectly for δi = 0 and μi > 1; 0 < δi and
0 < μi .

A positive value of μi is possible in the third case. Such a multicriteria model has a
more complex structure, since the number of error variables doubles and the number
of constraints increases significantly. By increasing the constant C, we significantly
reduce the magnitude of the error function.

In the following modification, the main criterion is the width of the separating
strip and total error. The second criterion is the sum of the moduli of the components
of the normal vector w to the separating hyperplane.

Modification 4 (Modif4):

min → 0.5 ‖w‖2 +
K∑
i=1

εi (8)

min →
L∑
i=1

|wi | (9)

with the following constraints:

yi(w
T ϕ(xi)+ b) ≥ 1− εi, i = 1, . . . ,K, εi ≥ 0 i = 1, . . . ,K,

It should be noted that criteria (3), (5), (7), (9) are non-differentiable, which
complicates the methods of their solution.
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One of the models of multicriteria optimization was investigated on the datasets
a1a, a1a, a2a, a3a, a4a, a5a, a6a, a7a, a8a, a9a for binary classification problem
[5], in which it showed an improvement in accuracy in 33% of tests (from 120
tasks) compared to the classical SVM-method. The improvement was just under
1% accuracy.

3 Application of the SVMMethod for Multiclass
Classification Problem

This section presents a theoretical description of the transition from a binary
classification problem to a multiclass one. Suppose there are M classes, then the
set of class labels Y has the form: Y = {0, 1, 2, 3 . . .M − 1}.

Nowadays, there are two main approaches to solving the problem of multiclass
classification in SVM. The first is called “one-step solution” or “all-together”. This
approach is used for multiclass classifiers such as “decision trees”.

In another approach, the solution of a multiclass problem is reduced to the
solution of a sequence of problems with two classes. In this case, there can be
several strategies for generating such a sequence: “one against many”, “one against
one”, “elimination tournament”. Thus, in this approach, the multiclass problem
is divided into a set of binary problems that are solved independently using
binary classification algorithms. The partitioning process itself is usually called
the reduction of a multiclass problem to a sequence of binary ones. Methods for
reducing a multiclass classification problem to a sequence of binaries problems are
trained faster and give fewer errors, while the one-step solution approach results in
fewer support vectors.

Let us consider the “one against many” strategy. K classifiers are trained for M
classes, each of which separates “its” class from all other classes. Thus, a classifier is
built for each class. During recognition, the unknown vectorX is fed independently
to all M classifiers. The class to which the vector X belongs is determined by the
classifier that gives the highest estimate f (x) = argmax(< wk, x > +bk), k =
{1, . . . ,M}. The disadvantages of this approach include the fact that each of the
K classifiers trains on its own sample, from which the obtained values may have
different scales, so it would be incorrect to compare them. It will also be incorrect
to normalize the weight vectors so that the answers are on the same scale since this
procedure will change the weight norm, as a result of which the weights will no
longer be solutions of the support vector classification problem. This problem is
called the problem of the incommensurability of quantities.

Here, we consider the second (paired) approach “one against one”. Let us
construct C2

M = M(M − 1)/2 binary classifiers aij (x), where i, j = 1,M, i �= j ,
learners to distinguish all possible pairs of classes from each other. We will adjust
the classifier aij (x) for that part of the sample that contains only objects of classes i
and j . For the recognition of the vector, each classifier produces an estimate fij (x),
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which reflect the belonging to classes i and j . The result is a class with the maximum
sum

∑
i �=j fij (x), where g is a monotonically non-decreasing function, namely, the

identity or logistic function. The “elimination tournament” strategy is similar to the
“one against one” strategy. This strategy also constructs C2

M = M(M− 1)/2 binary
classifiers capable of distinguishing all possible pairs of classes. The difference
is that at the stage of choosing whether the input vector belongs to a class, a
tournament is held between the two classes: at each step of recognizing the vector,
a single classifier is selected, the winning class determines which classifier will be
used at the next step.

4 Dataset UNSW-NB15

The UNSW-NB15 dataset [8] is network packets generated by the IXIA Perfect-
Storm tool at the Australian Cyber Security Center (ACCS) Cyber Range Lab. They
are a combination of real normal actions and artificial attacks. The selected dataset
includes nine types of attacks: Fuzzers, Analysis, Backdoor, DoS, Exploits, Generic,
Reconnaissance, Shellcode, and Worms.

1. Fuzzers is an attack in which a large amount of randomly generated data is fed
to the program/network;

2. Dos is a denial of service attack, it consists in the difficulty/refusal of providing
access to system resources;

3. Analysis is an attack that is carried out by scanning ports and sending spam;
4. Bakdoors is a bypass of protection in order to gain unauthorized access to a

computer;
5. Exploits are the exploitation of system errors and vulnerabilities, leading to

unexpected behavior of the network or host;
6. Generic is an attack that uses a hash function to cause a collision;
7. Reconnaissance are attacks that collect information about a computer;
8. Shellcode is the collection of information about the network for further bypassing

the protection of the studied system;
9. Worms is an attack during which the attacking code copies itself for further

transmission over a computer network.

Thus, when using the dataset in relation to the classification problem, ten classes
can be distinguished: nine classes correspond to the above attacks, the 10th class
corresponds to normal data transactions, 43 characteristics with a class label: 42
signs of network traffic of five types: integer, string, double, boolean, time, and
43 contain information about the class label (0—normal actions, 1—attacks). All
characteristics have been converted to float64 type.

The developers of this dataset have made it easier to split the sample and provide
two generated datasets for use. The training set contains 175,341 records, and the
test set contains 82,332 records, including various types of attacks and normal
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Table 1 Distribution of the
examples

Category Training set Testing set

Normal 56,000 37,000

Analysis 2000 677

Backdoor 1746 583

Dos 12,264 4089

Exploit 33,393 11,132

Fuzzers 18,184 6062

Generic 40,000 18,871

Reconnaissance 10,491 3496

Shellcode 1133 378

Worm 130 44

Total amount 175,341 82,332

actions. Table 1 shows the distribution of the number of examples of different classes
in the training and test samples.

Evaluation of the UNSW-NB15 dataset in existing classification systems has
shown that this dataset is close to real traffic data. It is important to say that
this dataset can be used to effectively evaluate existing and new classification
methods. The UNSW-NB15 dataset was used to conduct experiments on both binary
and multiclass classification. For the problem of binary classification, the 43rd
component of the characteristic vector was used as class labels, which has the values
0—if the action is normal, and 1—if the action is related to attacks. For a multiclass
problem, the 42nd component of the input vector was used as class labels, which
can take one of ten values: Normal, Fuzzers, Analysis, Backdoor, DoS, Exploits,
Generic, Reconnaissance, Shellcode and Worms.

5 Multiclass Classification Experiments

In this section, we describe the comparative analysis of data obtained as a result of
multiclass classification experiments using the UNSW-NB15 dataset. Comparison
of algorithm modifications and selection of the “best” one will be made according
to the following indicators: time, Accuracy (Ac), Precision (Pr) and Recall (Rec).
The last two metrics are defined as the average over a series of binary classification
problems.

The main technique for solving a multiclass classification problem during
experiments was the “one against many”.

Experiment 1 During the experiment, 30 different samples were generated from
the original dataset. Each sample consists of 3540 examples, of which: 70% for
training, 15% examples for each validation and testing. It is guaranteed that there
are no training sample examples in the validation and training samples.
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Table 2 Methods
performance indicators

Ac (%) Time (s)

C-SVM 62.83 612

Modif1 64.1 640

Modif2 69.6 2110

Modif3 67.4 19,322 (near 5 h)

Modif4 64.1 630

Table 3 Comparison of the
accuracy of the classical
method and modifications


Ac(modif -class)(%)

Modif1 1.27

Modif2 6.77

Modif3 4.57

Modif4 1.27

Using the generated samples, it was possible to build a linear classifier with
an Accuracy of 59.32–69.74%. To solve multicriteria problems, the concessions
method is used with the concession size of the main criterion—0.1. Table 2 shows
the average values of the accuracy of the classical method and its four modifications,
as well as the average running time of the algorithm for all series of this experiment.

Table 3 shows the difference between the average accuracy of the algorithm
modification and the average accuracy of its classical interpretation within the series
of this experiment. We analyzed the results obtained during the experiment and now
we can draw the following conclusions. The usage of modifications in the form of
multicriteria formulations of optimization problems made it possible to improve
the classification accuracy in all cases. The highest accuracy was shown by the
Modif3 modification. Modifications Modif1 and Modif4, in which the width of the
separating strip is the main criterion, operate with the same average accuracy, while
the operating time of these modifications is comparable to the operating time of the
classical SVM.

Modif3 modification is much more laborious due to the complication of its
structure and doubling of the number of error variables. Nevertheless, it shows
relatively high rates of classification accuracy, which is of interest from the point
of view of finding more effective methods for its solution. The average difference
between the accuracy of the Modif3 modification and the classical method is 4.57%,
but more time is spent, the operating time of the Modif3 modification is 31 times
longer than the classical method. If the bandwidth is not taken into account (in
particular, the modification of Modif 2), then the accuracy of the algorithm does not
decrease.

Experiment 2 The experiment contained, as a training sample, a dataset with the
same number of examples for each class. In this case, the classification accuracy
dropped quite dramatically—to 17–39%.

In order for us to understand in which classes the classifier is mistaken, a
Confusion matrix was displayed for each method. Figure 1 shows an example of
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Table 4 Results of experiment 2.3

Acc (%) Time (s) Classes with maximum recall value

C-SVM 58.63 588.31 5.6

Modif1 59.33 510.67 5

Modif2 65.12 1109.52 5

Modif3 62.77 15,707.8 5

Modif4 61.78 523.76 5

a confusion matrix for the library version of the SVM-method. It should be noted
that the library version of the SVM-method has the lowest accuracy—17.9%. You
can see that the classifier defines the instances of the fifth class as well as possible,
but at the same time it is mistaken, mistakenly attributing instances of other classes
to the fifth and ninth classes.

After that the experiment was conducted in which the percentage of examples of
each class coincides with the ratio in the original data set. Thus, conditions have
been artificially created that correspond to the frequency and importance of the
classification of individual private classes (Table 4).

Table 5 shows the percentage of examples of each class in the original training
and test samples.
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Table 5 Percentage of examples of each class in the original training and test samples

Class name
(corresponding
number)

Number of examples
in the training
sample, pcs.

Percentage
(%)

Number of
examples in the test
sample, pcs.

Percentage
(%)

Analysis (0) 2000 1.1 677 0.8

Backdoor (1) 1746 0.99 583 0.7

DoS (2) 12,264 7 4089 4.2

Exploit (3) 33,393 19.04 11,132 13

Fuzzers (4) 18,184 10.37 6062 7.25

Generic (5) 40,000 22.81 18,871 22

Normal (6) 56,000 32 37,000 44

Reconnaissance (7) 10,491 5.98 3496 4

Shellcode (8) 1133 0.64 378 4

Worm (9) 130 0.07 44 0.05

Table 6 Results of
experiment 4

Acc (%) Time (s)

C-SVM 61.12 2961.08

Modif1 63.70 4475.71

Modif2 84.09 7843.45

Modif3 81.15 69,544.02

Modif4 63.58 5304.42

After our analysis of the obtained results, the following conclusions were drawn.
It was noted that all classifiers define the fifth class well, but at the same time they
mistakenly attribute objects of other classes to it. When using the same number
of examples of each class in the training sample and in the test and validation
samples, the accuracy of the methods is significantly reduced. Also, an experiment
that minimized the presence of fifth class also did not improve the classification
accuracy. Examples erroneously refer to normal traffic, which poses a threat to
computer security; when using the percentage of examples similar to the original
data sets, the accuracy of the methods practically does not differ from the results
obtained in experiment No. 1, in which the samples were created by randomly
choosing the required number of examples. Methods are best at recognizing normal
traffic, with most examples of other classes erroneously categorizing as “Generic”
attacks. This may be due to the similarity of signs of different types of attacks.

Experiment 3 This experiment consisted of a multi-stage classification procedure,
in which at each step a classification of three classes was made, with the fifth and
sixth classes present in all tests. Table 6 shows the results obtained during this
experiment.

Tables 7 and 8 show the average values of the Precision and Recall characteristics
for Modifications 2 and 3, respectively.

According to Table 7, it can be seen that Modification 2 (Modif2) does not
predict the ninth class, Modification 3 (Modif3) determines them, albeit with low
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Table 7 Average value of
metrics for Modification 2
(Modif2)

Class Precision Recall Class Precision Recall

0 95.6 90.5 5 78.8 89.9

1 96 93.3 6 75.4 80.3

2 94.1 65.3 7 84.3 51.2

3 67.4 95.6 8 53.8 56.3

4 70.1 94.2 9 0 0

Table 8 Average metrics for
Modification 3 (Modif3)

Class Precision Recall Class Precision Recall

0 74.1 92.1 5 71.4 93.2

1 91.2 94.1 6 76.5 64.2

2 86.4 73.8 7 64.2 63.7

3 67.4 74.6 8 64.4 70.3

4 70.1 77.8 9 8.2 14.4

Table 9 Comparison of the accuracy of the methods

Classes Acc. Modif2 (%) Acc. Modif3 (%) Acc. C-SVM (%)

0,5,6 91.46 84.67 34.63

1,5,6 92.34 90.85 62.65

2,5,6 82.68 82.37 61.68

accuracy (Table 8). Moreover, in both modifications the zero, first and second
classes differ best from the fifth and sixth classes. Table 9 shows the average value
of the accuracies for the series of experiments with the best result of Modification
2 (Modif2) and Modification 3 (Modif3). In this experiment, Modifications 2 and
3 (Modif 2 and Modif 3) showed good results, with a low accuracy of the classical
SVM-method (about 60%), the accuracy of the modifications reached 95%. The use
of such a multi-stage scheme has significantly improved the classification accuracy,
the best results were shown by Modif2 and Modif3. Both modifications only take
into account the error without considering the width of separating strip. This may be
due to the fact that features of different classes have similar meanings and therefore
classifiers easily mistakenly classify objects of different classes as the most common
classes. With the sequential classification of the three classes, classifiers manage to
more accurately determine the predicted class.

6 Conclusion

Thus, on the basis of the of the experiments, it was found that the approaches of
multicriteria optimization in the formulation of optimization models of the SVM-
method make it possible to increase the accuracy of the classifier even in cases
of poor class separation. Despite the formulation of an optimization model based
on the binary classification problem, this approach is applicable to the multiclass
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classification problem. And also on its basis, it is realistic to make multi-stage
classification algorithms, the use of which, on the example of the intrusion detection
problem, showed a significant increase in the classification accuracy.
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Developing Experimental–Numerical
Methods for Constructing True
Deformation Diagrams of Elastoplastic
Materials
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and Dmitry L. Osetrov

Abstract True deformation diagrams are constructed using an iterative procedure
of updating the strain intensity–stress intensity relation proportionally to the relative
difference in the values of axial forces as obtained numerically and experimentally
for an inhomogeneous stress-strain state, accounting for necking, up to rupture.
The procedure requires multiply solving the problem, which is a time-consuming
computational task. Two scenarios of analyzing a boundary-value problem are
considered. The first scenario involves analyzing the entire direct problem over
the whole loading interval; in the second one, the entire loading process is
subdivided into several intervals defined by discrete values of an experimentally
found generalized displacement–generalized force relation. At each small interval,
a deformation diagram is constructed, using a nonlinear extrapolation procedure. At
the end of each interval, the difference between the calculated and experimentally
determined generalized forces is checked, and the stress intensity value is iteratively
updated. The presented numerical studies show that constructing a deformation
diagram with accuracy less than 1% according to the first scenario required 5–
10 repeated analyses of the direct problem, whereas in the second scenario not
more than two direct analyses suffice. Monotone convergence of the considered
algorithms is examined using a number of problems.
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1 Introduction

The current state of the art in numerical analyses of strength of structural parts
and elements requires reliable data on material behavior (deformation diagrams,
ultimate strain and strength characteristics etc.). Obtaining such data with the
currently available instrumental means for high elastoplastic deformations of
material by way of direct experimental measurements is hampered by non-uniaxial
and non-uniform stress–strain states (SSS) in laboratory specimens due to high
deformations, as well as the presence of boundary effects etc. The identification
of deformational and strength properties of materials, in this case, is done using
analytical [1, 2] or numerical approaches [3–13] which make it possible to determine
the characteristics of SSS and representing the deformation diagram as exponential
functions, using indirect experimental data (forces and displacements). However,
the use of analytical methods often strongly limits specimen geometry and type of
loading and involves force and kinematic assumptions for the parameters of SSS
[14]. The issue of describing diagrams of elastoplastic deformation up to failure has
not been studied well enough by now.

In this connection, the study of material properties under high elastoplastic defor-
mations calls for developing an experimental–numerical approach devoid, to a large
degree, of the limitations of experimental–analytical methods. An experimental–
numerical approach involves experimenting and full-scale (in the framework of
mechanics of solids) computer modeling of deformational processes in a laboratory
specimens or structural elements and iteratively elaborating on the deformation
diagram.

All the above-said makes topical the studies aimed at developing methods of
computer modeling of deformation and failure processes of standard laboratory
specimens, as well as effective algorithms of identification of deformational and
strength characteristics of elastoplastic materials in the conditions of high strains.

2 The Experimental–Numerical Approach

In a general case, to determine mechanical constants and to construct a deformation
diagram of a material, a goal function is formed that describes the differences
between full-scale and numerical experiments. Then, an iterative process of deter-
mining mechanical constants and material relations is constructed.

It is required to find a set of parameters of the equation of state b =
(b1, b2, . . . , bn) providing the best agreement between the solution of the problem
and the numerical results. To this end, such parameters as modulus of dilatation K ,
shear modulusG, yield strength σT , stress intensity for a fixed value of accumulated
plastic strains σi(�) and others can be used. To find the sought parameters, it
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is necessary to minimize the function that is the value of mean square deviation
between the numerical and experimental results:

c(b) =
N∑
j=1

(p
exp
j − pcalcj )2 (1)

where pexpj is the value of the comparison parameters determined experimentally

and pcalcj is the value of the comparison parameters obtained numerically. Forces,
displacements, stresses, strains, etc. can be used as comparison parameters. The
limits for sought parameters bi in the search area are defined by equations of
an initial boundary-value problem, whereas the boundaries of the search area are
determined based on experimental facts and physical principles. The analysis of the
problem in question depends, to a large degree, on the choice of the optimization
algorithm. When choosing among available algorithms and developing new ones,
special features of problems being analyzed must be accounted for. In the case
considered, the limits are verified by numerically analyzing a nonlinear initial
boundary-value problem, which is a huge computational task. That is why time
spent to analyze one version, the choice of the initial approximation, and the
convergence rate of the numerical process are all very important. It is appropriate
to reduce the general problem to a succession of particular problems with one or
two comparison parameters. An initial approximation is determined by analytically
or numerically analyzing an idealized problem. One of the possible optimization
algorithms is the method of successive approximations of the sought parameters
that is based on parameter updating according to the relative difference between the
experimental and numerical values.

Based on the experimental–numerical approach [15], the present authors have
developed methodologies and algorithms of analyzing deformational and strength
characteristics of elastoplastic materials subjected to various loading types: tension
of cylindrical rods and shells [15, 16], torsion of rods [17], kinetic indentation
of specimens with a sphere [18] and dynamic compression of tablet-shaped
specimens [19]. In what follows, the efficiency of using experimental–numerical
approach [15] is considered, as applied to analyzing solid cylindrical specimens
loaded in tension.

3 Constructing Deformation Diagrams of Elastoplastic Rods
Loaded in Tension

True material deformation diagrams are constructed by iteratively updating the
relation between ei (strain intensity) and σi (stress intensity) over the entire
deformation process in the specimen. To this end, at each iteration of the numerical
analysis of a tensile specimen problem, the relation between axial forces determined
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experimentally, Fexp and numerically, Fcalc, β = Fexp/Fcalc, for the same
elongation of the specimen is analyzed. Then a functional relation between maximal
strain intensity in the bulk of the specimen e∗i and the corresponding elongation is
established. The diagram is iteratively updated according to the formula σ i(e∗i ) =
βσi(e

∗
i ) until the experimentally and numerically determined relations of axial

forces agree to a prescribed accuracy. The entire deformation diagram is updated
at a time. In this connection, it is necessary to analyze multiply the direct problem
and to process the results obtained, which is quite a time-consuming computational
chore. The introduced algorithm makes it possible to use any available solver of
direct problems without any modifications. The studies showed that, for the iteration
procedure to converge, it suffices to assign any convex deformation diagram of a
hardening material.

Let us consider the application of the algorithm to the problem of cylindrical bar
tension. The experimental specimen was made of class 12H18N10T austenitic steel
with the following dimensions: initial radius of the working part R0 = 5 mm, the
initial length of the working part L0 = 60 mm. In the finite element model, one end
of the rod was assumed rigidly fixed and the other one moved at a constant velocity.

An initial approximation of the true deformation diagram was defined by σi ei
in the assumption of incompressibility of the material and uniform deformation of
the working part according to the experimentally determined relation between axial
force F and elongation
L of the rod according to the following formulas:

ei = ln
(

1+ 
L
L0

)
, σi = F

A

(
1+ 
L

L0

)
, (2)

where F is the axial force at the end, A is an initial cross-section area of the
specimen,
L is the displacement of the end in the course of loading.

The deformation diagram was iteratively updated until the experimentally and
numerically determined axial forces agreed to the accuracy of 1%. The true
deformation diagram (curve 1) obtained in the process of updating is depicted
in Fig. 1. The studies showed that one iteration step suffices up to the moment
of necking and five iterations are sufficient after necking and up to rupture. The
following designations are used in the figure: q = σi/σT , σT is the yield strength of
the material.

The deformation diagrams constructed using experimental–analytical meth-
ods [1] and [2] practically coincide and are represented in Fig. 1 by curve 2.
Figures 2 and 3 show the displacement of axial circumferential and radial stresses
(σz, σθ , σr ) and strains (ez, eθ , er ) over a minimal cross-section of the speci-
men after the loss of stability of plastic deformation, as determined using the
experimental–numerical method (black curves) and using [1, 2] (gray curves).

It is to be noted that experimental–analytical approaches [1, 2] are based on
the assumption that the values of the circumferential and radial strains along the
radius of the minimal cross-section of the neck are the same and equal to a constant
value. The presented numerical analyze reveal (Fig. 2) that the difference between
the axial stresses along the radius of the minimal cross-section of the rod is less
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Fig. 1 True deformation diagrams constructed using the experimental–numerical method (curve
1) and the experimental–analytical method (curve 2)
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Fig. 2 Relations for axial, circumferential and radial stresses (σz, σθ , σr ) obtained using the
experimental–numerical method (black curves) and methodologies [1, 2] (grey curves) over the
minimal cross-section of the specimen after the loss of stability of plastic deformation

than 11%, whereas the difference between the circumferential and radial stresses is
more than 50%. The radial and circumferential strains in the neck are not constant
and not equal to each other (Fig. 3), as was assumed in analytical approaches [1, 2].
The circumferential stresses over the free surface of the specimen become negative
after necking (Fig. 2). Thus, the use of experimental–analytical methods results in
pronounced inaccuracies in constructing deformation diagrams of materials with
large deformations at the pre-failure stage.

The use of the above experimental–numerical method is a fairly time-consuming
computational task, several times longer than the time for analyzing a direct problem
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minimal cross-section of the specimen after loss of stability of plastic deformation
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Fig. 4 Iterative construction of the deformation diagram (grey line): 1—initial approximation;
2–10—iterations 1–9, respectively

of a tensile rod once. To assess the effect of accuracy of constructing deformation
diagrams on the time consumption of the computational process, the problem of
tensile loading of a solid cylindrical rod is considered. The rod is made of the perlite
class steel with the following dimensions: initial radius of the working part R0 =
5 mm, the initial length of the working part L0 = 60 mm. A deformation diagram
was constructed to the accuracy of axial forces of 0.1% and 1%. Figures 4 and 5
depict the process of constructing the diagram and the related variation of the axial
force for the accuracy of 0.1%.
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Fig. 5 Variation of the axial forces obtained with the iteration procedure: 1—initial approxima-
tion; 2–10—iterations 1–9, respectively

The problem was numerically analyzed five times after achieving the accuracy
of 1% on the axial forces, and ten times with the accuracy of 0.1%. It is to be
noted that, to construct the before-necking part of the diagram with an accuracy of
1%, only one iteration step is sufficient with the initial approximation defined by
formulas (2). Thus, computational expenses on constructing a deformation diagram
are doubled to reduce the inaccuracy by ten times. Updating the entire deformation
diagram and multiply repeated direct numerical analysis of the problem results in
large consumption of computation time. The authors of [20, 21] use piecewise-
linear approximation for constructing true deformation diagrams of elastoplastic
materials. This involves multiplying repeated analyses of a direct problem at each
stage of piecewise-linear loading. The authors do not characterize the accuracy
of constructing deformation diagrams but give the number of direct analyses of
the order of five iterations. The successive approximation algorithm itself is not
presented. It is evident that, in the sense of computational expenses, it has no
advantages over the above considered one.

4 Modification of the Algorithm of Constructing
Deformation Diagrams

To increase the efficiency of the algorithm, it is appropriate to use a nonlinear
extrapolation procedure. The computational process of modeling the loading is
subdivided into several stages n = 1, N . The number of states N is equal to the
number of points in the tabular representation of the experimental axial elongation–
axial force relation, and the constructed true deformation diagram will comprise the
same number of points. In the course of computations, the value of the deviation of
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the computed axial force from the experimental one is checked at the end of each
stage. When the deviation exceeds a prescribed value, the true deformation diagram
is updated according to formulas σ i(e∗i ) = βσi(e

∗
i ). When the required accuracy

is reached, a new point σi(êi) is entered into the table of the true deformation
diagram. After that, the extrapolation procedure is applied, using last points of the
constructed part of the deformation diagram. It should be noted that the initial part of
the deformation diagram including the first three loading stages is determined using
the iteration procedure [15] without extrapolation. The implementation of nonlinear
extrapolation of the deformation diagram requires more than three reference points
(m � 3). At the same time, for loading stages n < m it is assumed that n = m. The
extrapolation procedure is first done for the similarity number of the non-uniform
deformation processes in the form of a power function, using the least-square
method. Here K is

K(ei) = 1

σi(ei)

dσi(ei)

dei
(3)

Then the deformation diagram is extrapolated with a given exponential relation,

σi(ei) = σi(êi )exp
(
ei∫
êi

Kdei

)
. Figure 6 presents the results of extrapolation of the

deformation diagram and parameter K .
It is noted that the deformation diagrams are defined by monotone increasing

functions with a decreasing derivative, which makes it possible to determine to a
high accuracy the initial approximation of the diagram for the next loading stages.

The effect of the number of extrapolation points m on time consumption of
constructing deformation diagrams after reaching the accuracy of 0.1% for the
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Fig. 6 Extrapolation (dashed lines) of the relation forK (grey curve) and the deformation diagram
(black curve)
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Fig. 7 Variation of relative parameter δt characterizing the degree of time spent on constructing a
deformation diagram as a function of number of extrapolation points m/N for N = 90 (curve 1),
N = 130 (curve 2) and N = 180 (curve 3)

axial force was numerically investigated. The experimental relation for axial forces
was approximated by N = 90, N = 130 and N = 180 points. Figure 7 shows
the variation of parameter δt = t/T characterizing the degree of time spent on
constructing a deformation diagram in relation with time spent on one direct analysis
of the problem as a function of the used number of extrapolation points m/N (T
is time spent on one direct numerical analysis of the problem, t is time spent on
constructing a deformation diagram).

Maximal efficiency of the introduced algorithm is achieved in the case when
number of extrapolation points m amounts to about 12% of total number of
points approximating the diagram. With the increasing number of stages (points
approximating the diagram) the iterative procedure of constructing a deformation
diagram is practically reduced to a single direct analysis without using the iteration
procedure (δt → 1), which increases the effectiveness of the present algorithm.

Figure 8 presents the results of variation of the number of direct analyses of the
problem rn at the n-th stage as a function of parameter (n/N) for N = 20 and
N = 110. The columns in Fig. 8 characterize the corresponding loading stage.

For numerous of loading stages (more than N = 100 points approximating the
diagram) any iteration procedure becomes unnecessary in view of high accuracy of
extrapolation. If it is necessary (for rn = 2, Fig. 8), only one updating of the true
deformation diagram is sufficient at a current loading stage without repeating the
analysis of the problem. It is to be noted that the present algorithm substantially
(up to 10 times) increases the efficiency of the earlier developed methodologies
of constructing diagrams of deformation of elastoplastic materials. This, in its
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turn, considerably increases the potential of studying deformational and strength
characteristics of elastoplastic materials for various types of loading: the tension of
cylindrical rods and shells, torsion of rods, kinetic indentation of specimens with
a sphere, dynamic compression of tablet-shaped specimens and a number of other
problems. In view of monotone convergence of the iteration process of constructing
deformation diagrams, inaccuracy of the experimental-numerical methodology is
mainly determined by the field of application of the mathematical model of
elastoplastic material being used and the type of loading (simple, complex).
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Cubic Spline on a Bakhvalov Mesh
in the Presence of a Boundary Layer

Igor Blatov, Elena Kitaeva, and Nikita Zadorin

Abstract The problem of cubic spline interpolation on the Bakhvalov mesh of
functions with region of large gradients is considered. Asymptotically accurate
two-side error estimates are obtained for a class of functions with an exponential
boundary layer. It is proved that the error estimates of traditional spline interpolation
are not uniform in a small parameter, and the error itself can increase indefinitely
when the small parameter tends to zero at a fixed number of nodes N. A modified
cubic spline is proposed for which uniform estimates of the order O(N−4) have
been experimentally confirmed.

1 Introduction

Cubic splines are widely used for smooth interpolation of functions [1, 2]. When
using difference methods to solve singularly perturbed problems are used strongly
nonuniform grids. In this case, there is a need to restore function for all values of the
independent variable. In the case of a piecewise uniform grid of G. I. Shishkin [3], in
[4] error estimates of cubic spline are obtained. It is shown that the convergence of
the interpolation process is nonuniform in a small parameter. To achieve uniform
accuracy with respect to a small parameter, it is proposed to shift one of the
interpolation points.

In this paper, we study the cubic spline interpolation [2] on the mesh of N. S.
Bakhvalov [5], which dense in the boundary layer. Error estimates are obtained,
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which, however, are not uniform in a small parameter ε. It is shown that for
ε→ 0 the interpolation error has unlimited growth, and the development of special
interpolation methods for this class of problems is important. There is offered a
modified interpolation spline for which experimentally established uniform in ε
convergence.

Introduce the notations. Set the mesh of interval [0, 1] :

� = {xn : xn = xn−1 + hn, n = 1, 2, . . . , N, x0 = 0, xN = 1}.

Denote by S(�, k, 1) the space of polynomial splines of degree k of defect 1 [2]
on the mesh �. If necessary, we consider the partition � extended to the left of the
point 0 with the step h1 = x1 − x0 and to the right of the point 1 with the step
hN = xN − xN−1. We set h = 1/N . By C and Cj we mean positive constants
independent of the parameter ε and the number of grid nodes. In this case, the same
symbol Cj can denote different constants. Will write f = O(g) if the estimate
|f | ≤ C|g| and f = O∗(g) if f = O(g) and g = O(f ). C[a, b], L2[a, b] –
spaces of continuous and quadratically summable on [a, b] functions with the norms
‖ · ‖C[a,b] and ‖ · ‖L2[a,b] accordingly, (·, ·) is the scalar product in L2[0, 1].

2 Formulation of the Problem and Main Results

Let us a function u(x) be decomposed in the form of the sum of regular and singular
components:

u(x) = q(x)+�(x), x ∈ [0, 1], (1)

where for some C1

|q(j)(x)| ≤ C1, |�(j)(x)| ≤ C1

εj
e−αx/ε, 0 ≤ j ≤ 4, (2)

where the functions q(x) and �(x) do not explicitly given, α > 0, ε > 0.
Decomposition (1) holds for the solution of a singularly perturbed boundary value
problem [3].

We set the grid of the interval [0, 1] based on [5].
Let us

σ = min
{1

2
,

4ε

α
ln

1

ε

}

if ε ≤ e−1 and σ = 1/2 if ε > e−1.
When σ < 1/2, we define mesh nodes of � as

xn = g(n/N), n = 0, 1, . . . , N, (3)
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where

g(t) =
{
− 4ε
α

ln
[
1− 2(1− ε)t

]
, 0 ≤ t ≤ 1

2 ,

σ + (2t − 1)(1− σ), 1/2 ≤ t ≤ 1.

When σ = 1/2, we define a mesh � as uniform with the step h = 1/N.
Let us estimate the error of the cubic spline g3(x, u) ∈ S(�, 3, 1) on the mesh

� defined from interpolation conditions

g3(xn, u) = u(xn), 0 ≤ n ≤ N, g′3(0, u) = u′(0), g′3(1, u) = u′(1).

We state the main results in the form of theorems.

Theorem 1 There are constants C4, C5 and β > 0 that are independent of ε,N
such that for ε ≤ C4N

−1 the following estimates hold

‖ g3(x, u)−u(x) ‖C[xn,xn+1]≤ C5

⎧
⎪⎨
⎪⎩

N−4, 0 ≤ n ≤ N/2 − 2,

N−4 ln
(

1+ 1
εN

)
+ 1
N4 , n = N

2 − 1,
N−5

ε
e−β(n−N/2) + 1/N4, N/2 ≤ n.

(4)

The following theorem shows that the estimates (4) are unimprovable.

Theorem 2 Let �(x) = e−x/ε. Then there are constants C4, C6, β1 > 0
independent of ε,N such that for ε ≤ C4N

−1 lower bounds will be valid

‖ g3(x,�)−�(x) ‖C[xn,xn+1]≥ C6
N−5

ε
e−β1(n−N/2), N

2
≤ n ≤ N − 1. (5)

3 Auxiliary Results

Below, without loss of generality, we assume that in (2) α = 1, since the general
case reduces to this by replacing αx = y with preservation of estimates of the
form (2).

Lemma 1 With σ < 1/2 sequence hn for n ≤ N/2 monotonically increases and

hn =

⎧
⎪⎨
⎪⎩

O∗( ε
N/2−n ), 1 ≤ n ≤ N/2 − 1,

O∗(ε ln(1+ 1
Nε
)), n = N/2,

O∗(1/N), N/2+ 1 ≤ n ≤ N.
(6)

The proof follows from (3) and the definition of g(t).



42 I. Blatov et al.

Let

Nn,1(x) =

⎧
⎪⎨
⎪⎩

x−xn
xn+1−xn , x ∈ [xn, xn+1],
xn+2−x
xn+2−xn+1

, x ∈ [xn+1, xn+2], −1 ≤ n ≤ N − 1,

0, x /∈ (xn, xn+2)

is B-spline of first degree, then

‖ Nn,1 ‖L2[0,1]=
1√
3
(hn+1 + hn+2)

1/2,

thus, in view of Lemma 1

‖ Nn,1 ‖L2[0,1]=
⎧
⎨
⎩
O∗((ε/(N/2 − n))1/2), 0 ≤ n ≤ N/2 − 3,
O∗((ε ln(1+ h

ε
))1/2), n = N/2 − 2,

O∗(h1/2), N/2− 1 ≤ n ≤ N − 1.

Let Ñn,1(x) = Nn,1(x)/ ‖ Nn,1 ‖L2[0,1], 0 ≤ n ≤ N − 2. For n = −1 and
n = N − 1 we set Ñ−1,1(x) = Ñ0,1(x + h1),ÑN−1,1(x) = ÑN−2,1(x − hN).

Then, taking into account the last two formulas we get

‖ Ñn,1 ‖C[0,1]=
⎧
⎨
⎩
O∗((ε/(N/2− n))−1/2), 0 ≤ n ≤ N/2 − 3,
O∗((ε ln(1+ h

ε
))−1/2), n = N/2− 2,

O∗(h−1/2), N/2 − 1 ≤ n ≤ N − 1.
(7)

Let e(x) = g3(x,�)−�(x). We study the function e′′(x) = g′′3 (x,�)−�′′(x).
According to [6, chapter 5] g′′3 (x,�) = P�′′(x), where P is the projector
on L2[0, 1] orthogonal to S(�, 1, 1). Denote by g̃I (x) ∈ S(�, 1, 1) the linear
interpolant �′′(x) at the nodes of the mesh, and through gI (x) a function from
S(�, 1, 1) equal to g̃I (x) for x ∈ [0, xN/2−2] and zero for x ∈ [xN/2−1, 1]. It’s
obvious that gI (x) ∈ S(�, 1, 1). Then we have

e′′(x) = P(�′′(x)− gI (x))+ (gI (x)−�′′(x)). (8)

We represent the function P(�′′(x)− gI (x)) in the form

P(�′′(x)− gI (x)) =
N−1∑
n=−1

αnÑn,1(x).
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From the conditions of orthogonality of the difference g′′3 (x,�) − �′′(x) and the
space S(�, 1, 1) we obtain a system of linear equations for coefficients

N−1∑
n=−1

αn(Ñn,1, Ñk,1) = (�′′ − gI, Ñk,1),−1 ≤ k ≤ N − 1,

or in matrix form �α = F, where � = {γnk} = {(Ñn,1, Ñk,1)}—Gram matrix
of normalized B-splines, F = (F−1, F0, · · · , FN−1)

T , Fj = (�′′ − gI, Ñj ). It’s
obvious that 0 ≤ γnk ≤ 1.

Lemma 2 The matrix � has the form

� = tridiag{an, cn, bn}, −1 ≤ n ≤ N − 1, a−1 = bN−1 = 0, (9)

an+1 = bn = O∗(1) > 0, 0 ≤ n ≤ N − 2, n �= N/2 − 3, n �= N/2− 2, (10)

aN/2−1 = bN/2−2 = O∗((ε ln(1+ h/ε)
h

)1/2)
,

aN/2−2 = bN/2−3 = O∗(( 1

ln(1+ h/ε)
)1/2)

, (11)

cn = 1, 0 ≤ n ≤ N − 2, c−1 = cN−1 = 1/
√

2. (12)

The matrix � has strict diagonal dominance over rows with a prevalence index
1/
√

2.

The proof is obtained by direct calculation of the integrals taking into
account (6)–(7).

Denote by cond2� the spectral condition number of �.

Corollary 1 The matrix � has the form

� =
(
�11 �12

�21 �22

)
,

where �11, �22 are tridiagonal square matrices of order (N/2)×(N/2) and (N/2+
1)× (N/2 + 1) respectively, with strict diagonal line prevalence with a prevalence
index of 1/

√
2, cond2� = O(1), cond2�ii = O(1), i = 1, 2; matrices �12 and

�21 are rectangular matrices with the only nonzero element of order O∗((ε ln(1 +
h/ε)/h)1/2) in the left lower and upper right corners respectively.

The matrix �11 has the form

�11 =
(
�̂11 �̂12

�̂21 �̂22

)
,
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where �̂11, is the tridiagonal square matrix of order (N/2 − 1) × (N/2 − 1) with
strict diagonal predominance in rows with predominance of 1/

√
2, �̂22 = 1, �̂21 =

(0 · · · 0 aN/2−2), �̂12 = �̂T21—matrices with the only nonzero element of order
O∗((ln(1+ h/ε))−1/2).

Lemma 3 The matrices �11, �22, �̂11 are invertible, and for elements γ̌ iink, i = 1, 2
of inverse matrix the estimates |γ̌ iink| ≤ Ce−β|n−k| hold and similar estimates hold

for elements of �̂11. Here C, β are independent of N, ε.

Proof Invertibility of the matrices �11, �22 and element estimates follow from strict
diagonal prevalence with a prevalence index of 1/

√
2 and Demko’s theorem [7]. ��

Lemma 4 For the matrix �−1
11 , following representation holds

�−1
11 =

(
�̄11 �̄12

�̄21 �̄22

)
,

where elements γ̄ ijnk of matrix �̄ij for some β > 0, independent of ε,N , satisfy the
estimates

|γ̄ 11
nk | ≤ Ce−β|n−k|, −1 ≤ n, k ≤ N/2− 3; |�̄22| ≤ C, (13)

|γ̄ ijnk| ≤ (ln(1+ h/ε))−1/2Ce−β|n−k|, n = N/2− 2,−1 ≤ k ≤ N/2− 3, i = 1, j = 2;

k = N/2− 2,−1 ≤ n ≤ N/2− 3, i = 2, j = 1. (14)

Proof Using the Gauss block method, we find

�−1
11 =

(
�̂−1

11 + �̂−1
11 �̂12�̃

−1�̂21�̂
−1
11 −�̂−1

11 �̂12�̃
−1

−�̃−1�̂21�̂
−1
11 �̃−1

)
, (15)

where �̃ = �̂22 − �̂21�̂
−1
11 �̂12. Here, the reversibility of all blocks and uniform

in ε,N the boundedness of the norms of all inverse matrices follows from the
corollary 1. This implies that �̃−1 is also uniformly bounded in the norm. From
the Demko’s theorem [7] we obtain that the elements of the matrix �̂−1

11 satisfy
estimates of the form (13). With this estimates (13)–(14) follow from (15) and the
corollary 1. ��
Lemma 5 The following representation is valid

�−1 =
(
�̃11 �̃12

�̃21 �̃22

)
,
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where the elements γ̃ ijnk of matrices �̃ij for some β > 0, independent of ε,N , satisfy
estimates

|γ̃ 11
nk | ≤ Ce−β|n−k|, −1 ≤ n, k ≤ N/2− 3; |γ̃ 22

nk | ≤ Ce−β|n−k|,

N/2− 1 ≤ n, k ≤ N − 1, (16)

|γ̃ 11
nk | ≤ (ln(1+ h/ε))−1/2Ce−β|n−k|, n = N/2− 2,−1 ≤ k ≤ N/2− 3

or k = N/2 − 2,−1 ≤ n ≤ N/2− 3, (17)

|γ̃ ijnk| ≤ C(ε/h)1/2e−β|n−k|, (18)

where −1 ≤ n ≤ N/2 − 2, N/2 − 1 ≤ k ≤ N − 1 for i = 1, j = 2; −1 ≤ k ≤
N/2− 2, N/2− 1 ≤ n ≤ N − 1 for i = 2, j = 1.

Proof Using the Gauss block method similarly (15), we find

�−1 =
(
�−1

11 + �−1
11 �12�̃

−1�21�
−1
11 −�−1

11 �12�̃
−1

−�̃−1�21�
−1
11 �̃−1

)
, (19)

where �̃ = �22 − �21�
−1
11 �12. Here, the reversibility of all blocks and uniform in

ε,N the boundedness of all inverse matrices follows from the corollary 1. From [7]
it follows that the elements of the matrix �−1

11 satisfy estimates of the form (16),
therefore, by the form of the matrices �12, �21, the elements of the matrix �̃
satisfy the same estimates. But for matrices having an inverse matrix, bounded
in the spectral norm by a constant independent of the order of the matrix and the
parameters that determine its elements, in [8] proved that the elements of the inverse
matrix �̃−1 satisfy the same estimates, possibly with other constant β1 ∈ (0, 1),
which is also independent of N, ε. It was also proved that elements of the product
of two matrices, satisfying estimates of the form (16), satisfy the same estimates.
From here estimates (16) follow.

The estimates (17) follow from (19), Lemma 4, corollary 1 and estimates of the
form (16) for the elements of �̃−1. Let us prove the estimates (18) for i = 1, j = 2.
Let

�̃−1 = {γ̃nk,N/2 − 1 ≤ n, k ≤ N − 1},

�12 = {γnk, 1 ≤ n ≤ N/2 − 2, N/2− 1 ≤ k ≤ N − 1},

�−1
11 = {γ̃ 11

nk , 1 ≤ n, k ≤ N/2−2}. Since the matrix �12 have only nonzero element
γ(N/2−2)(N/2−1), then, multiplying matrices, we find elements of matrix �̃12: γ̃ 12

nk =
γ̃ 11
n(N/2−2)γ(N/2−2)(N/2−1)γ̃(N/2−2)k. Hence, given the estimates (14), (11), (16) for
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the first, second and third factors, respectively, we get (18). For i = 2, j = 1, the
estimates are obtained by virtue of symmetries of �−1. The lemma is proved. ��
Lemma 6 For any ε ∈ (0, 1),N , the following estimates hold

Fn =

⎧⎪⎨
⎪⎩
O(h

5/2
n+1ε

−4e−xn+1/ε), −1 ≤ n ≤ N/2 − 3,
O((ε ln(1+ h/ε))−1/2ε−1e−xN/2−1/ε), n = N/2 − 2,
O(h−1/2ε−1e−xn/ε), N/2 − 1 ≤ n ≤ N − 1.

(20)

The proof is obtained by direct calculation of the integrals with taking into
account (7) and estimates of the error of linear interpolation.

Lemma 7 For the coefficients αn in the decomposition of P(�′′(x) − gI (x))

through the basis of Ñn,1(x) the following estimates hold

αn =

⎧⎪⎨
⎪⎩
O(h

5/2
n+1ε

−4e−xn+1/ε), −1 ≤ n ≤ N/2− 3,
O((ε ln(1+ h/ε))−1/2ε−1e−xN/2−1/ε), n = N/2 − 2,
O(h−1/2ε−1e−xN/2−1/εe−β(n−N/2)), N/2− 1 ≤ n ≤ N − 1.

(21)

Proof We have α = �−1F . Set α = (α(1), α(2), α(1)),where dim(α(1)) = N/2−1,
dim(α(2)) = 1. Then according to Lemma 5, for any n ∈ [−1, N/2− 3]

α(1)n = αn =
N/2−3∑
k=−1

γ̃ 11
nk Fk + γ̃ 11

n(N/2−2)FN/2−2 +
N−1∑

k=N/2−1

γ̃ 12
nk Fk. (22)

By virtue of (16)

∣∣∣
N/2−3∑
k=−1

γ̃ 11
nk Fk

∣∣∣ ≤ C

ε4
h

5/2
n+1e

−xn+1/ε

N/2−3∑
k=−1

e−β|n−k|e−(xk+1−xn+1)/ε ·
(hk+1

hn+1

)5/2
.

(23)

Further, since hk/hn ≤ 1 and k ≤ n, taking into account (6), we have

n∑
k=−1

e−β|n−k|e−(xk+1−xn+1)/ε
(hk+1

hn+1

)5/2 ≤
n∑

k=−1

eβ(k−n)e
∑n+1
s=k+1 hs/ε

(hk+1

hn+1

)5/2

≤
n∑

k=−1

eβ(k−n)eC ln N/2−n+1
N/2−k+1

=
n∑

k=−1

eβ(k−n)
(N/2 − n+ 1

N/2− k + 1

)C ≤
n∑

k=−1

eβ(k−n)(n− k + 1)C ≤ C1; (24)
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N/2−3∑
k=n+1

e−β|n−k|e−(xk+1−xn+1)/ε
(hk+1

hn+1

)5/2

≤
N/2−3∑
k=n+1

e−β(n−k)
(N/2 − n
N/2− k

)5/2 ≤ C2. (25)

By virtue of (17), (20) we have

|γ̃ 11
n(N/2−2)FN/2−2| ≤ C

ε4 h
5/2
n+1e

−xn+1/εε4exn+1/ε
( ε
h

)1/2
eβ(n−N/2)

(
ε ln

h

ε

)−1/2

×1

ε
e−xN/2−1/ε = C

ε4 h
5/2
n+1e

−xn+1/εε3h
−5/2
n+1 e

−(xn+1−xN/2−1)/ε
(
ε ln

h

ε

)−1/2

×e−β|n−N/2| ≤ C

ε4 h
5/2
n+1e

−xn+1/ε
( ε

h ln(h/ε)

)1/2

× (N/2− n)5/2e−β|n−N/2|e−(xn+1−xN/2−1)/ε ≤ C1

ε4 h
5/2
n+1e

−xn+1/ε. (26)

Taking into account (18), (20), we have

∣∣∣
N−1∑

k=N/2−1

γ̃ 12
nk Fk

∣∣∣ ≤ C

ε4 h
5/2
n+1e

−xn+1/ε

N−1∑
k=N/2−1

ε4h
−5/2
n+1 e

xn+1/ε
( ε
h

)1/2

×eβ|n−k|h−1/2ε−1e−xk/ε ≤ C

ε4h
5/2
n+1e

−xn+1/ε

×
N−1∑

k=N/2−1

( ε
h

)1/2
(N/2 − n)5/2e(xn+1−xk)/εe−β|n−k| = C1

ε4
h

5/2
n+1e

−xn+1/ε

×
N−1∑

k=N/2−1

( ε
h

)1/2
(N/2 − n)5/2e−(β/2)|n−N/2|e(xn+1−xk)/εe(−β/2)|n−k|

≤ C2

ε4 h
5/2
n+1e

−xn+1/ε

N−1∑
k=N/2−1

e−β/2|n−k| ≤ C3

ε4 h
5/2
n+1e

−xn+1/ε. (27)
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Further,

α(2) =
N/2−3∑
k=−1

γ̃ 11
(N/2−2)kFk + γ̃ 11

(N/2−2)(N/2−2)FN/2−2 +
N−1∑

k=N/2−1

γ̃ 12
(N/2−2)kFk.

(28)

Similarly, we have

∣∣∣
N/2−3∑
k=−1

γ̃ 11
(N/2−2)kFk

∣∣∣ ≤ C
(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε

×
N/2−3∑
k=−1

(
ε ln

h

ε

)1/2
exN/2−1/εε

(
ln
h

ε

)−1/2
e−β|N/2−k|h5/2

k+1
1

ε4 e
−xk+1/ε =

C
(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε

N/2−3∑
k=−1

ε−5/2h
5/2
k+1e

−β|N/2−k|

×e−(xk+1−xN/2−1)/ε ≤ C1

(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε

N/2−3∑
k=−1

(N/2− 1− k)−5/2

× e−β|N/2−k|(N/2 − k + 1)C ≤ C2

(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε. (29)

Since the norm �−1 is uniformly bounded, we have |γ 11
(N/2−1)(N/2−1)| ≤ C.

Therefore, taking into account (20), we have

∣∣∣γ̃ 11
(N/2−2)(N/2−2)FN/2−2

∣∣∣ ≤ C
(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε, (30)

∣∣∣
N−1∑

k=N/2−1

γ̃ 12
(N/2−2)kFk

∣∣∣ ≤ C
(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε×

N−1∑
k=N/2−1

(
ε ln

h

ε

)1/2
εexN/2−1/ε

(
ε ln

h

ε

)1/2

×exN/2−1/ε
( ε
h

)1/2
e−β|N/2−k|h−1/2ε−1e−xk/ε = C

(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε
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×
N−1∑

k=N/2−1

e−(xk−xN/2−1)/ε
( ε
h

ln
ε

h

)1/2
e−β|N/2−k| ≤ C1

(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε

×
N−1∑

k=N/2−1

e−β|N/2−k|(N/2 − k − 1)C ≤ C2

(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε. (31)

Finally,

α(k) =
N/2−3∑
k=−1

γ̃ 21
nk Fk + γ̃ 21

n(N/2−2)FN/2−2 +
N−1∑

k=N/2−1

γ̃ 22
nk Fk, (32)

∣∣∣
N/2−3∑
k=−1

γ̃ 21
nk Fk

∣∣∣ ≤ Ch−1/2ε−1e−xN/2−1/εe−β(n−N/2)

×
N/2−3∑
k=−1

h1/2εexN/2−1/εeβ(n−N/2)
( ε
h

)1/2
h

5/2
k ε−4e−xk+1/ε; (33)

N/2−3∑
k=−1

h1/2εexN/2−1/εeβ(n−N/2)
( ε
h

)1/2
h

5/2
k ε−4e−xk+1/ε

=
N/2−3∑
k=−1

h
5/2
k ε−5/2eβ(k−N/2)e(xN/2−1−xk+1)/ε

≤ C1

N/2−3∑
k=−1

(n/2 − k)−5/2eβ(k−N/2)(N/2− k − 1)C ≤ C2, (34)

|γ̃ 21
n(N/2−2)FN/2−2| ≤ Ch−1/2ε−1e−xN/2−1/εe−β(n−N/2)h1/2ε×

exN/2−1/εeβ(n−N/2)
( ε
h

)1/2
e−β(n−N/2)×

(
ε ln

h

ε

)−1/2
ε−1e−xN/2−1/ε = Ch−1/2ε−1e−xN/2−1/εe−β(n−N/2)

(
ln
(h
ε

))−1/2 ≤

C1h
−1/2ε−1e−xN/2−1/εe−β(n−N/2); (35)
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∣∣∣
N−1∑

k=N/2−1

γ̃ 22
nk Fk

∣∣∣ ≤ C1h
−1/2ε−1e−xN/2−1/εe−β(n−N/2)×

N−1∑
k=N/2−1

h1/2εexN/2−1/εeβ(n−N/2)e−β|n−k|h−1/2ε−1e−xk/ε, (36)

N−1∑
k=N/2−1

h1/2εexN/2−1/εeβ(n−N/2)e−β|n−k|h−1/2ε−1e−xk/ε =

N−1∑
k=N/2−1

e
xN/2−1−xk

ε eβ(n−N/2)e−β|n−k|. (37)

We represent the last sum as

N−1∑
k=N/2−1

e
xN/2−1−xk

ε eβ(n−N/2)e−β|n−k| =
n∑

k=N/2−1

(· · · )+
N−1∑
k=n+1

(· · · ) = �1 +�2.

Then

�1 =
n∑

k=N/2−1

e
xN/2−1−xk

ε eβ(k−N/2) =
n∑

k=N/2−1

e−(k−N/2)
h
ε+β(k−N/2)

=
n∑

k=N/2−1

e−(k−N/2)
h
ε ≤ C1 (38)

if h/ε ≥ 2β. Further,

�2 =
N−1∑
k=n+1

e
xN/2−1−xk

ε eβ(2n−k−N/2) =
N−1∑
k=n+1

e−(k−N/2)
h
ε+k+N/2−2n.

If h/ε ≥ β, then we get

�2 ≤
N−1∑
k=n+1

e−2β(k−n) ≤ C1. (39)

The statement of the lemma follows from (22)–(39). ��
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Lemma 8 There are constants C > 0, β > 0 that are independent of ε,N, such
that the estimates hold

‖ P(�′′ − gI)(x) ‖C[xn,xn+1]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O
(
C
ε4 h

2
n+1e

−xn/ε
)
, 0 ≤ n ≤ N

2 − 2,

O
(

C

ε2 ln(1+h/ε)e
−xN/2−1/ε

)
, n = N

2 − 1,

O
(

1
εh
e−

xN/2−1
ε e−β|n−N

2 |
)
, N2 ≤ n ≤ N.

(40)

Proof Since at each node xn there is different from zero only one B-spline Nn−1,1,
then the equality holds

P(�′′ − gI)(xn) = αn−1Ñn−1,1(xn).

Hence, from Lemma 7 and estimates (7), the assertion of the lemma follows. ��
Lemma 9 The following estimates hold

‖ e′′(x) ‖C[xn,xn+1]≤
C

ε4h
2
n+1e

−xn/ε, 0 ≤ n ≤ N

2
− 2. (41)

Proof By virtue of (8), (40) is enough to evaluate ‖ gI (x)−�′′(x) ‖C[xn,xn+1]. But
an estimate of this expression of the form (41) follows from the estimate of linear
interpolation errors on the segment [xn, xn+1]. ��

4 Proof of Theorems

Theorem 1

Proof According to [2] for the interpolating cubic spline g3(x, u) ∈ S(�, 3, 1), the
estimate holds

|g3(x, u)− u(x)| ≤ 5

384
‖ u(4) ‖C[0,1] max

n
h4
n. (42)

According to (1) g3(x, u) = g3(x, q)+g3(x,�), and by virtue of the conditions (2)
and (42) we have

‖ g3(x, q)− q(x) ‖C[0,1]≤ Cmax
n
h4
n ≤ CN−4. (43)

It remains to evaluate ‖ g3(x,�) − �(x) ‖C[xn,xn+1] for each grid interval. When
σ = 1/2, the parameter ε is limited by positive constant below, so according to (42)
the spline g3(x,�) has an error of the order of O(N−4) uniformly in ε. Therefore,
we will assume below that σ < 1/2.
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First, we prove the estimates (4) for n ≤ N
2 − 2. Set e(x) = g3(x,�) − �(x).

Since e(xn) = e(xn+1) = 0, then considering e(x) as the solution of the problem
e′′(x) = e′′(x) with zero boundary conditions on interval [xn, xn+1], we get

e(x) =
∫ xn+1

xn

G(x, s)e′′(s)ds,

where

G(x, s) = 1
xn+1−xn

{
(x − xn)(xn+1 − s), xn ≤ x ≤ s,
(s − xn)(xn+1 − x), s < x ≤ xn+1

is Green function. Since |G(x, s)| ≤ xn+1 − xn = hn+1, from (41), (6). (3) we get

‖ e(x) ‖)C[xn,xn+1] ≤ hn+1

∫ xn+1

xn

|e′′(s)|ds ≤ h2
n+1 ‖ e′′(s) ‖C[xn,xn+1]≤

C

ε4 e
−xn/εh4

n+1 ≤
C

(N/2 − n)4 (1− 2(1− ε) n
N
)4 = 16C

N4

(N/2− n+ εN)4
(N/2 − n− 1)4

≤ C1

N4 .

Taking into account the estimate (43), we obtain the estimate (4) for n ≤ N
2 − 2.

For n ≥ N/2 − 1 we have

‖ e(x) ‖C[xn,xn+1]≤ Chn+1

∫ xn+1

xn

|e′′(s)|ds ≤

Chn+1

( ∫ xn+1

xn

|�′′(s)|ds +
∫ xn+1

xn

|g′′3 (s,�)|ds
)
. (44)

For n = N/2 − 1 we get

∫ xn+1

xn

|�′′(s)|ds ≤ C

ε2

∫ xn+1

xn

e−
x
ε ds ≤ C

ε
e−

xn
ε ≤ C

εN4 , n = N/2− 1. (45)

Considering (40) and gI (x) = 0 for x ≥ xN/2−1, thus P(�′′ − gI)(x) = g′′3 (x,�),
we obtain

∫ xn+1

xn

|g′′3 (s,�)|ds ≤

Cε ln(1+ h/ε) 1

ε2 ln(1+ h/ε) e
−xN/2−1/ε ≤ Cε · 1

ε2N4 =
C

εN4 , n = N/2 − 1.

(46)
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Similarly for n ≥ N/2 we have

∫ xn+1

xn

|�′′(s)|ds ≤ C

ε2

∫ xn+1

xn

e−
x
ε ds ≤ C

ε
e−

xn
ε = C

ε
e−

xN/2
ε · e−

xn−xN/2
ε

≤ C1

ε
N−4e−(n−N/2)

h
ε ≤ C1

εN4 e
−β(n−N/2). (47)

∫ xn+1

xn

|g′′3 (s,�)|ds ≤ Ch
1

εh
e−xN/2−1/εe−β|n−

N
2 | ≤ Cε · 1

ε2N4 e
−β|n−N

2 | =

C

εN4 e
−β|n−N

2 |. (48)

From (44)–(48), Lemmas 1 and (43) estimates (4) for N/2 − 1 ≤ n ≤ N − 1
follow. Theorem 1 is proved. ��

The proof of Theorem 2 is based on lower bounds for ‖ e(x) ‖C[xn,xn+1] for
n = N/2 − 2 and n = N/2 − 1 in the case �(x) = e−x/ε and is carried out
similarly to the proof of Theorem 4 from [4]. This proof is based on lower bounds
for the elements of the matrix �22. The matrix �22 in the case of a Bakhvalov mesh
corresponds to a segment of a uniform partition and for ε ≤ CN−1 is completely
similar in properties to the matrix �22 from [4].

5 Results of Numerical Experiments

We define the function of the form (1):

u(x) = cos
πx

2
+ e− x

ε , x ∈ [0, 1].

The tables show the maximum errors of spline interpolation calculated at nodes
of the condensed mesh obtained from the original computational mesh by dividing
each of its mesh intervals into 10 equal parts. Table 1 shows the errors for the
traditional cubic spline g3(x, u). The errors confirm the estimates of Theorems 1
and 2. The table shows that the error increases with decreasing ε for fixed N.

Due to the non-uniform in ε convergence of the cubic spline g3(x, u), we
construct a modified interpolation spline. We use an approach [4], where cubic
spline on the Shishkin grid is considered. We define x̄n = (xn + xn+1)/2, n ∈
[N/2 − 1, N/2], x̄n = xn, n ∈ [0, N/2 − 2] ∪ [N/2 + 1, N]. Let us gm3(x, u) ∈
S(�, 3, 1) be cubic spline determined from conditions gm3(x̄n, u) = u(x̄n), n ∈
[0, N], gm′3(0, u) = u′(0), gm′3(1, u) = u′(1).

The results of Table 2 for the modified spline gm3(x, u) show the uniform in ε
error of orderO(1/N4).



54 I. Blatov et al.

Table 1 The error of cubic interpolation spline g3(x, u)

N

ε 16 32 64 128 256 512

10−1 1.33 · 10−4 1.02 · 10−5 6.99 · 10−7 4.52 · 10−8 2.89 · 10−9 1.82 · 10−10

10−2 1.72 · 10−4 1.06 · 10−5 6.74 · 10−7 7.95 · 10−8 8.80 · 10−9 8.12 · 10−9

10−3 4.82 · 10−4 1.37 · 10−5 7.04 · 10−7 4.38 · 10−8 2.71 · 10−9 1.64 · 10−10

10−4 6.35 · 10−3 1.88 · 10−4 5.45 · 10−6 1.56 · 10−7 4.45 · 10−9 1.72 · 10−10

10−5 7.22 · 10−2 2.19 · 10−3 6.62 · 10−5 1.98 · 10−6 5.86 · 10−8 1.71 · 10−9

10−6 7.73 · 10−1 2.38 · 10−2 7.28 · 10−4 2.22 · 10−5 6.76 · 10−7 2.05 · 10−8

10−7 8.06 2.49 · 10−1 7.70 · 10−3 2.37 · 10−4 7.29 · 10−6 2.24 · 10−7

10−8 83.1 2.58 7.98 · 10−2 2.47 · 10−3 7.64 · 10−5 2.36 · 10−6

Table 2 The error of modified cubic spline gm3(x, u)

N

ε 16 32 64 128 256 512

10−1 2.21 · 10−4 1.85 · 10−5 1.35 · 10−6 9.09 · 10−8 5.02 · 10−9 3.78 · 10−10

10−2 1.67 · 10−4 1.09 · 10−5 1.00 · 10−6 1.16 · 10−7 1.45 · 10−8 1.47 · 10−9

10−3 1.89 · 10−4 1.10 · 10−5 6.49 · 10−7 4.06 · 10−8 2.59 · 10−9 2.16 · 10−10

10−4 2.25 · 10−4 1.35 · 10−5 8.05 · 10−7 4.74 · 10−8 2.77 · 10−9 1.61 · 10−10

10−5 2.46 · 10−4 1.51 · 10−5 9.19 · 10−7 5.57 · 10−8 3.35 · 10−9 2.00 · 10−10

10−6 2.58 · 10−4 1.60 · 10−5 9.84 · 10−7 6.05 · 10−8 3.71 · 10−9 2.26 · 10−10

10−7 2.66 · 10−4 1.65 · 10−5 1.02 · 10−6 6.33 · 10−8 3.91 · 10−9 2.41 · 10−10

10−8 2.71 · 10−4 1.68 · 10−5 1.05 · 10−6 6.50 · 10−8 4.03 · 10−9 2.5 · 10−10

6 Conclusion

The error of interpolation by a cubic spline on the Bakhvalov mesh in the presence
of an exponential boundary layer is estimated. It is proved that for a given number of
mesh nodes, the interpolation error can grow unlimitedly with decreasing value of
a small parameter. The results of computational experiments are consistent with the
obtained error estimates. The cubic spline was modified on a Bakhvalov mesh and
numerically shown that the resulting spline has an error of the order of O(1/N4)

uniformly in ε and N.
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On Exact Penalty Operators
and Penalization Methods for Elliptic
Unilateral Problems with Piecewise
Smooth Obstacles

Rafail Z. Dautov

Abstract The aim of this paper is twofold: firstly, to prove that for piecewise
smooth obstacle, the elliptic variational inequality of the first kind corresponding
to a unilateral problem can be reformulated as a variational inequality of the second
kind with a continuous functional and, secondly, to obtain accuracy estimates
of penalization methods for such obstacle problems for a wide class of penalty
functions. The accuracy estimates obtained in the current paper are of the same
order as known estimates for smooth obstacles.

1 Introduction

Many phenomena in physics, biology, and finance can be described by partial
differential equations that display a priori unknown interfaces or boundaries. Such
problems are called free boundary problems. One of the simplest and the most
important free boundary problems is the obstacle problem, in which, at least
formally, a function u solves a partial differential equation on the set where it is
strictly greater than a given function ψ , and equals this function elsewhere.

The prototype of problems that we will consider here is the linear obstacle
problem with the obstacleψ ∈ H 1(�). In this problem we are looking for a function
u in H 1(�) which satisfy the following relations:

⎧
⎨
⎩
− 
u− f ≥ 0 in �, u = uD on ∂�,
u ≥ ψ in �,
( −
u− f )(u− ψ) = 0 in �.
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This problem is equivalent to the variational inequality of the first kind

u ∈ K :
∫

�

∇u · ∇(v − u) dx ≥
∫

�

f (v − u) dx ∀ v ∈ K, (1)

where uD ∈ H 1(�),

K = {v ∈ uD +H 1
0 (�) : v ≥ ψ on �}.

Penalization techniques have been widely used in the study of obstacle problems
(see e.g. [1–4]). The penalty methods are the basis of many well-known approximate
methods for their solution and also used to demonstrate the existence and regularity
of solutions. For problem (1) they consist of substituting the variational inequality
by a family of nonlinear boundary value problems of the form1

{−
uε + βε(x, uε − ψ) = f in �,
uε = uD on ∂�,

where βε is a penalty function, ε > 0. The regularity of the solution of problem (1),
as well as the accuracy of the penalty methods, are fairly well studied when

f ∈ L2(�), 
ψ ∈ L2(�). (2)

There are different choices of penalization. Notable examples of penalty func-
tions are [2, p. 368], [4, p. 107]

βε(x, t) = −1

ε
t−, βε(x, t) = (−
ψ − f )+θε(t), (3)

where t− = max{−t, 0}, t+ = max{t, 0} are negative and positive parts of t ,
respectively; θε is a sequence of Lipschitz functions which almost everywhere on R
tends to θ as ε→ 0, where

θ(t) =
{−1, t ≤ 0,

0, t > 0.
(4)

Under conditions (2), (3) the following estimates are valid

‖u− uε‖L∞(�) ≤ C ε, ‖u− uε‖H 1(�) ≤ C ε1/2, (5)

where the constant C does not depend on ε.

1 Often talk about the regularization method if the function βε : � × R → R uniformly over ε
bounded and about the penalty method otherwise.
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Many different penalty functions βε have been found over the years (see, for
instance, [5–7]). Wide class of penalty functions guaranteeing estimates (5) are
indicated in [8]. In this article, it is proved that under conditions (2) inequality (1)
can be reformulated as the following variational inequality of the second kind: find
u ∈ H 1

D(�) such that

∫

�

∇u · ∇(v − u) dx + j (v)− j (u) ≥
∫

�

f (v − u) dx ∀ v ∈ H 1
D(�), (6)

whereH 1
D(�) = uD +H 1

0 (�),

j (v) =
∫

�

g(x)χ(v − ψ) dx, g ∈ L2(�) : g ≥ (−
ψ − f )+ in �,

and χ belongs to some set of continuous functions on R. Variational inequality (6)
can be equivalently written as the inclusion

u ∈ H 1
D(�) : −
u+ β(u− ψ) � f in �, (7)

where β(v − ψ) is the subdifferential of j (v).2

The operator β : L2(�) → L2(�) in (7) has been named an exact penalty
operator. Penalty operator βε is obtained by its regularization. It is also proved in
[8] that the second estimate in (5) can be improved to O(ε3/4) in some cases.

This article is devoted to a generalization of the results [8] for the case of
piecewise smooth obstacles, which includes an important subclass of polyhedra.
We are not aware of any published work in which accuracy estimates of penalty (or
regularization) method for problems with such obstacles were obtained.

The outline of this work is as follows. In Sect. 2, we formulate the original
obstacle problem with a strongly monotone nonlinear operator. In Sect. 3, we
reformulate it in the form of a variational inequality of the second kind and define
the exact penalty operators. In the last Sect. 4, we define a penalty problem and
obtain accuracy estimates.

We hope that the exact penalty operators obtained in this work will be useful
also in studying the regularity of the solution of elliptic unilateral problems with
piecewise smooth obstacles.

2 In [8], the case ψ = 0 was considered. Under conditions (2) inequality (1) comes down to this
case by shift u→ u− ψ and f → f +�ψ .



60 R. Z. Dautov

2 Formulation of the Problem

The scalar product in Rn is denoted by ξ ·η for all ξ, η ∈ Rn, |ξ | = (ξ · ξ)1/2, while
〈·, ·〉 is generically used to indicate a duality pairing of the relevant function spaces.

2.1 Functional Spaces

Let p ∈ [1,∞]. For an arbitrary domain D ⊂ Rn, n ≥ 1, we use the traditional
notations Lp(D) for the Lebesgue space with the norm

‖v‖pLp(D) =
∫

D

|v(x)|p dx, 1 ≤ p <∞,

‖v‖L∞(D) = ess sup
�

|v|,

and Wk
p(D) for the Sobolev space of order k ≥ 1 of functions which weak

derivatives of order ≤ k belong to Lp(D):

Wk
p(D) = {u ∈ Lp(D) : D|α| u ∈ Lp(D), |α| ≤ k}.

The norms on it are denoted by ‖ · ‖Wk
p(D)

and defined by the relation

‖v‖p
Wk
p(D)

=
∑
|α|≤k

‖Dαv‖pLp(D).

We use the notation Hk(D) = Wk
2 (D) and denote by H 1

0 (D) the Sobolev space
of the functions that vanish on the boundary ∂D, endowed with the norm

‖u‖H 1
0 (D)

=
( ∫

D

|∇u|2 dx
)1/2

.

Let H−1(D) be conjugate to H 1
0 (D) space,

‖f ‖H−1(D) = sup
η∈H 1

0 (D)

〈f, η〉
‖η‖H 1

0 (D)

.

Recall that v− ∈ H 1(�) if v ∈ H 1(�), and ∇v− = −∇v in S = {x ∈ � :
v(x) < 0}, ∇v− = 0 in � \ S (see e.g. [4, c. 50]).

In what follows, C will denote a positive constant that may vary from line to line.
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2.2 Original Obstacle Problem

Let � ⊂ Rn be a bounded domain with Lipschitz boundary ∂�, n ≥ 1. Consider a
sufficiently smooth vector field (a0, a) : � × R × Rn → R × Rn and let A be an
operator acting from H 1(�) into H−1(�) defined by

Au = − div a(x, u,∇u)+ a0(x, u,∇u).

For any u ∈ H 1(�) and v ∈ H 1
0 (�) we have

〈Au, v〉 =
∫

�

(
a(x, u,∇u) · ∇v + a0(x, u,∇u)v

)
dx.

Let ψ (the obstacle) and uD (the boundary datum) be given functions in H 1(�)

with ψ ≤ uD a.e. on�,H 1
D(�) = uD +H 1

0 (�). Let the convex set K in H 1(�) be
defined by

K = {v ∈ H 1
D(�) : v ≥ ψ a.e. on �}.

Consider the following variational inequality of the first kind.

Problem (P0) Find u ∈ K such that

〈Au, v − u〉 ≥ 0 ∀ v ∈ K. (8)

2.3 Restrictions on the Operator A

We will assume that the vector field a(x, s, ξ) = (a1(x, s, ξ), . . . , an(x, s, ξ)) and
the function a0(x, s, ξ) satisfy the following assumptions:

(H1) ai ∈ W 1∞(�)× C1(R)× C1(Rn), i = 0, . . . , n;
(H2) for a.e. x ∈ � and for all s ∈ R and ξ ∈ Rn

|a(x, s, ξ)| ≤ C (|s| + |ξ |);
|a0(x, s, ξ)| ≤ C

(|f (x)| + |s| + |ξ |), f ∈ L2(�);

(H3) for a.e. x ∈ � and for all s, t ∈ R and ξ, η ∈ Rn

(a(x, s, ξ) − a(x, t, η)) · (ξ − η)
+ (a0(x, s, ξ) − a0(x, t, η))(s − t) ≥ α |ξ − η|2,

where α = const > 0.
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The existence and uniqueness of a solution u to the problem (P0) under
conditions (H1)–(H3) are well known [2, p. 247, Theorem 8.2].

Note that in the case of linear functions

a(x, s, ξ) = A(x)ξ,
a0(x, s, ξ) = a0(x) s − f (x).

conditions (H1)–(H3) will be satisfied if

A ∈ W 1∞(�;Rn×n), a0(x) ∈ L∞(�), f ∈ L2(�);
A(x)ξ · ξ ≥ α |ξ |2, a0(x) ≥ 0 a.e. in �.

Condition (H3) immediately implies that

〈Au− Av, u− v〉 ≥ α ‖u− v‖2
H 1

0 (�)
. (9)

for all u, v ∈ H 1
D(�). Additionally,

〈Au− Av, (u− v)−〉 ≤ −α ‖(u− v)−‖2
H 1

0 (�)
(10)

for all u, v ∈ H 1(�) such that (u− v)− ∈ H 1
0 (�). Indeed, put a(u) = a(x, u,∇u),

a0(u) = a0(x, u,∇u). Then

〈Au− Av, (u− v)−〉 = −
∫

{x∈�: u(x)<v(x)}

(
(a(u)− a(v)) · ∇(u− v)

+(a0(u)− a0(v))(u− v)
)
dx

≤ −α
∫

{x∈�: u(x)<v(x)}
|∇(u− v)|2 dx = −α ‖(u− v)−‖2

H 1
0 (�)

.

2.4 Restrictions on the Obstacle

Let us formulate additional conditions on the obstacle. Let {�1,�2, . . . , �m}, m ≥
2, be a partition of � such that each subdomain�i has a Lipschitz boundary ∂�i ,

�i ∩�j = ∅ for i �= j,
m⋃
i=1

�i = �.
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We will assume that the obstacle is piecewise smooth:

(H4) ψ ∈ C0,1(�), ψ|�i ∈ C1,1(�i), 1 ≤ i ≤ m.

Let {�1, �2, . . . , �M } be the set of all common parts of boundaries ∂�i and
∂�j of the neighboring subdomains �i and �j , 1 ≤ i �= j ≤ m. On each �k =
∂�i ∩ ∂�j we define the function

hk(x) = a(x,ψ,∇ψ) · ni(x)|�i + a(x,ψ,∇ψ) · nj (x)|�j ,

where ni(x) is the outward normal unit vector at the point x ∈ ∂�i . Put � =
M⋃
k=1
�k

and define

g ∈ L∞(�) : g|�i = Aψ|�i , 1 ≤ i ≤ m;
h ∈ L∞(�) : h|�k = hk, 1 ≤ k ≤ M.

Conditions (H1) and (H4) imply that functions g and h are well defined. According
to the definition of these functions, we have

〈Aψ, v〉 =
∫

�

g v dx +
∫

�

h v dx ∀ v ∈ H 1
0 (�).

Note that if the obstacle is smooth, say ψ ∈ C1,1(�), then h = 0.
We define the functional (Aψ)± ∈ H−1(�) by the equality

〈(Aψ)±, v〉 =
∫

�

g± v dx +
∫

�

h± v dx ∀ v ∈ H 1
0 (�). (11)

Since H 1
0 (�) ⊂ L2(�), it is easy to see that

‖(Aψ)±‖H−1(�) ≤ C
(‖g±‖L2(�) + ‖h±‖L2(�)

)
.

3 Equivalent Inequality Without Constraints

Let j be the indicator function of the convex set K

j(v) =
{

0, v ∈ K,
+∞, v /∈ K. (12)

The original variational inequality (8) can be represented in the form of an inequality
without constraints.
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Problem (P ) Find u ∈ H 1
D(�) such that3

〈Au, v − u〉 + j (v)− j (u) ≥ 0 ∀ v ∈ H 1
D(�). (13)

In this inequality, we replace the functional j with a functional having better
properties. To this end, we introduce the class J (ψ) of convex lower semicontinuous
(l.s.c.) functionals j : H 1

D(�)→ R such that

(a) j (v) = 0 for functions v ∈ K;
(b) j (v) ≥ 〈(Aψ)+, (v − ψ)−〉 for all v ∈ H 1

D(�).

The following theorem is the first of our main results.

Theorem 1 Let the assumptions (H1)–(H4) be satisfied and let j ∈ J (ψ). Then
problems (P0) and (P ) are equivalent.

Proof Let u be a solution to Problem (P ). Since the solutions to problems (P0) and
(P ) are unique, it suffices to prove that u is also a solution to (P0).

Let us prove that u ∈ K . By choosing v = u+ (u−ψ)− = ψ + (u−ψ)+ ∈ K
in inequality (13) and by taking into account properties (a) and (b) of the functional
j , we obtain the inequalities

〈Au, (u− ψ)−〉 ≥ j (u) ≥ 〈(Aψ)+, (u− ψ)−〉.

Hence, taking into account estimate (10), we have

−α ‖(u − v)−‖2
H 1

0 (�)
≥ 〈Au− Aψ, (u− ψ)−〉

≥ 〈(Aψ)+ − Aψ, (u− ψ)−〉 = 〈(Aψ)−, (u− ψ)−〉 ≥ 0.

Therefore, (u − ψ)− = 0, i.e. u ∈ K . Choosing v ∈ K in the inequality (13), we
see that u is a solution to the original problem (P0). ��

3.1 Exact Penalty Operators

The above-introduced class J (ψ) is quite large. Note that the indicator function (12)
of the convex set K also belongs to J (ψ). For the considered class of operators A
and the set K we can select in J (ψ) a subset of convex and continuous functionals.

3 If j is a convex l.s.c. functional, then conditions (H1)–(H3) are sufficient for the existence and
uniqueness of a solution of problem (P ) [2, p. 251, Thm. 8.5].
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To do this we define a function θ(t) on R such that

θ ∈ C(−∞, 0] is non-decreasing, θ(t)

⎧
⎨
⎩
= 0, t > 0,
≤ −1, t ≤ 0,
≥ a t + b, |t| large ,

(14)

where a ≥ 0, b ∈ R. Note that the maximal among functions (14) is defined in (4).
We also define function� ∈ C0,1

loc(R) and two functionG, H on �:

�(t) =
t∫

0
θ(t) dt,

G ∈ L∞(�) : G ≥ g+ in �,

H ∈ L∞(�) : H ≥ h+ on �.

We denote by JL(ψ) the set of functionalsH 1(�)→ R of the form

j (v) =
∫

�

G(x)�(v(x)− ψ(x)) dx +
∫

�

H(x)�(v(x)− ψ(x)) dx. (15)

From the definition of function � it follows that j is continuous functionals
(Lipschitz continuous if a = 0 in (14)). Since �(t) = 0, if t ≥ 0 and �(t) ≥ t− in
R, then properties (a) and (b) are satisfied and JL(ψ) ⊂ J (ψ).

The function �(t) has no derivative only for t = 0, so its subdifferential is easy
to calculate. It is equal to

∂� =
⎧
⎨
⎩

0, t > 0,
[ θ(0), 0 ], t = 0,
θ(t), t < 0.

The functional j defined in (15) is the sum of the two convex continuous func-
tionals on the whole spaceH 1(�). Therefore, according to the Moreau-Rockafellar
theorem, his subdifferential can be calculated as the sum of subdifferentials of the
functionals on the right hand side of (15).

We define in H 1(�) the multivalued operator β by the equality

〈β(u), v〉 =
∫

�

G∂�(u)v dx +
∫

�

H ∂�(u)v dx, v ∈ H 1(�).

Then ∂j (u) = β(u− ψ) and problem (P ) will be reduced to the inclusion

u ∈ H 1
D(�) : Au+ β(u− ψ) � 0.

The operator β will be called the exact penalty operator.
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4 The Penalty Problem

We approximate the non-differentiable functional j ∈ JL(ψ) by a sequence jε of
differentiable ones.

To this end, we approximate the function θ(t) (or ∂�) by continuous functions
θε(t) nondecreasing on R so as to ensure that θε(t) = θ(t) for t ≤ −ε1 and t ≥ ε2,
where ε1, ε2 ≥ 0, and ε = max(ε1, ε2). We set

�ε(t) =
t∫

0
θε(t) dt,

jε(v) =
∫
�

G�ε(v − ψ) dx +
∫
�

H �ε(v − ψ) dx (16)

〈βε(v),w〉 =
∫
�

Gθε(v − ψ)w dx +
∫
�

H θε(v − ψ)w dx,

where v,w ∈ H 1(�). Note that�ε is a small perturbation of �, since

|�(t)−�ε(t)| ≤ |θ(−ε1)| (ε1 + ε2), t ∈ R. (17)

The penalty problem is defined by

Problem (Pε) Find uε ∈ H 1
D(�) such that

〈Auε, v − uε〉 + jε(v)− jε(uε) ≥ 0 ∀ v ∈ H 1
D(�). (18)

This problem is equivalent to the equation

uε ∈ H 1
D(�) : Auε + βε(uε − ψ) = 0,

since functional jε is differentiable and j ′ε = βε .
The following theorem is the second of our main results.

Theorem 2 Let the assumptions (H1)–(H4) be satisfied, and u and uε are solutions
to the problems (P0) and (Pε), respectively. Then

‖u− uε‖2
H 1

0 (�)
≤ C(ε1) (ε1 + ε2), (19)

where

C(ε1) = 2 |θ(−ε1)|
(∫

�

Gdx +
∫

�

H dx
)
.
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Proof According to Theorem 1, u is also a solution to inequality (13). We take
v = uε in (13) and v = u in (18), and add the two resulting inequalities to obtain

〈Au− Auε, u− uε〉 ≤
(
j (uε)− jε(uε)

)+ (
jε(u)− j (u)

)
. (20)

From the definitions (15), (16) of the functionals j , jε and the estimate (17)
immediately follows

∣∣j (v)− jε(v)
∣∣ ≤ 0.5C(ε1) (ε1 + ε2) ∀ v ∈ H 1(�). (21)

We use (21) to estimate the right-hand side of (20) from above and (9) to estimate
the left-hand side from below. As a result, we get (19). ��

4.1 Examples of Penalty Functions

The penalty function is defined by the functional parameters G, H , θ and θε. We
indicate the following two ways of choosingG and H :

(i) G = ‖g+‖L∞(�), H = ‖h+‖L∞(�);
(ii) G = g+, H = h+.

The method (i) is computationally simpler than (ii). The functions θ and θε are more
important. They can be chosen independently, or they can be consistent. Let’s look
at some examples.

Example 1 First, we select the θ function and then we regularize it to obtain θε.
Let θ be maximal among functions (14), i.e.,

θ(t) =
{−1, t ≤ 0,

0, t > 0.

We define the function θε by setting ε1 = 0, ε2 = ε:

θε(t) =
⎧
⎨
⎩
−1, t ≤ 0,
t/ε − 1, 0 ≤ t < ε,
0, t > ε.

In this case θ(−ε1) = −1, and estimate (19) takes the form

‖u− uε‖H 1
0 (�)

≤ C ε1/2. (22)
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Example 2 If θε was originally selected and θε(t) = 0 if t > 0, say, in the classic
way θε(t) = −t−/ε, we can choose

θ(t) =
{

min{θε(t),−1}, t ≤ 0,
0, t > 0,

i.e. θ(t) =
⎧
⎨
⎩
t/ε, t ≤ −ε,
−1, −ε ≤ t ≤ 0,
0, t > 0.

This function satisfies all conditions (14) and θε is its regularization, ε1 = ε, ε2 = 0.
In this case also θ(−ε1) = −1, and estimate (19) takes the form (22).

The same can be done with another choice of function θε, known from publica-
tions.
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Accurate Simulation of Guided Waves
in Optical Fibers Using Finite Element
Method Combined with Exact
Non-reflecting Boundary Condition

Rafail Z. Dautov and Evgenii M. Karchevskii

Abstract We present an analysis of numerical results illustrating the potentials of a
new method for calculating guided waves in optical fibers and dispersion curves of
corresponding eigenvalues. The earlier proposed finite element method is based on
a special exact non-reflecting boundary condition and mathematically justified. For
linear Lagrangian elements, the analysis demonstrates that the speed of convergence
of the presented algorithm is quadratic, which corresponds to previously obtained
theoretical estimates.

1 Introduction

Problems of guided waves in optical fibers arise in mathematical and numerical
modeling of light propagation in photonic circuits (see, for example, [1]). Mesh
methods are used extensively to solve these important applied problems (see, for
example, [2–6]). A finite element method for calculating guided waves in optical
fibers and dispersion curves of corresponding eigenvalues was proposed in [7]. To
this end, the vector electromagnetic problem for eigenwaves (particular solutions
of the homogeneous Maxwel Equations of a special form), originally formulated
on the plane, was reduced to a convenient for numerical solution linear parametric
eigenvalue problem posed in a circle [7]. It was achieved using a specially tailored
exact non-reflecting boundary condition.

A theoretical study of the accuracy of the approach proposed in [7] is done
in [9]. The study of properties of the dispersion curves and the solvability of the
obtained problem is based on the spectral theory of compact self-adjoint operators.
Error estimates for approximating eigenvalues and eigenfunctions are derived. This
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strong mathematical justification of the proposed numerical method is done on the
base of general results of the abstract theory developed previously in article [8] to
make the analysis of the continuous problem and the corresponding error analysis
of the discrete problem. Earlier, we used a similar approach to solve the problem for
surface eigenwaves of weakly guiding optical fibers [9].

The purpose of the current work is to investigate numerically the accuracy of the
proposed in [7] and theoretically justified in [9] computational scheme. We present
numerical results for waveguides of classical cross-sections (circular, square, and
rectangular) as well as for waveguides of more complicated forms. Analysis of
numerical results for linear Lagrangian elements demonstrates that the speed of
convergence of the proposed algorithm is quadratic (with respect to the eigenvalues),
which correspond to the theoretical estimates derived in [9] for elements of arbitrary
order.

2 Theoretical Background

As usual (see, e.g., [10, 11]), we assume that the fiber is infinitely extended along
its axis and is perfectly cylindrical. The refractive index n of the fiber is a real-
valued function of only the transverse variable x = (x1, x2) ∈ R2. The core of
the waveguide, i.e., the domain �i , in the plane (x1, x2) is bounded, contains the
origin, but is not necessarily simply connected. Within the cladding �e = R2\�i ,
we have n = n∞ = const > 0. We also suppose that

inf
x∈R2

n(x) ≥ n∞, n+ = sup
x∈R2

n(x) > n∞. (1)

A variational statement of the problem is given in [12] and looks as follows: find
all values of (β, k) ∈ � together with corresponding nonzero vectors H ∈ V 3(R2)

such that for all H′ ∈ V 3(R2) the next equality holds:

∫

R2

(
1

n2 rotβH · rotβH′ + 1

n2∞
divβH divβH′

)
dx = k2

∫

R2
H ·H′ dx. (2)

Here, β and k are propagation constants and wavenumbers of guided waves,

� = {(β, k) : β/n+ < k < β/n∞, β > 0} . (3)

The Sobolev space V 3(R2) and the differential operators rotβ and divβ are intro-
duced in [12].
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Another formulation of the problem (2) based on an exact nonreflecting boundary
condition derived from the analytical representation for solutions of equation (2) in
the domain �∞ = R2 \�,

Hp(x) =
∞∑

n=−∞

Kn(pr)

Kn(pR)
an(H) einϕ, an(H) = 1

2π

∫ 2π

0
H
∣∣
r=R e

−inϕ dϕ,

(4)

was proposed in paper [7]. Here, (r, ϕ) are the polar coordinates of x, Kn(r) is
the modified Bessel function of the second kind of order n. By � we denote the
computational domain, namely, a circle such that �i ⊆ �.

The original problem (2) was reduced in [7] to the equivalent linear eigenvalue
problem of the form

A(p)H = β2B(p)H (5)

in the circle �. Here, the eigenvector H = (H1,H2) represents the first two
components of the magnetic field intensity vector H, the eigenvalue is β2, the
parameter p is the transverse wave number

p = (β2 − k2n∞)1/2, (6)

the operators A(p) and B(p) are nonlocal and self-adjoint, B(p) is compact.
Let

K = {
(β, p) : β > 0, 0 < p <

√
1− (n∞/n+)2β

}
. (7)

If (β, k) ∈ �, then p is real and positive, and formula (6) defines the one-to-one
correspondence between the sets � and K .

A Lagrangian finite element method for solution of equation (5) was proposed
in [7]. Numerical calculation of operators of the discrete analog of problem (5) is
quite economical [7]. Corresponding theoretical estimates were obtained in [13] for
elements of arbitrary order m. It was proved in [13] that the speed of convergence
of the proposed algorithm with respect to the eigenvalues and eigenvectors has
order 2m and m, respectively. Particularly, for linear Lagrangian elements it is
quadratic for eigenvalues.

3 Numerical Results

In this section, we illustrate the theoretical results [9] on the speed of convergence
proposed in [7] finite element method by numerical experiments with linear
Lagrangian elements.
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3.1 Circular Waveguide

The exact solution of problem (2) obtained by the separation of variables method
is well known for circular waveguides with constant refractive index (see for
instance [10, 11]). Therefore, as a first numerical example, we took the circular
waveguide with radius 1. The radius of the domain � was taken 1.5 and n+ =

√
2,

n∞ = 1 (see an example of the triangulation of the computational domain � in
Fig. 1).

The left panel of Fig. 2 shows the first seven dispersion curves β = β(p) of
the reduced problem (5) calculated using a mesh with Nh = 2493 nodes and with
the number of Fourier harmonics N = 10. The solid lines is the exact solution
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Fig. 1 Triangulation of the computational domain � for a circular waveguide. Here, R = 1.5 and
Nh = 146
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Fig. 2 The first seven dispersion curves β = β(p) (left panel) and β = β(k) (right panel) for a
circular waveguide
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Table 1 Circular waveguide:
dependence of
e = h−2|β4 − βh4 |/|β4| on the
parameters h and N for p = 1

N \ Nh(n�) 45(16) 330(52) 1125(92) 2881(152)

1 0.640 0.748 0.631 0.668

3 0.641 0.748 0.631 0.668

5 0.641 0.748 0.631 0.668

7 0.641 0.748 0.631 0.668

15 0.642 0.748 0.631 0.668

and the dots is the computed solution. The dashed line is the boundary β = k0p

of the domain K . All the dispersion curves are above of this line. The right panel
of this figure presents the first seven dispersion curves β = β(k) of the original
problem (2). The dashed lines are the boundaries β = kn+ and β = kn∞ of the
domain�.

Now we present the results of the analysis of the speed of convergence of the
proposed algorithm with respect to number Nh of mesh points and the number N
of Fourier harmonics. For given p = 1, we calculated approximate solutions βh

and compared them with exact solutions β. The numerical results are presented in
Table 1 for βh4 . Observing this table, we conclude that it is enough to take N = 1
or N = 2, then we have |β4 − βh4 |/|β4| ≈ 0.7h2. Here, N� is the number of nodes
on the boundary � of the domain�.

3.2 Square Waveguide

The next example is a square dielectric waveguide. We choose it since results of
physical experiments are known for this optical fiber (see [7] and references therein).
The side of the square is 1, the radius of the circular computational domain� is 1.5,
n+ =

√
2.08, n∞ = 1 (see an example of the triangulation of � in Fig. 3).

The left panel of Fig. 4 shows the first four dispersion curves β = β(p) of the
reduced problem (5) calculated using a mesh with Nh = 2500 nodes and with the
number of Fourier harmonicsN = 10. The bottom curve corresponds to the multiple
eigenvalue β1(p) = β2(p). The two other curves are intersecting. The experimental
data are marked by dots and match well with numerical solutions. The right panel
of this figure presents the corresponding solutions β = β(k) of problem (2).

Now we present the results of the analysis of the speed of convergence of the
proposed algorithm with respect to the parameters Nh and N for given p = 1.
Any exact solution for square waveguide does not known. Therefore as an “exact
solution” we use the approximate solution computed on the mesh with Nh = 6000
(n� = 212). The numerical results are presented in Table 2 for βh3 . Observing this
table, we conclude that it is enough to take N = 3, then we have |β3 − βh3 |/|β3| ≈
1.6h2.
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Fig. 3 Triangulation of the computational domain � for a square waveguide. Here, R = 1.5 and
Nh = 151
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Fig. 4 The first four dispersion curves β = β(p) (left panel) and β = β(k) (right panel) for a
square waveguide. Here, β1(k) = β2(k)

Table 2 Square waveguide:
dependence of
e = h−2|β3 − βh3 |/|β3| on the
parameters h and N for p = 1

N \ Nh(n�) 31(16) 341(50) 1012(92)

1 2.26 1.60 1.61

3 2.27 1.61 1.64

5 2.27 1.61 1.64

7 2.27 1.61 1.64

15 2.27 1.61 1.64
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3.3 Rectangular Waveguide

Another example with known results of physical experiments is a rectangular
dielectric waveguide (see [7] and references therein). The sides of the rectangle are
1.5 and 1, the radius of the circle � is 1.5, n+ = √

2.08, n∞ = 1 (see an example
of the triangulation of the computational domain� in Fig. 5).

The left panel of Fig. 6 shows the first four dispersion curves β = β(p) of the
reduced problem (5) calculated using a mesh with Nh = 2179 nodes and with
the number of Fourier harmonics N = 10. The experimental data are marked by
dots and again match well with numerical solutions. The right panel of this figure
presents the corresponding dispersion curves β = β(k) for the original problem (2).
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Fig. 5 Triangulation of the domain � for a rectangular waveguide. Here, R = 1.5, Nh = 148
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Fig. 6 The first four dispersion curves β = β(p) (left panel) and β = β(k) (right panel) for a
rectangular waveguide
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Table 3 Rectangular
waveguide: dependence of
e = h−2|β3 − βh3 |/|β3| on the
parameters h and N for p = 1

N \ Nh(n�) 40(17) 304(50) 1016(92)

1 1.36 0.987 0.327

3 1.39 1.19 1.04

5 1.39 1.19 1.05

7 1.39 1.19 1.05

15 1.39 1.19 1.05

For this case, we also present the results of the convergence analysis of the
proposed algorithm with respect to the parameters Nh and N for given p = 1.
As for the previous example, any exact solution does not known. Therefore again,
as an “exact solution” we use the approximate solution computed on the mesh
with Nh = 6015 (n� = 212). The numerical results are presented in Table 3 for
βh3 . Observing this table, we conclude that it is enough to take N = 5, then we
have |β3 − βh3 |/|β3| ≈ 1.1h2.

3.4 Three Circle Shaped Waveguide

Let us consider a waveguide with a more complicated cross section, for which we
do not have any exact solutions or experimental data. The domain �i consists of
three circles that touch each other. The radius of each circle is 0.4. The radius of
the circle � is 1.5, n+ = √

2, n∞ = 1 (see an example of the triangulation of the
computational domain� in Fig. 7).
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Fig. 7 Triangulation of the domain � for a three circle shaped waveguide. The radius of each
circle is 0.4, R = 1.5, Nh = 243
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Fig. 8 The first six dispersion curves β = β(p) (left panel) and β = β(k) (right panel) for a three
circle shaped waveguide

Table 4 Three circle shaped
waveguide: dependence of
e = h−2|β4 − βh4 |/|β4| on the
parameters h and N for
p = 1

N \ Nh(n�) 78(16) 335(50) 1093(90)

1 0.5 23.3 92.5

3 0.619 1.67 1.56

5 0.62 1.67 1.57

7 0.62 1.67 1.57

15 0.62 1.67 1.57

The left panel of Fig. 8 shows the first six dispersion curves β = β(p) of the
reduced problem (5) calculated using a mesh with Nh = 2226 nodes and with the
number of Fourier harmonics N = 10. The first and the fifth curves shown in the
figure correspond to the multiple eigenvalues β1(p) = β2(p) and β5(p) = β6(p),
respectively. The right panel presents the corresponding solutions β = β(k) of the
original problem (2).

Now we again present the results of the convergence analysis of the proposed
algorithm with respect to the parameters Nh and N for given p = 1. Clearly, any
exact solution does not known, hence as an “exact solution” we use the approximate
solution computed on the mesh with Nh = 6006 (n� = 216). The numerical results
are presented in Table 4 for βh4 . Observing this table, we conclude that it is enough
to take N = 5, then we have |β4 − βh4 |/|β4| ≈ 1.6h2.

Figure 9, for given p = 0.2, presents isolines of absolute values of the
eigenfunctions (|H | = (H ·H)1/2) corresponding different eigenvalues β.
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β=1.6124 β=1.6124 β=3.4557

β=3.6532 β=3.9206 β=3.9207

β=5.4895 β=5.4897 β=5.8504

β=5.8505 β=6.2684 β=6.5781

Fig. 9 Three circle shaped waveguide: isolines |H |, Nh = 5032, N = 10, p = 0.2
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Simulation of Dynamic Response
at Resonant Vibrations of a Plate
with a Viscoelastic Damping Coating

Vyacheslav A. Firsov, Victor M. Shishkin, and Ruslan K. Gazizullin

Abstract A technique for determining the dynamic response at resonant vibrations
of a rectangular plate with a soft viscoelastic damping coating is proposed. This
technique is based on finite element approximations and linear physical equations
of a viscoelastic solid. The material of the plate and damping layer is isotropic.
It is believed that the plate with the damping layer is deformed according to the
classical Kirchhoff–Love hypotheses. A special rectangular finite element with
a low-modulus damping coating has been developed to model the inertial, stiff
and damping properties of the marked plate. The system of resolving equations
for plate vibrations in the resonance zone is obtained. Numerical experiments on
approbation and estimation of reliability of the offered technique and the developed
finite element are carried out.

1 Introduction

The value of acceptable vibration of any structure of a particular purpose is
determined by its impact on the strength characteristics of the structure and its
elements, on the performance, health, and well-being of people somehow associated
with them, the operation of the equipment installed on it, etc. In terms of strength
characteristics, one of the most dangerous modes of dynamic deformation of
structures is a resonance, implemented in the structure when the frequencies of its
natural vibrations coincide with the frequency of external cyclic impact. At such
mode of loading, as it is known, amplitude values of dynamic stress-strain state
parameters increase manifold. Their correct and reliable theoretical determination
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with the accuracy necessary for practical purposes requires proper consideration in
the calculated ratios of damping properties of structural materials caused by internal
friction. To date, extensive scientific literature has been devoted to the methods of
their determination and construction to describe the corresponding mathematical
models.

Modern thin-walled structures have a sufficiently dense spectrum of natural
frequencies and can operate in a wide frequency range of disturbing forces. These
factors make it difficult to use traditional methods of resonance tuning out and the
use of various types of damping devices. This is especially true for aircraft structures
and devices, where the use of such methods and devices is almost impossible.
Hence, the ability of the structure to dampen dangerous resonance vibrations itself
preventing the occurrence of significant displacements and overloads becomes
critical. However, it should be noted that the majority of structural materials
(metals, their alloys, and composites), along with their high strength and rigidity,
have a very low damping capacity [1], and for many structures the main reason
for energy dissipation at resonance is friction in the junctions of their individual
elements (structural damping). It is important to note that the latter is a difficult
prediction factor. Therefore, in order to increase damping parameters and reduce the
dynamic intensity of thin-walled structures, their elements are often manufactured
as two-layer structures consisting of a rigid hard layer and a relatively low rigid
coating with high damping properties. Such elements are now widely used in
aircraft and shipbuilding, automotive, civil and industrial buildings, in the design of
devices to reduce their overloads in which various elastomers, mastics, and polymer
compounds are used as damping coatings [2].

2 Rectangular Finite Element with Viscoelastic Damping
Coating

The element consists of two layers (Fig. 1): a rigid isotropic layer 1 and a soft
damping layer 2 (Fig 1a). The element is under the action of a surface dynamic load
q(x, y, t). Since the viscoelastic damping layer is soft, it can be assumed that the
element is deformed within the classical Kirchhoff–Love hypotheses. The nodes of
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Fig. 1 Rectangular finite element of a two-layer plate



Simulation of Dynamic Response at Resonant Vibrations 83

the element are located on the middle surface of layer 1. Each node i(i = 1, 2, 3, 4)
has five degrees of freedom (Fig. 1b): deflection wi ; displacements ui, vi in the
plane 0xy and angles θi, ψi of rotation about the axes 0x, 0y, respectively. Let us
introduce vectors

u =

⎧
⎪⎪⎨
⎪⎪⎩

u1

u2

u3

u4

⎫
⎪⎪⎬
⎪⎪⎭
, v =

⎧
⎪⎪⎨
⎪⎪⎩

v1

v2

v3

v4

⎫
⎪⎪⎬
⎪⎪⎭
, w =

⎧
⎪⎪⎨
⎪⎪⎩

w1

w2

w3

w4

⎫
⎪⎪⎬
⎪⎪⎭
, θ =

⎧
⎪⎪⎨
⎪⎪⎩

θ1

θ2

θ3

θ4

⎫
⎪⎪⎬
⎪⎪⎭
, ψ =

⎧
⎪⎪⎨
⎪⎪⎩

ψ1

ψ2

ψ3

ψ4

⎫
⎪⎪⎬
⎪⎪⎭
.

The displacements u, v of an arbitrary point of the middle surface of an element are
approximated by the expressions

u = Su, v = Sv, (1)

where S is the row matrix of basis functions Hi (i = 1, 2, 3, 4) depending on the
dimensionless coordinates ξ = x/a and η = y/b of the element:

H1 = (1− ξ)(1 − η)/4 ; H2 = (1+ ξ)(1 − η)/4 ;
H3 = (1+ ξ)(1+ η)/4 ; H4 = (1− ξ)(1+ η)/4 .

Dependencies (1) can be represented as a single matrix expression

{
u

v

}
= Hrα, (2)

where

H =
[
H1 0 H2 0 H3 0 H4 0
0 H1 0 H2 0 H3 0 H4

]
; rα = {u1 v1 u2 v2 u3 v3 u4 v4}.

To reproduce the bending state of the plate, we define the deflection w in the
form

w = fT c,

f = {1 x y x2 y2 xy x2y xy2 x3 y3 x3y xy3},
c = {c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11}.

(3)

The angles of rotation of the cross-sections of the plate with coordinates x and y in
accordance with the accepted hypotheses are determined by the expressions

θ = ∂w

∂y
= ∂ fT

∂y
c, ψ = ∂w

∂x
= ∂ fT

∂x
c. (4)
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Element nodes have coordinates x1 = −a, y1 = −b, x2 = a, y2 =
−b, x3 = a, y3 = b, x4 = −a, y4 = b. Substituting these coordinates into
expressions (3) and (4), we obtain a system of 12 linear algebraic equations

Fc = rβ (5)

with a matrix F depending on the coordinates of the element’s nodes and the right-
hand side rβ = {w1 ψ1 θ1 w2 ψ2 θ2 w3 ψ3 θ3 w4 ψ4 θ4}. After finding the
vector c from system (5) and its substitution in approximation (2), we come to the
expression

w = fT F−1rβ,

From here, we can find the basis functions that determine the relationship between
the deflection w and the components of the finite element vector rβ :

Nj = fT Fj (j = 1, 2, . . . , 12).

Here Fj are the j -th columns of the matrix F−1 inverse to the matrix F.
However, it should be noted that the procedure for analytical inversion of the

matrix F using traditional (manual) technologies is practically unrealistic. The
solution to the problem can be found in the application of symbolic calculation mode
of the mathematical package MATLAB [3], which makes it possible to quickly find
the functionsNj :

N1 = (2− 3ξ − 3η + 4ξη + ξ3 + η3 − ξ3η − ξη3)/8,

N2 = a(1− ξ − η − ξ2 + ξη + ξ2η + ξ3 − ξ3η)/8,

N3 = b(1− ξ − η − η2 + ξη + ξη2 + η3 − ξη3)/8,

N4 = (2+ 3ξ − 3η − 4ξη − ξ3 + η3 + ξ3η + ξη3)/8,

N5 = a(−1− ξ + η + ξ2 + ξη − ξ2η + ξ3 − ξ3η)/8,

N6 = b(1+ ξ − η − η2 − ξη − ξη2 + η3 + ξη3)/8,

N7 = (2+ 3ξ + 3η + 4ξη − ξ3 − η3 − ξ3η − ξη3)/8,

N8 = a(−1− ξ − η + ξ2 − ξη + ξ2η + ξ3 + ξ3η)/8,

N9 = b(−1− ξ − η + η2 − ξη + ξη2 + η3 + ξη3)/8,

N10 = (2− 3ξ + 3η − 4ξη + ξ3 − η3 + ξ3η + ξη3)/8,

N11 = a(1− ξ + η − ξ2 − ξη − ξ2η + ξ3 + ξ3η)/8,

N12 = b(−1+ ξ − η + η2 + ξη − ξη2 + η3 − ξη3)/8
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Having functionsNj , the deflection w can be represented as

w = Nrβ = [N1 N2 . . . N12 ] rβ (6)

According to the Kirchhoff–Love hypotheses, it can be assumed that each layer
of the plate is in a plane stress state with normal stresses σx, σy , and shear stress
τxy . These stresses correspond to strain εx, εy , and shear angle γxy determined by
geometric relationships

εx = ∂

∂x

(
u− z∂w

∂x

)
= ∂u

∂x
− z∂

2w

∂x2
, εy = ∂

∂y

(
v − z∂w

∂y

)
= ∂v

∂y
− z∂

2w

∂y2
,

γxy = ∂

∂x

(
v − z∂w

∂y

)
+ ∂

∂y

(
u− z∂w

∂x

)
= ∂v

∂x
+ ∂u
∂y

− 2z
∂2w

∂x∂y
.

The z coordinate for layer 1 varies within the −h1/2 ≤ z ≤ h1/2 limits, for layer
2 within the h1/2 ≤ z ≤ h1/2 + h2 limits. It is convenient to write the presented
dependencies in dimensionless coordinates ξ and η of the element:

εx = 1

a

∂u

∂ξ
− z 1

a2

∂2w

∂ξ2 ; εy = 1

b

∂v

∂η
− z 1

b2

∂2w

∂η2 ;

γxy = 1

a

∂v

∂ξ
+ 1

b

∂u

∂η
− 2z

ab

∂2w

∂ξ∂η
.

(7)

Let us introduce the vector ε = {εx εy γxy} and differentiating operators

ATα =
[

1
a

∂
∂ξ

0 1
b

∂
∂η

0 1
b

∂
∂η

1
a

∂
∂ξ

]
, ATβ =

[
1
a2

∂2

∂ξ2
1
b2

∂2

∂η2
2
ab

∂2

∂ξ∂η

]
.

Taking this into account, dependencies (7) can be represented as a single matrix
expression

ε = Aα

{
u

v

}
− zAβw. (8)

Substituting then representations (8) and (2) into (6), we obtain the connection
between strains and nodal displacements of the finite element:

ε = AαHrα − zAβNrβ.

The resulting expression can be represented as

ε = Bαrα − zBβrβ, (9)
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where

Bα = AαH = [
Bα,1 Bα,2 Bα,3 Bα,4

]
, Bβ = AβN = [

Bβ,1 Bβ,2 . . . Bβ,12
]
.

Blocks Bα,i (i = 1, 2, 3, 4) and Bβ,j (j = 1, 2, . . . , 12) are defined by
expressions

BTα,i =
[

1
a
∂Hi
∂ξ

0 1
b
∂Hi
∂η

0 1
b
∂Hi
∂η

1
a
∂Hi
∂ξ

]
, BTβ,j =

[
1
a2

∂2Nj

∂ξ2
1
b2

∂2Nj

∂η2
2
ab

∂2Nj
∂xi∂η

]
. (10)

The material of the rigid and damping layers of the plate is considered isotropic.
To take into account the elastic and damping properties of the material, linear
physical dependences can be used

σ k = Dkε + Dg,kε̇, (11)

representing a generalization of the well-known Kelvin–Voigt model [4, 5] for the
case of a complex stress state of the material. Here σ k = {σx σy τxy}k (k = 1, 2)
are stresses in k-th layer of the plate; Dk, Dg,k are the stiffness matrix and
the damping matrix of the material of this layer, respectively. For an isotropic
viscoelastic material in a plane stressed state, the matrices Dk and Dg,k will be
as follows:

Dk =
⎡
⎣
Ek/(1− ν2

k ) Ekνk/(1− ν2
k ) 0

Ekνk/(1− ν2
k ) Ek/(1− ν2

k ) 0
0 0 Gk

⎤
⎦ ;

Dg,k = 1

πω

⎡
⎣
Ekδε,k/(1− ν2

k ) Ekδε,kνk/(1− ν2
k ) 0

Ekδε,kνk/(1− ν2
k ) Ekδε,k/(1− ν2

k ) 0
0 0 δγ,kGk

⎤
⎦ .

Here Ek, Gk , δε,k, δγ,k are elastic moduli and logarithmic decrements of vibrations
of the layers’ material, respectively, under tension-compression and shear; νk are
Poisson’s ratios; ω is the circular frequency of material deformation. Taking into
account (9), dependences (11) are obtained as follows:

σ k = Dk(Bαrα − zBβrβ)+ Dg,k(Bα ṙα − zBβ ṙβ). (12)

The first summand in (12) represents the elastic part of the stresses, which linearly
depends on the nodal displacements rα and rβ of the element, the second summand
is the inelastic part arising from the damping properties of the material and linearly
depending on the nodal velocities ṙα and ṙβ .
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Let us write down the virtual work of the elastic part of the stresses in the rigid
layer of the plate on the virtual strain δε of this layer:

δA1 = −
h1/2∫

h1/2

a∫

−a

b∫

−b
δεTD1(Bαrα − zBβrβ) dxdydz.

Substituting here relation (9), we obtain

δA1 = −
h1/2∫

h1/2

a∫

−a

b∫

−b
(δrTαB

T
α − z δrTβBTβ )D1(Bαrα − zBβrβ) dxdydz.

After integration over the z coordinate, the last expression takes the form

δA1 = −h1δrTα

a∫

−a

b∫

−b
BTαD1Bαdxdy rα− h

3
1

12
δrTβ

a∫

−a

b∫

−b
BTβ D1Bβdxdy rβ. (13)

Let’s introduce a vector r(e) = {rα rβ} containing all nodal displacements of the
finite element. Taking into account this vector, expression (13) can be reduced to
the form

δA1 = −δ
(
r(e)

)T
K1r(e)

where K1 is the block-diagonal matrix representing the contribution of layer 1 to
the stiffness matrix of the finite element:

K1 =
[
Kαα,1 0
0 Kββ,1

]
.

Blocks Kαα,1 and Kββ,1 defined by expressions

Kαα,1 = h1

a∫

−a

b∫

−b
BTαD1Bαdxdy = h1ab

1∫

−1

1∫

−1

BTαD1Bαdξdη, (14)

Kββ,1 = h3
1

12

a∫

−a

b∫

−b
BTβD1Bβdxdy = h3

1

12
ab

1∫

−1

1∫

−1

BTβD1Bβdξdη. (15)
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From expressions (10) follows that the product BTαD1Bα quadratically depends
on the dimensionless coordinates ξ and η of the element. In this case, the Gaussian
formula [6] with two points in each coordinate direction can be used to calculate the
integral in (14) accurately.

1∫

−1

1∫

−1

BTαD1Bαdξdη =
2∑

m=1

2∑
n=1

BTα (ξm, ηn)D1Bα(ξm, ηn)QmPn, (16)

where ξ1 = η1 = −0.57735 and ξ2 = η2 = 0.57735 are coordinates of Gaussian
points; Q1 = Q2 = P1 = P2 = 1 are weight factors. In the product BTβD1Bβ ,
the largest sum of the degrees of coordinates ξ and η, as again follows from (10), is
equal to four. Therefore, to accurately calculate the integral in (15), it is necessary to
take the Gaussian quadrature with three points along each of the element coordinates
ξ and η:

1∫

−1

1∫

−1

BTβD1Bβdξdη =
3∑

m=1

3∑
n=1

BTβ (ξm, ηn)D1Bβ(ξm, ηn)QmPn, (17)

ξ1 = η1 = −0.77460; ξ2 = η2 = 0; ξ3 = η3 = 0.77460; Q2 = P2 = 0.88888;
Q1 = Q3 = P1 = P3 = 0.55555.

Similarly, the contribution to the stiffness matrix of the element of the second
(damping) layer is obtained:

K2 =
[
Kαα,2 Kαβ,2
KTαβ,2 Kββ,2

]
;

Kαα,2 = h2ab

1∫

−1

1∫

−1

BTαD2Bαdξdη; (18)

Kαβ,2 = −1

2
h2

2

(
h1

h2
+ 1

)
ab

1∫

−1

1∫

−1

BTαD2Bβdξdη; (19)

Kββ,2 = h3
2

12

(
3
h2

1

h2
2

+ 6
h1

h2
+ 4

)
ab

1∫

−1

1∫

−1

BTβD2Bβdξdη. (20)

The integrals in expressions (18) and (19) are found at the same Gaussian points
and weight factors as in formula (16). The integral in (20) is calculated by the
formula (17) with the replacement of the matrix D1 in it by the matrix D2.
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The complete stiffness matrix of a finite element is obtained by summing the
contributions of the rigid and damping layers:

K(e) =
[
Kαα,1 0
0 Kββ,1

]
+
[
Kαα,2 Kαβ,2
KTαβ,2 Kββ,2

]
.

In a similar form one can record a finite element damping matrix:

C(e) =
[
Cαα,1 0
0 Cββ,1

]
+
[
Cαα,2 Cαβ,2
CTαβ,2 Cββ,2

]
.

The matrix C(e) blocks are found according to the same formulas as the correspond-
ing matrix K(e) blocks with the replacement of stiffness matrices Dk (k = 1, 2) in
them by damping matrices Dg,k of the material of layers 1, 2 of the element.

Let us proceed to the construction of the finite element mass matrix M(e). When
building this matrix, we can consider that the volume forces of inertia are caused
only by accelerations ẅ in the direction of the 0z axis of the element. Let us write
down the virtual work of these forces on virtual displacements δw of the element:

δA = −hρ
a∫

−a

b∫

−b
δw ẅ dxdy. (21)

Here h = h1 + h2 and ρ = (ρ1h1 + ρ2h2)/h are the thickness and average density
of the element, respectively. To represent the displacementsw when determining the
inertial forces, we can take a bilinear approximation similar to representations (1):
w = Sw. Substituting this approximation into (21), we obtain

δA = −hρ δwT
a∫

−a

b∫

−b
ST S dxdy ẅ.

The last expression can be represented as

δA = −δwTM(e)
w ẅ,

where

M(e)
w = hρ

a∫

−a

b∫

−b
ST S dxdy = hρ ab

1∫

−1

1∫

−1

ST S dξdη .
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The integral in the resulting expression is calculated using the Gauss formula with
two points in each coordinate direction:

1∫

−1

1∫

−1

ST S dξdη =
2∑

m=1

2∑
n=1

ST (ξm, ηn)S(ξm, ηn)QmPn. (22)

It should be noted that the resulting matrix M(e)
w is constructed concerning the

nodal displacements wi(i = 1, 2, 3, 4) of the finite element and has dimensions of
4 × 4, and the total mass matrix M(e) of the element should have dimensions of
20× 20 (in accordance with the number of nodal displacements in vector). To form
the required matrix, one can use the procedure

M(e) = LT M(e)
w L,

where L is a control matrix of 4× 20 size :

L =

⎡
⎢⎢⎣

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎦ .

It remains to form the vector of external nodal forces (load vector) of the finite
element, which can be obtained from the expression for the virtual work of the
surface load q(x, y, t):

δA =
a∫

−a

b∫

−b
δw q(x, y, t) dxdy . (23)

We represent the surface load and deflection w in the form

q(x, y, t) = Sq(t), w = Sw.

Here q(t) is the vector of q(x, y, t) values at the nodes of the finite element.
Substituting these representations into expression (23), we obtain

δA = δw
a∫

−a

b∫

−b
ST S dxdy q(t).
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Hence, the components of external nodal forces in the direction of displacementswi
of the element are obtained

P(e)w (t) =
a∫

−a

b∫

−b
ST S dxdy q(t) = ab

1∫

−1

1∫

−1

ST S dξdη q(t).

The integral in the last expression is calculated by the formula (22). To form the
load vector of the finite element relative to the nodal displacements r(e), one can use
the previous control matrix L:

P(e)(t) = LT P(e)w (t).

3 Formation of Solving Equations System

To obtain the motion equations of the finite element model of the plate, one can use
the Lagrange–d’Alembert principle

− δrTMr̈− δrTCṙ− δrTKr+ δrT P(t) = 0, (24)

where M, C, K, r, P(t) are mass matrix, damping matrix, stiffness matrix, nodal
displacement vector, and external nodal force vector of the noted model respectively.
As vector δr components are independent and not equal to zero, then from (24)
follows the system of equations of motion of the plate

Mr̈+ Cṙ+Kr = P(t). (25)

Let us consider resonant vibrations under the action of a load P(t) = P0e
ipt

with amplitude P0 and frequency p = ωj , where ωj is one of the free vibrations
frequencies of the plate. In this case, the vibrations of the plate occur in mode Fj
corresponding to the frequency ωj :

r = sj (t)Fj , (26)

where sj (t) is the generalized coordinate. Substituting (26) into the system (25)
and then applying the procedure of the Bubnov–Galerkin method, we come to one
equation for the coordinate sj (t):

mj s̈j + cj ṡj + kj sj = p0,j e
ipt (27)

with modal parameters

mj = FTj MFj , cj = FTj CFj , kj = FTj KFj , p0,j = FTj P0.
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The solution to Eq. (27) will be sought in the form

sj (t) = s0,j ei(pt−φj ), (28)

where φj is the phase shift of the coordinate sj (t) relative to the load vector P0e
ipt .

Substituting (28) into Eq. (27) and then canceling the common factor eipt , we arrive
at the system of resolving equations

[
kj − p2mj pcj

pcj −kj + p2mj

]{
sa,j

sb,j

}
=

{
p0,j

0

}
, (29)

where sa,j = s0,j cosφj , sb,j = s0,j sin φj . From system (29) components sa,j
and sb,jare found. After that one can determine the amplitude s0,j and tgφj : s0,j =√
s2
a,j + s2

b,j ; tgφj = sb,j /sa,j .

4 Determination of Stress Amplitudes in Finite Elements
Under Resonant Vibrations of a Plate

Since the modulus of elasticity of the rigid layer of the plate is much higher
than the modulus of the damping layer, and the strains of the layers are of the
same order, the strength of the plate is mainly determined by the rigid layer. The
basis for determining the stress amplitudes in a given layer can be the previous
dependence (12) (the index k, which means the layer number, is hereinafter
omitted):

σ = {σx σy τxy} = D(Bαrα − zBβrβ)+ Dg(Bα ṙα − zBβ ṙβ).

Let us introduce the notation

DB = D
[
Bα −zBα

]
, Dg,B = Dg

[
Bα −zBα

]
.

Taking into account these designations, the stresses σ can be calculated directly
through the vector of nodal displacements r(e) = {rα rβ} and the vector of nodal
velocities ṙ(e) = {ṙα ṙβ} of the finite element:

σ = DB r(e) + Dg,B ṙ(e). (30)

At the steady resonant vibrations of the plate, expression (30) can be represented
in the complex form:

diag[ei(pt−γ )]σ (e)0 = (DB + ipDg,B)diag[ei(pt−ϕ)]r(e)0 .
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Here i is an imaginary unit; σ
(e)
0 and r(e)0 are vectors containing amplitudes

of stresses and amplitudes of finite element nodal displacements, respectively;
diag[ei(pt−γ )] and diag[ei(pt−ϕ)] are diagonal matrices with ei(pt−γj ) and ei(pt−ϕr)
elements; γj and ϕr are phase shifts of vector σ

(e)
0 and r(e)0 components relative to

the load vector of the finite element model of the plate. After simple transformations
and reduction of the common factor eipt , we come to the expression

σ a + i σ b = (DB + i pDg,B)(r(e)a + ir(e)b ), (31)

where the notation is introduced:

σ a = diag[cos γ ]σ (e)0 ; σ b = diag[sin γ ] σ (e)0 ;
r(e)a = diag[cos ϕ] r(e)0 ; r(e)b = diag[sin ϕ] r(e)0 .

The vectors σ a and σ b contain, respectively, in-phase and ortho-phase (shifted
by π/2) with respect to the load components of the stress amplitudes. From
expression (31) it follows:

σ a = DBr(e)a − pDg,Br(e)b ; σ b = DBr
(e)
b + pDg,Br(e)a .

This makes it possible to determine the stress amplitudes σ (e)
0 and phase shifts γj

using the formulas

σ0,j =
√
σ 2
a,j + σ 2

b,j , tg γj = σb,j /σa,j .

5 Numerical Experiments

A rectangular plate with dimensions of 960 × 580 mm, consisting of a rigid layer
1 and a low-module damping layer 2, hinged along all edges is considered. The
material of the rigid layer is aluminium alloy D16AT, the material of the damping
layer is mastic ADEM-NSh. The thickness of the plate layers: h1 = 1, 8 mm;
h2 = 0, 4 mm. Characteristics of D16AT alloy: Young moduleE = 7.2 ·1010 N/m2;
Poisson’s ratios ν = 0.3; logarithmic decrement of vibrations δ = 0.0054; density
ρ = 2700 kg/m3. ADEM-NSh mastic characteristics:E = 5.4·109 N/m2; ν = 0.28;
δ = 0.75; ρ = 1150 kg/m3. The resonant surface load q(t) = q0 cospt with
amplitude q0 = 64.5 N/m2 and frequency p = ω1 = 114.16 s−1, where ω1 is
the frequency of the main tone of the plate’s free oscillations, found by inverse
iterations [7, 8]. The finite element model of the plate consists of 60 identical
elements (10 elements in the long side direction and 6 elements in the short side
direction).
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Fig. 2 Deflection amplitudes w0 (a) and stress amplitudes σx,0 (b), σy,0 (c) and τxy,0 (d) on the
lower surface of the plate at resonance at the frequency p = ω1

Figure 2 shows the amplitudes of deflections w0, the amplitudes of normal
stresses σx,0 and σy,0, as well as the amplitudes of the shear stresses τxy,0 on the
lower surface of the plate at resonance. The results presented are in qualitative
agreement with the concept of the operation of the plate under the given conditions
of its loading and fixing.

The strongest criterion for evaluating the reliability of the obtained results can be
the fulfillment of the condition of energy balance at resonance. This condition is the
equality of scattered energy 
W in the volume of the finite element model of the
plate for one cycle of oscillations and of the full work A of external nodular forces
P(t) during the same cycle: 
W = A. For determination of 
W we can use the
damping matrix C and the amplitude node displacements vector r0 [9]:


W = πprT0 Cr0. (32)

Full work A is the summation of external nodal forces Pi(t) on one cycle of
oscillations is:

A =
∑
k

2π/p∫

0

Pk(t) ṙk(t) dt.
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Here Pk(t) = P0,k cospt , rk(t) = r0,k cos(pt − ϕk). After integrating the product
Pk(t) ṙk(t) we get

A = π
∑
k

P0,k · rb,k = πPT0 rb. (33)

Calculations carried out according to formulas (32) and (33) for the considered
two-layer plate confirm with high accuracy the fulfillment of the energy balance
condition:
W = 0.44399 N · m; A = 0.44399 N · m.
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The Limit Theorem on the Trajectories
Distribution

Farit G. Gabbasov, Aleksandr V. Gerasimov, Vyacheslav T. Dubrovin,
R. M. Askhatov, and Maria S. Fadeeva

Abstract In mathematical modeling wide range of mathematical methods and con-
cepts are used, in particular, ergodic theory which studies the statistical properties
of motions in measure spaces (dynamic systems). The paper considers a dynamic
system generated by measure space transformations. The central limit theorem with
a convergence rate estimate for the trajectories distribution of a finite-dimensional
torus is extended into transformations that are not ergodic.

1 Introduction

In mathematical modeling (for example, in studies of the deformation and motion
of bodies, filtration, low-temperature plasma, etc. [1–8]) it becomes necessary to
use dynamic systems generated by a wide range of measure spaces transformations.
Analysis of the statistical properties of such systems is a topical problem not only for
mathematicians but also for specialists from other industries. The results obtained
in this research are an extension of dynamic system studies presented in [9–11].
They considered the dynamic systems generated by measure space transformations
(automorphisms, endomorphisms). The history of the issue is as follows. In 1964
V.P. Leonov [12] proved the following central limit theorem.

Let�k is a k-dimensional torus,mes(.) is an invariant measure on it. Aside from
the algebraic properties of �k , mes(.) can be identified with the Lebesgue measure
defined on the hypercube�k = {t : t = (t1, · · · , tk), 0 ≤ t1 ≤ 1, · · · , 0 ≤ tk ≤ 1}
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of the k-dimensional Euclidean space Rk . It is known that any measure-preserving
algebraic torus endomorphism is defined using a nondegenerate integer matrixW by
the convention T t = tW, t ∈ �k. Let W be an integer matrix. Among the roots of
its characteristic polynomial, there is no one of unity. In this case the endomorphism
T is ergodic. Suppose that the real-valued periodic function f (t) with a period of
1 for each argument satisfies the following conditions

∫
�k

f (t)dt = 0,
∫
�k

f 2(t)dt <

∞ and there is given a restriction on its integral modulus of continuity: for some
A, ε > 0

max
1≤i≤k sup

0≤h≤δ

∫
|f (t1, · · · , ti−1, ti + h, ti+1, · · · , tk)− f (t1, · · · , tk)|

2

dt ≤ A|ln δ|−2−ε

Next, if σ 2 = lim
n→∞

∫
�k

1
n

(
n∑
k=1
f (tWk)

)2

dt > 0,

then lim
n→∞ mes

{
t : t ∈ �k, 1

σ
√
n

n∑
m=1

f (tWm) ≤ x
}

= 1√
2π

x∫
−∞

e−u2
du. After this,

it is reasonable that the question of studying the convergence rate in this limit
relation arises. Articles of authors of this work were devoted to this. The results
were obtained for the case of matrices W when all roots of their characteristic
polynomials are greater than unity in modulus. Such matrices stretch Euclidean
space in all directions. Exactly this matrix property makes it possible to obtain the
property of the correlation exponential decay from simple geometric considerations
and to apply the theory of summation of weakly dependent random variables to
the studying problem. There were obtained the convergence rate estimates of the
following ordersO(lnn/n1/4),O(1/n1/2−ε),O(ln n/n1/2). The estimates are given
in chronological order. The results of these works can be extended to a certain class
of other transformations. This work is devoted to this.

2 Statement and Proof of Results

Let define the transformation t ′ = tWof the Euclidean space Rk using a certain
set of functions: t ′1 = φ1(t1, . . . , tk), . . . , t

′
k = φk(t1, . . . , tk). Let the following

conditions are fulfilled:

1. {tW } = {{t}W } where is the sign of fractional unit.
2. Functions φi, i = 1, . . . , k and their partial derivatives are bounded in absolute

value by some constant, and Jacobian of W is equal to a constant value J. Besides,
|J | > 1.

3. There is a number δ > 0, for which
∥∥tW − t ′W∥∥ ≥ (1+δ) ∥∥t − t ′∥∥ , t, t ′ ∈ Rk ,

where ‖‖ is the designation of a vector length in Rk .
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4. There is a number ρ ∈ (0, 1), such that sup ‖dsW‖ / ‖ds‖ ≤ (1− ρ) |J |, where
ds = (dt1, . . . , dtk) if the arc differential-vector of any smooth curve in Rk (by
smooth curve it is meant a curve with a tangent at any point), and sup is taken
along any such curve.

5.
∣∣f (t)− f (t ′)∣∣ ≤ A∥∥t − t ′∥∥α , t, t ′ ∈ �k , where ‖t‖ = t21 + . . .+ t2k .

Using the transformation W let define the transformation of torus T which can be
identified with the unit hypercube in Rk according to the rule: T t = {tW } , t ∈ �k .
Theorem 1 Under the preceding foregoing rules, the following relation is the case:

Fn(x) = mes

{
t : t ∈ �k, 1

σ
√
n

n∑
m=1

f (T mt) ≤ x
}
= �(x) + O(nε−0.5), where

σ 2 = lim
n→∞

∞∫
−∞

x2dFn(x), �(x) = 1√
2π

x∫
−∞

e−u2
du, and f (t)is a real-valued

periodic (with a period of 1 for each argument) Lebesgue square-integrable function
that satisfies the Lipschitz condition 5 and relation

∫
�k

f (t)dt = 0, and ε is an

arbitrarily small positive number.

Proof Condition 1) is necessary for T d t = {
tWd

}
, d = 1, 2, . . .Due to conditions

3 and 4 the following lemmas can be proved. ��
Lemma 1 Let g(t) satisfies the Lipschitz condition 5, and h(t) is a square-
integrable on Rk function, such that B2 = ∫

�k

h2(t)dt <∞, h(t + r) = h(t) for

any integer vector r. Next, if conditions 1–4 are fulfilled for the transformation
W, then the following equality is correct:

∫
�k

g(t)h(T qt)dt = ∫
�k

g(t)dt
∫
�k

h(t)dt +
O(|J |−qε + θαq) where ε > 0 is a sufficiently small fixed number, θ = 1/(1+ δ), δ
is from condition 3), the constant in the symbol “O” depends only on the constant
A in Lipschitz condition, on the root B of the integral, on the matrix W and the
dimension k.

Proof Let us write
∫
�k

g(t)h(tWq)dt = |J |−q ∫
�kW

q

g(tW−q )h(t)dt . The transfor-

mation W carries a unit cube into a certain area �kW . Here and elsewhere R(k) is
a lattice of integer points from �kW

q . We represent the integration domain �kWq

as �kWq = 
0
⋃
(
⋃
r 
r) where the backbone of 
0 is a union of the lattice R(k)

parallelepipeds having at least one common point with the boundary of area�kWq ,
and
r runs through all remaining lattice parallelepipeds. According this∫
�kWq

g(tW−q )h(t)dt = ∫

0

g(tW−q )h(t)dt +∑
r

∫

r

g(tW−q )h(t)dt .

Further, because of periodicity
∫

r

g(tW−q )h(t)dt = ∫
�k

g((t + r)W−q )h(t)dt ,

where r = (r1, . . . , rk) is a vector. It is necessary to shift 
r by this vector. Then,
it holds the position of unit cube �k at the origin. Due to condition 3) we have∥∥∥t − t ′

∥∥∥ ≥ (1 + δ)
∥∥∥tW−1 − t ′W

∥∥∥ ,
∥∥∥tW−1 − t ′W

∥∥∥ ≤ 1
1+δ

∥∥∥t − t ′
∥∥∥ Repeating q
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times yields that
∥∥∥tW−q − t ′W−q

∥∥∥ ≤ 1
(1+δ)q

∥∥∥t − t ′
∥∥∥ and

∥∥tW−q∥∥ ≤ 1
(1+δ)q ‖t‖

for all t from�k . Therefore, sup
∥∥tW−q∥∥
t∈�k

≤ sup
t∈�k

‖t‖ θ−q = √
kθ−q , θ = 1/(1+δ),

whence it follows that

∣∣∣∣∣
∫
�k

g((t + r)W−q )h(t)dt − g(rW−q )
∫
�k

h(t)dt

∣∣∣∣∣ =

O(θ−αq) or

∣∣∣∣∣
∫

r

g((t)W−q )h(t)dt − g(rW−q )
∫
�k

h(t)dt

∣∣∣∣∣ = O(θ
−αq).

Further, since the volume of domain �kWq is equal to |J |q , and the curve
bounding this domain is smooth, then it follows that Pq ≤ |J |q(1− ρ)q from
the condition 4) restricting the increase of perimeter Pq of the area �kWq in
connecting with an increase of q. Hence, there is some sufficiently small positive
number ε0 such that mes(
0) = O(Pq) = O(|J |q−qε0). Using it and Lipschitz
condition 5) there is a result

∫

0

g(tW−q )h(t)dt = O(|J |q−qε0). After that, taking

into account that the number of integer points in R(k) is Nq = O(|J |q − |J |q−qε0),
let substitute the estimates that we obtained and get

∫
�kWq

g(tW−q )h(t)dt =
∫
�k

h(t)dt (
∑
r

g(rW−q )+O(|J |q−qε0 + |J |qθαq) By mean-value theorem there is a

point xr ∈ 
rW−q that g(xr) = |J |q ∫

rW−q

g(t)dt . Since

g(xr ) = g(rW−q )+O(θα), then
∫

�kWq

g(tW−q )h(t)dt =
|J |q ∫

�k

h(t)dt
∫

⋃
r 
rW

−q
g(t)dt+O(|J |q−qε0+|J |qθαq). In the obtained expression

let replace
∫

⋃
r 
rW

−q
g(t)dt to

∫
�k

g(t)dt . The replacement error will go into the

remainder, since
∫

⋃
r 
rW

−q
g(t)dt = ∫

�k

g(t)dt +O(|J |−ε0q). Here we used the fol-

lowing estimate mes(�k/
⋃
r 
rW

−q ) = |J |−ε0q . The next formula is the result of
replacement:

∫
�k

g(t)h(T qt)dt = |J |q ∫
�k

g(t)dt
∫
�k

h(t)dt +O(|J |q−qε0 +|J |qθαq)
which leads to the completion of the proof. ��
Lemma 2 There are numbers k1 ≤ k2 ≤ . . . ≤ kν . In that case, if km+1 −
km ≥ λ, then

∣∣∣∣∣
∫
�k

ν∏
i=1
f (tWki )dt− ∫

�k

m∏
i=1
f (tWki )dt

∫
�k

ν∏
i=m+1

f (tWki )dt

∣∣∣∣∣ ≤
(const)νθλ1 where 0 < θ1 < 1 and depends on A and α from condition 5, as well as
on δ from condition 3) and the Jacobian |J | of the transformation W.
Proof Let us write

∫
�k

ν∏
i=1
f (tWki )dt = |J |−km−g ∫

�kWkm+g

ν∏
i=1
f (tWki−km−q)dt.

Here g = [2λ/3]. As before, R(k) is a lattice of integer points from �kW
km+g ,


0 is a union of the lattice R(k) parallelepipeds having at least one common point
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with the boundary of area �kWkm+g , and 
r runs through all remaining lattice
parallelepipeds. Then,

|J |−km−g
∫

�kWkm+g

ν∏
i=1

f (tWki−km−q )dt (1)

= |J |−km−g
∫


0

ν∏
i=1

f (tWki−km−q)dt+|J |−km−g
∑
r

∫


r

ν∏
i=1

f (tWki−km−q)dt =

= |J |−km−g
∑
r

∫


r

m∏
i=1

f ((t + r)Wki−km−q )×
ν∏

i=m+1

f (tWki−km−q )dt

+O(|J |−ε0(km+g))

where ε0 is a sufficiently small fixed positive number. Due to condition 3) the

function f2(t) =
m∏
i=1
f ((t + r)Wki−km−q) satisfies the Lipschitz condition with

constantsA→ (2A+ 1)ν, α→ α. Actually, f2(t+h) =
m∏
i=1
f ((t + r)Wki−km−q+

hWki−km−q ) =
m∏
i=1
(f ((t + r)Wki−km−q)+ ρiA

∥∥hWki−km−q∥∥α), (2) where |ρi | ≤

1, i = 1, . . . ,m However, if |xi | ≤ A, |εi | ≤ ε, then

∣∣∣∣
m∏
i=1
(xi + εi)−

m∏
i=1
xi

∣∣∣∣ ≤
ε(1+ 2A)m, that in application to right-hand side of (2) gives |f2(t + h)− f2(t)| ≤
2(1+ 2A)m. Let apply Lemma 1 to the integral under the sum sign in (1),
replacing in the estimate of the lemma A by (2A+ 1)ν and setting g(t) =
m∏
i=1
f ((t + r)Wki−km−q ), h(t) =

ν∏
i=m+1

f (tWki−km−q), q = km+1 − km− g. Since

km+1 − km ≥ [λ/3], then q ≥ [λ/3] by the definition of the number g, and
by Lemma 1

∫
�k

g(t)h(T qt)dt = ∫
�k

g(t)dt
∫
�k

h(t)dt + O((1+ 2A)2ν(|J |−λε0/3 +
θαλ/3).

Next, we substitute the result expression into (1):

∫

�k

ν∏
i=1

f (tWki )dt = (2)

= |J |−km−g
∑
r

(

∫

�kr

m∏
i=1

f ((t + r)Wki−km−q)dt ×
∫

�k

ν∏
i=m+1

f (tWki−km−q )dt+

+O((1+ 2A)2ν(|J |−λε0/3 + θαλ/3)))+O(|J |−ε0(km+g)) =
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= |J |−km−g
∑
r

∫


rr

m∏
i=1

f (tWki−km−q)dt ×
∫

�k

ν∏
i=m+1

f (tWki−km−q)dt+

+(1+ |J |−ε0) ·O((1+ 2A)2ν(|J |−λε0/3 + θαλ/3))+O(|J |−ε0(km+g))

Further, since

∑
r

∫


rr

m∏
i=1

f (tWki−km−q )dt =
∑
r

1

mes
rW−(km+g)

∫


rW−(km+g)r

m∏
i=1

f (tWki )dt =

(3)

= |J |km+g
∫

⋃
r 
rW

−(km+g)
r

m∏
i=1

f (tWki )dt

= |J |km+g(
∫

�kr

m∏
i=1

f (tWki )dt +O(|J |−ε0(km+g))),

then the next will follow from (3)

∫

�k

ν∏
i=1

f (tWki )dt =

=
∫

�kr

m∏
i=1

f (tWki )dt ×
∫

�k

ν∏
i=m+1

f (tWki )dt+

+(1+ |J |−ε0) ·O((1+ 2A)2ν(|J |−λε0/3 + θαλ/3))+O(|J |−ε0(km+g)) =

=
∫

�kr

m∏
i=1

f (tWki )dt ×
∫

�k

ν∏
i=m+1

f (tWki )dt +O(cνθλ)

Lemma 2 is proved. ��
Lemma 3 The following relation is the case:

1

σ
√
n

n∑
m=1

(f (tWm)−
∫

�k

f (tWm)dt) = 1

σ
√
n

n∑
m=1

(f (tWm)+O(1/√n).

Proof Since the transformation T d t = {
tWd

}
, d = 1, 2, . . . does not remain

the Lebesgue measure on �k, then
∫
�k

f (tW)dt �= 0, except that
∫
�k

f (t)dt = 0.
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But it is easy to get around the difficulty that appears in this case. It can be done
by considering functions f (tWm) − ∫

�k

f (tWm)dt,m = 0, 1, 2, . . . . instead of

functions f (tWm) in all calculations. Let us show that

∫

�k

f (tWq)dt = O(e−aq), (4)

where a > 0 is a constant. Indeed, just as at the beginning of the proof of Lemma 1,
we write

∫
�k

f (tWq)dt = |J |−q ∫
�kWq

f (t)dt = ∣∣J−q∣∣ ( ∫

0

f (t)dt +∑
r

∫

r

f (t)dt .

Further, since
∫

r

f (t)dt = ∫
�k

f (t + r)dt = ∫
�k

f (t)dt = 0,
∫

0

f (t)dt =
O(|J |q−qε0 , then the validity of (4) becomes obviously and the statement of
Lemma 3 follows from this. Lemmas 1 and 2 show a weak dependence of terms
in the sum Sn = ∑n

j=1 f (T
j t). We denote the vth semi-invariant of this sum by

χν(n), i.e. χν(n)= dν

dzν
ln
∫
�k

exp(z
∑n
k=1 f (tW

k))dt |z=0 . ��
Lemma 4 The estimate χν(n) = O(n). is the case for fixed ν, 2 ≤ ν < ω, where
ω is a sufficiently large positive number.

Proof This lemma is proved using Lemmas 1 and 2 as in [13]. ��
Lemma 5 The estimate

∫
�k
(
∑m
k=1 f (tW

k))2νdt ≤ K2νν!(M + 1)ν(1 +
θK(M + 1)ν), is the case for fixed ν, 1 ≤ ν < ω, where 1 < θ < 1,M =
[m/K] ,K− is any number from the interval (1, m/3). Here [a] is the designation
of the integer part of the number a. The lemma is proved in the same way as in the
article [1–9].

Proof The proof of the theorem uses probabilistic terminology and tools. The
theorem is proved using methods of summation of weakly dependent random
variables based on the idea of S.N. Bernstein. He proposed to split the sums of
weakly dependent random variables into long and short partial sums. The result
of such kind separation is the fact that long sums become almost independent,
and the contribution of short sums is small to the total distribution. Let us denote
ξj = f (T j ). The sum of the distribution of which is the problem of this studying
is Sn = ∑n

j=1 ξj . Let Q and N be natural numbers increasing together with
n. They fulfill the condition |n− p(Q+N)| ≤ p. The sum Sn is dividing

as follows: Sn = √
Q

(
zp + z0

p

)
= √

Q
∑p

j=1 yj +
√
Q
∑p+1
j=1 y

0
j , where

yj = (
1/
√
Q

)∑Q
r=1 ξ(j−1)(Q+N)+r , y0

j = (
1/
√
Q

) ∑N
r=1 ξjQ+(j−1)N+r , .

y0
p+1 = ∑n

r=1 ξp(Q+N)+r . Let, further, ẑp = ∑p

j=1 ŷj , where ŷ1, . . . , ŷp

are quantities satisfying the following properties: mes
{
t : t ∈ �k, ŷk < x

} =
mes {t : t ∈ �k, yk < x}

∫
�k

exp(iẑp/
√
p)dt = ∏p

j=1

∫
�k

exp(iŷj /
√
p)dt . The

second property shows that the quantities ŷ1, . . . , ŷp are, as it were, independent
random variables (in terminology of probability theory).
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We denote

σ 2(Q) =
∫

�k

(∑Q

j=1
ξj /

√
Q

)2

dt,

Fp(x) = mes
(
t : t ∈ �k, zp ≤ xσ(Q)√p

)
,

F̂p(x) = mes
(
t : t ∈ �kẑp ≤ xσ(Q)√p

)
,

fp(l) =
∫

�k

exp(ilzp/( σ (Q)
√
p))dt ,

f̂p(l) =
∫

�k

exp(ilẑp/( σ (Q)
√
p))dt.

Letters Cj ,ωj will denote positive constants which are independent of p,Q,N .
Using Lemmas 1 and 2 it is possible to obtain the following

∣∣∣fp(l)− f̂p(l)
∣∣∣ ≤ C1

√
p/Q exp(−C2N) (5)

We assume that N = n1/ω1 ω1 = ω0.75. Then, (5) will be written as follows:

∣∣∣fp(t)− f̂p(t)
∣∣∣ ≤ C2

√
p/Qn−ω1 (6)

Next, we bring to use the functionGνp(x) = �(x)+∑ν
j=1 Pk(−�)/pj/2, where

Pk(−�) =
k∑
q=1

(−1)k+2q

q!
∑

k1,...,kq
ki≥3

k1+...+kq=k+2q

λk1 ...λkq
k1!...kq ! �

(k+2q)(x) �(r)(x) =

= (1/
√

2π)(−1)r−1Hr−1(x)e
−x2/2, H(x) are Chebyshev-Hermite polynomials,

λr = χr/σ r(Q) , χr is the rth semi-invariant of y1. It is obvious that

∣∣Fp(x)−Gνp(x)
∣∣ ≤

∣∣∣Fp(x)− F̂p(x)
∣∣∣+

∣∣∣F̂p(x)−Gνp(x)
∣∣∣ . (7)

Further,

∣∣∣Fp(x)− F̂p(x)
∣∣∣ ≤ 1/

√
2L(Fp, F̂p)+max

x

∣∣∣F̂p(x)− F̂p(x +
x)
∣∣∣ , (8)

where L(Fp, F̂p)-is the distance between distribution functions in the Levy metric;
|
x| = L(Fp, F̂p)/

√
2. It is known that

L(Fp, F̂p) ≤ 1/π
∫ U

0

∣∣∣fp(t)− f̂p(t)
∣∣∣dt/t + 2e lnU/U , U > e.

Choosing U = nω2 and applying (6), the following will be received

L(Fp, F̂p) ≤ C4p lnn/nω2 (9)
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The next follows from (3)–(5)

∣∣∣Fp(x)− F̂p(x)
∣∣∣ ≤ C5

(√
p/Qn−ω3 + p lnn/nω2

)
(10)

Let us estimate
∣∣∣F̂p(x)−Gνp(x)

∣∣∣, using the inequality
∣∣∣f̂p(l)− gνp(l)

∣∣∣ ≤
c(ν)e−l2/2(|l|ν+3 + |l|3(ν+1))/T ν+1

νp , |l| ≤ Tνp = √
pσ 3(Q)/(8(ν + 3)r3/(ν+3)

ν+3 (Q),

for the characteristic function f̂p(l).

Here, gνp(l) = e−l2/2(1+∑ν
j=1 Pj (il)p

−j/2) is the Fourier-Stieltjes transform

of the function Gνp(x) = �(x) + ∑ν
j=1 Pk(−�)/pj/2. We use the Esseen

inequality

∣∣∣F̂p(x)−Gνp(x)
∣∣∣ ≤ 24H/(πT )+ 1/π

∫ T

−T

∣∣∣f̂ p(l)− gνp(l)
∣∣∣ /l dl, (11)

whereH > 0 is a constant. ��
Next, it will be necessary to define the following.

Lemma 6 If equality Fn(x) = �(x)+O(n−α+ε/(1+|x|γ )) holds for some α, 0 <
α ≤ 0, 5, and some γ, γ > 1, then there exist numbers δ, β, τ > 0, 0 < ε < α/2,
such that max

τ ≤|l|≤βnα−ε
|fn(l)| ≤ 1− δ for sufficiently large n.

Proof The lemma is proved using the proximity of the characteristic functions fn(l)
and the normal distribution, as in [13] ��
We choose T = ε0Q

α−εTνp, ε0 > 0 and estimate the integral

I = ∫ T
−T

∣∣∣f̂ p(l)− gνp(l)
∣∣∣ /l dl. The estimate is carried out in the same way as

in [9] using Lemma 6. Currently, I = O(1/T ν+1
νp + 1/p(ν+1)/2 + 1/T ). From

this estimate and from (7), (10), (11) the next will be obtain
∣∣Fp(x)−Gνp(x)

∣∣ =
O(1/T ν+1

νp +1/(Qα−εTνp)+√p/Q ln Tνpn−ω3+1/p(ν+1)/2). Let us replace Fp(x)

with the distribution function mes
{
t : t ∈ �k,∑n

i=1 f (T
i t)/(σ (Q)

√
pQ) < x

}
and estimate the result error as in [9] using Markov inequality and estimate from
Lemma 5.

PolynomialsPk(−�)which are part ofGνp(x)will be estimated using Lemma 4.

So, Gνp(x) = �(x) + O(
∑ν
j=1 e

−x2/2x3jQ−j/2). Further, we choose ν =
ω1/3, p = [n(1−2α)/(2(1−α))] and Q from the condition |n− (Q+N)| ≤ p. This
condition also implies

√
n/(pQ) = 1 + O(N/Q). Considering all of this and the

fact that σ 2(Q) = σ 2 +O(1/Q), it will be as in [9] and [13]:

Fn(x) = �(x)+O(n
1
ω4
− 1

4(1−α) /(1+ |x|γ )), ω4 = 4
√
ω, γ = ω1/12. (12)



106 F. G. Gabbasov et al.

Lemma 5 is not used for α = 0. If α = 0, then (12) transforms into Fn(x) =
�(x)+ O(n 1

ω4
− 1

4 /(1 + |x|γ )). Now let us take α = 1/ω4 − 1/4 and get Fn(x) =
�(x)+O(n 3

ω4
− 1

3 /(1+|x|γ )).Continuing this process by successive approximations
the statement of our theorem will be obtained (it will be for sufficiently large ω).

3 Conclusion

The obtained estimates for the convergence rate in the central limit theorem require
the fulfillment of condition (1)–(4). Subsequently, adding conditions and improving
the method of proof, it is possible to perfect this estimate. There is also the
possibility of proving limit theorems with large deviation and multidimensional
theorems.

Acknowledgment The work was supported by the Russian Science Foundation (project 16-11-
10299).
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Design of the Best Linear Classifier
for Box-Constrained Data Sets

Zulfiya R. Gabidullina

Abstract We construct a binary linear classifier for n-dimensional data sets with
the special box-constrained structure. Data sets with this structure arise naturally in
many real-world areas. We apply a linear separability criterion proposed in J. Optim.
Theory Appl. (2012, https://doi.org/10.1007/s10957-012-0155-x). The Minkowski
difference of the two data sets allows us to reduce a two-class classification problem
to the problem in more easy to solve form. The greatest benefit of this reduction
is that it allows to compute the parameters of a linear binary classifier by way
of exact formulas. For this reason, a proposed framework has low computational
costs. We rigorously prove that the developed linear classification model provides
the possibility of constructing the data separator (or pseudo-separator) which really
has the best estimate of its thickness. There are studied both regular and singular
cases of separability arising in the theory and practice of linear classification of data
sets.

1 Introduction

The data classification problem has numerous applications in a wide range of data
mining tools. Our study is motivated namely by applications in many real-world
areas. Indeed, the necessity of classifying the box-constrained data sets can naturally
arise, for instance, in the problems of credit scoring and medical disease diagnosis.
A useful systematic survey of the existing literature related to the data classification
problem is contained, for example, in [1–6] (see also the references therein).
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For linear binary data classifying, the model of a supervised machine learning
type can be described as follows:

1. For the two given training data sets (sets of objects with some characteristics—
feature values), construct a linear binary classifier which makes a classification
decision based on the training instances.

2. For a new unlabeled test instance, decide a class membership, i.e. identify class
label.

Thus, the data classification process consists of the two main phases: (1) training
phase, (2) testing phase.

The rest of this paper is organized as follows. In Sect. 2, we propose the auxiliary
procedure for counting the vertices of the box-constrained set, the exact algebraic
formula of the Minkowski difference of two sets given by box constraints. In Sect. 3,
we propose the explicit formulas for computing the features weights corresponding
to the best linear separation margin of sets. In Sect. 4, we construct a linear binary
classifier and present a linear binary classification model. In addition, we rigorously
justify the assignment criterion. In Sect. 5, there are drawn some conclusions.

2 The Minkowski Difference of Two Sets with
Box-Constrained Structure

In this paper, we discuss the problem of the binary data classification in the case
of the box-constrained sets. A box constraint on x ∈ R

n is usually given by the
bilateral linear inequalities which restrict all variables to be in some intervals. Our
approach consists in a reduction of the two sets separation problem to the problem
of separating the origin of the Euclidean space from the Minkowski difference of
these sets. The main benefit of this reduction is that it allows to calculate all the
parameters of a linear binary classifier with the help of exact formulas. For this
reason, the computational costs of a proposed framework are low.

We first note that in [7] there was proposed the exact formula of the Minkowski
difference for the convex polyhedra given by the constraints of the general form.
This section is devoted to the explicit algebraic expression of the Minkowski
difference for the case when the both operands under this operation are determined
by specific box constraints. By the way, let us notice that the obtained Minkowski
difference formulation can be useful for the data analysis algorithm presented in [8].

Let be given the two following different sets:

L = {z ∈ R
n : ai ≤ zi ≤ bi,∀i ∈ I },

M = {p ∈ R
n : ei ≤ pi ≤ di,∀i ∈ I }, (1)
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where I = {1, 2, · · · , n}, z = (z1, z2, . . . , zn), p = (p1, p2, . . . , pn). Let the
upper and lower bounds on the variables ai & bi, ∀i ∈ I be any real numbers such
that ai < bi . We make the analogous assumption about ei & di , ∀i ∈ I : ei < di .
By construction, the sets L, M ⊂ R

n are convex and compact.
Let us describe an auxiliary procedure which will be often employed below.

Procedure (Count of the Vertices of the Box-Constrained Data Set)
Require: n-dimension of the space.
Require: m = 2n-the number of vertices of

D = {x ∈ R
n : gi ≤ xi ≤ fi, i ∈ I }.

Require: lower bounds g = (g1, g2, . . . , gn) for n variables.
Require: upper bounds f = (f1, f2, . . . , fn) for n variables, gi < fi, ∀i ∈ I.
1. Declare the n-dimensional vector y = (y(1), y(2), . . . , y(n)).

Execute the loops presented below, setting that Ī1, Ī2, . . . , Īn are the con-
trol variables for the n loops, respectively. For these variables, there are initial
the following values: g1, g2, . . . , gn. Likewise, f1, f2, . . . , fn represent the
final magnitudes of them. Due to syntax of the procedure pseudocode, to update
the loop control variables, we use f1−g1, f2−g2, . . . , fn−gn, respectively.

2. DO Ī1 = g1, f1, f1 − g1
3. y(1) = Ī1
4. DO Ī2 = g2, f2, f2 − g2
5. y(2) = Ī2
6. . . . . . . . . . . . . . . . . . . . . . . . .
7. DO Ī n = gn, fn, fn − gn
8. y(n) = Ī n

Having got all the coordinates of the vector y, we can print them.
9. PRINT(y)

10. END
11. . . . . . . . . . . . . . . . . . . . . . . . .
12. END
13. END

As a result of executing the above described procedure, one obtains a complete
list of all 2n vertices of some n-dimensional box-constrained set D . The fact is
demonstrated in the following elementary example.

Example 1 (Vertices of the Unit Cube in R
3) Clearly, the unit cube, consisting of

the vectors x ∈ R
3 satisfying the constraint −1 ≤ xi ≤ 1, ∀i = 1, 3, has the

following eight vertices:

(−1, −1, −1), (−1, −1, 1), (−1, 1, −1), (−1, 1, 1),

( 1, −1, −1), ( 1, −1, 1), ( 1, 1, −1), ( 1, 1, 1).
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In general, the previous example illustrates how the above described procedure has
established the order of combining the lower and upper bounds used in a linear
bilateral inequality system describing some concrete box-constrained set.

For definiteness as well as simplicity of representing the further results, we utilize
the already mentioned procedure for counting the vertices of sets L and M . In what
follows, the first and second columns correspond to the full vertex collections of L
and M , respectively. We introduce notations for the vertices of sets L and M : vLi
and vMi , i = 1, 2, . . . , m, respectively.

(a1, a2, . . . , an−2, an−1, an), (e1, e2, . . . , en−2, en−1, en),

(a1, a2, . . . , an−2, an−1, bn), (e1, e2, . . . , en−2, en−1, dn),

(a1, a2, . . . , an−2, bn−1, an), (e1, e2, . . . , en−2, dn−1, en),

(a1, a2, . . . , an−2, bn−1, bn), (e1, e2, . . . , en−2, dn−1, dn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a1, b2, . . . , bn−2, an−1, an), (e1, d2, . . . , dn−2, en−1, en),

(a1, b2, . . . , bn−2, an−1, bn), (e1, d2, . . . , dn−2, en−1, dn),

(a1, b2, . . . , bn−2, bn−1, an), (e1, d2, . . . , dn−2, dn−1, en),

(a1, b2, . . . , bn−2, bn−1, bn), (e1, d2, . . . , dn−2, dn−1, dn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b1, a2, . . . , an−2, an−1, an), (d1, e2, . . . , en−2, en−1, en),

(b1, a2, . . . , an−2, an−1, bn), (d1, e2, . . . , en−2, en−1, dn),

(b1, a2, . . . , an−2, bn−1, an), (d1, e2, . . . , en−2, dn−1, en),

(b1, a2, . . . , an−2, bn−1, bn), (d1, e2, . . . , en−2, dn−1, dn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b1, b2, . . . , bn−2, an−1, an), (d1, d2, . . . , dn−2, en−1, en),

(b1, b2, . . . , bn−2, an−1, bn), (d1, d2, . . . , dn−2, en−1, dn),

(b1, b2, . . . , bn−2, bn−1, an), (d1, d2, . . . , dn−2, dn−1, en),

(b1, b2, . . . , bn−2, bn−1, bn), (d1, d2, . . . , dn−2, dn−1, dn).

The Minkowski difference of some two sets L and M is

L−M := {
a − b : a ∈ L, b ∈ M}

.
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For L, M ⊂ R
n, it is not hard to prove the following equality:

min
d∈L−M 〈c, d〉 = min

a∈L 〈c, a〉 −max
b∈M 〈c, b〉 ∀c ∈ R

n. (2)

This equality justifies our approach which consists in a reduction of the two
sets separation problem to the program of separating the origin of R

n from the
Minkowski difference L−M .

Let us remind below the two important theorems which will be very useful for the
formulation and justification of an explicit formula of the Minkowski difference of
two box-constrained sets. We are not able go further without defining the following
auxiliary set:

� = {x ∈ X : fk(x) ≤ bk, k ∈ K}, K = {1, 2, · · · , r}, (3)

where fk(x), k ∈ K are arbitrary real-scaled quasi-convex functions defined on a
convex set X ⊆ R

n. Here, bk, ∀k ∈ K are some scalars. A function f (x) is said
to be a quasi-convex on a convex set X if and only if [Sd̄ , f ]LoX is a convex set for
all d̄ ∈ R

1, where

[Sd̄, f ]LoX := {x ∈ X : f (x) ≤ d̄}.

Here, the set � is convex as an intersection of the convex sets [Sbi , fk]LoX , k ∈ K .

Theorem 1 (Minkowski Difference When the Two Sets Under the Operation
Are Given by a Constraint System and an Abstract Constraint, Respectively
[9], p. 716) Let be given an arbitrary nonempty set  ⊆ R

n, the set � �= ∅ be
defined by (3), X = R

n, then �− = �1, where

�1 = {x ∈ R
n : fk(x + y) ≤ bk, k ∈ K, y ∈  },

�− = {q ∈ R
n : q = x − y, x ∈ �, y ∈  }.

Theorem 2 (Minkowski Difference for Both Polyhedra Given as the Convex
Hull of a Finite Collection of Some Given Vectors [10], p. 552) If A =
conv{zi}i∈I1 , I1 = {1, 2, . . . , l̄}, B = conv{pj }j∈J1 , J1 = {1, 2, . . . , m̄}, then
it holds A− B = conv{zi − pj }i∈I1,j∈J1 .

Our objective now is to prove the explicit formula, when the both sets under
consideration have the box-constrained structure.

Theorem 3 (Minkowski Difference When Two Sets Under the Operation Are
Given by Box Constraints) Let be given the arbitrary nonempty sets L and M
defined by (1), then L−M = �2, where

�2 = {x ∈ R
n : a − d ≤ x ≤ b − e}, (4)

L−M = {x ∈ R
n : x = z− p, z ∈ L, p ∈ M}.
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Proof

Part 1. We will first verify the inclusion L−M ⊆ �2. According to Theorem 1,
it holds immediately

L−M = {x ∈ R
n : a ≤ x + y ≤ b, e ≤ y ≤ d}.

Without loss of generality, we choose some arbitrary x̄ ∈ L − M. For any
y ∈ M , we then obtain

{
a − y ≤ x̄ ≤ b − y
−d ≤ −y ≤ −e.

Consequently, there is obviously fulfilled the following inequality:

a − d ≤ a − y ≤ x̄ ≤ b − y ≤ b − e,

i.e. x̄ ∈ �2. Through the arbitrary choice of x̄ ∈ L − M , we conclude that
L−M ⊆ �2.

Part 2. Now, we need only check that the opposite inclusion is valid too. Taking
into account the construction of the set �2, applying the procedure of counting
its vertices, we can state that �2 has the following vertices:

(a1 − d1, a2 − d2, . . . , an−2 − dn−2, an−1 − dn−1, an − dn),
(a1 − d1, a2 − d2, . . . , an−2 − dn−2, an−1 − dn−1, bn − en),
(a1 − d1, a2 − d2, . . . , an−2 − dn−2, bn−1 − en−1, an − dn),
(a1 − d1, a2 − d2, . . . , an−2 − dn−2, bn−1 − en−1, bn − en),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(a1 − d1, b2 − e2, . . . , bn−2 − en−2, an−1 − dn−1, an − dn),
(a1 − d1, b2 − e2, . . . , bn−2 − en−2, an−1 − dn−1, bn − en),
(a1 − d1, b2 − e2, . . . , bn−2 − en−2, bn−1 − en−1, an − dn),
(a1 − d1, b2 − e2, . . . , bn−2 − en−2, bn−1 − en−1, bn − en),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(b1 − e1, a2 − d2, . . . , an−2 − dn−2, an−1 − dn−1, an − dn),
(b1 − e1, a2 − d2, . . . , an−2 − dn−2, an−1 − dn−1, bn − en),
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(b1 − e1, a2 − d2, . . . , an−2 − dn−2, bn−1 − en−1, an − dn),
(b1 − e1, a2 − d2, . . . , an−2 − dn−2, bn−1 − en−1, bn − en),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(b1 − e1, b2 − e2, . . . , bn−2 − en−2, an−1 − dn−1, an − dn),
(b1 − e1, b2 − e2, . . . , bn−2 − en−2, an−1 − dn−1, bn − en),
(b1 − e1, b2 − e2, . . . , bn−2 − en−2, bn−1 − en−1, an − dn),
(b1 − e1, b2 − e2, . . . , bn−2 − en−2, bn−1 − en−1, bn − en).

Let us note that the quantity of the vertices of �2 is m = 2n. Due to Theorem 2,
it holds

L−M = conv{vLi − vMj }i, j∈{1, 2, ...,m}.

Thus, the set L −M represents the convex hull of the m2 vectors. Obviously, the
vertices of the set �2 belong to this sequence of the vectors forming L −M . By
virtue of L −M being convex, it contains any convex combination of the vertices
of �2. Therefore, L − M include �2. This evidently means that the inclusion
�2 ⊆ L −M is valid. From the forward and backward inclusions justified earlier,
we deduce then that L−M = �2. That is what we want to prove. ��

3 Calculation of Normal Vectors for a Binary Linear
Classifier

We further explore in depth the question of how to calculate a normal vector for
a linear classifier in the regular and singular cases of the sets separability. Namely,
we consider the events when the two considered box-constrained data sets are: (1)
strongly linearly separable; (2) non-strongly linearly separable; (3) inseparable.

In the first case, the sets separation problem can be solved, for instance, applying
the optimization methods presented in [11–17]. In the first event, there can also be
utilized the framework which is very similar to the successive projections methods
described, for instance, in [18, 19]. For the second and third cases see, for example,
[20, 21]. There can be also used the methods of solving the maximin problem
(see the details, for example, in [15, 22]). However, the specificity of the training
sets structure allows one to solve the separation problem very easy using the
exact formulas. Here, we rigorously justify that the vector of the features weights
computed by the exact formulas really provides the best data sets separation (in a
sense of optimality of the appropriate separation margin).



116 Z. R. Gabidullina

Here, we apply the concept of “linear separability”, so we have to remind at least
briefly the meaning of this term for concreteness. The two pattern sets A and B
are said to be linearly separable, if and only if there exists some non-zero vector
c ∈ R

n such that:

max
b∈B 〈c, b〉 ≤ min

a∈A 〈c, a〉. (5)

To define the strong separability of the objects in concern, the inequality (5) should
be fulfilled strictly.

Our first goal is to compute, applying the explicit formula, a normal vector of the
supporting hyperplanes determining the best linear separator for the training data
sets. According to Theorem 3, the set L − M is also given by box constraints.
Under our conditions, this is the reason why L−M is a convex and compact set.

Let c∗ be a solution of the problem

max‖c‖=1
tL−M(c), (6)

where tL−M(c) = inf
x∈L−M 〈c, x〉. By virtue of continuity on the whole space, the

linear function 〈c, x〉, c ∈ R
n furnishes its infimum on the compact set L − M .

Therefore, it is fulfilled inf
x∈L−M 〈c, x〉 = min

x∈L−M 〈c, z〉. Let x∗ be the optimizer of

the following problem

min
x∈L−M 〈c, x〉 (7)

for some c ∈ R
n. The above facts obviously implies that x∗ ∈ L −M . Let us note

that we will utilize further a linear separability criterion introduced in [22]. This
criterion is closely connected with problems (6)–(7).

Lemma 1 (Auxiliary Fact) If x∗ ∈ L−M is the solution of (7), then

〈c, x∗〉 = min
i=1, 2, ..., m

〈c, vL−Mi 〉.

For the proof details of the similar lemma in the more general setting, we direct the
interested reader to [23] (see Lemma 13, p. 40). From Lemma 1, it follows that
tL−M(c) = min

i=1, 2, ..., m
〈c, vL−Mi 〉.

Definition 1 (Separator) If for some c ∈ R
n one has tL−M(c) > 0, then the set

S(c) :=
{
x ∈ R

n : γM(c) ≤ 〈c, x〉 ≤ γL(c)
}
,
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formed by parallel hyperplanes π(c, γL(c)) and π(c, γM(c)) is the strong se-
paration margin for the sets L and M, where γL(c) = min

z∈L 〈c, z〉, γM(c) =
max
p∈M 〈c, p〉. The set S(c) is called a separator (for details, see [22], p.161).

By the way, taking into account the list of vertices of L − M , according to
Lemma 1, we evidently obtain γL(c) = min

i=1, m
〈c, vLi 〉, γM(c) = max

=1, m
〈c, vMi 〉.

Here, the hyperplanes π(c, γL(c)) and π(c, γM(c)) are supporting to L and M ,
respectively. The thickness of the separation margin S(c) is determined by the
distance between its boundaries.

For separable data sets, the idea of maximizing the distance between two
supporting hyperplanes has achieved widespread use in practice and theory of SVM,
too.

Definition 2 (Pseudo-Separator) If for some c ∈ R
n it holds tL−M(c) < 0, then

the set

P(c) :=
{
x ∈ R

n : γL(c) ≤ 〈c, x〉 ≤ γM(c)
}

is called a pseudo-separator.

Recall that the term “pseudo-separator” was introduced for the first time in [22] (p.
161). The set P(c) represents the margin of unseparated points of sets. In the theory
of data classification, the similar margin is usually called the margin of misclassified
points, or for short, the misclassification margin.

In the degenerate case of the linear separability, i.e. if for some c ∈ R
n\ {0}

it holds tL−M(c) = 0, then S(c) = P(c) = π(c, γ (c)), where γ (c) = γL(c) =
γM(c). Therefore, the set S(c) = P(c) is the degenerate separator, because this
separator degenerates into a hyperplane. As it will be demonstrated below, the
thickness of the degenerate separator equals zero.

By construction of S(c) and P(c), to calculate the thickness of the geometric
margin one has to determine the distance from π(c, γL(c)) to π(c, γM(c)) :
ρ
(
π(c, γL(c)), π(c, γM(c))

)
.

Now, the following theorem will justify this fact.

Theorem 4 (Thickness of the Separator or Pseudo-Separator) If c ∈ R
n\ {0},

then the thickness of geometric margin formed between the parallel supporting
hyperplanes of the sets L and M (π(c, γL(c)) and π(c, γM(c)), respectively)
is equal to

ρ (π(c, γL(c)), π(c, γM(c))) =
∣∣tL−M

(
c

‖c‖
) ∣∣. (8)
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If c∗ is a maximizer of problem (6); then, based on a linear separability criterion
introduced in [22]), the data sets L andM can be characterized as

• strongly separable when tL−M(c∗) > 0,
• non-strongly linearly separable when tL−M(c∗) = 0,
• inseparable when tL−M(c∗) < 0.

Moreover, the optimality of the thickness of geometric margin is provided by virtue
of Theorem 4 and the formulation of problem (6). Indeed, if the sets L and M

are strongly separable, then having solved the problem (6) one can maximize the
separator thickness of the sets L and M . Obviously, the thickness of the degenerate
separator will be equal to zero. If some sets are linearly inseparable, then the prob-
lem (6) is equivalent to the next problem

− max
c∈Rn\ {0}

tL−M
( c
‖c‖

) = min
c∈Rn\ {0}

−tL−M( c‖c‖ ) = min
c∈Rn\ {0}

|tL−M
( c
‖c‖

)|

which provides one that there will be found a pseudo-separator having a minimal
thickness for the considered sets.

Let us remind the well-known definition of the term “projection” which will be
very useful below in the study.

Definition 3 (Projection) The point PD(p̄) ∈ D is called a projection of the point
p̄ ∈ R

n onto D if and only if it holds

‖PD(p̄)− p̄‖ ≤ ‖x − p̄‖, ∀x ∈ D.

Due to Definition 3, PD(p̄) is the point of D nearest to p̄ among other points of
D. If p̄ ∈ D, then it is obviously fulfilled PD(p̄) = p̄. As is widely known, if D
is a nonempty convex and closed set in R

n, then any point p̄ ∈ R
n has a unique

projection onto D. In the context of the sets linear separability, we are interested
mostly in projecting the origin of Euclidean space onto the set given by the box
constraints.

It is well known from convex analysis that if the origin of Euclidean space 0 =
(0, 0, . . . , 0) does not belong to some box-constrained set

D = {x ∈ R
n : gi ≤ xi ≤ fi, i ∈ I },

then the coordinates of its projection w = (w1, w2, . . . , wn) onto the set D can
be calculated by an exact formula. For projecting the origin, we represent further
the reformulation of the universal rule (see, for instance, [24], p.196) developed for
projecting any point of R

n onto some box-constrained set:

wi =

⎧
⎪⎪⎨
⎪⎪⎩

gi, if gi > 0;

fi, if fi < 0;

0, if gi ≤ 0 ≤ fi; i ∈ I .

(9)
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Using the exact formula (9), we can therefore calculate PL−M(0), which denotes a
projection of the origin of R

n onto L−M .
The next results immediately give the possibility of evaluating the thickness of

the separator with help of PL−M(0).

Lemma 2 (Relationship Between the Solution of (6) and Projection of the
Origin of Rn onto L−M [23], p. 40)

1. If tL−M(c∗) > 0, v = c∗tL−M(c∗), then it holds PL−M(0) = v,
2. If tL−M(c∗) ≤ 0, then PL−M(0) = 0.

For L and M being strongly separable, the previous lemma yields that there is
automatically fulfilled the following equality:

PL−M(0)
‖PL−M(0)‖ = c

∗.

For strongly separable sets, this means that the maximum separator thickness
corresponds to the normal vector PL−M(0)/‖PL−M(0)‖.

For the exceptional case when the origin of R
n belongs to some set D, we need

first to introduce a new term “pseudo-projection” as follows.

Definition 4 (Pseudo-Projection) We shall call the point P̃bd(D)(v̄) ∈ D a pseu-
do-projection of the point v̄ ∈ D onto bd(D) if and only if it holds

‖P̃bd(D)(v̄)− v̄‖ ≤ ‖x − v̄‖, ∀x ∈ bd(D),

where bd(D) stands for the boundary of D.

Clearly, P̃bd(D)(0) = 0 if and only if 0 ∈ bd(D). Let us consider further the case
where (0 ∈ D) & (0 /∈ bd(D)), i.e. 0 ∈ int (D), Here int (·) stands for interior
of the set D.

In the event of dealing with the set D having the box-constrained structure, to
compute P̃bd(D)(0) we need to project the origin of R

n from inside onto the 2n
facets of D. By assumption, it obviously holds gi < 0 < fi, ∀i ∈ I . Each pair of
the facets corresponding to some variable xi1 , i1 ∈ I evidently has the same normal
vector as the pair of hyperplanes π(c, gi1) and π(c, fi1): c = (c1, c2, . . . , cn),
where (ci1 = 1)& (ci = 0 ∀i ∈ I , i �= i1). Moreover, the afore-mentioned normal
vector is orthogonal to the corresponding facets of D. This fact allows one for the
purpose of pseudo-projecting to make use an exact formula, which is well known
from convex analysis to project the origin of R

n onto the hyperplane. Specifically,
we apply this formula n times by setting:

wi =

⎧
⎪⎪⎨
⎪⎪⎩

gi, if |gi | < fi ;
gi ∨ fi, if |gi | = fi ;
fi, if |gi | > fi; i ∈ I .

(10)
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After calculations of wi, ∀i ∈ I , we determine the index i2 ∈ I for which there
will be attained the minimum among the values of |wi |, i ∈ I : min

i∈I |wi | = |wi2 |.
If there are several indices i ∈ I for which |wi | is minimal, one can choose any
of them. Then, it should be constructed ŵ = (ŵ1, ŵ2, . . . , ŵn) in such a way that
(ŵi = 0 ∀i ∈ I, i �= i2) & (ŵi2 = wi2 ). Thus, P̃bd(D)(0) = ŵ. By construction,
it immediately holds min

w∈bd(D) ‖w‖ = ‖P̃bd(D)(0)‖.

With the help of Example 1 we may obviously observe that a pseudo-projection
can be not uniquely determined. Indeed, there are six points (projections of the zero
vector onto the six facets) satisfying to the definition of the pseudo-projection of the
origin onto the boundary of the three-dimensional unit cube. All of these points are
equivalent to each other in the sense of having the same Euclidean distance between
the origin of R

n and each of the six points. Namely, this identity allows one to select
and apply any one of these points as a pseudo-projection.

One of our goals here is to calculate a normal vector of a pseudo-separator for
the case when 0 ∈ int (L−M). From above, it follows that as such a normal vector
there can serve the following normalized one:

c∗ = −P̃bd(L−M)(0)/‖P̃bd(L−M)(0)‖.

By construction, the thickness of the pseudo-separator corresponding to this support
vector will be minimal, since it equals ‖P̃bd(L−M)(0)‖.

Let us consider now the next case, namely when the origin of R
n lies on the

boundary of some box-constrained set D, or briefly, 0 ∈ bd(D). In this event, at
least for one index i ∈ I it evidently holds gi = 0 < fi or gi < 0 = fi . If there
are several such indices, then one can choose any of them, for instance i1 ∈ I . We
construct the classifier normal as follows

ci =

⎧⎪⎪⎨
⎪⎪⎩

0, if (i ∈ I) & (i �= i1);

−1, if (i = i1)& (gi < 0 = fi);
1, if (i = i1)& (gi = 0 < fi).

(11)

By construction, we obviously obtain the degenerate case of the linear separability
between the origin of the space and the set D. These objects are non-strongly
linearly separable, so for this reason the linear separation margin has the null
thickness.

4 A Linear Classification Model

To perform the linear binary classification of data sets, we need to construct a linear
classifier based on some training sets. The term “linear classifier” is well known
and widely used in the theory and practice of data classification. A linear classifier
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is generally defined for solving binary classification problems. It may be obviously
interpreted as a rule, which assigns a test instance to some particular class of data.

Let us first define a studied term “linear classifier”.

Definition 5 (Linear Classifier) For some given c ∈ R
n\ {0}, we shall say that

f : Rn → R
1 is a linear classifier for the two data sets L and M if and only if it

holds

f (x) = 〈c, x〉 − γ (c), where γ (c) = γL(c)+ γM(c)
2

,

γL = min
i=1, m

〈c, vLi 〉, γM = max
i=1, m

〈c, vMi 〉.

For the data classes L and M , the hyperplane π(c, γ (c)) divides the separation
margin (separator or pseudo-separator), corresponding to the normal vector c, in
half. For the linear function f (x), the level set

[S0, f ]
R
n := {x ∈ R

n : f (x) = 0}

obviously coincides with the hyperplane π(c, γ (c)). This hyperplane also divides
the Euclidean space into two closed linear subspaces. One of these subspaces
includes the class L and another one contains the class M .

Procedure (Construction of a Linear Classifier)

1. Using (4), construct the Minkowski difference L−M .
2. Project the origin of R

n onto L−M by (9).
If ‖PL−M(0)‖ �= 0, then calculate c = PL−M(0)/‖PL−M(0)‖.
Else determine the pseudo-projection P̃bd(L−M)(0) by (10).
If ‖P̃bd(L−M)(0)‖ �= 0, then calculate c = −P̃bd(L−M)(0)/‖P̃bd(L−M)(0)‖.
Else use the formula (11) for calculating the normal vector c.

3. Applying Definition 5, construct f (x).

The goal now is to build up a linear binary classification model. It may be
determined as follows:

1. Construct a linear classifier f (x).
2. Use an assignment criterion in order to decide class membership.

2.1 Assign a new unlabeled instance x ∈ R
n to the class L, if f (x) > 0.

2.2 Assign a new unlabeled point x ∈ R
n to the class M , if f (x) < 0.

2.3 If for x ∈ R
n it holds f (x) = 0, then this new object can equivalently be

considered as a member of both the first and second class. For unambiguity, the
unlabeled instance may be assigned to only one of the classes.

It is time to justify the assignment criterion utilized above in the linear clas-
sification model. We first explore the inseparable case. Due to the applied linear
separability criterion, it evidently holds γL < γM ⇒ γL < γ (c) < γM . By
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definition, 〈c, z〉 ≥ γL, ∀z ∈ L and 〈c, p〉 ≤ γM, ∀p ∈ M . When for some
new instance x ∈ R

n we observe the positive value of the linear classifier, this new
object should be assigned to L, since it holds 0 < f (x) < 〈c, x〉 − γL. If for the
unlabeled object the value of f (x) is negative, then we decide that this instance
belongs to M , because 〈c, x〉 − γM < f (x) < 0.

Investigate now the case when the training classes are strongly separable.
According to the linear separability criterion, it is obviously fulfilled

γM < γL ⇒ γM < γ (c) < γL.

This implies that 〈c, z〉 ≥ γL > γ (c), ∀z ∈ L and 〈c, p〉 ≤ γM < γ (c), ∀p ∈ M .
Consequently, (f (z) > 0, ∀z ∈ L)& (f (p) < 0, ∀p ∈ M). If for some new
object x ∈ R

n there is observed the positive value of the linear classifier, then we
assign this new instance to L. When for the unlabeled instance the value of f (x)
is negative, then we conclude that this object belongs to M .

Consider now the case of non-strongly linearly separable training data sets.
Owing to the linear separability criterion, one has

γM ≤ γL ⇒ γM ≤ γ (c) ≤ γL.

This immediately yields 〈c, z〉 ≥ γL ≥ γ (c), ∀z ∈ L and 〈c, p〉 ≤ γM ≤ γ (c),
∀p ∈ M . Therefore, (f (z) ≥ 0, ∀z ∈ L)& (f (p) ≤ 0, ∀p ∈ M). If for some new
object x ∈ R

n the linear classifier has the nonnegative value, then we decide that
this new point is a member of the first class. When for the unlabeled point the value
of f (x) is nonpositive, then we conclude that this object falls into the second class.

The principal, for the purposes of practical and theoretical applications, questions
that immediately arise are what a linear classifier can be identified as the best one
and what it means for the data classification model. To exactly answer these basic
questions, we may solve, for instance, the problem (6) and verify the objective
function optimal value: tL−M(c∗). Is the function value positive, equal to zero,
or negative? The analysis shows what type of linear separability takes place for the
separated box-constrained data sets. This also allows to detect with which one of the
situations we will face. The cones of generalized support vectors (see, for instance,
[9]) are empty, and may be some of them are not. Due to special box-constrained
structure of the data sets being classified, there is no need to utilize the complex
optimization framework for calculating the classifier weights of the features. For
this purpose, we propose to apply the exact formulas. This makes classifying new
test data to be fast. To perform a classification, all we need to do is calculate the
linear classifier value and analyze its sign. This sign is crucial for the assignment
criterion which is verified for deciding the class membership of new test objects.
We evaluate the treated linear classifier as the best among those of others, since its
normal vector corresponds to the optimal separation margin (separator or pseudo-
separator) between the training data sets. By construction, the thickness of the
separator is maximal in the separable case. For the inseparable event, the thickness
of the pseudo-separator is minimal.
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5 Conclusions

In the paper, we reduce the binary problem of sets separating to the problem of
separating the origin of the Euclidean space from the Minkowski difference of
sets being separated. This approach requires the presence of the exact algebraic
expression for the Minkowski difference of box-constrained sets. Finally, we note
that the realization of the presented linear binary classification model has low
computational costs, since it is carried out by the exact formulas. There is no any
need in applying the complex optimization framework. We propose the explicit
formulas for computing the normal vector as well as threshold of the linear classifier.
We provide the full justification of the assignment criterion for testing the unlabeled
instances. The treated linear classifier is estimated as the best one due to optimality
of the thickness of the appropriate separation margin between the training data sets.
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Patient-Specific Bone Organ Modeling
Using CT Based FEM

Oleg Gerasimov, Nikita Kharin, Evgeny Statsenko, Dmitri Mukhin,
Dmitri Berezhnoi, and Oskar Sachenkov

Abstract The article presents an image-based method for numerical modeling
of the inhomogeneous structures. Such an approach allows taking into account
the material anisotropy during the integration by using the weight function. The
implementation of this method includes the hypothesis of the correlation between
the image data values and elastic properties of the material. A modeling of the
specimen was based on the use of an eight-node 3D finite element of the continuous
medium with bilinear approximation. In the work the distal part of the rat femur
was modeled, the displacement field was calculated and the stress-strain state was
locally averaged. In order to assess the reliability of the volumetric averaged stress
state, the estimation of the strain energy error was performed.

1 Introduction

Numerical modeling became the most commonly used technique in various fields
of scientific research at the moment. The practical application of the image data
is a promising direction to assessing the behavior of heterogeneous structures
under the external influence [1, 2]. The image-based modeling allows simulating
the mechanical properties of the multi-connected porous materials [3–5]. Similar
problems are especially relevant to the orthopedic clinical practice [6–8]. The
obtaining information about the patient bone properties from the personal image
data has a significant influence on the upcoming treatment quality at the diagnostic
stage.
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There are several approaches to modeling mechanical properties based on the
image data. Firstly, this includes an approximation of the inhomogeneity by the
construction of the mean intercept length distribution and its approximation by the
least square method [9–12]. In this case, physical relationships are formulated in
terms of the tensor of elastic constants and the fabric tensor. A second approach
includes the reduction of the material anisotropy to the orthotropy by determining
constants from numerical experiments [13–15]. In the work, a third method to
estimating the behavior of the inhomogeneous structures is considered.

The main imaging approach for these medical cases is performing a computed
tomography, which involves creating a digital prototype of the investigated domain.
Data of such a procedure are a 3D integer array, that contains values characterizing
the permeability of the material in the microelement of volume. These values can be
interpreted according to the quantitative Hounsfield scale of X-ray density. Thus, a
digital prototype represents a structure of the porous medium element as a set of the
elementary micro volumes, in each of them the percentage of the bone fraction is
determined. According to these data and using some approximate method, a discrete
mechanical model of the inhomogeneous medium element can be constructed [16–
19].

The highest calculation accuracy can be reached in the case of modeling each
microvolume of the continuous medium as one finite element [20–25]. However,
this approach is resource intensive in problems of discrete modeling, postprocessor
analysis, and, especially, at the processor computing stage. Therefore, it seems
appropriate to increase the size of the finite elements. That allows considering each
microvolume belonging to the element domain as a neighborhood of the integration
node of the local stiffness matrix. Nevertheless, the question of determining a
quantity of the integration points in each direction remains unclear. A small density
of computed tomography data in the integration domain can lead to low calculation
accuracy. The middle rectangle method can be used as the simplest integration
method. However, the use of a large number of integration nodes, on the one hand,
increases accuracy of the integration within the finite element, but on the other hand
may reduce the flexibility of the whole model because of a small number of finite
elements.

The purpose of the work is to implement a static calculation method for
the elements of a porous structure based on the 3D isoparametric bilinear finite
element of a continuous medium, built on its digital prototype revealed according to
computed tomography data.
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2 Materials and Methods

2.1 The Main Relations of the Finite Element Method

A well-known technique for constructing an eight-node 3D isoparametric finite
element of a continuous medium with a bilinear approximation of the geometry and
displacement field in the local coordinates was used [26]. Within the isoparametric
concept for a geometry approximation (radius-vector {r} of the point) and initial
displacements (displacement vector {θ} of the point) the same system of functions
is used:

r = {r} =
⎧⎨
⎩
x

y

z

⎫⎬
⎭ =

8∑
n=1

⎧⎨
⎩
xn

yn

zn

⎫⎬
⎭Nn(ξ, η), (1)

θ = {θ} =
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⎩
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w

⎫⎬
⎭ =

8∑
n=1

⎧⎨
⎩
un

vn

wn

⎫⎬
⎭Nn(ξ, η, ζ ), (2)

whereNn(ξ, η, ζ ) = 1
8 (1+ξnξ)(1+ηnη)(1+ζnζ )—known linear shape functions;

ξn, ηn, ζn—local node coordinates of the finite element; u, v, w—displacement
vector projections to the orts x, y, z of the global coordinate system. Relations (2)
can be written in a matrix form:

{θ} = [N]{θe} (3)

where [N]—matrix of the approximating functions, {θe}—vector of the node
displacements.

Components of the linear εxx, εyy, εzz and shear γxy, γyz, γxz strains describe a
medium deformation. These components are represented as a reduced strain vector
{ε} and expressed in terms of displacements (2) by the well-known Cauchy relations
[26]:

εxx = ∂u

∂x
, εyy = ∂v

∂y
, εzz = ∂w

∂z
,

γxy = ∂u

∂y
+ ∂v

∂x
, γyz = ∂v

∂z
+ ∂w
∂y
, γxy = ∂u

∂z
+ ∂w
∂x
,

(4)

which, in turn, can also be written in a matrix form

{ε} = [L]{θ}, (5)
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A Cauchy stress tensor represents the stress state in the form of components of
normal σxx, σyy, σzz and shear τxy, τyz, τxz stresses, which, as well as the small-
strain tensor can be written in a reduced stress vector {σ } form. A Hooke’s law, that
relates the reduced stress and strain vectors represents in the form

{σ } = [D]{ε}, (6)

where [D]—matrix of elastic constants of the homogeneous body, which can be
represented as

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ+ 2μ λ λ 0 0 0
λ λ+ 2μ λ 0 0 0
λ λ λ+ 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

In this case, [D] is an elasticity tensor for the isotropic material; λ and μ—Lame
constants defined in terms of Young’s modulus E and Poisson’s ratio ν as

μ = E

2(1+ ν) , λ = 2μν

1− 2ν
. (8)

The stiffness matrix of the finite element is calculated according to the well-
known relations [26]:

[Ke] =
∫

V

[B(r)]T [D][B(r)]dV , (9)

where [B(r)]—matrix connecting a reduced vector of small strains and vector of
node displacements:

{ε} = [B(r)]{θe}. (10)

In local coordinates, relation (9) can be written in the form

[Ke] =
∫ 1

−1

∫ 1

−1

∫ 1

−1
[B(ξ, η, ζ )]T [D][B(ξ, η, ζ )]|J (ξ, η, ζ )|dξdηdζ , (11)

where |J (ξ, η, ζ )| is a determinant of the Jacobian matrix of the coordinate
transformation.



Patient-Specific Bone Organ Modeling Using CT Based FEM 129

2.2 Digital Prototype

A digital prototyping involves mapping a dataset to some element of the calculation
area. Such a dataset is determined by a 3D structure, that contains the color intensity
of the microvolumes composing the computational domain. These intensity values
obtained by the computed tomography reflect X-ray density according to the
Hounsfield scale [27, 28]. The process of creating a digital prototype implies
dividing the investigated sample into a large number of virtual microcubes (voxels)
the size of
x×
y×
z and with center coordinates at xk, yk, zk . The linear sizes

x,
y,
z generally are equal to each other and are defined by the resolution of a
computer tomograph.

The values of computed tomography data corresponding to the voxel are
binarized over the defined threshold, which can be calculated, for example, by
the Otsu method. Such a procedure allows separating dense bone structure from
the substance in the pores: values above the threshold determine the bone tissue,
below—the pore.

2.3 Integration Based on Computed Tomography Data

The Gauss integration method is used in the case of calculating the local stiffness
matrix of the isotropic continuous medium. The porous medium force to use the
middle rectangle method. A finite element of the porous continuous medium, as
well as for the isotropic case, represents a convex hexagon with single-curved four-
node lateral surfaces. Integration points in the element are geometry coordinates of
voxels from a model digital prototype.

Let us introduce into consideration the space of the continuous material �
(Fig. 1a), the discrete space of computed tomography data �′ (Fig. 1b) and the
space of the finite element mesh �e (Fig. 1c). Thus, it is possible to define some
weight function ω(r), which values can be characterized by the space point based

Fig. 1 Spaces under consideration: (a) space of the continuous medium �; (b) discrete space of
computed tomography data �′; (c) space of the finite elements �e
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on computed tomography data. A relation connecting the elementary volume of the
continuous space � and discrete space �′ can be written in the form

dV ′ = ω(r)dV . (12)

In this case, passing from the integral over the space� to the integration over the
discrete space �′, subject to the formula (12), digital form of the integral (11) can
be written as

[Ke] =
I∑
i=1

J∑
j=1

K∑
k=1

[B(ξi , ηj , ζk)]T [D][B(ξi , ηj , ζk)]·

· |J (ξi, ηj , ζk)|ω(ξi , ηj , ζk)dξdηdζ
(13)

where ξi , ηj , ζk—local coordinates of the integration points; 
ξ,
η,
ζ—step
size in three directions in the local coordinates; ω(ξi , ηj , ζk)—weights of the
quadrature formula determined by a value of computed tomography data at the
integration point; I, J, K—number of quadrature points along each local coordinate
inside the finite element.

2.4 Stress-Strain State

In order to determine the stress-strain state, the following approach for the local
averaging over the finite element volume is introduced [29–31]. In the case of a
standard stress calculation procedure [32, 33], the finite element method uses the
relation (6), where the deformations were expressed by the previously introduced
formula (10).

Let σ̃ be an obtained from the finite element calculation arbitrary component of
the stresses. This component is defined by the relation (6). An approximation of the
corresponding smoothed value σ 0 over its node values within each finite element is
introduced:

σ 0 =
R∑
n=1

Ni α
0
n = {N}T {α0}, (14)

where R—number of the finite element nodes. Approximation coefficients
{
α0
}

are
found from the condition for a minimum square deviation of σ 0 from σ̃ defined by
relation

� =
∫

V e

(
σ 0 − σ̃

)2
dV e → min. (15)
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Substituting expression for the smoothed value (14) into the minimum square
condition (15) the following system of linear equations relative to the node values
of the function σ 0 is derived:

[d]
{
α0
}
= {b}, (16)

where

[d] =
∫

V e
{N}{N}T dV e, {b} =

∫

Ve

{N}σ̃ dV e. (17)

A similar procedure is applied to each component of the stress vector. The next
step is an integration of the found functions of the volumetric stress approximation
for each finite element. As in the method defined by the Eq. (13) the stress
integration is performed with a weight corresponding to the computed tomography
data at the integration point:

{σ̄ } = 1

V e

∫

V e

{
σ 0

}
dV e

′ (18)

where {σ̄ }—stress vector averaged over the finite element volume based on its
computed tomography data.

2.5 Error Estimation

The usual continuity assumption used in displacement based finite element formu-
lations results in a continuous displacement field from element to element, but a
discontinuous stress field [34, 35]. To obtain more acceptable stresses, the averaging
of the nodal stresses is done. Then, returning to the element level, the stresses at each
node of the element are processes to yield:

{

σin

}
= {
σan

}−
{
σ in

}
, (19)

where {
σin}—stress error vector at node n of finite element i, {σan }—averaged
stress vector at node n obtained by:

{
σan

} =
∑Nne
i=1

{
σ in
}

Nne
, (20)

Nne —number of finite elements connecting to node n,
{
σ in
}
—stress vector of node

n of finite element i.
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Then, for each element, the energy error is calculated as:

Ēi = 1

2

∫

V e
{
σ }T [D]−1 {
σ } dV e′, (21)

where Ēi—energy error for finite element i, V e—the volume of the finite element,
[D]—elasticity tensor, {
σ } – stress error vector at points as needed, which is
evaluated from all {
σn} of this finite element.

At the last stage of error estimation, the energy error can be normalized against
the strain energy:

ˇ̄Ei = 100 ·
(

Ēi

Ūi + Ēi

) 1
2

, (22)

where ˇ̄Ei—percentage error in energy norm, Ūi—strain energy of the element
determined by the similar integration over the discrete space �′:

Ūi =
∫

V e
{σ̄ }T {ε̄} dV e ′ (23)

Thus, having estimated the energy error as a percentage, it is not difficult to
determine the areas with the most reliable results of stresses and strains. The analysis
of the stress-strain state in the future will be carried out definitely in these domains.

3 Results and Discussion

3.1 Meshing

The model problem is based on computed tomography data of a rat’s femur. In
this case, a distal part was used (Fig. 2a). Since the geometry of a specimen
is non-trivial, the special approach to approximate the form by a finite element
mesh was proposed. Computed tomography of the object is embedded into the
regular rectangle mesh, which completely covers the sample geometry. At the
preprocessor stage, a bone fraction of each finite element based on binarized
computed tomography data is calculated. Then, the elements containing less than
5% of the material are removed from the mesh. Therefore, the remaining finite-
element model has an optimized geometry to the computed tomography data of the
investigated object (Fig. 2b, c).
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Fig. 2 Geometry approximation: (a) CT data view (Avizo); (b) and (c) superimposed finite-
element mesh (>5% of bone)

3.2 Scanning

Scanning was performed using the micro-/nanofocus X-ray control system for com-
puted tomography and 2D inspection Phoenix V | tome | X S240 in the laboratory of
X-ray computed tomography of the Institute of Geology and Petroleum Technology
of Kazan (Volga region) Federal University. The system is equipped with two X-
ray tubes: a microfocus with a maximum accelerating voltage of 240 kV with a
power of 320 W and a nanofocus with a maximum accelerating voltage of 180 kV
with a power of 15 W. Datos | x reconstruction software was used for primary
data processing and creation of a three-dimensional (voxel) model of the sample
based on X-ray images (projections). The sample fixed in the holder was placed
on the rotating table of the X-ray computed tomography camera at the optimal
distance from the X-ray source. The survey was conducted at an accelerating
voltage of 90–100 kV and a current of 140–150 mA. The study area size was
8.73029×7.62519×10.71947mm, the number of voxels in the direction of the
corresponding coordinate axes Ox, Oy, and Oz—790×690 ×970, the voxel size—
11.0513μm.

3.3 Modeling

A numerical experiment was carried out for uniaxial compression. The nodes of the
lower face, closest to the diaphysis, were fixed in displacements along the direction
of Cartesian coordinate axes. A uniformly distributed load was applied to the upper
edge of the distal area. In the case of a coarse mesh, the load was distributed over
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the top nodes of the first layer of finite elements. In the case of a fine mesh, the
load was distributed over the first two layers of finite elements, which is determined
by the relief surface of the upper section. Young’s modulus was 2 GPa, Poisson’s
ratio—0.3, the applied force—30 N.

3.4 Solution

Figure 3 shows the distribution of longitudinal displacements obtained using
two types of meshes. A mesh with numerous elements approximates the sample
geometry much more accurately. However, in this case, due to the peculiarities of
integration based on computed tomography data, significant surges in the nodal
values for hollow elements are observed. This defines a large variation in the
maximum displacement values.

The stress-strain state was locally averaged over the nodal values of each finite
element based on the data of its computed tomography (Fig. 4). The results of
solving the test problems showed that the mesh refinement has a greater effect on
the solution convergence than the increase in the integration points. Due to this fact,
an increase in the number of finite elements makes it possible to more accurately
determine the concentrators in the stress-strain field without significant losses in the
integration accuracy.

Fig. 3 Displacement field of the rat distal femur along the z-axis (mm): (a) 375 elements; (b) 2411
elements
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Fig. 4 Stress field of the rat distal femur along the z-axis (MPa): (a) 375 elements; (b) 2411
elements

3.5 Error Estimation

A comparison of the results presented for two finite element meshes requires
an assessment of the obtained solution acceptability. For this purpose, a local
calculation of the energy error was made for each finite element separately, based on
the nodal stresses averaged over the entire mesh. The value obtained in this way was
normalized against the strain energy calculated by a similar method of integration
over the discrete space of computed tomography. Figure 5 shows the distribution
field of the normalized energy error in percent.

The obtained results of the assessment make it possible to determine the areas
with the smallest values of the energy error. Thus, for further comparative analysis
of the stress state, a cross section from the blue range in the diaphysis area was
selected (Fig. 6).

Figure 6 shows the stress field in the direction of the longitudinal z-axis. In
a model with many finite elements, the compression stress is 45% less and the
tensile stress is 25% less. The difference in values can be determined by the
increased stiffness of the structure in case of a coarser mesh. Various approximation
of the object geometry can also have an effect. This is directly related to the
nature of filling finite elements with computed tomography data since integration
is determined by non-zero values. The general view of the stress distribution in the
study area is similar for both models. The calculation time for a model with a coarse
mesh is 11 min, and for a model with a more accurate approximation, it is 13 min.
Taking into an account the results obtained and the calculation time, it should be
concluded that thickening of the grid in the areas with the highest energy error is
preferred.
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Fig. 5 Normalized energy error field of the rat distal femur (%): (a) 375 elements; (b) 2411
elements

Fig. 6 Average stress state in the cross section of the rat distal femur along the z-axis, z = 8.575576
(MPa): (a) 375 elements; (b) 2411 elements

4 Conclusion

The article presents one of the possible approaches to describing the deformation
processes of inhomogeneous media under the influence of external loads. The
method consists of modeling the structure of the investigated area based on its digital
prototype. Such an approach allows estimating the behavior of porous objects based
on the material optical density. For this purpose, a discrete space over the object
image was introduced. The main modeling tool, in this case, is determined by the
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integration of a local stiffness matrix with a weight function, the values of which
are determined by computed tomography data. Thus, the numerical model allows
taking into an account the volumetric distribution of the material properties over the
volume of a solid finite element.

To estimate the influence of computed tomography data on the convergence of
the proposed numerical technique, the test problems were solved. The obtained
results were used to determine the relation between the number of integration
points inside the calculation domain and the degree of model approximation based
on area meshing. According to the analysis of the test problem solution, two
numerical models of the rat distal femur with different degrees of approximation
were constructed. In this case, a special approach to approximation of a regular
rectangular finite element mesh was applied to the sample geometry. Such a method
allows avoiding difficulties in the meshing of the nontrivial volumes by removing
the empty elements based on a percentage of the material fraction. The possibilities
of this method are restricted by the minimum size of the finite element of the initial
mesh providing the absence of separate elements.

In the process of solving, a locally averaged stress-strain state of the bone sample
was obtained. Calculations were made based on a similar method of integration
by discrete space of computed tomography. In order to estimate and compare
the obtained results, the calculation of energy error was made for each element
separately. In this case, the energy error was normalized against the strain energy,
which made it possible to determine acceptable areas for analysis with a small
percentage of the error.

The paper presents a comparative analysis of the model problem solution for
two types of finite element meshes. The obtained results reflect the influence
of the accuracy of the numerical model approximation and also illustrate the
dependence of displacements and stress-strain state on the material structure. It
was found that an increased degree of approximation allows better determination of
stress concentrators and provides more accurate results compared to a coarse mesh
consisting of larger finite elements. The presented numerical approach justified the
possibility of calculating objects with a porous structure of individual origin.

In the future, it is suggested to consider the ways of finite element mesh
thickening for better approximation at the areas of energy error concentration.
The studies can be extended using a different type of computed tomography data
processing as well as an improved formula for numerical integration. It is also
of interest to use other types of finite elements. The data obtained using such an
approach can be used to assess the strength of the material at quasi-brittle fracture
under static loading of inhomogeneous structures.
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Parallel Algorithm for Solving Problem
of Electromagnetic Wave Diffraction
by a Tooth-Shaped Plate

Dinara Giniyatova, Dmitrii Tumakov, and Angelina Markina

Abstract In the present work the problem of plane electromagnetic wave diffrac-
tion by a thin metal tooth-shaped plate is considered. A numerical algorithm
is developed using the method of moments with OpenMP and NVIDIA CUDA
technologies implementation. The results of numerical modeling of a plane wave
diffraction by the symmetrical four-tooth-shaped thin metallic plate is shown. A
comparative analysis of the performance for CPU and GPU is carried out. It is
shown that the method of moments implementation by graphical processor provides
a sufficient gain in the performance.

1 Introduction

The problems of diffraction of electromagnetic waves arise in the study of various
kinds of complex electrodynamic systems. For their analysis, it is necessary to use
strict analytical methods of applied electrodynamics [1–3] or approximate numer-
ical methods [4–6]. To date, the following methods are widely used in specialized
software: the moment method (MoM), the finite element method (FEM) [7], and the
finite difference method in the time domain (FDTD) [8]. All these methods lead to
the need to solve complex systems of linear algebraic equations, the order of which
directly depends on the desired degree of accuracy of solving the problem. The use
of effective numerical methods and new computer technologies make it possible to
solve similar problems within an acceptable time. A promising technology, from the
point of view of calculation time, is a parallel computing on a graphics processor
(NVIDIA CUDA) [9–12]. In the present paper, we consider a parallel algorithm for
solving the diffraction problem by the method of moments on CUDA.
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As is known [13, 14] the problem of diffraction of electromagnetic waves
on a perfectly conducting surface can be described by the operator equation for
the current surface. The operator can be a linear integral or integro-differential
operator, and integration is carried out over the entire diffraction surface. To solve
such equations, the method of moments is used. Harrington and his monograph
“Field Computation by Moment Methods” described the method of moments most
fully [15]; the current state of the method of moments in electrodynamics problems
is described in the monographs by Sadiku [16] and Gibson [14]. In addition, a
number of works are devoted to the mathematical justification of this method and
the convergence of the approximate solution to the exact one [17]. As already
noted above, the separation of the diffraction surface into small finite regions leads
to the construction and further numerical solution of systems of linear algebraic
equations of a very high order. On the other hand, this class of tasks lends itself
well to parallelization, and the architecture of the graphic processor (GPU) is well
optimized for parallel data processing.

For plates with complex geometry, the triangulation of the area is carried out by
any triangulation method [18]. For some surfaces that have a number of features,
such as comb-shaped plates [19], the triangulation algorithm can be accelerated.
In the present paper, the fast triangulation of such a plate are considered by using
OpenMP.

2 Diffraction Problem Statement

We consider the problem of electromagnetic field diffraction on a perfectly con-
ducting thin plate of an arbitrary shape (see, for example, [20]). Let � ⊂ R2 be
a bounded domain with a piece-wise-smooth boundary � consisting of a finite
number of arcs of the class C∞ converging at non-zero angles. The problem of
diffraction of an external electromagnetic field E0,H 0 on a perfectly conducting
plate �, located in free space with a wave number k, k2 = ω2εμ, consists in the
determining scattered electromagnetic field

E,H ∈ C2(R3 \�)
⋂
δ>0

C(R
3
+ \ �δ)

⋂
δ>0

C(R
3
− \ �δ) (1)

satisfying homogeneous Maxwell equations:

Rot H = −ikE,
Rot E = ikH , x ∈ R3 \�

(2)

boundary conditions for tangent components of the electric field on the plate surface:

Eτ |� = −E0
τ |� (3)
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conditions of finite energy in any limited amount of space:

E,H ∈ L2
loc(R

3) (4)

and conditions at infinity:

∂

∂r

(
E

H

)
− ik

(
E

H

)
= o(r−1),

(
E

H

)
= O(r−1), r : |x| → ∞. (5)

For the full field, Etot = E0+E, H tot = H 0+H . We assume that all sources
of the incident field are outside of the plate � so that for some δ > 0

E0 ∈ C∞(�δ), �δ = {x : |x− y| < δ, y ∈ �} (6)

whence it follows that

E0
τ |� ∈ C∞(�). (7)

Often, either a plane wave or an electric or magnetic dipole located outside of � is
considered as an incident field. In this case, conditions (6) and (7) are satisfied. The
field E0,H 0 is a solution to the system of Maxwell equations in free space without
a plate.

One of the approaches to solving the problem (1)–(7) is to reduce it to an
integrodifferential equation on a plate [13]. This method is often called the surface
current method.

Now let S be the open surface of a perfectly conducting plate with the unit normal
n. By Ei we denote the electric field defined to be the field due to a source in
the absence of a plate. It induces a surface currents J on S. Since S is an open
surface, we consider J as the sum of the surface currents on opposite sides of S
and, therefore, the normal component J should vanish on boundaries of S. The
scattered electric field Es can be computed by the formula [14]

Es = −iωA−∇�, (8)

where A and � are the vector and scalar potentials, respectively. It is known [14]
that the potentials are related to the excitatory current through the Green’s function.
In free space, the following formulas are valid

A(r) = μ
∫

S

J(r′)G(r, r′)dS′, (9)

�(r) = 1

ε

∫

S

σG(r, r′)dS′, (10)
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where Green’s function defined as

G(r, r′) = e−ik|r−r′|

4π |r− r′| ,

k = ω
√
με = 2π/λ (λ is a wavelength) and |r − r′| is the distance between the

arbitrarily located observation point r and the source point r′ on S. The surface
charge density σ is related to the surface divergence of current through the equation
of continuity

∇s · J = −iωσ. (11)

The boundary condition for the electric field in the case of the perfectly conducting
surface is

n× (Ei +Es) = 0, (12)

whence, using (8) we obtain the integro-differential equation with respect to J

− Eitan = (−iωA− ∇�)tan, r ∈ S. (13)

Together with (9)–(11), Eq. (13) is the so-called the electric field integral equation
(EFIE). Sometimes in the literature, Eq. (13) is called the equation in terms of mixed
potentials (Mixed Potential Integral Equation). Nevertheless, hereinafter, we will
use the term EFIE, implying Eq. (13), taking into account (9)–(11).

3 The Method of Moments

The method of moments (MoM) (see [14, 15]) is one of the most popular and
powerful methods for electrodynamic modeling. Typically it is used for the analysis
of electrically small flat structures made of metal, dielectric inclusions are allowed.
Often it is applied to calculate surface currents on plane metal or dielectric structures
when emitted in free space. The main practical advantage of the method of moments
is that it is necessary to discretize (cover by patches) only metal component of the
modeling structure, since the current distribution on metal surfaces is considered as
an unknown quantity. Note that in other methods the main unknowns are usually
electric/ magnetic fields, which are presented in all solution space. As a result, the
“planar” mesh in MoM is much simpler and smaller than the equivalent “volume”
mesh required for FEM and FDTD modeling. In fact, the method of moments is a
way to solve Maxwell’s equations written in the integral form (EFIE, MFIE) in the
frequency domain.
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We describe the basic idea of the method of moments. As it has been discussed
earlier, the method of moments is a general technique for solving operator problem
in the common form

Lf = g, (14)

where L is a linear operator, g is the known source function or excitation, f is
an unknown function to be determined. In our case, L is an integro-differential
operator, f is an unknown current function J , and g is a known excitation source
(incident field Ei) . We approximate the function f as the series expansion of N
basis functions fn with unknown weight coefficients αn yet to be determined:

f ≈
N∑
n=1

αnfn. (15)

When (15) is substituted in (14) using the linearity of the operator L one obtains

N∑
n=1

αnL(fn) ≈ g. (16)

The basis functions fn are chosen to correctly model the expected properties of
the unknown function f and could be scalars or vector depending on considered
problem. Next, both sides of (16) are multiplied by known testing or weighing
function and the result integrated over a spatial area. The described procedure is
called inner product or moment between the basis functions fn(r ′) and the test
functions gm(r) and defined as:

〈gm, fn〉 =
∫

gm

gm(r) ·
∫

fn

fn(r′), m = 1, N, (17)

where the presented integrals can be linear, surface, or volume depending on the
type of basis and test functions.

We require that the scalar product of each test function with the residual function
be zero, then

N∑
n=1

αn〈gm,L(fn)〉 = 〈gm, g〉, m = 1, N. (18)
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Equation (18) represents a system of linear algebraic equations for unknown
coefficients αn and in matrix form can be written as Za = b, where

Z =

⎛
⎜⎜⎝

〈g1, L(f1)〉 〈g1, L(f2)〉 . . . 〈g1, L(fN )〉
〈g2, L(f1)〉 〈g2, L(f2)〉 . . . 〈g2, L(fN )〉

. . . . . .

〈gN ,L(f1)〉 〈gN,L(f2)〉 . . . 〈gN ,L(fN )〉

⎞
⎟⎟⎠ ,

b =

⎛
⎜⎜⎝

〈g1, g〉
〈g2, g〉
. . .

〈gN, g〉

⎞
⎟⎟⎠ , a =

⎛
⎜⎜⎝

α1

α2

. . .

αN

⎞
⎟⎟⎠ .

SLAE (18) could be solved using various numerical methods, Gaussian elimination
or similar techniques like a version of LU-decomposition. Note that in the method
of moments the resulting matrix of the system is compact but completely filled, in
contrast, for example, to the methods based on differential equations whose matrices
are huge and sparse.

Solving (18), we determine the unknown coefficients αn by which the desired
function f is reconstructed. Thus, f = 〈f,Z−1b〉, f = (f1, f2, . . . , fN)

T . This
completes the procedure of the method of moments.

3.1 Basis and Testing Functions

The basis and testing function could be arbitrary. However, to provide an efficient
solution the basis function should be selected such that the relatively small number
of functions will guarantee a well approximation. The testing functions should
provide a reliable measure of discrepancy between two side of (16).

One of the most popular basis functions used in calculating the surface current
are the so-called RWG functions proposed in [21]. They are conveniently used to
search for an approximate EFIE solution when the surface of a perfectly conducting
body is divided into elementary triangular patches. We will use standard terms, such
as a face, to denote the surface of an elementary triangular patch, an edge (boundary
edge) to indicate one of its sides, and a vertex to indicate the vertices of a triangle.

First of all, we note that each basis RWG function is associated with one inner
edge and vanishes everywhere on S, except for a pair of triangles adjacent to this
edge. Figure 1 shows two such triangles, T +n and T −n , adjacent to the n-th edge.
Points belonging to the triangle T +n can be described both in global coordinates
by the radius vector r, and in local coordinates using the radius vector ρ+n defined
relative to the free vertex of the triangle T +n . A similar remark is also true for the
triangle T −n with the only difference being that the vector ρ−n is directed from the
point belonging to the triangle to the free vertex T −n . The choice of “positive” and
“negative” triangles is arbitrary, given that for the entire cycle of calculating the
surface current, it will not change.
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n-th edge

1n
Tn+

Tn–

O

ρn
+

ρn
c+

ρn
c–

ρn
–

rnc+

rnc–

Fig. 1 Triangle pair and RWG parameters associated with inner edge n

Basis function associated with the n-th inner edge defined as:

fn(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln

2A+n
ρ+n , r ∈ T +n ,

ln

2A−n
ρ−n , r ∈ T −n ,

0, otherwise,

(19)

where ln is the length of the n-th edge, A+n and A−n are the areas of the triangles
T +n and T −n , respectively. The properties of RWG functions are described in
detail in [21]. Following the method of moments, we represent the surface current
everywhere on S in the form of an approximate formula

J ≈
N∑
n=1

αnfn(r), (20)

where N is the number of inner edges.
The next step in the method of moments is the testing procedure or multiplying

the original equation by testing functions. Generally speaking, for the testing
procedure, it is permissible to use any functions. However, their choice of a specific
problem is crucial. One of the most effective methods is The Galerkin method, when
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the same basis functions are chosen as test functions. This ensures that the boundary
conditions are observed throughout the solution area, and not just at discrete points.
Therefore, we take the same RWG functions as test functions. We define the scalar
product as 〈f, g〉 = ∫

S
f · g dS and test the Eq. (13) by the RWG functions. We

obtain

〈Ei , fm〉 = iω〈A, fm〉 + 〈∇�,fm〉. (21)

Using methods for calculating the surface integral and the fm property at the S
boundaries, the last term in (21) can be written as

〈∇�,fm〉 = −
∫

S

�∇s · fmdS. (22)

Then, using

∇s · fn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln

A+n
, r ∈ T +n ,

− ln

A−n
, r ∈ T −n ,

0, otherwise,

the integral in (22) can be approximated as follows

∫

S

�∇s · fmdS = lm

⎛
⎜⎝ 1

A+m

∫

T +m

�dS − 1

A−m

∫

T −m

�dS

⎞
⎟⎠

∼= lm[�(rc+m )−�(rc−m )]. (23)

In (23), the average value of � for each triangle was replaced by the value � in the
center of mass of the triangles. Using similar arguments, we can approximate the
terms in (21) containing the vector potential and the incident field. We show this by
the example of the term 〈Ei , fm〉:

〈Ei , fm〉 =
∫

S

Ei · fmdS = lm

2

⎛
⎜⎝ 1

A+m

∫

T +m

Ei · ρ+mdS +
1

A−m

∫

T −m

Ei · ρ−mdS
⎞
⎟⎠

∼= lm

2

(
Ei (rc+m )ρc+m +Ei (rc−m )ρc−m

)
. (24)
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Thus, applying the testing procedure for EFIE by RWG functions, with (22)–(24),
we obtain an equation

iωlm

[
A(rc+m )

ρc+m
2

+A(rc−m )
ρc−m

2

]
+ lm[�(rc+m )−�(rc−m )]

= lm
[
Ei (rc+m )

ρc+m
2

+Ei (rc−m )
ρc−m

2

]
(25)

that is valid for each inner edge, m = 1, N .

3.2 Obtaining the System of Linear Algebraic Equations

After inserting the expansion for the surface current (20) into Eq. (25), we obtain
a system of linear algebraic equations (SLAE) of size N × N , which can be
represented as

Z I = V, (26)

where Z = [Zmn] is the N × N matrix, I = [αn] is the column of unknown
coefficients, V = [Vm] is the column of the known right-hand side. The elements of
the matrix Z and the column V are determined by the following formulas:

Zmn = lm
[
iω

(
A+mn ·

ρc+m
2

+ A−mn ·
ρc−m

2

)
+�−mn −�+mn

]
, (27)

Vm = lm
(
E+m ·

ρc+m
2

+ E−m ·
ρc−m

2

)
, (28)

where

A
+
mn = μ

4π

∫

S

fn(r′)
e−ik|r

c+
m −r′|

|rc
+
m − r′|

dS′, (29)

�
+
mn = − 1

4πεiω

∫

S

∇′
sfn(r

′)
e−ik|r

c+
m −r′|

|rc
+
m − r′|

dS′, (30)

E
+
m = Ei (r

c+
m ). (31)
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After defining the elements of the moment matrix Z and vector V, we can solve the
resulting system (26) with respect to the vector of unknown coefficients αn by one
of the well-known methods for solving SLAEs.

4 Algorithm for Solving the Problem

The numerical solution of the problem can be conditionally divided into three main
stages. At the first stage, we build a triangular grid of the plate surface and the array
of RWG elements. At the second stage, we compute the elements of the moment
matrix and derive the final SLAE; at the third stage, we solve the SLAE and build
the required function.

A numerical method for solving the problem of diffraction by a rectangular metal
plate proposed in [22]. In the case of tooth-shaped plates, at the first stage, we divide
the original area into a set of rectangles with common boundaries. In the case of the
four-tooth-shaped plate shown in Fig. 2 on the left, the original area is divided into
seven rectangles: P0,..,P6.

For each rectangle we build a triangular mesh and generate an array of RWG
elements. The boundary points of the triangulation for adjacent rectangles should be
selected so that these points are common. To speed up the first stage of the program
the OpenMP technology is used. In this case, the rectangular areas are processed
in parallel by the corresponding threads (processor cores). After the threads are
finished, we get an array of RWG elements that are generated separately for each
rectangle. The array does not contain elements that consist of triangles located on
the common boundaries of rectangular regions.

Next, in the sequential part of the program, we construct the boundary RWG
elements and add them to the previously generated array (see an example of such

Fig. 2 RWG-mesh implementation scheme for tooth-shaped plate
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element given for the boundary between the rectangles P0 and P1 on the bottom
right of Fig. 2). Thus, after the first stage of the algorithm, the original tooth-shaped
area is completely covered by the RWG mesh.

The next part is the calculation of the moment matrix elements by the for-
mulas (27) and (28). This is the most laborious and time-consuming stage.
However, each element of the moment matrix could be calculated independently.
Consequently, the second stage of computations is easy to parallelize. For these
purposes we use a graphics processor. An array of RWG elements is copied from
RAM to video card memory; then each thread computes the corresponding matrix
element.

The SLAE solving is carried out on the CPU by the Gaussian method after
copying the moment matrix and the right-hand side from the GPU. Then the current
vector on the plate is approximated using the formula (20).

5 Numerical Results

The calculation program is written in the programming language C using OpenMP
and C/CUDA, provided by NVIDIA, which implements support for the CUDA API
for compiling code that runs on a GPU. When launching the main computing core,
which is responsible for calculating the elements of the moment matrix, a two-
dimensional grid of blocks and two-dimensional blocks were used. This approach is
convenient since the moment matrix is represented in memory as a two-dimensional
data array.

For calculations, we used a personal computer with the Intel Core i3-5005U
processor (2 GHz), RAM is 4 GB with the graphics accelerator GeForce 920M.

The case of normal incidence of an electromagnetic wave with a wavelength λ
is considered. The calculations are performed for a metal perfectly conducting plate
with the following parameters: width—0.9λ, height—0.675λ, tooth width—0.3λ,
tooth depth—0.225λ.

Figure 3 shows the distributions of the absolute values of the current component
J x on the surface of a symmetrical four-tooth-shaped plate along the lines parallel
to the axes Ox and Oy. The grid covering the tooth-shaped plate consists of 252
triangles, which corresponds to 345 RWG elements.

Distribution graph |J x | (on the left in Fig. 3) is plotted along the lines y =
0.3375λ and y = 0.5625λ. This component of the vector J is normal to the
boundaries, and its values vanish at the edges. The values of the blue graph,
corresponding to line B, also take zero values in the place where there is no metal.

The right part of Fig. 3 shows the graphs of the |J x | distribution along the lines
x = 0.15λ and y = 0.45λ. In this case, the current component |J x | is tangent to the
boundaries and its values tend to infinity at the edges of the plate. |J x | takes zero
values outside the metal (see blue line).
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Fig. 3 Distribution of the current on various lines

Table 1 Time required for computing moment matrix on CPU and GPU

Number of RWG elements Time on CPU (s) Time on GPU (s) Acceleration

225 2.80 0.71 3.93

587 15.19 1.40 10.84

1115 52.83 3.43 15.40

1443 95.63 5.95 16.06

1813 159.84 9.92 16.08

Table 1 summarizes data on the number of RWG elements (depends on the
degree of area discretization) and the computation time required on CPU and GPU
to generate the moment matrix for a different number of these elements.

Maximum 16x acceleration of GPU performance over CPU is achieved on a large
number of RWG elements.

6 Conclusions

In this paper, the parallel algorithm for solving the problem of electromagnetic
wave diffraction on tooth-shaped plates is proposed. The problem is reduced to the
electric field integral equation (EFIE) and solved using the method of moments. For
basis functions and testing procedure RWG functions are used. Two main stages in
numerical algorithm—the construction of the RWG-mesh and the calculation of the
moment matrix elements are discussed.

For the parallel implementation of the first stage, the OpenMP technology is
used, and the elements of the moment matrix are calculated on the GPU using
the CUDA technology. An almost 16-fold the acceleration of calculations on the
video card is obtained. The numerical results of the algorithm for a symmetric four-
tooth shaped metal plate are obtained. They show good correspondence with the
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results of previous work. Thus, the proposed parallel algorithm can be applied to the
plane wave diffraction problems by the screens of complex shape with rectangular
boundaries. Also, the proposed algorithm can be used to speed up the design of
tooth-shaped antennas [23, 24].
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Abstract We consider the initial-boundary value problem for nonlinear parabolic
equations. This type of equation can be classified as a parabolic equation with
double degeneration: degeneration can be present in space operator, and a nonlinear
function which is under the derivative sign with respect to the variable t , may not
be separated from zero. The space operator of the considered equation nonlinearly
depends on the sought function, its gradient, and the non-local (integral) solution
characteristic. This problem has an applied nature. Such equations appear, for
example, in modeling the process of bacteria population spreading. In the present
paper, we propose and investigate the explicit differential scheme. A priori estimates
are obtained, and the convergence of the constructed algorithm is proved. The
current work is a continuation of the research begun in our previous works, where
the convergence of the explicit difference scheme in the case when nonlinearity
is present only in the spatial operator have been investigated, for a problem with
double degeneration, an approximate method has been studied. That method was
constructed with the use of semidiscretization with respect to a variable t and
the finite element method in the space variable with lowering nonlocality to the
lower layer, the existence of an approximate solution and the convergence of the
constructed algorithms was proved.
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1 Statement of the Problem

Let the � be bounded domain in the space Rn, � is its boundary, �, QT = � ×
(0, T ). In the domainQT consider the initial-boundary value problem

∂ϕ(u)

∂t
−

n∑
i=1

∂

∂xi

(
ki(x, u,∇u,Bu)

) = f, x ∈ �, t ∈ (0, T ), (1)

u(x, 0) = u0(x) x ∈ �, u(x, t) = 0, x ∈ �, t ∈ [0, T ]. (2)

Here ki, u0 are known functions, B is an operator of the form

Bu(t) =
∫

�′
g(x, u(x, t)) dx , (3)

g is a given function,�′ is a domain that is contained in � or coincides with it.
We assume that function ϕ(ξ) is an absolutely continuous, strongly increasing

function and it satisfies the following inequalities for arbitrary ξ ∈ R1,

b0 | ξ |α −b1 ≤ �(ξ) ≡
ξ∫

0

ϕ′(t)tdt ≤ b2 | ξ |α +b3, α > 1, (4)

| ϕ(ξ) |≤ bi | ξ |α−1 +b5, (5)

(ϕ′(ξ)ξ)′ ≥ 0, (6)

here bij are constants such that following inequalities are correct

b0i > 0, b1i ≥ 0, b2i > 0, b3i ≥ 0, b4i > 0, b5i ≥ 0 , i = 1, 2,

functions ki(x, ξ0, ξ, ν), i = 1, . . . , n, are continuous with respect to ξ0, ν and ξ ,
measurable with respect to x and for arbitrary x ∈ �, ξ0, ν ∈ R, ξ1, ξ2, ξ ∈ Rn
satisfy the following conditions

| ki(x, ξ0, ξ, ν) |≤ d0

n∑
j=1

| ξj |p−1 +d1 , d0 > 0, d1 ≥ 0 , p > 1 , (7)

n∑
i=1

ki(x, ξ0, ξ, ν)ξi ≥ d2

n∑
i=1

| ξi |p −d3, d2 > 0, d3 ≥ 0, (8)

n∑
i=1

(
ki(x, ξ0, ξ

1, ν)− ki(x, ξ0, ξ2, ν)
)
(ξ1
i − ξ2

i ) ≥ 0. (9)
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Let’s note that condition (7) implies that the operator L, acting from
◦
W 1
p (�)

intoW−1
p′ (�), where p ′ = p

p − 1
, is bounded. The conditions (8) and (9) provide,

respectively, the coercivity and monotonicity with respect to the gradient of the
operator L.

We assume that the function g(x, ξ), defining the operator B, is continuous with
respect to ξ , measurable with respect to x and satisfies the following condition

|g(x, ξ)| ≤ g0(x)+ |ξ |s for almost all x ∈ �, (10)

where g0 is a function integrable over�, s ≥ 0.
Space operators with non-localities of the form (3) arise, for example, in the

mathematical describing the diffusion of bacteria population when it is assumed that
the propagation speed at a point is specified by the global state of the environment
(e.g., see [1–3]).

Definition 1 A function u ∈ Lp(0, T ;
◦
W 1
p(�))

⋂
L∞(0, T ;Lα(�)) such that

u(x, 0) = u0(x) almost everywhere in �,
∂ϕ(u)

∂t
∈ Lp′(0, T ;W−1

p′ (�)),

will be called a generalized solution of problem (1) and (2), if for any function v

from the space Lp(0, T ;
◦
W 1
p(�)) the integral identity holds

T∫

0

〈
∂ϕ(u)

∂t
, v

〉
dt +

T∫

0

∫

�

n∑
i=1

ki
(
x, u,∇u,Bu) ∂v

∂xi
dxdt =

T∫

0

〈f, v〉dt, (11)

here 〈g, v〉 is the value of a functional g fromW−1
p′ (�) on element v from

◦
W 1
p (�).

When obtaining the results presented in this article, we use the technique from the
papers [4–6]. The current work is a continuation of the research begun in the works
[7, 8].

2 Auxiliary Results and Notation

In what follows, we will assume that the domain � is a n-dimensional paral-
lelepiped: � = {

x ∈ Rn : 0 ≤ xi ≤ li , i = 1, 2, . . . , n.
}
. On � construct a

uniform mesh ω̄h with a mesh step hi in the i-th direction, h = (h1, . . . , hn), h =
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min
1≤i≤n hi . We will assume that there is a constant c such that h ≤ ch, h = max

1≤i≤n hi .
We denote

ωh =
{
x = (x1, . . . , xn) ∈ � : xi = jhi, j = 0, . . . , Ni, Ni = li

hi

}
,

γh = ω̄h ∩ �, ωh = ωh\γh.

On [0, T ] we construct a uniform mesh with a step τ :

ωτ =
{
t ∈ [0, T ] : t = jτ, j = 0, . . . ,M, M = T

τ

}
, ωτ = ωτ\{0}.

We denote by H the set of mesh functions defined on ω,
◦
H are the functions

from H , that equal zero on γ. Let further r is the n-dimensional vector with
coordinates ri = ±1, ∇ry(x) = (∂r1y(x), ∂r2y(x), . . . , ∂rny(x)),

∂ri y(x) =
{
yxi (x), ri = +1,
yx̄i (x), ri = −1.

Let us denote by Hr(x) a mesh cell ω,, which contains all the mesh points
participating in the notation of operator ∇ry(x), ωr is the set of points x ∈ ω,
at which the operator∇ry(x) is defined. In the space of mesh functions

◦
H introduce

the following norms and scalar products

(y, v)r =
∑
x∈ωr

H̃r y(x) v(x), [y, v] = (1/2n)
∑
r

(y, v)r ,

‖ y ‖p= [| y |p, 1]1/p, ‖ y ‖p+p= (1/2n)
∑
r

n∑
i=1

(| ∂ri y |p, 1)r ,

‖ y ‖−p′= sup
v �=0

[y, v]
‖ v ‖+p ,

here H̃r = mes Hr(x).
For mesh functions, we define piecewise constant extensions x and t each

"rz(x) = {z(x ′), x ′ ∈ ωr, x ∈ Hr(x ′)},
"−w(t ′) = {w(t), t = kτ, (k − 1)τ < t ′ ≤ kτ },
"+w(t ′) = {w(t), t = kτ, kτ ≤ t ′ < (k + 1)τ },
"+
r w = "+"rw, "−

r w = "−"rw.
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Lemma 1 (See [4]) If ϕ(ξ) is an absolutely continuous increasing function, then
the following inequality holds

(ϕ(ξ)− ϕ(η))ξ ≥ �(ξ)−�(η), ∀ξ, η ∈ R1. (12)

Lemma 2 (See [4]) Let α ≥ 2, function ϕ satisfies the condition (4) and besides

ϕ′(ξ) ≥ b6 | ξ |α−2, b6 > 0. (13)

Then for any constant θ > 1 there is c̄ = const > 0, such that for any ξ, η ∈ R1

the inequality holds

(ϕ(ξ)− ϕ(η))(θξ − (θ − 1)η) ≥ �(ξ)−�(η)+ c̄ | ξ − η |α . (14)

Lemma 3 (See [4]) Let ϕ(ξ) be an absolutely continuous, monotonically increas-
ing function satisfying the conditions (4)–(6). Then for any function v such that

v ∈ Lp(0, T ;
◦
W

1

p (�))
⋂
L∞(0, T ;Lα(�)), (15)

∂ϕ(v)

∂t
∈ Lp′(0, T ;W−1

p′ (�)), (16)

v(x, 0) ∈ ◦
W

1

p (�)
⋂
Lα(�), (17)

the following equality holds

T∫

0

〈∂ϕ(v)
∂t

, v〉 dt = lim
λ→0

1

λ

T∫

T−λ

∫

�

�(v(t)) dx dt −
∫

�

�(v(0)) dx. (18)

It is easy to check the validity of the following lemma.

Lemma 4 (See [4]) For any y ∈ ◦
H the inequality holds

‖ y ‖+p≤ λα ‖ y ‖α, (19)

where λα = c p
√
n

h1+n(p−α)/αp , if p ≥ α and λα = c p
√
n

h
, if 1 < p < α.
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3 Construction and Investigation of an Explicit Difference
Scheme

For the problem (1) and (2), consider the explicit difference scheme

ϕt(y)+ Ay(x, t) = fhτ (x, t), x ∈ ωh, t ∈ ωτ\{T }, (20)

y(x, 0) = y0(x), y |γh= 0.

Here A is a difference operator acting from
◦
H to

◦
H, defined by the relation

[Ay,w] = 1

2n
∑
r

n∑
i=1

(ai(x, y)ki(x,∇ry, Bhy), ∂r iw)r ,

where Bhy(t) = B(2−n∑
r
"ry(t)), y0 a difference analog of u0 such that

"ry0 → u0 in Lα(�), (21)

fhτ is a mesh function, that is an approximation of the original equation right side,
which we define as follows

[fhτ , v] = 1

2n
∑
r

n∑
i=0

(f rhτ,i , ∂ri v)r ∀v ∈
◦
H,

where

∂r0v ≡ v, f rhτ,i (t) =
1

τ mes
(
Hr(x)

)
t+τ∫

t

∫

Hr(x)

fi(ξ, η) dξdη.

Conditions (7)–(8) on the coefficients ki provide continuity, boundedness:

‖ Ay ‖−p′≤ c0 ‖ y ‖p−1
+p + c̄0, (22)

the coercivity of the operator A :

[Ay, y] ≥ d2 ‖ y ‖p+p −d3, (23)

with constants d2 > 0, d3 ≥ 0, c0 > 0, c̄0 ≥ 0, independent on h̄ and τ. The
unique solvability of the difference scheme (20) follows from the condition that the
function ϕ is strictly monotonic.
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Lemma 5 Let α ≥ 2, function ϕ satisfies the conditions (4)–(5) and besides

u0 ∈ Lα(�), f ∈ Lq(0, T ;W−1
p′ (�)), q = max{α′, p′}.

Then for any

τ ≤

⎧
⎪⎨
⎪⎩

c
hα

2αnα/p
, 1 < p < α,

c
hp+n(p−α)/α

2pn
, p ≥ α,

(24)

for the solution of the difference scheme (20) the following a priori estimates hold

t ′∑
t=0

τ ‖ y ‖p+p≤ const, (25)

max
t ′∈ω̄τ

‖ y(t ′) ‖αα≤ const, (26)

t ′∑
t=0

τα ‖ yt ‖αα≤ const ∀t ′ ∈ ω̄τ , (27)

1

kτ

T−kτ∑
t=0

τ [ϕ(y(t + kτ))− ϕ(y(t)), y(t + kτ)− y(t)] ≤ const (28)

∀k ∈ {1, . . . , N}.

Proof Multiply both sides of (20) scalar in H by τ (θ ŷ − (θ − 1)y), where the
constant θ > 1. As a result, we get

τ [ϕt(y), θ ŷ − (θ − 1)y] + τ [Ay, θŷ − (θ − 1)y] = τ [fhτ , θ ŷ − (θ − 1)y]

or

τ [ϕt(y), θ ŷ − (θ − 1)y] + τ [Ay, y] =
= τ [fhτ , y] + τ 2θ [fhτ , yt ] − τ 2θ [Ay, yt]. (29)

Using Lemma 2, we estimate the first summand in the left-hand side of the Eq. (29)

τ [ϕt(y), θ ŷ − (θ − 1)y] ≥ [�(ŷ)−�(y), 1] + c̄τ α ‖ yt ‖αα . (30)
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To estimate the first two summands on the right-hand side of (29) we use HÃűlder
inequality, ε—inequality and a difference analog of the Friedrichs inequality, as a
result we have

τ [fhτ , y] ≤ 1

ε
p′
1 p

′ τ
n∑
j=0

‖ fhτ,j ‖p
′
p′ +

ε
p

1

p
(1+ c�)τ ‖ y ‖p+p, (31)

τ 2[fhτ , yt ] ≤ 1

ε
α′
2 α

′ τ
n∑
j=0

‖ fhτ,j ‖α′p′ +
εα2 τ

α+1

α
(‖ yt ‖α+p + ‖ yt ‖αp) ≤ (32)

≤ 1

εα
′

2 α
′ τ

n∑
j=0

‖ fhτ,j ‖α′p′ +
εα2 τ

α+1

α
(1+ c�)λαα ‖ yt ‖αα +c1τ,

here c� is the constant from the difference analog of the Friedrichs inequality.
From (22) follows that

τ 2θ [Ay, yt ] ≤ τ 2θ(c0 ‖ y ‖p−1
+p +c̄0) ‖ yt ‖+p ≡ I + τ 2θ c̄0 ‖ yt ‖+p . (33)

Further, using (30)–(33) and the coercivity of the operator A, from (29) is easy to
obtain

[�(ŷ)−�(y), 1] + c̄τ α ‖ yt ‖αα +d2τ ‖ y ‖p+p −d3τ ≤

≤ 1

ε
p′
1 p

′ τ
n∑
j=0

‖ fhτ,j ‖p
′
p′ +

ε
p
1

p
(1+ c�)τ ‖ y ‖p+p +

+ 1

εα
′

2 α
′ τ

n∑
j=0

‖ fhτ,j ‖α′p′ +
εα2 τ

α+1

α
(2+ c�)λαα ‖ yt ‖αα +I + c1τ. (34)

Let p ≥ α. We estimate I using HÃűlder’s inequality and Lemma 2, as a result
we obtain

I ≤ τ 2c0θ ‖ y ‖p/α
′

+p ‖ y ‖(p−α)/α+p λα ‖ yt ‖α≤
≤ τ 2c0θ ‖ y ‖p/α

′
+p λp/αα ‖ y ‖(p−α)/αα ‖ yt ‖α≤

≤ τεα
′

3

α′
‖ y ‖p+p +

τα+1(c0θ)
αλ
p
α

αεα3
‖ y ‖p−αα ‖ yt ‖αα . (35)
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Substituting (35) into (34) and summing the resulting inequalities over t from 0 to
t ′ ∈ ω̄τ , we will have

[�(y(t ′)), 1] +
(
M2 − ε

p
1

p
(1+p�)−

εα
′

3

α′

) t ′∑
t=0

τ ‖ y ‖p+p +

+
t ′∑
t=0

(
c̄ − τ ε

α
2

α
(2+ c�)λαα − (c0θ)

α τλ
p
α

αε
p

3

‖ y(t) ‖p−αα

)
τα ‖ yt ‖αα≤

≤ 1

ε
p′
1 p

′

t ′∑
t=0

τ

n∑
j=0

‖ fhτ,j (t) ‖p
′
p′ +

+ 1

εα
′

2 α
′

t ′∑
t=0

τ

n∑
j=0

‖ fhτ,j (t) ‖α′p′ +[�(y(0)), 1] + c3. (36)

First, let us prove that (36) implies the estimate

‖ y(t ′) ‖αα ≤ c
( T∑
t=0

τ

n∑
j=0

‖ fhτ,j (t) ‖p
′
p′ +

T∑
t=0

τ

n∑
j=0

‖ fhτ,j (t) ‖α′p′ +

+[�(y(0)), 1] + 1

)
= mα ∀t ′ ∈ ω̄τ , (37)

where c,m are constants independent of h̄ and τ. For t ′ = 0 estimate (37) holds.
We assume that (37) is valid for all t ′ ≤ t1; t ′, t1 ∈ ωτ . Let us prove that (37) holds
for t ′ = t1 + τ. To do this, write inequality (36) for t ′ = t1 + τ, considering, that
‖ y(t) ‖αα≤ mα ∀t ≤ t1,

[�(y(t1 + τ )), 1] +
(
d2 − ε

p

1

p
(1+ cp�)−

εα
′

3

α′

) t1∑
t=0

τ ‖ y ‖p+p +

+
(
c̄ − τ ε

α
2

α
(2+ c�)λαα − (c0θ)

α τλ
p
α

αε
p

3

mp−α
) t1∑
t=0

τα ‖ yt ‖αα≤

≤ 1

ε
p′
1 p

′

t1∑
t=0

τ

n∑
j=0

‖ fhτ,j (t) ‖p
′
p′ +

+ 1

εα
′

2 α
′

t1∑
t=0

τ

n∑
j=0

‖ fhτ,j (t) ‖α′p′ +[�(y(0)), 1] + c3. (38)
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Choosing ε1, ε2, ε3, h̄ and τ so that

d2 − ε
p
1

p
(1+ cp�)−

εα
′

3

α′
≥ δ1 > 0,

c̄ − τ ε
α
2

α
(2+ c�)λαα − (c0θ)

α τλ
p
α

αε
p
3

mp−α ≥ δ2 > 0 , (39)

and using the condition (4), of (38) is easy to obtain (37) for t ′ = t1 + τ .
Therefore, the estimate (37) will be valid for any t ′ ∈ ω̄τ . From (36) and (37)
the estimates (25)–(27) follow. Note that the constant c in (24) is chosen so that the
inequality (39) holds.

Similarly to the way above, it is easy to verify the validity of estimates(25)–(27)
in the case 1 < p < α.

Let us further prove the validity of the estimate (28).To do this, we sum both
sides (20) over t from t̄ to t̄ + (k− 1)τ, then multiply the resulting equality scalarly
in H by τ (y(t̄ + kτ)− y(t̄)) and again sum over t̄ from 0 to T − kτ, as a result we
will have

1

kτ

T−kτ∑

t̄=0

τ [ϕ(y(t̄ + kτ))− ϕ(y(t̄)), y(t̄ + kτ)− y(t̄)] =

= −1

k

T−kτ∑

t̄=0

t̄+(k−1)τ∑

t=t̄
τ [Ay(t), y(t̄ + kτ)− y(t̄)] +

+1

k

T−kτ∑

t̄=0

t̄+(k−1)τ∑

t=t̄
τ [f, y(t̄ + kτ)− y(t̄)]. (40)

Using the boundedness property of the operatorA, HÃűlder’s inequalities and (33),
from (40) it is easy to obtain

1

kτ

T−kτ∑

t̄=0

τ [ϕ(y(t̄ + kτ))− ϕ(y(t̄)), y(t̄ + kτ)− y(t̄)] ≤

≤ c1

T−kτ∑

t̄=0

τ ‖ y(t̄) ‖p+p +
2

p′
T∑
t=0

τ

n∑
j=0

‖ fhτ,j (t) ‖p
′
p′ .

From the last inequality and (25) it follows (28). The lemma is proved. ��
The a priori estimates (25) and (26) imply the boundedness of the set {"±

r y}
in the spaces Lp(QT ) and L∞(0, T ;L2(�), as well as the boundedness of the set
{"±

r ∂ri y} in the space Lp(QT ). Due to the weak compactness of bounded sets in
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reflexive spaces and the *-weak compactness of bounded sets in L∞(0, T ;Lα(�)
subsequences

{
h(m)

}∞
m=1,

{
τm

}∞
m=1

1 and the element u, which belongs to

Lp(0, T ;
◦
W 1
p (�))

⋂
L∞(0, T ;L2(�), such that for h(m), τm → 0, exists there

"±
r y ⇀ u in Lp(QT ), (41)

"±
r ∂ri y ⇀

∂u

∂xi
in Lp(QT ), (42)

"±
r y → u *-weak in L∞(0, T ;Lα(�). (43)

Using the estimates (26), (27), (29) and the mesh analog of the compactness theorem
(see [4], lemma 9), it is easy to confirm the existence of subsequences

{
h(m)

}∞
m=1,{

τm
}∞
m=1, for which, along with (41)–(43) the limit relation of the form below holds

"±
r y → u almost everywhere in QT . (44)

Further, the condition (7) and the estimate (25) imply the boundedness in Lp′(QT )
of the set

{
"±
r ki(x, y,∇ry, Bhy)

}
for any i ∈ {1, 2, . . . , n}. Therefore, there are

Ki ∈ Lp′(QT ) and sequences
{
h(m)

}∞
m=1,

{
τm

}∞
m=1 such that

"±
r ki(x, y,∇ry, Bhy) ⇀ Ki in Lp′(QT ). (45)

For s ≤ α from (26), (44) and Lebesgue’s theorem on passage to the limit, it is easy
to show that

"±B(y)→ Bu in L1(0, T ). (46)

Theorem 1 Let the functions ϕ, ki satisfy conditions (7)–(9) and (13), α ≥ 2 and
the inequality (24) holds. Let, in addition, for τ, h̄→ 0

τλpα → 0, if p ≥ α, τλαα → 0, if 1 < p < α. (47)

Then for any function f ∈ Lq(0, T ;W−1
p′ (�)), where q = max{α′, p′}, and the

function u0, ∈ Lα(�)⋂
◦
W

1

p (�) subsequence of piecewise constant extensions
of the solution to the difference scheme (20), defined by the relations (41)–(46),
converges to a generalized solution of the problem (1)–(2).

1 In what follows, for the selected subsequences we will keep the notation of the sequences
themselves.
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Proof of this theorem is close to the proof of Lemma 3 from ([7]). Therefore, we
present here only fragments of reasoning different from Lemma 3.

Let’s scalarly multiply the difference scheme (20) by τz, where z —the drift
of the function z̄ from C∞(0, T ;C∞0 (�)), z̄(x, T ) = 0 and sum over t from 0 to
T − τ. As a result, we get

T−τ∑
t=0

τ [ϕt , z] +
T−τ∑
t=0

τ [Ay, z] =
T−τ∑
t=0

τ [fhτ , z].

We transform the first summand by using the formula for summation by parts. We
write the resulting equality using piecewise constant extensions in the form of the
integral identity

1

2n
∑
r

{
−

T∫

0

∫

�

"−
r ϕ(y)"

−
r (zt̄ )dxdt +

+
n∑
i=1

T∫

0

∫

�

"+
r ki(x, y,∇ry, Bhy)"+

r ∂ri zdxdt

}
=

= 1

2n
∑
r

n∑
i=1

T∫

0

∫

�

"+
r fhτ,i"

+
r ∂ri zdxdt. (48)

In the equality (48), we pass to the limit as τ, h→ 0. As a result, we will have

−
T∫

0

∫

�

ϕ(u)
∂z̄

∂t
dxdt −

∫

�

ϕ(u0)z̄(x, 0)dx +

+
n∑
i=1

T∫

0

∫

�

Ki
∂z̄

∂xi
dxdt =

T∫

0

〈f, z̄〉dt. (49)

Following ([7], lemma 3), from (49) it is easy to obtain that

T∫

0

〈∂ϕ(u)
∂t

, z̄〉 dt +
n∑
i=1

T∫

0

∫

�

Ki
∂z̄

∂xi
dxdt =

=
T∫

0

〈f, z̄〉 dt ∀z̄ ∈ Lp(0, T ;
◦
W

1

p (�)) (50)
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and, besides, u(x, 0) = u0(x) almost everywhere in �. Let us prove further that

n∑
i=1

T∫

0

∫

�

Ki
∂z̄

∂xi
dxdt =

n∑
i=1

T∫

0

∫

�

ki(x, u,∇u,Bu) ∂z̄
∂xi
dxdt (51)

for any function z̄ from Lp(0, T ;
◦
W

1

p (�)). To do this, we consider the following
inequality

[ϕ(ŷ)− ϕ(y), ŷ] +
n∑
i=1

τ [(ki(x, y,∇y,Bhy)− ki(x,∇v̂, Bhy)), ∂ri (y − v̂)] ≥

≥ [�(ŷ)−�(y), 1], (52)

where y is the solution of the difference scheme (20), v(x, t) is the drift of the
function v̄(x, t) ∈ C∞(0, T ;C∞0 (�)) to the points of the mesh ω̄τ ×ω̄. The validity
of (52) follows from (9) and the Lemma 1. Considering that the function y satisfies
equality (20), we rewrite inequality (52) as follows

[fhτ , ŷ] + τ [Ay, yt ] −
n∑
i=1

[ki(x, y∇v̂, Bhy), ∂ri (y − v̂)]−

−
n∑
i=1

[ki(x, y∇y,Bhy), ∂ri v̂] ≥
1

τ
[�(ŷ)−�(y), 1].

Using the extension"+
r ,we write the last inequality for all t ∈ [0, T ] and integrate

the resulting inequality over the segment [0, t ′], t ′ ∈ [0, T ]. As a result we will
have

J1(t
′) = 1

2n
∑
r

t ′∫

0

{〈"+
r fhτ ,"

+
r y〉 −

n∑
i=1

∫

�

"+
r ki(x, y,∇y,Bhy)"+

r ∂ri v̂dx −

−
n∑
i=1

∫

�

"+
r ki(x,∇v̂, Bhy)"+

r ∂ri (y − v̂)dx}dt + (53)

+
T−τ∑
t=0

τ 2 | [Ay, yt ] |≥ 1

2n
∑
r

1

τ

t ′∫

0

∫

�

{�("+
r ŷ)−�("+

r y)}dxdt.
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Further, using the [7] methodology, when the condition (47) holds we establish the
validity of the limit equality

lim
τ,h→0

T−τ∑
t=0

τ 2
∣∣ [Ay, yt ]

∣∣ = 0. (54)

Let us notice, that

1

τ

t ′∫

0

∫

�

{�("+
r ŷ)−�("+

r y)}dxdt =
1

τ

t ′+τ∫

t ′

∫

�

�("+
r y)dxdt −

∫

�

�(u0(x))dx.

Let further t∗ be a mesh point ωτ , belonging to (t ′, t ′ + τ ], μ(t ′) = (t ′ + τ − t∗)/τ,
�τ—linear extension with respect to t . Using the convexity of the function �, we
have

1

τ

t ′+τ∫

t ′

∫

�

�("+
r y(t))dxdt =

1

τ

{ t ′+τ∫

t∗

∫

�

�("+
r y(t))dxdt

+
t∗∫

t ′

∫

�

�("+
r y(t))dxdt

}
=

= μ(t ′)
∫

�

�("ry(t
∗))dx + (1− μ(t ′))

∫

�

�("ry(t
∗ − τ ))dx = (55)

=
∫

�

{
μ(t ′)�("ry(t∗))dx + (1− μ(t ′))�("ry(t∗ − τ ))

}
dx ≥

≥
∫

�

�("r(μ(t
′)y(t∗)+ (1− μ(t ′))y(t∗ − τ )))dx =

∫

�

�(�τ"r(y(t
′))) dx.

Let us prove further that

"+
r

(
ki(x, y,∇r v̂, Bhy)

) → ki(x, u,∇v̄, Bu) in Lp′(QT ). (56)

We denote

J =
∫

QT

∣∣"+
r

(
ki(x, y,∇r v̂, Bhy)

) − ki(x, u∇v̄, Bu)
∣∣p′ dx dt . (57)
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Limit relations (44) and (46), smoothness of the function v and continuity of
ki(x, ξ, η, ν) for each of the arguments allow us to assert that the integrand function
in (57) tends to 0 as h, τ → 0 almost everywhere in QT . In addition, from the
estimate (7) it follows that

∣∣"+
r

(
ki(x, y,∇r v̂, Bhy)

) − ki(x, u,∇v̄, Bu)
∣∣p′ ≤

≤
(
d0

n∑
i=1

{∣∣∂ri v̄
∣∣p−1 + ∣∣ ∂v̄

∂xi

∣∣p−1
}
+ 2 d1

)p′
.

The right-hand side of the last inequality, due to the smoothness of v is a function
integrable overQT , therefore, by the Lebesgue theorem on the passage to the limit
J → 0 for τ, h→ 0, it means that (56) holds.

From the inequalities (53)–(55) it follows that

lim
τ,h→0

Jτ (t
′) ≥ lim

τ,h→0

∫

�

�(�τ"r(y(t
′))dx −

∫

�

�(u0(x))dx. (58)

From the relations (41)–(46) and (56) it follows that

lim
τ,h→0

Jτ (t
′) = lim

τ,h→0
Jτ (t

′) = J (t ′) ≡
t ′∫

0

{〈f, u〉−

−
n∑
i=1

∫

�

Ki
∂v

∂xi
dx −

n∑
i=1

∫

�

ki(x, u∇v̄, Bu)∂(u− v̄)
∂xi

dx}dt. (59)

Considering (50), we will obtain

J (t ′) =
t ′∫

0

{〈∂ϕ(u)
∂t

, u〉 +
n∑
i=1

∫

�

(Ki − ki(x,∇v̄, Bu)∂(u− v̄)
∂xi

dx}dt. (60)

Substituting (59), (60) in the inequality (58) and integrating the result over t ′ from
T − λ to T , λ = const > 0, we will have

T∫

T−λ
J (t ′)dt ′ ≥

T∫

T−λ
lim
τ,h→0

∫

�

�(�τ"r(y(t
′))dxdt ′ − λ

∫

�

�(u0(x))dx. (61)
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The convexity of the function �(ξ) implies the weak lower semicontinuity on

Lα(�) of the functional
∫

�

�(w(x))dx. Therefore

T∫

T−λ
lim
τ,h→0

∫

�

�(�τ"r(y(t
′))dxdt ′ ≥

T∫

T−λ

∫

�

�(u(t ′))dxdt ′. (62)

We transform the left-hand side of inequality (61) using the mean value theorem.
The application of this theorem is admissible, since the function J (t ′) is absolutely
continuous with respect to t ′. Considering (62), we will obtain

λJ (t̄) =
T∫

T−λ

∫

�

�(u(t ′))dxdt ′ − λ
∫

�

�(u0(x))dx,

here t̄ ∈ [T − λ, T ].We divide both sides of the last inequality by λ and pass to the
limit as λ→ 0, as a result we get

T∫

0

〈∂ϕ(u)
∂t

, u〉dt +
T∫

0

∫

�

n∑
i=1

(Ki − ki(x, u,∇v̄, Bu))∂(u− v̄)
∂xi

dxdt ≥

≥ lim
λ→0

1

λ

T∫

T−λ

∫

�

�(u(t ′))dxdt ′ −
∫

�

�(u0(x))dx.

The last inequality and the 3 lemma imply

T∫

0

T∫

0

∫

�

n∑
i=1

(Ki − ki(x, u,∇v̄, Bu))∂(u− v̄)
∂xi

dxdt ≥ 0. (63)

Assuming in the inequality (63) first v̄ = u + λw, and then v̄ = u − λw, where

λ = const > 0, w is an arbitrary function from Lp(0, T ;
◦
W

1

p (�)), it is easy to
obtain equality (51). The theorem is proved. ��
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The Program System for Design
Optimization of Data Transmission
Networks

Vadim M. Gostev

Abstract The paper aims at analyzing the problem of data transmission networks
(DTN) design and the description of DTN design process using the design optimiza-
tion system (DOS). Methods and technologies of structure and parameters synthesis
of DTN on the DOS base are considered.

1 Introduction

Data transmission network (DTN) is the structural core of a geographically dis-
tributed wide-area computer network. DTN is a backbone communications mesh
subnet that provides information exchange between servers and workstations.
The basis of DTN is formed by communication nodes that interconnected by
communication links. Nodes manage transmission processes of data streams on
DTN and are usually implemented on the basis of high-performance multi-protocol
routers.

The cost of a router depends on its performance (throughput) measured by the
number of packets processed per unit of time, as well as on the quantity, types
and speed of interfaces, types and versions of supported protocols. Communication
links are created usually on the basis of dedicated (leased) channels of digital
communication systems. The cost of channels renting mostly depends on their
capacity and the distance between the connected points (nodes of data transmission
network).
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2 The Process of Data Transmission Networks Optimization

Among many problems that arise during the DTN life cycle, the problem of
system (conceptual) design takes a special place. The quality of decisions that are
made during design process largely determines the efficiency of the functioning of
information systems created on the basis of a wide-area computer network.

The DTN design process includes the following stages. First, it is necessary to
choose the topological structure of the DTN, that is to determine the number and
location of communication nodes and also to determine for each node with which
other nodes it will be directly connected by communication links. In the second
stage, there is a need to select main routes of data packets transferring between
each pair of nodes. The third stage is making a choice of routers throughput and
communication links capacity.

The value of router throughput directly influences the choice of a specific
router model from the range of available devices (by comparing their character-
istics such as cost and throughput) for installation in each communication node.
Communication link capacity influences on the characteristics of communication
equipment installing in nodes and thus influences the cost of installation or renting
of communication link.

The main criteria for estimating a data transmission network project are:

– expected time characteristics of data transmission—average and maximum
delays of messages and packets in DTN; those delays determine the wide-area
computer network response time (quality of service for DTN subscribers);

– throughput (overall performance) of DTN;
– cost characteristics, including capital costs of the communication nodes equip-

ment, as well as operating costs (the cost of renting communication channels,
cost of network administration).

The choosen values of parameters of routers and communication links must be
conformed with each other and ensure the compatibility of all DTN components by
protocols and interfaces. In addition, during the development of the DTN project,
it may be necessary to provide a reserve for connecting of new subscribers to DTN
and take into account the forecasted dynamics of the increase of external load as
well as the phased development of the network parts.

The making of all design decisions is interdependent and requires taking into
account a large number of factors. For example, the choice of DTN topology affects
primarily the cost of the network. However, this choice, together with other design
decisions, also affects the reliability of the network and the values of the time delays
during the transmission of packets through links from sources to destinations. The
choices of routers throughput and links capacity determine the cost of the network
and packet delay. Without solving the routing problem (and hence the distribution
of data streams over nodes and links), packet delays cannot be calculated. So project
quality criteria usually conflict with each other. For example, it is difficult to find a
compromise between the amount of funds allocated for the development of a DTN
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and such technical characteristics as reliability, average packet delay time and DTN
throughput.

Thus, the problem of DTN design is a complicated multicriteria problem, which
is characterized by a complex nature, inconsistency, and poor formalizability of the
set of requirements for the designed object, the need to carefully consider numerous
interrelated factors of various natures. A comprehensive solution of this problem
requires the development of adequate mathematical models, computationally effi-
cient methods and technologies that would allow taking into account the most
important requirements for modern DTN (for the formation and optimization of
the project).

3 The Data Transmission Networks Design Optimization
System

The complexity of the DTN design problem does not allow formulating one
common mathematical task (in general statement) that describes the whole problem.
As noted, for example, in [1], “the DTN optimization problem is so complicated
that there is no hope of solving it in general terms”. In such circumstances,
interactive human-machine technologies can help to cope with the complexity of
this problem [2]. A number of such technologies are implemented in the data
transmission network design optimization system (DTN DOS) [3]. The technologies
provide versatile support for the activities of a human in the design process, i.e.
during the searching, forming and estimating the effectiveness of solutions to the
problem under our consideration.

DTN DOS provides the designer with a set of tools that help him to develop and
to evaluate versions of design solutions. The design process (as a decision-making
process) is based on a combination of abilities of human-designer (his ability
to solve informal problems, his experience, knowledge, understanding of specific
project situation) with the computing capabilities of a computer. That human-
computer interaction allows solving complex mathematical problems of analysis,
evaluation and optimization as components of the general DTN design problem.

The system allows solving the problems of structural-topological and parametric
design of DTN, performing calculations and evaluating the parameters of projected
networks based on the use of their models, comparing various design solutions and
assessing their effectiveness, optimizing design solutions in terms of cost, reliability,
performance and time delays. The system provides support for a multi-stage iterative
man-machine design process with the ability to repeatedly perform individual stages
and solve individual problems in order to correct, refine and optimize previously
adopted design solutions, as well as the implementation of design methods with
varying levels of complexity. At the same time, the system provides the designer
with a user-friendly interface that meets modern requirements (graphical display of
projected networks in a multi-window mode, tools for working with versions of the
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projected network, means for supporting technologies for automatic completion of
partial solutions, means for automatically improving existing solutions).

The process of designing a data transmission network based on a design
optimization system includes the following main stages:

1. structural and topological design (STD);
2. routes selection (RS)—the choice of routes for data transmission between

communication nodes;
3. capacity selection (CS)—the choice of throughput capacities of nodes and

communication links;
4. the estimation of quality and efficiency (EQE) of the designed DTN.

The design process is supported by a complex of functional and supporting
subsystems of the DTN DOS.

Functional subsystems implement the solution of design problems (in automatic,
manual and hybrid modes) at the appropriate design stages.

The subsystem of structural and topological design includes a set of programs
that implement methods for optimizing the design of the topological structure of
DTN and tools for supporting manual design (building the initial network topology,
its further completion, improvement). Within the framework of the subsystem,
algorithms for solving the following basic problems are implemented: construction
of the initial topology, construction of a graph with a given degree of vertices,
construction of a graph with the minimum total length of the shortest paths between
all pairs of vertices under a cost constraint, algorithms for optimal completion and
improvement of the topological DTN structures.

The route selection subsystem includes a set of programs for solving data
flow routing problems: a flow deviation method to minimize the average latency,
maximum delay minimization algorithms, the shortest path algorithms, various flow
distribution methods aimed at increasing the DTN throughput.

The capacity selection subsystem includes a set of programs that implement
methods for the optimal selection of communication links capacity and nodes
throughput as well as tools for completing and improving DTN design versions.

Supporting subsystems maintain the operation of functional subsystems. The set
of supporting subsystems forms the system environment (shell) of the design opti-
mization system. The main functions of the system environment are design process
management, data management, implementation of the man-machine interface. The
design optimization system includes the following supporting subsystems: monitor
(design process control subsystem), support subsystem for working with versions
of design solutions, data management subsystem, graphic display subsystem,
subsystem of means of interaction between the designer and the system.
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4 The Estimating Quality and Efficiency of the Data
Transmission Networks

The complexity of the problem under consideration, the large number of parameters,
conditions and restrictions of various levels of detail do not allow describing
and investigating the designing DTN in full enough within the framework of a
unified mathematical model. To increase the efficiency of the design process, the
integrated modeling technology is implemented in the design optimization system
(DOS): in the process of forming and analyzing solution versions, both analytical
and simulation models are used. On the basis of analytical models, the following
functional subsystems of DOS are built: structural and topological design, routes
selection, capacity selection.

The use of analytical models makes it possible to relatively quickly form a
complete version of the DTN project using optimization algorithms of various
complexity levels. However, as a rule the relatively high speed of these algo-
rithms is achieved due to a number of simplifying assumptions. In particular, a
continuous distribution of the lengths of transferring packets (and, therefore, a
continuous distribution of the time processing of packets in the nodes and links), the
independence of the packet lengths, the absolute reliability of the DTN elements,
the independence of the packet delays in all transit elements of the route are
assumed [4]. These assumptions reduce the accuracy of the design characteristics.
In a such situation to evaluate whether this accuracy is within acceptable limits
and to outline the boundaries of the scope of analytical models it is possible
using simulation modeling [5, 6]. Simulation models can be used to substantiate
and verify the developed analytical models of DTN elements, to evaluate the
effectiveness of heuristic algorithms based on analytical models, and also to evaluate
the effectiveness of DTN projects developed on the basis of analytical models. The
use of simulation models is time-consuming to obtain results, however, it allows one
to abandon some simplifications and to obtain more accurate estimates of the DTN
characteristics versus analytical models.

The integrated using of analytical and simulation models forms the basis for the
technology for estimating the quality and efficiency (EQE) of designed DTN. That
technology implemented in the EQE subsystem of the DTN design optimization
system.

The EQE subsystem provides a solution to the problems of calculating the
characteristics of projected networks and criteria for estimating the quality of
their functioning with a different character of the distribution of external load on
the network. The criteria are average and maximum packet delays, estimates of
the maximum throughput and cost of the projected network. The subsystem also
provides a solution the problems of failures modeling in the operation of networks
and estimating the quality of the functioning of networks in these conditions, what
makes it possible to identify the “bottlenecks” of a particular version of the network.

DTN simulation models are built automatically by a special model generator
included in the EQE subsystem. The generator input receives an information model
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of the DTN created by the designer at the previous stages (structural and topological
design, routes selection, capacity selection). Analyzing the DTN parameters, the
generator forms a model in the GPSS language. The model simulates those functions
of communication nodes that reflect the key aspects of routing algorithms and the
main functions of the network protocols: packet queuing, packet header analysis,
packet processing, selection of the outgoing direction of packet transmission in
accordance with the routing procedure. This takes into account the packet delay
in the node during the time takes to complete these operations. At the process of
automatic generation, libraries are used that contain models of individual functional
modules of the communication nodes and communication links, as well as models
of external data sources (servers and workstations). The resulting model is passed
to the input of the GPSS interpreter.

The output characteristics obtained as a result of the simulation experiment
are the average packet delay time, standard deviation from the average packet
delay time, packet delay distribution functions, the number of packets processed
by each communication node, the number of packets transmitted, average lengths
of queues and average values waiting time in each communication node, the load of
communication links and processors of the routers at every communication node.
Analyzing the simulation results, designer can correct the current version of the
DTN project (change the topology, routes, nodes throughput, links capacities, packet
sizes) and repeat the simulation stage using the means of the EQE subsystem of
DTN DOS.

5 Mathematical Models and Methods for Data Transmission
Networks Design Optimization

For a comprehensive solving to the general problem of DTN design and for solving
of particular problems of optimization of design solutions various methods and
technologies are proposed.

Let the DTN topology be defined by the graph G = (V , U), where the set of
vertices V = {v1, v2, . . . , vn} represents the set of DTN communication nodes, the
set of edges U = {u1, u2, . . . , um} represents a set of communication links. We
denote by ck, k = 1,m the capacities of communication links, by fk , k = 1,m—
flow rates through links, through γ—total DTN traffic.

In [4], an estimate of the average delay of messages on communication links via
DTN is given:

T = 1

γ

m∑
k=1

fk

ck − fk , (1)

which occurs when certain, sufficiently stringent, assumptions are met (Kleinrock
regularization, see [4]).
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The DTN design problem is formulated as follows. For the set of nodes V =
{v1, v2, . . . , vn} and for the external flows matrix � = (γij ) it is necessary
to find: 1)the set of edges U = {u1, u2, . . . , um} describing the DTN links
structure; 2) the links capacities c = {c1, c2, . . . , cm}; 3) the flows’ distribution
f = {f1, f2, . . . , fm}, corresponding to the matrix � = (γij ), which minimize the
total cost of the DTN when the average delay T is limited and a given degree of
graphG = (V , U) connectivity is ensuring.

The software of DTN design optimization system includes:

1. some well-known, proven mathematical models, numerical methods and algo-
rithms for solving problems of analysis, estimation and optimization DTN [6–9,
11–13];

2. a number of new mathematical models, methods and technologies for DTN
design optimization [2, 3].

The relevance of the development of new methods and technologies is deter-
mined for the two following reasons.

Firstly, “old” methods do not take into account delays in communication nodes.
This can be explained by the fact that communication links in “early” DTN had
relatively low throughput, while processors in the nodes had a relatively higher
productivity. And the communication links were the “bottlenecks” that had a
decisive impact on the overall DTN throughput. In modern conditions, when high-
speed digital links are used in DTN, delays in communication nodes can have the
same order of magnitude as delays in links. Therefore, in the DTN design process,
it is also necessary to ensure control of nodal delays.

Secondly, the well-known methods for optimizing the DTN design, in particular,
methods for the optimal choice of links capacities are practically unsuitable for
solving problems of DTN design with an asymmetric load on the network while
exactly this case is typical for modern wide-area computer networks.

6 An Example of Integrated DTN Modeling

Among the characteristics of DTN the most important place is occupied by the
values of packet delays. In [2], a method for estimating the average delay of packets
is proposed. The method is taking into account the delays in the communication
nodes. In this case to estimate the delays in the communication links well-known
approaches based on the use of the M/M/1 and M/D/1 models are used. A similar
approach is used to estimate packet delays in the communication nodes.

Based on the M/M/1 model, i.e. consider that the input stream of packets for
processing by the processor of the communication node is Poisson with intensity
λ, and the processing time is 1/q considered as a continuous random variable
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distributed exponentially with an average value, then the average packet delay in
a separate node will be expressed as

θM = 1

q − λ =
1

q − μg , (2)

where g = λ/μ is the average value of the flow through the node in bit/s. Here, too,
the flow admissibility condition must be met: g < q/μ.

Since the processing of packets in the communication nodes usually consists
in performing operations that are the same for all packets regardless of their size,
we can assume that the processing time is constant for all packets and depends
only on the processor’s performance. Therefore, it is possible to consider a separate
communication node as an M/D/1 system, at the input of which a Poisson flow with
an intensity λ arrives, and the service time is constant, equal 1/q (therefore, the
service rate is q packets per second). Then the average packet delay in a separate
node can be calculated as

θD = 1

2q
+ 1

2(q − λ) =
1

2q
+ 1

2(q − μg), (3)

Note that θD = (1 − ρ/2)θM , where ρ = μg/q - the average load on the node,
and for 0 ≤ ρ < 1 takes place 0, 5θM < θD ≤ θM < 2θD.

To evaluate the proposed approach (to check the adequacy of the analytical
models), a series of computational experiments were carried out on the basis of
the DTN DOS to calculate the characteristics of the DTN in order to study the
dependence of the average packet delay time on the nature of the external load on
the network. For networks with a different number of communication nodes (from 4
to 50), the change in the volume and structure of information flows from DTN users
was modeled. Cases of symmetric and asymmetric external load on DTN, various
laws of distribution of intervals of the arrival of packets from external sources, as
well as service time (packet processing) in nodes and efficiency were considered.
The result of one of the typical experimental is as follows. Here, the dependencies
of average delays on the total load on the DTN are obtained for a network of 10
nodes (packet size is 1500 bytes). For the projected DTN with a limit on the average
packet delay of 6 ms at a total load (global flow) of 120 Mbit/s, a series of tests
was carried out using the EQE subsystem. Four methods for assessing delays were
used: analytical and simulation modeling of the control and efficiency using the
M/M/1 and M/D/1 models. The experiments have shown that the proposed method
for analytical evaluation of delays in DTN at nominal (design) external load gives
results that differ from the results of simulation by 5–10%, and can well be used in
the early design stages for a quick estimation of quality and efficiency functioning
of the developed versions of DTN. For a more accurate assessment and forecast
of the “behavior” of the network (especially when the rated load is exceeded), the
means of the EQE subsystem can be used.
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7 The DTN DOS as Basis of Electronic Scientific
and Educational Complex (ESEC)

In order to improve the quality of e-learning the concept of formation and develop-
ment of the system of electronic scientific and educational complexes (ESEC) was
developed [10]. The main objective of such a system—to ensure the information
integrity of the university’s scientific and educational space and its integration into
the global information space on the basis of a new generation of electronic scientific
and educational resources. ESECs should provide comprehensive information
support of the educational process, as well as the integration of research and
educational activities. The structure of a typical ESEC includes: problem-oriented
portal; digital library; tools for collaboration (collective project activities as part of
studies, independent research work of students, joint research activities of teachers
and students).

An example of the implementation of the concept of ESEC is an Electronic
scientific-educational complex “Data Transmission Networks Design Optimiza-
tion”. The complex provides comprehensive support for research and educational
activities in the field of computer networks—on classroom training sessions with
the use of modern educational technologies (on lectures, seminars, etc.) and to self-
teaching and research work of students. Information support of the educational
process on the basis of ESEC made via the portal “Advanced Information and
Communication Technologies”. The portal provides access to a range of electronic
teaching materials (work programs, lecture materials, manuals, links to electronic
resources) for a lot of courses in “Advanced ICT” area.

For the implementation of the relevant technologies and the organization of
educational and research work in the field of computer networks, the DTN DOS
is included in ESEC “Data Transmission Networks Design Optimization”. The
basis for organizing of training sessions using the DTN DOS is the creation of
problem situations, through which students are involved in the problem solving
process. Here, the transition from the principle of mastering knowledge through
repetition and memorization to the principle of mastering knowledge in the process
of independent intellectual activity of students is realized. Working with the
system, students can study the composition and structure of DTN, master the use
of simulation methods, methods of optimizing design solutions and also study
and apply in practice the principles of a systematic approach to the design of
complex objects. The implementation of these works gives a significant teaching
effect, since in parallel with the study of architecture and methods of designing
computer networks, students deepen their knowledge and develop skills in the field
of simulation, system and applied programming.
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8 Conclusion

The program system for design optimization of data transmission networks allows
solving the problems of structural-topological and parametric design of DTN. The
system provides support for a multi-stage iterative man-machine design process
with the implementation of design methods with varying levels of complexity. The
software of DTN design optimization system includes both well-known and new
mathematical models, methods and technologies for DTN design optimization.

An integrated approach to modeling allows within the framework of a unified
DTN design process to use the advantages of analytical (at the stages of forming
and adjusting the project) and simulation (at the stage of estimating the quality
and efficiency of the resulting project) models. Along with direct application in the
process of DTN design, this approach can be used to justify and verify the developed
analytical models. An example of such use is the experimental substantiation of a
heuristic method for estimating packet delays in DTN.

In addition, the DTN DOS serves as a technological basis for further development
of the ESEC concept including methods for designing and creating hardware,
software, information, and organizational support for ESEC, experimental assess-
ment of the labor intensity of implementing the developed ESEC architecture and
estimating the effectiveness of new educational technologies.
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Mathematical Modeling of Transient
Processes in Circular Channel
with the Boiling of Refrigerant-113

Damir A. Gubaidullin and Boris A. Snigerev

Abstract The two-fluid model has been extensively used in modeling boiling flow
of water, however, there are few equivalent studies of boiling flow of cryogenic liq-
uids. In the present study, the two-fluid model was developed with by incorporating
new closure correlations, then boiling flow of liquid refrigerant-113 in a vertical
annulus tube was numerically simulated using the modified model. Comparison
with experimental data shows that the modified model is satisfactorily improved
in accuracy. This study demonstrated that the following parameters and models are
important for accurate prediction: the lift force, the bubble diameter distribution and
the active site density, among which, the active site density has the most significant
effect.

1 Introduction

Boiling flows are frequently found in industry and engineering due to the large
amount of heat that can be transferred within such flows with minimum temperature
differences. In the nuclear industry, boiling affects in different ways the operation
of almost all water-cooled nuclear reactors. Recently, the use of computational fluid
dynamic (CFD) approaches to predict boiling flows is increasing and, in the nuclear
area, numerical methods is being developed to solve thermal hydraulic safety issues
such as establishing the critical heat flux, which is perhaps the major threat to the
integrity of nuclear fuel rods [1, 2]. In recent years, the advances in computational
technologies have allowed flow boiling simulations faster than before. Generally,
according to the problem specifications, objectives and characteristics, there are
some important models for numerical simulation of two-phase flow and boiling
heat transfer in channels. Most often, numerical study of two-phase flow is based
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on Eulerian- Eulerian mathematical approach. This approach considers the liquid
phase as a continuum phase and the particles phase (vapor bubbles in boiling
flow) as another continuum phase. Then, the conservation equations are solved by
considering interphase forces and exchanged heat on a control volume for both of
phases [3–7].

With the aim of predicting the boiling process, different wall boiling models
have been incorporated in modern CFD codes. For two-fluid averaged models, these
approaches are in the large majority based on the Rensselaer Polytechnic Institute
(RPI) boiling model from Kurul and Podowski [8], where the heat flux from the wall
is partitioned between the mechanisms responsible for the heat transfer process,
these being single-phase convection, quenching and evaporation. In recent years,
many authors have used more or less refined versions of the RPI boiling model
to predict boiling flows [9, 10]. After departure from the heated wall, the bubbles
join the bulk of the flow and the size distribution of these bubbles, polydispersed in
general, governs interphase exchanges of mass, momentum and energy. Therefore,
in models of these flows, knowledge of the average diameter of the bubbles is
required in many closure relations, and additional models have been used to predict
the average bubble diameter distribution. Initially, bubble size was derived from
experimental data or empirical correlations of subcooling in the liquid phase. Some
key wall boiling parameters, including the nucleation site density (Nw), bubble
departure diameter (Dw) bubble departure frequency (f ), are used to close the
model. These parameters should be carefully identified due to the significant impact
on the boiling physics as well as the local flow patterns of the two-phase flow
[11, 12]. The closure models of Nw, Dw and f have been expressed by empirical
correlations. Since the correlations were obtained empirically from experiments,
their reliability is strongly dependent on the working conditions. In fact, for the
refrigerants at low pressure the variations of liquid properties with subcooling
and saturation temperature along the heated channel are relatively obvious. Taking
refrigerant-113 for example, when liquid subcooling varies from 0 to 40 K, density,
thermal conductivity, viscosity and specific heat at constant pressure increase by
6.7%, 13.5%, 57.1%, 4.7%, respectively. Moreover, the saturation temperature of
refrigerant-113 at low pressure varies evidently along the heated channel (for about
5 K in a 3 m long vertical channel), which is closely correlative with the predictions
of local flow characteristics in subcooled boiling flow. Therefore, temperature
dependent properties and saturation temperature variation along the heated channel
should be given extra considerations in order to accurately simulate the process of
subcooled boiling flow.

In this paper, the accuracy of an Eulerian-Eulerian, two-fluid CFD model is
evaluated over database of subcooled boiling flows of liquid refrigerant-113 from
number of experiments are described in [13, 14]. The model applied the basic
theories of mass, heat and momentum transfer, Reynolds stress turbulence model
and a boiling model, derived using the heat flux partitioning approach. The database
covers a large range of conditions in subcooled boiling flows of refrigerants in
vertical annular channels. Overall, a satisfactory predictive accuracy is achieved for
some quantities of interest, such as the void fraction and the turbulence and liquid
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temperature fields, but results are less satisfactory in other areas, more specifically
for the mean velocity profiles close to the wall in annular channels. Agreement may
be improved with advances in the treatment of large bubbles and bubble break-up
and coalescence, as well as in improved modelling of the boiling region close to the
wall, and more specifically the bubble departure diameter, the wall treatment and
the contribution of bubbles to turbulence.

2 Mathematical Two-Fluid Model for Subcooled Boiling

In a two-phase mechanistic model, both the gas and liquid phases are treated as
continua, and two sets of conservation equations governing the balance of mass,
momentum and energy of each phase are solved. Consider the interfacial mass,
momentum and energy transfer, the governing equations for the two-fluid model
are given by Nigmatulin [1], Yeoh and Tu [11], Gubaidullin and Snigerev [15]:

∂

∂t
(ρkαk)+∇ · (ρkαkuk) = ṁlg − ṁgl, αl + αg = 1, k = l, g,

∂

∂t
(ρkαk uk)+∇ · (ρkαkuk uk) = −αk∇P + αkρkg+ ṁlgul − ṁglug+

+∇ ·
(
αkμeff,k

[
∇uk + (∇ uk)T

])
+ Mlg,

∂

∂t
(ρkαk hk)+∇ · (ρkαkuk hk) = ∇ · [αkλk ∇Tk] + ṁlg hl − ṁgl hg + Qlg.

(1)

In the equation system (1) t is time, $l and $g are continuous and dispersed phase
densities respectively, αl , αg are volumetric concentrations of gas and bearing
phase, λk is heat conductivity coefficient of k phase, g is gravity acceleration
vector, uk = u1ki + u2kj + u3kk is velocity vector k-phases, P is carrying phase
pressure, μeff,k is effective dynamic the viscosity of the k phase, Mlg is vector
of interphase interaction force, hk is enthalpy of k phase, Tk is temperature of k
phase, Qlg is heat transfer between phases, ṁlg is mass transfer rate between the
phases of l and g. To simulate turbulence, the Reynolds stress transfer model is
used, which includes the effective viscosity of the medium μeff,l , determined by
the ratio μeff,l = μlam,l + μt, l + μBI,l . To describe the additional dissipation
of the kinetic energy of turbulence by the pulsation of the bubbles, the viscosity of
μBI,l is entered [11, 16]. For calculation of μeff,l applies the Kolmogorov formula,
and for μBI,l the ratio from [9] is applied

μt, l = Cμ $l k
2
l

εl
, μBI,l = Cμb ρl αl ds

∣∣ug − ul
∣∣ , μeff, g = $g

$l
μeff, l .

(2)
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The total interphase interaction force Mlg plays a very important role when
modeling multiphase flows [1, 17]. The inter-phase momentum exchange was
accounted through the forces acting on the dispersed bubbles as:

Mli = −Mgi = −
(
MD
g i + ML

g i + MTD
g i + MW

g i

)
, (3)

whereMD,ML,MTD,MW are inter phase momentum transfer contributions from
drag, lift, turbulent dispersion and wall forces respectively. The volumetric source
of the momentum exchange between the two phases due to the drag force exerted
by the liquid is given by

MD = 3

4
ρlαlαg

CD

db
|ug − ul |(ug − ul ). (4)

The drag coefficient CD was calculated using the correlation of [8]. The lift force
that is experienced by bubbles due to velocity gradients in continuous phase was
estimated as:

ML = CLρlαg(ug − ul )×∇ × ul . (5)

The CL was calculated using the model proposed by Wang et al. [7]. The liquid
phase turbulence influences the vapor distribution and it was accounted by the
turbulent dispersion force model of [16] as M = CTDρlkl∇αg where, CTD is
turbulent dispersion coefficient which may vary from 0–10. The wall force acts
opposite to the lift force and forces the bubbles to move towards pipe center.
Since bulk of the liquid is below the saturation temperature, bubbles formed at
the wall start condensing when they move inside. Similarly, evaporation can take
place in the bulk of the liquid. This interphase mass transfer was accounted by
including appropriate source and sink terms into the continuity equation. The rate
of evaporation is given by

ṁlg = hlgAlg(Tl − Tg)
hfg

. (6)

Further, ṁlg + ṁgl = 0. The interfacial heat transfer Qlg is given by Qlg =
hlgAlg(Tsat − Tl), where hlg is heat transfer coefficient calculated as [18] hlg =
Nuλl/db and Nu is Nusselt number given by Nu = 2 + 0.6Re0.5Pr0.3. The
interfacial area is calculated as Alg = 6αg/db. For present work, since bubble
size was found to be almost constant, a constant mean bubble diameter was used
in the simulations. An additional source term active only at the near wall cells was
included to account for the vapor generation at the heated wall. It was calculated
using wall heat flux partitioning model as �g = qeAs/hfgVcv where Vcv is control
volume and As is heated wall area.
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According to Kurul and Podowski [8] wall flux partitioning model, the heat flux
between the heated wall and liquid is exchanged via three mechanisms

q = qq + qe + qc, (7)

where qq, qe, qc are convective, evaporative and quenching heat respectively. At the
heated walls, bubbles are formed due to vaporisation of liquid at the nucleation sites
and the part of the wall heat used for this is called evaporation flux. Once bubbles
reach critical bubble size they detach from the wall, cold liquid replaces the space
occupied by bubbles and receives heat from the wall. This flux is called quenching
heat flux. The rest of the area of the wall, that is not covered with the bubbles, is
used for the single phase convective heat transfer. The quenching heat flux is given
by

qq = Aqhq(Tw − Tl). (8)

The area available for quenching heat transfer is Aq = πNd2
dep . The quenching

heat transfer coefficient was calculated as hq = 2λlf
√
τ/πk. The bubble waiting

time is given as, τ = 0.8/fdep. The evaporation heat flux is given by

qe = π/6d3
depρl fdepNhlg, (9)

where nucleation site density N was calculated as [19, 20] N = Nref [(Tw −
Tsat )]1.805 and bubble departure frequency was calculated as [21] fdep =
(4g(ρl − ρg)3 ρl ddep)0.5. The convective heat flux was calculated using following
correlation

qc = (1− Aq)ρlCp,lu
∗

T +
(Tw − Tl), (10)

where T + is the non-dimensionless temperature. The system of Eqs. (1)–(10)
describe the hydrodynamics and heat and mass transfer in the movement of
steam-gas-liquid mixture in thermal power engineering apparatuses of chemical
technology.

The simulations were carried out for an axis-symmetric geometry. A velocity
inlet condition was specified at the bottom and pressure boundary condition was
imposed at the top outlet. The no slip velocity boundary condition was specified
at the wall for the vapor and liquid phase. For vapor phase, some researchers have
argued that free slip condition is best suited and thus effect of free slip boundary
condition for vapor phase was also investigated. The k − ε turbulence model with
bubble induced turbulence source term [16] was used to simulate turbulence in the
continuous phase.

The solution algorithm PISO was used to solve pressure-velocity coupling.
In this work, a combination of Gauss upwind, Gauss linear and Gauss limited
Linear schemes were used for discretization of spatial derivatives. For the time
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derivative, first order accurate Euler implicit method was used. The set of discretized
equations was solved by the generalised geometric-algebraic multi-grid (GAMG)
solver with Diagonal incomplete-Cholesky (symmetric) smoother for pressure and
the preconditioned bi-conjugate gradient (PBiCG) solver with Diagonal incomplete-
LU (DILU) pre-conditioner for the rest of the variables. The existing two phase
solver twoPhaseEulerFoam available for isothermal gas-liquid flows was further
developed to account for phase change phenomenon.

3 Numerical Results

The verification of the presented mathematical model was carried out by comparing
the results of calculations with experimental data. The data of experiments presented
in [14] were chosen, in which the boiling ascending bubble flow of subcooled liquid
refrigerant-113 at high pressure in a annulus tube with step heating (diameter of
heated inner tubeD1 = 15.8 mm, insulated outer tubeD2 = 42.02 mm, heightH1 =
3660 mm, height of the heated section H2 = 2750 mm) was studied. In the Table 1
the basic characteristics of gas-liquid flow at the inlet of the pipe are presented:Gl is
mass flow rate of liquid at the inlet of the pipe, P is pressure, qW is heat flux on the
wall of the pipe, Tsat is saturation temperature of liquid, T1,IN is water temperature
at the inlet, 
T is degree of subcooling of liquid. Two-phase flow in a vertical pipe
is assumed to be axisymmetric, therefore for numerical simulation the calculated
the area consisting of a circular sector with a radius of r0 = D2/2 = 21.0×10−3 m,
a length of L = 3.66 m and a solution angle of 40◦. Numerical calculations were
performed on finite volume grids consisting of Me = 64,000, 124,000, 264,000
nodes of the computational grid. In the section of the plane x1x2, the number of
partitions by coordinates along the pipe axis and by length for different grids is
M1 = 20 × 200,M2 = 40 × 400,M3 = 60 × 600, respectively. The following
parameters of the liquid refrigerant-113 in subcooling temperature in range from 0
to 40 K are set: density change in scope ρl = 1423−1526 kg/m3, dynamic viscosity
coefficient μl = 340.8 · 10−5− 535.8 · 10−5 Pa · s, the latent heat of vaporization is
Llg = 1.3 · 106 J/kg, constant pressure heat capacity for liquid and gas Cpl = 978
− 932 J/kg K, coefficients of heat conductivity of medias kl = 0.57 − 0.65 W/m
K. Confidence in the predictions of CFD codes relies on validation of their results
against relevant experimental data. In this regard, it is important that models provide
accurate predictions over many experiments, with parameter variations as wide as
possible. Therefore, a database was built from 6 experiments from [14]. In this

Table 1 Characteristics of mode parameters of experiments [14]

P MPa Gl kg/m2 s qW kW/m2 Tsat C T2,IN C

roy1 0.269 568.0 79.4 85 42.7

roy3 0.269 784.0 125.8 85 52.0
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research work [14] the subcooled boiling of refrigerant R-113 in a vertical annulus
channel of 3.66 m in length, 0.0158 m in inner diameter and 0.0422 m in outer
diameter was testing. A laser Doppler velocimetry system allowed measurement
of the velocity field and the turbulent fluctuations, with an optical probe used to
obtain the void fraction and the bubble diameter. The liquid and vapour temperatures
were measured with micro-thermocouples. Measurements were taken at 0.269 MPa
and in the ranges 565–785 Gl kg/m2 s for the mass flux, 79.4–125.9 qW kW/m2

for the heat flux and 42.1–50.2 C0 for the inlet temperature. Comparisons for the
experiment [14] are presented in Figs. 1 and 2.

In these, and subsequent figures, symbols are used for experimental data and
lines for model predictions. In annular channels (Figs. 1 and 2), the radial position
is nondimensionalized with the distance between the outer and inner radius and,

Fig. 1 Comparison of predicted physical variables against experimental data for case roy3 (1–
symbols experiment [14], 2–line calculation: (a) void fraction α; (b) temperature Tg )

Fig. 2 Comparison of predicted physical variables against experimental data for case roy3 (1–
symbols experiment [14], 2–line calculation: (a) velocity of liquid ul ; (b) velocity of gas ug)



192 D. A. Gubaidullin and B. A. Snigerev

therefore, in the plots r
′ = (r − Ri)/(R0 − Ri) = 0.0 identifies the inner wall,

whereas r
′ = (r − Ri)/(R0 − Ri) = 1.0 corresponds to the outer wall. Only the

inner wall is heated in [14]. In the following, discussion of the results is presented for
each physical quantity predicted. Even if the specific quantitative accuracy depends
on the particular experiment, the void fraction and temperature profile is generally
predicted with reasonable accuracy. In Fig. 1, temperature profile are well predicted
for [14], the only discrepancy being a minor underestimation void fraction in the
case of roy3. Compared with the experimental data, large discrepancy occurs at the
near-wall region for the axial liquid and vapor velocity profiles in the two predicted
results, and the discrepancy will be enhanced with high wall heat flux. As the wall
heat flux increases, high void fraction profile will be found in the bubble boundary
layer at the measurement plane, which makes the vapor bubbles move faster than
the bubbles in lower wall heat flux, and eventually develops the high predicted axial
liquid velocity profile with the action of the inter-phase drag force.

4 Conclusion

An Eulerian—Eulerian two-fluid CFD model, including a stress turbulence model
k − ε, boiling model derived from the RPI heat flux partitioning approach, was
used to predict a database of subcooled boiling flows. The database includes 2
experiments of subcooled boiling flows of refrigerants in annular channels, and
covers a wide range of conditions. In the present work, existing twoPhaseEulerFoam
solver was developed further by implementing various boiling correlations, wall
heat flux partitioning model and energy equation. Also, different inter-phase
coupling forces and bubble turbulence terms were included in the code. The
modified code was used to simulate the boiling and predictions were verified using
the measurements of experiment [14]. The results were found to be in a good
agreement with the experimental data of this paper. The nucleation site density
was found to influence the vapor volume fraction distribution and wall temperature
significantly. Further investigations are being to performed to understand the effect
of bubble size on the vapor volume fraction distribution, in particular on sharp
change in vapor volume fraction near the wall. The present work provides the
basis to develop experimentally verified computer code solver to simulate boiling in
complex geometries in different chemical technology. Overall, the model confirms
the potential of CFD to provide detailed predictions of boiling flows and rather good
agreement with data was found in some areas, but others still require significant
improvements in model accuracy. At the present time, the general applicability
of the model is not entirely satisfactory. Even if built in a mechanistic fashion,
numerous empirical closure relations are required, not only for wall boiling, but
also for the turbulence models. This clearly limits the overall models general
applicability and, therefore, the development of more mechanistic closures is highly
desirable.
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Hybrid Methods for Network
Equilibrium Problems

Igor Konnov and Olga Pinyagina

Abstract In the present paper, we propose a hybrid approach for network equilib-
rium problems. This approach combines the methods of conditional gradient and
partial linearization. To apply the hybrid method, the whole set of origin-destination
pairs is arbitrarily divided into two parts, for one of them the subproblem of direction
finding is solved by the conditional gradient method, for the other, the partial
linearization method is used. We propose two variants of the hybrid method with
inexact direction finding and adaptive step-size choice.

1 Introduction

Network equilibrium problems are widely used in different areas such as telecom-
munication and transportation networks (for example, see [2, 3, 11–13]). These
problems have the simple feasible simplex-like sets and special decomposable
structure, therefore one can use modifications of the conditional gradient or partial
linearization methods (CGM and PLM for short), where the subproblem of finding a
descent direction can easily be solved without any iterative procedure [5, 9] or even
inexactly [7]. In addition, the adaptive step-size choice can also be applied (see [6]).

In the present paper, we propose a hybrid approach for the network equilibrium
problems, which combines CGM and PLM in the common iterative procedure. To
apply the hybrid method, we split the set of origin-destination pairs into two subsets,
for one of them the subproblem of direction finding is solved by CGM, for the other,
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PLM is used. We propose two variants of the hybrid method, the first one with
inexact direction finding and the second one with adaptive step-size choice.

2 Preliminaries

Let us remind the general schemes of CGM and PLM. CGM was originally
proposed by M. Frank and Ph. Wolfe in [4] for quadratic programming problems
and further developed in [8]. Let f : Rn → R be a smooth function,D be a convex
closed bounded set in Rn. We consider the following constrained optimization
problem

min
x∈D −→ f (x) (1)

and the auxiliary linearized problem

min
y∈D −→ 〈f ′(x), y〉 . (2)

Under the given assumptions, both problems (1) and (2) have solutions, these
solutions are nonunique in general. We denote by Z(x) the set of solutions to
problem (2).

At the kth iteration of CGM, k = 0, 1, . . . , we have a point xk ∈ D. We
solve problem (2) with x = xk and find a point zk ∈ Z(xk). If xk ∈ Z(xk), the
necessary optimality condition for problem (1) holds, and it is a solution if f is
convex. Otherwise, we determine the descent direction dk = zk − xk , choose the
step-size λk ∈ [0, 1], and take the next iterate xk+1 = xk + λkdk . The step-size
can be found with using a suitable exact or inexact line-search (or even without
line-search) approach.

The partial linearization approach was proposed in [10] for optimization prob-
lems and developed in [13] for variational inequalities (VI for short). This approach
has advantages when the objective function can be decomposed into two parts, one
of them is suitable for linearization, and the other is sufficiently simple. We will
consider the following optimization problem

min
x∈D −→ μ(x) (3)

where the objective function μ : Rn → R is the sum of two functions μ(x) =
f (x) + h(x), the first of them f is smooth, the second one h is convex, and the
feasible domainD is a convex closed set in Rn.

We now describe PLM for problem (3). Let us given a point xk ∈ D at the kth
iteration, k = 1, 2, . . . . Find zk ∈ D as a solution to the auxiliary problem

min
x∈D −→ 〈f ′(xk), x〉 + h(x),
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set dk = zk − xk and define the next iterate xk+1 = xk + λkdk, where the step λk
can be found using a suitable exact or inexact procedure for the one-dimensional
minimization problem. The above-stated method converges to a stationary point of
the problem provided that the feasible set D is bounded.

When solving the network equilibrium problem by CGM or PLM methods, the
subproblem of finding a descent direction needs no iterative procedure [5]. The
special versions of CGM and PLM with inexact solution to the direction finding
subproblem were proposed in [6] and [7], respectively. In the present paper, we
propose a hybrid approach, combining these two methods in the general iterative
process.

3 Network Equilibrium Problems

Let us recall the formulation of the network equilibrium problem, which was
originally given in [3]. Usually, it describes a model of traffic or information data
flows.

Let V be a set of network nodes, A be a set of directed arcs (links). In addition, a
set W of origin-destination (O/D) pairs (i, j), i, j ∈ V is given. For each O/D-pair
w ∈ W a set of paths Pw is given; each path presents a simple chain of arcs starting
at the origin node and ending at the destination node of O/D-pair. We denote by xp
a variable flow value passing along path p, for all p ∈ Pw, w ∈ W .

Additionally, for each O/D-pairw ∈ W a demand variable yw is given. It presents
a flow outgoing from the origin and ingoing to the destination. We assume these
variables to be bounded from below and above with boundaries 0 ≤ γ̂w < γ̌w.

The network equilibrium problem is to find a distribution of the required demands
for all O/D pairs among the sets of paths by using a certain (equilibrium) criterion.

The feasible set has the form:

U =
⎧
⎨
⎩(x, y)

∑
p∈Pw

xp = yw, xp ≥ 0, p ∈ Pw, yw ∈ [γ̂w, γ̌w], w ∈ W
⎫
⎬
⎭ .

The following incidence matrix with elements

αpa =
{

1, if arc a belongs to path p;

0, otherwise

gives the correspondence of paths and arcs.
Then the arc flow value is calculated as the sum of the corresponding path flows,

for each arc a ∈ A:

fa =
∑
w∈W

∑
p∈Pw

αpaxp. (4)



198 I. Konnov and O. Pinyagina

Let a continuous cost function ca be given for each a ∈ A; it can depend on all
the arc flows in general. In addition, a so-called disutility continuous function hw
is given for each O/D pair w ∈ W . In the general case, the disutility functions can
depend on the whole demand vector y.

The path cost function is defined as follows:

gp(x) =
∑
a∈A

αpaca(f ),

for each path p, where f is the vector of arc flows fa, a ∈ A.
We denote by G and H the vectors with the components gp, p ∈ Pw , w ∈ W ,

and hw , w ∈ W , respectively.
For finding an equilibrium state of this network, one can solve the following

variational inequality: find an element (x∗, y∗) ∈ U such that

〈G(x∗), x − x∗〉 − 〈H(y∗), y − y∗〉 ≥ 0 ∀(x, y) ∈ U . (5)

In what follows, we assume that each arc cost function ca depends on fa only,
∀a ∈ A, each disutility function hw depends on yw only, ∀w ∈ W . Then the
mappingsG and H are potential, and there exist the functions

μa(fa) =
fa∫

0

ca(t)dt ∀a ∈ A , σw(yw) =
yw∫

0

hw(t)dt ∀w ∈ W .

Note that VI (5) presents the optimality condition for the following optimization
problem:

min
u∈U −→ ψ(u), (6)

where u = (x, y),

ψ(x, y) =
{∑
a∈A

μa(fa)−
∑
w∈W

σw(yw)

}
,

fa,∀a ∈ A are defined in (4). We denote by ψ∗ the optimal value of the goal
function in problem (6). Therefore, each solution to problem (6) solves problem (5).
The reverse assertion is also true, if, for example, the mappings G and −H are
monotone.



Hybrid Methods for Network Equilibrium Problems 199

4 Hybrid Methods for Network Equilibrium Problems

Auxiliary problem (2) of the ordinary CGM has the following sense for the network
equilibrium problem. At the kth iteration (k = 0, 1, . . . ) of the main process, we
have the vector of path flows xk and demands yk. We calculate the values of cost
and disutility functions gp(xk), hw(yk) for all p ∈ Pw,w ∈ W . The problem is to
find a vector (x̄k, ȳk) ∈ U , which is a solution to the auxiliary linearized VI:

∑
w∈W

⎡
⎣ ∑
p∈Pw

gp(x
k)(xp − x̄kp)− hw(yk)(yw − ȳkw)

⎤
⎦ ≥ 0, ∀(x, y) ∈ U, (7)

or the equivalent optimization problem

min
(x,y)∈U

−→
∑
w∈W

⎡
⎣ ∑
p∈Pw

gp(x
k)xp − hw(yk)yw

⎤
⎦ . (8)

We see that problems (7) or (8) can be decomposed into a set of independent
problems for each O/D pair. They can be solved using the simple algorithm from
[9]. We remind the scheme of this algorithm for solving such a separate problem.

Algorithm A
For certain O/D pairw ∈ W , we calculate a set of shortest paths P̄ kw with cost values
gp(x

k). Let λ̃w = gp(xk), ∀p ∈ P̄ kw. Then the following three cases are possible.

(1) If hw(yk) < λ̃w , then set ȳkw = γ̂w.
(2) If hw(yk) > λ̃w , then set ȳkw = γ̌w.
(3) Otherwise we have hw(y

k) = λ̃w , then choose any feasible demand
ȳkw ∈ [γ̂w, γ̌w].

Distribute the demand value ȳkw among paths p ∈ P̄ kw (it is possible to associate
the whole demand with one path). Set x̄kp = 0 ∀p ∈ Pw\P̄ kw .

In [5], the authors applied the partial linearization approach to the network
equilibrium problem with elastic demand. Let us remind its general scheme. We
suppose that hw(y) = hw(yw), hw are monotonically decreasing functions, ∀w ∈
W .

The auxiliary direction finding problem is described as follows. At the kth
iteration (k = 0, 1, . . . ) of the main process, we have the vector of path flows xk .
We calculate the values of cost functions gp(xk), for all p ∈ Pw,w ∈ W . We intend
to find a vector (x̄k, ȳk) ∈ W , which is a solution to the auxiliary linearized VI:

∑
w∈W

⎡
⎣ ∑
p∈Pw

gp(x
k)(xp − x̄kp)− hw(ȳk)(yw − ȳkw)

⎤
⎦ ≥ 0 ∀(x, y) ∈ U , (9)
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or to the equivalent optimization problem

min
(x,y)∈U −→

∑
w∈W

⎡
⎣ ∑
p∈Pw

gp(x
k)xp − σw(yw)

⎤
⎦ , (10)

where hw(yw) = σ ′w(yw). The above stated problems (9) or (10) can also be
decomposed into a family of independent problems for each O/D pair. Hence the
algorithm has the following simple scheme (see [5]).

Algorithm B
For certain O/D pair w ∈ W , we calculate the set of shortest paths P̄ kw with costs
values gp(xk). Let λ̃w = gp(x

k), ∀p ∈ P̄ kw. Hence the following three cases are
possible.

(1) If hw(γ̂w) ≤ λ̃w , then set ȳkw = γ̂w.
(2) If hw(γ̌w) ≥ λ̃w , then set ȳkw = γ̌w.
(3) Otherwise we have hw(γ̌w) < λ̃w < hw(γ̂w), then find the value of demand

ȳkw ∈ [γ̂w, γ̌w] such that hw(ȳkw) = λ̃w.
Distribute the demand value ȳkw among paths p ∈ P̄ kw (it is possible to associate

the whole demand with one path). Set x̄kp = 0 ∀p ∈ Pw\P̄ kw .

Now we intend to combine these two methods in a general iterative scheme.

4.1 A Hybrid Methods with Inexact Direction Finding

Let us arbitrarily split the set W into two subsets W1 and W2. In what follows, we
assume that hw(y) = hw(yw), hw are monotonically decreasing functions, ∀w ∈
W2.

In solving the direction finding subproblem, for W1 we use CGM, and for W2
we apply PLM. Then at the kth iteration (k = 0, 1, . . . ) of the main process we can
formulate the following auxiliary problem of direction search in the form of VI

∑
w∈W1

[
∑
p∈Pw

gp(x
k)(xp − x̄kp)− hw(yk)(yw − ȳkw)

]
+

∑
w∈W2

[
∑
p∈Pw

gp(x
k)(xp − x̄kp)− hw(ȳk)(yw − ȳkw)

]
≥ 0 ∀(x, y) ∈ U ,

(11)
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or the equivalent optimization problem

min
(x,y)∈U −→

∑
w∈W1

⎡
⎣ ∑
p∈Pw

gp(x
k)xp − hw(yk)yw

⎤
⎦

+
∑
w∈W2

⎡
⎣ ∑
p∈Pw

gp(x
k)xp − σw(yw)

⎤
⎦ . (12)

In what follows, we will use the approach from [6, 7], in which the special versions
of PLM and CGM with inexact solution to the direction finding subproblem were
proposed.

At the kth iteration, we successively apply Algorithm A for OD-pairs w ∈ W1
and Algorithm B for OD-pairs w ∈ W2 and try to find a sufficiently good direction,
which satisfies the condition

∑

w∈Wk

⎡
⎣ ∑
p∈Pw

gp(x
k)(xkp − x̄kp)− hw(yk)(ykw − ȳkw)

⎤
⎦ ≥ δ. (13)

Here Wk ⊂ W , δ > 0 is a given tolerance. We vanish the missing components of
the vector (x̄k, ȳk):

x̄kp = 0, p ∈ Pw,w ∈ W\Wk, ȳkp = 0, w ∈ W\Wk.

Therefore, we formulate the hybrid method for network equilibrium problems
with inexact solution to the direction finding subproblem.

Hybrid Method 1 for Network Equilibrium Problems (HM1)
Step 0. Choose an initial point u0 ∈ U , a sequence of tolerances {δl} ↘ 0, l =

1, 2, . . . , and numbers θ ∈ (0, 1), β ∈ (0, 1). Set l = 1.
Step 1. Set k = 0, vk = ul−1, (xk, yk) = vk .
Step 2. Sequentially using Algorithm A for w ∈ W1 and Algorithm B for w ∈
W2, find a set of O/D pairs Wk ⊂ W and the vector (x̄k, ȳk) ∈ U such that
condition (13) holds. If it is not possible, then set ul = vk , l = l + 1 and go to
Step 1.

Step 3. Set v̄k = (x̄k, ȳk), dk = v̄k − vk . Find the smallest nonnegative number
m that it holds

ψ(vk + θmdk)− ψ(vk) ≤ βθm〈ψ ′(vk), dk〉 . (14)

Set λk = θm, vk+1 = vk + λkdk , k = k + 1 and go to Step 2.
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The proposed algorithm has a two-level scheme. On the inner level, the objective
function is minimized within a fixed tolerance value and on the outer level, this
tolerance is decreased.

Now we substantiate convergence properties of the proposed modification,
following [7].

It is easy to see that the line-search procedure at Step 3 of HM1 is finite. In fact,
suppose that the line-search procedure is infinite, then (14) will never be fulfilled.
We obtain

θ−m
[
ψ(vk + θmdk)− ψ(vk)

]
> β〈ψ ′(vk), dk〉 ,

for allm→∞. Taking the limit asm→∞we have 〈ψ ′(vk), dk〉 ≥ β〈ψ ′(vk), dk〉,
therefore 〈ψ ′(vk), dk〉 ≥ 0. We obtain a contradiction to (13).

Now we prove the finiteness of the inner process of the algorithm in Steps 2–3
(see also Lemma 1 from [7]).

Lemma 1 The inner iterative process (Steps 2–3) of HM1 is finite.

Proof Let us suppose that the sequence {vk} is infinite at stage l. Due to (14) we
have ψ∗ ≤ ψ(vk), ψ(vk+1) ≤ ψ(vk) − βδlλk , therefore lim

k→∞λk = 0. Note that

the sequences {vk} and {v̄k} are bounded, then so is the sequence {dk}. We can take
subsequences {vks } converging to a certain point v̄ and {dks } converging to a certain
point d̄ as s →∞. In view of (13) we have

〈ψ ′(v̄), d̄〉 = lim
s→∞〈ψ

′(vks ), dks 〉 ≤ −δl . (15)

At the same time, (14) is not fulfilled for the value of step-size λk/θ . We have for
k = ks

(λks /θ)
−1

[
ψ(vks + (λk/θ)dks )− ψ(vks )

]
> β〈ψ ′(vks ), dks 〉.

Taking the limit as s →∞, we obtain

〈ψ ′(v̄), d̄〉 = lim
s→∞(λks /θ)

−1
[
ψ(vks + (λk/θ)dks )− ψ(vks )

]
≥ β〈ψ ′(v̄), d̄〉,

hence, (1− β)〈ψ ′(v̄), d̄〉 ≥ 0 that contradicts (15).

Now we are ready to prove the convergence properties of HM1 (see also
Theorem 1 from [7]).

Theorem 1 The sequence {ul} generated by HM1 has limit points, all of them are
solutions to VI (5). If the functionψ is convex, they are also solutions to optimization
problem (6).
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Within the proof of this theorem, we denote by {ūl} the sequence of exact
solutions to problem (11) or (12). Note that by construction the sequences {ul} and
{ūl} are bounded and have limit points. In addition, ψ(u∗) ≤ ψ(ul+1) ≤ ψ(ul),
therefore the limit lim

l→∞ψ(u
l) = ψ ′ exists. Take any limit point u′ = (x ′, y ′) of the

sequence {ul}, denote by {uls } a subsequence converging to this point. Take any limit
point ū = (x̄, ȳ) of the sequence {ūl}, denote by {ūls } a subsequence converging to
this point. By construction due to the condition of return from the inner level of the
method to the outer level at step 2 for all l > 0 we have

〈G(xl), xl − x̄l〉 − 〈H(yl), yl − ȳl〉 < δl. (16)

On the other hand, for a point ūl = (x̄l, ȳl) we get for all l > 0

〈G(xl), x − x̄l〉 − ∑
w∈W1

hw(y
l)(yw − ȳlw)

− ∑
w∈W2

hw(ȳ
l)(yw − ȳlw) ≥ 0 ∀(x, y) ∈ U. (17)

Since the functions hw ∀w ∈ W are non-increasing, from (16) we obtain

〈G(xl), xl − x̄l〉 − ∑
w∈W1

hw(y
l)(ylw − ȳlw)−

∑
w∈W2

hw(ȳ
l)(ylw − ȳlw) < δl.

Summing the two above inequalities and taking the limit as s →∞, we have

lim
s→∞〈G(x

ls ), x − xls 〉 − ∑
w∈W1

hw(y
ls )(yw − ylsw)− ∑

w∈W2

hw(ȳ
ls )(yw − ylsw) =

〈G(x ′), x − x ′〉 − ∑
w∈W1

hw(y)(yw − y ′w)−
∑
w∈W2

hw(ȳ)(yw − y ′w) ≥ 0,

∀(x, y) ∈ U.
(18)

Now let us show that hw(ȳw) = hw(y ′w) ∀w ∈ W2. Assume the contrary, let for
at least one w̄ ∈ W2 hw̄(ȳw̄) �= hw̄(y ′̄w), then evidently

〈hw̄(ȳw̄)− hw̄(y ′̄w), ȳw̄ − y ′̄w〉 < 0. (19)

Then, on the one hand, taking the limit as s → ∞ in (16) and taking into
account (19), we have:

〈G(x ′), x ′ − x̄〉 −
∑
w∈W1

hw(y
′)(y ′w − ȳw)−

∑
w∈W2

hw(ȳ)(y
′
w − ȳw) < 0.
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On the other hand, taking the limit as s →∞ in (17) and setting y = y ′, we obtain

〈G(x ′), x ′ − x̄〉 −
∑
w∈W1

hw(y
′)(y ′w − ȳw)−

∑
w∈W2

hw(ȳ)(y
′
w − ȳw) ≥ 0.

A contradiction is obtained, therefore hw(ȳw) = hw(y ′w) ∀w ∈ W2 and from (18)
we have

〈G(x ′), x − x ′〉 − 〈H(y ′), y − y ′〉 ≥ 0, ∀(x, y) ∈ U.

Hence, the point u′ = (x ′, y ′) solves VI (5). In addition, if ψ is convex, then this
point also solves optimization problem (6), as desired.

4.2 A Hybrid Method with Adaptive Step-Size

In this section, we propose a variant of the hybrid method, which does not require
any iterative step-size line-search. The main idea of this approach [6] is a given
majorant step-size sequence converging to zero. In accordance with this majorant,
we take the next decreased value of the step-size only when the current iterate does
not give a sufficient descent, which is estimated with the help of an Armijo-type
condition.

Hybrid Method 2 for Network Equilibrium Problems (HM2)
Step 0. Choose an initial point u0 ∈ U , sequences {δl} ↘ 0, {τp} → 0, τp ∈
(0, 1), and number β ∈ (0, 1). Set l = 1.

Step 1. Set k = 1, p = 0, vk = ul−1, (xk, yk) = vk , choose an initial step-size
λ0 ∈ (0, τ0).

Step 2. Sequentially using Algorithm A for w ∈ W1 and Algorithm B for w ∈
W2, find a set of O/D pairs Wk ⊂ W and the vector (x̄k, ȳk) ∈ U such that
condition (13) holds. If it is not possible, then set ul = vk , l = l + 1 and go to
Step 1.

Step 3. Set v̄k = (x̄k, ȳk), dk = v̄k − vk , vk+1 = vk + λkdk .
If

ψ(vk+1)− ψ(vk) ≤ βλk〈ψ ′(vk), dk〉 , (20)

then set λk+1 ∈ [λk, τp]. Otherwise set λ′k+1 = min{λk, τp+1}, p = p + 1, take
λk+1 ∈ (0, λ′k+1). Set k = k + 1 and go to Step 2.

First of all, let us prove the finiteness of the inner iterative process.

Lemma 2 The inner iterative process (Steps 2–3) of HM2 is finite.
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Proof Let us suppose that the sequence {vk} of HM2 is infinite at stage l. We note
that the sequences {vk} and {v̄k} are contained in a bounded set U , hence they have
limit points. So is the sequence {dk}. Then the two cases are possible.

Case 1. The Number of Changes of Index p is Finite Then we have λk ≥ λ̄ > 0 for
numbers k large enough. Therefore we get from condition (20)

ψ(vk+1) ≤ ψ(vk)+ βλk〈ψ ′(vk), dk〉 ≤ ψ(vk)+ βλ̄〈ψ ′(vk), dk〉

for k large enough. Since ψ(vk) ≥ ψ∗ > −∞ for all k, we obtain

lim
k→∞〈ψ

′(vk), dk〉 = 0.

On the other hand, due to (13) 〈ψ ′(vk), dk〉 ≤ −δl , therefore

lim
k→∞〈ψ

′(vk), dk〉 ≤ −δl < 0.

We obtain a contradiction, hence the number of changes of index p cannot be finite.

Case 2. The Number of Changes of Index p Is Infinite In this case, there exists an
infinite sequence of indices {ks} such that vks+1 = vks + λks dks and condition (20)
is violated:

ψ(vks+1)− ψ(vks ) > βλks 〈ψ ′(vks ), dks 〉 .

At the same time, λks ∈ (0, τp], λks+1 ∈ (0, τp+1] and lim
p→∞ τp = 0. Hence,

lim
s→∞λks = 0. Proceeding to the limit as s →∞ in the correlation

(λks )
−1ψ(vks+1)− ψ(vks ) > β〈ψ ′(vks ), dks 〉 ,

we obtain 〈ψ ′(v′), d ′〉(1 − β) ≥ 0, where v′ and d ′ are the corresponding limit
points. As we noted above, from (13) we have 〈ψ ′(vk), dk〉 ≤ −δl , therefore
〈ψ ′(v′), d ′〉〉 ≤ −δl < 0. We also obtain a contradiction, hence this case is
impossible, and the sequence {vk} of HM2 cannot be infinite at stage l, as desired.

Theorem 2 The sequence {ul} generated by HM2 has limit points, all of them are
solutions to VI (5). If the functionψ is convex, they are also solutions to optimization
problem (6).

Proof follows the lines of Theorem 1.
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5 Numerical Tests

Combining CGM and PLM within a general scheme, we can obtain more flexible
implementations, which take into account the peculiarities of the initial problem. In
the following example, the hybrid method is more efficient by computational time
and the iterations numbers in most cases.

Let us consider a known network structure (Fig. 1) [1] in which all arcs are
assumed to be bypass (i.e., each arc cost functions ca depends on the arc flow fa
only, for all a ∈ A).

The cost functions are ca(fa) = 1 + 4fa, ∀a ∈ A. The disutility functions are
hw(yw) = 30− 0.5yw, ∀w ∈ W . The lower boundaries of demand γ̂w are (2, 1, 1,
1, 1), and all the upper boundaries γ̌w,w ∈ W are equal to 50.

We compared HM1 and the corresponding pure versions of CGM and PLM with
the Armijo-type line-search and inexact direction finding. The stop criterion has the
form 〈ψ ′(ul), ul − zl〉 ≤ 
 for given
 > 0, where zl is a solution to the problem

min
z∈U −→ 〈ψ ′(ul), z〉 .

The parameters of methods are θ = 0.5, β = 0.5, δ0 = 1, δl+1 = 0.5δl. Applying
HM1, we use CGM for O/D pairs with odd numbers and PLM for even numbers .

The calculation results for different accuracy values are presented in Table 1.

Fig. 1 Network of 25 nodes, 5 O/D pairs (1–4), (2–5), (3–1), (4–2), (5–3)
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Table 1 Example 1, numbers of iterations and calculation time

CGM PLM HM1


 Iterations Time (ms) Iterations Time (ms) Iterations Time (ms)

0.1 2953 78 2578 78 2474 63

0.05 5853 187 5001 218 5032 156

0.01 39,005 1263 38,030 1108 19,979 608

6 Conclusion

In the present paper, a hybrid approach for the network equilibrium problems was
proposed. This approach combines the methods of conditional gradient and partial
linearization. The set of origin-destination pairs should be arbitrarily divided into
two parts, and the subproblem of finding the direction is solved by CGM for the
first subset of indices and by PLM for the second one. This approach allows us to
take into account the specifics of problems under consideration and it is promising
for further investigations.

Acknowledgement This work was supported by Russian Foundation for Basic Research, project
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Numerical Simulation of Water-Oil
Inflow into the Producing Well from
Non-uniform Oil Reservoir

Vladimir M. Konyukhov, Ivan V. Konyukhov, and Leysan R. Ilyasova

Abstract Mathematical and numerical models of non-stationary mass transfer in
a water-oil mixture flowing into the bottom hole of a production well from a
layered-heterogeneous oil reservoir are developed. The model consists of two group
of differential equations. The first of them simulates a one-dimensional dispersed
oil-water flow with discrete oil droplets included in a continuous water phase,
and the second one—two-dimensional two-phase isothermal filtration governing
by Darcy’s law with taking into account the compressibility of phases and a
porous medium. To solve system of equations the finite difference schema is
developed. The mass transfer equations in the bottom hole and in the reservoir
are approximated upstream by implicit difference equations. The general system
of nonlinear algebraic equations is solved iteratively with the use of the original
method to calculate the pressure in the reservoir and Newtonian linearization. The
developed numerical model is implemented in computer software that allows to
carry out the numerical experiments with simultaneous visualization of the results
of calculations. The influence of the reservoir structure and its uncovering conditions
by the well on the characteristics of the process in the bottom hole of the well and
the transition time of mass transfer processes to a quasi-stationary hydrodynamic
regime are estimated.
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1 Introduction

Natural productive oil reservoirs, as a rule, have a layered-heterogeneous structure.
Filtration and capacitance and geometric characteristics of their layers may differ
significantly from each other [1–3]. The reservoir structure determines the intensity
and composition of filtration flows entering the bottom hole of the producing wells.

The processes at the bottom hole of the well, uncovering the reservoir, and in
the reservoir itself are closely interrelated [4, 5]. They are determined not only
by the reservoir structure and properties of the porous medium, but also by the
heterogeneity of the two-phase mixture that includes oil and water entering the
bottom hole.

In turn, the physical and chemical properties (density, viscosity, etc.) of these
phases are significantly different. In addition, at low speeds of the mixture, due to the
difference in phase densities, the effects of gravitational separation of water and oil
can occur in the two-phase flow. As a result, the water content gradually decreases
in the upper part of the bottom-hole of the well and increases in its lower part.
Water sedimentation and oil floating-up lead to changes in the effective properties
of the mixture—its density and viscosity (for example, the effective viscosity of the
mixture can rise almost tenfold with an increase in the water content from 10 to 60%
[7, 9]). The pressure distribution along the well becomes piece-wise linear with a
clearly defined breakpoint corresponding to the water-oil interface.

The length of the bottom-hole section of the well, the conditions for uncovering a
layered-inhomogeneous reservoir, the intensity and composition of filtration flows,
as well as the difference in viscosity and density of phases affect the mass transfer
and hydrodynamic processes in this area. Therefore, the water content of the mixture
entering directly into the lifting pipes of a low-yield well can differ within a few
hours from its average integral values, which are usually set as boundary conditions
at the inlet of these pipes.

Such a delay is especially important to take into account in the calculating
of transient processes when the well is put into operation after the repair of a
submersible pumping unit located near the bottom hole of the producing well. In
such a situation, the use of integral values in boundary conditions can result in
significant overstating of the water content at the pump inlet.

Because of this, the calculated working characteristics of centrifugal pump and
electric motor, which significantly depend on the composition and flow rate of the
mixture at the pump inlet (as well as the duration of their non-stationary operation
stage when the average integral oil content in the bottom hole has not yet been
reached) can be determinated with very large errors. As a result, these design
conditions may be unacceptable for normal operation of the pump unit, both due to
overloading or underloading of the motor and its insufficient cooling by the mixture
flow, as well as lead to subsequent incorrect impact from the surface control station
on the working regime of the unit (for example, an emergency shutdown of the
motor or the wrong change the frequency of its current) [13].
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The aim of this paper is to numerically study the features of non-stationary
mass transfer in the water-oil flow entering the bottom-hole section of a production
well from the layered-heterogeneous oil reservoir, to estimate the influence of its
inhomogeneity and uncovering conditions on the characteristics of these processes
and the time of their transition to a quasi-stationary hydrodynamic regime.

2 Mathematical Model

Let us consider the situation when the well has been filled with water before its
commissioning into operation. After turning the submersible pumping unit on, the
oil-water mixture begins to flow into the bottom hole from the reservoir. Figure 1
schematically shows a vertical cross-section of a symmetrical planar-radial layered-
heterogeneous reservoir uncovered by a producing well located on its left boundary.
The reservoir consists of layers of different thickness Hl = γl − γl−1, absolute
permeability Kl and dynamic porosity ml , l = 1, 2, . . . , N . The total thickness of
the reservoir H = H1 +H2 + . . .+HN .

The coordinate axes Or and Oz are directed respectively along its roof and the
vertical axis of the producing well, the side surface of which is located on the left
boundary of the formation at r = r0. The origin (0, 0) is located in the upper-left
corner of the reservoir roof. Surfaces z = H and z = 0 of its bottom and roof are
impermeable. The boundaries γl (l = 1,2, . . . ,N − 1) of the layers are permeable, so
that they are hydrodynamically connected. The well can uncover all layers or only
some of them. The “permeable” (γL, γR) and “impenetrable” (�L, �R) parts of the
left and right lateral boundaries of the reservoir at r = r0 and r = Rr uncovered
by perforation are shown in the figure as dashed and solid lines, respectively. To
describe the movement of a two-phase flow with incompressible continuous water
and discrete oil phases at the bottom hole and in the reservoir, a mathematical model
is developed that can be written as follows:

∂ϕ

∂τ
+ υ2

∂ϕ

∂z
= q2 − ϕ ∂υ2

∂z
; 0 < z < H, t > 0; (1)

0
m1,H1,K1

mN,HN,KN

r0 Rr
r

gL

ΓL

ΓR

η

g0

g1

gR

gNH

Fig. 1 Vertical cross-section of the oil reservoir and the bottom-hole part of the producing well
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G(z, τ ) = S0

g

[
∂P

∂τ
(z, τ )− ∂P

∂τ
(0, τ )

]
+ (2)

+S0ρ
∗
1

z∫

0

q1 (z, τ ) dz+ S0ρ
∗
2

z∫

0

q2 (z, τ ) dz;

− ∂P

∂z
= g (ρ∗1 (1− ϕ)+ ρ∗2ϕ

) ; (3)

G1 = S0ρ
∗
1 (1− ϕ) υ1; G2 = G−G1; υ1 = 1− β

1− ϕ υ; υ2 = Cζυ+ν2; (4)

υ = G/S0

ρ∗1 (1− β)+ ρ∗2β
; β = Cζϕ + ϕν2

υ
; ν2 = g a

2
(
ρ∗1 − ρ∗2

)

3ς (ϕ) μ1
· μ1 + μ2

μ1 + 1.5μ2
;

(5)

αT
∂P

∂τ
+ 1

r

∂ (rVr)

∂r
+ ∂Vz
∂z

= 0; Vr = −KK∗ ∂P
∂r
; Vz = −KK∗ ∂P

∂z
; (6)

m
∂S

∂τ
+α∗T 1S

∂P

∂τ
+ 1

r

∂
(
rV1,r

)

∂r
+ ∂V1,z

∂z
= 0; V1,r = f Vr ; V2,z = f Vz; (7)

α∗T 1 = αTm+mαT 1; α∗T 2 = αTm+mαT 2; αT = α∗T 1S+α∗T 2 (1− S) ; (8)

K∗
1 =

{
0 , 0 ≤ S ≤ S∗;(
(S − S∗)

/
S∗
)3
, S∗ ≤ S ≤ 1; (9)

K∗
2 =

{(
(S∗ − S)/(S∗ − S∗)

)3
, 0 ≤ S ≤ S∗;

0 , S∗ ≤ S ≤ 1; K∗ = K∗
1

/
μ1 +K∗

2

/
μ2.

Here P is the pressure; ρ∗i , υi , Gi , μi , ϕi and βi are the density, the velocity, the
mass flow rate (debit), the dynamic viscosity, the actual and volumetric consumed
concentration of i-th phase averaged over cross section S0 of the well (sub-indexes
1 and 2 denote the characteristics of water and oil, respectively); τ is the time;
qi (z, τ ) = 2/roVr,i (r0, z, τ ) is the density of the mass filtration flow of the i-
th phase from the reservoir through the bottom-hole surface of the well; v2 is the
drift velocity of the oil drops, a is their radius; Cζ is the Zuber-Findlay coefficient
[10, 11]; g is the gravitational acceleration; S is the water saturation of the mixture
in the reservoir; Vr , Vz and V1,r , V1,z are projections of the mixture and water phase
filtration velocity vectors on the and axes Oz and Or; μi and K∗

i are the viscosity
and the relative phase permeability of the i-th phase; K and m are the absolute
permeability and the dynamic porosity; f = K∗

1

/
(μ1K

∗) is the fraction of water
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in the total filtration flow (Buckley-Leverett function); αT and αT,i are volumetric
elasticity coefficients of the porous medium and i-th phase; S∗ is the irreducible
water saturation; S∗ is the limiting water saturation.

Equations (1), (2) and (3) describing the continuity of the oil phase, the integral
mass balance of the mixture, the conservation of momentum, and additional
relations (4) and (5) are developed on the base of general multiphase flow equations
(see, e.g., [7, 8] in the framework of the drift flow model [10, 11] without taking
into account inertia forces. They simulate a one-dimensional dispersed oil-water
flow with discrete oil droplets included in a continuous water phase.

Equations (5)–(9) describe two-dimensional two-phase isothermal filtration gov-
erning by Darcy’s law without taking into account capillary effects and gravity, as
well as taking into an account the compressibility of phases and a porous medium
[1, 2, 4–6].

To close the mathematical model (1)–(9), we must set the initial and boundary
conditions. Let there be no movement in the well and the oil reservoir at the initial
time τ = 0, and the well is filled with water with a hydrostatic pressure distribution,
so that

υ1 (0, z) = υ2 (0, z) = υ (0, z) = 0; (10)

q1 (0, z) = q2 (0, z) = 0; G1 (0, z) = G2 (0, z) = 0;
ϕ (0, z) = β (0, z) = 0; ρ (0, z) = ρ∗1 ; P (0, z) = P 0

H + gρ∗1z, 0 ≤ z ≤ H,
(11)

where P (0, 0) = PH (τ = 0) = P 0
H is the bottom hole pressure in the well at the

level z = 0 of the reservoir roof at time τ = 0. The function PH (τ) = P (τ, 0) =
P 0
H · (τ) in the considered problem is a given function of time τ and it simulates

the pressure drop at the bottom hole of the well after turning the electric motor of
the submersible pumping unit on.

At the boundaries γm of layers where the absolute permeability K has a
discontinuity of the first kind, the conjugation conditions [P ] = 0, [Vz] = 0,
[f ] = 0 take place at z = γm, m = 1, N − 1.

The initial conditions

(r, z, 0) = S0 (r, z) , P (r, z, 0) = P 0
H + gρ∗1z, 0 ≤ z ≤ H (12)

determine the state of the reservoir before turning the electric motor on, when the
pressure in the reservoir has the same hydrostatic distribution as in the bottom hole
part of the well. At the right boundary r = Rr of the reservoir at τ > 0, the pressure
P (Rr, z, τ ) is determined by the initial hydrostatic distribution. At the left boundary
P (r0, z, τ ) it is calculated by solving the Eq. (3) at the bottom hole part of the well
at 0 ≤ z ≤ H .

It should be noted that this article presents only some basic relationships which
define the characteristics of two-phase flows in the well and oil reservoir. A complete
set of special constitutive relations to close the equations is too large and it can be
found in our publications [4, 5, 12, 13].
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3 Numerical Model and Algorithm

The system of Eqs. (1)–(10) is nonlinear and is solved numerically by the finite
difference method using iterative algorithms. To solve problems (6) and (7), we
introduce a grid Dh in the reservoir area D = {z ∈ [0,H ] , r ∈ [ro, Rr ]} with a
constant step hr = (Rr − r0) /Nr along the Or axis and a variable step along the
Oz axis, whereNr is the number of grid points along theOr axis. At the same time,
in each layer the step is constant and equal to hn = Hn

/
Nn, n = 1..N , where Nn is

the number of grid points in the layer. With such a construction of the grid, we have

hκ = hn at κ = 1 +
n−1∑
l=1
Nl . . .

n∑
l=1
Nl , n = 1..N . To improve the approximation

of the flows V and Vi in Eqs. (6) and (7) we use an additional grid D̄i,κ shifted by
half-step along Or and Oz axes so that the exterior boundaries of its unit cells are
placed at the boundary of the filtration area D and at the boundaries γn of layers.

The total number of grid points isNr ·Nz, whereNz =
N∑
n=1

Nn. We also denote by τj

the points of grid along the time axisOτ with constant step hτ . Conservative finite-
difference equations approximating the system (6) and (7) for i = 1..Nr , κ = 1..Nz
with orderO(hτ + h2

κ + h2
r ), can be written as:

� [V ]j+1
i.κ = ri−1/2hrhκαT i,κ ·

(
P
j+1
i.κ − Pi,κ

)/
hτ ; (13)

� [V1]j+1
i.κ = mri−1/2

hrhκ

hτ

{(
J
j+1
i,κ − J ji,κ

)
+ α

∗
T 1

m

(
P
j+1
i,κ − Pji,κ

)
J
j,j+1
i,κ

}
;
(14)

J
j,j+1
i,κ =

{
J
j
i,κ , P

j+1
i,κ ≤ Pji,κ ;

J
j+1
i,κ , P

j+1
i,κ > P

j
i,κ ;

Ji,κ = 1

ri−1/2hrhκ

∫

Di,κ

Srdrdz; (15)

V
j+1
i+1/2,κ = hκζi

(
KK∗)j

i+1/2,κ

(
P
j+1
i+1,κ − Pj+1

i,κ

)
; V

j+1
1,i+1/2,κ = f

j

i+1/2,κ V
j+1
i+1/2,κ ;

(16)

V
j+1
i,κ+1/2 = Ai,κ+1/2

(
P
j+1
i,κ+1 − Pj+1

i,κ

)
; V

j+1
1,i,κ+1/2 = f

j

i,κ+1/2V
j+1
i,κ+1/2; (17)

ζi =
⎧
⎨
⎩

ln−1 (hr
/
(2r0)

)
, i − 1

/
2 =1

/
2;

ln−1 ((2i + 1)
/
(2i − 1)

)
, 1 ≤ i < i0;

i, i > i0;
;

Ai,κ+1/2 = 2ri−1/2hr

(
hκ

Ki,κK
∗
i,κ

+ hκ+1

Ki,κ+1K
∗
i,κ+1

)
,
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where�[V ]i,κ = Vi+1/2,κ+Vi−1/2,κ+Vi,κ+1/2+Vi,κ−1/2; ζi is the correction coef-
ficients [4, 5] that take into account the logarithmic character of pressure distribution
in the vicinity of the well at the approximation of flows V j+1

i+1/2,κ ; i0hr is the radius
of the vicinity in which the solution has the logarithmic singularity. The values

K∗
i+1/2,κ are calculated using water saturation Sj

i+1/2,κ = 0.5
(
J
j

i+1,κ + J ji,κ
)

.

The pressure field Pj+1
i,κ is calculated from a system of implicit finite-difference

equations obtained from (13) by substituting the total flows V j+1
i,κ+1/2, V j+1

i,κ+1/2 (16)

and (17) defined for the water saturation values Sji+1/2,κ and Sji,κ+1/2 from the
previous time point τj . The transport equation (14) is used to calculate the average

integral values J j+1
i,κ (15) of water saturation in the unit cells.

The values of the water saturation Sj+1
i+1/2,κ and Sj+1

i,κ+1/2 are defined with the use

of the fractional-linear interpolation through integral values J j+1
i,κ taking account the

flow direction. For example, if V j+1
i+1/2,κ < 0, so that the liquid moves oppositely to

the direction of the Or axis from cell Di+1,κ to cell Di,κ then

Si+1/2,κ =

⎧⎪⎪⎨
⎪⎪⎩

S∗κ , S∗κ − ε∗ ≤ Ji,κ ,
F , F ∈ [

Ji+1,κ , Ji,κ
]
, S∗,κ + ε∗ ≤ Ji,κ < S∗κ − ε∗,

Ji,κ , F /∈ [
Ji+1,κ , Ji,κ

]
, S∗,κ + ε∗ ≤ Ji,κ < S∗κ − ε∗,

S∗,κ , Ji,κ ≤ S∗κ + ε∗,
(18)

F =
{

0.5
(
Ji−1,κ + Ji,κ

)
Ji,κ

/
Ji−1,κ , Ji−1,κ ≥ Ji,κ ,

0.5
(

1+ Ji,κ −
(
1− Ji,κ

)2
/(

1− Ji−1,κ
))
, Ji−1,κ < Ji,κ .

Here ε∗ is a small value that does not exceed the expected error in calculating of
Si,κ ; ε∗ is the parameter of schema that is no more than two-thirds of the amplitude
of the saturation jump. Conditions (18) characterize the finiteness of the velocity of
the oil displacement front by water (see [4]).

Water flows (16), (17) through the boundaries of elementary cells are calculated
from the values of the function Sj+1

i+1/2,κ and Sj+1
i,κ+1/2 at the points of the grid D̄.

After calculating the pressure and water saturation, the mass flows qj+1
1,κ , qj+1

2,κ of
both water and oil entering the well through its side face are determined.

This allows us to proceed the numerical solution of differential equations (1)–
(5). These equations are solved using the implicit finite-difference scheme of the
first approximation order O(hτ + hz) at points (τj , zκ ) of the same grid Dh. The
oil transfer equation (1) is approximated upstream by an implicit difference schema
[14]. Thus:

ϕ
j+1
κ − ϕjκ
hτ

+ υj+1
2,κ

ϕ
j+1
κ − ϕj+1

κ−1

hκ
= qj+1

2,κ − ϕj+1
κ

υ
j+1
2,κ − υj+1

2,κ−1

hκ
; (19)

Pj+1
κ = Pj+1

κ−1 − hκgρj+1
κ (20)
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Gj+1
κ = Gj+1

κ−1 +
S0

g

[
P
j+1
κ − Pjκ
hτ

− P
j+1
κ−1 − Pjκ−1

hτ

]
+ (21)

+hκS0ρ
∗
1

q
j+1
1,κ + qj+1

1,κ−1

2
+ hκS0ρ

∗
2

q
j+1
2,κ + qj+1

2,κ−1

2
;

ρj+1
κ = ϕj+1

κ

(
ρ∗2 − ρ∗1

)+ ρ∗1 ; βj+1
κ =j+1

ς,κ ϕ
j+1
κ + ϕj+1

κ ν
j+1
2,κ /υ

j+1
κ ; (22)

υ
j+1
2,κ = Cj+1

ζ,κ υ
j+1
κ + νj+1

2,κ ; υj+1
κ = G

j+1
κ

S0 · (ρ∗1 (1− βj+1
κ )+ ρ∗2βj+1

κ )
; (23)

υ
j+1
1,κ,i =

1− βj+1
κ

1− ϕj+1
κ

υj+1
κ ; ν

j+1
2,κ = g a

2
(
ρ∗1 − ρ∗2

)

3ςj+1
κ μ1

· 1+ χ
1+ 1.5χ

; χ = μ2/μ1;
(24)

G
j+1
1,κ = S0ρ

∗
1

(
1− ϕj+1

κ

)
υ
j+1
1,κ ; G

j+1
2,κ = Gj+1

κ −Gj+1
1,κ ; (25)

ςj+1
κ =

(
1+ ϕj+1

κ (4+ 5χ)
/
(1+ χ)

)/(
1+ 0.5ϕj+1

κ

(
1+ 4χ + 5χ2

)/
(1+ χ)2

)
.

The developed general numerical model of interrelated processes in the well
and reservoir is a nonlinear system of algebraic equations. This problem is solved
by iterative methods. The method [4, 5] with a convergence rate of about 3–
5 iterations is used to compute reservoir pressure and water saturation. The
system of Eqs. (19)–(19) governing the processes in the producing well is solved
by the Newton linearization method. The numerical model and algorithms are
implemented in computer software that allows carrying out the multi-parametric
numerical experiments to study the filtration processes in the reservoir and mass
transfer at the bottom hole of the well with simultaneous visualization o the results
of computations.

4 Results

The main results of our research can be formulated as follows.

Theoretical Results To compare the effectiveness of iterative methods, compu-
tational experiments were carried out for various cases of reservoir structure that
determine the character of dependencies of mass inflows and of water and oil into
the well. Based on the analysis of their results, the high convergence rate of the
Newton method for solving the problem in the well and the iterative method for
calculating pressure and water saturation in the reservoir (3–5 iterations) is shown.
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Studies of the convergence and stability of the difference schema using the Courant
criterion allow us to draw the following conclusions:

1. the solution of the developed difference schema is stable and converges to itself;
2. the Courant criterion allows us to calculate the values of a variable time step,

which provide the possibility to compute the numerical solution in accordance
with this condition of its stability at each time moment. Simultaneously, the
counting time is significantly reduced (tenfold) in comparison with the calcu-
lations with fixed time steps over the entire time range of the problem solution;

3. the practical multi-variant calculations can be performed with sufficiently large
steps of the spatial grid using the Courant criterion to determine the time step of
the difference schema.

Practical Results Based on the analysis of the results of calculations for different
variants of the development of the reservoir layers at the bore-hole zone and the
inflow of oil-water mixture to the well, taking into account the influence of the flow
structure, when Cζ = Cζ (ϕ, υ,μ), it is shown that that

1. the spatial distributions of such basic characteristics of two-phase flow in the
bottom-hole zone of well as pressure, actual and consumed concentration, flow
rate, density and velocity of two-phase mixture, the velocity of individual phases
and the drift rate of oil drops are determined by the type of functions q1 (z, τ ) ,
q2 (z, τ ) and are usually nonlinear;

2. the time to form the quasi-stationary composition of two-phase mixture inflowing
to the well pipe from its bottom hole zone can reach several tens of minutes and
is determined by length of this zone, structure of two-phase flow, the uncovering
conditions and filtration-capacitive characteristics of the oil reservoir. This effect
must be taken into account in calculation of the transient hydrodynamic processes
that occur during the commissioning of the non-operating producing well into
operation.

5 Conclusions

1. The mathematical model, algorithms, and software are developed for calculating
interrelated non-stationary hydrodynamic and mass transfer processes during
filtration of a two-phase oil-water mixture in a layered-nonuniform oil reservoir
and its movement in the bottom-hole zone of a producing well.

2. On the basis of computational experiments, the convergence and stability of
the numerical solution of the problem, as well as the features of non-stationary
processes in the reservoir and oil well during their transition on the steady state.
The duration of these processes is also estimated.

3. High performance of computations with the use of the developed software is
shown.
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4. The obtained results are used in a cyber-physical system for modeling and
forecasting field technological processes of oil production, as well as training
the specialists working in oil industry.
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On Error Control at Numerical Solution
of Forth Order Elliptic Equations
with Strongly Discontinuous Reaction
Coefficient

Vadim G. Korneev

Abstract The paper studies errors of numerical solutions to the equation 

u +
κ2u = f by classical, i.e., C1-conform, and mixed Ciarlet-Raviart finite element
methods. We focus on the case of the element wise constant coefficient κ2, which
chaotically varies between finite elements in the sufficiently wide range, and present
the guaranteed, robust, and computable a posteriori error bounds. For the classical
FEM’s, our bounds are robust for κ2 ∈ [0, ch−4], where c = const and h is the
maximal size of finite elements. One of their good properties is that at κ ≡ const
their coefficients coincide with ones in the not improvable in the order of the
accuracy a posteriori bound, obtained earlier especially for this case (Korneev,
2017). In case of a jumpihg κ the coefficients are only insignificantly worse than
those at κ ≡ const while computation of the bounds does not require equilibration.
The a posteriori error bound for the mixed Ciarlet-Raviart method incorporates, as
a part of the estimator, the a posteriori error bound for the primal problem.

1 Introduction

We consider the problem



u+ σu = f (x) in� ,

u = ∂u/∂ν = 0 on ∂� ,
(1.1)

with f ∈ L2(�) and the first boundary condition and ν being the internal normal
to the boundary. It is assumed that � is a polygon covered by the family of
the quasiuniform triangulations Th, defined for any h > 0 and each containing
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compatible triangles τr , r = 1, 2, . . . ,Rh of “size” h > 0 with � = ∪Rhr=1τr . It is
essential, that σ = κ2 is assumed to be element wise constant, i.e.,

σ = σr = const for x ∈ τr , r = 1, 2 . . . ,Rh , (1.2)

and satisfies only one restriction σ ≤ λ, with λ−1 = O(h4) in many important cases.
Variety of numerical techniques, including conforming, nonconforming, mixed,

discontinuous Galerkin, and other types of numerical methods were studied in the
respect of a posteriori error bounds at their application to the biharmonic and the
thin plate in bending equations, as well as to the singularly perturbed equation
ε2
2u − 
u = f , see, e.g., [1–15]. However, less attention were paid to the
popular in applications problem of the thin plate in bending, resting upon Winkler’s
foundation, a particular example of which is (1.1). This is especially true for the case
when the subgrade modulus is discontinuous and has significant jumps. Aposteriory
error bounds for C1-conforming finite element solutions of the problem (1.1) with
the element wise constant σ , varying arbitrarily between finite elements in the
segment [0, ch−4], c = const, were derived quite recently in [16]. The present
paper improves the results of this work for C1-conforming finite element methods
and attempts to expand them to the mixed Ciarlet-Raviart method.

It is necessary to note that a posteriori bounds for the 2nd-order reaction-diffusion
equations with the discontinuous reaction coefficient gained some attention in
the literature. However, it was restricted to the case of the subdomain wise or
finite element wise constant reaction coefficient that varies “mildly” between
neighbouring elements. A typical variant of such change is found in [17, 18], where
it was mainly motivated by the derivation of the a posteriori error bound alongside
with the sort of almost inverse bound, termed the bound of local efficiency. Results
of the present paper for C1-conforming finite element methods are literally (with
obvious changes) expanded to the 2nd-order reaction-diffusion equations and show
that the range of admissible jumps for obtaining robust a posteriori error bounds is
much wider, than it could be expected. At that, the price for widening this range
is an insignificant worsening of the coefficients in front of the typical norms in the
right parts of the a posteriori bounds.

Among the widely spread in practice a posteriori error bounds, there are two
types of them, namely the residual based bounds and the bounds based on the use
of the equilibrated flaxes/stresses/ stress resultants. A drawback of the first type
is that the derivation of the bounds heavily leans upon the approximation bounds,
and the coefficients in the former bounds strongly depend on the constants in the
latter. An example of such a bound for the approximate solution of the equation


u = f is found, e.g., in [13]. At the implementation of the second type bounds,
for each numerical solution, e.g., of the second order elliptic equation, one finds
a single testing flax. It is evaluated by some equilibrated flax recovery procedure,
which depends not only on the mesh, but also on the problem. This constricts the
universality of the bounds. Besides, the equilibration increases the diffusion type
error, and the value of the damage is seen only from the inverse like bound, the
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constants in which usually are not too optimistic. Thus, bounds of both types, which
have been intensively developing in several last decades, have their own restrictions
and their real accuracy needs to be checked by practice.

Consistent bounds of [19–21] belong to the most old class of a posteriori error
majorants and possess two important properties: (1) the order of accuracy of a
consistent bound is the same as for the corresponding sharp a priori bound; (2)
for the proof of the property (1), as well as for the calculation of the bound in
the practice, it is sufficient to use any testing fields of the flaxes/stresses/stress
resultants, which possess respective approximation properties, without resorting to
the flax equilibration procedure. In result, such bounds are more universal and their
calculation is simplified, because for providing the sharpness one can use any testing
flax, having the approximation properties not worse than those of the numerical flax.
Recovery procedures, providing such properties, are easy to find in the literature
for the reason that they were thoroughly studied and widely tested in the residual
type error estimators, see [22–25] and references there. In this paper, the technique,
used in [19–21], is adjusted for obtaining the a posteriori error bounds for a more
complicated class of problems and numerical methods.

The notations ‖ · ‖k, | · |k will stand for the norms and quasi-norms in Sobolev’s
spacesHk(�) = Wk

2 (�) with the agreement that | · |0 = ‖ · ‖0 = ‖ · ‖. Additionally
we introduce the spaces H 2

0 (�) := {v ∈ H 2(�) : v = ∂v/∂ν = 0 on ∂�},
H 2

0 (�,

) = {v ∈ H 2
0 (�) : 

v ∈ L2(�)}, and L2(�) = (

L2(�)
)4. In

relation with the problem (1.1), it is helpful to introduce the subspace M(�) =
{m = {mk,l}2k,l=1 ∈ L2(�) : m1,2 = m2,1} of vector-functions m and the operators

D :H 2(�)→M(�) and D∗ :M(�,D∗)→ L2(�), defined as

Dv =
{ ∂2v

∂xk∂xl

}2

k,l=1
, D∗m =

2∑
k,l=1

∂2mk,l

∂xk∂xl
,

where M(�,D∗) = {m ∈ M(�) : D∗m ∈ L2(�)}. If (1.1) is viewed as
the thin plate bending problem (at the cylindrical stiffness equal to unity and
Poisson coefficient equal to zero), vector-functions m = Du have the meaning
of components of the bending and twisting moments acting in the plate. For this
reason and for brevity they are called moments. Where it does not cause confusion,
for norms ‖ · ‖L2(·) in the spaces L2(·) we use the notation ‖ · ‖, so that ‖m‖ will
stand for ‖m‖L2(�).

2 C1-Conform Finite Element Method for Primal Problem

We assume that the finite element assemblage Kh is defined on � and induces the
space Vh(�) = Vp

h(�) := {φh ∈ C1(�) : φh
∣∣
τr
∈ Pp, p ≥ 3, r = 1, 2, . . . ,Rh}

and its subspace Vh,0(�) = {φh ∈ Vh(�) : φh = ∂φh/∂ν = 0 on ∂�}, which is
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used for solution of the primal formulation of the problem. Here Pp is the space of
polynomials of the degrees ≤ p. For convenience, we define the norm in H 2(�) as
‖ · ‖2

2 = ‖ · ‖2
0 + | · |22.

Let a(w, v) = (Dw,Dv), V (�) be the Hilbert space of functions with the scalar
product [w, v] = a(w, v) + (σw, v) and the norm |||v||| = [v, v]1/2, and V0(�) =
{v ∈ V (�) : v = ∂v/∂ν = 0 on ∂�}. The weak form of the problem (1.1) reads:
find u ∈ V0(�) such that

a(u, v)+ (σu, v) = (f, v) , ∀ v ∈ V0(�) . (2.1)

The finite element solution from the space Vh,0(�), denoted ufem, satisfies the
integral identity

a(ufem, v) + (σufem, v) = (f, v) , ∀ v ∈ Vh,0(�) . (2.2)

The proof of a posteriori error majorans is based on the fundamental properties
of the finite element method reflected in the approximation and inverse estimates
and on the adequate estimate of the value μ−1

fem = sup ‖Defem‖/‖κefem‖. In case of
σ = const and, at some cost, in case of piece wise constant σ , it can be replaced
by the much simpler estimate μ−1◦ = sup ‖De◦‖/‖e◦‖, where e◦ = u◦ − u, u◦ is
the finite element function, which minimizes the norm ‖D(φ − u)‖ on the space of
functions φ ∈ Vh,0(�). With the use of the latter inequality, the a posteriori error
bounds for the C1-conform finite element method solutions to (2.2) were derived
in [16]. At that, the Aubin-Nitsche trick [26, 27] was one of the ingredients of the
proof and implied that the boundary ∂� satisfies the condition for H 4-solvability
of the problem at σ ≡ 0, ∀f ∈ L2(�). Clearly, this condition restricts the range
of problems, to which a posteriory bounds can be efficiently applied. In order to
obtain the a posteriory error bounds applicable to a wider range of problems, in
the current paper we avoid relying on the H 4-solvability condition, but use some
additional properties of the finite element approximations. We assume the existence
of the projection operator �h : H 2(�) → Vh(�), in particular quasinterpolation
operator, which has the following properties:

(i) if v ∈ Vh(�), then �hv = v ;
(ii) (v − �hv) ∈ H 2

0 (�), if v|∂� ∈ Vtr(∂�) := [Vh(�)]
∣∣
∂�

;
(iii) ∀v ∈ Hs(�), ‖v − �hv‖t,� ≤ c(t, s)hs−t‖v‖s,� for t = 0, 1, 2, and

s ≥ 2, or s = 2, 3, . . . , l ≤ p + 1, if v ∈ Hl0(�) := H 2
0 (�)H

l(�) ;
(iv) |�hv|2,� ≤ c̆| v |2,� and ‖�hv‖2,� ≤ ĉ‖ v ‖2,� ∀v ∈ H 2(�) .

Above, c(s, t), c̆ and ĉ are positive constants, depending on the constants in
the quasiuniformity conditions for finite element assemblage.

Theorem 1 Let u ∈ H 2
0 (�,

), ufem be the finite element solution, ufem ∈

Vh,0(�), and m ∈ M(�,D∗). Let, additionally, the linear operator �h with
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the properties i)–iv) exist. Then for any σ and σ∗, satisfying the inequalities
0 ≤ σ ≤ σ∗ = 1/(c(0, 2)h2)2, the bound

|||ufem − u|||2 ≤ �M(σ∗, ufem,m) , (2.3)

M(σ∗, φ,m) = ‖Dφ +m‖2
L2(�)

+ 1

σ∗
‖f − σφ −D∗m‖2

L2(�)
,

holds with

� = 2̃c2σ∗ − (̃c2 − 1)σmin

σ∗ + σmin
, (2.4)

c̃ = c̆ + 2c2,0c(0, 2) and the constant c2,0 from the inverse inequality (2.8), see
below.

Proof For e = efem := ufem−u and ∀w ∈ Vh,0(�), by using the Galerkin property,
integrating by parts and by applying the Cauchy inequalities

(φ,ψ) ≤ ‖φ‖ ‖ψ‖ and (φ1, ψ1)+ (φ2, ψ2) ≤

≤ [‖φ1‖2 + σ−1∗ ‖φ2‖2]1/2 [‖ψ1‖2 + σ∗‖ψ2‖2]1/2 ,
we get

|||e|||2 = (De,De)+ (σe, e) = (De,D(e +w))+ (σe, e +w) =

(Dv −m,De)− (Du−m,De +w)+ (σe, e +w) =

(Dv −m,De +w)− (f − σv −D∗m, e +w) ≤

‖Dv −m‖‖De +w‖ + ‖f − σv −D∗m‖‖e +w‖ ≤

≤
{
‖Dv −m‖2 + 1

σ∗ ‖f − σv −D∗m‖2
}1/2{‖De +w‖2 + σ∗‖e +w‖2

}1/2
.

(2.5)

Let πh be the operator of L2 orthogonal projection on the space Vh,0(�). Having
set w = −πhefem, we see that e + w = (I − πh)e =: e0 and, therefore, for every
β ∈ [0, 1] we can write

‖D(e +w)‖2 + σ∗‖e +w‖2 = ‖De0‖2 + σ∗‖e0‖2 ≤ ‖De0‖2+

+
[
σ∗ − σmin

(
1+ β

σmax
(σ∗ − σmax)

)]
‖e0‖2 + σmin

(
1+ β

σmax
(σ∗ − σmax)

)
‖e0‖2 =

= ‖De0‖2 + B1‖e0‖2 + B2σmin‖e0‖2 ,

(2.6)where the notations B1, B2 are obvious.
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As it follows from the properties of the operators �h and πh, for φ − πhφ with
any φ ∈ H 2

0 (�), there are valid the bounds

‖φ − πhφ‖0 ≤ ‖φ‖0 ,

‖φ − πhφ‖0 ≤ c(0, 2)h2‖Dφ‖0 ,

‖D(φ − πhφ)‖0 ≤ c̃‖Dφ‖0 ,

(2.7)

in which the constant c̃ depends only on two constants from conditions of
quasiuniformity of triangulation. The proof is needed only for the last bound, and it
follows from the relations:

‖D(φ − πhφ)‖0 ≤ ‖D(φ − �hφ)‖0 + ‖D(�hφ − πhφ)‖0 ≤ c̆‖Dφ‖0+

c2,0h
−2‖�hφ − πhφ‖0 ≤ c̆‖Dφ‖0 + c2,0h

−2
[
‖�hφ − φ‖0 + ‖φ − πhφ‖0

]
≤

≤
(
c̆ + 2c2,0c(0, 2)

)
‖Dφ‖0 ,

where c2,0 is the constant in the inverse inequality

‖D(�hφ − πhφ)‖0 ≤ c2,0h
−2‖�hφ − πφ‖0 . (2.8)

Thus, we conclude that in (2.7)

c̃ = c̆ + 2c2,0c(0, 2) .

Now, application of the second and third inequalities (2.7) to the first and second
terms in the right part of (2.6) yields

‖De0‖2 + σ∗‖e0‖2 ≤ (1+ σ−1∗ B1)‖De0‖2 + σminB2‖efem‖ ≤

≤ c̃2(1+ σ−1∗ B1)‖Defem‖2 + B2‖κefem‖ .
(2.9)

The values of B1, B2 depend on the choice of β, and it is not diffiult to notice that,
if there exists the solution of the equation

c̃2(1+ σ−1∗ B1) = B2 , (2.10)

then it is the optimal value of β. Indeed, there is the solution

β = c̃2σmax
(2− c̃−2)σ∗ − σmin

(σ∗ + σmin)(σ∗ − σmax)
.
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Substituting this value of β in (2.9) and furder in (2.5) at w = πhefem, we conclude
the proof. We have two expressions for �, defined by the left and the right parts
of (2.10). Substituting the foundβ in any of them, we get the needed expression (2.4)
for�. ��
Remark 1 We minimized the second multiplier in (2.5) by taking minimal coeffi-
cient 1/σ∗ from admissible and minimizing� by means of the corresponding choice
of parameter β. A more general situation of σ∗ ∈ [σmax, λ], λ = 1/(c(0, 2)h2)2 can
be treated in the same way and is resolved by

β = σmax
c̃2λ(1 − c̃−2)+ c̃2(σ∗ − σmin)

(σ∗ + σmin)(σ∗ − σmax)

and

� = 1+ c̃
2λ(1− c̃−2)+ c̃2(σ∗ − σmin)

(σ∗ + σmin)
. (2.11)

We see that minimal � of (2.11) is reached at maximal σ∗, i.e., at σ∗ = λ =
1/(c(0, 2)h2)2], and, therefore, is the same as in (2.4). At definition of � and
σ∗ we can take into consideration the real values of the norms in the right part
of (2.3). Let us denote these norms as N1 and N2. If the values N1 and λ−1N2
differ considerably, this can improve efficiency.

For providing high accuracy it is important to pick up the testing vector-function
m with the components as close as possible to their exact values. It is usually done
with the use of the respective recovery procedures, in particular, the same as used
for the derivation of the residual type a posteriori error bounds. As it is noted in
the book [23] and several papers, flax recovery procedures demonstrated very high
efficiency at the use for evaluation of a posteriori error bounds for the finite element
solutions of the 2nd order elliptic equations. If attended for evaluation of (2.3),
on the basis of the finite element solution ufem, they produce m as an element of
some appropriate finite element subspace M̃(�) ⊂M(�,D∗). The most popular in
the practice is the one called averaging procedure exemplified in [13, 28]. Another
efficient and optimal in the computational cost procedure for finding m is the least
squares procedure. In it, momentsmk,l are defined as L2(�) orthogonal projections
of the derivatives ∂2ufem/∂xk∂xl upon the corresponding subspaces M̃k,l(�) of the
space M̃(�), e.g., M̃k,l(�) = Vpm

h (�) with appropriate pm ≥ p − 2.
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3 Ciarlet-Raviart Mixed Metod

The weak mixed Ciarlet-Raviart type formulation of the problem (1.1) reads, cf.

[29]: find the vector-function w = (v, u), ∈ H 1(�) × �H
1
(�), �H

1
(�) = {φ ∈

H 1(�) : φ = 0 on ∂�}, satisfying the system of the integral identities

(v, q)− 〈∇u,∇q〉 = 0 , ∀ q ∈ H 1(�) ,

〈∇v,∇g〉 + (σu, g)= (f, g) , ∀ g ∈ �H
1
(�) ,

(3.1)

where 〈·, ·〉 is the scalar product of vector-functions 〈z, y〉 = (z1, y1)+ (z2, y2) for
y = (y1, y2)

, and z = (z1, z2)
,.

In general, for solving equations (3.1) two finite element assemblages, denoted
Kh,u and Kh,v , are employed, which induce respectively the space Uh(�) = {φh ∈
C(�) : φh

∣∣
τr
∈ Ppu, pu ≥ 2, r = 1, 2, . . . ,Rh} and the space Vh(�) = {ψh ∈

C(�) : ψh
∣∣
τr
∈ Ppv , pv ≥ 2, r = 1, 2, . . . ,Rh}. The mixed finite element

solution wh = (vh, uh)
, ∈ Vh(�) × �Uh(�), where �Uh(�) = {φh ∈ Uh(�) :

φh = 0 on ∂�}, satisfies the system of equations

(vh, qh)− 〈∇uh,∇qh〉 = 0 , ∀ qh ∈ Vh(�) ,

〈∇vh,∇gh〉 + (σuh, gh)= (f, gh) , ∀ g ∈ �Uh(�) .
(3.2)

The error of the finite element solution, denoted

efem = (ev, eu), eu = uh − u , ev = vh +
u ,

obviously, satisfies the integral identities

(ev, qh)− 〈∇eu,∇qh〉 = 0 , ∀ qh ∈ Vh(�) ,

〈∇ev,∇gh〉 + (σeu, gh)= 0 , ∀ gh ∈ �Uh(�) ,
(3.3)

Turning to the a posteriori error bound for the Ciarlet-Raviart mixed method,
we note that usual approximation properties corresponding to the degrees of
polynomials on finite elements are assumed for the involved in the estimation finite
element spaces:

(A1) For any w ∈ �H
l
(�) := �H

1
(�) ∩ Hl(�) the space �Uh(�) provides such an

approximation w̃ = Gh,uw that at k = 0, 1 and 1 ≤ l ≤ pu + 1 we have

|w̃ −w|k ≤ ck,lhl−k|w|l , ck,l = const , (3.4)
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where Gh,u : �H 1
(�) -→ �Uh(�) is a linear operator. Similar approximation

estimates hold for w ∈ Hl(�), w̃ ∈ Vh(�), k = 0, 1, and 1 ≤ l ≤ pv + 1.
(A2) For any w ∈ Hl0(�) := Hl(�) ∩H 2

0 (�), l ≥ 2 the space Vh,0(�) provides
an approximation w̃ = Qhw that at k = 0, 1, 2 and 2 ≤ l ≤ p + 1 we have

|w̃ −w|k ≤ ck,lhl−k|w|l , ck,l = const , (3.5)

whereQh : H 2
0 (�) -→ Vh,0(�) is a linear operator.

For the error of the solution by the mixed finite element method, we use the norm

]||efem||[= 1√
2

{
‖ev‖2 + ‖
heu‖2 + 2‖κeu‖2

}1/2
. (3.6)

For any φ ∈ Vh,0(�) and eφ = φ − u we introduce λφ as the value, saisfying the
inequality

‖eφ‖2 ≤ λ−1
φ ‖Deφ‖2 . (3.7)

Lemma 1 Let the assumptions (Aα), α = 1, 2, be fulfilled and wh = (vh, uh), ∈
Vh(�)×�Uh(�) be the solution to the system (3.2), ũ be any function fromVh(�),
andm be any vector-function belonging to M(�,D∗). Then at σ and σ∗ satisfying
the inequalities 0 ≤ σ ≤ σ∗ ≤ λũ the a posteriori error bound

]||efem||[2≤ ‖
h(uh − ũ)‖2 + ‖vh −
hũ‖2 + 2‖κ(uh − ũ)‖2+

+2�M(σ∗, ũ,m) ,
(3.8)

holds with � = 1+ (σ∗ − σmin)/λũ.

Proof At any ũ ∈ Vh,0(�), two first summands in the figure brackets of (3.6) we
transform to the form

‖
heu‖2 + ‖κeu‖2 = (
h(uh − ũ),
heu)+ (σ (uh − ũ), eu)+

+(
(ũ− u), eu)+ (σ (ũ− u), eu) ,
(3.9)

and in a similar way transform the rest terms:

‖ev‖2 + ‖κeu‖2 = ((vh −
ũ), ev)+ (σ (uh − ũ), eu)+

+(
(ũ− u), ev)+ (σ (ũ− u), eu) .
(3.10)
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The function ũ can be considered as an approximation of the problem (1.1) and,
therefore, for ‖
ẽ‖2+‖κẽ‖2 similar to the mentioned in Remark 1 bound (2.3) can
be used:

‖
ẽ‖2 + ‖κẽ‖2 ≤ �M(σ∗, ũ,m) ,

M(σ∗, ũ,m) = ‖Dũ+m‖2
L2(�)

+ 1
σ∗ ‖f − σ ũ−D∗m‖2

L2(�)
,

(3.11)

where� = 1+ (σ∗ − σmin)/λũ. The proof of it follows the path close to the path of
the proof of (2.3) with the difference, caused by the fact that ũ does not possess the
Galerkin property. This fact causes also the difference in�. Combining (3.9), (3.10)
and (3.6), the use of Cauchy inequality and the bound (3.11), result in the inequality

]||efem||[2≤ {|||uh − ũ|||2 + ‖vh −
hũ‖2 + 2‖κ(uh − ũ)‖2 + 2�M(σ∗, ũ,m)}1/2×

× 1√
2
{‖
heu‖2 + ‖ev‖2 + 2‖κeu‖2}1/2 ,

(3.12)

from which the bound (3.8) follows. ��
In general the value λ−1

ũ
is bounded by the constant c−1

F from the Friedreichs

type inequality cF ‖φ‖2 ≤ ‖
φ‖2, ∀φ ∈ �H
1
(�).

The function ũ for the use in (3.8) can be defined at least in two ways: by the least
squares projection of uh upon the space Vh,0(�), i.e. ũ = πhuh, or as ũ = Ehuh,
where Eh : �Uh(�) -→ Vh,0(�) is the recovery operator, based on averaging and
described in [13, 28]. The testing moments m for the use in (3.8) can be defined on
the basis the function ũ by means of exactly the same recovery procedures as was
mentioned for moments m in (2.3).

Conclusion Guaranteed, reliable and computable a posteriori error bounds for
solutions of the problem (1.1) with constant coefficients by C1-conform finite
element methods were obtained in [15, 19, 21]. An additional feature of the problem,
which is taken into consideration in [16] and here and seems new even for the studies
of the conform methods for the 2nd-order elliptic equations, is related to the reaction
coefficient. It is assumed to be finite element wise constant and changing chaotically
between finite elements in a wide range. In this paper, we suggested another way
of the derivation of these a posteriori error bounds, admitting to improve their
coefficients. Desides, we removed the requirement to the boundary, arising from
the elliptic regularity condition on the subsidiary problem in �, which appear
in the Aubin–Nitsche trick. The a posteriori error bound for the mixed Ciarlet-
Raviart method with relatively easily calculated constants was also presented,
which, however, assumes sharpening in the future research.

For simplicity, we restricted consideration to the polygonal domain � ⊂ R2,
which is covered by the quasi-uniform (regular) triangulation. However, the results
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can be expanded to arbitrary sufficiently smooth domains. This is for the reason that
the techniques for constructing curvilinearC0 and Cn, n ≥ 2, finite elements in [30,
31] and [31–33], respectively, allow one to create the finite element assemblages,
which exactly represent � by means of the special curvilinear finite elements, used
along curvilinear parts of the boundary. These finite element assemblages satisfy the
generalized conditions of quasiuniformity, see, e.g., [34, Section 3.2], and induce
the finite element spaces of classes C0 and C1, which provide the same orders of a
priori bounds of approximation and convergence.
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On the Solvability of a One-Dimensional
Problem of Filtration Consolidation
with a Limiting Gradient

Alexander V. Kosterin, Maria F. Pavlova, and Elena V. Rung

Abstract It is considered that one-dimensional initial-boundary value problem
models the process of joint motion of a viscoelastic porous medium and a liquid
saturating the medium. In the filtration theory, this process is called filtration
consolidation. From a mathematical viewpoint, the model under study is a system of
nonlinear partial differential equations with respect to the pressure and displacement
of liquid in the pores. Herewith, the degeneration of the spatial operator is
allowed in the equation for pressure. The definition for a generalized solution is
introduced. It is proved that under certain assumptions for the solution smoothness
the generalized statement of the problem is equivalent to the original statement.
Using the semi-discretization method in combination with the Galerkin method and
the monotonicity method, the generalized solvability of the problem is established.

1 Introduction

Filtration consolidation is the process of interaction between the deformation
of porous medium (skeleton) and the filtration of liquid saturating the medium
under the influence of external forces. Herewith, if the pores of the medium are
not completely occupied by liquid, then it is unsaturated filtration consolidation;
otherwise, it is saturated filtration consolidation.

The problem of saturated-unsaturated filtration consolidation was studied, for
example, in [1–4]. In the above articles, existence theorems for generalized solu-
tions of several initial-boundary value problems of saturated-unsaturated filtration
consolidation were proved.

The foundations of the theory of saturated filtration consolidation were laid in
such works as [5–8]. In the works, mathematical models of filtration consolidation
were built, and studies of the models from the standpoint of continuum mechanics
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were carried out. A rigorous mathematical analysis of problems of saturated
filtration consolidation was carried out in [9]. The present article aims to continue
those studies, namely, here we intend to prove the generalized solvability of one
problem of saturated filtration consolidation with a limiting gradient.

2 Problem Statement

Let us consider a one-dimensional problem of consolidation of a saturated porous
medium on the interval 0 ≤ x ≤ L.We adopt a model of the filtration consolidation
process [10], which includes:

– force balance equation

− ∂σ
f

∂x
+ ∂p
∂x

= f (x, t), (1)

– rheological relationship for a porous skeleton in the form of the Kelvin-Voigt law
[11]

σf = εx + ∂εx

∂t
, (2)

– equation of phases joint deformation (consolidation equation)

∂q

∂x
+ ∂εx
∂t

= 0, (3)

– nonlinear filtration law

q = −g
(∣∣∣∣
∂p

∂x

∣∣∣∣
)
∂p

∂x
. (4)

Here p(x, t) is liquid pressure in the pores, u(x, t) is motion of the skeleton

particles, σf is effective stress in the skeleton [8], εx = ∂u

∂x
is deformation

component, q is filtration rate.

Substituting relations (2), (4) into Eqs. (1), (3), we obtain the following system
of equations for the unknown functions u(x, t), p(x, t):

− ∂

∂x

(
∂u

∂x
+ ∂2u

∂x∂t

)
+ ∂p
∂x

= f (x, t), (5)

∂2u

∂x∂t
− ∂

∂x

(
g

(∣∣∣∣
∂p

∂x

∣∣∣∣
)
∂p

∂x

)
= 0. (6)
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We assume that for t ∈ (0, T ] the following boundary conditions are satisfied

u(0, t) = 0,
∂u

∂x
(L, t) + ∂2u

∂x∂t
(L, t) = 0, (7)

p(0, t) = p(L, t) = 0. (8)

The initial conditions are given as

u(x, 0) = u0(x), p(x, 0) = p0(x). (9)

In what follows, we assume that the functions g(ξ), f (x, t) satisfy the following
conditions:

A1. g(ξ)ξ , ξ ≥ 0 is an absolutely continuous in ξ , nonnegative, nondecreasing
function and there exist ξ0 ≥ 0, η, μ > 0, such that at ξ ≥ ξ0 the following
inequality holds

η(ξ − ξ0) ≤ g(|ξ |)ξ ≤ μ(ξ − ξ0). (10)

A2. The function f (x, t) is continuous at (x, t) ∈ QT ,whereQT = [0, L]×[0, T ].
Note that the class of problems under consideration is rather wide and

includes, in particular, filtration consolidation problems with a limiting gra-
dient, when g(ξ) ≡ 0 at ξ ≤ β, β > 0.

3 Defining a Generalized Solution

Let
◦
V be the closure of smooth functions equal to zero at x = 0 in the norm of the

spaceW(1)
2 (0, L), and let

◦
V1 be the closure of smooth functions equal to zero on the

boundary of the interval [0, L], in the norm of the same space.

Definition 1 By a generalized solution to problem (5)–(9), we imply functions
(u, p), for which the following conditions hold:

u ∈ W(1)
2 (0, T ; ◦

V ), p ∈ L2(0, T ;
◦
V1),

u(x, 0) = u0(x), p(x, 0) = p0(x) almost everywhere on (0, L),
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and for any functions v ∈ W(1)
2 (0, T ; ◦

V ), z ∈ L2(0, T ;
◦
V 1) the following equality

is true:

T∫

0

L∫

0

{(
∂u

∂x
+ ∂2u

∂x∂t

)
∂2v

∂x∂t
− p ∂

2v

∂x∂t
+ ∂2u

∂x∂t
z

+g
(∣∣∣∣
∂p

∂x

∣∣∣∣
)
∂p

∂x

∂z

∂x

}
dxdt =

T∫

0

L∫

0

f (x, t)
∂v

∂t
dxdt. (11)

Theorem 1 Let u, p be a solution to problem (5)–(9) satisfying the following
conditions:

u ∈ W(1)
2 (0, T ; ◦

V ), p ∈ L2(0, T ;
◦
V1),

then u, p are a generalized solution to the problem.
And vice versa, if u, p is a generalized solution to problem (5)–(9) such that

u(x, t), p(x, t) ∈ C(2)(0, L) ∀t ∈ (0, T ), (12)

then the functions u, p satisfy relations (5)–(9).

Proof Let u, p be a solution to problem (5)–(9). It is required to establish that u, p
satisfy equality (11).

Let v ∈ W(1)
2 (0, T ; ◦

V ). We multiply the equality (5) by the function
∂v

∂t
and

integrate the resulting equality over x from 0 to L, t from 0 to T . As a result, we
obtain

−
T∫

0

L∫

0

∂

∂x

(
∂u

∂x
+ ∂2u

∂x∂t
− p

)
∂v

∂t
dxdt =

T∫

0

L∫

0

f (x, t)
∂v

∂t
dxdt. (13)

Using the formula for integration by parts, we transform the left-hand side of
equality (13):

−
T∫

0

L∫

0

∂

∂x

(
∂u

∂x
+ ∂2u

∂x∂t
− p

)
∂v

∂t
dxdt =

T∫

0

L∫

0

(
∂u

∂x
+ ∂2u

∂x∂t
− p

)
∂2v

∂x∂t
dxdt

−
T∫

0

(
∂u

∂x
(L, t) + ∂2u

∂x∂t
(L, t) − p(L, t)

)
∂v

∂t
(L, t) dt (14)



On the Solvability of a One-Dimensional Problem of Filtration Consolidation 235

Based on (13), (14) and boundary conditions (7), (8), the following equality holds
true

T∫

0

L∫

0

(
∂u

∂x
+ ∂2u

∂x∂t
− p

)
∂2v

∂x∂t
dxdt =

T∫

0

L∫

0

f (x, t)
∂v

∂t
dxdt. (15)

Now we multiply equality (6) by the function z ∈ L2(0, T ;
◦
V1) and integrate

the resulting equality over x from 0 to L, t from 0 to T . We apply the formula of
integration by parts and, as a result, we obtain

T∫

0

L∫

0

{
∂2u

∂x∂t
z+ g

(∣∣∣∣
∂p

∂x

∣∣∣∣
)
∂p

∂x

∂z

∂x

}
dxdt = 0. (16)

It follows from relations (15) and (16) that the functions u, p satisfy equality (11).
Let us prove the second part of the statement of Theorem 1. Let u, p be a

generalized solution to problem (5)–(9) satisfying condition (12). Let us use the
formula of integration by parts to transform equality (11). We obtain

−
T∫

0

L∫

0

∂

∂x

(
∂u

∂x
+ ∂2u

∂x∂t
− p

)
∂v

∂t
dxdt

+
T∫

0

L∫

0

{
∂2u

∂x∂t
− ∂

∂x

(
g

(∣∣∣∣
∂p

∂x

∣∣∣∣
)
∂p

∂x

)}
z dxdt

+
T∫

0

(
∂u

∂x
(L, t) + ∂2u

∂x∂t
(L, t)

)
∂v

∂t
(L, t) dt =

T∫

0

L∫

0

f
∂v

∂t
dxdt. (17)

Assuming in Eq. (17) that
∂v

∂t
= φ, z = 0, where φ—is an arbitrary function

from C∞0 (QT ) and taking into account the density C∞0 (QT ) in L2(QT ), it is easy
to show that (5) follows from (17). If in relation (17) we put v = 0, z = φ, then
arguing in a similar manner, we obtain that (6) follows from (17).

Let us now prove that boundary conditions (7) are satisfied. Since (5), (6) are
proved, it follows from (17) that the following equality holds true for any function

v ∈ W(1)
2 (0, T ; ◦

V )

T∫

0

(
∂u

∂x
(L, t) + ∂2u

∂x∂t
(L, t)

)
∂v

∂t
(L, t) dt = 0,
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whence, due to arbitrariness of v, the validity of the following boundary condition
is proved

∂u

∂x
(L, t) + ∂2u

∂x∂t
(L, t) = 0.

Theorem 1 is proved. ��

4 Existence Theorem

Theorem 2 For any u0 ∈ ◦
V , p0 ∈ ◦

V 1 there exists a generalized solution to
problem (5)–(9).

Proof Let us use the semi-discretization method in combination with the Galerkin
method. Let

ω̄τ = {t = kτ, 0 ≤ k ≤ M, Mτ = T }

be a grid on the interval [0, T ], ωτ = ω̄τ \ {0}.
Let {ϕi} and {ψi} be full systems of basis functions in the spaces

◦
V and

◦
V 1

respectively. Let also V n and V n1 be finite-dimensional spaces spanned by the system
of functions {ϕi}ni=1 and {ψi}ni=1 respectively.

Definition 2 By the approximate solution to problem (5)–(9), constructed by the
method of semi-discretization in combination with the Galerkin method, we imply
the functions (ûn(t), p̂n(t)) for which the following conditions hold:

ûn(t) ∈ V n, p̂n(t) ∈ V n1 ∀t ∈ ωτ ,

un(x, 0) = u0(x), pn(x, 0) = p0(x) almost everywhere on (0, L),

and for any functions vn ∈ V n, zn ∈ V n1 the following equality is true

L∫

0

{(
∂ûn

∂x
+ ∂u

n
t

∂x

)
∂vnt

∂x
− p̂n ∂v

n
t

∂x
+ ∂u

n
t

∂x
ẑn

+g
(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)
∂p̂n

∂x

∂ẑn

∂x

}
dx =

L∫

0

f̂ (x, t) vnt dx. (18)

Here v̂ = v(t + τ ), vt = v̂ − v
τ

. ��
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Lemma 1 The Galerkin system (18) has at least one solution. ��
Proof Obviously, it suffices to establish the existence of p̂n, ûn satisfying (18),
under the assumption that pn, un are known.

Since the choice of the functions vn, zn is arbitrary, the Galerkin system (18) is
equivalent to the following system

L∫

0

{(
∂ûn

∂x
+ ∂u

n
t

∂x

)
∂vnt

∂x
− p̂n ∂v

n
t

∂x

}
dx =

L∫

0

f̂ (x, t) vnt dx,

L∫

0

{
∂unt

∂x
ẑn + g

(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)
∂p̂n

∂x

∂ẑn

∂x

}
dx = 0.

Approximate solutions are sought by the Galerkin method in the form

ûn =
n∑
k=1

ζ
(1)
k ϕk, p̂n =

n∑
k=1

ζ
(2)
k ψk.

The unknown coefficients ζ (i)k , k = 1, n, i = 1, 2 are determined by the following
system of equations:

L∫

0

{(
∂ûn

∂x
+ ∂u

n
t

∂x

)
∂(ϕk)t

∂x
− p̂n ∂(ϕk)t

∂x

}
dx =

L∫

0

f̂ (x, t) (ϕk)tdx, (19)

L∫

0

{
∂unt

∂x
ψ̂k + g

(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)
∂p̂n

∂x

∂ψ̂k

∂x

}
dx = 0. (20)

Let H : R2n → R2n be a nonlinear operator such that the equation

H(ζ ) = 0

is equivalent to system (19)–(20). Let us make sure that R2n contains a sphere
centered at zero of finite radius, on which

(H(ζ ), ζ )R2n ≥ 0.
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We have

(H(ζ ), ζ )R2n =
L∫

0

(
∂ûn

∂x
+ ∂u

n
t

∂x

)
∂unt

∂x
dx

+
L∫

0

g

(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)(

∂p̂n

∂x

)2

dx −
L∫

0

f̂ (x, t) unt dx. (21)

The first term on the right-hand side of equality (21) can be transformed to the form:

L∫

0

(
∂ûn

∂x
+ ∂u

n
t

∂x

)
∂unt

∂x
dx =

(
1

τ
+ 1

τ 2

)
‖ ûn ‖2

1

−
(

1

τ
+ 2

τ 2

) L∫

0

∂ûn

∂x

∂un

∂x
dx + 1

τ 2 ‖ un ‖2
1 . (22)

Here ‖ v ‖2
1=

L∫

0

(
∂v

∂x

)2

dx.

Using the Cauchy-Bunyakovsky inequality

(x, y) ≤ δ||x||2 + 1

4δ
||y||2, (23)

from (22) it is easy to obtain the following estimate

L∫

0

(
∂ûn

∂x
+ ∂u

n
t

∂x

)
∂unt

∂x
dx ≥

(
1

τ
+ 1

τ 2 − δ
)
‖ ûn ‖2

1

+
(

1

τ 2 −
1

4δ

(
1

τ
+ 2

τ 2

)2
)
‖ un ‖2

1 .

��
Using (23) and inequality (10), for the second term in equality (21) we have

L∫

0

g

(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)(

∂p̂n

∂x

)2

dx ≥ (η − δ) ‖ p̂n ‖2
1 −

η2ξ2
0L

2

4δ
.
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To estimate the last term of (21), we use the boundedness of the function f (ξ),
inequality (23), and the Friedrichs inequality. As a result, we obtain

∣∣∣∣∣∣

L∫

0

f̂ (x, t) · unt dx
∣∣∣∣∣∣
≤ δ ‖ ûn ‖2

1 +
C2C2

FL
2

4δτ 2 + CCF
τ

‖ un ‖2
1,

here CF is a constant of the Friedrichs inequality, C is a constant such that

|f (ξ, ζ )| ≤ C ∀ξ ∈ [0, L], ∀ζ ∈ [0, T ].

Substituting the estimates obtained in (21), we have

(H(ζ ), ζ )R2n ≥ K(δ)
(
‖ ûn ‖2

1 + ‖ p̂n ‖2
1

)
− R(δ) , (24)

where

K(δ) = min

{(
1

τ
+ 1

τ 2 − 2δ

)
, η − δ

}
,

R(δ) =
(
CCF

τ
− 1

τ 2
+ 1

4δ

(
1

τ
+ 2

τ 2

)2
)
‖ un ‖2

1 +
C2C2

FL
2

4δτ 2
+ η

2ξ2
0L

2

4δ
.

Let δ∗ be a constant such that for all 0 < δ ≤ δ∗ the following inequality holds

K(δ) ≥ β = const > 0 ,

and S ⊂ R2n be a sphere centered at zero at which the right-hand side of
inequality (24) is non-negative. Then, by the topological lemma ([12], p. 66), there is
at least one solution to the Galerkin system inside this sphere. The proof of Lemma 1
is complete. ��
Lemma 2 For the approximate solution (18), the following a priori estimates are
valid

max
t ′
‖un(t ′)‖2

1 ≤ C,
t ′∑
t=0

τ‖pn(t)‖2
1 ≤ C, (25)

t ′−τ∑
t=0

τ
∥∥(un)t

∥∥2
1 ≤ C,

t ′∑
t=0

τ

∥∥∥∥
∂unt

∂x

∥∥∥∥
2

L2(0,L)
≤ C, (26)

t ′−τ∑
t=0

τ

∥∥∥∥g
(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)
∂p̂n

∂x

∥∥∥∥
2

L2(0,L)
≤ C. (27)
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Proof Let us assume in (18) vn = un, zn = pn and obtain

L∫

0

{(
∂ûn

∂x
+ ∂u

n
t

∂x

)
∂unt

∂x
+g

(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)(

∂p̂n

∂x

)2 }
dx =

L∫

0

f̂ (x, t) unt dx. (28)

Note that

∂ûn

∂x

∂unt

∂x
= ∂ûn

∂x

∂

∂x

(
ûn − un
τ

)
= ∂ûn

∂x

1

τ

(
∂ûn

∂x
− ∂u

n

∂x

)

= 1

2

(
∂ûn

∂x

)2

− 1

2

(
∂un

∂x

)2

+ τ
2

2

(
∂unt

∂x

)2

. (29)

We substitute equality (29) into (28), multiply by τ and sum the resulting relation
over t from 0 to t ′ − τ and obtain

1

2
‖un(t ′)‖2

1 −
1

2
‖un(0)‖2

1 +
1

2

t ′−τ∑
t=0

τ 2‖unt (t)‖2
1 +

t ′−τ∑
t=0

τ

∥∥∥∥
∂unt

∂x

∥∥∥∥
2

L2(0,L)

+
t ′−τ∑
t=0

τ

L∫

0

g

(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)(

∂p̂n

∂x

)2

dx =
t ′−τ∑
t=0

τ

L∫

0

f̂ (x, t) · unt dx. (30)

��
From (30), taking into account inequality (10), we have a priori estimates (25)–

(26). Also, considering that

∥∥∥∥∥g
(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
2
)
∂p̂n

∂x

∥∥∥∥∥
2

L2(0,L)

≤
∥∥∥∥
∂p̂n

∂x

∥∥∥∥
2

L2(0,L)
,

we have estimate (27). The proof of Lemma 2 is complete. ��
Lemma 3 There exist function

u ∈ W(1)
2 (0, T ; ◦

V ), p ∈ L2(0, T ;
◦
V 1)

and sequences {τ }, {n} such that at τ → 0, n→∞

"+un ⇀ u, "+unt ⇀
∂u

∂t
in L2(0, T ;

◦
V ), (31)

∂"+unt
∂x

⇀
∂2u

∂x∂t
in L2(0, T ;L2(0, L)), (32)

"+pn ⇀ p in L2(0, T ;
◦
V 1). (33)
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Here"+z is piecewise-constant filling of z :

"+z(t) = {
z(kτ) : kτ ≤ t < (k + 1)τ

}
.

Proof The validity of statements (31)–(33) follows from a priori estimates (25)–
(26) and the weak compactness of bounded sets in a reflexive Banach space. The
proof of Lemma 3 is complete. ��
Lemma 4 Functions u, p satisfying relations (31)–(33) are a generalized solution
to problem (5)–(9). ��
Proof Let the functions u, p satisfy relations (31)–(33), it is required to prove that
u, p satisfy identity (11). To do this, in (18) we put

vn(x, t) = 1

τ

t+τ∫

t

ṽn(x, ξ)dξ, zn(x, t) = 1

τ

t+τ∫

t

z̃n(x, ξ)dξ,

where ṽn, z̃n are functions from C∞(0, T ;
◦
V n) and C∞(0, T ;

◦
V n1 ) respectively,

such that ṽn(x, T ) = z̃n(x, T ) = 0. We multiply (18) by τ , sum over t from 0
to T − τ. The result, using the filling operator"+, can be written in the form

T∫

0

L∫

0

{(
∂"+ûn

∂x
+ ∂"

+unt
∂x

)
∂"+vnt
∂x

−"+p̂n
∂"+vnt
∂x

+ ∂"
+unt
∂x

"+ẑn

+g
(∣∣∣∣
∂"+p̂n

∂x

∣∣∣∣
)
∂"+p̂n

∂x

∂"+ẑn

∂x

}
dxdt =

T∫

0

L∫

0

f̂ (x, t)"+vnt dxdt. (34)

From the boundedness of g and estimate (27) it follows that there exists a
function χ from the space L2(0, T ;L2(0, L)) such that

g

(∣∣∣∣
∂"+p̂n

∂x

∣∣∣∣
)
∂"+p̂n

∂x
⇀ χ in L2(0, T ;L2(0, L)). (35)

Taking into account (31)–(33) and (35) in equality (34), we pass to the limit in
τ → 0 and n→∞ and obtain

T∫

0

L∫

0

{(
∂u

∂x
+ ∂2u

∂x∂t

)
∂2v

∂x∂t
− p ∂

2v

∂x∂t
+ ∂2u

∂x∂t
z+ χ ∂z

∂x

}
dxdt

=
T∫

0

L∫

0

f (x, t)
∂v

∂t
dxdt. (36)
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Let us prove that χ = g

(∣∣∣∣
∂p

∂x

∣∣∣∣
)
∂p

∂x
. To do this, we use the monotonicity

method. We write down the apparent inequality

T−τ∑
t=0

τ

L∫

0

(
∂un

∂x
− ∂v

n

∂x

)

t

(
∂ûn

∂x
− ∂v̂n

∂x

)
dx ≥ 1

2
‖un(T )− vn(T )‖2

1
∂2u

∂x∂t
z

−1

2
‖un(0)− vn(0)‖2

1 ≥ −1

2
‖u0 − vn(x, 0)‖2

1,

where vn is an arbitrary smooth function v ∈ C∞(0, T ; ◦
V n). From this inequality

and the monotonicity of the function g(ξ) it follows that

T−τ∑
t=0

τ

L∫

0

(
∂un

∂x
− ∂v

n

∂x

)

t

(
∂ûn

∂x
− ∂v̂

n

∂x

)
dx

+
T−τ∑
t=0

τ

L∫

0

{
g

(∣∣∣∣
∂p̂n

∂x

∣∣∣∣
)
∂p̂n

∂x
− g

(∣∣∣∣
∂ẑn

∂x

∣∣∣∣
)
∂ẑn

∂x

}
∂
(
p̂n − ẑn)
∂x

dx

≥ −1

2
‖u0 − vn(x, 0)‖2

1.

The last relation is equivalent to the following integral inequality

I =
T∫

0

L∫

0

(
∂"+unt
∂x

− ∂"+vnt
∂x

)
∂"+ (

ûn − v̂n)
∂x

dxdt

+
T∫

0

L∫

0

g

(∣∣∣∣
∂"+p̂n

∂x

∣∣∣∣
)
∂"+p̂n

∂x

∂"+ (
p̂n − ẑn)
∂x

dxdt

−
T∫

0

L∫

0

g

(∣∣∣∣
∂"+ẑn

∂x

∣∣∣∣
)
∂"+ẑn

∂x

∂"+ (
p̂n − ẑn)
∂x

dxdt

≥ −1

2
‖u0 − vn(x, 0)‖2

1.
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We represent I as the sum I = I1 + I2, where

I1 =
T∫

0

L∫

0

{
∂"+unt
∂x

∂"+ (
ûn − v̂n)
∂x

+ g
(∣∣∣∣
∂"+p̂n

∂x

∣∣∣∣
)
∂"+p̂n

∂x

∂"+ (
p̂n − ẑn)
∂x

}
dxdt,

I2 = −
T∫

0

L∫

0

{
∂"+vnt
∂x

∂"+ (
ûn − v̂n)
∂x

+ g

(∣∣∣∣
∂"+ẑn

∂x

∣∣∣∣
)
∂"+ẑn

∂x

∂"+ (
p̂n − ẑn)
∂x

}
dxdt.

To transform the first relation I1, we use equality (34) at vn = un − vn, pn =
pn − zn and obtain

I1 =
T∫

0

L∫

0

{
− ∂"+unt

∂x

∂"+ (
unt − vnt

)

∂x
−"+p̂n ∂"

+vnt
∂x

+ ∂"+unt
∂x

"+ẑn − ∂"
+unt
∂x

∂"+vn

∂x

+ ∂"+un

∂x

∂"+vnt
∂x

+ f̂ (x, t)"+ (
un − vn)

t

}
dxdt. (37)

In (37), we make the passage to the limit as τ → 0, n → ∞, taking into
account (31)–(33) and (35). As a result, we obtain

I1 →
T∫

0

L∫

0

{
− ∂2u

∂x∂t

∂2 (u− v)
∂x∂t

− p ∂2v

∂x∂t
+ ∂2u

∂x∂t
z

− ∂2u

∂x∂t

∂v

∂x
+ ∂u
∂x

∂2v

∂x∂t
+ f (x, t) ∂ (u− v)

∂t

}
dxdt. (38)

Using equality (36), the right-hand side of relation (38) takes the following form

I1 →
T∫

0

L∫

0

{
∂2u

∂x∂t

∂(u− v)
∂x

+ χ ∂(p − z)
∂x

}
dxdt.
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Apparently, from (31)–(33) and (35) for τ → 0, n→∞ we obtain

I2 →−
T∫

0

L∫

0

{
∂2v

∂x∂t

∂ (u− v)
∂x

+ g
(∣∣∣∣
∂z

∂x

∣∣∣∣
2
)
∂z

∂x

∂ (p − z)
∂x

}
dxdt.

Thus, it follows from the definition of I that

T∫

0

L∫

0

{
∂2(u− v)
∂x∂t

∂ (u− v)
∂x

+
(
χ − g

(∣∣∣∣
∂z

∂x

∣∣∣∣
2
)
∂z

∂x

)
∂ (p − z)
∂x

}
dxdt

≥ −1

2
‖u0 − v(x, 0)‖2

1. (39)

In (39), we choose v = u+ λw, z = p + λq, where λ = const > 0, and w, q are
arbitrary functions from C∞(0, T ;C∞(0, L)), where w(x, 0) = 0 for x ∈ (0, L).
As a result, we obtain

λ

T∫

0

L∫

0

(
χ − g

(∣∣∣∣
∂(p + λq)

∂x

∣∣∣∣
2
)
∂(p + λq)

∂x

)
∂q

∂x
dxdt

+λ2

T∫

0

L∫

0

∂2w

∂x∂t

∂w

∂x
dxdt ≥ −λ

2
‖w(x, 0)‖2

1 = 0. (40)

We divide inequality (40) by λ and pass to the limit as λ→ 0, we obtain

T∫

0

L∫

0

(
χ − g

(∣∣∣∣
∂p

∂x

∣∣∣∣
2
)
∂p

∂x

)
∂q

∂x
dxdt ≥ 0.

Since q is an arbitrary function, the inequality holds at q = v and q = −v, where
v ∈ L2(0, T ;W 1

2 (0, L)) is an arbitrary function; therefore, we have

χ = g
(∣∣∣∣
∂p

∂x

∣∣∣∣
2
)
∂p

∂x
.

The proof of Lemma 4 is complete. ��
The assertion of Theorem 2 follows from Lemmas 1–4. ��
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Abstract In this work, a mathematical model of the elements nonlinear dynamics
for NEMS/MEMS devices is constructed in the form of two flexible rectangular
shallow isotropic Kirchhoff-Love shells, taking into account their contact interac-
tion, the connectivity of the deformation and temperature fields. Size-dependent
effects are taken into account according to the micropolar moment theory of
elasticity. The sought equations in displacements are obtained from the Hamilton-
Ostrogradsky energy principle. The existence theorem for a solution is proved.
It is proved that an approximate solution in the second boundary value problem,
which determines the condition of thermomechanical evolution for two rectangular
shallow isotropic shells, can be found by the Bubnov–Galerkin method. This
theorem is new, and in the future it allows to construct algorithms for solving the
dynamics of a coupled problem for MEMS/NEMS devices elements in the form of
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1 Introduction

At the moment, the application field of NEMS sensors and devices is very wide.
Unique properties of NEMS devices have predetermined their use in physics, chem-
istry, biology, medicine, criminology, military and consumer technology, navigation
and control systems. Interesting properties of NEMS devices usually arise from their
active part behavior (including dynamic), which can represent various nano-objects
types, such as nano-rods, nanotubes, nano-beams, nanoplates and nanoshells, and
their various combinations. It is important to note that NEMS dissipates very little
energy and this makes them extremely sensitive to external influences, especially
thermal effects and noise fields. Nano-mechanics is based on theories that can
account for scale effects at the nano-scale level. Their good overview is given in [1].
One of such theories is the currently actively developed micropolar (asymmetric,
moment) theory [2–14]. The question of the temperature effects influence on the
nano-plates behavior is also considered in works [15, 16]. An important issue is the
existence of solutions for the nonlinear differential equation systems that describe
the mechanical structures behavior. For this, it is necessary to prove theorems
on the solutions existence. In the case of solving a nonlinear stationary problem,
approximate solutions are constructed using the Faedo–Galerkin method. In the
case of non-stationary problems, solutions are constructed using the Faedo–Galerkin
method, then a priori estimates of the energy type inequalities are established for
them [17–20]. In the works of these authors, theorems on the solution existence for
classical mathematical models were proved. In this paper, we consider evidence of
the solution existence for mathematical models based on the micropolar theory.

2 Formulation of the Problem

Let us consider the related problem of thermoelasticity, which determines the ther-
momechanical evaluation conditions for shallow micropolar homogeneous isotropic
shells in the Kirchhoff-Love hypotheses framework, taking into account the three-
dimensional equation of heat conduction and contact interaction (1)–(4)

Differential equations describing the shell element motion, obtained on the
basis of the Hamilton-Ostrogradsky variational principle, taking into account the
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micropolar theory, Karman’s theory and Cantor’s contact interaction theory, have
the form:

∂Nkxx

∂x
+ ∂T

k

∂y
+ 1

2

∂2Y kyz

∂y2 + 1

2

∂2Y kxz

∂x∂y
= ρhk ∂

2uk

∂t2
,

∂Nkyy

∂y
+ ∂T

k

∂x
− 1

2

∂2Y kxz

∂x2 − 1

2

∂2Y kyz

∂x∂y
= ρhk ∂

2vk

∂t2
,

∂2Mk
xx

∂x2
+ ∂

2Mk
yy

∂y2
+ 2

∂2Hk

∂x∂y
+ ∂

∂x

(
Nkx
∂wk

∂x

)
+ ∂

∂y

(
Nky
∂wk

∂y

)
+ 2

∂T k

∂x

∂wk

∂y
+

+2
∂T k

∂y

∂wk

∂x
+ 4T

∂2wk

∂x∂y
− kkyNkyy − kkxNkxx −

∂2Y kxx

∂x∂y
+ ∂

2Y kyy

∂y∂x
+ ∂

2Y kxy

∂x2
−

−∂
2Y kxy

∂y2 + 2qk ∓ 2K
(
w1 −w2 − δ

)
ψ = ρhk ∂

2wk

∂t2
+ ερhk ∂w

k

∂t
.

(1)

The three-dimensional heat equation in a coupled setting can be written as follows:

C0

T0

∂T k

∂t
− λ

T0

(
∂2T k

∂x2 + ∂
2T k

∂y2 + ∂
2T k

∂z2

)
+ Eαt

1− v

(
∂εkxx

∂t
+ ∂εkyy

∂t

)
= 1

T0
gkt .

(2)

The boundary and initial conditions are chosen in the following form:

uk |� = 0,
∂uk

∂x
|� = 0,

∂uk

∂y
|� = 0,

vk |� = 0,
∂vk

∂x
|� = 0,

∂vk

∂y
|� = 0,

wk |� = 0,
∂wk

∂x
|� = 0,

∂wk

∂y
|� = 0,

T k |S = 0.

(3)

wk
∣∣∣t=t0 = φkw (x, y) ,

∂wk

∂t

∣∣∣t=t0 = ψkw (x, y)

uk
∣∣∣t=t0 = φku (x, y) ,

∂uk

∂t

∣∣∣t=t0 = ψku (x, y)

vk
∣∣∣t=t0 = φkv (x, y) ,

∂vk

∂t

∣∣∣t=t0 = ψkv (x, y)

T k
∣∣∣t=t0 = φkt (x, y, z)

(4)
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In the boundary value problem (1)–(4), the following notations are used.

� = �k, D = Dk,

where k-structure layer number; δ-gap between shells.
�-rectangle (in planeOxy ) with bound ∂�:

� = (0, a)× (0, b) , � = [0, a]× [0, b] , ∂� = � \�;

D-parallelepiped in space Oxyz with boundary plane ∂D:

D = (a, b)×
(
−h

2
,
h

2

)
, D = [a, b]×

[
−h

2
,
h

2

]
, ∂D = D \D;

Q1 = �×(t0, t1) ; Q2 = D×(t0, t1) ; � = ∂�×[t0, t1] ; S = ∂D×[t0, t1] ;

[t0, t1]– observation time span of shell evolution, t ∈ [t0, t1]. Classic strains and
moments, as well as higher order strains and moments:

(
Nkxx,N

k
yy, T

k
)
=

∫ hk

−hk

(
σkxx, σ

k
yy, σ

k
xy

)
dz,

(
Mk
xx,M

k
yy,H

k
)
=

∫ hk

−hk

(
σkxx, σ

k
yy, σ

k
xy

)
zdz,

Y kxx =
∫ hk

−hk
mkxxdz, Y kxy =

∫ hk

−hk
mkxydz, Y kzx =

∫ hk

−hk
mkzxdz, x � y.

Nonzero stress tensor components:

σkxx =
E

1− ν2

[
εkxx + νεkyy

]
, x � y, σ kxy =

E

(1+ ν)ε
k
xy.

Higher-order nonzero moments tensor components [21]:

(
mkxx,m

k
xy,m

k
zx

)
= El2

1+ ν
(
χkxx, χ

k
xy, χ

k
zx

)
, x � y
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Deformation tensor components taking into account temperature effects:

εkxx =
∂uk

∂x
+ 1

2

(
∂wk

∂x

)2

− kkxwk − z
∂2wk

∂x2 + αtT k(x, y, z);

εkyy =
∂vk

∂y
+ 1

2

(
∂wk

∂y

)2

− kkywk − z
∂2wk

∂y2 + αtT k(x, y, z);

εkxy =
1

2

(
∂uk

∂y
+ ∂v

k

∂x

)
+ ∂w

k

∂x

∂wk

∂y
− z∂

2wk

∂x∂y
.

(5)

Torsional bending tensor nonzero components written for the case when the
displacement and rotation fields are not independent:

χkxx =
∂2wk

∂x∂y
; χkyy = −∂

2wk

∂y∂x
; χkxy =

1

2

(
∂2wk

∂y2 − ∂
2wk

∂x2

)
;

χkxz =
1

4

(
∂2vk

∂x2 − ∂2uk

∂x∂y

)
; χkyz =

1

4

(
∂2vk

∂y∂x
− ∂

2uk

∂y2

)
.

(6)

wk(x, y, t), uk(x, y, t), vk(x, y, t)—the required deflection and displacement func-
tions defined on the area Q1 = � × [t0, t1]; T k(x, y, z, t)—the required functions
that determine the temperature field in the region Q2 = D × [t0, t1]; h > 0—
constant shell thickness; ρ > 0—constant density of the shell material; E >

0—Young’s modulus; 0 < ν < 0.5—Poisson’s ratio; l > 0—additional material
length parameter associated with the bend-torsion tensor; ε > 0—constant damping
factor; α—thermal expansion factor; T0 > 0—initial shell temperature; C0 > 0—
specific heat; λ > 0—thermal conductivity factor; gkt (x, y, z, t)—known functions
defined on area Q2 and determining the bulk density of internal heat sources;
qk(x, y, t)—known function of the transverse load intensity on the shell, defined
on the region;Q1; kkx, k

k
y—initial curvatures of the shells middle surfaces.

The notation of all the main functional spaces, norms and scalar products
correspond to those adopted in the works [22, 23]: L2 (A)—Lebesgue space of
square-integrable functions; |·|A—norm in Hilbert space L2 (A), and (·, ·)A—dot
product in this space;H 1

0 (A)—the subspace of the Sobolev spaceH 1 (A), in which
the dense set is the set of all functions of their C1

(
A
)

equal to zero near the
boundary ∂A; H 2

0 (A)—the subspace of space H 2 (A), in which the dense set is
the set of all functions of their C2

(
A
)

equal to zero near the boundary ∂A.

Theorem 1 Let the boundary contour ∂� have smoothness sufficient for the used
embedding theorems and the following conditions are satisfied: qk ∈ L2 (Q1), gkt ∈
L2 (Q2), φkw, φ

k
u, φ

k
v ∈ H 2

0 (�), ψ
k
w,ψ

k
u,ψ

k
v ∈ L2 (�), φkt ∈ L2 (D). Then:
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(1) there is at least one solution
{
ũk, ṽk, w̃k, T̃ k

}
for task (1)–(4), wherein

ũk, ṽk, w̃k ∈ L2
(
t0, t1,H

2
0 (�)

)
;

∂w̃k

∂t
,
∂ũk

∂t
,
∂ṽk

∂t
∈ L2

(
t0, t1, L

2 (�)
)

T̃ k ∈ L2
(
t0, t1;H 1

0 (D)
)
k = 1, 2

(7)

(2) an approximate solution to problem (1)–(4) can be found by the Bubnov–
Galerkin method, while the entire set of approximate solutions is weakly
compact in spaces corresponding to conditions (7), and its limit points deter-
mine the generalized solution of problem (1)–(4) ;

(3) the phase space V of the mechanical system defined by the boundary value
problem (1)–(4), with generalized solutions from spaces (7), is an infinite-

dimensional functional space of the following form V = (
L2 (�)

)6 × T , where
T –the configuration space of such a system, T = (

H 2
0 (�)

)6 × (H0 (D))
2 ,

while for almost all t ∈ [t0, t1],

{
∂w̃k

∂t
,
∂ũk

∂t
,
∂ṽk

∂t
, w̃k, ũk, ṽk, T̃ k

}
∈ V.

3 The Main Stages of the Theorem Proof

3.1 Construction of an Approximate Solution

Construction of an approximate solution to problem (1)–(4). Let functions
sequences

{
χnwk

}
,
{
χnvk

}
,
{
χnuk

}
define a basis in the space H 2

0 (�) orthonormalized
with respect to the norm of L2 (�), and the sequence

{
χnT k

}
define the same

orthonormal basis in the space H 1
0 (�). Following the Bubnov–Galerkin method,

an approximate solution
{
wkn, ukn, vkn, T kn

}
of problem (1)–(4) will be sought in

the following finite expansions (sums) form:

wkn =
nwk∑
l=1

gwkl(t)χwkl (x, y) , vkn =
nvk∑
l=1

gvkl(t)χvkl (x, y) ,

unk =
nuk∑
l=1

gukl(t)χukl (x, y) , T kn =
nT k∑
l=1

gT kl(t)χT kl (x, y)

(8)
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Expansion coefficients are determined as solutions of the following Cauchy problem
for an ordinary differential equations system:

ρ

(
∂2ukn

∂t2
, χkuluk

)

D

+
(
σknxx ,

∂χkuluk

∂x

)

D

+
(
σknxy ,

∂χkuluk

∂y

)

D

+

+1

2

(
−mknyz,

∂2χkuluk

∂x2

)

D

+ 1

2

(
−mknxz,

∂2χkuluk

∂x∂y

)

D

= 0,

ρ

(
∂2vkn

∂t2
, χkvlvk

)

D

+
(
σknyy ,

∂χkvlvk

∂y

)

D

+
(
σknxy ,

∂χkvlvk

∂x

)

D

+

+1

2

(
mknxz,

∂2χkvlvk

∂x2

)

D

+ 1

2

(
mknyz,

∂2χkvlvk

∂x∂y

)

D

= 0,

ρ

(
∂2wkn

∂t2
, χkwlwk

)

D

+ ερ
(
∂wkn

∂t
, χkwlwk

)

D

+
(
−zσ knxx ,

∂2χkwlwk

∂x2

)

D

+

+
(
−zσ knyy ,

∂2χkwlwk

∂y2

)

D

+ kky
(
−σknyy , χkwlwk

)
D
+ kkx

(
−σknxx , χkwlwk

)
D
+

+2

(
−zσ knxy ,

∂2χkwlwk

∂x∂y

)

D

+
(
σknxx

∂wkn

∂x
,
∂χkwlwk

∂x

)

D

+
(
σknyy

∂wkn

∂y
,
∂χkwlwk

∂y

)

D

+

+2

(
σknxy

∂wkn

∂x
,
∂χkwlwk

∂y

)

D

+2

(
σknxy

∂wkn

∂y
,
∂χkwlwk

∂x

)

D

+
(
mknxx,

∂2χkwlwk

∂x∂y

)

D

+

+
(
−mknyy,

∂2χkwlwk

∂y∂x

)

D

+
(
−mknxy,

∂2χkwlwk

∂x2

)

D

+
(
mknxy,

∂2χkwlwk

∂y2

)

D

+

+
(
∓2K

(
w1n −w2n − δ

)
ψ,χkwlwk

)
�
=

(
qk, χkwlwk

)
�
,

C0

(
∂T nk

∂t
, χnTlT k

)

D

+ λ
(
∂T nk

∂x

∂χnTlT k

∂x

)

D

+ λ
(
∂T nk

∂y
,
∂χnTlT k

∂y

)

D

+

+λ
(
∂T nk

∂z
,
∂χnTlT k

∂z

)

D

+ Eαt

1− v

[(
∂εkxx

∂t
, χnTlT k

)

D

+
(
∂εkyy

∂t
, χnTlT k

)

D

]

=
(
gt , χ

n
TlT k

)
D
.

(9)
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In (9) luk = 1, nuk , lvk = 0, nvk , lwk = 1, nwk , lT k = 1, nT k . The initial conditions
will take the form:

wkn (x, y, t0) = φnwk, φnwk =
nwk∑
l=1

awklχwkl, φnwk → φwk from H 2
0 (�) ,

∂wkn

∂t
(x, y, t0) = ψnwk, ψnwk =

nwk∑
l=1

bwklχwkl, ψnwk → ψwk from H 1
0 (�) ,

unk (x, y, t0) = φnuk, φnuk =
nuk∑
l=1

auklχukl, φnuk → φuk from H 2
0 (�) ,

∂unk

∂t
(x, y, t0) = ψnuk, ψnuk =

nuk∑
l=1

buklχukl, ψnuk → φuk from H 1
0 (�) ,

vnk (x, y, t0) = φnvk, φnvk =
nvk∑
l=1

avklχvkl, φnvk → φvk from H 2
0 (�) ,

∂vnk

∂t
(x, y, t0) = ψnvk, ψnvk =

nvk∑
l=1

bvlkχvkl, ψnvk → ψvk from H 1
0 (�) ,

T nk(x, y, z, t) = φnT k, φnT k =
nT k∑
l=1

aT klχT kl, φnT k → φT k from H 1
0 (D)

(10)

or

gwklwk (t0) = awklwk ,
∂gwklwk

∂t
(t0) = bwklwk ,

gukluk (t0) = aukluk ,
∂gukluk

∂t
(t0) = bukluk ,

gvklvk (t0) = avklvk ,
∂gvklvk

∂t
(t0) = bvklvk , gT klT k (t0) = aT klT k

In this case, the “arrows”İ in (10) indicate the convergence according to the
corresponding norms. The solution of the Cauchy problem (9)–(10) on some interval
[t0, tn], tn ≤ t1 follows from the Schauder Yu theorem [17, 24]. In general, this
corresponds to the Peano’s theorem proof on the solution existence to the Cauchy
problem for an ordinary differential equations system. For the shell theory problem
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a detailed proof of such a theorem is given in the works of Kirichenko V.F.
[19, 20]. It is taken into account that the functions

∫ tn
t0

∫∫
�
qk (x, y, t) χkwlwdxdxdt

belong to the space H 1
((
t0,t1

))
and, therefore, belong to the space C ([t0, t1])

[25–27]. And also from the indicated Cauchy problem solvability it follows that
gwklwk , gukluk , gvklvk , gT klT k ∈ H 2 ((t0, t1)).

3.2 The Priori Estimates

Let us obtain a priori estimates for the approximate solution constructed by the

Bubnov–Galerkin method. We multiply the equations of the system by
dgukluk
dt

,
dgvklvk
dt

,
dgwklwk
dt

, gT klT k , respectively, then sum the result:

1

2

∂

∂t

{
ρ

∣∣∣∣
∂ukn

∂t

∣∣∣∣
2

D

+ρ
∣∣∣∣
∂vkn

∂t

∣∣∣∣
2

D

+ρ
∣∣∣∣
∂wkn

∂t

∣∣∣∣
2

D

+ E

1− ν2

∣∣∣εnkxx
∣∣∣
2

D
+ E

1− ν2

∣∣∣εnkyy
∣∣∣
2

D
+

+2ν
(
εnkxx, ε

nk
yy

)
D
+ 2E

1+ ν
∣∣∣εnkxy

∣∣∣
2

D
+
∣∣∣mnkxx

∣∣∣
2

D
+
∣∣∣mnkyy

∣∣∣
2

D
+
∣∣∣mnkxy

∣∣∣
2

D
+
∣∣∣mnkxz

∣∣∣
2

D
+

+
∣∣∣mnkyz

∣∣∣
2

D
+ C0

T0

∣∣∣T kn
∣∣∣
2

D

}
+ρε

∣∣∣∣
∂wkn

∂t

∣∣∣∣
2

D

+λ
(∣∣∣∣
∂T kn

∂x

∣∣∣∣
2

D

+
∣∣∣∣
∂T kn

∂y

∣∣∣∣
2

D

+
∣∣∣∣
∂T kn

∂z

∣∣∣∣
2

D

)
+

+
(
∓Kψ

(
w1n −w2n − δ

)
,
∂wkn

∂t

)

D

+ Eαt

1− ν
[(
∂εnkxx

∂t
, T nk

)

D

+

+
(
∂εnkyy

∂t
, T nk

)

D

]
− Eαt

1− ν

[(
T nk,

∂εnkxx

∂t

)

D

+
(
T nk,

∂εnkyy

∂t

)

D

]
=

=
(
gt , T

nk
)
D
+
(
qk,

∂wkn

∂t

)

�

(11)

In expression (11), we write the components of the stress tensor through the
components of the strain tensor (5), and the components of the moment stress tensor
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through the components of the bending and torsion tensor (6). Integrating the result
over the segment [t0, t] ∈ [t0, tn], we obtain the following inequality:

1

2

{
ρ

∣∣∣∣
∂ukn

∂t

∣∣∣∣
2

D

+ρ
∣∣∣∣
∂vkn

∂t

∣∣∣∣
2

D

+ρ
∣∣∣∣
∂wkn

∂t

∣∣∣∣
2

D

+ E

1− ν2

∣∣∣εnkxx
∣∣∣
2

D
+ E

1− ν2

∣∣∣εnkyy
∣∣∣
2

D
+

+2ν
(
εnkxx, ε

nk
yy

)
D
+ 2E

1+ ν
∣∣∣εnkxy

∣∣∣
2

D
+
∣∣∣mnkxx

∣∣∣
2

D
+
∣∣∣mnkyy

∣∣∣
2

D
+
∣∣∣mnkxy

∣∣∣
2

D
+
∣∣∣mnkxz

∣∣∣
2

D
+

+
∣∣∣mnkyz

∣∣∣
2

D
+ C0

T0

∣∣∣T kn
∣∣∣
2

D

}
+ρε

∫ t1

t0

∣∣∣∣
∂wkn

∂t

∣∣∣∣
2

D

dτ+λ
∫ t1

t0

(∣∣∣∣
∂T kn

∂x

∣∣∣∣
2

D

+

+
∣∣∣∣
∂T kn

∂y

∣∣∣∣
2

D

+
∣∣∣∣
∂T kn

∂z

∣∣∣∣
2

D

)
dτ+

∫ t1

t0

(
∓Kψ

(
w1n −w2n−δ

)
,
∂wkn

∂t

)

D

dτ+

+Eαt
1−ν

∫ t1

t0

[(
∂εkxx

∂t
, T nk

)

D

+
(
∂εkyy

∂t
, T nk

)

D

]
dτ− Eαt

1−ν
∫ t1

t0

[(
T nk,

∂εkxx

∂t

)

D

+

+
(
T nk,

∂εkyy

∂t

)

D

]
dτ = 1

2

{
ρ

∣∣∣∣
∂ukn(t0)

∂t

∣∣∣∣
2

D

+ ρ
∣∣∣∣
∂vkn(t0)

∂t

∣∣∣∣
2

D

+ ρ
∣∣∣∣
∂wkn(t0)

∂t

∣∣∣∣
2

D

+

+ E

1− ν2

∣∣∣εnkxx (t0)
∣∣∣
2

D
+ E

1− ν2

∣∣∣εnkyy (t0)
∣∣∣
2

D
+2ν

(
εnkxx (t0) , ε

nk
yy (t0)

)
D
+

+ 2E

1+ ν
∣∣∣εnkxy (t0)

∣∣∣
2

D
+
∣∣∣mnkxx (t0)

∣∣∣
2

D
+
∣∣∣mnkyy (t0)

∣∣∣
2

D
+
∣∣∣mnkxy (t0)

∣∣∣
2

D
+
∣∣∣mnkxz (t0)

∣∣∣
2

D
+

+
∣∣∣mnkyz (t0)

∣∣∣
2

D
+ C0

T0

∣∣∣φnkt
∣∣∣
2

D

}
+
∫ t1

t0

(
gt , T

nk
)
D
dτ +

∫ t1

t0

(
q,
∂wkn

∂t

)

�

dτ.

(12)

By virtue of (10), the sequences
{
φnwk

}
,
{
ψnwk

}
,
{
φnuk

}
,
{
ψnuk

}
,
{
φnvk

}
,
{
ψnvk

}
,{

φnT k

}
are convergent in the norms of the indicated spaces and, therefore, bounded

with respect to such norms. Taking into account this fact, theorem conditions and
inequality (13), expression (12) takes the form (14).

|ab| ≤ 1

2
a2 + 1

2
b2 ∀a, b ∈ R (13)
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1

2

{
ρ

∣∣∣∣
∂ukn

∂t

∣∣∣∣
2

D

+ ρ
∣∣∣∣
∂vkn

∂t

∣∣∣∣
2

D

+ ρ
∣∣∣∣
∂wkn

∂t

∣∣∣∣
2

D

+ E

1− ν
∣∣∣εnkxx

∣∣∣
2

D
+ E

1+ ν
∣∣∣εnkyy

∣∣∣
2

D
+

+ 2E

1+ ν
∣∣∣εnkxy

∣∣∣
2

D
+
∣∣∣mnkxx

∣∣∣
2

D
+
∣∣∣mnkyy

∣∣∣
2

D
+
∣∣∣mnkxy

∣∣∣
2

D
+
∣∣∣mnkxz

∣∣∣
2

D
+
∣∣∣mnkyz

∣∣∣
2

D
+

+ C0

T0

∣∣∣T kn
∣∣∣
2

D
+
∣∣∣∓Kψwkn

∣∣∣
2

D

}
+ ρε

∫ t1

t0

∣∣∣∣
∂wkn

∂t

∣∣∣∣
2

D

dτ+

+ λ
T0

∫ t1

t0

(∣∣∣∣
∂T kn

∂x

∣∣∣∣
2

D

+
∣∣∣∣
∂T kn

∂y

∣∣∣∣
2

D

+
∣∣∣∣
∂T kn

∂z

∣∣∣∣
2

D

)
dτ ≤ C(t1)+

∫ t1

t0

(
q,
∂wkn

∂t

)

�

dτ+

+
∫ t1

t0

(
gt , T

nk
)
D
dτ +

∫ t1

t0

(
∓Kψ

(
wjn + δ

)
,
∂wkn

∂t

)

D

dτ,

(14)

where j = 1 for k = 2 and j = 2 for k = 1.∫ t1
t0

(
qk, ∂w

kn

∂t

)
�
dt ≤ 1

2

∫ t1
t0

∣∣qk∣∣2
�
dτ + 1

2

∫ t1
t0

∣∣∣ ∂wkn∂t
∣∣∣
2

�
dt ≤ C (t1), here C (t1)—

positive constant depending only on the length of the segment [t0, t1].

∫ t1

t0

(
gt , T

nk
)
D
dt ≤

∫ t1

t0

h |gt |2� dt +
∫ t1

t0

h

∣∣∣T nk
∣∣∣
2

�
dt ≤ C (t1)

∫ t1

t0

(
∓Kψ

(
wjn + δ

)
,
∂wkn

∂t

)

D

=
∫ t1

t0

∫

D

∓Kψ
(
wjn + δ

) ∂wkn
∂t

dDdt ≤

≤ 1

2

∫ t1

t0

∣∣∣∓Kψh
(
wjn + δ

)∣∣∣
2

�
+ 1

2

∫ t1

t0

∣∣∣∣h
∂wkn

∂t

∣∣∣∣
2

�

≤ C(t1)

Thus, the availability of a priori estimates

∣∣∣∣
∂wnk

∂t

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂unk

∂t

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂vnk

∂t

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2wnk

∂x2

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2unk

∂x2

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2vnk

∂x2

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2wnk

∂y2

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2unk

∂y2

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2vnk

∂y2

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2wnk

∂x∂y

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2unk

∂x∂y

∣∣∣∣
2

�

≤ C,
∣∣∣∣
∂2vnk

∂x∂y

∣∣∣∣
2

�

≤ C,
∫ t1

t0

∣∣∣∣
∂T nk

∂x

∣∣∣∣
2

D

dt +
∫ t1

t0

∣∣∣∣
∂T nk

∂y

∣∣∣∣
2

D

dt +
∫ t1

t0

∣∣∣∣
∂T nk

∂z

∣∣∣∣
2

D

dt,

∣∣∣T nk
∣∣∣
2

D
≤ Cτ ≤ C.
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The priori estimates presence given by the methods proposed in [27] allows us
to extend the solution of the Cauchy problem (9)–(10) to the entire interval
[t0, t1]. And also to conclude that the sets of approximate solutions to problem{
wnk, unk, vnk, T nk

}
(8) obtained by the Bubnov–Galerkin method are weakly

compact in the spaces from conditions (7). The sets
{
wnk, unk, vnk, T nk

}
satisfy

the conditions:

The sets
{
wnk

}
,
{
unk

}
,
{
vnk

}
are limited in L2

(
t0, t1,H

2
0 (�)

)
;

The sets

{
∂wnk

∂t

}
,

{
∂unk

∂t

}
,

{
∂vnk

∂t

}
are limited in L2

(
t0, t1,H

1
0 (�)

)
;

The set
{
T nk

}
is limited in L2

(
t0, t1,H

1
0 (D)

)
.

(15)

3.3 Transition to Limit

All spaces from conditions (15) are Hilbert spaces and, therefore, all bounded
sets from (15) are weakly compact in the corresponding spaces [28]. Thus,
from the sequences

{
wnk, unk, vnk, T nk

}
we can distinguish weakly converging

subsequences such that:

{
wnk

}
→ w̃nk – weakly in L2

(
t0, t1,H

2
0 (�)

)
;

{
∂wnk

∂t

}
→ ∂w̃nk

∂t
– weakly in L2

(
t0, t1,H

1
0 (�)

)
;

{
unk

}
→ ũnk – weakly in L2

(
t0, t1,H

2
0 (�)

)
;

{
∂unk

∂t

}
→ ∂ũnk

∂t
– weakly in L2

(
t0, t1,H

1
0 (�)

)
;

{
vnk

}
→ ṽnk – weakly in L2

(
t0, t1,H

2
0 (�)

)
;

{
∂vnk

∂t

}
→ ∂ṽnk

∂t
– weakly in L2

(
t0, t1,H

1
0 (�)

)
;

{
T nk

}
→ T̃ nk – weakly in L2

(
t0, t1,H

1
0 (D)

)
.

(16)

In this case, the limiting properties of the generalized derivatives are taken
into account [29]. In [17] a well-known proving method that functions{
w̃nk, ũnk, ṽnk, T̃ nk

}
are a generalized solution to problem (1)–(4) is given.
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To conclude the theorem proof, note that the configuration space of the mechan-
ical system (in the considered shell form) defined by the boundary value prob-
lem (1)–(4) with generalized solutions from spaces (7) is the infinite-dimensional

functional space V of the form
(
L2 (�)

)6 × (
H 2

0 (�)
)6 × (H0 (D))

2 (from point

3 of the theorem), since elements
{
∂w̃k

∂t
, ∂ũ

k

∂t
, ∂ṽ

k

∂t
, w̃k, ũk, ṽk, T̃ k

}
from this space

specify the mechanical system position with a mathematical model in the form of a
boundary value problem (1)–(4).
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Component-Based Software Model
for Numerical Simulation of Constrained
Oscillations of Liquid Drops and Layers

Igor Kuzmin and Leonid Tonkov

Abstract The study of microhydrodynamic processes have not only practical
significance, but also have a wide field for theoretical approaches and numerical
investigation. The article deals with a numerical investigation of constrained oscil-
lation of a liquid drop on a substrate, which harmonically oscillates, and oscillation
of the liquid layer located on the surface of a bending plate. Forced vibrations of the
cantilevered plate are excited by the piezoelectric element. The mathematical model
is based on a system of Navier–Stokes equations for an immiscible incompressible
two-phase mixture. The problem of numerical simulation of the interaction between
a deformed solid and a fluid layer is a Fluid-Structure Interaction problem and
requires a solution of both the elastodynamic and the hydrodynamics equations.
The partitioned approach to solving fluid-interaction problems is one of the most
common. Its allows solving each of the physical problems independently, using
specific numerical schemes and a proprietary parallelism model. The elastodynamic
problem taking into account geometric and physical nonlinearity is solved by
the finite element method. The proposed mathematical models allow us to study
the dynamics of the free surface of small liquid volumes and the processes of
redistribution of a liquid layer on a flexible vibrating base.

1 Introduction

Understanding multiphase flow at low Weber numbers is of considerable importance
in a variety of environmental, industrial, and engineering applications such as
atomization of the fuel, contaminant cleanup, fluid absorption, and separation in
porous media and many others. However, accurate numerical simulation of such
flows is a tricky computational problem when interfacial tension effects become
dominant.
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Mesh-based numerical methods are conventionally considered, as the preferred
approach for most applications, however, is the need for an algorithm to determine
the shape of interface boundary and its evolution with time.

One of the widespread approaches to solve the investigating problem is repre-
senting a bulk as an immiscible incompressible two phase mixture described by
Navier–Stokes equations with the dynamic equilibrium condition at the interface
and subsequent application algorithm, that represents the interface implicitly by
marking the fluids on both sides of the interface, using a scalar indicator function
such as a volume fraction (Volume-Of-Fluid method) [1].

The main advantage of this approach is that it does not require complicated
interface tracking algorithms. This is important for modeling two-phase flows
through complex geometries with large interface motions and interactions. The
surface tension force and the contact angle effect arise from the calculation of
interface normal vector ns = ∇α/‖∇α‖ and curvatureK = ∇ · ns .

The prediction of a liquid droplet natural frequencies and free surface shapes
under constrained oscillations are extensively studied by analytical [2], numerical
and experimental [3] methods. Consider these problems as the convenient testing
tool of verification and validation numerical methods and algorithms for capillary
simulation of the flows with a free surface.

It is of interest to investigate the interaction of the liquid with elastic bodies when
bending vibrations are caused. Usually, for investigating the instability in liquid
drops or layers, rigid substrate is used, which vibrates with the same amplitude
along the entire contact area. The vibrations of bodies such as beams are bending
vibrations with distributed amplitude. At high frequencies of the bending vibrations
of beams, the length of the bending waves in them is comparable to the sizes of the
region of the contact with a liquid layer and distributed vibrations can appreciably
influence the liquid behavior. In our previous studies [4, 5], we investigated the
interaction of a thin plate that performs bending vibrations and liquids at the
interphase boundary.

2 Mathematical Model and Numerical Method

2.1 Liquid Dynamic Equations

The equations of motion for an isothermal, immiscible incompressible two-phase
mixture flow of Newtonian fluids can be written using a single-fluid continuum
approach as follows:

∂ρv
∂t

+∇ · (ρvv) = −∇p +∇ · τ+ fsv,

∇v = 0,
(1)
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where v is velocity vector, total pressure p is the sum of dynamic and hydrostatic
pressure, τ = μ(∇v+∇vT ) is viscous stress tensor, fsv is surface tension force per
unit volume. The density and viscosity are defined by

ρ = αρl + (1− α)ρg, ρ = αμl + (1− α)μg, (2)

where subscripts «l» and «g» denotes liquid (α = 1) and gas (α = 0) phase
respectively. The scalar indicator function α is evolved with an advection equation
of the conservative form:

∂α

∂t
+ ∇ · (αv) = 0. (3)

Volume-Of-Fluid method (VOF), defined by Eqs. (1)–(3) is mass conservative,
computationally efficient and flexible for treating complex interface shapes. There-
fore, the VOF-method is a popular and powerful tool for the direct numerical
simulation of immiscible two-phase flow.

2.2 Advection of Indicator Function

By its definition, the indicator function has the form of a step function in the
continuum limit, while numerical approximation of convective terms in Eqs. (1), and
(3) leads to smear function jump. Let us distinguish among the other two general
approaches to deal with this problem. One of them is using a low-dissipative scheme
with Van-Leer limiter for the approximation of convective terms, the other is an
introduction of artificial compression term.

The last approach leads to the following form of advection equation (3):

∂α

∂t
+∇ · (αv)+∇ · (α(1 − α)vr ) = 0, (4)

where vr is a compression velocity, the value of which is based on the scaled
maximum fluid velocity magnitude in the transition region.

2.3 Calculation of Interface Curvature and Normal Vector

The solution of Eq. (4) updates the indicator function in such a way that the interface
remains as sharp as possible. The reverse side of this is cumulative errors of capillary
forces due to the unstable calculation of the normal vector and interface curvature.

For more accurate and stable calculation of the normal in cells near the interface,
we first use smoothing of the indicator function procedure. This is numerically done
using the following relationship:

αi+1
s = Cfc

〈
〈αis〉f

〉
c
+ (1− Cfc)α

i
s , α0

s = α, i = 0, 1, . . . , N, (5)
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where the first operator 〈·〉f means that the field values interpolated from the cell
centers to the face centers and the second operator 〈·〉c means that the field values
at cell centers calculated by averaging values at face centers. A value of Cfc = 0.5
and N = 2 is used in present simulations.

The smoothed indicator function αs is then used to obtain the interface normal
vectors ns = ∇αs/|∇αs | at cell centers. The next step is to calculate interface
curvatureK = ∇ ·ns in accordance with the control volume method, the divergence
of the vector function is calculated as follows:

∇ · ns = 1

Vi

∑
f∈Si

[ ∇αs
|∇αs |

]

f

· Sf ,

where for each grid block i, Vi is its volume, Si is set of its faces, Sf is the outward
vector area of the face.

Direct calculation of gradient ∇αs with subsequent normalization leads to
nonzero vectors ns outside the transition region. To deal with this problem, an extra
filtration procedure is used for dummy face flux ψ = ∇αs · S . This filtering will
explicitly set the dummy fluxes ψ to zero when their magnitude is of the order of
the numerical errors. The filtered flux reads:

ψ̄ = ψ −max(min(ψ,ψ∗),−ψ∗), (6)

whereψ∗ is a threshold value below which flux ψ̄ is set to zero. The threshold value
is chosen as φ∗ = Cφ |Sf ||∇αs |f , where |∇αs |f is the average gradient magnitude
over all faces where they are non-zero. The filtering coefficient should be chosen
sufficiently small. In our simulations, we use Cψ = 0.01÷ 0.03.

Once the interface curvature is computed, we smooth the calculated value in the
direction normal to the interface, similar to that suggested in [6].

2.4 Equation of Motion for Elastodynamics of the Plate

The equations of motion of elastodynamic problem in the Lagrangian formulation,
in the general case, take the form:

ρs
∂2u
∂t2

= ∇ · (F · S)+ ρsf

u(t0) = u0, u̇(t0) = u̇0,

ns · (F · S) = p,

(7)

where u—displacement vector, ρs,∇—density and divergence operator in the
reference configuration, f, p—vector of mass forces and pressure, F—deformation
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gradient, S = F−1 · σ · F−T detF—symmetrical stress tensor of Piola–Kirchhoff,
σ—Cauchy stress tensor.

The elastodynamic problem taking into account geometric and physical nonlin-
earity is solved by the finite element method. The integration of elastodynamic
problem equations is performed by the explicit scheme takes into account the
dissipative properties of the system [7].

The taking into account the influence of the liquid mass distribution on the plate’s
vibrations is based on the weak coupling algorithm. In this case, the coupling
of solutions between the two problems is performed at the interface boundary
between fluid and structure. The considered mathematical model makes it possible
to reproduce the characteristic features of the liquid layer distribution on the plate
surface.

3 Programming Model

The distributed programming model is based on the ZeorC Ice [10] middleware,
within the client-server model. The FEStudioFSI client application is connected
with other applications and implements the logic of the entire program.

In the case of a strong coupling approach, the client are synchronized data
transfer, performed parameter adjustments, and checked the convergence of the
iterative process of solution coupling on the interface boundary.

In the considered model, servers are applications that solved individual physical
problems. The client stores information about the proxy objects of the servers
(Fig. 1), each of which, being an Ice-object, provides a unique external name, and
hides all low-level details of the process of data exchange with the corresponding
server.

Client Side

FEStudioFSI

Ice::Object

Ice::Object

Ice::Object

Deformation

CSD

CFD

Ice::Object
Interpolation

Server Side

Ice::Object CSD_Solver

Ice::Object

Defomation_Solver

CFD_Solver

Ice::Object

Ice::Object

Interpolation_Solver

Fig. 1 The distributed model for coupling independent applications
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Instances of the CFD_Solver server responsible for solving the fluid dynamics
problem are implemented using the OpenFOAM library. The solution to the
elastodynamics problem is carried out by the CSD_Solver server, implemented
within the FEStudio [11] package.

The Interpolation_Solver server is responsible for interpolating data and trans-
ferring it between servers that provide a solution to physical problems. The
Defomation_Solver server performs the mesh deformation required to solve the
fluid dynamics problem.

The described mechanism for building an application on the Ice infrastructure
allows us, by replacing objects, to obtain a distributed object-oriented program
that allows us to solve a specific FSI problem. This approach provides the greatest
flexibility and allows you to combine independent applications that only need to use
the appropriate API.

ZeroC Ice is object-oriented application software. It provides the means for
developing object-oriented distributed applications. Clients are active entities that
request certain services from the server. Servers are passive entities that provide
services in response to client requests. The Ice programming model is based on the
concept of an Ice-object. It is an abstraction that can respond to client requests, run
on a single or multiple servers.

Each Ice-object has a unique identifier and a set of interfaces—facets. To call
an Ice-object, the client needs to use a proxy. Proxy is a client-side local address
space agent of an Ice-object. The proxy code for a specific programming language
is generated by the Slice compiler, which is a standalone tool of Ice-workflow. A
proxy encapsulates the information required to invoke an Ice object: the server’s
physical address, object ID, and optionally a facet ID.

Remote call of methods that are implemented on the server-side is done through
the generated proxies. Besides, the client provides the consistency of information
common to the interacting servers, for example, the displacement vector and the
pressure at the interface boundary.

On the server-side, the behavior of Ice objects is implemented using servants. A
servant is an instance of an implemented class. The basic servant code is generated
by the Slice compiler, the developer is required to implement the class methods that
correspond to the operations from the Ice-object interface.

When a call comes in, the Ice runtime environment at the server side finds the
servant corresponding to the callable object and delegates call handling to it. Each
of the servers implements the methods necessary for the distributed solution of
the FSI problem: calculating displacements (CSD_Server servant), determining the
pressure field (CFD_Server servant), transferring the obtained solutions to the client,
obtaining new data on displacement and pressure required for the next solution step,
etc.

Figure 2 shows the distributed model of the FEStudioFSI application. It is a set
of several Ice-objects corresponding to OpenFOAM servers, FEStudio servers, and
FEStudioFSI clients.

The Ice environment is supported both synchronous and asynchronous calling
models. In the latter case, the client, calling the object using a proxy, along with the
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Fig. 2 Distributed model for FSI problem

usual parameters of the operation, sends the proxy a special callback object. After
calling the proxy, the control is immediately returned to the client. When the call
to the object completes, the client-side Ice runtime invokes the callback method,
passing it the results of the call or exception.

4 Results and Discussion

First, we consider a three-dimensional droplet of volume 87 μl positioned on a
cylindrical substrate with radius R = 4mm that oscillates along vertical axe Oz
due to harmonic force, produced by a piezoelectric transducer. The feature of the
process is the droplet pinning on the substrate with a cone cavity with cone-angle
β = 140°. In this case, we carried out both an experimental study and numerical
simulation. The experiments were conducted with the use of a facility a detailed
description of which is presented in [4]. In the experiment, zonal mode (4.0) (Fig. 3
b, e) and tesseral mode (3,1) (Fig. 4 b, e) was obtained in the excitation frequency
range from 38 to 45 Hz. In the numerical experiments, the value of the substrate
oscillation frequency was 40 Hz.

Computational block-structured grid was generated by rotating a 2-D flat grid
around the axe of symmetry to become a three-dimensional grid containing
1,752,500 hexagonal cells. It should be noted that in the numerical experiment it
is necessary to initially introduce small asymmetry in the forcing vibrations of the
substrate to achieve the non-axisymmetric (tesseral) mode of the drop oscillations.
Both the experimental and numerical drops experienced similar free surface shape
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Fig. 3 Zonal oscillation mode (4,0). Calculated (a), (d) and observed (b), (e) free surface shape
of the drop jointly with magnitude of the Umov–Poynting vector field (c), (e); when the phase of
the oscillation (a)–(c) φ = 0, (d)–(f) φ = π

Fig. 4 Tesseral oscillation mode (3,1). Calculated (a), (d) and observed (b), (e) free surface shape
of the drop jointly with magnitude of the Umov–Poynting vector field (c), (e); when the phase of
the oscillation (a)–(c) φ = 0, (d)–(f) φ = π

(Figs. 3 and 4) and close values of maximum and minimum drop heights. Drop
height was measured from the top cross-section of the substrate.

For a more thorough analysis of the numerical solution, the Umov–Poynting
vector field was constructed. The Umov–Poynting vector v(p + ρvv/2) describes
total energy flux in liquid. Figures 3c, f and 4c, f shows the magnitude of the energy
flux in the corresponding phase of the oscillation. One can see that, for both zonal
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Fig. 5 The droplet of vacuum oil on the vibrating plate in the experiment described in [9] (a) and
calculated results (b)

and tesseral modes, the most intense energy flow occurs at the top part of the drop
near the interface surface.

Despite the pinning of the drop, the low-frequency eigenforms obtained in the
experiment and reproduced by the numerical simulation are close to those shown
in [8]. The developed numerical scheme allows to obtain a detailed structure of
microflows in an oscillating drop and contribution of different mechanisms to the
transition from one mode to another.

The taking into account the influence of the liquid mass distribution on the plate’s
vibrations is based on the weak coupling algorithm. In this case, the coupling of
solutions between the two problems is performed at the interface boundary between
fluid and structure. The considered algorithms for implicit coupling were used to
numerical simulation of the physical experimental investigation of the interaction of
the vibrating console plate with a layer of viscous liquid deposited on its surface
[4]. Forced vibrations of a plate with a frequency of 4.5 kHz are excited by a
piezoelectric element, with a cantilevered plate.

Figure 5a shows the result of the experiment [9] performed for the vacuum oil
with and Fig. 5b shows the result of numerical simulation. At the excitation of
vibrations, viscous liquids applied as a thin layer on the plate surface initially flow
to the plate surface areas with the antinodes of vibrations taking a convex form.

The coupled solution of the problems is carried out on hexahedral non-matching
meshes with a size of 1,300,000 cells for the fluid dynamics problem and 23,000
cells for the elastodynamic problem. The point-concentrated force is applied at the
center of the piezoelectric element. It is important to note that the vibrations of a
thin plate in the form of the superposition of longitudinal (see Fig. 6)) and transverse
waves allow obtaining stable droplet patterns (see Fig. 6, t = 0.16) which cannot be
formed on a rigid substrate.

Compared with the experiment in numerical simulation, the destruction of a thin
liquid film between droplets formed at antinodes occurs more slowly. This is a
feature of the numerical solution of the advection equation of the indicator function
near the wall.

The study showed that the topological features of the distribution of the fluid
are determined by the peculiarities of the bending vibrations of the plate. The
comparison of the results of numerical simulation with the experimental data allows
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Fig. 6 The distribution of liquid over the surface of the plate and the longitudinal bending of
the plate at different times in numerical simulation: (a)–(d) t = 0.04 s, t = 0.08 s, t = 0.12 s,
t = 0.16 s

us to conclude that the numerical methods and algorithms used to describe the
processes of interaction between the liquid layer and the vibrating plate quite
accurately.
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Modeling of Long-Term Strength
of a Rod Under Creep Conditions
and Finite Deformations

Evgenii B. Kuznetsov and Sergey S. Leonov

Abstract The paper investigates the process of creep and long-term strength of a
long metal rod of circular cross-section, taking into account the finite deformations.
Deformation of the rod describes by nonlinear transport equations, and the creep
process describes by equations of the kinetic creep theory. An analytical solution to
the problem is given for the case of constant stress.

1 General Model

We use the finite deformation model [1, 2] to describe the medium’s motion, in
which differential transport equations specify reversible and irreversible deforma-
tions. In the spatial case, the constitutive kinematic relations of the model in the
Euler variables have the form:

dij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi
− ∂uk
∂xi

∂uk

∂xj

)
=

= eij + pij − 1

2
eikekj − eikpkj − pikekj + eikpksesj ,

deij

dt
= εij − γij + rikekj − eikrkj − 1

2
[(εik − γik + zik)ekj+

+eik(εkj − γkj + zkj )],
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dpij

dt
= γij − pikrkj + rikpkj − pikγkj − γkipkj ,

εij = 1

2
(
∂νi

∂xj
+ ∂νj
∂xi

), wij = 1

2
(νi,j − νj,i ), νi = dui

dt
= ∂ui

∂t
+ ∂ui

∂xj
νj ,

rij = wij + zij (eks, εks),

(1)

zij = A−1[(εimemj − eimεmj )B2 + B(εimemnenj − eimemnεnj )+
+eimεmnenkekj − eimemnεnkekj ],

A = 8− 8E1 + 3E2
1 − E2 − 1

3
E3

1 +
1

3
E3, B = 2− E1, E1 = ekk,

E2 = eij eji, E3 = eij ejkeki .

All indices in relations (1) vary from 1 to 3, ui and νi are components of
vectors of displacements and velocities of medium points, dij are components of
the total deformation tensor (Almansi deformations), eij are linear components of
the tensor of reversible deformations (elastic deformations), pij are components
of the tensor of irreversible deformations (deformations of creep or plasticity), rij
are components of rotation tensor, εij and γij are the components of the total and
irreversible deformations rates, t is time.

As in the classical theory, the stresses in a medium are entirely determined by
reversible deformations

σij = −p0δij + ∂W
∂eij
(δij − eij ),

W = −2μI1 − μI2 + bI 2
1 + (b − μ)I1I2 − χI 3

1 + . . .
I1 = ekk − 1

2eksesk, I2 = eksesk − eksest etk + 1
4eksestetnenk.

(2)

In relations (2) σij are components of the Euler–Cauchy stress tensor, p0 is
additional hydrostatic pressure, W is the elastic potential; μ is a module of shear
of the investigated material; b, χ are elastic modules of higher order.

2 Tension of the Circular Cross-Section Rod

Consider a metal circular cross-section rod, the length of which is many times
greater than its cross-section. An constant tensile force applied to the rod sets the
stress σ0 at the initial time moment. The rod is under creep conditions. In this one-
dimensional case, the indices for the corresponding functions can be omitted. Then
the first equation of system (1) takes the form

d = ∂u

∂x
− 1

2

(
∂u

∂x

)2

= e − 1

2
e2 + (1− e)2p. (3)
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In relation (3), e is a linear part of the elastic strain tensor, e − 1
2e

2 are the
reversible components of the Almansi total strain tensor d . Introducing the notation
z = ∂u

∂x
, we obtain the quadratic equation

z2 − 2z+ B = 0, (4)

where B = 2e− e2 + 2(1− e)2p.
Equation (4) has following roots

(
∂u

∂x

)

1
= 1+√1− B,

(
∂u

∂x

)

2
= 1−√1− B.

According to (1), the rate of total deformations can be calculated by the formula:

ε = d

dt

∂u

∂x
= ∓ 1− e√

1− B
(
(1− 2p)

de

dt
+ (1− e)dp

dt

)
. (5)

In this case, the equation of elastic strains transfer (the second equation of
system (1)) takes the form

de

dt
= (1− e)(ε − γ c), (6)

where γ c is a creep strain rate. We exclude from Eq. (6) the total strain rate ε using
Eq. (5). Then, taking into account that the creep strain transfer equation pc , the
third equation of system (1), has the form dpc

dt
= (1 − 2pc)γ c, and Eq. (6) after

simplification is transformed to the following

de

dt
= −(1− e)γ c.

The creep of the rod we modeled by the Yu.N. Rabotnov’s kinetic equations [3],
that take the form of the following system of equations:

de
dt

= −(1− e)γ c,
dpc

dt
= (1− 2pc)γ c,

dω

dt
= B

A
γ c.

(7)

Here

γ c = Aσn

ωα(1− ωα+1)m
,
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σ = σ0 + (1− e)dW
de
,

W = −2μI1 − μI2 + bI 2
1 + (b − μ)I1I2 − χI 3

1 + . . .

I1 = e − e2/2, I2 = e2 − e3 + e4/4,

dW

de
= −2μI ′1 − μI ′2 + 2bI1I ′1 + (b − μ)(I ′1I2 + I1I ′2)− 3χI 2

1 I
′
1 + . . .

I ′1 = 1− e, I ′2 = 2e − 3e2 + e3, ()′ = d

de
,

d is a component of the total strain tensor (Almansi strain), e is a linear component
of the reversible deformations (elastic deformations) tensor, the pc is a component
of the irreversible creep strain tensor, the γ c is a component of the creep strain rate,
ω is a damage parameter of the rod material, t is time, W is an elastic potential, μ
is the considered material module of shear, b, χ is the higher order elastic modules,
σ is a stress in the rod, σ0 is initial stress in the rod, A,B, n,m, α are parameters of
creep. As in the classical theory, we supposed that the rod’s stresses are completely
determined by reversible deformations. At the initial time moment t = 0, the rod
is undeformed, and the applied stress in a short time τ increases from 0 to σ0, and
the initial conditions will be homogeneous. However, the τ interval is much shorter
than the creep time t∗ of the material so that the initial conditions can be taken as:

e(0) = σ0

E
, pc(0) = 0, ω(0) = 0 (8)

and the system of equations (7) should be solved under the initial conditions (8)
until the time t = t∗, at which the damage parameter takes the value ω(t∗) = 1. It
determines the failure of the rod. Under conditions (8), E is the elastic modulus of
the rod material.

2.1 Analitical Solution of the Problem (7)–(8)

Finding the solution to the problem (7)–(8). Consider the case of constant stress
σ = σ0 = const. Then from the last equation of system (7) we find

ω∫

0

ωα(1− ωα+1)mdω =
t∫

0

Bσn0 dt.
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We calculate the resulting integrals:

1

(α + 1)(m+ 1)
− (1− ωα+1)m+1

(m+ 1)(α + 1)
= B · σn0 · t .

Resolving this relation to the damage parameter ω, we finally find

ω =
{

1− [
1− (m+ 1) · (α + 1) · B · σn0 · t

] 1
m+1

} 1
α+1

. (9)

Dividing the second equation of system (7) by the third, we obtain the relation

dpc

1− 2pc
= A

B
dω,

from which, using the initial conditions (8), we find an expression for the creep
strain

pc = 1

2
·
(

1− e
−2A
B
ω
)
. (10)

Then we find the elastic deformation e. To do this, we divide the second equation
of system (7) by the first:

dpc

de
= −1− 2pc

1− e .

Separating the variables and integrating the resulting relationship, using the initial
conditions (8), we find an expression for the elastic strain

e = 1+ σ0 − E
E
√

1− 2pc
. (11)

Supplementing expressions (9)–(11) with the value of the long-term strength of
the structure

t∗ = 1

(m+ 1) · (α + 1) · B · σ0
, (12)

obtained from (9) for ω = 1, we find a complete solution of problem (7)–(8) for
σ = σ0 = const.
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3 Conclusion

In this work, we condider the problem of finite deformations of a long metal rod with
a circular cross-section under creep conditions. An analytical solution to problem (7)
and (8) is obtained in the form (9)–(12). However, obtaining the analytical solutions
and the further investigation of the problem (7) and (8) under varying stresses are
complicated. This is due to the lack of adequate model parameters. Therefore, our
further research will aim to construct a mathematical model of creep, taking into
account finite deformations based on experimental data with identification of creep
characteristics. When considering problem (7) and (8), we will use an effective
method of numerical integration based on the solution continuation with respect
to the best argument [4].
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Locally One-Dimensional Schemes
for Quasilinear Parabolic Equations
with Time Fractional Derivative

Alexander V. Lapin and Ksenija O. Levinskaya

Abstract An initial-boundary value problem for a quasilinear parabolic equation
with Caputo-type fractional time derivative and mixed boundary conditions is
considered. The coefficients of the elliptic part of the equation depend on the
derivatives of the solution and satisfy the conditions providing strong monotonicity
and Lipschitz-continuity of the corresponding operator. This operator can be split
into the sum of locally one-dimensional operators of second order.

The problem is approximated by two locally one-dimensional (LOD) finite
difference schemes. The stability of LOD schemes is proved and the accuracy
estimates are given under the condition of sufficient smoothness of the input
data and the solution of the differential problem. For the constructed nonlinear
mesh problems, easily implementable preconditioned iterative methods are used.
The results of numerical experiments confirming the theoretical conclusions are
presented.

1 Introduction

Fractional calculus is an actual approach to modeling various phenomena in physics,
mechanics, and control theory. In particular, PDEs with fractional time derivatives
arise in mathematical modeling of anomalous diffusion and dynamic processes
in materials with memory. Numerous articles are devoted to the approximation
of boundary value problems for linear problems. Several papers consider implicit
mesh schemes for nonlinear equations with fractional time derivatives and either
with right-hand sides depending on the solution (see [1–3]) or with a nonlinear
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diffusion coefficient depending on the solution [4]. The article [5] proposes a new
mathematical model for a viscoelastic-plastic process by formulating a temporary
fractional equation containing an elliptic operator, which depends on the gradient
of the solution. In [6], the authors construct and study several mesh schemes
approximating the problem with a fractional time derivative and a quasilinear elliptic
part. Two classes of effectively implemented mesh schemes for the evolutionary
equations are well known, they are alternating direction implicit (ADI) schemes [7–
9] and locally one dimensional (LOD) schemes [9–13]. These schemes have been
thoroughly investigated for the parabolic equations with integer derivatives. In [14–
16], on analysis of ADI schemes was performed for linear time-fractional equations.
In this article, we develop the results [6], investigating theoretically and numerically
two LOD schemes for quasilinear fractional time equations.

2 Differential Problem

Let � = (0, 1) × (0, 1) be the unit square with the boundary ∂� = �D ∪ �N ,
mes�D �= ∅, and Q = �× (0, T ] be the cylinder with the boundary ∂Q = ∂� ×
(0, T ]. Denote by �D = �D × (0, T ] and �N = �N × (0, T ] the parts of ∂Q and
by n the unit vector of the outward normal to �N .

We define a quasilinear elliptic differential operator and its co-normal derivative
by the equalities

Lu = −
2∑
i=1

∂

∂xi
gi
(
x, t,

∂u

∂xi

)
,

∂u

∂νL
=

2∑
i=1

gi
(
x, t,

∂u

∂xi

)
cos(n, xi).

Nonlinear coefficients gi(p) = gi(x, t, p) are assumed to be continuous and satisfy
the following assumptions for all (x, t) ∈ Q̄ and p, q ∈ R:

(gi(p)− gi(q))(p − q) � c0(p − q)2, c0 > 0, (1)

|gi(p)− gi(q)| � c1|p − q|. (2)

Next,

G(t) : (0,+∞)→ R is a continuous, positive, and

strictly decreasing function,

+∞∫

0

G(t) dt <∞. (3)
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Define a Caputo-type fractional time derivative:

Dt y(t) =
t∫

0

G(t − s)∂y
∂s
(s) ds. (4)

We list several well-known fractional derivatives, which are the particular cases
of (4) with the kernels satisfying the assumptions (3):

• the generalized Caputo fractional derivative with G(t) = r(t)

�(1− α) tα , 0 < α <

1, �(x) is gamma-function, a weighting function r(t) ∈ C2[0, T ], r(t) > 0
and r ′(t) � 0 for all t ∈ [0, T ] (r(t) ≡ 1 corresponds to the classical Caputo
fractional derivative);

• multi-term fractional derivative with G(t) =
s∑
k=1

ck

�(1 − αk) tαk , 0 < α1 <

. . . < αs < 1, ck > 0.

In this article, we construct and study a mesh approximation of the parabolic
problem with the mixed boundary conditions

Dt u+ Lu = f in Q,

u = 0 on �D,
∂u

∂νL
= q on �N,

u = 0 for t = 0, x ∈ �.
(5)

Assuming the sufficient smoothness of all functions in the statement of the
problem (5) and multiplying (5) with a smooth test function v(x, t), which vanishes
on the boundary�D , after integrating overQ, we obtain a variational equation

∫

Q

Dt u v dxdt +
∫

Q

2∑
i=1

gi
(
x, t,

∂u

∂xi

) ∂v
∂xi

dxdt =
∫

Q

f v dxdt +
∫

�N

q v d�dt.

(6)

Reciprocally, if a sufficiently smooth function u satisfies variational equality (6),
we can prove, by following the standard procedure, that u is a solution of (5). So,
below we will construct approximations of the problem (5) using the variational
equality (6).

Let us make some remarks on the well-known results on the existence of a weak
solution of the time fractional parabolic equations.

For the case of linear Dirichlet boundary value problem and classical Caputo
derivative Dt in [17] the existence of a unique solution to the problem (5) from
Hα(0, T ;L2(�)) ∩ L2(0, T ;H 1

0 (�) ∩ H 2(�)) is proved and the corresponding
a priori estimate through the L2(QT )-norm of the right-hand side f is given.
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In [18] the unique existence of a “very weak” solution from Bα/2(QT ) =
Hα/2(0, T ;L2(�))∩L2(0, T ;H 1(�)) is substantiated for (5) with mixed boundary
conditions and classical Caputo derivative. The existence of a similar very weak
solution for a quasilinear Dirichlet boundary value problem with classical Caputo
derivative is proved in [6]. The result of [6] can be generalized for the case of mixed
boundary value problem (5) and generalized Caputo time derivative. Nevertheless,
we omit this proof and focus on studying the mesh approximations of the problem.

3 Approximation

Let ωτ = {tj = jτ, j = 0, 1, . . .M; Mτ = T } be a uniform mesh on the
segment [0, T ] and yj = y(tj ) for a continuous function y(t). The conventional
L1-approximation of a first order fractional derivative of a continuous function
y(t), y(0) = 0, at a mesh point tk ∈ ωt is defined by the equality

Dt y(tk) ≈ ∂t y(tk) = d1y
k +

k−1∑
j=1

(dj+1 − dj )yk−j , dj = 1

τ

tk−j+1∫

tk−j

G(tk − s) ds.

Due to (3) the coefficients satisfy the inequalities

d1 > d2 > · · · > dM > 0. (7)

We construct a finite difference approximation of the elliptic part of the equation
using bilinear finite elements (see [19]) and the composite trapezoidal quadrature
formulas. Let Th be a family of non-overlapping closed rectangles e (finite elements)
with maximal side h. We suppose that Th is a conforming and regular triangulation
� = ⋃

e∈Th
e of � [19, p. 124] and Th generates the triangulation ∂Th of �N , i.e. �N

consists of an integer number of sides ∂e of elements e ∈ Th. Let Vh be the space of
continuous and piecewise bilinear functions (bilinear on each e) that vanish on the
boundary �D , and Qh be the space of the piecewise linear functions on �N (linear
on each ∂e ∈ �N ), which are the traces on �N of the functions from Vh. In what
follows, to shorten the notation, we will omit the index h of mesh functions from
the spaces Vh andQh.

We use quadrature formulas approximating the integrals
∫

e

g(x)dx and
∫

∂e

g(x) d� of a continuous function g(x):

Se(g) = meas (e)

4

4∑
α=1

g(xα), S∂e(g) = meas (∂e)

2

2∑
α=1

g(xα),
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where xα are the vertices of e and ∂e, respectively, and the composite quadrature
formulas

S(g) =
∑
e∈Th

Se(g), S�(g) =
∑
∂e∈∂Th

S∂e(g),

approximating the integrals over the domain � and the boundary �N .
On the space Vh, we define mesh analogs of L2-norm and H 1-norm, and also

H 1-seminorms:

‖v‖2
0 = S(v2), ‖v‖2

1 = S(|∇v|2), v ∈ Vh, ρ2
i (v) = S

( ( ∂v
∂xi

)2 )
, i = 1, 2.

Next, let Vhτ be the linear space of the mesh functions y(t) : ωτ → Vh, and Qhτ
be the linear space of the mesh functions q(t) : ωτ → Qh. We use the notation
yk = y(tk) for a mesh function from Vhτ orQhτ .

Using introduced spaces of the mesh functions and the quadrature formulas, we
construct approximations of the terms on the left side of Eq. (6) and its right side:

aki (y, v) = S
(
gi
(
x, tk,

∂y

∂xi

) ∂v
∂xi

)
for y, v ∈ Vh, i = 1, 2, k = 1, 2, . . . ,M;

Fk(v) = S
(
f k v

)
+ S�

(
qk v

)
for f, v ∈ Vhτ , q ∈ Qhτ , k = 1, 2, . . . ,M.

In what follows we use a splitting of mesh function F into a sum of two functions:

Fk = φk1 + φk2 , k = 1, 2, . . . ,M.

Now everything is ready for constructing approximations of the variational
problem (6). We will consider two types of locally one-dimensional schemes.
Namely, for a given y0 = 0 we are looking for yk for all k = 1, 2, . . . ,M from
one of the following two systems of nonlinear equations

1

2
d1S

(
wk1 v

)
+ ak1(wk1, v) = S

(
φk1 v

) − 1

2

k−1∑
j=1

(dj+1 − dj )S(yk−j v),

1

2
d1S

(
wk2 v

)
+ ak2(wk2, v) = S

(
φk2 v

) − 1

2

k−1∑
j=1

(dj+1 − dj )S(yk−j v),

yk = 1

2
(wk1 +wk2)

(8)
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or

(d1 − d2)S
(
wk v

)
+ ak1(wk, v) = S

(
φk1 v

) + (d1 − d2)S
(
yk−1 v

)
,

d1S
(
yk v

)
+ak2(yk, v)=(d1 − d2)S

(
wk v

)+S(φk2 v
)−

k−1∑
j=2

(dj+1 − dj )S(yk−j v).

(9)

Lemma 1 Problems (8) and (9) have unique solutions.

Proof Due to assumptions (1) and (2) the forms aki : Vh × Vh → R satisfy the
properties of the monotonicity and Lipschitz-continuity:

aki (y, v − y)− aki (v, v − y) � c0ρ
2
i (y − v) ∀y, v ∈ Vh,

aki (y − v,w) � c1ρi(y − v)ρi(w) ∀y, v,w ∈ Vh.
(10)

Since d1 > 0 and d1 − d2 > 0, then due to (10) every equation in (8) and (9) is an
equation with a uniformly monotone and continuous operator, which immediately
implies the existence of a unique solution. ��

4 Stability and Accuracy Estimates

It is well-known that the locally one-dimensional schemes have only the so-called
aggregate approximation. This forces us to obtain stability estimates containing on
the right-hand side some norms of the sum φk1 + φk1 and additions with a small
parameter which depends on the mesh step τ . We prove the stability estimates in
L2(ωt ;L2(ωx))-norm, which is defined by the equality

‖v‖2
L2(ωt ;L2(ωx))

= ‖v‖2
L2 =

M∑
k=1

τ‖vk‖2
0.

The functions from the space Vh vanish on a set of the mesh nodes ω∪�D , so, there
exists a positive constant ξ such that

‖v‖2
1 = ρ2

1 (v)+ ρ2
2 (v) � ξ‖v‖2

0 ∀v ∈ Vh.

Moreover, a similar inequality holds for at least one of the seminorms, let it be true
for ρ1:

ρ2
1 (v) � ξ0‖v‖2

0 ∀v ∈ Vh, ξ0 > 0. (11)
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Lemma 2 Define the lower triangle Toeplitz matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

d2 0 0 0 · · · 0 0 0
0 d2 0 0 · · · 0 0 0

d3 − d2 0 d2 0 · · · 0 0 0
. . . . . . . . . . . . · · · . . . . . .

dM − dM−1 dM−1 − dM−2 dM−2 − dM−3 . . . · · · d3 − d2 0 d2

⎞
⎟⎟⎟⎟⎟⎠

The matrix 0.5
(
B + BT ) is positive definite, so, in particular, for any n � M

n∑
k=1

(
Bnȳ

)k
yk � 0 ∀ȳ = (y1, y2, . . . , yn). (12)

Proof Since the matrix B is strongly diagonally dominant both in rows and in
columns, then the matrix 0.5

(
B + BT ) is also strongly diagonally dominant. Next,

it has positive diagonal and non-positive off-diagonal elements. Because of these
properties 0.5

(
B + BT ) is M-matrix. Since at the same time it is Stieltjes matrix,

then it is positive definite. Any diagonal submatrix of 0.5
(
B + BT ) is also positive

definite, so, for any n � M the inequality (2) is true. ��
Using the matrix B, the approximation of time derivative at a point tk = kτ ∈ ωτ

can be written as

∂ty(tk) = (d1 − d2)(y
k − yk−1)+ (

Bnȳ
)k
, ȳ = (y1, y2, . . . yn),

where Bn is the diagonal submatrix of the first n rows and columns of the matrix B.
The main result on the stability of the mesh schemes is as follows:

Theorem 1 Denote by yk1 and yk2 the solutions of the LOD schemes, corresponding
to the right-hand sides φ1i and φ2i . Let y = y1 − y2 and φi = φ1i − φ2i . Let the
assumptions (1) and (2) be satisfied.

For the solution of LOD scheme (8) the following a priori estimate holds:

‖y‖2
L2 � C ‖φ1 + φ2‖2

L2 + C

d1 − d2

(‖φ1‖2
L2 + ‖φ2‖2

L2

)
. (13)

If, in addition, (11) takes place, then for the solution of LOD scheme (9) the
following estimate holds:

‖y‖2
L2 � C ‖φ1 + φ2‖2

L2 + C

d1 − d2
‖φ2‖2

L2 . (14)

Above C means a generic constant independent of mesh steps h and τ .
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Proof The proof of the first estimate coincides up with certain details and notation
with the proof of Theorem 3 in [6]; therefore, we present only the proof of the
second estimate.

For the difference of the solutions of problem (9) with input data φk1i and φk2i , the
equations can be written in the following form:

(d1 − d2)S
(
(wk − yk−1) v

)
+ ak1(wk1, v) − ak1(wk2, v) = S

(
φk1 v

)
,

(d1 − d2)S
(
((yk −wk)v

)
+ d2S

(
yk v

)
+ ak2(yk1 , v)− ak2(yk2 , v)+

+
k−1∑
j=2
(dj+1 − dj )S(yk−j v) = S

(
φk2 v

)
.

Taking v = wk in the first equation and v = yk in the second, then using (10) and
summing up the resulting inequalities, we get:

d1 − d2

2

(‖yk‖2
0 − ‖yk−1‖2

0 + ‖wk − yk−1‖2
0 + ‖yk −wk‖2

0

)+ d2‖yk‖2
0+

+
k−1∑
j=2

(dj+1 − dj )S
(
yk−j yk

)+ c0 ρ
2
1 (w

k)+ c0 ρ
2
2 (y

k) �
(
φk1 , w

k
)+ (

φk2 , y
k
)
.

(15)

Summation of (15) over k from 1 to n and using the initial value y0 = 0 and the
inequality

n∑
k=1

(
d2‖yk‖2

0 +
k−1∑
j=2

(dj+1 − dj )S
(
yk−j yk

)) = S(
n∑
k=1

(
Bnȳ

)k
yk
)
� 0

gives

d1 − d2

2
‖yn‖2

0 +
d1 − d2

2

n∑
k=1

(‖wk − yk−1‖2
0 + ‖yk − wk‖2

0

)+

+c0 ρ
2
1 (w

k)+ c0 ρ
2
2 (y

k) �
n∑
k=1

((
φk1 , w

k
)+ (

φk2 , y
k
))
.

To estimate the right-hand side we use the estimate (11), whence

S
(
φk1 w

k
)+ S(φk2 yk

) = S((φk1 + φk2) wk
)+ S(φk2(yk −wk)

)
�

� 1

4c0 ξ0
‖φk1 + φk2‖2

0 + c0 ξ0‖wk‖2
0 +

1

2(d1 − d2)
‖φk2‖2

0 +
d1 − d2

2
‖yk −wk‖2

0.
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The last two inequalities lead to the estimate

d1 − d2

2
‖yn‖2

0 +
d1 − d2

2

n∑
k=1

‖wk − yk−1‖2
0 + c0 ξ0

n∑
k=1

‖yk‖2
0 �

� 1

4c0 ξ0

n∑
k=1

‖φk1 + φk2‖2
0 +

1

2(d1 − d2)

n∑
k=1

‖φk2‖2
0,

therefore

c0 ξ0

n∑
k=1

‖yk‖2
0 � 1

4c0 ξ0

n∑
k=1

‖φk1 + φk2‖2
0 +

1

2(d1 − d2)

n∑
k=1

‖φk2‖2
0.

Due to the definition of L2(ωt ;L2(ωx))-norm in Vh this inequality leads to the
estimate (14). ��

Using the proved stability estimates, we can derive the accuracy estimates under
the assumption that the input data and the solution of the differential problem are
sufficiently smooth. Note that, in the accuracy estimates, the most significant terms

in the stability inequalities are
C2

d1 − d2

(‖φ1‖2
L2 + ‖φ2‖2

L2

)
for the scheme (8) and

C4

d1 − d2
‖φ2‖2

L2 for the scheme (9). Since ‖φi‖L2 = O(1), then the smallness of

these terms is ensured only by the smallness of (d1 − d2)
−1.

In the case of the generalized Caputo derivative d1 − d2 = O(τ−α). For the
approximation of the time derivative it is known the estimate ∂αt ū

k = Dα
t u(tk) +

O(τ 2−α) (cf., e.g., [20]), and the elliptic part is approximated with the orderO(h2).
So,

‖φk1 + φk2‖L2(ωx)
= O(τ 2−α + h2)

for all time levels k. As a consequence, we can cite the following result (Theorem 4
in [6]):

Theorem 2 Let the coefficients gi(x, t, p), i = 1, 2 and the right hand side of
the Eq. (5), as well as its solution u(x, t), be sufficiently smooth. Denote by y
the solution of a mesh scheme and by u the mesh function which coincides with
the solution of the differential problem (5) at the mesh points. Then for both
LOD schemes approximating differential problem with generalized Caputo time-
fractional derivative the following accuracy estimate is valid:

‖y − u‖L2(ωt ;L2(ωx))
= O(τα/2 + h2). (16)
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The accuracy estimates for the case of multi-term fractional derivative can be
proved in similar way using the provided stability estimates and analyzing the
approximation errors.

5 Numerical Results

In the experiments, we consider Dirichlet boundary value problem and classical
Caputo time-fractional derivative. To implement the non-linear mesh schemes we
used the stationary preconditioned iterative method. The mesh approximations of
Laplace operator are used in constructing the preconditioners. The constructed iter-
ative methods converge with the geometric rate of the convergence (not depending
on τ and h) and they are easily implemented. For more details, we refer a reader to
the authors’ article [6].

The theoretically proved accuracy estimate for both considered LOD schemes in
case of smooth input data and solutions is

‖y − u‖L2 = Ctτα/2 + Cxh2 = O(τα/2 + h2), (17)

with constants Ct and Cx independent on mesh steps h and τ .
We took equal functions gi(x, t, p) = g(p), i = 1, 2, and g(p) linearly

depended on p at their “small” values and nonlinearly with their large values:

g(p) = {p if p <
1

ξ2
; √

p − ξ − 1

ξ2
if p � 1

ξ2
}. Here the parameter

ξ is responsible for the non-linearity zone, namely, the more ξ , the larger this
zone. We present the results for the parameters ξ = 4, T = 1 and exact solution
u = t sin(πx1) sin(πx2).

We verified the sharpness of the estimates (17) by numerically determining the
constants in these estimates. When determining the values of Cx,, we selected a
sufficiently fine mesh in time to minimize the approximation error in the time
variable, and performed the calculations using a sequence of meshes in spatial
variables. We used the same approach to check the asymptotic accuracy in time.
Moreover, we check the order of accuracy for τ . To do this, for a sufficiently fine
mesh of spatial variables, we perform calculations using a sequence of cells with
doubling the number of nodes in time and calculate the number

νt = log
Eτ

Eτ
2

(log 2)−1,

where Eτ = ‖y − u‖L2 is the norm of error in case of time step τ and Eτ
2

has a
similar meaning. This number corresponds to the accuracy estimate ‖y − u‖L2 =
O(τνt ). According to the theoretical results, we expected to find the approximate
equality νt ≈ α/2 for both LOD schemes. As can be seen from the results in Tables 1
and 2, the calculated results confirm all the theoretical estimates.
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Table 1 Spatial variable
accuracya LOD scheme 1 LOD scheme 2

h ‖y − u‖L2 Cx ‖y − u‖L2 Cx

1/50 0.0120850 30.212 0.0089578 22.394

1/100 0.0030218 30.218 0.0021326 21.326

1/200 0.0007546 30.184 0.0005337 21.348

1/250 0.0004829 30.181 0.0003387 21.169

1/400 0.0001886 30.176 0.0001309 20.948

1/500 0.0001207 30.162 0.0000854 21.359
a
τ = 1/1000, α = 0.5

Table 2 Time variable
accuracyb

α τ ‖y − u‖L2 Ct νt

LOD scheme 1

0.3 1/50 0.0010397 0.0018

1/100 0.0009350 0.0018 0.1531

1/200 0.0008415 0.0018 0.1520

0.5 1/50 0.0023039 0.0061

1/100 0.0018762 0.0059 0.2962

1/200 0.0015273 0.0057 0.2968

0.7 1/50 0.0028741 0.0113

1/100 0.0021637 0.0108 0.4096

1/200 0.0016289 0.0104 0.4096

0.9 1/50 0.0031106 0.0180

1/100 0.0022686 0.0180 0.4553

1/200 0.0016675 0.0180 0.4441

LOD scheme 2

0.3 1/50 0.0006759 0.0012

1/100 0.0005901 0.0011 0.1958

1/200 0.0005148 0.0011 0.1969

0.5 1/50 0.0015498 0.0041

1/100 0.0012647 0.0039 0.2932

1/200 0.0010317 0.0038 0.2937

0.7 1/50 0.0018603 0.0073

1/100 0.0013712 0.0068 0.4400

1/200 0.0010123 0.0064 0.4378

0.9 1/50 0.0025547 0.0148

1/100 0.0016628 0.0132 0.6195

1/200 0.0010830 0.0117 0.6212
b
h = 1/500
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6 Conclusions

Based on the proven and experimentally confirmed accuracy estimates, we can
conclude that when applying LOD mesh schemes, we must take a significantly small
time step to achieve the desired accuracy. This statement is all the more powerful
the smaller the parameter α ∈ (0, 1). On the other hand, LOD schemes have several
essential advantages, such as:

• the possibility of applying for the boundary value problems in the domains with
curvilinear boundaries and with various types of boundary conditions;

• for nonlinear problems—effective implementation using one-step iterative meth-
ods with tridiagonal preconditions;

• massive parallelization.

Thus, LOD mesh schemes provide an effective tool for solving multidimensional
quasilinear equations with a fractional time derivative and without mixed space
derivatives.
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Enhanced Step-Wise Approximation
to Speech File in a Noisy Environment

R. Latypov and E. Stolov

Abstract Reducing the size of speech files for transmitting through a noisy channel
with low capacity is an actual problem. The current compression methods for
speech files can provide a very high degree of compression, but any change in the
compressed file can lead to the impossibility of restoring content. We propose to
leverage a step-wise version of the original speech file that requires 2 or 3 bits for
a sample. The obtained file does not fit musical playback products but provides
adequate speech file audibility even if there is a noise channel. In the paper, we
consider two problems. One is details of the transformation of the standard speech
file into its step-wise form, namely choice of thresholds for creation step-function;
the other is a method for enhancing the perception of the speech file step-wise
version by a human. A suboptimal algorithm for fast thresholds calculation is
developed in transforming the original signal to a step-wise form. Enhancing the
perception of speech is gained through the regression function, which has to be
placed at the receiver point. It is shown that the regression on the voice of a speaker
is useful for enhancing speech produced by other speakers.

1 Introduction

Data transfer over a noisy channel with low capacity is actual as before, espe-
cially when dealing with speech information. The standard sample frequency for
telephone conversation is 8 kHz, but the speech saves its audibility even for 4 kHz
sample frequency. Standard methods for sound compression can provide a very high
degree of compression [1], but the methods are sensitive to small distortion in a
compressed file. Such distortions are inevitable if a noise presents in the channel.
Implementation of error correction coding [2] can not lead to a solution since the
theory is valid for a particular error model. It means that some additional methods
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must be used in this situation. In this paper, we consider a noised single-channel
intended for transmitting speech signals. Many authors investigated the problem.
Mainly, they reduce the problem to the standard speech enhancing method. First of
all, various versions of adaptive filters were proposed [3].

Later, distinct methods based on the special codebook [1] were applied. There
are diversities in codebook structures. It can consist of templates of speech files,
coefficients of linear prediction, and other features. The receiver looks for available
templates in the acquired file and changes them for corresponding fragments of
speech or uses them in a restoration procedure. As a rule, an additive noise signal
model is supposed, and much attention is dedicated to methods for extraction
parameters of the noise [6].

A more complicated mathematical model considering features of speech signals
(spectrum, linear prediction, and others) is used in vocoder [4]. Such the device
contains a speech synthesis system based on the parameters extracted from the
received file. That works only if the speech signal parameters are transmitted
correctly, and the quality of the reconstructed signal, damaged by the channel,
requires additional research. A particular version of the problem under investigation
is the declipping procedure [5]. Here, the media file is damaged because of
technical problems. The methods enhancing the sound of the file are also based
on mathematical models. However,t the peculiarity of the situation is the type of
errors we are dealing with—there are intervals of samples having the same value.

It is not the case we have while transmitting a signal over a noisy channel.
Recently, the main focus was directed to implementing the neural net for the
reconstruction of speech. A net is trained on a clean signal and then performs
corrections of the signal on its input. An overview of enhancing methods, including
neural net regression, is presented in [7]. There are many approaches to data
preparation for net input. It is known that the speech file saves a part of its audibility
after changing the source signal with its step-wise version. The approach that is
close to our paper’s technique is leveraging the ideal binary mask (IBM) to noised
speech signal [8]. After processing, the source signal was converted into a binary
file in the following way. A fragment was changed to 0 or 1 depending on the
prescribed value L0 of signal-to-noise ratio (SNR) obtained for this fragment. If
the calculated SNR is less than L0, then the fragment consists of zeros, otherwise—
of ones. This procedure provides a reducing level of noise in the signal using simple
calculations. In [9], an enhancement speech procedure is developed for real babble
noise reduction based on the binary transform. Such an approach is not suitable for
music production but acceptable when the ratio intelligibility/bitrate is essential.

In our paper, we consider the speech file as a stream of bits transmitted over a
noise channel and suppose that any bit can be inverted during transmission with the
same probability P . No other properties of the noise are assumed. Let Frag(t) be
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a fragment of speech file. For example, its step-wise version Step(t) can have the
form

Step(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |Frag(t)| < T hr1,
2 · sign(Frag(t)) if |Frag(t)| ≥ T hr2.
sign(Frag(t)) otherwise.

(1)

Here Thr1,Thr2, Thr1 < Thr2 are two thresholds defining the transform. Such a
five-level version of the speech file can be recognized if the used sample frequency
is about 4 kHz. The number of levels can be arbitrary. Some numbers are convenient
for sample coding. In the case of a single threshold, one has three possible signal
values, and two bits are enough for coding any sample. Using three thresholds,
one has seven possible values for the signal and three bits for sample coding. The
transfer of a step-wise file requires a small bitrate. For example, utilizing three bits
per sample, we reduce the standard bitrate by five times. It will be shown that the
produced signal comes out noise-resistant if a particular technique is implemented.

After the conversion speech file into its step-wise version, one observes signifi-
cant degradation of perception quality. Trying to gain a suboptimal approximation
of speech signal by its step-wise version, we have to apply different thresholds for
each fragment, whereas the range of the produced step-function is the same. It leads
to additional distortions of a signal, but the speech signal keeps its intelligibility.

Recently many approaches are suggested to solve the task. We show that utilizing
a linear regression function solves this problem partly. Using the source file and
its step-wise approximation, we create a linear regression employing a simple
algorithm. The implementation of that technology enhances the perception of the
step-wise version at the transmission point. The transformed signal is transmitted,
and the trained regression is placed in front of the receiver. That is the way one gets
an enhanced version of the step-wise signal. We discovered that the function trained
for a given voice keeps its enhancing properties for other voices.

While investigating the problem, we always have to evaluate the quality of
approximation of a source signal S by an approximation signal Appr. The eval-
uation is based on utilizing Signal-to-noise ratio (SNR) in the form

SNR = 10 · log10

(
σ 2(S)

σ 2(S− Coef · Appr)F
)
. (2)

where coefficientCoef provides equal lengths (according to Euclid metrics) of both
the signals.
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2 Optimal Thresholds

The first problem we solve in this paper is thresholds for optimal coding of a signal.
The main result relating to the topic belongs to Lloyd [10] when the signal is a
stochastic process with known distribution. Here, we consider the situation when
a regular function must be approximated with a step-function. We investigate the
situation of two thresholds as far as other numbers of thresholds are analyzed
similarly. The Frag(t) is supposed to be a continuous function. A horizontal line
given by the equation Y = T hr1 meets the function at the points (A1, F rag(A1)),
(B1, F rag(B1)), (A2, F rag(A2)), (B2, F rag(B2)), . . . (see Fig. 1). Another hor-
izontal line defined by the equation Y = T hr2 meets the function at the points
(C1, F rag(C1)), (D1, F rag(D1)), (C2, F rag(C2)), (D2, F rag(D2)), . . . The
approximation Appr(t) = Coe · Step(t) where Step(t) is defined by (1) and the
coefficient

Coe = ||L2(F rag||/||L2(Step)||. (3)

The criterion for optimization is

||L2(F rag − Appr)|| → min . (4)

Instead of Frag(t), we can raise the same problem for the function Frag(K · t) for
any positive K. The main result of this section is the following Proposition.

Proposition 1 Let Frag(K · t) be a function having to continue derivative on the
interval [0, E/K]. The values T hr1, T hr2, where (4) takes its minimal values are
independent of K.

Fig. 1 Approximation of source signal (positive part)
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Proof The function Frag(t) is defined for t ∈ [0, E]. We restrict ourselves with
the case of two thresholds T hr1 = Frag(A1) and T hr2 = Frag(C1) and start
considering the situation forK = 1. The function

Appr(t) =

⎧
⎪⎪⎨
⎪⎪⎩

sign(Step(t)) · Coe, if |Step(t)| = T hr1,
2 · sign(Step(t)) · Coe, if |Step(t)| = T hr2,
0 otherwise.

It means that the current configuration is defined by all boundary points {Ui, Vi} of
the intervals where Appr(t) is constant. For example, for the signal in Fig. 1, the
mentioned intervals are [0, A1), [A1, B1), [B1, C1), [C1,D1) [D1, A2), [A2, B2),

[B2, E). The interval [0, E] is a union of non overlapped intervals Interi = [Ui, Vi)
connected with the value of Step(t) at points of those intervals. Let us collect
all the intervals corresponding to the same values of |Step(t)| 1, 2, and 0 into
sets �, , and *, respectively. In what follows, we use notation Foo({Ui, Vi}) to
emphasize the function’s dependence on all intervals. Under the definition,

R({Ui, Vi}) = ||L2(F rag − Appr)||2 =
∑

Interi∈�

∫

Interi

(F rag(t)− Appr(t))2 dt

+
∑

Interj∈ 

∫

Interj

(F rag(t)− Appr(t))2 dt +
∑

Interz∈*

∫

Interz

F rag2(t) dt

Removing the parentheses, we get

R({Ui, Vi}) = ||L2(F rag)||2 + Coe2
∑

Interi∈�
size(Interi)

− 2 ·
∫

Interi

F rag(t) ·Appr(t) dt

+ (Coe · 2)2
∑

Interj∈ 
size(Interj )− 2 ·

∫

Interi

F rag(t) · Appr(t) dt.

We have

Coe2

⎛
⎝ ∑
Interi∈�

(size(Interi)+ 4
∑

Interj∈ 
size(Interj )

⎞
⎠

= ||L2(Appr)||2 = ||L2(F rag)||2,
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so

R({Ui, Vi}) = 2||L2(F rag)||2

− 2 · Coe
⎛
⎜⎝

∑
Interi∈�

±1
∫

Interi

F rag(t) dt +
∑

Interj∈ 
±2

∫

Interj

F rag(t) dt

⎞
⎟⎠ ,

(5)

and

Coe2 = ||L2(F rag)||2∑
Interi∈� size(Interi )+ 4

∑
Interj∈ size(Interj )

. (6)

In other words

R({Ui, Vi}) = 2||L2(F rag)||2 +G({Ui, Vi}). (7)

Here G({Ui, Vi}) is a function depending on the set of all intervals and related to
step-function values.

Now, consider the general case where we are dealing with FragK(t) =
Frag(K · t), t ∈ [0, E/K]. We have ||L2(F ragK)||2 = ||L2(F rag)||2/K,
T hr ′1 = FragK(A′1) = Frag(K · A′1), T hr ′2 = FragK(C′1) = Frag(K · C′1). If
U,V are boundary points of any interval in set � or  , then

V∫

U

FragK(t) dt = 1

K

KV∫

KU

Frag(t) dt,

CoeK = ||L2(F rag)||2∑
Interi∈� K · size(Interi)+ 4

∑
Interj∈ K · size(Interj ) ,

andK · size([U,V ]) = K ·U −K ·V. It means that for anyK and given boundary
points {Ui, Vi} of the intervals

R({U ′i , V ′i }) = 2 · ||L2(F rag)||2/K +G({K · Ui,K · Vi})/K (8)

Thus searching for minimal value for R({U ′i , V ′i } we go to the same values of the
optimal levels. ��
Since the spectrum of Frag(K · t) depends onK, we can apply the same thresholds
to construct step-function for different speech file fragments. The fast evaluation
method for arbitrary fragment thresholds is developed in the next section.
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Remark 1 Although min ||L2(F rag − Appr)|| depends on K (8), the quality of
approximation in terms of SNR is independent of K ,

SNR = ||L2(F rag)||2
||L2(F rag − Appr)||2 =

||L2(F rag)||2
2 · ||L2(F rag)||2 +G({Ui, Vi}) .

Remark 2 There is a special case where optimal values of SNR can be found
theoretically, Frag(t), t ∈ [0, π] (see Fig 2). For example, if we leverage a
single threshold T hr1 = sin(A), then we have a single interval [A,π − A] where
Appr(t) = Coe · T hr. According to (7)

Dist2 = ||L2(sin−Appr)||2 = 2||L2(sin)||2+

2 · Coe · T hr1
π−A∫

A

sin(t) dt = π − 4 · Coe · cos(A),

Coe · T hr1 =
√

π

2 · (π − 2 · A).

(9)

In the case of two thresholds, T hr1 = sin(A), T hr2 = sin(C),

Dist2 = π + 4Coe · (T hr1 · (cos(C)− cos(A))− T hr2 · cos(C)),

Coe2 = π

2(2T hr2
1 · (C − A)+ T hr2

2 · (π − 2C))
.

(10)

Fig. 2 Approximation of Sine function (three thresholds)
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Table 1 Best values of
thresholds and SNRs while
approximation Sine with
step-function depending on
the number of thresholds

Number of thresholds T hr1 T hr2 T hr3 SNR (dB)

1 0.39 – – 13

2 0.27 0.6 – 15

3 0.2 0.44 0.72 17.8

In the case of three thresholds, T hr1 = sin(A), T hr2 = sin(C), and T hr3 = sin(F )
we have

Dist2 = π + 4Coe · (T hr1 · (cos(B)− cos(A))+
T hr2 · (cos(C)− cos(F ))− T hr3 · cos(F )),

Coe2 = π

2(2T hr2
1 · (C − A)+ 2T hr2

2 · (F − B)+ T hr2
3 · (π − 2F))

.

(11)

Now, the best value of T hr1, T hr2, T hr3 can be found by tabulation of (9), (10),
and (11). All the results concerning the cases of one, two, and three thresholds are
collected in Table 1.

3 Practical Evaluation of Optimal Thresholds for Speech
Files Fragments

In this section, we consider the procedure to obtain three thresholds providing a
suboptimal approximation of a signal Source = a0, a1, . . . by a step-sequence
Appr with a range in (12)

Range = {−3,−2,−1, 0, 1, 2, 3}, (12)

and defined by

Appr[n] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if |an| < T hr1,
1 · sign(an) if |an| ≥ T hr1&|an| < T hr2,
3 · sign(an) if |an| ≥ T hr3.
2 · sign(an) otherwise .

(13)

In practice, we are dealing with a discrete sequence, and any evaluation of optimal
thresholds can be gained by applying the k-means procedure [11]. K-means produce
centroids of clusters, and one has to leverage middles between two neighbor
centroids as thresholds obtaining coding (13). The results related to the optimal
thresholds for a fragment Frag can be carried over obviously to the fragment
U · Frag with arbitrary constant U.
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3.1 Reduction to the Case of a Single Threshold

In a real situation of data transmission, threshold calculation for any fragment must
be performed very fast. Hence, our goal is to drop off the resources needed for
getting the results. We show that the situation with a few thresholds can be reduced
to the case of a single threshold. For example, in three thresholds, the optimal values
of T hr1, T hr2, T hr3 for U · Frag(t) depend on U , but ratios T hr2/T hr1 and
T hr3/T hr1 does not. If Frag(t) = sin(t), then the third row of Table 1 brings
the ratios 2.2, 3.6 for these thresholds. The main idea of the reduction assumes that
those ratios are constant for all fragments of speech files and close to obtained for
sin function. In Table 2, the results of experimental calculations of SNRs and ratios
are collected. The data are established as follows. File #1 is a part of the audiobook;
files ##2–5 received by direct records from TV programs. All of them are saved with
a sampling frequency of 44100 Hz. File #6 is a result of the downsampling of #1. In
each file, 12 fragments of size 256 were selected. The k-means procedure evaluates
optimal thresholds [12] the way explained above. For each file, all 12 ratios SNRs
are collected, and the found medians are placed in Table 2. For each file, all 12 ratios
are collected, and the found median is placed in Table 2. Now, while searching for
evaluation of optimal thresholds, we have to evaluate just T hr1 and set

T hr2 = 3T hr1, T hr3 = 5T hr1. (14)

The results of calculation SNR with thresholds defined by (14) are placed in
Table 3. Comparing SNRs in Tables 2 and 3 shows that they weakly depend on
the implemented method, and the second approach fits collection statistics.

3.2 Evaluation of Suboptimal Thresholds Employing Linear
Regression

At this point, we develop a method for fast evaluation of T hr1. Usage k-means
provides collection statistics for linear regression implementation to evaluate the

Table 2 Experimental median values of ratios of thresholds and SNRs in the case of three
thresholds

Index File T hr2/T hr1 T hr3/T hr1 SNR (dB)

1 Professional Russian narrator 2.9 4.8 14.2

2 Russian female voice 3.0 5.0 13.9

3 Russian male voice 3.0 5.0 14.0

4 Tatar female voice 2.9 4.8 14.9

5 Tatar male voice 3.1 5.2 15.2

6 Sample frequency 4410 Hz 2.9 5.0 12.2
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Table 3 Experimental median values of SNR with suboptimal threshold defined in (14) and
various length Len of fragments

Index File T hr2/T hr1 T hr3/T hr1 SNR (dB)

1 Professional Russian narrator 14.0 13.2 13.1

2 Russian female voice 14.2 13.7 13.6

3 Russian male voice 14.1 13.5 13.0

4 Tatar female voice 15.2 14.8 14.2

5 Tatar male voice 14.2 13.9 13.5

6 Sample frequency 4410 Hz 12.6 12.3 12.0

Fig. 3 SNR of approximation source signal by suboptimal step-wise function. Label ‘L1’ –SNR
established by exhaustive search of thresholds using (14), label ‘L2’—SNR through thresholds
obtained by regression with coefficients calculated for file #3 in Table 3. (a) file #4, (b) file #5

suboptimal threshold. The above experiments suggest that a connection between the
maximum of the fragment and the produced suboptimal threshold exists. Having
statistics for a big set of fragments, one can obtain a simple formula to receive
the threshold. Utilizing the fragment’s maximal value as an argument in linear
regression is a bad idea since that parameter is very variable in the speech file.
This circumstance leads to insufficient quality of the approximation. We propose
to leverage the fragment Frag features: the maximal value Mx and the standard
deviation Std to avoid this obstacle. If the threshold T hr relates to Frag, then
T hr/Mx corresponds to Mx/Std in the training procedure. We leveraged the
realization of the regression procedure through the package [12]. The obtained
parameters of regression vary from one speaker to another. Nevertheless, the
parameters established on the base of a speech file presented in our database produce
acceptable SNR for speech files belonging to other speakers. In Fig. 3, the results
of the two experiments are shown. Coefficients of regression are calculated for
file #3 in Table 3. The target values in the training procedure are T hr1Opt/Mx
in (14). Here T hr1Opt is found by exhaustive search of T hr1 for gaining maximal
SNR in approximation procedure, and Mx is the maximal value of fragment. The
training procedure’s argument is Mx/Std, where Std is the fragment’s standard
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deviation. The total number of fragments used for training is 50, and the length of
each fragment is 512 samples, sample frequency equals 4,4100 Hz. The established
regression function is used for obtaining suboptimal values of T hr1 for two other
files. The graphs show that such a procedure brings the acceptable quality of the
approximation. In what follows, we use the notation

T hr1 = Thr(F ile) (15)

for the value of T hr1 obtained through an exhaustive search of threshold in
fragments of the file File with the assumption (14). The approximation of the file
File was produced by (13) with the application of

Appr = ApprProc(F ile, T hr1). (16)

4 Linear Regression to Enhance the Perception
of the Step-Wise Signal

This section and below section show three thresholds in the approximation pro-
cedure, and files are written with 4,4100 Hz sampling frequency. Applying a fast
procedure for conversion source file into its step-wise version, we receive a step-
function with a range of values in Range, (12). The idea of enhancing the quality
of speech perception by a human, presented by step-function, based on linear
regression, is as follows. There is a one-to-one correspondence between samples of
source signal and values of step-function. We construct a window of odd length M.
The window slides over the values of the step-function. Any position of the window
defines the input signal for the regression. Those are values of the step function
inside the window. The target value for the net at the window’s current position is
the sample corresponding to the symbol in the middle of the window.

4.1 Distribution of Input Signals for Regression

Let Seq = (s0, s1, . . . , sM−1), si ∈ Range (12) be a sequence of symbols inside
the window of length M . We can think of this sequence as a record of integer
for radix 7. That is the way to obtain the distribution of signal on inputs of
regression. The graphs in Fig. 4a show that the input signals distribution has a
special form, it has peaks at the same points, and those points are independent
of source signals. Additional analysis establishes that points of local maximums
correspond to constant intervals of kind (s, s, . . . , s), s ∈ Range, (12) of length
M . The histogram structure is independent of M if M is no more than half of the
constant interval’s maximal lengths. Such a structure of the histogram is a feature
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(a) (b)

Fig. 4 Distribution of input signals and lengths of constant intervals. (a) Length of window =
5, label “L1”—file #2, label “L2”—file #4 in Table 3, label “L3”—noise file. (b) Distribution of
lengths of constant intervals, label “L1”—file #1, label “L2”—file #6 in Table 3

of a speech file. For the random file, we see another picture. This phenomenon was
mentioned in [13], and its origin is a theme of additional research.

The graphs in Fig. 4b show the problem we face when selecting the lengthM of
the window. Let us have a constant interval of the length L, L >> M . While the
window slides inside this interval, the regression’s input will be the same for any
window position, but the target values are different. That means thatM and L must
be comparable numbers; otherwise, the training procedure can not be successful.
It follows from Fig. 4 that reducing sample frequency reduces the number of long
constant intervals.

4.2 Linear Regression and Training Procedure

As before, we use the package [12] for the realization of our calculations. We chose
M = 57 for the graphs (a) in Fig. 4, We can not assert that it is the best possible
value, but it fits our requirements. The set of arguments for training is a list of
fragments of length M, having the form [(s0, s1, . . . , sM−1), (s1, s2, . . . , sM), . . . ]
consisting of values of Appr, and the target values T args are the values from the
source speech file, corresponding to the position integer part of M/2 of arguments.
Let RegSign be the signal produced by the regression. That is a particular case of
the implementation of a finite impulse response filter. For comparing the effect of
linear regression on the sound’s perception, we compare SNRs of T args to Appr
and T args to RegSign. What more, we used the coefficients, established for one
file, for construction RegSign, which is produced on the base of the Appr function
belonging to another speaker. The results are presented in Fig. 5. One can see that the
SNRs gained by regression exceeds the SNRs gained by step-wise approximation
for most fragments. The examples show that the regression coefficients can be
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(a) (b)

Fig. 5 Compare of SNRs gained by approximation of speech file by step-wise function and linear
regression. (a) file #4 in Table 3, label “L1”—regression, “L2”—step-wise approximation. (b)
“L1”—regression of step-wise function built on the base of file #3 utilizing the coefficients of
regression established for file #4, “L2”—a step-wise approximation of file #3 in Table 3

established one time and can be leveraged to enhance step-wise approximations
built by other speakers. In practice, the latter situation leads to a bit little difference
in quality, but produced results are applicable in any case. The procedure production
of coefficients of linear regression using Appr, T args, andM denote as

Reg = RegFun(Appr, T args,M). (17)

5 Speech Transfer in a Noisy Environment

This section presents how our technique can be implemented for speech transfer
via a noised channel. We investigate the model where any bit in a stream can be
inverted with a constant probability P. There are no assumptions about the events’
joint distribution.

5.1 Preparation of Step-Wise File for Transmitting

Let us suppose that the step-wise sequence that has to be transmitted has the form
s0, s1, . . . , si ∈ Range, (12).We add 3 to each symbol in the sequence and convert
it into a new one with items in {0, 1, 2, 3, 4, 5, 6}.Then we change any symbol in the
new sequence by its binary code using 3 bits for any item. That is the stream which
must be transmitted via the channel. Conversion step-function to binary stream
denote as

Stream = StreamFun(Appr). (18)
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5.2 Transmission and Restoration

According to the suggested model, any bit in the stream can be inverted with the
same probability P , but the total number of bits does not change. For the restoration
of step-wise function, we consider three sequential bits as a radix 2 integer. The
problem arises if the extracted bits is ‘111’ since the corresponding value is out of
the range. In this case, we randomly change one of the ones to zero. Completing the
procedure, we subtract 3 from all symbols in the sequence and receive a distorted
version of the original. Comparing the quality gained by utilizing the distorted file
by linear regression, we calculate the SNRs corresponding approximation of the
original speech file through restored step-wise function. The results are placed in
Fig. 6. One can see that enhancing by regression leads to significant improvement,
whereas usage of constant coefficients of regression brings acceptable results. Thus,
the regression coefficients calculated one time can be leveraged for enhancing other

(a) (b)

(c)

Fig. 6 Compare of SNRs restored and enhanced by linear regression distorted step-wise functions
for various P. Used coefficients of the regression obtained based on file #3, and the speech file is
#4 in Table 3. (a) file #4 in Table 3. Labels: “L1”—enhanced version, “L2”—direct restoration; (a)
P = 0.05, (b) P = 0.1, (c) P = 0.2
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Algorithm 1 Data transfer and restoration
Require: Length of window M , files F ile0, F ile1, . . . , F ileN
1: T hr1 ← Thr(F ile0) {Employ (15)}
2: Appr0 ← ApprProc(F ile0, T hr1) { According to (16)}
3: Reg0 ← RegFun(Appr0, F ile0,M) { According to (17)}
4: Stream0 = StreamFun(Appr0) {Employ (18)}
5: Reg1 ← Reg0{Coefficients copied to receive the point of the channel without errors}
6: Stream0 ← Stream0 {Receiving distorted version}
7: for i = 1 to N do
8: Appri ← ApprProc(F ilei , T hr1)
9: Streami = StreamFun(Appri )

10: Streami ← Streami
11: end for
12: for i = 0 to N do
13: RegSigni ← Reg1, Streami {Regression}
14: end for

speech files. The data transfer and its restoration, according to our technique, are
presented in Algorithm 1.
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Simulation of Two-Phase Flow Toward
a Horizontal Multistage Hydraulically
Fractured Well Using Accelerated
Explicit-Implicit Algorithms

Alexander B. Mazo and Marsel R. Khamidullin

Abstract Explicit-implicit algorithms for accelerating the three-dimensional two-
phase flow calculation towards a horizontal well with a multistage hydraulic
fracturing are presented. Acceleration is achieved by dividing the calculation
domain to local zones where depending on the local Courant number an explicit
or implicit scheme for the saturation transfer equation is applied.

1 Introduction

Mathematical models of fluid flow towards a horizontal well (HW) with multistage
hydraulic fracturing (MHF) are based on common equations of two-phase (oil—
water) flow [1], which contain a parabolic equation for pressure p and a hyperbolic
equation of saturation s transfer. There are three main schemes for the numerical
solution of the equations of traditional models of reservoir penetrated by a system
of vertical wells.

The most common scheme is IMPES (Implicit Pressure, Explicit Saturation)
[2–4] when pressure is calculated according to an implicit scheme, and saturation
according to an explicit one. This scheme is conditionally stable; the grid step h and
time step τ must satisfy the Courant–Friedrichs–Lewy (CFL) condition

τ / h

max (f ′ |u|) or C = τmax
(
f ′ |u|)
h

/ 1, (1)

where u is the flow rate, f ′ = df/ds is the derivative of the Buckley–Leverett
function. The feature of the problem is that |u| sharply increases near wells while
condition (1) requires solving an explicit scheme for s with a small step τ which
significantly slows down the numerical solution of the problem. There is a simple
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way to speed up computations according to the IMPES scheme [5]. The calculation
domain is divided into several zones where maximum |u| and the corresponding
time step τ which guarantees the fulfillment of condition (1) are defined. Thus, to
get a solution for the time interval 
t in each of the zones a different number of
time layers defined as Ns = 
t/τ is required.

Another common way to speed up computation is the Fully Implicit Method
(FIM) [6], when p and s are calculated using a purely implicit scheme. In this case
iterative procedures are used to find a solution to a nonlinear system at each time
layer. Therefore the FIM scheme requires more computational resources; however
unlike the IMPES scheme it is unconditionally stable.

The combination of the IMPES and FIM methods advantages is implemented
in the Adaptive Implicit Method (AIM) [7–9]. The main idea of this method is to
locally apply FIM or IMPES, depending on the computational efficiency according
to the stability condition in the form of (1). The features of applying these schemes
in detail were studied in [10].

Within the considered design schemes various methods of computational mathe-
matics and methods of calculations organization are used to speed up the two-phase
flow simulation.

In [11] an iterative method was proposed for the solution of combined problems
for saturation and pressure which accelerates the calculation by 30% compared to
FIM and in contrast to IMPES converges at a larger Courant number C. The GMRES
(Generalized Minimal Residual) method [12] with AMG (Algebraic Multigrid) [13]
as preconditioner is used to solve systems of linear algebraic equations. For spatial
approximation the finite difference method and for time discretization the inverse
Euler method is used. The work [14] is devoted to the design of optimal iterative
methods for solving nonlinear flow in porous media at each time layer. It is
shown that the nonlinear multigrid method is more efficient than Newton’s method;
moreover, this reduces the cost of RAM. The idea of the method is that before the
linearization of equations by Newton’s method a multilevel iterative method with a
preconditioner is used. In [15] various algorithms for solving grid equations using
adaptive grids with local refinement are considered.

Recently, to speed up the simulation of multiphase flow in the reservoir on
detailed grids parallel computations on multiprocessors are used. The task is
divided into several subtasks which are distributed among the processors. In [16] an
algorithm for parallelizing the saturation calculation is presented. The FIM method
is used in the areas near the wells and the IMPES method is used in the rest of
the area. In [17] numerical algorithms were proposed for parallelizing the solution
of two-phase flow problems on grids with local refined sections in which the AIM
scheme is used to calculate the saturation. The paper [18] describes the features
of the implementation of algorithms for solving this problem on heterogeneous
computing systems.

In this article explicit-implicit computational acceleration schemes are used to
solve a three-dimensional problem of two-phase flow near a horizontal well with a
multistage hydraulic fracturing. A distinctive feature of this problem is that the flow
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rate |u| increases significantly not only near the horizontal wellbore but also in the
hydraulic fractures.

2 Problem Statement

To illustrate the effectiveness of the proposed numerical algorithms the following
model problem with one hydraulic fracture is considered. Solution areaD is a part of
the reservoir in the form of a rectangular parallelepiped of height 2H with rounded
edges. In the center of the domain there is a cylindrical cut γ—a well of radius rw
and length L (Fig. 1). The area D is vertically limited by the planes z = ±H—
the top and bottom of the formation. The lateral surface �, located at a distance l
from the well γ is an external reservoir boundary. The hydraulic fracture is located
orthogonal to the Oy axis directed along the wellbore. Fracture faces are a pair of
rectangular planes F+ and F− with normals in the directions n± = ±y having
dimensions 2H × 2h located at a distance 2δ / H from each other (fracture
opening). The fracture has permeability kf and porositymf which are much higher
than the absolute permeability k and porosity m of the formation. The reservoir is
considered to be homogeneous. Capillary and gravitational forces are neglected.

In dimensionless form the equations for pressure and saturation in the domainD
are following [1]

β
∂p

∂t
+ divu = 0, u = −σgradp. (2)

m
∂s

∂t
+ div (f (s) u) = 0, (3)

Fig. 1 HW scheme with single MHF fracture
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f (s) = kw (s)

σ (s)
, σ = kw (s)+ Kμko (s) ,

kw (s) = s3, ko (s) = (1− s)3 .
(4)

Here β ∼ 10−3 is the elastic capacity; f (s) is the Buckley-Leverett func-
tion; kw (s), ko (s) are the relative phase permeabilities of water and oil respectively;
σ (s)—transmissibility; Kμ is the ratio of water to oil viscosity.

Dimensionless initial conditions

t = 0, (x, y, z) ∈ D : p = 1, s = 0 (5)

means that the reservoir is saturated with oil at hydrostatic pressure. Top and bottom
of the formation (coordinates are normalized to H ) are impermeable

z = ±1 : un = −σ ∂p
∂n

= 0, (6)

where n is the outward normal.
For t > 0 the waterflooding process is simulated at a constant pressure p = 1

and water saturation s = 1 on the contour � while the pressure p = pγ = 0 is set
at the well γ . The hydrodynamic interaction of the reservoir, the surface γ of the
well and the surfaces F± of the fracture is expressed in the continuity of pressure
and the normal velocity of the flow.

The equation for the dimensionless pressure pf averaged over the fracture
opening 2δ is written as follows:


xzp
f + 1

2M
σ
∂p

∂y

∣∣∣∣
F+

F−
= 0, −h < x < h, −1 < z < 1, M = kf δ

kH
,

x = ±h, z = ±1 : ∂pf

∂n
= 0; pf = pγ = 0 for (x, y, z) ∈ γ.

(7)

The dimensionless equation for the water saturation sf in the fracture looks like:

mf
∂sf

∂t
+0xz

(
f
(
sf
)
uf

)
+ 2δ

H
(f (s) un) |F+F− = 0,

uf = −k
f

k
σ
(
sf
)

grad pf ,
kf

k
1 1.

(8)

Note that the last term of this equation models inflow of water from the reservoir
into the well and is calculated on the fracture faces F+ and F− from the reservoir
side.
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The mathematical model of two-phase flow towards an output HW with MHF in
dimensionless form consists of Eqs. (2)–(6) in reservoirD and (7), (8) in fractures.

3 Explicit and Implicit Finite Volume Schemes

The numerical solution of the problem is based on the finite volume (FV)
method [19]. For each finite volume Vi bounded by a set of faces �ji the average
pressures, saturation and normal velocities across the faces are determined as:

Pi = 1

|Vi |
∫

Vi

pdV, Si = 1

|Vi | mi
∫

Vi

msdV, u
j,n

i = σ
j
i

hi

⎛
⎝Pi −

∑
j

α
j

i Pj

⎞
⎠ .

(9)

Here mi is the average porosity of a finite volume Vi , u
j,n
i is the average flow rate

through the face�ji in the direction of the outward normal n, |Vi | is the volume of Vi ,

α
j

i are the collocation coefficients [20, 21], hi is the distance from the Vi center to
the collocation point. Integration of Eqs. (2)–(6) in the domain D and (7) and (8)
over the volume Vi leads to the following grid scheme.

For D it has the form

βi
P̂i − Pi
τ

+
∑
j

u
j,n
i

∣∣∣�ji
∣∣∣ = 0, (10)

mi |Vi | Ŝi − Si
τ

+
∑
j

f
j

i u
j,n

i

∣∣∣�ji
∣∣∣ = 0, (11)

where
∣∣∣�ji

∣∣∣ is the face area. The notation P̂ (t) = P (t + τ ) is used for the function

on the upper time layer.
Equations in a fracture for a flat finite volume V f i whose boundaries �ji are line

segments, are written in a similar way. The pressure is determined by the equation

∑
j

(
uf

)j,n
i

∣∣∣�ji
∣∣∣+ 1

2M

∣∣V f i
∣∣
[
P
f
i − P+
h+i

+ P
f
i − P−
h−i

]
= 0,

(
uf

)j,n
i

= σ
(
Sf

)

hi

(
P
f

i −
∑
j

α
j

i P
f

j

)
,

(12)

where h±i are the distances from the center of the flat volume V f i to the centers
of the reservoir finite volumes adjacent to the faces of the fracture F± and P± are
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the average pressures in these finite volumes. The finite volume equation for water
saturation in a fracture has the form

m
f
i

∣∣∣V fi
∣∣∣ Ŝ

f
i − Sfi
τ

+∑
j

f
j
i

(
uf

)j,n
i

∣∣∣�ji
∣∣∣+ f (

S±
)
Qw = 0,

Qw = 2δ

H

[
P+ − Pfi
h+i

+ P
− − Pfi
h−i

]
,

(13)

whereQw describes the inflow to the fracture element from the reservoir, S± are the
average saturations in the reservoir FV adjacent to the fracture faces F±, and Sf

j
i

is the water saturation at the �ji face. According to the “upwind” scheme its value

is determined by the sign of the velocity
(
uf

)j,n
i

Sf
j

i =

⎧⎪⎨
⎪⎩
S
f
i ,

(
uf

)j,n
i
> 0

S
f
j ,

(
uf

)j,n
i
< 0.

(14)

Explicit for saturation IMPES scheme in Eqs. (11) and (13) is obtained if
saturation at the current time layer is taken as the argument of the Buckley-Leverett
function. If Ŝ is used on the upper time layer, then it is a completely implicit scheme
for FIM.

4 Numerical Solution Algorithms

The solution of the problem for finding pressures P̂ , P̂ f by Eqs. (2) and (7) and
saturations Ŝ, Ŝf by Eqs. (11) and (13) on the upper time layer is performed in
several stages

1. the pressures P̂i , P̂
f
i are calculated according to Eqs. (10) and (12) in which

the coefficients are calculated for the saturations Si, S
f
i from the current time

layer;
2. total flow rates are calculated through all faces of the finite volumes in the

reservoir (9) and hydraulic fractures (12);
3. the saturations Ŝi in the reservoir and fractures Sfi are calculated.

Stages 1–2 are the same for IMPES and FIM schemes, but stage 3 is different:
in the IMPES scheme, the saturation is calculated using explicit formulas, and in
the FIM scheme, an extra problem must be solved. Let’s consider this issue in more
detail.
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For the FIM method, Eq. (11) in operator form can be written as a system of
nonlinear equations for the problem in the reservoir:

AŜ = F (S) , (15)

where

Ay = y + τ

|V |m
∑
j

f j (y) uj,n
∣∣∣�j

∣∣∣ , F (S) = S. (16)

The Newton method is used to solve system (15)

Ȧk
(
yk+1 − yk)+ Ayk = F, (17)

where k = 0, 1 . . .—iteration index; Ȧk is a linear operator—the Gateaux derivative
of the operator A at the point yk

Ȧkz = z + τ

|V |m
∑
j

f ′j
(
yk
)
uj,n

∣∣∣�j
∣∣∣ z. (18)

The problem (17) means that at each iteration the linear system of equations must
be solved

Ȧkξ
k+1 = r, r = F − Ayk, ξk+1 = yk+1 − yk. (19)

The Newton iterative process (17) for Eq. (13) is constructed in a similar way. In
this case instead of (16) and (18) we have

Ay = y + τ∣∣V f ∣∣mf
∑
j

f (y)
(
uf

)j,n ∣∣�j ∣∣+ f (
y±

)
Qw,

Ȧnz = z + τ∣∣V f ∣∣mf
[
∑
j

f ′
(
yk
) (
uf

)j,n ∣∣�j ∣∣ z + f ′ (y±)Qwz
]
,

F = Sf .

(20)

Here f ′ is the derivative of the function f .
The initial approximation y0 in the iterative process (17) for both problems is

specified as a function of saturation at the current time layer: y0 = S. Calculations
have shown that for such initial approximation the convergence of Newton’s method
is not always ensured. In this case several approximations to the solution Ŝ are
preliminary performed using the two-layer iterative process

B
S(k+1) − S(k)

λ
+ AS(k) = F, (21)
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where k is the iteration index, B is the preconditioner, λ is the iteration step. For
problem (15) and (16) B was chosen as the linear operator

By = y + τ

|V |m
∑
j

yuj,n
∣∣∣�j

∣∣∣ , (22)

and for problem (15) and (20) the operator:

By = y + τ∣∣V f ∣∣mf
∑
j

y
(
uf

)j,n ∣∣∣�j
∣∣∣+ f (

y±
)
Qw. (23)

Note that preconditioners (22) and (23) differ from nonlinear operators A (16)
and (20) only in that a linear function y is used instead of the nonlinear Buckley-
Leverett function f (y) (see (4)). Both of these functions are monotonic and
coincide at the boundaries of saturation variation y = 0 and y = 1.

The numerical scheme was implemented with the operators A,B, Ȧ approxi-
mated on a grid of finite volumes with a significant refinement towards the well
(see Fig. 3); minimum element size 3

√|V | is 0.004, the maximum is 0.46, the total
number of grid cells is N = 105; the time step was τ = 0.1. Numerical experiments
showed that for given parameters of the scheme the convergence of Newton’s
method it is sufficient to take one or two steps according to the method (21)
at λ = 0.6. The residual r norm convergence is shown in Fig. 2; the numbers at
the curves indicate the number of preliminary iterations by the method (21).

Fig. 2 Convergence of an iterative process for FIM at τ = 0.1
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x

y

1

2 3

Fig. 3 Finite volumes grid

5 Model Problem

The proposed algorithms were tested by solving a model problem of flow in
a homogeneous reservoir. The dimensionless parameters of the problem are as
follows: permeability k = 1, porosity m = 0.2, formation thickness 2H = 2,
contour radius l = 10, well radius rw = 10−2, its length L = 10, fracture
length h = 3 and its conductivity M = 10, viscosity ratio Kμ = 0.1. Tests
were run on Intel (R) Core (TM) i3 CPU 540 3.07 GHz personal computer. The
systems of equations for pressure P, Pf and saturation S, Sf were solved by the
iteratively stabilized bi-conjugate gradient method (BCGS Bi-Conjugate Gradient
Squared [22]) with the AMG as preconditioner. Iterations were terminated when the
residual norm decreased to values ||r|| ≤ 10−6.

In Fig. 3 a grid of finite volumes covering domain D is presented. The features
of the grid are as follows: refinement near the well, the wellbore ends are modeled
in the form of hemispheres which are obtained as a result of stretching a structured
cubic grid onto a sphere (Fig. 3, 1). In the remaining area a structured cylindrical
finite volume mesh is constructed (Fig. 3, 2). Then the spherical and cylindrical
meshes are combined using the transformation of coordinates according to the
Laplace equation [23] (Fig. 3, 3). The mesh along the wellbore is constructed by
extruding the 2D mesh in the Oxz plane.

In Fig. 4 the pressure distribution in the domain D at the moment t = τ is
presented.

The streamlines and the pressure field in the sections of a homogeneous reservoir
containing a horizontal well with a single hydraulic fracture are shown in Fig. 5. It
is seen how the fluid flow from the contour is divided into two parts: one part enters
the fractures the other directly into the well.
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pressure

z y

x

Fig. 4 Pressure distribution in the computational domain D at the moment t = τ

Fig. 5 Streamlines and pressure distribution in cross sections of the homogeneous reservoir
containing HW with a single hydraulic fracture

In Fig. 6 the distribution of saturation in the reservoir at different time moments
of waterflooding; moments t1, t2, t3, t4 correspond to the well product water cut 0,
0, 43, 98% is presented. It is seen that the presence of a fracture accelerates the
movement of isosat towards the zones of reduced pressure (Fig. 4). It should be
noted that the advance of isosat to the wellbore ends is noticeably slower than to the
wellbore main part. This is because near the wellbore ends the flow structure has
spherical symmetry while in the rest of the part it is radial. It is known [1] that the
time of complete withdrawal of liquid with spherical symmetry of the flow occurs
over a longer period of time than with radial symmetry.
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Fig. 6 Saturation distribution during waterflooding of a reservoir containing HW with a single
hydraulic fracture (1) t1 = 0.25; (2) t2 = 0.5; (3) t3 = 0.75; (4) t4 = 1.07

6 Computational Efficiency of an Explicit-Implicit Scheme

For the considered model problem the IMPES scheme is stable for τ < 10−3.
According to this scheme for the model problem with grid size N = 105 the water
cut reaches 98% at moment t = 1.07. This time is used as a standard for estimating
the acceleration according to the combined scheme using division of the domain D
into local zones in some of which the IMPES scheme is applied and in the other
FIM.

The division of the domain into local zones will be carried out by the modulus of
velocity. For this the following algorithm is used: for a given saturation distribution,
the pressure field in finite volumes and velocities on the faces is calculated. After
that the admissible time step τi is determined which satisfies the condition (1) in
each finite volume Vi . The division of the region occurs by grouping the finite
volumes according to the values of τi . This method of separation leads to the fact
that zones are identified in a small vicinity of the well, at its ends and near the
hydraulic fracture. Local zones will be rebuilded for each step of calculating the
pressure and velocities.

Using different steps in local zones to calculate saturation by explicit IMPES
scheme requires the matching of numerical solutions on the faces separating the
finite volumes. Let Vi and Vj be two finite volumes separated by the face �ji in
which the time steps τi and τj are used. If the velocity u is directed from the cell Vi
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to Vj , then in the j -th equation of the finite-volume scheme the saturation value Si
in the upstream cell is used as a boundary condition on the face �ji . The numerical

solutions on the �ji face are matched in different ways depending on the ratio of the
steps τi and τj . If τj = Kτi,K > 1 then to ensure the conservatism of the grid
scheme for the water flow on the face the arithmetic mean value of the Buckley-

Leverett function f i = K−1
K∑
k=1
f
(
S
(k)
i

)
, S
(k)
i = Si (t + k · τi) is used. If τi =

Kτj ,K > 1 then to replace the function si at times t + k · τj , k = 1..K − 1 linear
interpolation is used over the values at the current and upper time layers.

The implicit FIM method uses saturation from the upper time layer, so there is
no need to match solutions in local zones. It should be noted that the saturation s
in all zones is calculated separately regardless of the methods used in neighboring
local zones.

The Table 1 shows the percentage distribution of cells in local zones for Nz = 5
at times t1, t2, t3 and t4.

In Fig. 7 the dependence of the calculation time on the number of zones Nz for
different values of the grid size N is presented. Here T = tc/t0 is the relative
computation time, tc is the absolute computation time, t0 is the computation time
according to the IMPES scheme with other identical settings for Nz = 1. It can be
seen that the larger grid size N is the more significant acceleration gives increasing
the number of local zones. For N = 105, the separation of the region speeds up
the calculation by approximately three times for Nz = 10. A further increase in the
number of local zones has a weak effect on acceleration.

Extra acceleration can be obtained using a completely implicit FIM scheme
in some local zones. Since one iteration of the implicit scheme requires more
computational costs than one step of the explicit scheme, then using the FIM
is justified only in those local zones where Ns is many times greater than one
(corresponds to one time step). Numerical experiments show that the use of the
FIM method is justified for Ns > 50.

In Fig. 8 the relative calculated time forN = 105 with a different number of local
zones is presented. It can be seen that the use of the FIM method in combination
with local zones (AIM) accelerates the calculation by an order for Nz = 5 and
14 times for Nz = 10. A further increase in the number of zones does not give a
gain in the calculation speed. Calculations showed that optimal zone count for AIM
methods is equal to 6.

Table 1 Percentage
distribution of cells in local
zones for Nz = 5

Zone index t0 t1 t2 t3 t4

1 100 82 59 1 1

2 0 16 24 3 1

3 0 2 17 16 4

4 0 0 0 48 7

5 0 0 0 32 87
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Fig. 7 Relative solution time T according to the IMPES scheme with a different number of
cells (1− N = 104, 2− N = 105)

Fig. 8 Relative solution time T for IMPES (1) and AIM (2) methods for N = 105

7 Conclusion

Two phase flow in porous media containing a horizontal well with a single transverse
hydraulic fracture in a three-dimensional formulation with a grid refinement near
the wellbore calculation acceleration algorithms have been developed. Acceleration
is achieved by automatically dividing the area into local zones with its own time
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step. The greatest acceleration in comparison with IMPES is provided by the use of
explicit-implicit saturation schemes in the fracture and near the wellbore zones.

The proposed acceleration algorithms admit parallel computing in local zones,
so in the future it is planned to use multiprocessor technology for hardware
acceleration.
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Dynamical Processes in the Space
of ϕ-Distributions

Valery S. Mokeichev and Anatoly M. Sidorov

Abstract Many mathematical physics problems during modeling require the
amplification of the partial differential equation’s solution. The cause of this
consists in the definition’s insufficiency of classical or generalized solution as it
can be seen from the problem’s physical meaning. For example, the investigation
of the solvability of the mathematical model of a fixed string’s vibrations leads
to the situation, when there is no solution even in the space of 2π-periodic
generalized functions. It is necessary to expand the definition of the mathematical
model’s solution. In particular, the authors have introduced the definitions of the
ϕ-distribution and ϕ-solution, so it is possible to describe the linear math models
theory P(t, x,D)u = f (t, x) and to prove the correspond processes dynamism.
The process is dynamic, when there is a unique solution of the math model’s Cauchy
problem for all initial data. The main result described in this article is the existence
of the Cauchy problem’s unique solution in the ϕ-distributions space with values in
the Banach space is proved.

1 Introduction

The concept of a ϕ-solution of some linear equations was introduced early. Namely,
the generalized function [1] (the Schwartz distribution in foreign terminology) was
called the ϕ-solution of the equation Au = f , where ϕ = {ϕp(x), p ∈ N}, if

u =
∑
p

upϕp(x), and the series
∑
p

A(upϕp(x)) converges in some space to

f (x). In fact, this is the Fourier method for finding solutions to linear equations.
Later it turned out that this concept is very convenient for finding solutions to
linear boundary value problems for partial differential equations with deviations
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of arguments. However, the rigid binding of ϕ-solutions to the set of generalized
functions led to the fact that a number of mathematical models turned out to be
insoluble, which should not be in the opinion of J. Hadamard [2]. The undecidability
of a mathematical model means that either one of the points is not taken into an
account in the process of its construction, or the concept of a solution is poorly
chosen. The concept of the generalized solution is insufficient for the solvability of
a number of partial differential equations [4, 5].

In [3] the concept of a ϕ-solution was introduced without reference to the space
of generalized functions. For this, the concept of ϕ-distribution was introduced
on its basis, so called, the concept of ϕ-solution, and a theory of solvability of
linear boundary value problems for partial differential equations with deviations
of arguments was developed. In [6], the space of ϕ-distributions was studied in
the case, when ϕ is a system of functions, the concepts of differentiability and
integrability of ϕ-distributions were correctly introduced, and the expandability
problem of generalized functions in series in a given system of functions was also
studied.

2 Mathematical Model of the Problem

There are mathematical physics problems that require amplification of the partial
differential equation’s solution. It can be explained the definition’s insufficiency of
classical or generalized solution. For example, the mathematical model of a fixed
string’s vibrations on [0, π] can be written in the form

u
(2)
t t − c2u

(2)
xx = f (t, x), (t, x) ∈ R× [0, π],
u(t, 0) = u(t, π) = 0,

where u, u(1)t , f (t, x) ∈ L2(R × [0, π]) are 2π-periodic function with respect to
t .

It was proved in [3] that if c is Liouville number then there is no model’s solution
even in the space of 2π-periodic generalized functions. It is necessary to expand the
definition of the math model’s solution.

There we introduced the definitions of ϕ-distribution and ϕ-solution to describe
the solution of the linear problem, to explain the linear problems solvability’s
theory without meaning of the equation’s scalarity and type (e.g. elliptic, parabolic
or hyperbolic). It allows us to solve some mathematical models which have no
solutions in the generalized functions spaces [3]. We present the ϕB-distribution
theory’s objects so-called ϕ-distributions with values in Banach space B necessary
for the further concept. This theory is detailed in the articles [10, 11].

Let Kn be the set of vectors p = (p1, . . . , pn) with integer coordinates values
not necessarily the same as Zn and |p| = |p1| + . . .+ |pn|. Let

ϕ = {ϕp, p ∈ Kn} and ϕ∗ = {ϕ∗p, p ∈ Kn}
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be the biorthogonal elements systems with respect to scalar product< ·, · >, i.e.

< ϕp, ϕ
∗
q >=

{
0, p �= q;
1, p = q.

We will assume that space B and system ϕ such that for all m ∈ N and for all
ap ∈ B there is a sum

∑
|p|�m

apϕp. (1)

Denote by Lϕ the set of elements written for some m ∈ N in the form (1). The
set Lϕ∗ are defined the same way.

Definition 1 Linear mapping u : Lϕ∗ → B is ϕB—distribution.

Definition 2 The sequence (um)∞m=1 of ϕB—distributions converges to u as ele-
ment of ϕB—distribution, when lim

m→∞‖um(ψ) − u(ψ)‖ = 0 for all ψ ∈ Lϕ∗ in the

norm ‖ · ‖ of space B.

Denote by D′
ϕ the set of all ϕB-distributions with two elements addition,

multiplication by number and convergence operations given in definition (2).

Theorem 1 D′
ϕ is a full space.

Definition 3 Fourier coefficient of u ∈ D′
ϕ by a system ϕ is up = u(ϕ∗p), p ∈ Kn.

Fourier series of ϕB -distribution u by a system ϕ is
∑
p

upϕp.

Theorem 2 u = v if and only if up = vp for all p ∈ Kn.
Theorem 3 There are only elements from D′

ϕ can be written by Fourier series by a
system ϕ.

Let � ⊂ R
n be Lebesgue measurable set with non-zero measure,

ϕ = {e(μ+ip)x, p ∈ Z
n}, x ∈ �, (2)

where μ = (μ1, . . . , μn) ∈ C
n is an arbitrary vector. Then a system

ϕ∗ = {(2π)−n · e(−μ+ip)x, p ∈ Z
n}

is biorthogonal to ϕ with respect to the scalar product

(f1, f2) =
∫ 2π

0
f1(x)f2(x) dx,

where dx is a Lebesque measure.
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Let |a, b| ⊂ R is open, semi-open or closed set, I is a finite set of multi-indices
α = (α1, . . . , αn) with non-negative components, Dαx = D

α1
1 · . . . · Dαnn , where

D
j
t =

∂j

∂tj
, Dk = ∂

∂xk
, B is a Banach space, D′

ϕ is a space of ϕB-distributions and

ϕ are the elements system (2). Let the mathematical model of a process u(t, x) in
D′-space be

M∑
j=0

∑
α∈I

cα,j (t, x)D
j
t D

α
x u = f (t, x), t ∈ |a, b|, x ∈ �, (3)

where

cα,j (t, x) =
∑

|q|�M1

cα,j,q(t)e
iq·x, q ∈ Z

n

with cα,j,q (t) : B → B is a linear operator for all t ∈ |a, b|, f : |a, b| × B → D′
ϕ .

The process u(t, x) is dynamic if it’s every state is defined by the initial state for
t > t0, t0 ∈ |a, b|, i.e.

D
j
t u(t0, x) = gj (x), x ∈ �, j = 0, 1, . . . ,M − 1. (4)

So, the process is dynamic, when Cauchy problem (3) and (4) for it’s mathemat-
ical model has a unique solution.

One of the methods for studying the Cauchy problem is the Fourier method.
Among the works on this method, we note the works [6–9].

3 Fourier Series Expansion of the Problem’s Solution

Let us define conditions for dynamic process u(t, x) with math model (3). Denote
by

u(t, x) =
∑
p

up(t)e
(μ+ip)x,

f (t, x) =
∑
p

fp(t)e
(μ+ip)x,

gj (x) =
∑
p

gj,pe
(μ+ip)x

the Fourier series expansions by a system ϕ of ϕB-distributions u(t, x), f (t, x),
gj (x) for j = 0, 1, . . . ,M − 1. The Fourier coefficients up(t), fp(t) almost for all
t ∈ |a, b| and gj,p are elements of space B.
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Definition 4 The function x(t) : |a, b| → B is absolutely continuous function, if
there is function y(t) : |a, b| → B with ‖y‖ ∈ L1

loc(|a, b|), and for all subsets
[a′, b′] ⊂ |a, b|

x(t) =
∫ t

a′
y(s) ds + x(a′), t ∈ [a′, b′].

Definition 5 ϕB-distribution u is the solution of problem (3) and (4), if Fourier
coefficients up(t) are absolutely continuous, (4) holds in D′

ϕ and Eq. (3) holds
almost everywhere in D′

ϕ .

Let us note that

D
j
t u =

∑
p

u
(j)
p (t)e

(μ+ip)x,

D
j
t D

α
x u =

∑
p

u
(j)
p (t)(μ+ ip)αe(μ+ip)x,

where the series on the right-hand side converge in D′
ϕ due to absolutely continuity

of u(j)p (t), j = 0, . . . ,M − 1, and the series converge almost everywhere inD′
ϕ for

j = M .
We are going to apply the Fourier series expansion in (3) and (4) using system ϕ.

Then we have

∑
p

M∑
j=0

∑
α∈I

∑
|q|�M1

cα,j,q (t)(μ+ i(p − q))αu(j)p−q(t)e(μ+ip)x =
∑
p

fp(t)e
(μ+ip)x .

(5)

∑
p

u
(j)
p (t0)e

(μ+ip)x =
∑
p

gj,pe
((μ+ip)x. (6)

Due to (2), Eqs. (5) and (6) are equivalent to

∑
α∈I

cα,M,0(t)(μ+ ip)αu(M)p (t)+

+
M−1∑
j=0

∑
α∈I

∑
|q|�M1

cα,j,q(t)(μ+ i(p − q))αu(j)p−q(t) =

= fp(t), t ∈ |a, b|, p ∈ Z
n,

(7)

u
(j)
p (t0) = gj,p, j = 0, 1, . . . ,m− 1, p ∈ Z

n. (8)

So, the Cauchy problem (3) and (4) is an infinite system of equations (7) with infinite
initial conditions (8).
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Denote by

Qp,j,q (t) =
∑
α∈I

cα,j,q(t)(μ+ i(p − q))α, p ∈ Z
n, j = 0, . . . ,M, |q| �M1.

Then Q : B → B are linear operators for all t ∈ |a, b|. Then we can rewrite (7) in
the form

Qp,m,0(t)u
(M)
p (t)+

M−1∑
j=0

∑
|q|�M1

Qp,j,q (t)u
(j)
p−q(t) = fp(t). (9)

Let operatorQp,M,0(t) is invertible for some μ ∈ C
n and for all p ∈ Z

n, t ∈ |a, b|.
Then let’s apply inverse operatorQ−1

p,M,0(t) to (9):

u(M)p (t)+
M−1∑
j=0

∑
|q|�M1

Fp,j,q(t)u
(j)
p−q (t) = hp(t), (10)

where Fp,j,q (t) = Q−1
p,M,0(t) · Qp,j,q (t), hp(t) = Q−1

p,M,0(t)fp(t). We will use
matrices for Eq. (10). Denote by

Wp(t) = (up(t), u(1)p (t), . . . , u(M−1)
p (t))T ,

W
(1)
p (t) = (u(1)p (t), u(2)p (t), . . . , u(M)p (t))T ,

Vp = (g0,p; g1,p; , . . . ; gM−1,p)
T .

LetM ×M matrix Ap,q(t) be in the form

Ap,q(t) =

⎛
⎜⎜⎜⎜⎜⎝

0 Bq 0 . . . 0
0 0 Bq . . . 0
...

...
... . . .

...

0 0 0 . . . Bq

−Fp,q,0(t) −Fp,q,1(t) −Fp,q,2(t) . . . −Fp,q,M−1(t)

⎞
⎟⎟⎟⎟⎟⎠
,

where Bq = {0 for q �= 0; I for q = 0} with identity operator I : B → B. Then
we have (10) in matrix form

W(1)
p (t) =

∑
|q|�M1

Ap,q(t)Wp−q (t)+Hp(t), p ∈ Z
n, (11)

whereHp(t) = (0, 0, . . . , 0, hp(t))T .
Let ‖ · ‖1 be the norm in the space of linear bounded operators defined on |a, b|

with values inD′
ϕ , ‖ · ‖2 be the norm ofM ×M matrices with elements in the form
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of linear bounded operators defined on |a, b| with values in D′
ϕ and ‖ · ‖3 be the

norm in Banach space BM = B × B × . . .× B.

Theorem 4 Let operators Qp,M,0(t) are invertible for some μ ∈ C
n and for all

t ∈ |a, b|, p ∈ Z
n. There is a function C(t) ∈ L1

loc(|a, b|) such that ‖Fp,q,j (t)‖ �
� C(t), |q| � M1, j = 0, 1, . . . ,M − 1, Hp(t) ∈ L1

loc(|a, b|). Then process
u(t, x) with mathematical model in the form (3) is dynamic in D′

ϕ with elements

ϕ = {e(μ+ip)x, p ∈ Z
n}.

Proof We need to prove that Cauchy problem (3) and (4) has a unique solution
in D′

ϕ for all t ∈ |a, b|, i.e. the system above with infinity equations number and
infinity Cauchy initial conditionsWp(t0) = Vp, p ∈ Z

n has a unique solution. We
are going to prove it for any fixed [a′, b′] ⊂ |a, b|. The system (11) is the same as
the system

Wp(t) =
∑

|q|�M1

∫ t

t0

Ap,q(s)Wp−q(s) ds +
∫ t

t0

Hp(s) ds + Vp, t0, t ∈ [a′, b′].

(12)

Define a sequence (Wp,m(t)), t ∈ [a′, b′] for all p ∈ Z
n following way:

Wp,0(t) =
∫ t

t0

Hp(s) ds + Vp,

Wp,m(t) =
∑

|q|�M1

∫ t

t0

Ap,q(s)Wp−q,m−1(s) ds+

+
∫ t

t0

Hp(s) ds + Vp, m = 1, 2, . . .

(13)

Due to inequality ‖Fp,q,j (t)‖ � C(t) there is a number T such that

‖Ap,q(t)‖2 � T · C(t) for all p ∈ Z
n, |q| � M1, t ∈ [a′, b′].

Let (bp), p ∈ Z
n be a sequence of positive numbers with bp−q � T1bp for |q| �

M1 and T with T1 don’t depend on p,

sup
t∈[a′,b′]

‖Wp,1(t)−Wp,0(t)‖3 � bp. (14)

Denote by γ the number of q ∈ Z
n satisfying inequality |q| � M1. Let us prove for

some m ∈ N inequality (15) holds.

‖Wp,m(t)−Wp,m−1(t)‖3 � (γ T T1)
m−1bp

(m− 1)!
∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣
m−1

. (15)
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For m = 1 it holds due to (14). Assume that for m = k inequality

‖Wp,k(t)−Wp,k−1(t)‖3 � (γ T T1)
k−1bp

(k − 1)!
∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣
k−1

(16)

holds. Then we are going to prove that it holds for m = k + 1 too. Obviously, due
to (13) and (16) we get

‖Wp,k+1(t)−Wp,k(t)‖3 �

�
∑

|q|�M1

∣∣∣∣
∫ t

t0

‖Ap,q(s)‖2 · ‖Wp−q,k(s)−Wp−q,k−1(s)‖3 ds

∣∣∣∣ �

�
∑

|q|�M1

T (γ T T1)
k−1bp−q

(k − 1)!

∣∣∣∣∣
∫ t

t0

C(s)

∣∣∣∣
∫ s

t0

C(y) dy

∣∣∣∣
k−1

ds

∣∣∣∣∣ �

� γ T (γ T T1)
k−1T1bp

(k − 1)! · k
∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣
k

= (γ T T1)
kbp

(k)!
∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣
k

.

Due to (15) the series ‖Wp,0(t)‖3 +
∞∑
m=1

‖Wp,m(t) − Wp,m−1(t)‖3 uniformly

converges on [a′, b′] for all p ∈ Z
n. In this way, the seriesWp,0(t)+

∞∑
m=1

(Wp,m(t)−
Wp,m−1(t)) uniformly converges for all t ∈ [a′, b′], and there is a function Wp(t)
such that for all t ∈ [a′, b′] and all p ∈ Z

n there is lim
m→∞‖Wp,m(t)−Wp(t)‖3 = 0.

If we apply the limit in (13), we get (12). So, the function Wp(t), p ∈ Z
n is a

solution of (12).
Let us prove the solution’s uniqueness. We assume that there is another solution

W̃p(t), p ∈ Z
n. Denote by yp(t) = Wp(t)− W̃p(t), p ∈ Z

n. Then

yp(t) =
∑

|q|�M1

∫ t

t0

Ap,q(s)yp−q(s) ds,

‖yp(t)‖3 � γ T
∣∣∣∣
∫ t

t0

C(s)‖yp−q(s)‖3 ds

∣∣∣∣ .

The function ‖yp(t)‖3 is a continuous function, so there are numbers dp > 0, p ∈
Z
n and there is a number A that it doesn’t depend on p such that ‖yp(t)‖3 �
dp, dp−q � Adp for all |q| � M1. In addition, we have

‖yp(t)‖3 �
∑

|q|�M1

∣∣∣∣
∫ t

t0

‖Ap,q(s)‖2 · ‖yp−q(s)‖3 ds

∣∣∣∣ �

�
∑

|q|�M1

T dp−q
∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣ � γAT dp
∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣ ,
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i.e.

‖yp(t)‖3 � γAT dp
∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣ . (17)

Let’s apply inequality (17) and then we get

‖yp(t)‖3 �
∑

|q|�M1

∣∣∣∣
∫ t

t0

‖Ap,q(s)‖2 · ‖yp−q(s)‖3 ds

∣∣∣∣ �

�
∑

|q|�M1

T

∣∣∣∣
∫ t

t0

γAT dp−q
∣∣∣∣
∫ s

t0

C(y) dy

∣∣∣∣ ds
∣∣∣∣ �

(γAT )2dp

2

∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣
2

.

If we continue this procedure, we get

‖yp(t)‖3 � (γAT )mdp

m!
∣∣∣∣
∫ t

t0

C(s) ds

∣∣∣∣
m

, m = 1, 2, . . .

Note that ‖yp(t)‖3 � 0 for m → ∞. As a result, yp(t) ≡ 0 and solution’s
uniqueness is proved.

Due to Wp(t) = (up(t), u
(1)
p (t), . . . , u

(M−1)
p (t))T , we conclude that ϕB-

distribution u(t, x) =
∑
p

up(t)e
(μ+ip)x is a solution of problem (3) and (4),

because the Fourier coefficients are absolutely continuous, equalities (4) hold inD′
ϕ

and equality (3) holds almost everywhere in D′
ϕ . ��

This work continues the author’s researches [12], where coefficients in mathe-
matical model (3) don’t depend on spacial variables.

In the process of the solving the mixed problem for hyperbolic and parabolic
differential equations by the Fourier method [13–15], we find the ϕ-solution with a
specially constructed sequence ϕ. If ϕ is a finite sequence, then in some cases the
ϕ-solutions can be interpreted as the numerical solutions of the problem found by
the Galerkin method [16].
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An Approach to Synthesis of the
Neuromorphic Functional Models
for Analog Components and Blocks

Sergey Mosin

Abstract Numerical simulation of analog circuits and functional blocks (FB) is
an important design stage of analog and mixed-signal integrated circuits as well as
the state-of-the-art embedded systems. The application of adequate mathematical
models for components and FB defines the quality of simulation and influences the
time and cost characteristics of the up-to-date microelectronic devices development
process. An approach to the automated synthesis of functional models for analog
components and blocks using machine learning methods—neuromorphic functional
models (NFM)—is proposed in the paper. The approach implements the possibility
to use either analytically defined dependencies (model-based) or dependencies
obtained during natural experimental measurements (data-driven) as the raw data for
the NFM synthesis. The design flow including the description of the mathematical
models for an analog circuit (MMC) applying the NFMs and further numerical
simulation in accordance with the assigned type of the circuit analysis is presented.
The results of experimental research for a model of the semiconductor diode
D1N4934 and circuits of the voltage rectifiers on its base are showed. The obtained
results demonstrate the high precision of the synthesized NFM and the high quality
of simulation. The comparison of obtained results with results of simulation in the
Cadence CAD tools based on a structural model of the diode is performed. The
simulation errors consist of less than 1% of the input signals’ amplitude.

1 Introduction

Mathematical numerical simulation is actively applied in computer-aided design
(CAD) tools for a microelectronic design already several decades providing support
of the development and implementation processes for the up-to-date microelectron-
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ics devices [1]. Two main entities of the mathematical support in CAD tools are
distinguished. Firstly, the mathematical models, which are used for the description
of the developed circuits for a particular type of simulation, and, secondly, the
mathematical methods ensuring the computation of investigated characteristics
based on a mathematical model of a device according to selected type of analysis.

The truth tables and Boolean algebra equations are used, as rule, for description
the models of digital devices. Hardware description languages (HDL) are widely
used for behavior description of digital devices, for instance, VHDL (Very high
speed integrated circuits Hardware Description Language) [2, 3], Verilog, SystemC
[4, 5], etc. Methods of functional logic modeling are applied for computation of
digital circuits’ characteristics.

The models of analog circuits are produced in the form of differential, nonlinear
and linear algebraic equations and systems of equations. Description of analog
circuits is performed using SPICE-like scripts [6] or description languages of
analog and mixed-signal devices such as VHDL-AMS [7], Verilog-A [8, 9], etc.
The corresponding system of equations are generated for realization of a particular
analysis type: in the static mode (DC—Direct Current), in the frequency domain
(AC—Alternative Current) and in the time domain (Tran—Transient). Specific
computation methods are used for each type of analog circuit analysis. The Gauss
method or LU-decomposition method is applied for circuit simulation in the
frequency domain, where the circuit model is represented by a system of linear
algebraic equations. The Newton method or simple iteration method is applied for
circuit simulation in the static mode, where the circuit model is represented by a
system of nonlinear algebraic equations. The finite difference methods of different
orders are applied for circuit simulation in the time domain, where the circuit model
is represented by a system of differential equations.

Simulation of analog circuits is a more complex process in comparison with dig-
ital circuits’ simulation due to the following reasons, firstly, from the computational
point of view because the process has an iterative character, secondly, from the
functional point of view because adequate mathematical models are required for
each component used in the circuit for each type of analysis [10, 11].

The development of mathematical models for new components, as rule, requires
an essential time cost and therefore restricts a quick introduction to the state-of-the-
art elements and blocks in the design process [12]. There are different approaches
to enhancing the analog models in order to provide required precision and fasten
analog circuit simulation [13–15].

An approach to the synthesis of the neuromorphic functional models (NFM)
for components oriented to numerical analysis of analog circuits is proposed in
the paper. An advantage of the proposed approach is the ability to synthesis a
NFM based on results of functional simulation (model-based) and results of natural
investigation of the analog components and blocks (data-driven). A neuromorphic
functional model synthesized in result can be used for analog circuit simulation as
well as for the description entity of complex functional blocks before implementa-
tion in neural network hardware at the embedded systems design.
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The paper is organized as the following. Section 2 describes the design flow
of the mathematical model of an analog circuit with the application of the
neuromorphic functional models for components and the features of such a circuit’s
numerical simulation. The design flow of automated synthesis of the NFM for
active analog components is presented in Sect. 3. The results of experimental
research are proposed in Sect. 4. Conclusion includes an efficiency analysis of the
proposed approach and provides quantity estimation of the results of analog circuits’
simulation using the neuromorphic functional models for some components.

2 Functional Models of Analog Components and Analog
Circuits

The mathematical models of analog passive components are based on the Ohm’s law
for a resistor, the charge conservation law for a capacitor and the electromagnetic
induction law for an inductance.

The mathematical models of analog active components, which also analytically
reflect the relationship of the current flowing through the component in dependence
on the applied voltage using a big number of internal parameters, have significantly
greater complexity [10]. For instance, the mathematical model (MM) of a semi-
conductor diode is based on the Shockley’s equation, MM of a bipolar transistor
based on the Ebers-Moll model or the Gummel-Poon model. The main complexity
of designing a MM of active component deals with adequate adjustment of internal
parameters in order to guarantee correspondence of the model output characteristics
to characteristics of a real (physical) component.

A functional model for active components that provides an approximation of
the output characteristics over a given range of input parameters is proposed in the
paper as an alternative to analytical structural models. An artificial neural network
(ANN) trained to implement the following functional dependence is proposed as an
approximator

Yout = f (Xin) , (1)

where Xin is a vector of input values, Yout is an associative vector of output values.
The current flowing through the component (I ∈ Yout ) is considered at the NFM

as the output characteristic for the one-terminal components (Fig. 1), and the applied
voltage to the component is the input characteristic (V ∈ Xin).

The input and output currents (Iout , Iin ∈ Yout ) are considered at the NFM as the
output characteristics for the two-terminal components (Fig. 2), and the input current
(Iin ∈ Xin), the input voltage (Vin ∈ Xin) and the output voltage (Vout ∈ Xin) are
considered as the input characteristics.

The mathematical model of the analog circuit (MMC) is described by applying
the nodal potential method that uses the structural and/or functional models for the



338 S. Mosin

(a) (b)

Fig. 1 One-terminal component: schematic (a), NFM (b)

fVin Vout

Iin Iout Iin;Vin

...Vout
Iout;Iin

(a)
(b)

Fig. 2 Two-terminal component: schematic (a), NFM (b)

active components

YV = I , (2)

where Y is a nodal conductance matrix; V is a vector of nodal potentials; I is a
vector of nodal currents.

The values of the current returned by the neural network when an effective
voltage is applied to its input are used during the description of the MMC. For
example, the design flow for constructing the MMC and performing circuit analysis
in the static mode includes the following steps:

1. Formation of vector V.

(a) Initialization of the vector by the zero values.
(b) For all independent voltage source Vpn connected between nodes p and

n, where p corresponds to a node of positive polarity, and n to a node of
negative polarity add the nominal voltage Vpn to the element of vector V
with index p (if p �= 0), subtract the nominal voltage Vpn from the element
of vector V with index n (if n �= 0).

2. Formation of vector I.

(a) Initialization of the vector by the zero values.
(b) Express the flowing current ik for all passive and active components in the

circuit. Add ik to the element of vector I with the index corresponding to
the circuit node into which the current flows. Subtract ik from the element
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of vector I with the index corresponding to a circuit node from which the
current flows. The operations are not considered for node 0. The current
values ik are determined using either structural or functional models. For
the case of using the functional model for a component m connected in the
circuit between nodes i and j the trained neural network returns the value of
current when the effective voltage is applied to the input of the ANN

im = fm(V(j)− V(i)). (3)

3. Formation of matrix Y.

(a) Initialization of the matrix by the zero values.
(b) For each component k in the circuit connected between nodes i and j add

the corresponding conductance yk with a positive sign to the elements of
the matrix with the indexes (i, i) and (j, j) and with a negative sign to
the elements with the indexes (i, j) and (j, i). If i or j is equal to 0, the
conductance is not added to the matrix.

Y(i, i) = Y(i, i)+ yk,Y(j, j) = Y(j, j)+ yk,

Y(i, j) = Y(i, j)− yk,Y(j, i) = Y(j, i)− yk, (4)

∀i, j ∈ N, i �= 0, j �= 0,

where N is the set of circuit nodes.

4. To solve the system of nonlinear algebraic equations for V, for example, by the
Newton’s method

Y(V(k))
V(k) = −I(V(k)),

V(k+1) = V(k) − I(V(k))/Y(V(k)), (5)


V(k) = V(k+1) − V(k).

5. If 
V(k) > ε (5), where ε is a threshold value of the absolute error, then repeat
steps 2–4 recalculating the currents I and conductance Y for obtained values
V(k+1). Otherwise, V(k+1) is the resulting vector of the nodal potentials.
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3 The Design Flow of Automated Synthesis of the
Neuromorphic Functional Model for Analog Active
Components

The artificial neural network represented by the two-layer perceptron providing an
approximation of the following functional dependence (1) is used as a base of the
neuromorphic functional model.

The design flow of automated synthesis of the NFM including the following steps
is proposed (Fig. 3).

1. Generation of initial data can be performed by two ways, firstly, based on the
results of modeling the analytical dependence of the current on the voltage
(model-based) or, secondly, based on the results of measuring the characteristics
during field testing of a component (data-driven). The raw data is represented as

Begin

Generation of Initial
Data М

The Selection of Neural
Network Architecture

Generation of Input Data
Set and Associated
Output Values Set

Training of Neural
Network and Verification

Is Quality of
Training

Ок?

Including the Model
into Library

Number of
Attempts for Param.

Optim. > maxp

Number of
Attempts for Struct.

Optim. > maxs

Error Notification

End

yesno

seyon

seyon

Fig. 3 Design flow of automated synthesis of the NFM
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a tuples array of the following form

M = {mn =< x(n)1 , . . . , x
(n)
Nx
, y
(n)
1 , . . . , y

(n)
Ny
>},

xi ∈ Xin, yk ∈ Yout , i = 1..Nx, k = 1..Ny,

where Nx is the number of the input parameters of the model, Ny is the number
of the output parameters of the model, Ns is the number of discrete values of the
functional dependence (1) in Nx -dimensional space of changes the input values

S
(n)
i ≤ x(n)i ≤ E(n)i ,∀i = 1..Nx, S

(n)
i = min(x(n)i ), E

(n)
i = max(x(n)i ).

2. The selection of the ANN architecture is focused on determining the number of
layers, the number of neurons in each layer, and the type of activation function. A
two-layer perceptron providing an approximation of the functional dependence
is used as a base of the NFM. The number of neurons in the input layer is
determined by the number of input parameters of the model and is equal to
Nx . The number of neurons in the output layer is determined by the number of
model output parameters (Ny ). The number of neurons in the hidden layer (N)
is determined empirically taking into account the corollary from the theorems of
Arnold–Kolmogorov–Hecht–Nielsen [16]

Nyktrn

1+ log2(ktrn)
≤ Nw ≤ Ny

(
ktrn

Nx
+ 1

)(
Nx +Ny + 1

)+Ny, (6)

where Nx is the dimension of the input sequence; Ny is the dimension of the
output sequence; Ny is the number of elements in the training set; Nw is the
required number of synaptic connections.

Whence, the number of neurons of the hidden layer (N) of the two-layer
perceptron will be equal to

N = Nw

Nx + Ny . (7)

3. To generate the training (Mt rn) and the testing (Mt st ) subsets by a uniform
sampling from the set of raw data M

Mt rn ∈M,Mt st ∈M,Mt rn ∩Mt st = 2,

ktrn = |Mt rn| , ktst = |Mt st | , ktrn > ktst ,

where ktst is the number of elements in the testing subset.
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Both subsets have the same structure including the matrix (vector) of the input
sets formed by the input parameters of the model xi, i = 1..Nx and the associated
matrix (vector) of output values formed by the output parameters of the model
yk , k = 1..Ny .

4. The training of an ANN is performed using the subset Mt rn. The training
process is stopped when either the training error becomes less or equal to the
threshold value, or when the number of executed iterations exceeds the maximum
available value. The quality of ANN training is tested using the subset Mt st .
If the quality of ANN training does not correspond to requirements, then the
cycle of parametric synthesis is initiated. In this case, the re-training of the ANN
architecture selected on step 2 with random re-assigning of the initial conditions
is performed. If the required quality of an ANN training cannot be achieved
during the limited number of parametric synthesis attempts (maxp), then the
cycle of the structural synthesis is initiated, which dealt with a return to step
2 and making changes in the ANN architecture (the number of neurons in the
hidden layer, increasing the number of intermediate layers, etc.). If after maxs
attempts the structural synthesis could not provide the required quality of ANN
training, then the process is stopped with the generation of the corresponding
notification.

5. The successfully trained ANN is stored in the library for further application
during describing and simulating the electronic circuits.

4 Experimental Results

The model of the semiconductor diode D1N4934 was used as an object of exper-
imental research. The raw data for the synthesis of the neuromorphic functional
model (NFM) was generated at a simulation of the structural model of the D1N4934
diode in the CADENCE CAD tools. The set of raw data M includes 12001 tuples
mn =< Vn, In > obtained as a result of performing the DC-analysis, whereVn is the
effective voltage applied to the diode changing in the range from −6 to +6 V with
step 0.01 V; In is the current flowing through the diode at applied corresponding
voltage Vn; n=1..12001.

The training and testing subsets are generated from the set of raw data M. The
training subset Mt rn includes 1201 elements uniformly extracted from the M with
step 10 starting from the element m1. The rest 10800 elements not including into
Mt rn form the testing subset Mt st .

The NFM based on the architecture of a two-layer perceptron with one neuron
on the input, one neuron on the output and N neurons in the hidden layer. According
to (6) and (7) N can take value in the range 54 ≤ N ≤ 1804.
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Table 1 The results of an
ANN training

N The number of epochs Time, s Performance error

54 48 0.21 1.69e−06

100 84 3.98 6.80e−08

1000 12 18.14 5.74e−14

1804 5 22.34 1.30e−18

Table 2 The estimation of a
VAC approximation quality
for the trained NFMs

N The average approximation values

54 0.1391e+01

100 0.1475e+01

1000 0.5399e+07

1804 0.1986e+08

R1Vin

D11 2

0

R1

1

2

3

0

D1

D2D 3

D4

Vin

Vin DC 0.7 sin(0.7 1 5k), R1 = 5k Vin DC 0 sin(0 220 5k), R1 = 5k
(a) (b)

Fig. 4 The voltage rectifier circuit: one-wave rectifier (a), two-wave bridge rectifier (b)

The results of an ANN training for different number of neurons in the hidden
layer (N) are represented in Table 1. The training has been performed in the tool of
mathematical and engineering calculation MATLAB on the computational system
with processor IntelCore i7-4770 CPU @3.4 GHz and RAM 8 GB.

The average approximation values of a volt-ampere characteristic (VAC) for the
diode have been calculated for the trained NFMs using the testing set (see Table 2).

The obtained results demonstrate that the NFM with a minimal number of
neurons in the hidden layer provides high precision comparable to the accuracy
of the structural model of the diode. The curves of the diode’s VAC for both models
(structural and neuromorphic functional) are practically coincide. An effect of the
ANN underfitting is observed at the use of 1000 and 1804 neurons in the hidden
layer that leads to essential reducing the approximation quality.

The trained NFM with 54 neurons in the hidden layer is used for describing
and simulation of the one-wave rectifier (Fig. 4a) and the two-wave bridge rectifier
(Fig. 4b) circuits.
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Table 3 The results of an
ANN training

One-wave rectifier Two-wave rectifier

Error DC Tran DC Tran

Max_Abs, V 0.0130 0.0037 0.0267 0.4988

Avg_Abs, V 0.0050 0.0019 0.0175 0.1254

RMSE, V 0.0058 0.0021 0.0149 0.1528

Fig. 5 Combined graphs of output voltage for the one-wave rectifier with the application the
neuromorphic (NFM) and structural (SFM) functional models: in the static mode (a), in the time
domain (b)

The MATLAB was used for the description of the mathematical models for the
circuits of the one-wave rectifier and two-wave bridge rectifier using the NFM for
the diode(s), as well as for further MMCs calculation. The obtained results were
compared with results of simulating the corresponding rectifiers’ circuits in the
CADENCE CAD tools (Table 3). The DC-analysis with changing input voltage
in the range −6 to +6 V with step 0.1 V and the Tran-analysis in the time domain
during three periods of the input sine-wave voltage were performed.

Comparative analysis demonstrates the sufficient proximity of the simulation
results using the NFM and the structural model of the diode. The absolute error
and mean square root error for both circuits are less than 1% of the input signal
amplitude. Combined graphs of the simulating results for the one-wave rectifier in
the static mode and in the time domain are presented in Fig. 5, and for the two-wave
bridge rectifier—in Fig. 6.
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Fig. 6 Combined graphs of output voltage for the two-wave bridge rectifier with the application
the neuromorphic (NFM) and structural (SFM) functional models: in the static mode (a), in the
time domain (b)

5 Conclusion

The proposed approach to the synthesis of neuromorphic functional models for
components and their use at the analog circuit design has demonstrated high
efficiency. The synthesis of the NFM requires low computational cost and time
consumption. Once trained NFM for components or functional blocks is stored in
the library and can subsequently be used repeatedly in the description of MMC and
device simulation. The proposed design flow for automated synthesis of the NFM is
implemented in the form of CAD software in the MATLAB tool.

The synthesized NFMs provide sufficient circuit’s simulation accuracy and can
be used in the early stages of the design prior to the development and verification
of structural models for the new components or functional blocks. The results
of experimental studies for the model of the semiconductor diode D1N4934 and
the circuits of voltage rectifiers based on the diode have ensured the adequacy
of the obtained NFM. The average approximation error in comparison with the
structural model does not exceed 1.5; the average absolute simulation error of the
first circuit was less than 0.0131 V for the static mode and less than 0.00191 V for
the time domain, and for the second circuit was less than 0.01751 and 0.12541 V,
respectively, for simulating in the static mode and time domain. The resulting errors
are less than 1% of the input voltage amplitude. The mean square root error of
simulating the first circuit in the static mode and time domain was less than 0.00581
and 0.00211 V, respectively, and for the second circuit was less than 0.01491 and
0.15281 V, respectively.

Thus, the neuromorphic functional model of components and functional blocks
can be used at the analog circuit design for the design time reduction. Moreover, the
NFM can be used for the embedded system design with the implementation of some
functionality in the neural network hardware.
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Scalability Pipelined Algorithm
of the Conjugate Gradient Method
on Heterogeneous Platforms

Nikita S. Nedozhogin, Sergey P. Kopysov, and Alexandr K. Novikov

Abstract This paper presents a parallelized iterative solver for large sparse linear
systems implemented on a heterogeneous platform. Traditionally, these problems
do not scale well on multi-CPU/multi-GPUs clusters. We consider the standard
preconditioned Conjugate Gradient (PCG) algorithm, and as an alternative the
pipelined variant, a formulation that is potentially better suited for hybrid CPU/GPU
computing since it requires only one synchronization point per iteration, instead
of two for standard CG. On heterogeneous cluster, the PCG iteration needs the
vector entries generated by current GPU and other GPUs, so the communication
between GPUs becomes a major performance bottleneck. In this paper, we study the
implementation of the pipeline PCG on multi-CPU/multi-GPU platform. This paper
presents an approach to reduce the communications between cluster compute nodes
for these solvers. Additionally, computation and communication are overlapped to
reduce the impact of data exchange. To achieve scalability, we adopt pipelined
version of the conjugate gradient method with one synchronization point, the
possibility of asynchronous calculations, load balancing between the CPU and GPU
for parallel solving the large linear systems. The algorithm is implemented with the
combined use of technologies: MPI, OpenMP and CUDA. We show that almost
optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU
execution). The parallelized solver achieves a speedup of up to 5.49 times on 16
NVIDIA Tesla GPUs, as compared to a one GPU.

1 Introduction

Highly heterogeneous HPC platforms, where multicore processors are coupled with
graphics processing units (GPUs), have been widely used in high performance com-
puting as one approach to continuing performance improvement while managing
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the new challenge of energy efficiency [10]. Although some software packages
and programming languages could be used directly, the introduction of multicore
processors in HPC resulted in redesign of some critical software packages and
significant refactoring of some existing parallel applications. Hybrid CPU/GPU
computing is one method of realizing performance gains independent of the iterative
method used. With hybrid CPU/GPU computing, we focus on separating the
computationally intensive portions of the program among several workers.

In [1] proposes a combination of a hybrid CPU-GPU and a pure GPU software
implementation of a direct algorithm for solving shifted linear systems with a large
number of complex shifts and multiple right-hand sides. This is implemented as a
blocked highly parallel CPU-GPU hybrid algorithm; individual blocks are reduced
by the CPU, and the necessary updates of the rest of the matrix are split among
the cores of the CPU and the GPU. Thus, in [9] a hybrid method for solving
systems of equations of Schur complement by preconditioned iterative methods
from Krylov subspaces was built and implemented when used together the cores
of central (CPU) and graphic processing units (GPU). The classical preconditioned
conjugate gradient method(PCG) [6] was applied for the block ordered matrix and
the separation of calculations in matrix operations between the CPU and one or more
GPUs, when the system of equations in Schur complement was solved in parallel.

Distributed-memory implementation of Algebraic Recursive Multilevel Solver
are presented in [7], that based on MPI and CUDA to adapt for heterogeneous
CPU/GPU architectures. The tasks performed on the GPU are related to the
preconditioning of each part of the distributed matrix (local preconditioning) which
is handled in the distributed version by each MPI process. The solving step remains
on the CPU.

Runtime systems with dynamical task scheduler were recently applied to PCG
solver on heterogeneous multi-CPUs/multi-GPUs architectures using PARALU-
TION and StarPU libraries [8]. The authors considered the multiple advantages of
heterogeneous architecture (Multi-CPUs/Multi-GPUs) to increase the performance
of PCG solver by using StarPU runtime system.

In [3] numerical experiments are presented using heterogeneous computing
hardware that show lower computing times and better speed-up for the pipelined
variant of conjugate gradients [2]. To reduce the cost of global communication,
in [12] have implemented a pipelined CG algorithm and properly fused some of
the vector operations to reduce the addition overhead. In this paper, we consider
an approach that reduces the cost of data exchanging between the CPU and GPU
by reducing the number of synchronization points and pipelined computing when
system of linear algebraic equations (SLAE) is solved on heterogeneous platforms.

We consider the pipelined variant, which is potentially better for heterogeneous
multi-CPUs/multi-GPUs computing, since it requires only one synchronization
point per iteration, instead of two for standard CG.

This paper presents a pipeline technique for conjugate gradient method and
discusses its parallel implementation on multi-CPU/multi-GPU platform for solving
large sparse linear systems.Hybrid parallel computing approaches are adopted
to significantly improve performance of the solver. Specifically, we introduce a
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hybrid solution by fully utilizing multi-core nodes available through multi-threading
techniques by means of OpenMP, and exploit an access to massively parallel
hardware through GPU-offloading with CUDA, in which data are transfered to
the GPU for processing. The combination of GPU-offloading and CPU-threading
is explored through a hybrid CPU/GPU compute implementation.

In our work, we modify the basic CG algorithm to minimize the cost of collective
communication. A modified but mathematically equal variant of the conjugate
gradient algorithm is employed to reduce the cost of global communication. By
using the modified algorithm, the three vector dot products in each iteration can be
done simultaneously with only one nonblocking collective communication that can
be further overlapped with other operations.

2 Pipelined Algorithm of the Conjugate Gradient Method

We consider now the pipelined version of the conjugate gradient method, which is
mathematically equivalent to the classical form of the preconditioned CG method
and has the same convergence rate.

In this algorithm, the modification of the vectors rj+1, xj+1, sj+1, pj+1 and
matrix-vector products provide the pipelined computations. The dot products (line
4) can be overlapped with the computation of the product by the preconditioner
(line 2) and the matrix-vector product (line 3). However, the number of triads in
the algorithm increases to eight, in contrast to three for the classic version and four
in [2]. In this case, a parallel computation of triads and two dot products at the
beginning of the iterative process and one synchronization point is possible.

The pipelined version CG presented in this work can be used with any pre-
conditioner. There are two ways to organize computations in the preconditioned
pipelined CG, which provide a compromise between scalability and the total number
of operations. The first approach is that all computations are executed by GPU, and
the CPU acts only as an intermediary for communications between GPUs within
and without computational node. The second approach uses the CPU as another
computing unit, i.e. a part of the matrix, which is similar for computations on
the GPU, is also allocated for computations on the CPU. The article considers the
intermediate result of these two approaches. On the one hand, the CPU mainly acts
as a communication and control device. On the other hand, the CPU is also involved
in computing of the matrix-vector product and summing of the dot products.

Thus, the CG pipeline scheme is characterized by a different order of com-
putations, the presence of global communication, which can overlap with local
computations, such as matrix-vector product and operations with a preconditioner,
and the possibility of organizing asynchronous communications.

The two variants of the conjugate gradient method were compared: the classical
scheme and the pipelined one. Table 1 presents the results of numerical experiments
where the execution time of a sequential version of the classical CG and the CGwO
pipelined scheme (Algorithm in Fig. 1) executed on the CPU and GPU are shown.
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Table 1 Statistics of the test problems. Problem names, dimensions (N), number of nonzeros
(nnz), device type (DT) and problem analysis in terms of the timing in seconds

Time, s

Matrix N nnz # iter. DT CG CGwO

Plat362 362 5786 991 M2090 6.88E-01 3.07E-01
K40m 4.13E-01 3.12E-01

1138_bus 1138 4054 717 M2090 3.81E-01 1.84E-01
K40m 5.31E-01 2.01E-01

debug 6.82E-01 1.90E-01

Muu 7102 170134 12 M2090 2.64E-01 4.68E-03

K40m 3.31E-01 4.55E-03
Kuu 7102 340200 378 M2090 4.31E-01 1.31E-01

K40m 4.39E-01 1.35E-01

Pres_Poisson 14822 715804 661 M2090 6.72E-01 3.13E-01

K40m 6.346E-01 2.73E-01
Inline_1 503712 36816342 5642 M2090 4.74E+01 5.17E+01

K40m 3.06E+01 3.37E+01

Fault_639 638802 28614564 4444 M2090 3.83E+01 4.32E+01

K40m 2.44E+01 2.77E+01

debug 2.44E+01 2.77E+01

thermal2 1228045 8580313 2493 M2090 1.35E+01 1.82E+01

K40m 8.33E+00 1.18E+01

G3_circuit 1585478 7660826 592 M2090 3.43E+00 4.32E+00

K40m 1.94E+00 2.92E+00

Quenn_4147 4147110 399499284 8257 M2090 5.46E+02 5.78E+02

K40m 3.55E+02 3.75E+02

Note that in the variants for the GPU, joint computation of all dot products of vectors
in one kernel function was implemented, independently of each other. For this,
when starting the CUDA kernel, the dimension of the Grid hierarchy of CUDA
threads was set in two-dimensional form: 3 sets of blocks, each for performing
computations on its own pair of vectors. This allowed us to reduce the number of
exchanges between the CPU and GPU memory, combining all the resulting scalars
in one communication.

Matrices from the SuiteSparse Matrix Collection [4] were used in the test
computations. The right hand side vector was formed as a row-wise sum of matrix
elements. Thus, the solution of the system Ax = b, dimension N × N (with the
number of nonzero elements nnz) is a vector x = (1, 1, . . . , 1)T .

For systems of equations of small dimension, the solution time on the CPU
according to the classical CG scheme is significantly less than the GPU execution
time for the same number of iterations (see Table 1). In tables, the fastest options in
the line are in bold. For large systems, the costs of synchronization and forwarding
between the CPU and GPU overlap with the speed of the GPU. In the pipelined
version of CGwO, the computational execution costs on the GPU are reduced almost
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Fig. 1 Algorithm 1:
pipelined algorithm CGwO

r = b − Ax
u = M−1r
w = Au
γ1 = (r, u) δ = (w, u)

||r||2/||b||2 > ε
m = M−1w
n = Am

(j = 0)
β = 0

β = γ1/γ0

α = γ1/(δ − βγ1/α)
z = n + βz w = w − αz s = w + βs r = r − αs
p = u + βp x = x + αp q = m + βq u = u + αq
γ0 = γ1
γ1 = (r, u) δ = (w, u)

threefold for all the considered systems of equations only due to the reduction of
exchanges between the GPU and the CPU in the computation of dot products.

3 CG with the Combined Use of CPU and GPU

Let us consider the application of the Algorithm in Fig. 1 for the parallel solution
of super-large systems of equations on computing nodes, each of which contains
several CPUs and GPUs. To solve SLAEs on several GPUs, we construct a block
pipelined algorithm for the conjugate gradient method. On heterogeneous platform,
data exchange between different GPUs within the same computing node is carried
out with OpenMP technology, and the exchange between different computing nodes
is carried out by MPI technology.

For example, consider a node containing a central eight-core processor and two
graphics accelerators. The number of OpenMP threads is selected by the number of
available CPU cores. The first two OpenMP threads are responsible for exchanging
data and running on two GPUs. Threads 2–6 provide computations on the CPU and
can perform computations on a block of the SLAE matrix. The last thread provides
data exchange with other computing nodes by MPI.



352 N. S. Nedozhogin et al.

3.1 Matrix Partitioning

To divide the matrix A into blocks, we construct the graph GA(V,E), where V =
{i} is the set of vertices associated with the row index of the matrix (the number of
vertices is equal to the number of rows of the matrix A); E = {(i, j)} is the set of
edges. Two vertices i and j are considered to be connected if the matrix A has a
nonzero element with indices i and j . The resulting graph is divided into subgraphs
whose number is d . For example, to split a graph, you can use the [8, 11] layer-by-
layer partitioning algorithm, which reduces communication costs due to the need to
exchange only with two neighboring computing nodes.

After that, each vertex of the graph is assigned its own GPU or CPU. On each
computing unit, the vertices are divided into internal and boundary. The latter are
connected with at least one vertex belonging to another subgraph.

After partitioning, each block Ak of the original matrix A contains the following
submatrices:

• A
[ik ,ik]
k —matrix associated with the internal vertices;

• A
[ik ,bk]
k , A[bk,ik ]k —matrices associated with the internal and boundary vertices;

• A
[bk,bl]
k —matrix associated with the boundary vertices of the k-th and l-th blocks.

Then the matrix A can be written in the following form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A
[i1,i1]
1 A

[i1,b1]
1 · · · 0 0

A
[b1,i1]
1 A

[b1,b1]
1 · · · 0 A

[b1,bd ]
1

...
...

. . .
...

...

0 0 · · · A[id ,id ]d A
[id ,bd ]
d

0 A
[bd,b1]
d · · · A[bd,id ]d A

[bd,bd ]
d

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We divide the matrix-vector product n = Am into two components by using the
obtained partition:

nbk = A[bk,ik]k mik +
l≤d∑
l=1

A
[bk,bl]
k mbl , nik = A[ik,ik ]k mik + A[ik ,bk]k nbk . (1)

Here k corresponds to the computing device. The block representation of the
vectors involved in the algorithm is inherited from the matrix partitioning. For
example, the vectorm has the formmT = (

mi1,m
b
1, . . . ,m

i
k,m

b
k, . . . ,m

i
d ,m

b
d

)
. The

implementation of the matrix-vector product reduces the cost of communication
between blocks at each iteration of conjugate gradient method. To perform this
operation, an exchange of vectors mbk is required, the size of which is less than
the dimension of the initial vectorm.

The partitioning of the preconditionerM is carried out in a similar way.
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3.2 Block Pipelined Algorithm

The matrix blocks were mapped on the available CPU and GPU with the block
partitioning of the matrix and vectors. The number and size of blocks let on to map
the load in accordance with the performance of the computing units, including the
allocation of several blocks to one.

Let us represent parallel block scheme of the method CGwO that is performed
each k-th computing unit in the form of Algorithm 2. Two parallel branches of
this algorithm are executed accordingly on the CPU and CPU/GPU. Operations
performed in parallel are shown in one line of the algorithm. Vector operations
on each computing unit occur in two stages, for internal and boundary nodes.
The designations of the internal and boundary nodes for vectors are omitted,
with the exception of the matrix-vector multiplication. Dot products are performed
independently by each computing unit on its parts of vectors. The summation
of intermediate scalars occurs in parallel threads responsible for communication,
which is the synchronization point at each iteration of the algorithm.

In block CGwO, compared to Algorithm 1, the preconditioning step has been
moved (line 5 to line 21). This is done in order to combine vector operations on
the computing unit and the assembly of the vector parts of the right hand side to
perform matrix-vector multiplication in preconditioning. The 13 line on the right
uses the ternary operator: if j = 0, then β = 0, in other cases β = γ1/γ0. The
subscript h is used for vectors that are stored only in CPU memory.

3.3 MPI+OpenMP+CUDA Programming Model

Numerical experiments on the Algorithm in Fig. 2 were carried out on het-
erogeneous platform with various configuration of computing nodes containing
several CPUs and GPUs. In the general case, the parallel computing on several
heterogeneous computing nodes containing one or more CPUs and several GPUs
is implemented by the combination of several technologies: MPI, OpenMP and
CUDA. In this article, the approach is to properly divide the computational workload
between the CPU and the GPU, so that the CPU can aid the GPU in sharing
the computational costs. Our programming strategy is based on implementation
strategy, where a hybrid MPI+CUDA+OpenMP programming model is used to
realize concurrent CPU+GPU computations. The principal concept for the strategy
is to overlap computation with communication using OpenMP’s nested parallelism
capability to generate two independent groups of threads. The first thread group
handles the CUDA, MPI communication and computation of the halo boundary
points on the CPU using OpenMP threads. The second thread group computes the
interior points on the CPU.

Let us consider the software organization of computations using as example
some cluster, which includes two computing nodes (8-CPU cores and 2-GPUs).
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A
[ik,ik]
k A

[ik,bk]
k A

[bk,ik]
k A

[bk,bl]
k .

r = b
u = M−1r

( ∨ )k
wi

k = A
[ik,ik]
k · ui

k + A
[ik,bk]
k · ub

k

wb
k = A

[bk,bk]
k · ub

k + A
[bk,ik]
k · ui

k

wb
k = wb

k + wb
h

m = M−1w
γ1k = (rk, uk) δk = (wk, uk)
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k

wb
h =
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l=1,l �=k A
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k

wb
h GPUk

mb
k

δ =
∑

k δk; γ1 =
∑

k γ1k
||r||2/||b||2 > ε

ni
k = A

[ik,ik]
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k + A
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k · mb

k

nb
k = A

[bk,bk]
k · mb

k + A
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k · mi

k

nb
k = nb

k + nb
h

z = n + βz
w = w − αz
q = m + βq
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p = u + βp
x = x + αp
r = r − αs
u = u + αq
m = M−1w
γ0 = γ1
γ1k = (rk, uk) δk = (wk, uk)

nb
h =

∑l≤d
l=1,l �=k A

[bk,bl]
k · mb

k
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h k

β = ((j = 0) ? 0 : γ1/γ0)
α = γ1/(δ − βγ1/α)
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k

mb
k

δ =
∑

k δk; γ1 =
∑

k γ1k

Fig. 2 Algorithm 2: block algorithm CGwO performed on k-th device

Each computing node is associated with a parallel MPI process. In a parallel
process, 9 parallel OpenMP threads are generated, which is one more than the
available CPU cores. The eighth OpenMP thread is responsible for communications
between different computing nodes (using MPI technology, vector assembly using
the Allgatherv function, adding scalars Allreduce) and various GPUs. In
the 2 Algorithm, the operations performed by this thread are presented to the
right. Zero and first OpenMP threads are the host threads for one of the available
GPU devices and are responsible for transfer data between the GPU/CPU (calls to
asynchronous copying functions) and auxiliary computations. Each available GPU
device (further considered as a computing unit) is associated with one of the parallel
OpenMP threads, which is responsible for transferring data between the GPU
and CPU (calls to asynchronous copy functions) and participates with the eighth
treads in matrix-vector product on boundary vertices (lines 4, 9 right column). The
remaining parallel threads (second to seventh) perform the calculations as a separate
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computing unit for their matrix block. The operations performed by computing units
in the 2 Algorithm are shown on the left.

The preconditioning in lines 2, 7 and 21 implies the use of block matrix-vector
multiplication of the form (1) considered above.

4 Numerical Experiments

The numerical experiments were performed on the cluster Uran of Supercomputer
center IMM UB RAS, Yekaterinburg, Russia. Uran involves heterogeneous parti-
tions with computing nodes (CNs), which differ by CPUs, GPUs, memory sizes and
networks. The cluster partitions with the following characteristics were used:

• partition “debug”: 4 CNs tesla [31–32,46–47] with two 8-cores CPU Intel Xeon
E5-2660 (2.2 GHz), cache memory is 20 MB L3 cache, RAM is 96 GB and 8
GPU Tesla M2090 (6 GB per device), network is 1 Gb/s Ethernet.

• partition “tesla[21–30]”: 10 CNs with two 6-cores CPU Intel Xeon X5675
(3.07 GHz), RAM is 192 GB, cache memory is 12 MB L3 cache and 8 GPU
Tesla M2090 (6 GB per device), with network is Infiniband 20 Gb/s.

• partition “tesla[33–45]”: 13 CNs with two 8-cores CPU Intel Xeon E5-2660 (2.2
GHz), cache memory is 20 MB L3 cache, RAM is 96 GB, and 8 GPU Tesla
M2090 (6 GB per device), network is Infiniband 20 Gb/s.

• partition “tesla[48–52]”: 5 CNs with two 8-cores CPU Intel Xeon E5-2650 (2.6
GHz), cache memory is 20 MB L3 cache, RAM is 64 GB and 3 GPU Tesla K40m
(12 GB per device), network is Infiniband 20 Gb/s.

Clusters such as Uran are that CPU+GPU codes are not effective, if the
performance difference between CPU and GPU is too big. In these cases, GPU-only
code might be a better alternative. Luckily, it is capable of using both GPU-only and
1-CPU/2-GPU code. The numerical experiments were carried out on well-known
datasets, which we will consider in more detail.

4.1 Benchmarking with HPCG Matrices

The High Performance Conjugate Gradient (HPCG) [5] is a benchmark program
that solves a sparse linear system arising in solving a three-dimensional heat
diffusion problem. HPCG intends to solve the linear system generated from the finite
difference discretization of the Poisson equation: − � u = b , with homogeneous
Dirichlet boundary conditions applied along the boundary of a three-dimensional
cubic domain �. Based on a semistructured mesh with equidistant mesh spaces in
the x, y and z directions, respectively, the discretization employed in HPCG leads
to a second-order accurate 27-point stencil.
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The resulting sparse linear system has the following properties:A—sparse matrix
with 27 nonzero entries per row for interior equations and 7 to 18 nonzero terms for
boundary equations; A—symmetric, positive definite, nonsingular linear operator.

We generate a synthetic symmetric positive definite (SPD) matrix A using an
array-of-pointers-style compressed sparse row format, an exact solution vector of
all 1.0 values, a corresponding right-hand-side vector b, and initial guess for x of all
0.0 values. The sparsity pattern of the synthetic matrix is really a regular 27-point
3-dimensional stencil pattern.

We tested one CPU performance on the Uran cluster based on three typical data
sizes, including:

1. 125× 125× 160, nnz = 66503662;
2. 160× 160× 201, nnz = 137318884;
3. 200× 200× 250, nnz = 267487792;
4. 250× 250× 310, nnz = 519219712;
5. 310× 310× 390, nnz = 1005862912;
6. 390× 390× 485, nnz = 1986735009;

In all variants, the pipelined version of CG converged in 43 iterations with ε
equal to 10−6. For example, the solving time of the first three data sizes on one
OpenMP thread were 8.39, 17.41, 33.22 s, respectively. We were able to obtain the
result only for the first two sizes: 1.33, 2.72 when using single GPU. The remaining
data sizes is not placed in the memory of one graphics accelerator. These results
allow us to estimate that the performance of one OpenMP thread is approximately
6.5 times lower than the performance of single GPU for the linear system solving
by the conjugate gradient method.

Performance metrices are executed and compared through scalability studies and
absolute runtime results. To estimate the computational performance and the impact
of MPI and OpenMP communications, our numerical experiments were executed
with different numbers of CPUs and GPUs. The results are shown in the Figs. 3
and 4. Each figure corresponds to the number of cluster nodes (n-CPU) involved in
the computations and the number of graphics accelerators on each node (m-GPU).

Figure 5 shows the results by subdomains for the case when 2 GPUs are used
per computational node. Here, the matrix size of the linear system is approximately
doubled. It can be noted that, starting from a size equal to 10,000,000, there is a
good scalability of the algorithm. The problem execution time remains practically
unchanged by doubling the problem size and doubling the number of subdomains.

4.2 Benchmarking on the SuiteSparse Matrix Collection

The results of comparing two algorithms of the conjugate gradient method on
SLAEs containing test matrices [4] are considered. The problems range from small
matrices, used as counter-examples to hypotheses in sparse matrix research, to large
test cases arising in large-scale computation.
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Fig. 3 Scalability of the block algorithms CGwO by CPU and GPU

Fig. 4 Scalability of the block algorithms CGwO by CPU and GPU(continue)

In the standard PCG algorithm, three dot products need to be done per iteration,
with each one requiring a global collective communication that may substantially
degrade the scalability at scale. In order to reduce the global communication
overhead, we employ a reformulated but mathematically equivalent variant of the
basic PCG algorithm, the pipelined Block PCG.

As shown in Algorithm 2, the pipelined PCG method has two advantages. First,
only one global reduction is required for each iteration. Second, the global reduction
can be overlapped with the matrix-vector product and with the application of the
preconditioner.

Figure 6 presents the results of accelerating the block algorithms of the conjugate
gradient method, when divided into a larger number of blocks, accordingly 8, 12 and
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Fig. 5 Scalability of the block algorithms CGwO by number blocks

Fig. 6 Speedup of the block algorithms CG and CGwO

16. To compute the speedup, parallel application was run repeatedly with different
mapping of subdomains to several CPUs and GPUs. For example, in the case of 12
subdomains, variants were considered: 2 CPUs with 6 GPUs, 3 CPUs with 4 GPUs,
6 CPUs with 2 GPUs. The best time is shown.

The results of comparing two algorithms of the conjugate gradient method on
SLAEs containing test matrices are presented in Table 1. The results are given for
several types of computing nodes using a single graphics accelerator.

The matrices are ordered by increasing the order of the system of equations (N)
and the number of nonzero elements (nnz). Bold indicates the best time to solve
the system in each case. The pipelined algorithm CGwO showed a reduction in
execution time on small SLAEs which are characterized by a small computing load,
due to which a reduction in communications provides less time. Note that the classic
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Table 2 Time of solving by the block algorithms CG and CGwO on CPU/GPU, s

CG/#blocks CGwO/#blocks

Matrix/DT 2 3 2 3

Plat362/M2090 1.55E+00 1.22E+00
/K40m 1.92E+00 1.56E+00 1.28E+00 1.31E+00

1138_bus/M2090 1.84E+00 9.28E-01
/K40m 1.90E+00 1.85E+00 1.03E+00 1.04E+00

/debug 1.25E+01 5.36E+00
Muu/M2090 6.12E-01 2.29E-01

/K40m 6.59E-01 5.64E-01 2.89E-01 2.88E-01
Kuu/M2090 1.30E+00 6.43E-01
/K40m 1.29E+00 1.36E+00 6.81E-01 7.95E-01

Pres_Poisson/M2090 1.55E+00 9.57E-01
/K40m 1.60E+00 1.66E+00 1.02E+00 1.19E+00

G3_circuit/M2090 4.27E+00 3.99E+00

/K40m 4.04E+00 3.510E+00 3.27E+00 2.77E+00

CG algorithm was implemented based on CUBLAS, while the CGwO variant uses
matrix and vector operations of its own GPU implementation.

For systems Inline_1 and Fault_639, the execution time of the pipelined
algorithm is 10 and 13.5% longer than the block version of CG, which is associated
with additional vector operations that are not blocked by reduced communications.
With a decrease in the number of iterations, for example, for solving a large
system with G3_circuit) with an approximately equal number of equations with
thermal2, the execution time of the CG and CGwO algorithms on one GPU
increases slightly. For the system (thermal2 and G3_circuit) the increase in
costs becomes more significant.

Table 2 presents the results of the block variant of the algorithms for computing
on several computing nodes for systems with small dimension matrices. Here
are the results for 2 and 3 subdomains. Each subdomain was considered on a
separate computing node. Communications were carried out using MPI technology.
A significant influence of network characteristics on the performance of block
methods can be seen in Table 2 for system of equations with matrix 1138_bus.
Computations for these SLAEs were performed at various computing nodes with
different throughput and latency of the network. In numerical experiments on the
CNs (partition “debug”) connected by a Gigabit network, communication costs
significantly increase the execution time of the CG algorithm.

For example, in the variant 1138_bus on the cluster partition “debug”, the
execution time of the pipeline algorithm is 3.6 times less (the line “debug” in Table 2
and any row in Table 1). Using the Infiniband 20 Gb/s communication network
reduces the execution time for all presented systems of equations (lines “M2090”
and “K40m”).
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When reducing the computational load, a decrease in the number of synchroniza-
tion points and the consolidation of transfers per transaction is more pronounced.
This shows a comparison of systems with matrices Kuu and Muu. Both systems
have an equal number of equations and nonzero elements, but the conditionality
of these matrices is significantly different and, as a consequence, the number of
iterations in the conjugate gradient method is different. Table 1 shows that using the
pipeline algorithm for the matrix Muu gives speedup by 70 times, compared with
the matrix Kuu, where the speedup is only 2.8.

The speedup was considered relative to the option on one GPU from Table 1. An
application that implements this algorithm was executed in the exclusive mode of
the computing node but not of the network.

As can be seen from the presented results, the pipelined CG shows the speedup
greater than the classic version of conjugate gradient method. Wherein, for the
largest of the considered matrices Quenn_4147, the speedup achieves 5.49 times,
while the classical version gives 3.92 as maximum. For the strongly sparse matrix
thermal2, block algorithms don’t give high speedup (maximum is 1.56), since
the computational load depends mainly on the number of the nonzero elements.

An analysis of the results showed that reducing the data size due to the
matrix partitioning and reducing the synchronization points slightly decrease the
impact of communication costs on the total algorithm performance. Only the use
of computing nodes connected by Infiniband allowed us to get speedup when
computing on several computing nodes. The matrix partitioning into blocks allowed
to decrease the execution time of the pipelined block algorithm in comparison with
the conjugate gradients on one node on the matrices Inline_1, Fault_639 by
reducing the computational load on one GPU.

Large systems thermal2, G3_circuit, solved by the block of the CGwO
algorithm, as well as the reduction in communications costs and synchronization
points, do not overlap the increasing costs of additional vector operations.

5 Conclusion

The heterogeneous computing platforms containing and sharing CPU + GPUs
provide an effective solution to a wider range of problems with high energy
efficiency when CPU and GPUs are uniformly loaded.

The parallel implementation of the solution of systems of linear algebraic
equations on a heterogeneous platform was considered. The performance of parallel
algorithms for classical conjugate gradient method is significantly limited by syn-
chronization points when using the CPU and GPU together. A pipelined algorithm
of the conjugate gradient method with one synchronization point was proposed.
Also, it is provided the possibility of asynchronous computations, load balancing
between several GPUs located both on the same computing node and for a GPU
cluster when solving systems of large-dimensional equations. To further increase
the efficiency of calculations, it is supposed to study not only the communication
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load of the algorithms but also the distributing of the computational load between
the CPU and GPU. To obtain more reliable evaluation of communications costs,
it is necessary to conduct a series of computational experiments on supercomputer
with a completely exclusive mode of operation and a large number of heterogeneous
nodes.

The following conclusions can be drawn from the analysis of data obtained dur-
ing numerical experiments: the use of a pipeline algorithm reduces communication
costs, but increases computational ones. For systems of small sizes or with a small
number of iterations, this reduces the execution time of the algorithm when using
a single GPU. For systems of large dimensions, a reduction in execution time, in
comparison with CG, is possible only with a sufficiently small partition of the matrix
into blocks, in which the increased computing costs overlap the communication
decrease.

The proposed block algorithms, in addition to reducing the execution time, allow
solving large linear systems that requires memory resources not provided by one
GPU or computing node. At the same time, the pipelined block algorithm reduces
the overall execution time by reducing synchronization points and combining
communications into one message.
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Accumulation of Microdamages During
Cyclic Loading of CFRP Structure
Elements

Vitaly N. Paimushin, Rashit A. Kayumov, and Sergey A. Kholmogorov

Abstract A review devoted to the problem of describing the microdamages accu-
mulation is given. The results of the author’s experimental studies are presented.
They are demonstrating the features of the deformation processes of specimens
with cross-ply ±45◦ lay-up made of ELUR-P unidirectional carbon fiber and cold-
curing binder XT-118 under cyclic loading. When modeling these processes, it
is assumed that strain consists of elastic, viscoelastic, viscoplastic parts, as well
as a part formed as a result of microdamages accumulation. A phenomenological
approach is used to describe the process of microdamages accumulation. When
identifying the parameters of the constitutive relations, based on the test results,
which relate the above-mentioned parts of the strain to stresses, some hypotheses
are used that make it possible to simplify the solution of this problem. The results of
solving the problems of determining the mechanical characteristics included in the
proposed variants of the constitutive relations are presented.

1 Introduction

In the process of loading, structures made of fiber reinforced plastics (FRP), in
addition to elastic ones, inelastic strains sometimes occur. They can be caused by the
creep of the material, plastic strains (especially in composites with a metal matrix),
the motion of dislocations, the stability loss of the phases of the composite, their
failure at the microlevel (development of microcracks, micropores). Under a single
static loading, some of strains can be interpreted as nonlinear elastic and viscoplastic
using well-known relations for describing such deformation models. The processes
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caused by microdamage are usually called the microdamages accumulation, and a
number of well-known theories have been proposed for them [1–4]. Starting from
work [1], the measure (parameter) of damage under axial tension is understood as
the value

ω(t) = 1− Aeff (t)/A0, (1)

where A0, Aeff (t) is initial and effective (actually bearing load) of cross-section
area, t—time. Effective stress was determined as

σeff (t) = P/Aeff (t). (2)

To describe the damage evolution, the following relation was proposed [1]:

dω/dt = 1− C(σ/(1− ω)n), ω(0) = 0. (3)

The equality was taken as a condition for material failure:

σeff (t
∗) = σ ∗, (4)

where σ ∗ is the ultimate strength of the material. The condition was often used in a
simpler form:

ω(t∗) = 1. (5)

The development of these ideas for the case of a complex stress state was the
main subject of the continuum theory of damage, while various scalar and tensor
measures of damage were proposed for isotropic and anisotropic media [5–10].
For example, the criterion of long-term static strength within the framework of
this approach was proposed in [9], in which, to determine the effective stresses,
an approach was used, according to which, in the criterion of short-term strength,
the nominal stresses are replaced by the effective ones

f (π, σ
ij

eff (t)) = 1, (6)

where π is set of strength parameters; σ ijeff is effective stress. This is a natural
generalization of the failure condition (4) for the case of a complex stress state.

In most cases, when describing the processes of microdamages accumulation,
the hypothesis proposed by Kachanov in [2] is used, namely, it is assumed that
the formation of microdamages does not affect the creep process and vice versa.
With complex types of impact of external factors, including cyclic loading, it is
necessary to take into account the peculiarities of the microdamages accumulation
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in the FRP, depending on the structure and type of FRP components. Therefore, the
models used to describe them differ from those that are usually used to analyze the
deformation of bodies made of metals and other traditional structural materials. The
simplest models of this kind of deformation processes under tension in transversal
direction to the fibers of the lamina and its shear of laminates were proposed in
[3, 4]. In this case, the relations that connect the stresses with the total strains of the
lamina sometimes depend both on the states of “loading” or “unloading” and the
sign of the stresses. In the axes of orthotropy of the lamina, it is assumed that strains
caused by microdamages appear only when tension transverse the reinforcement
and in shear. With a decrease in tensile or tangential stresses, unloading proceeds
according to a linear law. When the stress changes from tensile to compressive,
the hypothesis of the absence of linear strains caused by microdamages (due
to the closure of microcracks) is accepted. During shear, the accumulation of
microdamages is considered to be independent of the sign of shear stresses. Since it
is assumed that only elastic strains and strains caused by microdamages are present,
the latter no longer change after unloading the laminate and reloading to the same
values of stresses. However, under cyclic loading, as will be seen from the results
of experiments on specimens made of ELUR-P unidirectional carbon fiber, this
assumption is no longer valid.

In the general case, damage measures can be included both in the strength
criterion and in the constitutive relations for creep, plasticity, viscoelasticity, and
vice versa. For example, in [1], the constitutive relation for the damage parameter
contains creep strain. The author refers to this case to the processes of loading metals
at high temperatures. An example of solving the problem of the theory of plastic
flow related to the continuum theory of damage for the volumetric stress state of an
isotropic body is given, for example, in [5].

There are theories based on other concepts as well. In [11], the intensity of
accumulated creep strains was used as a measure of material damage. In [12],
when considering a nonlinear-viscoelastic isotropic material, the constitutive strain
relations were proposed to be written in the form (in what follows, the indices of
tensor quantities will be omitted for ease of notation):

ε = εel + εv + εω. (7)

Here εel is an elastic strain, εv is viscoelastic strains, εω is strains due to the damage
accumulation. They were determined by the following relationships:

εv =
t∫

0

H(t − θ) ϕ(σ )dθ, εω =
t∫

0

M(t − θ) ψ(σ)dθ. (8)
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When formulating the material strength criterion, it was proposed to take the sums of
only elastic strains and strains arising from the damage accumulation as independent
variables

F(εel + εω) = 1. (9)

In papers [13] and [14], a form of the kinetic relationship different from (3) was
proposed in the form:

ω(t) = 1− σ/
⎛
⎝σ +

t∫

0

M(t − θ) σ dθ
⎞
⎠ . (10)

The Abel kernel was used as a difference kernel.
In [15], when considering an isotropic viscoelastic material, the kinetic relation

of the hereditary type with the Abelian kernel was also used

ω(t) = (1+m)
t∫

0

(t − θ)m
ζ 1+m dθ.

Here ζ = ζ(σ ) is the some function of equivalent stress.
In some works, the relative change in the modulus of elasticity [16], as well as

the ratio of densities at the initial and current times [17], were taken as the damage
parameter during cyclic loading. Such approaches are also used in which the level
of damage is assessed by both residual stiffness and residual strength [18].

The work [19] is devoted to the method of predicting the behavior of mechanical
systems under conditions of damage accumulation based on probabilistic models,
which also contains significant experimental material.

In the works of Novozhilov V.V. an approach was proposed to the analysis of
irreversible processes of deformation and accumulation of damage based on the
introduction of the concept of microstress (see, for example, in [20]).

To describe the deformation process taking into account the damage accu-
mulation, variants of the theory of the endochronic type with several internal
times “triggered” for each component of the composite, associated with various
mechanisms of damage accumulation, are also proposed [21].

In the experimental determination of the damage level in composite materials,
many different approaches have also been proposed. A review of some methods
for assessing material damage and its evolution by non-destructive testing methods
can be found, in particular, in [22]. We also note the work [23], which concludes
that the most practical are simple methods, namely, optical microscopy and acoustic
emission. The latter is used quite often (see, for example, [24, 25]).

The results of a fairly large series of experiments carried out to study the damage
patterns accumulation and fracture in highly filled polymer materials under loading
of various types are given in [26].
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All experiments are described within the framework of the nonlinear viscoelas-
ticity model, and the criterion fracture parameter is the sum of the partial increments
of the strain intensity in the active parts of the loading process.

In some works, when formulating strength criteria, the relationship between the
moment of failure of specimens and the change in the nature of heat generation
caused by an irreversible strain of the material is used [27].

Today, there are a fairly large number of publications devoted to other approaches
to the analysis of damage accumulation and failure processes, methods of solving
problems on determining the degree of material damage (including their numerical
modeling), and taking it into account when assessing the load capacity of structural
elements. Some of them can be found, for example, in [28–39].

Below we investigate the problem of assessing the damage level of composite
specimens made by cross-ply ±45◦ lay-up under cyclic loading. A phenomenolog-
ical approach is used to describe the process of microdamages accumulation. The
problem of constructing constitutive relations is considered in a one-dimensional
formulation in the specimen axes.

2 Experimental Results

In order to analyze the process of deformation of the composite material at
sufficiently high levels of load, a number of experiments on cyclic tension and
tension-compression were carried out. For testing, we used test specimens made
of cross-ply reinforced fiber composites with ±45◦ lay-up based on ELUR-P
unidirectional carbon fiber and XT-118 binder with average thickness h = 0.56 mm
(four laminas with thickness 0.14 mm), width b = 24.60 mm and gage length
l = 110 mm. Specimens from unidirectional carbon fiber HSE 180 REM prepreg
was also used. The tests were carried out at room temperature on an Instron
ElectroPuls E10000 servo-electric universal testing machine. To measure axial
strains, an Instron mounted extensometer with a measurement base of 50 mm and
accuracy class B-1 according to ASTM E83 was used. Such tests are regulated by
standard ASTM D3518. During the tests, stresses and strains in the specimen axes
are measured at each time point. The tests were carried out eight months and 3 years
after the manufacture of test specimens, when the polymerization of the binder could
be considered complete. In Fig. 1 we can see, that strain increments are decreased
on each cycle.

If the level of maximum stresses is high enough, then the strain increments first
decrease, and, starting from a certain cycle number, their increase is observed Fig. 2.
This can be explained by the microdamages accumulation causing additional strain.
As noted above, this process cannot be described by the models outlined in [3, 4],
since in them these additional strains depend only on a certain level of stresses,
similar to what is accepted in the theory of plasticity. Those, upon reaching this
level, a strain can grow indefinitely without increasing stresses, but unlike the theory
of plasticity, this approach assumes that there is no residual strain during unloading,
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Fig. 1 Cycling tension of ELUR-P specimen under 45 MPa
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Fig. 2 Cycling tension of ELUR-P specimen under 65 MPa

which means that the secant modulus is less than the initial one. Models using the
concept of effective stress and damage parameters [1, 2] are also not applicable here
because they neglect additional strain caused by damage.

It should also be noted that the microdamages accumulation for composite
materials can be much more intense during compression, which also contradicts
the approach proposed in [3, 4]. For example, Fig. 3 shows a stress-strain curve of
a symmetrical cyclic load test of a cross-ply HSE 180 REM specimen with lay-
up ±45◦. It can be seen that the hysteresis loops increase with each cycle, and
this occurs much more intensively during compression, which cannot be described
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Fig. 3 Symmetric cyclic loading of HSE 180 REM ±45◦ specimen

by the usual relations of the theories of creep, viscoelasticity and relations [3, 4]
for the strain caused by the appearance of micro-damages such as microcracks. It
can be assumed that the reason for such a difference in the response to tension
and compression may be the stability loss of the phases of the composite at the
microlevel [40].

3 Constitutive Relations and Identification of Their
Parameters

To describe the process of microdamages accumulation for the material under
consideration, as in [3, 4, 12], we introduce the assumption that additional strain
appears during the microdamages accumulation. We will also assume that these
additional strain will also accumulate at low stresses, but at a lower rate. This
does not contradict the hypothesis of a decrease in the effective area [1, 2] due
to the appearance of microdamages such as micropores, microcracks, since it can
be assumed that microdamages reduce not only the effective area, but also the
geometric stiffness of the representative body elements containing them. This is
also true under the assumption that additional strain during the microdamages
accumulation is caused by stability loss of the FRP phases and the buckling of the
fibers. In what follows, for simplicity, we consider only the one-dimensional case of
tension. For total strain, we assume that it consists of the following terms:

ε = εel + εcr + εv + εω, εel = σ/E0. (11)
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Here εel is the linear elastic part of strain, E0 is initial modulus of elasticity, εv is
viscoelastic (heredity elastic) component, εcr is irreversible creep strain, εω is strain
caused by the process of microdamage development and accumulated by a certain
point in time or the number of cycles. For the components εcr , εv , as in [41], the
following relations can be taken:

dεr/dt = χ0σ/(1+ χ1ε
cr )
m
, (12)

εv =
t∫

0

f (σ)H(t − τ )dτ, H(t − τ ) = B

(t − τ )α , 0 < α < 1, B > 0. (13)

When formulating relations for strain εω, it is necessary to take into account (as in
works [1, 2]) that it increases at a certain rate, which depends on both stresses and
the level of these strains. In addition, in the case of cyclic loading, the accumulation
rate εω may depend on both the number of loading cycles and their type. Third,
εω must have different accumulation rates in tension and compression. Taking
these assumptions into account, the constitutive relations in a general form can be
represented as:

dεω = F1

(
σ, sign(σ ), εω, t

)
dt + F2

(
σ, sign(σ ), εω, θ

)
dθ, θ = t/T . (14)

Here T is period of cyclic loading. In fact, θ is an endochronous parameter with
which a discrete variable (number of cycles) is replaced by a continuous one. As
can be seen from (14), and as noted above, in contrast to works [3, 4], here the
accumulation of strain caused by microdamages occurs at low stresses.

Next, we will consider a particular version of loading, namely, cyclic tension,
therefore, for this case, we can take, for example, the following (one of the simplest)
form of relation (14):

dεω = F2 =
(
1+ aεω)k (σ/σ0

)n
dθ, k > 0, n > 0. (15)

Here, the value σ0 is the value of the stress, the excess of which at σ > σ0 and large n
leads to a sharp increase in the rate of strain accumulation caused by microdamages.
The parameters σ0, a, k, n are determined by identification methods (see, for
example, [42–44]) based on the results of experiments. One of the difficulties in
solving these problems in the case under consideration is the problem of isolating
from the experimental data various parts of the strain included in (11). For this, the
approach used in [41] can be applied. Namely, we will assume that at small times,
the strain εω caused by the microdamages accumulation will be much less of strain
εcr + εv . Therefore, they can be neglected for the first few cycles. Next, we need to
separate the strain εcr and εv . This can be done in the same way as was proposed in
[39], namely, it can be assumed that the rate of viscoplastic strain decays much faster
than the rate of viscoelastic deformations. This makes it possible, at considerable
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time values (in our case, at considerable numbers of cycles) to assume, that the
increments of the total strain 
ε mainly consist of increments
εv . Then, for large
values of the numbers of cycles at some points in time that differ by values that
are multiples of the period T , the increments of viscoelastic strain can be expressed
through the experimental values of strain 
εv . For example, it is convenient to use
those times at which the stress reach their maximum values. Then at these moments
we can write the following relations


εcr +
εv ≈ 
εv ≈ 
εexp , (16)


εv = εv(j1T + T/2)− εv(j2T + T/2),

εexp = εexp(j1T + T/2)− εexp(j2T + T/2).

(17)

Here j1, j2 1 1—numbers of cycles.
When used in (13) for the H(t − τ ) Abel kernel, the problem of finding the

parameters α, B from (16), (17) can be divided into two specially obtained systems
of equations [43], which make it possible to sequentially find the first α and then
B. This approach is based on the peculiarities of relations (13) with the Abel
kernel under cyclic loading [43]. In the general case, the mechanical characteristics
included in H(t − τ ) can be found from system (16), (17), for example, by the
method of minimizing its quadratic residual. However, it should be noted that this
may introduce difficulties that are inherent in identification problems, since they
belong to the class of incorrect ones (see reviews, for example, in [42, 44–46]. After
that, for small values j1, j2, you can find the increments
εcr :


εcr ≈ 
ε −
εv ≈ 
εexp −
εv. (18)

Since 
εv can already be found by relation (13), then (18) will contain only the
required characteristics χ0, χ1, m. They can also be found by the method of
minimizing the quadratic residual of the system obtained from (18) for different
values j1, j2 ∼ 1.

The modulus of elasticity E0 can then be determined. To do this, it is necessary
to use the “stress-strain” curve for any cycle at small values of the cycle numbers
j , but taking into account the already found laws of viscoelastic and viscoplastic
strain. Then an expression of the following form can be used to determine E0:


(εexp − εv − εcr ) = 
σ/E0. (19)

According to the described technique, the rheological characteristics of the material
were determined based on the results of the experiment shown in Fig. 2. The “stress-
time” dependence on a half-cycle was considered linear. In this case, the calculation
of the values εv , εcr was carried out numerically. As a result of processing test data
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at σmax = 65 MPa, σmin = 3 MPa, T = 266 s the following values of the required
quantities were obtained:

E0 = 9210 MPa, B = 4.5 · 10−6sα−1/MPa, α = 0.94,

χ0 = 5.5 · 10−2/(MPa · s), χ1 = 993,m = 26.3.
(20)

At the last stage, one can find the parameters of relation (15). To do this, we can
compose the following system of equations for cycles with large numbers:


εcr +
εv +
εω = 
εexp, 
ε
ω = εω(j1T + T/2)− εω(j2T + T/2). (21)

The identification procedure gave the following results

σ0 = 4.42 · 108 MPa, n = 1, k = 14.5, a = 586. (22)

Figure 4 shows the results obtained in the experiment (indicated by round markers)
and calculated using relations (11)–(13), (15). The strain values εω calculated in
accordance with (21) are shown in Fig. 5. It is seen that at j1, j2 < 10 values εω

are less than 5% of εcr + εv + εω. Therefore, the assumption that at small times the
strains caused by microdamages accumulation will be much less than the sum of
viscoelastic and viscoplastic strain can be considered confirmed. Below the results
of the analysis of another specimen (also made of ELUR-P unidirectional carbon
fiber, but after holding for three years), under tensile cyclic load at σmin = 0,
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Fig. 4 Top curve—total strain value, bottom curve—sum of strain εcr+εv+εω value, determined
from the test for σ = σmax = 65 MPa (round markers), and calculated by relations (11)–(13), (15)
of cycle number
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Fig. 5 Values of strain εω of cycle number for σ = σmax = 65 MPa

σmax = 75 MPa are given. The procedure outlined above gave the following
mechanical characteristics:

E0 = 10100 MPa, B = 2.01 · 10−6sα−1/MPa, α = 0.68,

χ0 = 0.0116/(MPa · s), χ1 = 693,m = 21.3, σ0 = 2.475 · 108, n = 1,

k = 4.1, a = 101.

(23)

The values of the total ε and the sum of strain εcr + εv + εω are shown in Fig. 6.
Figure 7 shows the values of microdamage strain εω. The difference obtained in the
mechanical characteristics of these specimens, apparently, can be explained by the
large difference in the times elapsed after their manufacture and the moment of the
experiments.

Evaluation of the performance of structures must be carried out on the basis
of the criteria of strength, rigidity, stability of their elements. Due to the presence
of rheological properties of the material and the accumulation of microdamages
over time, their stress-strain state usually changes, as well as a drop in the strength
characteristics of the material. Therefore, in addition to assessing the level of
stress-strain state, a large number of works are devoted to the development of
criteria for the failure of materials, including taking into account the microdamages
accumulation (see, for example, in [1, 2, 5–10, 13, 14]. When using relations of
the type (15), as the critical one, one can take the time at which the rate of
microdamages accumulation in some elements becomes dangerous (formally, when
the curve εω = εω(t) reaches the vertical asymptote).

If we use the approach proposed in [1, 2], then the results obtained above can also
be used, assuming that the effective stress can be calculated through the initial elastic
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Fig. 6 Top curve—total strain value, bottom curve—sum of strain εcr+εv+εω value, determined
from the test for σ = σmax = 75 MPa (round markers), and calculated by relations (11)–(13), (15)
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Fig. 7 Values of strain εω of cycle number for σ = σmax = 75 MPa

characteristics and the sum of strain εel + εω. For example, in the one-dimensional
case, similarly to [12], this condition can be written as follows:

εel + εω = σ ∗/E0. (24)

Here σ ∗ is the ultimate strength of the material. However, verification of rela-
tion (24), on the one hand, was not included in the task of this study. On the
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other hand, when carrying out cyclic loading experiments, situations often arise in
which the contact extensometers reach their limit values, after which they may fail.
Therefore, it is not possible to bring the specimens to failure.

4 Conclusion

A review of works devoted to the problem of describing the processes of micro-
damages accumulation shows that for the experimental assessment of the level
of this damage, as well as for the mathematical modeling of this phenomenon, a
large number of methods and constitutive relationships have been proposed, which
are selected depending on both the material and the type of load. Based on the
analysis of the results of the author’s experiments, some features of the deformation
processes of specimens made of unidirectional carbon fiber by cross-ply ±45◦ lay-
up are shown under cyclic loading. It is assumed that these features are caused
by the microdamage accumulation. When modeling it, it is assumed that the strain
consists of elastic, viscoelastic, viscoplastic parts, as well as a part formed as a result
of the microdamages accumulation. Thus, a phenomenological approach is used to
describe the process of microdamage accumulation. The well-known hypothesis is
accepted that the constitutive relations describing the development of each part of
the strain, except for this part itself, include only stress and time.

Some hypotheses are accepted to isolate the various parts of the strain from the
experimental data. Namely, it is believed that at short times, the strain caused by
the microdamages accumulation will be much less than other parts of the strain.
Therefore, they are neglected in the initial cycles. Further, it is assumed that the rate
of viscoplastic strain decays much faster than the rate of viscoelastic strain. This
makes it possible, at considerable time values, to assume that the increments of total
strain consist of increments of only viscoelastic strain. The accepted hypotheses
make it possible to consistently determine the mechanical characteristics included
in the constitutive relations.

Variants of physical relationships for the indicated parts of the strain are pro-
posed. The results of solving the problems of identifying the constitutive relations of
the parameters included in the proposed forms based on the results of cyclic tension
tests are presented. It is concluded that the proposed hypotheses allow a fairly good
description of the behavior of the specimens from the considered material.
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Two-Dimensional Integrating Matrices
for Solving Elasticity Problems
in a Rectangular Domain by the Finite
Sum Method

Vitaly N. Paimushin and Maksim V. Makarov

Abstract Using the Poisson equation and equations describing the plane stress state
of plates as an example, the method of finite sums (two-dimensional integrating
matrices) for the numerical solution of two-dimensional boundary value problems
of the theory of elasticity is presented. According to this method, the original
differential problem is preliminarily reduced to integral equations of the Volterra
type, and then their approximation is carried out based on the replacement of
the integrand by the Lagrange interpolation polynomial over Gaussian nodes.
Two-dimensional integrating matrices are constructed. Numerical estimates of the
accuracy of various test problems are carried out. It is shown that the convergence
is exponential.

1 Introduction

Most of the numerical methods used in practice for solving boundary value
problems, as is known, are based on the reduction of the original problems to
the systems of algebraic equations of one structure or another. To date, a fairly
wide arsenal of methods for constructing systems of algebraic equations (difference
schemes) that approximate the original differential problems has been developed.
Of these (in particular, in the mechanics of a deformable solid), the most common
are the methods of finite differences and finite elements, discrete orthogonalization,
and some other methods that require the formulation of the initial problems in the
form of differential or variational equations.

The natural desire to expand the arsenal of research methods led to the formu-
lation of boundary value problems in the form of integral or integro-differential
equations [1–4], since the reduction of differential equations to integral equations
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allows in some cases to formulate boundary value problems more compactly, leads
to more robust computational procedures that allow achieving the required accuracy
of results with less computation.

The advantage of using the integral representations of the original problems also
lies in the fact that they do not contain derivatives of functions and, therefore, do
not impose large restrictions on the smoothness of these functions. In addition,
when problems are formulated in the form of integral equations, it is often easy
to construct solutions in the class of discontinuous functions.

A reflection of the significant expansion of applications of integral equations is an
increasing interest in the theory and methods for their solution in many applied areas
of scientific research. To date, there are many works on the study of the properties
of various types of integral equations, as well as methods for their solution.

Boundary integral equations formulated by various methods, which are equiv-
alent in the formulation of boundary value problems for ordinary differential
equations, have found the greatest application in problems of solid mechanics.

The use of approximate numerical methods for solving integral equations was
the impetus for the development of the already classical finite sum method, Runge-
Kutta, iterative methods, etc.

When solving integral equations numerically by any methods, one inevitably
has to replace the integrals included in them by finite sums. In this case, the
resulting final ratios can be auxiliary or have an independent character as the
final calculated expressions of the finite sum method. The finite sum method (the
method of quadratures, mechanical quadratures, quadrature formulas) consists in the
compilation and direct use of calculated expressions obtained by replacing integral
operators with finite sums based on the use of various quadrature formulas.

The choice of a quadrature formula for solving integral equations is not easy to
carry out, since there are no ready-made recommendations, complete for practice, in
the scientific literature, which is explained by the insufficient knowledge of the cal-
culations of integrals with variable boundaries. This gave rise to many approaches
and ways of applying the finite-sum method using various approximations of the
integrand: formulas for rectangles, trapeziums, Simpson, Gauss, etc.

Significant advances in the application of finite sums for solving one-dimensional
problems of mechanics have so far been achieved based on the use of the sliding
interpolation of the integrand in a version of the method proposed by M. B. Vakhitov
and called the apparatus of integrating matrices [2, 3]. The sliding interpolation
by a polynomial of the third degree used by him, as shown by numerous studies,
provides high accuracy of the numerical integration operation and the efficiency of
the method he proposed.

In the general case, the error of the finite sum method is due to the error
of replacing integrals by finite sums, i.e. is determined by the accuracy of the
approximation of the integrands (the accuracy of the quadrature formulas). In this
regard, for the interpolation of integrands, it seems appropriate to use splines (spline
functions), the apparatus of which is an effective method for solving many problems
of computational mathematics [5–8]. The advantages of splines, first of all, should
be attributed to the ability to ensure high quality of approximation and efficiency
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of implementation on a computer of algorithms associated with their application.
These properties have recently contributed to the expansion of the application of
spline functions to the solution of integral equations [4], including the finite sum
method in the version [2] using integrating matrices using spline approximations [9].

Further development of the method of integrating matrices was given in [10, 11],
in which the use of unsaturated algorithms for approximating functions was pro-
posed. In [10], integrating matrices were constructed in which the nodes associated
with the zeros of the corresponding Legendre polynomials are used as collocation
nodes. This turns out to be sufficient to obtain an unsaturated algorithm with
exponential accuracy and to ensure the symmetry of the matrix generated by the
self-adjoint problem, which is especially important when solving spectral problems.
In [10], using the example of a self-adjoint fourth-order equation, a detailed study of
the stability and accuracy of the proposed version of the integrating matrix method
was carried out. In particular, it is shown that the conditionality of the system
matrix does not deteriorate with the growth of collocation nodes. The undoubted
advantages of this method include the fact that it allows a strong local refinement of
the grid nodes and very accurately describes solutions with large gradients in very
short sections.

This article discusses the application of the finite sum method to the solution
of two-dimensional boundary value problems. Some aspects of its application were
previously considered in articles [12, 13].

2 Two-Dimensional Integrating Matrices

Consider a boundary value problem in the form of Poisson’s equation in a rectan-
gular domain [� = {X = (x, y), x ∈ (0, a), y ∈ (0, b)}], bounded by a contour
� = �1

⋃
�2

⋃
�3

⋃
�4, where �1 = {X = (x, 0), x ∈ (0, a)}, �2 = {X =

(0, y), y ∈ (0, b)}, �3 = {X = (x, b), x ∈ (0, a)}, �4 = {X = (a, y), y ∈ (0, b)}

−
u = f (X), X ∈ �, (1)

under boundary conditions

u|�1
= 0, u|�2

= 0,
∂u

∂y

∣∣∣∣
�3

= ϕ3,
∂u

∂x

∣∣∣∣
�4

= ϕ4, (2)

Integration of equation (1) over x from ξ to a, taking into account the boundary
condition (2) for �4, leads to the equality

− ϕ4 + ∂u

∂x
(ξ, y)−

a∫

ξ

∂2u

∂y2
(x, y)dx =

a∫

ξ

f (x, y)dx. (3)
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Further, integrating equality (3) over y from η to b and taking into account the
boundary condition (2) for �3, we obtain for ξ ∈ (0, a), η ∈ (0, b)
b∫

η

∂u

∂x
(ξ, y)dy +

a∫

ξ

∂u

∂y
(x, η)dx =

b∫

η

a∫

ξ

f (x, y)dxdy + ϕ4(b − η)+ ϕ3(a − ξ).

(4)

Thus, the differential equation (1), subject to the boundary conditions (2) on the
contour �3, �4, is reduced to equation (4) concerning the vector function U =
(∂u/∂x, ∂u/∂y)T with integral operators of the Volterra type. To close this equation
with respect U we use the remaining boundary conditions (2) u|�1

= 0, u|�2
= 0.

For this purpose, integrating ∂u
∂x
(x, η) over x from 0 to ξ , ∂u

∂y
(ξ, y) over y from 0 to

η ∀ξ ∈ (0, a), ∀η ∈ (0, b), we obtain the dependencies

ξ∫

0

∂u

∂x
(x, η)dx = u(ξ, η)− u(0, η),

η∫

0

∂u

∂y
(ξ, y)dy = u(ξ, η)− u(ξ, 0), (5)

which, taking into account the boundary conditions u(0, η) = u(ξ, 0) = 0 reduce
to the equation

ξ∫

0

∂u

∂x
(x, η)dx −

η∫

0

∂u

∂y
(ξ, y)dy = 0. (6)

Note that the resulting system of integral equations (4), (5) for functions ∂u
∂x
(X),

∂u
∂y
(X), is equivalent to the original problem (5), (2), after solving which the solution

to the original boundary value problem (1), (2) is restored using equations (5).
We introduce into consideration the integral operators Lx , Ly ,Rx ,Ry :

Lxv =
ξ∫

0

v(x, η)dx,Lyv =
η∫

0

v(ξ, y)dy,Rxv =
a∫

ξ

v(x, η)dx,Ryv =
b∫

η

v(ξ, y)dy

and operator A =
(
Ry Rx
Lx −Ly

)
. Then problem (4), (6) can be written in the operator

form

AU = F, (7)

where F = (RyRxf + ϕ4(b − η)+ ϕ3(a − ξ), 0)T , A : H × H → H × H ,
H = L2(�)—is the space of square-integrable functions on�.
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To approximate problem (7), it is necessary to construct the corresponding two-
dimensional integrating matrices Lhx , Lhy ,Rhx ,Rhy , which are grid analogs of the
operators Lx , Ly , Rx , Ry in problem (7). The first results on the construction of
one-dimensional integrating matrices in the framework of the finite-sum method
were obtained by Vakhitov [2] and were further developed, in particular, in the
works of R.Z. Dautov and V.N. Paimushin [10]. For the approximation of one-
dimensional integral equations of the Volterra type, a method of collocations along
with Gaussian nodes and a method for constructing the corresponding integrating
matrices were proposed in [10]. To construct two-dimensional integrating matrices,

we first introduce into consideration integral operators Lcg =
ξ∫
0
g(x)dx, Rcg =

c∫
ξ

g(x)dx, Dcg =
c∫

0
g(x)dx, ξ ∈ (0, c), which we replace by their finite-

dimensional analogs in the form of integrating matrices Lch, Rch, Dch, respectively
(here and below, italics denote operators acting in the space of measurable functions,
in roman type operators acting in the space of grid functions, the index c of operators
was introduced in order to select the integration area and further construct two-
dimensional integrating matrices for an arbitrary rectangular area �). For this
purpose, on the segment [0, c] we introduce a grid ω = {xi, i = 1, 2, . . . , N}
according to the Gauss quadrature formula: Dcg =

N∑
i=1
dig(xi), where {di}, {xi}

are, respectively, the weights and collocation nodes associated with the roots of the
Legendre polynomial of degreeN . Denote by gi = g(xi) and approximate g on the

segment [0, c] using interpolation function g(x) ≈
N∑
i=1
gi li(x). As an interpolating

function, we choose the basis Lagrange functions {li} by nodes {xi}. By expanding
the functions li in terms of Legendre polynomials in [10], the integrating matrices
Lch, Rch were constructed.

First, we write down the one-dimensional integrating matrix Lch in component-

wise form Lch =
{
lij =

xi∫
0
lj (x)dx

}N

i,j=1

. Then

[
Lcg(x)

]
h
≈ Lchgh =

(
N∑
i=1

l1igi ,

N∑
i=1

l2igi, . . . ,

N∑
i=1

lNigi

)T
,

where gh = (g1, g2, . . . gN)
T , [g]h—is mesh projection of the function g.

In order to construct two-dimensional integrating matrices Lhx , Lhy , Rhx , Rhy we

introduce a grid ωh on the region �. Let the partition {xi}Nxi=1, {yj }Nyj=1 define an
orthogonal mesh into �, moreover {xi}, {yj } nodes associated with the roots of the
Legendre polynomial on the segments [0, a] and [0, b], respectively. Let us denote
vhij = v(xi , xj ), vh�,j = (

v1j , v2j , . . . , vNxj
)T , vhi,� =

(
vi1, vi2, . . . , viNy

)T and
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introduce the end-to-end numbering of grid nodes as follows: each pair (i, j) is
assigned a unique number k = i+(j−1)Nx , which corresponds to the lexicographic
order “from left to right”, “from bottom to top”. Introducing further notation vh =
(v1, v2, . . . , vk, . . . vNx ·Ny )T , we construct a two-dimensional integrating matrix Lhx

[Lxv (x, y)]h =

⎛
⎜⎜⎜⎜⎝

[
Lav(x, y1)

]
h[

Lav(x, y2)
]
h

...[
Lav(x, yNy )

]
h

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1∫
0
v(x, y1)dx

x2∫
0
v(x, y1)dx

...
xNx∫
0
v(x, y1)dx

x1∫
0
v(x, y2)dx

...
xNx∫
0
v(x, yNy )dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nx∑
i=1
l1ivi1

Nx∑
i=1
l2ivi1

...
Nx∑
i=1
lNx ivi1

Nx∑
i=1
l1ivi2

...
Nx∑
i=1
lNx iviNy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

=

⎛
⎜⎜⎜⎝

Lahv�,1
Lahv�,2
...

Lahv�,Ny

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

Lah 0 . . . 0
0 Lah . . . 0
...
...
. . .

...

0 0 . . . Lah

⎤
⎥⎥⎥⎦
NxNy×NxNy

⎛
⎜⎜⎜⎝

v�,1
v�,2
...

v�,Ny

⎞
⎟⎟⎟⎠
NxNy

= (
ENy ⊗ Lah

)
vh.

Then Lhx = ENy ⊗Lah and by analogy, matrices are constructedRhx = ENy ⊗Rah ,
Lhy = Lbh⊗ENx , Rhy = Rbh⊗ENx , where⊗ is the Kronecker product over matrices,
EN is an identity matrix of size N .

An approximate solution to problem (7) is called Uh = (uh,x, uh,y), that satisfies
the equation

AhUh = Fh, (8)

where Ah =
(
Rhy Rhx
Lhx −Lhy

)
, Fh = (RhyR

h
y [f ]h + ϕ4(b − x)+ ϕ3(a − y), 0)T ,

(x, y) ∈ ωh, uh,x = (u1,x, u2,x, . . . , uk,x, . . . uNx ·Ny,x)T , uh,y = (u1,y, u2,y, . . . ,

uk,y, . . . uNx ·Ny,y)T according to the introduced lexicographic order. An approxi-
mate solution to the original boundary value problem (1), (2) will be determined
using equalities (5), as uh = Lhxuh,x . Let us present the results of the numerical
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solution of some test problems (1), (2) that have exact solutions for a square domain
(a = 1, b = 1)with homogeneous boundary conditions (ϕ3 = 0, ϕ4 = 0) and
calculate for these problems the error of the method (rh(N) = ‖[u]h − uh‖ / ‖[u]h‖,
where [u]h—is the grid projection of the exact solution,N = Nx = Ny , as a infinity
grid norm was chosen):

1. f (x, y) = −π2 sin(π/2x) sin(π/2y) /2
with exact solution u(x, y) = sin(π/2x) sin(π/2y);

2. f (x, y) = xe−x(xe−y − 2e−y) + ye−y(xe−x − 2e−x) with exact solution
u(x, y) = xe−xye−y , rh(3) = 0.0054, rh(4) = 3.4763 · 10−4, rh(8) =
7.9110 · 10−10, rh(16) = 1.8305 · 10−14;

3. f (x, y) = x(1− x)2(6y−4)+y(1− y)2(6x−4) with exact solution u(x, y) =
x(1− x)2y(1− y)2, rh(3) = 1.471 · 10−15;

4. f (x, y) = 4x(1− x)4(1− y)2(5y − 2) + 4y(1− y)4(1− x)2(5x − 2) with
exact solution u(x, y) = x(1− x)4y(1− y)4, rh(3) = 0.3360, rh(4) = 0.0742,
rh(5) = 1.5943 · 10−15.

It is seen that in the first Fig. 1 and second problems, where the exact solutions
are given in the form of transcendental functions, the error is exponential. The third
and fourth test problems, in which the exact solutions in the form of polynomials
are chosen, emphasize the highest order of the algebraic accuracy of the method:
starting with N = 3 and N = 5, respectively, the errors rh(N) have order values
10−15, which corresponds to the exact solution.

Numer of nodes (N)
0 3 6 9 12 15

E
rr

or
 (

r h)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Fig. 1 Dependence of the relative error on the number of nodes



386 V. N. Paimushin and M. V. Makarov

3 Application of Two-Dimensional Integrating Matrices for
Solving a Plane Stress Problem of the Theory of Elasticity
in a Rectangular Domain

Let us consider, as an example, the classical two-dimensional problem of defor-
mation of a rectangular plate under plane stress state (PSS) conditions. The area
occupied by the plate is denoted in the same way as in the first section, behind
� ⊂ R

2, � = {X = (x1, x2), x1 ∈ (0, a), x2 ∈ (0, b)}, which is bounded by
the contour. � = �1

⋃
�2

⋃
�3

⋃
�4. Here �1 = {X = (x1, 0), x1 ∈ (0, a)},

�2 = {X = (0, x2), x2 ∈ (0, b)}, �3 = {X = (x1, b), x1 ∈ (0, a)}, �4 =
{X = (a, x2), x2 ∈ (0, b)}. Let us denote by u1, u2, the components of the
displacement vector u : � → R

2. We take the kinematic relations in the form
known in the linear theory of elasticity, which are described by the Cauchy strain
tensor ε(u) := 1

2 (∇uT + ∇u). Let us assume that the deformation of the plate is
carried out only due to the surface forces applied to its boundaries. We will assume
that the plate material is elastic and isotropic. Then the equilibrium equations of the
plate can be represented in the following form

divσ = 0, [σ ] =
⎡
⎣
σ11

σ22

σ12

⎤
⎦ = E

1− ν2

⎡
⎣

1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦
⎡
⎣
ε11

ε22

2ε12

⎤
⎦ . (9)

For equations (9), we formulate the boundary conditions of the form

σ11(x) = p1, σ12(x) = p12, x ∈ �2,

σ22(x) = p2, σ12(x) = p21, x ∈ �3, (10)

u(x) = v, x ∈ �1

⋃
�4,

we write out the first equation of system (9) in the Cartesian coordinate system
within the framework of the PSS problem

∂σ11

∂x1
+ ∂σ12

∂x2
= 0 (11)

and use the finite sum method outlined above. For this purpose, we will integrate
Eq. (11) from x1 to a, using the introduced integral operator R1, and use the first
boundary condition from (10). Then

p11 − σ11 + R1
∂σ12

∂y
= 0.
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Next, we integrate the obtained equality from x2 to b, using the introduced integral
operator R2 for this, and use the second boundary condition from (10)

R2 (p11 − σ11)+ R1 (p21 − σ12) = 0.

Let us write out the second equation of system (9) in the Cartesian coordinate
system

∂σ12

∂x
+ ∂σ22

∂y
= 0. (12)

By analogy with the above, we will integrate Eq. (12) and take into account the third
and fourth boundary conditions of system (10), transferring the applied loads to the
right side. As a result, we obtain a system of two equations

R2σ11 + R1σ12 = R2p11 + R1p21,

R2σ12 + R1σ22 = R2p12 + R1p22.
(13)

Next, we write out the system (13) in displacements using the kinematic relations
and relations of the generalized Hooke’s law

R2

[
E

1− ν2

(
∂u1

∂x1
+ ν ∂u2

∂x2

)]
+ R1

[
G

(
∂u1

∂x2
+ ∂u2

∂x1

)]
= R2p11 + R1p21,

R2

[
G

(
∂u1

∂x2
+ ∂u2

∂x1

)]
+ R1

[
E

1− ν2

(
ν
∂u1

∂x1
+ ∂u2

∂x2

)]
= R2p12 + R1p22.

(14)

Let us introduce the vector function of unknowns U =
(
∂u1
∂x1
, ∂u2
∂x2
, ∂u1
∂x2
, ∂u2
∂x1

)
. To

close equations (14) with respect U , we use the remaining boundary conditions (10)
u1|�1

= v1, u2|�1
= v21, u2|�4

= v2, u1|�4
= v12. For this purpose, integrating

∂u1
∂x1

, ∂u2
∂x1

, over x1 and ∂u1
∂x2

, ∂u2
∂x2

, over x2, we obtain the dependencies

L1
∂u1

∂x1
= u1 − v1,L1

∂u2

∂x1
= u2 − v21,

L2
∂u1

∂x2
= u1 − v12,L2

∂u2

∂x2
= u2 − v2,

(15)

which reduce to two equations

L1
∂u1

∂x1
−L2

∂u1

∂x2
= v12 − v1,L1

∂u2

∂x1
−L2

∂u2

∂x2
= v2 − v12. (16)
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Note that the resulting system of integral equations (14), (16) concerning the

vector function U =
(
∂u1
∂x1
, ∂u2
∂x2
, ∂u1
∂x2
, ∂u2
∂x1

)
is equivalent to the original prob-

lem (9), (10), after solving which the solution to the original boundary value
problem (9), (10) is restored using equations (15). An approximate solution to
problem (14), (15) is a vector function Uh = (

u1,1, u2,2, u1,2, u2,2
)
, that, after

applying two-dimensional integrating matrices, satisfies the equation

AhUh = Fh,Ah =

⎛
⎜⎜⎝

BRh2 νBRh2 GR
h
1 GR

h
1

νBRh1 BRh1 GRh2 GR
h
2

Lh1 0 −Lh2 0
0 −Lh2 0 Lh1

⎞
⎟⎟⎠ ,

Fh = (p11(b − y)+ p21(a − x) , p12(b − y)+ p22(a − x) , v12 − v1, v2 − v12)
T ,

(x, y) ∈ ωh.
An approximate solution to the original boundary value problem (9), (10) will be

determined using equalities (15), as, for example, [u1]h = Lh1u1,1 + v1.
Results of Numerical Experiments on Test Problems

1. Consider a plate rigidly fixed u(x) = 0 at points x ∈ �1
⋃
�4 under the action

of a uniformly distributed load σ11(x) = p1, σ12(x) = 0 on the right boundary
x ∈ �2 with a free upper boundary σ22(x) = 0, σ12(x) = 0, x ∈ �3. When
carrying out the calculations, the geometric, grid and elastic parameters were
taken as follows: a = 2, b = 1, Nx1 = 15, Nx2 = 30, E = 200 · 104, ν = 0.
Figure 2 shows the form of the deformed state of the plate under the action of the
load σ11(x) = p1, the color scale corresponds to the values of the formed normal
stresses σ11(x), x ∈ �.

x
1

0 0.5 1 1.5 2 2.5

x 2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

σ
11

Fig. 2 Deformed state of the plate under the action of a uniformly distributed load σ11(x) =
p1, σ12(x) = 0
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Fig. 3 Deformed states of the plate: (a) σ11(x) = σ22(y) = −1; (b) σ12(x) = σ12(y) = 1

2. The plate, which is also in conditions of rigid fixation u(x) = 0 at the points x ∈
�1

⋃
�4, is acted upon by a uniformly distributed load σ11(x) = σ22(y) = −1,

applied at the boundaries x ∈ �2, y ∈ �3. When carrying out the calculations,
the geometric, grid and elastic parameters were taken as follows: a = 0.1 m,
b = 0.1 m, Nx1 = Nx2 = 20, E = 200 GPa, ν = 0.3. In Fig. 3a shows a view of
the deformed state of the plate, the color scale corresponds to the values of the

formed stresses according to von Mises σv =
√
σ 2

11 − σ11σ22 + σ 2
22 + 3σ 2

12.
3. The plate, which is also in the conditions of rigid fixation u(x) = 0 at the points
x ∈ �1

⋃
�4, is acted upon by uniformly distributed tangential forces σ12(x) =

σ12(y) = 1, applied at the boundaries x ∈ �2, y ∈ �3. When carrying out the
calculations, the geometric, grid and elastic parameters are taken the same as in
case 2. In Fig. 3b shows a view of the deformed state of the plate, the color scale
corresponds to the values of the generated shear stresses σ12.

4 Conclusion

On several model problems, formulated based on the Poisson equation and the
plane problem of the theory of elasticity in a rectangular domain for given types
of boundary conditions, an algorithm is presented for their reduction to two-
dimensional integral equations containing Volterra-type operators. To find their
numerical solutions, two-dimensional integrating matrices are constructed, based
on which numerical solutions of the formulated problems are found. Numerical
estimates of the accuracy of the found numerical solutions of the considered
test problems are carried out. It is shown that the convergence of the method is
exponential. Due to the use of the Gauss quadrature formula for approximation
on test problems, the highest order of the algebraic accuracy of the method was
demonstrated. It should also be noted that the construction of the proposed two-
dimensional integrating matrices is based on the idea of constructing unsaturated
algorithms, in connection with which the conditionality of the matrix of the
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resolving system of algebraic equations does not worsen with an increase in the
amount of collocation nodes.
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On Resonant Effects in the Semi-Infinite
Waveguides with Barriers

Nikolai Pleshchinskii, Garnik Abgaryan, and Bulat Vildanov

Abstract The problems of electromagnetic wave diffraction by thin conductive
barriers in a semi-infinite parallel-plate waveguide are reduced to infinite sets of
linear algebraic equations concerning the expansion coefficients of the field by its
eigen waves. Values of resonant frequencies are obtained for which there is a sharp
increase in the characteristics of the electromagnetic field in the area between the
barrier and the metal wall.

1 Introduction

In the design of radiotechnical devices with optimal characteristics the situations
when there is a resonant growth of certain parameters of the electromagnetic field
are of particular interest. Barriers in waveguide structures are widely used in the
production of converters, filters, splitters and other elements.

In this paper, we explore the resonant effects that occur when the diffraction
of eigen electromagnetic wave, which attacks a thin conductive barriers in a semi-
infinite parallel-plate waveguide with metal walls.

As it is known [1], any electromagnetic field in the parallel-plate waveguide
can be presented as a sum of its eigen waves propagating or damping in different
directions. The theory of equivalent chains was used in [2] as a simple model
of the process of electromagnetic wave diffraction. In recent years, during the
investigation of the resonant properties of waveguides with heterogeneities, the
method of equivalent circuits [3], the method of moments [4] and more rigorous
methods as well as method of the Riemann-Hilbert problem [5] and method of
integral equations [6] are used. Some numerical results can be found in the works
[7, 8].
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In this paper, the method of integral-series identities is used to reduce the paired
series functional equations of diffraction problems by the screens to regular infinite
sets of linear algebraic equations (ISLAE) [9]. Early we investigated the resonant
properties of the diaphragms in the semi-infinite waveguides [10, 11].

2 Lateral Barrier in a Waveguide

Let us consider the two-dimensional problem of TE-wave diffraction by a lateral
barrier in a half-infinite parallel-plate waveguide 0 < x < a, z < d . The barrier
is located in the plane z = 0. The part M = (α, β) of the cross-section [0, a] of
the waveguide corresponds to it (Fig. 1). Let’s denote by N supplement of M up to
[0, a].

Let free currents and charges be absent, the medium be homogeneous and
isotropic, electromagnetic field harmoniously depend on time (exp(−iωt)). Denote

ϕn(x) =
√

2/a sin
πnx

a
, γn =

√
κ2 − (πn/a)2,

where κ is wave number, Re γ > 0 or Im γn > 0 and n = 1, 2, . . .
From the region z < 0 on the barrier runs its eigen wave

u0(x, z) = ϕl(x) eiγlz.

We will look for the wave reflected to the left in the form of

u1(x, z) =
+∞∑
n=1

anϕn(x) e
−iγnz,

Fig. 1 Lateral barrier in a
plane waveguide
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and we will look for the wave passed to the right in the form of

u2(x, z) =
+∞∑
n=1

bnϕn(x)
(
eiγnz − e2iγnd e−iγnz

)
.

For the wave u2(x, z) a boundary condition is fulfilled on the metal wall z = d , and
this wave is bounded for n→ +∞.

Let’s write down the boundary conditions on the M:

ϕl(x)+
+∞∑
n=1

an ϕn(x) = 0,
+∞∑
n=1

bn
(
1− e2iγnd

)
ϕn(x) = 0

and the conjugation conditions on the N:

ϕl(x)+
+∞∑
n=1

an ϕn(x) =
+∞∑
n=1

bn
(
1− e2iγnd

)
ϕn(x),

γl ϕl(x)−
+∞∑
n=1

an γn ϕn(x) =
+∞∑
n=1

bn γn
(
1+ e2iγnd

)
ϕn(x).

It follows that 1+ al = bl
(
1− e2iγld

)
and an = bn

(
1− e2iγnd

)
, n �= l. We exclude

the unknowns an.
To regularize the pair series functional equations, we use an integral-series

identity

a∫

0

(+∞∑
n=1

bn
(
1− e2iγnd

)
ϕn(t)

)
K(t, x) dt =

+∞∑
n=1

bnγn ϕn(x),

here

K(t, x) =
+∞∑
m=1

γm

1− e2iγmd
ϕm(t) ϕm(x).

It is assumed that γmd �= πj .
Finally, after projecting on the function ϕk(x) we get ISLAE (k = 1, 2, . . . )

bkγk −
+∞∑
n=1

bn
(
1− e2iγnd

) +∞∑
m=1

γm

1− e2iγmd
Jnm Imk = γl Jlk,
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where

Inm =
∫

M

ϕn(t) ϕm(t) dt, Jnm =
∫

N

ϕn(t) ϕm(t) dt.

3 Computing Experiments, I

The computing experiments are based on the multiple solving the truncated ISLAE
in the case when the frequency of the excitatory wave changes with a small step. We
will look for an approximate solution of ISLAE by truncation method. It is enough
to take the parameter of truncated method N = 30. As a wave incoming on the
barrier, we will consider the first mode of the waveguide.

Let’s choose the following parameters: a = 1.1, d = 1.3; α = 0.1; β = 1.0
in dimensionless quantities. As the computing experiment has shown, the modules
of coefficients b1, b2, . . . have sharp local maximums, with correspond to wave
number ≈ 3.7410, ≈ 5.6135, ≈ 7.7910, . . . . These values are close to the eigen
wave numbers ≈ 3.7412, ≈ 5.6140, ≈ 7.7921 of a two-dimensional rectangular
region of the size a × d .

The dependence of coefficient b1 module on wave number κ in the neighbor-
hoods of resonant values is shown in Figs. 2 and 3.

Fig. 2 Dependence of the modulus b1 on the wave number κ near the eigen frequency k11.
Waveguide parameters: a=1.1, d=1.3
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Fig. 3 Dependence of the modulus b1 on the wave number κ near the eigen frequency k12.
Waveguide parameters: a=1.1, d=1.3

If the size of barrier decreases, then the resonant values of k decrease slightly
also.

The dependence of the conditional number condA = ||A|| · ||A−1|| on the
parameter κ is also resonant.

If we balance the equations in SLAE (divide each equation by the largest
in-module coefficient for the unknowns), then the conditioned number will be
significantly reduced, but the solution of the SLAE will not change. But after
balancing, it becomes possible to study the dependence on the parameter κ of the
values of the determinant of the matrix of the SLAE coefficients. Now the modules
of these values in the neighborhood of the resonant point do not exceed one. Before
balancing, they had an order of 1045 or more.

As in the case of diaphragm in the semi-infinite waveguide [11], the resonant
values of the parameter κ can be found: (1) when solving the SLAE of diffraction
problem; (2) when calculating the conditioned number of the matrix of its coeffi-
cients; (3) when analyzing the values of the determinant of this matrix.

4 Longitudinal Barrier in a Waveguide

Now let the thin conductive barrier with a length of d be placed at the height of b
from the lower wall of the waveguide (Fig. 4).
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Fig. 4 Longitudinal barrier in a waveguide

We will use the following notations:

ϕan(x) =
√

2/a sin
πnx

a
, γ an =

√
κ2 − (πn/a)2,

ϕbn(x) =
√

2/b sin
πnx

b
, γ bn =

√
κ2 − (πn/b)2,

ϕcn(x) =
√

2/(a − b) sin
πn(x − b)
a − b ,

γ cn =
√
κ2 − (πn/(a − b))2, n = 1, 2, . . .

Let the eigen wave

u0(x, z) = ϕal (x)eiγ
a
l z.

run on the barrier. We will look for the wave reflected to the left in the form of

uA(x, z) =
+∞∑
n=1

anϕ
a
n(x)e

−iγ an z
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and we will look for the wave in the regions B: 0 < x < b, 0 < z < d and C:
b < x < a, 0 < z < d in the form of

uB(x, z) =
+∞∑
n=1

bnϕ
b
n(x)

(
eiγ

b
n z − e2iγ bn de−iγ bn z

)
,

uC(x, z) =
+∞∑
n=1

cnϕ
c
n(x)

(
eiγ

c
n z − e2iγ cn de−iγ cn z

)
.

The equalities on the (0, b)

2ϕal (x)+
+∞∑
n=1

dnϕ
a
n(x) =

+∞∑
n=1

bnϕ
b
n(x)

(
1− e2iγ bn d

)
,

−
+∞∑
n=1

dnγ
a
n ϕ

a
n(x) =

+∞∑
n=1

bnγ
b
n ϕ

b
n(x)

(
1+ e2iγ bn d

)
,

and on the (b, a)

2ϕal (x)+
+∞∑
n=1

dnϕ
a
n(x) =

+∞∑
n=1

bnϕ
c
n(x)

(
1− e2iγ cn d

)
,

−
+∞∑
n=1

dnγ
a
n ϕ

a
n(x) =

+∞∑
n=1

cnγ
c
nϕ

c
n(x)

(
1+ e2iγ cn d

)

should be fulfilled if z = 0. Here dl = al − 1, dn = an, n �= l.
Let’s exclude unknowns dn using the integral-series identity

+∞∑
n=1

dnϕ
a
n(x) =

a∫

0

(+∞∑
n=1

dnγ
a
n ϕ

a
n(t)

)
K(t, x) dt, x ∈ (0, a),

K(t, x) =
+∞∑
m=1

1

γ am
ϕam(t)ϕ

a
m(x).
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Replace x by t in the equalities of the second pair, multiply both parts byK(t, x)
and integrate from 0 to a. Then we get

−
+∞∑
n=1

dnϕ
a
n(x) =

+∞∑
n=1

bnγ
b
n (1+ e2iγ bn d)

+∞∑
m=1

1

γ am
ϕam(x) I

b
mn

+
+∞∑
n=1

cnγ
c
n (1+ e2iγ cn d )

+∞∑
m=1

1

γ am
ϕam(x) I

c
mn, x ∈ (0, a).

Let’s add the equations of the first pair and new equality. The equation

2ϕal (x) =
+∞∑
n=1

bnϕ
b
n(x)

(
1− e2iγ bn d

)

+
+∞∑
n=1

bnγ
b
n

(
1+ e2iγ bn d

) +∞∑
m=1

1

γ am
ϕam(x) I

b
mn

+
+∞∑
n=1

cnγ
c
n

(
1+ e2iγ cn d

) +∞∑
m=1

1

γ am
ϕam(x) I

c
mn, x ∈ (0, b),

we multiply by ϕbk (x) and integrate from 0 to b. A similar equation on (b, a) is
multiplied by ϕck(x) and integrated from b to a. Then

2Iblk = bk(1− e2iγ bk d )+
+∞∑
n=1

bnγ
b
n (1+ e2iγ bn d)

+∞∑
m=1

1

γ am
Ibmn I

b
mk

+
+∞∑
n=1

cnγ
c
n (1+ e2iγ cn d )

+∞∑
m=1

1

γ am
Icmn I

b
mk, k = 1, 2, . . .

2I clk = ck(1− e2iγ ck d )+
+∞∑
n=1

bnγ
b
n (1+ e2iγ bn d)

+∞∑
m=1

1

γ am
Ibmn I

c
mk

+
+∞∑
n=1

cnγ
c
n (1+ e2iγ cn d )

+∞∑
m=1

1

γ am
Icmn I

c
mk, k = 1, 2, . . .
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where

Ibmn =
b∫

0

ϕam(t)ϕ
b
n(t) dt, I cmn =

a∫

b

ϕam(t)ϕ
c
n(t) dt.

So, the ISLAE to determine the coefficients bn and cn consists of two groups of
equations. When truncated, we leave N unknown in each equation and N equations
in each group.

5 Computing Experiments, II

A computational experiment has shown that at some values of electromagnetic
oscillation frequencies there is a resonant increase in a field expansion coefficients
in regions B and C. The dependencies of the coefficient b1 module on the frequency
(more precisely, when the wave number k changes in the truncated ISLAU) are
shown on Figs. 5, 6, and 7.

Resonant frequencies depend significantly on the value of the b. It’s easy to see
that the highest peak of the lines on the charts are observed when the frequencies are
close to the eigen values π

√
1/b2 + 1/d2 of the frequencies of rectangular domain

of the size b× d . At low values of d resonances are not observed.

Fig. 5 Dependence of the modulus b1 on the wave number κ . Waveguide parameters: a=1.0,
b=0.3, d=12
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Fig. 6 Dependence of the modulus b1 on the wave number κ . Waveguide parameters: a=1.0,
b=0.5, d=12

Fig. 7 Dependence of the modulus b1 on the wave number κ . Waveguide parameters: a=1.0,
b=0.5, d=8

6 Conclusion

In this paper the diffraction problems of the electromagnetic wave by the barrier in
a semi-infinite waveguide are reduced to infinite sets of linear algebraic equations
relative to the coefficients of expansion by eigen waves of the waveguide. The
computing experiment has shown that the dependence of the desired coefficients
on the frequency of the excitatory wave is resonant.
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Numerical Simulation of Composite
Structures Polymerization and
Determination of Residual Deformations

Evgeniy A. Puzyretskiy, Leonid P. Shabalin, Igor N. Sidorov,
and Azat M. Girfanov

Abstract This paper study numerical modeling of the technological process of
composite structures polymerization. A full-scale and numerical experiments of
curing process were conducted to determine the geometry distortion of the obtained
structures from the nominal shape. A proven approach is proposed that allows
to make a product with high accuracy. A comparative analysis of computational
experiments using personal workstations and a high-performance cluster is carried
out.

1 Introduction

Numerical modeling of real technological processes has become an essential part
of prototyping in aviation, engineering, and medical industries. Without it, the
manufacture of any particularly important structural element of an aircraft, ground
transport or implant is not complete.

Products made of polymer composite materials, which play an important role
in the operation of a particular design, require high manufacturing accuracy. The
technological process often involves curing and post-curing at high temperatures,
which leads to distortion of the shape and geometric parameters, which negatively
affects their further exploitation. Numerical modeling of the composite product
molding process is necessary to ensure the required manufacturing accuracy.

The problem of accumulation of residual stresses and the accuracy of composite
products manufacturing is studied in detail in [1–13]. One group of researches is
devoted to the development and verification of the material model and analysis of
the modeling speed [3–5]. Several approaches for creating a material model are
described. They differ mainly in the number of parameters required to describe the
material state. Another group of studies is devoted to the problem of the influence
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of boundary conditions on the results of numerical modeling of technological
stresses [6–12]. Calculation models are presented that differ in the number of factors
used in the stress-strain state analysis.

The paper [1] describes the main causes and consequences of the residual
stress-strain state in composite curing process. Major types of residual strain were
described.

The radius of corner fillet of a composite product does not affect the value of
the “Spring-In” [2]. It is shown that the size of the angle itself has a significant
influence.

Work [3] is devoted to the study of the influence of technological stresses on
the mechanical characteristics of composite products by the finite element method.
This article provides examples of the destruction of products at the stage of their
manufacture, due to the occurrence of internal stresses in them that exceed the limit.

Modified viscoelastic model is proposed in [4] for predicting residual stresses
caused by curing in polymer matrix composites. Modifications are based on using
the inverse of the Deborah number. A multi-layer composite plate was modeled and
the evolution of residual stresses was further predicted. The analysis showed that
in order to accurately model the residual stresses of a composite, the software and
material model must take into account thermal strain and chemical shrinkage.

Work [5] is devoted to comparing the classical elastic model of a material with the
CHILE (cure hardening instantaneous linear elastic) model. There is a widespread
opinion that the CHILE model is more accurate, because it takes into account the
dependence of the characteristics of the composite material on the temperature and
degree of polymerization. However, the results of this research, using two samples
of different geometric parameters and shapes, showed that the elastic model has a
better convergence with the experiment.

In [6] presented experimental results which show that the residual strain can
be highly influenced by a number of factors such as cure cycle, contact with
technological mold, geometry and layup scheme. The results of the study can be
obtained using the method of numerical modeling. This requires models of the
materials used (including mold)

The article [7] describes the results of experiments on the production of
prototypes and determination of residual deformations. Numerical simulations were
performed. The results of the calculations were 20% higher than experimental ones,
but the method predicted all the phenomena observed during the experiment.

In the “Spring-In” study [8], the effect of a composite bracket with three different
thicknesses was calculated by sequentially solving the problem of non-stationary
heat transfer and determining the stress-strain state using the finite element method.
The analytical method is used to obtain the material properties necessary for
numerical modeling. The values of the “Spring-In” effect obtained by the finite
element method have a good convergence with the results of analytical analysis.

The paper [9] describes the process of creating and verifying a simplified material
model, which reduces the amount of information that needs to be processed by a
computer by 54 times. The material behavior is described by a linear viscoelastic
model with the following assumptions: coefficients of linear thermal expansion
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in the cured and gel states do not depend on the degree of cure; in none of the
states (liquid, gel, glass), the stiffness of the material does not depend on the
temperature or degree of cure. The results of the analysis of technological stresses
using a simplified model did not show any differences from the results obtained on
the model that takes into account the dependence of the resin parameters on the
temperature and degree of curing.

In [10], a method for modeling a composite product in the form of discrete layers
of homogeneous plates at the macro level is proposed. At each integration point of
the homogeneous model, the defining relationships of the plate are determined using
micromechanics using the Extended Concentric Cylinder Assembly (ECCA) model.
The proposed model can be used to predict the magnitude of residual deformations
and stresses of a composite product.

A similar study was conducted in [11]. The simulation was performed in the
same way, except that contact with the tooling was taken into account. Compared to
other models, the proposed one provides better convergence with the experimental
results.

The article [12] describes the process of developing a model for predicting
the “Spring-In” effect of the angle of an L-shaped composite sample made by
RTM technology. The composite product consists of 16 layers of AS-4 carbon
fiber preform and EPON 862 epoxy resin. In this study, the composite is modeled
as separate layers of orthotropic material using the finite element method. The
proposed model is verified by comparing the predicted value of the “Spring-In”
effect of angles with experimental values.

In [13] attention is paid to the study and verification of material properties using
the CHILE model and the viscoelastic model. It was shown that the CHILE model
is described by fewer variables and has less influence on the speed of numerical
simulation of the process of accumulation of residual stresses.

The analysis of publications has shown that numerous of factors must be taken
into account to determine the technological stresses. It is necessary to develop and
verify the model of the material to achieve convergence of the simulation results
with the experiment.

2 Numerical Simulation

Modeling of the technological process is demonstrated by the example of a thin-
walled V-shaped composite body (hereinafter referred to as a «sample»). The
analysis was performed using the Ansys software package.

To perform the analysis, a special model of the sample was created using
hexahedral elements. The material model uses calibrated physical and mechanical
characteristics. The boundary conditions for modeling the polymerization process
are: surface temperature change during heat treatment, vacuum bag pressure, and
various constraints on model displacement at different stages of the molding cycle.
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Fig. 1 CAD model of the
sample

2.1 Geometry and Model Parameters of the Sample

The sample is a V-shaped structure whose geometry does not depend on the
longitudinal coordinate (Fig. 1). However, the sample model is set as a three-
dimensional object, since the effect of twisting on the geometry is not excluded. The
main initial geometric parameters are: product angle α=23◦, the distance between
two parallel internal faces b = 16 mm, and the height h = 81 mm.

The computational model of the sample consists of hexahedral finite elements. In
areas containing fillets, the mesh was refined to describe the sample geometry. This
affects the convergence of the problem and the accuracy of the analysis results.

2.2 Material Model Description

The material model used in the calculations describes its behavior in three phases—
liquid, gelled, and glassy. In each phase, the material has different elastic, physical,
thermal, and chemical parameters. In this case, an orthotropic material HexPly
M56/40%/193PW/AS4-3K was used. Also the following parameters were added:
linear temperature expansion coefficient (CTE), heat capacity, and the Ansys
Composite Cure Simulation polymerization model.

The characteristics of the material describing its properties were obtained by the
laboratory tests. The necessary characteristics for the analysis of the polymerization
process were obtained using the method of differential scanning calorimetry [14,
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15]. Test sample is placed in the calorimeter chamber and maintained at a constant
temperature during the exothermic reaction.

As a result, the total heat of the reaction and the heat flow are obtained.
Then, based on the major parameters of the experiment, the parameters of the
autocatalytic reaction equation (1) are selected until the data on the heat flow and
total heat converge with the results of machine calculation. The pre-exponential
factor, activation energy, and coefficients of the autocatalytic reaction equation were
obtained. The accuracy of this method is determined by the accuracy of measuring
the sample temperature with thermocouples and the accuracy of the autocatalytic
reaction model used (1).

f (T , a) = A1 · exp

(
−E1

T

)
am(1− a)n (1)

here A1[1/s]—is the pre—exponential factor. Indicate the number of molecules
collisions of the interacting substances in a second;
E1[J ]—activation energy. The energy required by the system of interacting

molecules for the reaction to occur;
T [K]—absolute temperature;
a—degree of polymerization of the resin;
m,n—coefficients determined experimentally
Chemical shrinkage was determined by measuring the density of the material

in the liquid state and polymerized using helium pycnometer. It is able to make
measurements with high accuracy in various directions. Thus, the numerical value
of chemical shrinkage will be the ratio of densities.

2.3 Boundary Conditions

In this type of analysis, external factors are: time-varying temperature of the sample
surface, external pressure from the vacuum bag, and displacement constraints of the
product on the molding surface [6, 9, 16].

Sample layup with the reinforcement scheme [0;90]s was used. Total material
layers—14. The thickness of one layer—0.214 mm.

The temperature conditions of prepreg polymerization was set according to the
material specification.

3 Analysis of the Curing Process and Stress-Strain State

The polymerization process of the sample is described by the autocatalytic reaction
equation (1). The result of the curing analysis is a degree of polymerization and the
resin phase in each finite element of the computational domain. Later, this data is
imported into the solver to analyze the residual stress-strain state of the sample.
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The total finite element strain is the combination of chemical shrinkage (2),
thermal expansion/compression (3) and boundary conditions.

εX = αε′shX
εY = αε′shY
εZ = αε′shZ

(2)

εTX = αLX
T
εTY = αLY
T
εTZ = αLZ
T

(3)

Here α- is the degree of curing of the resin
αLX,Y,Z- coefficient of linear temperature expansion of the material
ε
′sh
X,Y,Z- chemical shrinkage strain in the corresponding direction

εTX,Y,Z- thermal strain
The result of the analysis is node displacement plot (Fig. 2).

Fig. 2 Deformed and nominal shapes of the sample
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It may be noticed that only one half of the model is deformed. This is because
the sample was fixed to one of the lower faces to prevent rigid body movement.

3.1 Mesh Convergence

The major parameter of the mesh model is the number of elements through the
thickness and the number of elements describing the fillet at the corners (at the top
and on the sides of the model). Iteratively, it was found that the number of elements
through the thickness and at the fillets of the sides has minor effect on the simulation
results. The number of elements dividing the corner fillet of the model vertex has a
significant influence on the results.

A series of calculations were performed with a different number of elements
in the corner fillet. If the number of elements is set to 27, a further decrease
element size changes the maximum distortion of the lower edge less than 0.001
mm. The diagram of lower edge maximum displacement by the number of elements
is presented at Fig. 3.

Thus, the lower edges distortion is equivalent to 2.028 mm. The distortion angle
is 0.69◦.

Fig. 3 Dependence of maximum displacement by the number of elements in a corner
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4 Production and Geometry Control of Full-Scale Samples

To verify the calculation model, three full-scale samples were made and measured.
Production was carried out by the method of vacuum bag molding in oven. The
samples were measured using an electronic caliper. As a result, the values of the
lower edge displacement were obtained. Average value of the distortion angle of the
samples is 
α = 0, 71◦, the error of the FE simulation results is:

δ = 0, 71− 0, 69

0, 71
· 1000/0 = 2, 80/0

This result indicates a good convergence of the FE simulation with experimental
data.

4.1 Accounting for Predicted Distortion of the Sample in a
Mold Geometry

Based on technological simulation results it is possible to design the forming surface
of the mold taking into account the distortion. To do this, the angle increased by
0.69◦.

Re-analysis of the geometry with anticipation and further overlay of the
deformed model with the nominal one showed a deviation less than 0.1 mm.
This result satisfy specified requirements for manufacturing accuracy. It is possible
to conclude that the mold geometry modification was made correctly.

After confirming the angle modification, the forming mold was made. Next, the
product was manufactured by oven molding. Geometrical control was performed
using the Atos II Triple Scan 3D scanner with an accuracy of 0.01 mm. The
deviation of the geometry from the nominal value does not exceed 0.1 mm.

5 Estimation of Simulation Time

This type of analysis is very sensitive to the mesh density and size of elements.
It requires a high-quality discretization of the geometry in corners. Also, analysis
often needs to be performed for different configurations of the same element. It
should also be taken into account that the design may contain many different details
that require separate analysis. If the product has a complex shape and its dimensions
is more than 500 mm, the analysis can take from several hours to several days. In
this regard, a computing cluster or various hardware configurations of a workstation
can be used to speed up the analysis.
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A computing cluster is a combination of computing nodes connected by high-
speed communication channels. In the case of solving the problem using the finite
element method, the analysis is performed as follows: the Ansys solver splits the
FE model into several domains and distributes them between processors. After
that, each processor solves a local problem (simultaneously exchanging data with
other processors) and sends solution data to the solver. Further, the solver, from
the combination of data received from processors, makes a general “picture” of the
solution. At the same time, communication between individual computing nodes
occurs via a communication network (interconnect), the bandwidth of which has a
serious impact on the cluster performance [17].

For this type of calculation, the KNRTU-KAI computing cluster can be used.
Cluster based on six-core Intel Xeon “Westmere” X5650 processors including 192
cores, 768 GB of RAM and a performance equal to 510.72 Gflops/s. The cluster
is running the Novell SuSe Linux operating system. Also, a high-speed QDR
Infiniband network is connected. Analysis speed data is shown in Fig. 4.

The process of numerical simulation on a workstation containing 4 cores (8
threads), 12 GB RAM and an Intel Core i7–8750H processor lasts 135 min. Using
a workstation with 4 cores (8 threads), 48 GB RAM, and an Intel Core i7–9700K
processor reduces this time to 40 min and 5 s. The estimated analysis time using a
supercomputer will take approximately 5 min.

It can be noted that the speed of numerical simulation varies non-linearly
depending on the number of cores. This is due to the fact that workstations are used
that differ in the type of processors and hardware configuration. Also, it is worth

Fig. 4 Analysis speed data
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considering that in the case of a computing cluster, there are serious power losses
associated with data transfer between computing nodes. In the case of analyzing
this numerical experiment, the amount of RAM does not play a role in solution
performance, since the model described by a small number of finite elements.

6 Conclusion

A proven approach for finite element modeling of technological stresses in compos-
ite products and changes in the geometry of a mold to minimize residual deflection
is described.

A comparative analysis of the computing capabilities of various computing
stations for this task is carried out.

The described approach for minimizing residual deformations in a composite
product has a huge potential in the field of numerical experiments. This approach
allows conducting virtual tests to assess the quality of product manufacturing. This
leads to a significant increase in manufacturing accuracy, increases production
efficiency, reduces the number of defective products and helps to save labor and
material resources.

The approach error varies from 0.5% to 6.5% depending on the coordinate
measuring machine used, the production technology, and the quality of the mesh
model. The error can be obtained from the specific geometric parameter of the
product. The conducted research and production of samples showed that numerical
modeling can reduce the amount of residual deformations by 69 %.

The problems of determining the residual stress-strain state can be solved using
a computing cluster. At the same time, the results of the analysis performed using
a supercomputer will not differ from those obtained on a personal workstation with
shared memory. Analysis of the solution speed showed a nonlinear dependence of
the solution speed on the number of cores.
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Numerical Analysis of One Two-layer
Completely Conservative Difference
Scheme of Gas Dynamics in Eulerian
Variables with Adaptive Viscosity

Orkhan Rahimly, Yury Poveshchenko, Viktoriia Podryga,
and Parvin Rahimly

Abstract For the equations of gas dynamics in Euler variables, using the operator
approach, a family of two-layer in time completely conservative difference schemes
with space-profiled weighted factors used to approximate the momentum and energy
fluxes over time has been constructed and numerically studied. Schemes have a
second order of accuracy and are implemented using simple iterative processes.
The regularization of the flux terms of the gas dynamics equations using adaptive
artificial viscosity is proposed and numerically investigated by the example of the
well-known Einfeldt problem. This regularization effectively eliminates unphysical
oscillations of the solution, entropy peaks, and preserves the property of complete
conservatism of schemes of this class.

1 Introduction

The present study is devoted to the numerical analysis of a family of two-layer
in time completely conservative difference schemes (CCDS) with space-profiled
time weights for the system of gas dynamics equations in Euler variables using
adaptive artificial viscosity [1–3]. The goal of this work was to improve numerical
approaches that correctly model the entropy evolution of the system and determine
the quantitative characteristics of unstable fluxes in the form of spatially distributed
viscous accumulations in a discrete medium.

The regularization of divergent fluxes of momentum mass and internal energy
of gas dynamics equations using adaptive artificial viscosity that does not violate
the properties of complete conservatism of schemes of this class is proposed. The
analysis of the amplitude of this regularization and the possibility of its use on non-
uniform grids are considered.
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Regularized fluxes make the scheme quasimonotonic and ensure coordina-
tion of momentum, kinetic and internal energy balances (with correct entropy
evolution) while maintaining the property of complete conservatism. Moreover,
in the constructed class of divergent difference schemes, following the laws of
thermodynamics, there are no approximating permanently acting sources (or sinks)
of internal energy. Schemes have a second order of accuracy. The paper describes an
approximation to the introduction of artificial viscosity of CCDS. The mechanism
of iterative CCDS algorithms with dynamically generated viscous accumulations in
a discrete medium is described. Testing of the developed algorithm was carried out
on the basis of the well-known Einfeldt problem [4–7] on the propagation of two
symmetric rarefaction waves in opposite directions. Numerical calculations with
the class of divergent adaptive viscosities developed for CCDS showed a significant
improvement in the quality of the obtained approximate solutions in terms of their
“high-frequency” monotonization and preservation of entropy properties. Entropic
peaks in temperature profiles disappeared with a refinement of the spatial grid.

After some natural generalizations, the developed schemes can be used for
gasdynamic calculations with more complex models, for example, in the case of
fast processes in plasma with a separation of the temperatures of the electronic and
ionic components, when one equation of the total energy balance of the medium is
not enough to calculate, as the case, particularly, in plasma dynamics models [8].

2 Completely Conservative Differential Difference Scheme

Omitting the initial system of Euler equations for the flow of a medium (see [2,
3, 9]), we immediately write out the corresponding two-layer in time completely
conservative difference scheme in Euler variables. Figure 1 shows the difference
grid where ω are the nodes of the difference grid, � are its cells. Thermodynamic
quantities as density ρ, pressure P , internal energy E = ρε, as well as cell volume
V and its massM = ρV will be attributed to the cells �. Velocity u, nodal mass m
and volume v will be assigned to nodes ω.

Fig. 1 Difference grid
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Obviously: mω = 0.5
∑
�(ω)

M�, V� = hi , vω = 0.5
∑
�(ω)

V� = hi+0.5 and μ∼D =
0.5

∑
ω(�)

μ∼ω , ρvω = mω
vω

= ρvi+0.5, where μ∼ω and μ∼D respectively introduced nodal

and cell mass fluxes (μ = ρu). Also, by the momentum assigned to the node, we
mean the quantity Iω = ρvωuω.

Next for the continuous operations of vector analysis div u, gradP , div(μ · u)
we introduce their difference analoguesDIV : (ω)→ (�), GRAD : (�)→ (ω),
to approximate transfer processes DIVD : (�)→ (ω) and divergence of the dyad
DITD : (�)→ (ω). Accordingly, we get:
DIV u = 1

V

∑
ω(�)

sω(�)u(ω), GRADP = 
P
v

,

where 
P = − ∑
�(ω)

sω(�)P� + S∂ωP∂ω,

DIVD μD = − 1
v

∑
�(ω)

sω(�)μD(�),

DITD(μD · uD) = − 1
v

∑
�(ω)

sω(�)μD(�)uD(�).

In the expression for
P , if the node ω = ∂ω is a boundary one, the term with a
value P∂ω at the boundary and a sign function S∂ω = ±1 depending on the direction
of the boundary normal is added.

We write out a completely conservative [9] difference scheme in Euler variables:

mt = −vDIVDμ∼D (1)

(mu)t = −vGRADP∼ − vDITD(μ∼D · u∼D) (2)

(Mε)t = −P∼VDIV u∼)− VDIV [(ρεu)∼ω ] (3)

(m
u2

2
)t = −v(u∼,GRADP∼)− vDIVD(μ∼D

u2∼
D

2
) (4)

By μEω = (ρεu)ω we mean some approximation of the internal energy flux
in a node ω. Also in the cell formed by the nodes ω and ω′, the quantities: u∼D =
0.5(u(δω)ω + u

(δω′ )
ω′ ), u2∼

D = 0.5(u(δω)ω ,u
(δω′ )
ω′ ) are introduced.

On time layers t and t̂ = t + τ (τ > 0 is time step), time differential derivatives
and spatially point (i.e., in grid nodes ω) time interpolations are introduced as at =
(â − a)/τ , a(δ) = δâ + (1− δ)a.

Here, the interpolation weight δ may depend on the spatial mesh node ω, for
example, according to the law: δ = √

m̂/(
√
m̂+√m).

Also, by arbitrary time interpolation of the grid functions a, â between the layers
t and t̂ , we mean a certain grid value a∼.
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3 Approximation and Introduction of Artificial Viscosity

We introduce a one-dimensional non-uniform grid over cells �i ∪ ∂� and nodes
ωi+0.5 ∪ ∂ω along a spatial variable xi+0.5 (see Fig. 2).

The symbol ∂ in Fig. 2 identifies boundary cells and nodes. ω0 = ω/∂ω, �0 =
�/∂�.

The equations for density ρ and internal energy E are reduced to the form:
Aiyi−1 − Ciyi + Biyi+1 = −Fi , i = 1, . . . , N − 1, y0 = a1y1 + b1, yN =
a2yN−1 + b2 and are solved by the modified Newton method in combination
with the sweep algorithm. In Eqs. (1)–(4) on the right-hand side, the implicitness
is embedded in nodal and cell mass fluxes. After applying the Newton method
and introducing the notation for the increments δyi = ys+1

i − ysi , omitting the
calculations, we immediately write out the running coefficients (A,B,C, F ) for the
ρ −, u − and E − iterative groups. In this case, the upper symbol ≈ will indicate
that the time dependence of the value on the implicit layer is taken at a known s-th
iteration.

Aρi = βi−0.5hi−0.5, Bρi = βi+0.5hi+0.5, Cρi = hi + Aρi + Bρi, Fρi = −f≈ρi .

Similarly for velocity u we have:

Aui+0.5δ
ui−0.5 − Cui+0.5δ
ui+0.5 + Bui+0.5δ
ui+1.5 = −Fui+0.5,

Aui+0.5 =
{
− τ

{
−
[
−βi hi

τ
(−ρs+1

vi−0.5)

]}
− τ [−{1

2

{ [−Ki+0.5(ρ
s+1
i+1 − ρs+1

i )
]
+

+
[
−Ki−0.5(ρ

s+1
i − ρs+1

i−1 )
] }1

2
δs+1
i−0.5

}]
}
/ρs+1
vi−0.5,

Cui+0.5 =
{
ms+1
i+0.5 + τ

{
[−βi+1

hi+1

τ
(−ρs+1

vi+0.5)] −
[
−βi hi

τ
(ρs+1
vi+0.5)

]}
+

+τ
[{

1

2

{ [−Ki+1.5(ρ
s+1
i+2 − ρs+1

i+1 )
]
+
[
−Ki+0.5(ρ

s+1
i+1 − ρs+1

i )
] }1

2
δs+1
i+0.5

}
−

Fig. 2 One-dimensional non-uniform grid
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−
{

1

2

{ [−Ki+0.5(ρ
s+1
i+1 − ρs+1

i )
]
+
[
−Ki−0.5(ρ

s+1
i − ρs+1

i−1 )
] }1

2
δs+1
i+0.5

}]}
/ρs+1
vi+0.5,

Bui+0.5 =
{
− τ

{
[−βi+1

hi+1

τ
(ρs+1
vi+1.5)]

}
− τ [{1

2

{ [−Ki+1.5(ρ
s+1
i+2 − ρs+1

i+1 )
]
+

+
[
−Ki+0.5(ρ

s+1
i+1 − ρs+1

i )
] }1

2
δs+1
i+1.5

}]
}
/ρs+1
vi+1.5,

Fui+0.5 = −f≈ui+0.5, Ki+0.5 = βi+0.5
hi+0.5

τ
.

For internal energy E we have:

AEi = βEi−0.5hi−0.5, BEi = βEi+0.5hi+0.5, CEi = hi+AEi+BEi, FEi = −f≈Ei,

where the notation is used

fρi = hi(ρ̂i − ρi)+ τ (μ∼i+0.5 − μ∼i−0.5),

fui+0.5 = (Îi+0.5 − Ii+0.5)+ τ {(P∼i+1 − P∼i )+ [μ∼Di+1
u∼Di+1

− μ∼Diu∼Di ]},
fEi = hi(Êi − Ei)+ τ {P∼i [u∼i+0.5 − u∼i−0.5] + [μ∼Ei+0.5

− μ∼Ei−0.5
]},

δ
ui+0.5 = ρs+1
vi+0.5δui+0.5,

δs+1
i+0.5 =

√
ms+1
i+0.5/(

√
ms+1
i+0.5 +

√
mi+0.5).

Here, β is an adaptive viscous accumulation coefficient. In the expression f≈ui+0.5
and for both the termsp(ρs+1, E) and δ(ρ(s+1)) in the velocity group on the implicit
layer by time ρ is taken at the iteration s + 1, but u,E at the s-th iteration. Also in
the energy block for f≈Ei , p(ρs+1, E) and δ(ρ(s+1)) on the implicit layer in time, ρ
and u are taken at the iteration s + 1.

Adaptive viscosity with coefficients {ν, νE, νI } is presented in Eqs. (1)–(4)
in nodal mass fluxes μω = uωρω − (ν · GRAD ρ)ω (here ρw is the nodal
approximation of density), as well as an additive to the transferred internal energy
in the nodes μEω = (ρεu)ω − (νE · GRAD E)ω, and as an additive to pressure
P� − (νIDIV (ρs+1

ν u)). These viscosities {ν, νE, νI } are proportional, taken on
an implicit layer in time t̂ , while other terms are taken with a time-symmetric
approximation with weight 0.5.

Viscous diffusion coefficients are selected as follows:

(ν
h

)
ω
= βω hω

τ
,

(νE
h

)
ω
= βEω hω

τ
,

(νI
h

)
�
= β�h�

τ
,
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where

βω = l≈νωqnνων krω, βEω = l≈νEωqnνEωνE krω, β� = l≈u�qnν�νu kr�.

Here, the Courant numbers at the nodes and the cell are introduced as:

krω = |uω| + ε
2

τ

hω
, kr� = |us�| + ε

2

τ

h�
,

where ε is a small addition to the Courant number, which is significant at a
velocity close to zero. us� is a cellular interpolation of velocity at a known s-th
iteration. Understanding by the viscous accumulation β in the scheme the quantity
{βω, βEω, β�}, and by the viscosity coefficient ν one of the quantities {ν, νE, νI }
and l≈ = {l≈ν , l≈νE, l≈u }, we can briefly write:

ν

h
= β h

τ
, β = l≈qnkr, kr = |u| + ε

2

τ

h
, q > 1, n = 0, 1, 2, . . . .

The adaptive viscous accumulation coefficients β include a template grid
functional l≈ equal to 1 in the presence of artificial viscosity or 0 in its absence,
depending on the criterion used to monotonize density ρ, internal energy E, and
momentum I = ρνu in the corresponding nodes ω and cells �.

At the initial local switching-on the artificial viscosity (due to the arising
nonmonotonicity), it is assumed that l≈ = 1, n = 0, which means “viscous”
upwind approximation of the corresponding transfer process. Further, locally
viscous accumulation β can increase with increasing n if the nonmonotonicity in
the cell or node does not disappear. Values ν, h, β, l≈, n, kr have a spatially local
meaning, while the magnitudes q and values of the limiters β0 = {βρ0, βE0, βu0}
(i.e. β < β0) for density, internal energy, and momentum are global attributes of the
problem throughout the grid.

4 About the Iterative CCDS Algorithm Mechanism

In the iterative algorithm used, to calculate the increments of physical quantities on
the implicit layer in time t̂ , in addition to the non-stationary terms in Eqs. (1)–(3),
only terms proportional to viscosities {ν, νE, νI } are taken in the implicit s + 1-
th iteration. Therefore, the convergence of the iterative algorithm is determined by
Courant numbers kr associated with its explicit iterative part. The correctness of the
coefficientsA, B, C in separate runs for increments δρ, δ
u and δE is determined
by viscous accumulations {βω, βEω, β�}. Thus, in general, at each s iteration, the
algorithm consists of three groups dependent on each other. Besides, special blocks
for monotonizing (smoothing) the solution work for every group. In each of the
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groups, the necessary conditions for non-negativity (A ≥ 0, B ≥ 0, C > 0) and
diagonal predominance (C − A− B > 0) of running coefficients must be satisfied.

Before the initial iteration (s = 0), l≈ ≡ 0, k ≡ 1 are set locally over the
grid. Here, control parameter k = {kνω, kνEω, kνu�} can take three values locally in
corresponding node ω or cell �: k = 1 means that change of the corresponding β
is allowed; k = 0 means that β can only be reduced; k = −1 means that we can
only reduce β and until the iterations converge on the time layer t̂ the parameter
k = −1 is read-only. Before non-initial iterations (s > 0), if locally k ≥ 0, then
the corresponding l≈ = 0 and k = 1 are set. Otherwise (at k = −1) corresponding
values l≈ and β are not changed.

The block diagram of s-th iteration consists of the following groups:
(< ρs+1 − calculation >,< βρ − accumulator >),< βρu − corrector >,
(< us+1 − calculation >,< βu − accumulator >),
(< Es+1 − calculation >,< βE − accumulator >).
{< ρs+1 − calculation >:< Density ρ calculation on the s + 1-th layer >}.
{< βρ − accumulator >:< Adaptive viscous accumulation βω is formed, not

exceeding the limiter βρ0, with the control parameter kνω �= 1 if βω = βρ0 (with
repeating < ρs+1 − calculations), so that as a result there is no nonmonotonicity
in the profile ρs+1 >}.
{< βρu − corrector >:

< 1. It ensures the fulfillment of diagonal dominance Dui+0.5 = Cui+0.5 −
Aui+0.5−Bui+0.5 > 0 in nodes ω with a possible proportional decrease of the
time step τ and all viscous accumulations β. When the time step is reduced at
the nodes ω , where the condition Dui+0.5 > 0 is violated, kνω = −1 is set,
the values ρ, u,E at the s-th iteration are assigned the values from the explicit
t - layer and the return to < ρs+1 − calculation > is performed>.

< 2. If there were l≈u� = 0 in the cells (�(ω0)) around the nodes ω0, where l≈νω =
1, then they rely on l≈u� = 1, nν� = 0 >.

< 3. Due to the selection of viscous accumulations β� and βω, the non-negativity
of the running coefficientsAui+0.5 ≥ 0, Bui+0.5 ≥ 0 is ensured with a possible
local achievement of the limiters (β� = βu0, kνu� �= 1) and a proportional
decrease of the time step τ with viscous accumulations {βω, βEω}. At nodes
ω, in which the values βω led to negative Au < 0 and Bu < 0, kνω = −1
is set. When the time step τ decreases, the values ρ, u,E at the s-th iteration
are assigned the values from the explicit t - layer and the return to < ρs+1 −
calculation > is performed>}.

Iterative blocks (< us+1 − calculation >,< βu − accumulator >) and
(< Es+1 − calculation >,< βE − accumulator >) with monotonization
in momentum I = ρνu and internal energy E with the formation of viscous
accumulations β� and βE� are similar to the block described above for density (<
ρs+1 − calculation > , < βρ − accumulator >). If upon reaching the maximum
possible number nsmax the iterations did not converge, then a proportional decrease
of the time step τ and all viscous accumulations β occurs. Assumed k = −1, the
values ρ, u,E at the known s-th iteration are assigned values from the explicit t -
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layer and the return to < ρs+1 − calculation > is performed. If the convergence
criterion {|δρ| < ε1|ρs | + ε2, |δI | < ε1|I s | + ε2, |δE| < ε1|Es | + ε2} is satisfied,
then iterations are stopped and relied upon {ρ̂ = ρs+1, Î = I s+1, Ê = Es+1}.

5 Algorithm Testing

To test the algorithm, the Einfeldt problem [4–7] was chosen on the propagation of
two symmetric rarefaction waves in opposite directions. Here, the feature is related
to the behavior of internal energy on a numerical solution. The problem is solved
as a special case of the disintegration problem. The segment [−1, 1] is used as the
computational domain. The gap is located in the center of this segment at the point
x = 0. The initial conditions are presented in Table 1. SI is taken as the system of
units of measurement.

Over time, an expanding fixed section (plateau) is formed in the center of the
region with constant values of gas density and pressure, which are quite small.
Since the state equation of an ideal gas is satisfied, the specific internal energy
remains constant in this region, and the entropy also remains constant in the entire
computational domain at t > 0 (isoentropic process). Numerical solutions of this
problem based on many well-known methods unsatisfactorily convey the behavior
of specific internal energy. We show that the algorithm proposed above significantly
improves the approximation of these thermodynamic quantities in comparison with
the most well-known methods.

The analitical and numerical solutions of the problem under consideration in the
Euler variables are shown in Figs. 3, 4, 5, and 6 for N = 2000 calculated cells and
Fig. 7 for N = 500. Blue and orange curves correspond to analytical and numerical
solutions of the corresponding quantities. Calculations were performed for N =
500, 1000 and N = 2000 points. In the first three figures, there is more than a
good agreement between the analytical and numerical solutions, not only for 2000
but also for N = 500 and 1000. The temperature graphs (see Figs. 6 and 7) are of
particular interest. In Fig. 7, a noticeable deviation of the numerical solution in the
vicinity of the plateau is observed, but it resolves fairly well when compacting the
mesh (see Fig. 6). In most of the numerical algorithms currently used, conservative
variables are traditionally used as such, while the amplitude of the entropy peak
is about 70% of the solution. One of the most well-known works on optimizing the
entropy wake is the work [7] using the discrete Galerkin method, where a noticeable
improvement in the entropy peak is observed, but the effect of the final smoothing
of the entropy peak is not observed when the mesh is refined to cells N = 5000.

Table 1 Initial conditions Left side (x < 0) Right side (x > 0)

ρ u p ρ u p

1 −2 0.4 1 2 0.4
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Fig. 3 Density distribution, N = 2000

Fig. 4 Pressure distribution, N = 2000

Fig. 5 Velocity distribution, N = 2000
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Fig. 6 Temperature distribution,N = 2000

Fig. 7 Temperature distribution, N = 500

6 Conclusion

A numerical experiment was conducted with the developed class of divergent
adaptive viscosities, as applied to completely conservative difference schemes with
spatially profiled temporary weights associated with variable masses of moving
nodal particles of the medium. The proposed algorithm showed a significant
improvement in the quality of the numerical solution of the Einfeldt problem.
Compared to other methods, the entropy peak is not observed. The effective
preservation of the internal energy balance in this type of divergent difference
schemes is ensured by the absence of constantly acting sources of difference origin
producing computational entropy (including on singular features of the solution).

Acknowledgments The work was supported by the Russian Science Foundation (project No 17-
71-20118-P).
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Accurate Simulation of On-Threshold
Modes of Microcavity Lasers with Active
Regions Using Galerkin Method
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and Evgenii M. Karchevskii

Abstract The current paper investigates a parametric eigenvalue problem for the
Helmholtz equation on the plane specially tailored for accurate mathematical
modeling of lasing modes of 2-D microcavity lasers with active regions. We reduce
the original problem to a nonlinear eigenvalue problem for a system of boundary
integral equations (BIEs) with weakly singular kernels known as Muller BIEs.
For a less complicated problem for fully active lasers, it is known that there
is no full spectral equivalence between the original problem and the eigenvalue
problem for the system of Muller BIEs. In the present work, we clarify the
connection between the spectra of the more complicated problem for microcavity
lasers with active regions and the eigenvalue problem for the system of Muller
BIEs. After that, for the numerical solution of the obtained nonlinear problem, we
propose a Galerkin method, prove its convergence, and derive error estimates in
the eigenvalue approximation. Previous numerical experiments show that holes of
eccentric microring lasers located in well-defined places contribute to a significant
increase in the directivity of lasing emission. In this paper, we strive to obtain
the highest directivity possible while maintaining low lasing thresholds, for this
purpose, we vary the radius of the hole.
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1 Introduction

Various two-dimensional (2-D) microdisk and microring lasers (see, e.g., [1, 2]) can
be investigated with the aid of an electromagnetic eigenvalue problem assigned to
calculate the threshold values of gain in addition to the emission frequencies and
called the Lasing Eigenvalue Problem (LEP) [3–6]. For 2-D microcavity lasers with
uniform gain, LEP was reduced to a nonlinear spectral problem for the system of
Muller boundary integral equations (BIEs) (see [7] and references therein). For 2-
D homogeneous dielectric objects with smooth boundaries, the system obtained by
Muller in [8] is widely used for the analysis of electromagnetic fields. Similarly,
the eigenmodes of fully active [7] and passive [9] microcavities can be calculated
using Muller BIEs. Many authors have described and used a physical model called
the Complex-Frequency Eigenvalue Problem (CFEP) [7]. It is based on the search
of complex-valued natural frequencies of open passive resonators. To be able
to build a general theory for both LEP and CFEP models, a generalized model
was proposed in [7]. It has received the following name: Generalized Complex-
Frequency Eigenvalue Problem (GCFEP) [7]. The reason for reducing GCFEP to
the Muller BIEs was to get a system of weakly singular integral equations [10] on
the boundary of the microcavity laser. But there was no full equivalence between
GCFEP and the eigenvalue problem for the system of Muller BIEs [11]. Namely, it
was proved in [12] that for each eigenfunction of GCFEP there is a corresponding
eigenvector of the system of Muller BIEs. But the assertion in the opposite direction
is not true: there is one more problem that is reduced to the Muller BIEs. It was
called GCFEP “turned inside out” [12]. GCFEP is equivalent to the eigenvalue
problem for the system of Muller BIEs on a domain in the complex plane if GCFEP
turned inside out does not have eigenvalues in this domain. If GCFEP and GCFEP
turned inside out together have only the trivial solutions, then the system of Muller
BIEs has only the trivial solution [12], and the resolvent set of the corresponding
operator-valued function is not empty. This result is important for the theoretical
investigation of the spectrum of the eigenvalue problem. Using it and fundamental
results of the theory of projection methods for holomorphic Fredholm operator-
valued functions [13, 14], the convergence of a Nystrom method was proved in [7].

Recently, a modified version of the Muller BIEs, together with a trigonometric
Galerkin discretization technique, has been proposed for numerical simulation of
more complicated microcavity lasers with active regions [15–18]. Mathematically,
this means that there is an additional region inside the computational domain, and
hence, an additional boundary in the integral formulation. It makes the theoretical
analysis more difficult compared to [7, 11], and [12], where problems with one
boundary were investigated, as it was proposed originally by Muller [8].

The main idea of the present work is to conduct a thorough mathematical study
of GCFEP for lasers with active regions as well as to provide a rigorous proof
of convergence of the Galerkin method. First of all, we clarify the connection
between GCFEP and the eigenvalue problem for the system of Muller BIEs in
this complicated situation. Our consideration is based on the fundamental results
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of the theory of holomorphic operator-valued functions in a pair of Banach spaces.
After that, using the Galerkin method, we build a sequence of finite-dimensional
holomorphic operator-valued functions that regularly approximates the original
holomorphic Fredholm operator-valued function. This enables us to apply the results
of [13, 14] to the numerical analysis of the proposed method.

Based on the presented numerical approach, we investigate directivities, spectra,
and thresholds of laser modes of eccentric microring lasers. For circular microcavity
lasers with non-concentric circular active regions, we obtain explicit expressions
for the matrix elements [18]. This makes calculations much faster. Analysis of
numerical experiments demonstrates the exponential convergence of the Galerkin
method [18]. Our numerical results coincide well with exact solutions previously
obtained by the method of separation of variables for circular microcavities with
concentric circular holes [18]. The computational experiments show that holes
located at certain places and having suitable radiuses can lead to a notable growth
of the directivity of the lasing emission with the conservation of the low thresholds
[18]. In this work, numerical results were obtained for holes of a relatively small
radius. In the current paper, we demonstrate similar effects for a hole with a
relatively large radius, which corresponds to the physical experiments described in
[19].

2 GCFEP and Turned Inside Out GCFEP

The formulation of GCFEP for 2-D microcavity lasers with active regions is given
in [15]. The geometry of enquired microcavities is shown in Fig. 1. The hole is
designated by the domain �1, the active region of the resonator is designated by
�2, and the environment of the resonator is �3. The boundaries �1 and �2 separate

Fig. 1 Geometry of a 2-D
microcavity laser with an
active region
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these regions. We suppose that the boundaries �1 and �2 are twice continuously
differentiable, and n1 and n2 are the outer normal unit vectors to them, respectively.

We assume that a positive refractive index νo of the hole�1 and the environment
around the resonator �3 is given. The complex-valued refractive index of the
domain �2 is νi = αi − iγ . We denote the given real part of νi by αi > 0 and
the parameter of GCFEP, which is real-valued, by γ ∈ R. We take γ = 0, when the
cavity is passive and without losses, another case is lossy cavities with γ < 0. The
last case is when the region�2 is filled in with a gain material, then γ > 0.

We assume that the electromagnetic field does not depend on the variable x3
and depends on time as ∼ exp(−ikct). Herein, the speed of light in a vacuum is
designated by c. As far as the wavenumber k is the eigenvalue of GCFEP, we guess
that it is complex-valued. We are looking for values of k on the Riemann surface L

of the function ln k (following [7]). Due to the independence of the electromagnetic
field on the x3 variable, we are dealing with the scalar eigenfunctions of GCFEP
u ∈ U \ {0}, each of which is the third element of the density vector E or H
for E- and H-polarization, respectively. We use the designation U of the space of
functions which are complex-valued and continuous on �1,�2, and �3 and twice
continuously differentiable on �1,�2, and �3.

For each γ ∈ R, the eigenvalues k ∈ L and the eigenfuctions u ∈ U \ {0} of
GCFEP have to satisfy the Helmholtz equations,


u+ k2
ou = 0, x ∈ �1, (1)


u+ k2
i u = 0, x ∈ �2, (2)


u+ k2
ou = 0, x ∈ �3, (3)

the transmission conditions,

u− = u+, ηo
∂u−

∂n1
= ηi ∂u

+

∂n1
, x ∈ �1, (4)

u− = u+, ηi
∂u−

∂n2
= ηo ∂u

+

∂n2
, x ∈ �2, (5)

and the outgoing Reichardt radiation condition [7, 19],

u(ρ, ϕ) =
∞∑

l=−∞
alH

(1)
l (koρ) expilϕ, ρ ≥ R0. (6)

Here, the polar coordinates of the point x are denoted by (ρ, ϕ), ko = kνo, ki = kνi .
In (4) and (5) we have the dependence of the coefficients on the polarization;
namely, ηo,i = ν−2

o,i and ηo,i = 1 for H- and E-polarization, respectively. The

Hankel function of the first kind, with the index l is designated by H(1)l (z). The
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functions u ∈ U in (4) and (5), which are related to the boundary conditions, have
the following limit values (see, e.g., [20, p. 68]):

∂u±

∂ni
(x) = lim

h→+0
(ni(x), gradu(x ± hn(x)), x ∈ �i, i = 1, 2, (7)

which are expected to exist uniformly on �1,2. The series in (6) converges uniformly
and absolutely for any eigenfunction of GCFEP, also it is important to note that it is
infinitely termwise differentiable [7].

We designate the major sheet of L by L0 and suppose that it is cut along the
negative imaginary semi-axes by branch. At this point, we note that three types of
GCFEP eigenfunctions dependent on the location of the eigenvalue k ∈ L0 exist.
Equation (6) is interchangeable to the common Sommerfeld radiation condition in
the case of Im k = 0,

( ∂
∂ρ

− iko
)
u = o

( 1√
ρ

)
, ρ →∞. (8)

The case of Im k > 0 corresponds to the situation when u exponentially decays
as ρ → ∞. In the alternative case, Im k < 0 is when the eigenfunction u
grows exponentially at infinity. An important note for our consideration is that the
incoming equality is true [15, 19] for any k ∈ L, γ ∈ R, and u, which satisfies (6):

∫

�R

u−(y)∂Go(x, y)
∂n(y)

dl(y)−
∫

�R

Go(x, y)
∂u−(y)
∂n(y)

dl(y) = 0. (9)

Here, x ∈ �3, Go = (i/4)H (1)0 (ko |x − y|). We denote by �R the circle with a big
enough radius R which center is located at x. This fact helps us to explore all the
eigenfunction types in the one scope.

We need to remember about the dependence of the imaginary part of k ∈ L0
on γ ∈ R [7]. In the case of a passive cavity, where γ ≤ 0, without losses or
with them, the GCFEP statement conforms with the usual statement of CFEP [9].
At this point, Im k < 0 for all the eigenvalues k ∈ L0. The alternative case is an
active cavity, when γ > 0, and the imaginary part of k ∈ L0 can be equal to or
greater than zero. The pair (k, γ ), where γ and k are positive, and the corresponding
eigenfunction u satisfy all the conditions of LEP [6].

Theorem 1 [15] For each γ ∈ R and k ∈ I+ problem (1)–(6) has only the trivial
solution u = 0, x ∈ R

2.

By I+ we denote the strictly positive imaginary semi-axis of L0. Theorem 1 was
proved in [15] using the second Green’s theorem (see, e.g., [20, p. 68]).

Arguing as in [11, 12], now we introduce GCFEP turned inside out that will be
used later for investigation of connections between solutions of problem (1)–(6) and
a spectral problem for Muler BIEs.
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Now we assume that the refractive index in the domain�2 is νo and the refractive
index in the domain �3 and in the hole �1 is νi = αi − iγ . As before, we suppose
that ν0 and αi are positive and given. For any value of the parameter γ ∈ R, a
nonzero function u ∈ U is referred to as an eigenfunction of the E-polarized GCFEP
turned inside out corresponding to an eigenvalue k ∈ L if the following relations are
satisfied:


u+ k2
i u = 0, x ∈ �1, (10)


u+ k2
ou = 0, x ∈ �2, (11)


u+ k2
i u = 0, x ∈ �3, (12)

u+(x) = u−(x), ∂u−(x)
∂nj (x)

= ∂u+(x)
∂nj (x)

, x ∈ �j , j = 1, 2, (13)

u =
∞∑

l=−∞
alH

(1)
l (kiρ) exp(ilϕ), ρ ≥ R0. (14)

Theorem 2 For each γ ∈ R and k ∈ I+, problem (10)–(14) has only the trivial
solution u = 0, x ∈ R

2.

If k = iσ , where σ > 0, then the imaginary part of ki is positive, the
eigenfunction u decays exponentially at infinity, and the proof of the theorem is
analogous to the proof of Theorem 2 [12].

3 Eigenvalue Problem for Muller BIEs

Following [15], we use the integral representations of the eigenfunctions of the
problem (1)–(6) in the domains�1,�2, and �3, respectively:

u(x) = −
∫

�1

∂Go(x, y)

∂n1(y)
u−(y)dl(y)+

∫

�1

Go(x, y)
∂u−(y)
∂n1(y)

dl(y), (15)

u(y) =
∫

�1

∂Go(x, y)

∂n1(y)
u+(y)dl(y)−

∫

�1

Go(x, y)
∂u+(y)
∂n1(y)

dl(y)

−
∫

�2

∂Gi(x, y)

∂n2(y)
u−(y)dl(y)+

∫

�2

Gi(x, y)
∂u−(y)
∂n2(y)

dl(y),

(16)

u(y) =
∫

�2

∂Go(x, y)

∂n2(y)
u+(y)dl(y)−

∫

�2

Go(x, y)
∂u+(y)
∂n2(y)

dl(y) = 0, (17)
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where Gi = (i/4)H (1)0 (ki |x − y|). We know the equalities (15) and (16) well (see,
e.g., [20], p. 68). Equality (17) also holds since we have (9) for each k ∈ L and
γ ∈ R. Let

uj (x) = u+(x) = u−(x), x ∈ �j , j = 1, 2, (18)

v1 = ηi + ηo
2ηo

∂u+

∂n1
= ηi + ηo

2ηi

∂u−

∂n1
, x ∈ �1, (19)

v2 = ηi + ηo
2ηi

∂u+

∂n2
= ηi + ηo

2ηo

∂u−

∂n2
, x ∈ �2, (20)

and let us denote the space of continuous on �j , j = 1, 2, functions with the
maximum norm by Cj = C(�j ), j = 1, 2, C = C1 × C2, andW = C × C. Let us
indicate the identical operator in the spaceW by I. Then any solution of GCFEP (1)–
(6) in terms (18)–(20) satisfy the following nonlinear eigenvalue problem for the set
of Muller BIEs [15]:

A(k, γ )w = (I + B(k, γ ))w = 0, (21)

B =

⎛
⎜⎜⎜⎝

B
(1,1)
1 B

(1,2)
1 B

(1,3)
1 B

(1,4)
1

B
(2,1)
1 B

(2,2)
1 B

(2,3)
1 B

(2,4)
1

B
(3,1)
2 B

(3,2)
2 B

(3,3)
2 B

(3,4)
2

B
(4,1)
2 B

(4,2)
2 B

(4,3)
2 B

(4,4)
2

⎞
⎟⎟⎟⎠ , w =

⎛
⎜⎜⎝

u1

v1

u2

v2

⎞
⎟⎟⎠ ,

(
B
(l,m)
j (k, γ )g

)
(x) =

∫

�j

K
(l,m)
j (k, γ ; x, y)g(y)dl(y).

Here, we designate uj or vj , j = 1, 2 by the function g. The kernels have the
following form [15]:

K
1,1
j = −K3,3

j = ∂(Go(x, y)−Gi(x, y))
∂nj (y)

, j = 1, 2,

K
1,2
1 = −K3,4

2 = 2(ηoGi(x, y)− ηiGo(x, y))
ηi + ηo ,

K
1,3
1 = ∂Gi(x, y)

∂n2(y)
, K

3,1
2 = −∂Gi(x, y)

∂n1(y)
, K

1,4
1 = −2ηoGi(x, y)

ηo + ηi ,

K
2,1
j = −K4,3

j = ∂2(Go(x, y)−Gi(x, y))
∂nj (x)∂nj (y)

, j = 1, 2,
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K
2,2
j = −K4,4

j = 2ηo
ηo + ηi

∂Gi(x, y)

∂nj (y)
− 2ηi
ηo + ηi

∂Go(x, y)

∂nj (y)
, j = 1, 2,

K
2,3
1 = −K4,1

2 = ∂2Gi(x, y)

∂n1(x)∂n2(y)
, K

3,2
2 = 2ηoGi(x, y)

ηo + ηi ,

K
2,4
j = −K4,2

j = − 2ηo
ηo + ηi

∂Gi(x, y)

∂nj (y)
, j = 1, 2.

Several of the Kernels Kq,sj have logarithmic singularities and the others are
continuous [10]. Consequently, the operator B(k, γ ) : W → W is compact for
every k ∈ L and γ ∈ R. The following theorem is proved analogously to Theorem 3
[12].

Theorem 3 If u ∈ U is an eigenfunction of the problem (1)–(6) corresponding to
an eigenvalue k ∈ L for a value of the parameter γ ∈ R, then defined in (18)–(20)
functions uj and vj belong to the Banach spaces Cj , j = 1, 2, respectively, and
form a nontrivial solution w ∈ W of (21) with the same values of k and γ .

The assertion in the opposite direction relative to the statement of Theorem 3 is
not true (see, e.g., [18]) since we do not substitute representations (15)–(17) into (4)
and (5), but add term by term the limit values of them and their normal derivatives
from both sides of the boundaries �1 and �2 [7, 12]. However, the following result
holds true.

Theorem 4 For each γ ∈ R and k ∈ I+ problem (21) has only the trivial solution
w = 0, w ∈ W .

Theorem 4 is proved analogously to Theorem 4 [12] using Theorems 1 and 2.

Theorem 5 The following statements are true.

1. For each γ ∈ R, the resolvent set of the operator-valued function A(k) is not
empty, namely, I+ ⊂ ρ(A).

2. For each γ ∈ R, the spectrum σ(A) of the operator-valued function A(k) can
be only a set of isolated points on L, which are the eigenvalues of A(k) of finite
algebraic multiplicities.

3. Each eigenvalue k of the operator-valued function A(k) depends continuously
on γ ∈ R and can appear and disappear only on the boundary of its analyticity
domain, i.e., at zero and infinity on L.

The first assertion of Theorem 5 follows from Theorem 4, the compactness of the
operator B(k), and the Fredholm alternative. For each γ ∈ R, the operator-valued
function B(k) is holomorphic in k ∈ L [7]. Therefore, all the other statements of
the theorem follow from the results of the theory of holomorphic operator-valued
functions (see, e.g., Appendix in [21], and paper [22]).

Statements of Theorem 5 conform to CFEP, if γ is equal to or less than zero. The
next corollary from Theorem 5 characterizes the eigenvalues of LEP.
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Corollary 1 If for some γ > 0 the intersection of the spectrum σ(A) and the
positive real semi-axis of L0 is not empty, then it can be only a set of isolated points
k > 0, which are the eigenvalues of A(k) of finite algebraic multiplicities.

4 Galerkin Method

In the current section, we present the Galerkin method for the numerical solution
of the problem (21). Assume that each contour �j has a parameterization ρj (t) =
(ρ1
j (t), ρ

2
j (t)), where ρ1

j (t) = fj (t) cos t, ρ2
j (t) = fj (t) sin t, t ∈ [0, 2π], j =

1, 2. Then, for any given γ ∈ R, we have

(
B
(l,m)
j (k, γ )w(m)

)
(t) = 1

2π

∫ 2π

0
K
(l,m)
j (k; t, τ )w(m)dτ.

Here, l,m = 1, 2, 3, 4, y = y(τ) ∈ �j , j = 1, 2,

K
(l,m)
j (t, τ ) = 2πK(l,m)j (x, y)

∣∣∣ρ ′j (τ )
∣∣∣
−1
.

For construction and investigation of the Galerkin method, it is convenient to
consider problem (21) in the Hilbert space H = (L2)

4 where L2 denotes the space
of square integrable functions with the inner product

(u, v) = 1

2π

∫ 2π

0
u(τ)v(τ )dτ, u, v ∈ L2.

By Tn ⊂ L2 we denote the subspace of all trigonometric polynomials of order
no greater than n with complex coefficients. ThenHn = (Tn)4 ⊂ H is the subspace
with elements of the form

wn =

⎛
⎜⎜⎜⎝

w
(1)
n

w
(2)
n

w
(3)
n

w
(4)
n

⎞
⎟⎟⎟⎠ , w(1)n , w

(2)
n , w

(3)
n , w

(4)
n ∈ Tn.

By pn : H → Hn we define the following projection operator:

pnw =

⎛
⎜⎜⎝

�nw
(1)

�nw
(2)

�nw
(3)

�nw
(4)

⎞
⎟⎟⎠ , w(1), w(2), w(3), w(4) ∈ L2.
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Here, �n : L2 → Tn is the Fourier operator,

(�nw
(m))(t) =

n∑
q=−n

cq(w
(m))ϕq(t), m = 1, 2, 3, 4.

For q = −n, . . . , n, the vectors ϕq(t) = exp(iqt) form the orthonormal basis in the
space Tn, and

cq(w
(m)) = (w(m), ϕq) = 1

2π

∫ 2π

0
w(m)(t) exp(−iqt)dt,

are the Fourier coefficients of the function w(m). We rewrite Eq. (21) as follows

w(l) +
4∑

m=1

B(l,m)(k)w(m) = 0, l = 1, 2, 3, 4. (22)

We find approximate solutions w(1)n , w
(2)
n , w

(3)
n , w

(4)
n ∈ Tn of the system of

equations (22) in the form

w(m)n (t) =
n∑

q=−n
α(m)q ϕq(t), n ∈ N, m = 1, 2, 3, 4.

Therefore, we have

w(l)n +
4∑

m=1

B(l,m)(k)w(m)n = 0, l = 1, 2, 3, 4, n ∈ N.

We calculate unknowns α(m)q using the Galerkin method,

(
w(l)n , ϕp

)
+

4∑
m=1

(
B(l,m)(k)w(m)n , ϕp

)
= 0, p = −n, . . . , n, (23)

where l = 1, 2, 3, 4. Since the trigonometric functions are orthonormal, we can
rewrite equations (23) in the form of the following system of linear algebraic
equations:

α(l)p +
4∑

m=1

n∑
q=−n

h(l,m)pq (k)α(m)q = 0, p = −n, . . . , n, (24)
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where l = 1, 2, 3, 4,

h(l,m)pq (k) = 1

4π2

∫ 2π

0

∫ 2π

0
K(l,m)(k; t, τ ) exp(−ipt) exp(iqτ )dtdτ.

Denote by wn the solution of system (24), by An(k) its matrix, and by σ(An)
the spectra of An(k). We investigate the convergence of the Galerkin method using
ideas of [7] and fundamental results of [13, 14].

Theorem 6 For any given γ ∈ R, the following statements are true.

1. For every eigenvalue k0 of A(k), there exists a sequence {kn}n∈N converging to
k0 with the eigenvalues kn of An(k).

2. If {kn}n∈N and {wn}n∈N are some sequences of eigenvalues kn of An(k) and
normalized eigenfunctionswn of An(k), so that kn → k0 ∈ L (n ∈ N), then

i) k0 is an eigenvalue of A(k),
ii) {wn}n∈N is a discretely compact sequence and its cluster points are normal-

ized eigenfunctions of A(k0).

3. For every compact L0 ⊂ ρ(A), the sequence {An(k)}n∈N is stable on L0, i.e.,
there exist n(L0) and c(L0) such that L0 ⊂ ρ(An),

∥∥An(k)−1
∥∥ ≤ c(L0) for all

k ∈ L0 and n ≥ n(L0).

The proof of this theorem is based on the general results of the discrete
convergence theory [23] applied for investigation of approximate methods in the
eigenvalue problem where the parameter appears non-linearly [13].

The next theorem follows from [14].

Theorem 7 Assume that γ ∈ R is given, k0 is an eigenvalue ofA(k), andL0 ⊂ L is
a compact set with the boundary�0 ⊂ ρ(A) so thatL0∩σ(A) = {k0}. Let us denote
by εn the maximum of the approximation error over k ∈ �0 and w ∈ G(A, k0),

εn = sup{‖An(k)pnw − pnA(k)w‖Wn : k ∈ �0, w ∈ G(A, k0), ‖w‖W = 1}.
(25)

Here, G(A, k0) is the generalized eigenspace, i.e., the closed linear hull of all the
generalized eigenfunctions of A(k) corresponding to k0. Then εn → 0 (n ∈ N) and
the following estimations hold for almost all n ∈ N:

i) |kn − k0| ≤ cε1/κ
n for all kn ∈ σ(An) ∩L0, where κ = κ(k0, A) is the order of

the pole k0 of the operator-valued function A−1(k);
ii) |k̄n − k0| ≤ cεn, where k̄n is the weighted (proportionally to their alge-

braic multiplicities) mean of all the eigenvalues of An(k) in L0, k̄n =∑
k∈σ(An)∩L0

μk · k, μk = ν(k,An)/ν(k,A), where ν(·, ·) is the algebraic

multiplicity of the corresponding eigenvalue k;
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iii) max{|kn − k0| : kn ∈ σ(An) ∩ L0} ≤ cε
1/ln
n , where ln is the number of the

different eigenvalues of An(k) in L0.

We solve the nonlinear eigenvalue problem (24) using the residual inverse
iteration algorithm [24]. If the boundaries of the active cavity and the round piercing
hole are nonconcentric circles, then the entries of the Galerkin’s matrix have the
explicit expressions calculated carefully in [18]. We use them in the next section.

5 Numerical Results

In the systematic computations by the Galerkin method, we assume that the
environment in the original problem (1)–(6) is air with ν3 = ν1 = 1. We look for the
H-polarized modes of the active microcavity with the real part of the refractive index
αi = 2.63. This is known as the effective refractive index for a 200-nm GaAs layer
in the infrared spectrum [4]. In the following, we will use the normalized notations,
κ = ka2, d = |O1 −O2| /a2, and r = a1/a2. Boundaries �1 and �2 are circles
with centers at pointsO1 andO2 with radiuses a1 and a2, respectively.

We use a common notation for the modes of a circular cavity (see, for
instance [18]). The values of (κ, γ ) of the mode (11,1,e) for (r, d) = (0.505, 0.170)
are shown in Fig. 2 together with ones for all other modes with sufficiently small

–1
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–3

lo
g 1

0γ

–4

–5

5.2 5.4

(10,1,e)
(10,1,o)

(7,2,o)
(7,2,e)

(8,2,e)
(8,2,o)

(11,1,o)

–4.116

–4.115

–4.114
(11,1,o)

(11,1,e)

–4.113

r = 0.505, d = 0.170

(11,1,e) (12,1,o)
(12,1,e)

5.6 5.8

k

6 6.2 6.4

Fig. 2 Values of the normalized frequency of lasing κ and the threshold gain γ of all modes with
sufficiently small thresholds for κ ∈ [5.2, 6.4] and r = 0.505, d = 0.170
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Fig. 3 The near-field (right panels) and the far-field (left panels) patterns for x1-even and x1-odd
H10,1 modes for r = 0.505, d = 0.170

thresholds and κ ∈ [5.2, 6.4]. We see that this mode is working since it has the
lowest threshold. All the field patterns of the modes with n = 1 shown in Fig. 2 are
presented in Figs. 3, 4, and 5. What is interesting that if the hole is relatively big,
then the main beam directs to the same side where the hole is shifted. For relatively
small holes, we obtain the unidirectional emission, and the direction of the main
beam is opposite to the hole shift direction [18]. These effects for small and large
holes were experimentally demonstrated in [25]. It is important to note that quasi-
unidirectional emission can also be explained with the help of Photonic Jet effect
described in works [26–28].



440 A. I. Repina et al.

Fig. 4 The near-field (right panels) and the far-field (left panels) patterns for x1-even and x1-odd
H11,1 modes for r = 0.505, d = 0.170

6 Conclusion

We have used the Muller BIEs for the analysis of the spectrum of GCFEP with the
help of the general results of the theory of operator-values functions depending on
the parameter. We have also shown the main steps in the reduction of GCFEP for
a 2-D laser with a partial active region to a set of four coupled boundary integral
equations of the Muller type. We have further explained the discretization of these
equations with the Galerkin method and proved its convergence.

Finally, we have calculated the on-threshold characteristics of a lasing mode of an
eccentric microcavity with the shifted hole. In the numerical experiments, we have
varied the position of the piercing hole on the x1 axis in the cavity and the radius
of the hole and measured the changes in the lasing frequencies, directionalities, and
thresholds, and have presented in the current paper only the results for the highest
directivity for a relatively big piercing hole.
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Fig. 5 The near-field (right panels) and the far-field (left panels) patterns for x1-even and x1-odd
H12,1 modes for r = 0.505, d = 0.170

Our numerical investigation has shown that a hole of a suitable radius and located
at a certain place can lead to a notable growth of the directivity of lasing mode
with the conservation of its low threshold. Hence, a big piercing hole’s radius and
position in the 2-D eccentric microcavity laser can be used as an engineering tool to
control efficiently the directivity of emission.
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A Solution of Inverse Problem
in the Theory of Supercritical Fluid
Extraction of Oil from Ground Plant
Material

Artur A. Salamatin and Andrey G. Egorov

Abstract In supercritical fluid extraction, the problem of experimental determi-
nation of apparent transport properties of the ground plant material is coupled
with analysis of the histogram of the particle size distribution function. Thus,
both, the diffusion coefficient, and the distribution function, have to be inferred
simultaneously. An inverse procedure which relates experimentally available overall
extraction curve and particle size distribution function is introduced in the present
study. In a particular case of flat particles, the problem is solved in a closed form.
The forward problem for the flat particles and the explicit analytical solution of the
inverse problem have been tested as a preconditioner in the iterative solution of the
inverse problem in case of spherical particles. Convergence of the computational
procedure is demonstrated in a series of test runs for pre-defined distribution
functions. Limitations of the overall algorithm applicability to the solution of inverse
problems are discussed.

1 Introduction

The supercritical fluid extraction (SFE) is a topical technology since it is in line with
the “green chemistry” policy and principals of sustainable development [1]. As the
major application, SFE is used for extraction of valuable natural compounds, such
as vegetable oil (lipids) and essential oil from ground raw plant material. Using
green solvents such as CO2 at supercritical conditions, SFE is less harmful for
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the environment and consumers of the final product, which is free of toxic organic
solvent residues.

Mathematical model of supercritical fluid extraction (SFE) of lipids from plant
material with high initial oil content is considered in the present paper. This
application is of general interest for the biofuel industry, in particular, for production
of natural nutritional supplements, and many others. The extraction takes place in
a cylindrical column (the extractor) with a stationary packed bed of ground plant
material particles. Sometimes sieving is applied to single out particle fraction with
a narrow particle size distribution. However, generally, the ensemble of particles
used for extraction is essentially polydisperse [2, 3]. The particle size distribution
is characterized by a volumetric cumulative distribution function F(a). It is the
volume (mass) fraction of particles in the bed with the size smaller than a. The
packed bed is assumed to be homogeneous, and the polydisperse particles are
randomly mixed. Typically, a spherical symmetry of mass transfer processes is
assumed on the particle scale. Sometimes planar approximation, or flat particles, is
considered. Thus, a stands for the particle radius or half-thickness, respectively [4].

The solvent, which dissolves the oil (solute), is pumped through the bed at a given
volumetric flow rate. The concentration gradient of solute is the driving force of
extraction on the particle scale. Once the oil has diffused along the particle transport
channels to the particle surface and is exposed to the interparticle pore volume, the
solvent carries it out of the extractor column. Two stages can be distinguished in
the SFE process based on the dependence of accumulated oil mass on time t , which
is called the overall extraction curve (OEC) Y (t) [5]. At the first stage the OEC is
linear with respect to time, and the solution leaving the extractor column is saturated
by the solute up to a maximum value θ∗. This limiting concentration depends on
temperature and pressure in the system. After the initial linear part, the rate of oil
accumulation slows down, the outlet solute concentration steadily decreases, and
the OEC varies non-linearly with time. Eventually, the packed bed is depleted, and
the OEC takes a constant value, which represents the total mass of oil initially (at
t = 0) available for extraction.

Further development of SFE process directly depends on the ability to predict
(simulate) its dynamics under various conditions. Thus, distinct mass transfer mod-
els have been suggested recently to explain and describe the observed multistage
process dynamics [6–10]. One of the widely applied approaches (Sect. 2) consists
of the shrinking core (SC) model for the particle-scale mass transfer [2, 11, 12], and
the quasi-stationary model of convection in the packed bed. The latter submodel
takes into account the polydisperse nature of particles, while it does not take into
account the diffusion boundary layer and macroscopic backmixing effects. They
are shown to be not important for typical SFE conditions [13]. As a result, the
model has a single adjustable parameter—apparent diffusion coefficient Deff of
solute mass transfer on the particle-scale. This parameter is used to scale-up the
process, to evaluate the economic efficiency and performance of suggested SFE
implementation and conditions [14]. In principle, the value of Deff can be inferred
from the experimental OEC.
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However, the extraction dynamics are essentially affected by the particle size
distribution as well [15, 16]. As a rule, the distribution function is unavailable,
and Deff should be inferred together with the F(a)-histogram. As suggested in
the present paper, both characteristics of the packed bed, Deff and F(a), can
be inferred one after another. Simply, the problem is analyzed in dimensionless
variables, and the F(a)-histogram is obtained in dimensionless variables as well.
Then, typical particle size of the packed bed is used to imposed a correspondence
between the dimensional and dimensionless quantities. A corresponding inverse
procedure for the determination of F(a) is introduced in Sect. 3 in dimensionless
form and discussed further in Sect. 4. The problem is shown to be ill-posed. Its
analytical solution is obtained in a closed form for flat particles. This solution is
used as a preconditioner in an iterative computational algorithm to solve the inverse
problem for spherical particles.

2 Forward Problem

2.1 Problem Formulation

Hereinafter we use the following dimensionless quantities: time t , spatial coordinate
z varying along the vessel from its inlet (z = 0) to outlet (z = 1), solute concentra-
tion 0 < c(t, z) < 1 in the pores of the packed bed, fraction 0 < s(t, z, a) < 1 of
oil extracted from an individual particle of size a to the moment t at cross-section z.
The scales relating the corresponding dimensional and dimensionless characteristics
are

t ∼ θ0

θ∗
H(1− ε)

v
, z ∼ H, a2 ∼ a2

sc ≡ 2mDeff
H(1− ε)

v
, c ∼ θ∗, (1)

where θ0 is the density of oil originally stored in the plant material per its unit
volume, H—vessel height, ε—packed bed porosity, v—superficial velocity of the
fluid passing through the packed bed, and m is the shape factor, which is 1 for flat
particles and 3 for spherical ones. Note that only the particle size scale asc depends
on Deff . Thus, the analyzed data can be presented in dimensionless quantities to
infer F(a). Then, a typical (dimensional) particle size must be used to infer the
value of Deff .

SFE is essentially a multiscale process. It is governed by different mass-
transfer mechanisms on the particle-scale and on the scale of packed bed pore
volume. Thus, the overall SFE model consists of two, macro- and micro-scale,
sub-models [10]. The first one describes the convective solvent flow through a
porous medium, composed of randomly mixed polydisperse ground plant material
particles. After [5, 12], the mass balance is described in one-dimensional quasi-
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stationary approximation. The master-equation and the inlet boundary condition
take the following forms

∂c

∂z
= ∂

∂t

∫ ∞

0
s(t, z, a)f (a)da, c|z=0 = 0, (2)

where f (a) is the density of the overall particle size distribution function F(a), and
dF(a) = f (a)da.

The mass balance on the particle scale is described within the framework of
SC [4, 12] approach. Here, two zones can be distinguished in the particle during
extraction: the inner oil-containing core, and the outer transport zone. The zones
are separated by a sharp boundary that shrinks towards the center (m = 3) or the
center plane (m = 1) of the particle with the extraction progress. The oil is depleted
in the outer zone, which is the diffusive transport path for the oil dissolved in the
solvent near the moving boundary. The conductivity of the transport zone to the
solute diffusion is the major mechanism that hinders and controls the extraction
process. The conductivity λm(s) depends on the current level of particle depletion
s and reflects the particle shape and symmetry of the mass transfer process on the
particle-scale

λm : λ1 = 1

2s
, λ3 = 0.5(1− s)1/3

1− (1− s)1/3 .

Here, m = 1 and 3 for flat and spherical particles, respectively.
Finally, the particle mass-balance equation and initial condition become

∂s

∂t
= λm(s)

a2 (1− c), s|t=0 = 0. (3)

Importantly, mass balance Eq. (3) is valid until the complete depletion of the
particle, i.e., s < 1. Once s = 1, it remains unity afterwards. Detailed derivation
and discussions of the problem (2)–(3) are given in Ref. [13]. In polydisperse packed
bed, Eq. (3) is solved for every particle fraction of size a at every cross-section z.

2.2 Problem Solution

The OEC Y (t) is of primary interest for the theoretical analysis since it is typically
the only one experimentally observed characteristic of the process. It represents the
extracted fraction of oil in the packed bed as a function of time t

Y (t) =
∫ t

0
c(τ, 1)dτ,



Inverse Problem in SFE Theory 449

where c(t, 1) is the solute concentration of solution leaving the extraction column,
or the rate of oil accumulation. Along with OEC it is convenient to consider the
zonal oil fraction 0 < y(t, z) < z extracted from the packed bed interval [0; z] to
the time t

y(t, z) =
∫ t

0
c(τ, z)dτ, (4)

where 0 < Y(t) = y(t, 1) < 1.
Integration of Eqs. (2) and (3) with respect to time t with account of the initial

condition for s and the definition (4) yields the following system of equations

∂y

∂z
=

∫ ∞

0
sf (a)da, y|z=0 = 0, (5)

ϕm(s) = min

{
1,
t − y
a2

}
. (6)

Here, the min-operator assumes that s < 1, and s = 1 is its maximum value
indicating the complete depletion of the particle. Due to scaling, the function

ϕm(s) =
∫ s

0

dω

λm(ω)
=

{
s2, m = 1;

3
(
1− (1− s)2/3)− 2s, m = 3; (7)

monotonously varies with s from zero to unity, as shown in Fig. 1. Hence, Eqs. (6)
and (7) define s as a function, inverse to ϕm(s)

s

(
t − y
a2

)
= ϕ−1

m

(
min

{
1,
t − y
a2

})
, (8)

and Eq. (5) renders the first-order Ordinary Differential Equation (ODE) with
respect to y as a function of z with another argument t as a parameter. Numerical
integration of Eq. (5) with respect to z from 0 to 1 yields Y (t) at any given moment t.

Substituting Eq. (8) in Eq. (5), the ODE can be solved for an implicit dependence
of Y (t) on time for any f (a). With the definition

k(τ ) =
∫ ∞

0
s
( τ
a2

)
f (a)da, (9)

Eq. (5) reads as

∂y

∂z
= k(t − y),
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Fig. 1 The monotonous functions ϕ1(s) and ϕ3(s) for flat and spherical particles respectively. Due
to scaling both functions vary between zero and unity for 0 < s < 1

which is an ODE with separable variables. Integrating with respect to 0 < z < 1
yields an integral equation with respect to Y (t)

∫ t

t−Y
dτ

k(τ )
= 1. (10)

A set of OECs for different discrete particle size distributions is demonstrated in
Fig. 2. Figure 2a shows a set of OECs corresponding to packed beds of monodis-
perse particles. Note that the extraction rates and the duration of initial linear stage
decrease with the particle size, and ultimately more time is required to attain the
complete extraction of the packed bed. Figure 2b shows the extraction dynamics for
packed beds made of two discrete fractions of spherical particles, with sizes a1 / a2
and corresponding volume fractions α and 1− α. The size of small particle fraction
only affects the short-term intermediate stage between the initial linear one and the
subsequent non-linear one, while the volume fraction α determines the duration of
the linear stage. In Fig. 2b, compare the curves corresponding to the same volume
fraction α. They differ on a very small segment, where the OEC abruptly bends.
This time interval determines the resolution limit of the distribution function by
the experimentally obtained, discrete OEC. There always exists the lower bound of
the particle-size resolution. If the mesh of discrete time moments does not resolve
the transition stage in the OEC then any particle fraction of sufficiently small size
approximates the transition region equally well.
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Fig. 2 The overall extraction curves Y(t) for various discrete particle size distributions of
spherical particles. (a) The monodisperse ensembles with particle sizes 1 ≤ a ≤ 10 varying at fixed
step 1. The arrow shows the increase of particle size. The red curve shows the OEC corresponding
to a = 1. The blue dashed curves demonstrate convergence of the iterative algorithm described in
Sect. 3.2; (b) the ensembles are a mixture of two monodisperse fractions of particles. The particle
size distribution is described by the volume fraction α of small-size fraction a1, (α, a1), the volume
fraction 1 − α of large-size fraction, (1 − α, a2), a1 / a2. The values of α = {0.8, 0.5, 0.2} are
shown in the plot, and a2 = 12 is fixed. The black solid curves are at a1 → 0, the black dashed
curves are at larger a1 = 0.7, and the red dashed curves are at a1 = 1.2

There are two reference points in the OEC plot that indicate the ends of the
respective extraction stages. During the first stage, the OEC is linear with time, and
the solute leaves the extraction column at the maximum, saturation, concentration
c = 1. The duration of this phase is designated as t−. At t > t−, the solute
concentration in the solvent at the outlet cross-section drops down, c < 1, and
the OEC varies nonlinearly with time. The second stage ends at t = t+, when the
packed bed is depleted, and Y reaches its maximum value, Y = 1. Finally, the
following properties are essential for each OEC

Y (t) = t, t < t−; Y (t) = 1, t > t+. (11)

After [17], both time moments, t− and t+, can be found from Eq. (10)

t+[F ] = 1+ a2
max,

∫ t−[F ]

0

dτ

k(τ )
= 1. (12)

Here, amax is the maximum size of particles in the packed bed. Thus, F(a) = 1 at
a > amax.
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3 Inverse Problem

3.1 Problem Formulation: Analytical Solution for Flat
Particles

Two sets of functions are introduced. The first set, �, includes the cumulative
distribution functions. As common, in probability theory, they are non-decreasing
functions taking their values between zero and unity, 0 < F(a) < 1, and may have a
finite number of jumps. A single overall extraction curve Y (t) corresponds to every
F(a) ∈ �. Hence, the entire set �m of theoretical OECs can be defined as an image
of � obtained as a result of the act of operator (10) on �. This formally reads as

Am(F) = Y, Am : �→ �m, m = 1, 3,

whereAm=1,3 are operators of the two forward problems described by Eqs. (7)–(10).
Here, the subscript m indicates that a unique set �m is obtained for a prescribed
mass transfer symmetry on the particle scale. Whether �1 = �3 or not is an open
question.
�m is a subset of continuous functions with bounded first derivative, 0 ≤

dY/dt ≡ c(t, 1) ≤ 1. Since, the outlet solute concentration is a non-increasing
function, the curvature of Y does not change sign, i.e., d2Y/dt2 = dc(t, 1)/dt ≤ 0.
Other constraints on the admissible theoretical OECs are given in Eq. (11). Thus, the
proper OEC must demonstrate an initial linear segment corresponding to c(t, 1) ≡ 1
at t ≤ t− followed by a nonlinear segment with dc(t, 1)/dt < 0 at t− < t ≤ t+.
Apparently, when a forward problem is solved, the two reference time moments,
as well as the entire OEC, are functionals of a distribution function, t± = t±[F ]m,
where the subscript m indicates the implied symmetry of the particle-scale mass
transfer processes.

Evidently, with these constraints, the set �m is “narrow”, and may not include
every experimentally obtained OEC Yexp. The experimental curves are presented
as discrete sets of points given with some uncertainty. Hence, an interpolation
should be introduced to define Yexp as a continuous function of time. Thus, any
Yexp could hardly have a corresponding admissible generating function F from �

even after a proper interpolation between discrete moments of time. One reason
for this is the experimental uncertainty which breaks the curvature constraint on
the admissible OEC, and the other—is that the forward model (2) and (3) is only
an approximation of the real process. Moreover, a continuous interpolated analog
of Yexp has an infinite set of corresponding generating distribution functions F(a).
This is due to a decrease of the time frame of the process transition stage with the
decrease of the smallest particle fraction size. Ultimately, it falls between adjacent
time moments when the OEC was recorded and is smeared off by interpolation.
Thus, the inverse problem of inferring the overall distribution function F based on
experimentally available, uncertain and discrete OEC Yexp should be considered
as an ill-posed problem. Therefore, as the preliminary step of inverse problem
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analysis, in simulations and test runs instead of Yexp we used proxy OECs calculated
according to Eqs. (5) and (6) for a pre-defined distribution function F(a). In this
case, the “experimental” input data in the inverse problem analysis was self-
consistent, without experimental uncertainty.

The formal notation for the inverse operatorA−1
m reads as

F = A−1
m (Yexp), A−1

m : �m → �, m = 1, 3. (13)

It is assumed in the solution of inverse problem that the linear and non-linear stages
of the process can be clearly distinguished based on OEC, thus the reference time
moments are functionals of Yexp, i.e., t± = t±[Yexp]. This assumption is essential
for the suggested algorithm. Finally, the calculation of the right-hand side of Eq. (13)
can be reduced to the inversion of an integral equation which is derived below.

Consider the function

G(t) = t+ −
∫ t+

t

dτ

k(τ )
, G(t ≥ t+) = t . (14)

With the definition (14) the forward operator (10) takes the following equivalent
form

G
(
t − Yexp(t)

) = G(t)− 1, t > t−[Yexp]. (15)

The observed Yexp-OEC defines the function G(t − Yexp). It can be shown that
G(t − Yexp) = t − 1 at t > t+, since Yexp(t > t+) = 1. Equation (15) is used to
calculate G(t − Yexp) for t− < t < t+, or, equivalently, G(x) at 0 < x < t+ − 1.
Particularly,G(0) = G(t−)−1. The details of the recursive algorithm of calculation
of G(x) are given in Ref. [17].

With the use of this algorithm, the continuous function G(x) can be calculated
for any x > 0 at a given Yexp-function. Then, k(t) is obtained as

(
dG(t)

dt

)−1

= k(t) ≡
∫ ∞

0
s

(
t

a2

)
f (a)da. (16)

Integrating the right-hand side of Eq. (16) by parts, one arrives at the integral
equation with respect to F with the right-hand side depending solely on Yexp:

∫ 1

0
F

(√
t

ϕm(s)

)
ds =

(
dG(t)

dt

)−1

. (17)

Equation (17) can be solved in a closed form for flat particles at m = 1 and
ϕ1(s) = s2. The change of variables ξ = t1/2s−1 results in

∫ ∞
√
t

F (ξ)
dξ

ξ2 =
(√
t
dG(t)

dt

)−1

.



454 A. A. Salamatin and A. G. Egorov

Differentiating the above equation with respect to t , after substitution a for t1/2 one
obtains

F(a) = −2a2 d

da

(
dG(a2)

da

)−1

. (18)

Equation (18) is a direct confirmation that the formulated inverse procedure is an
ill-posed problem. The searched function F for the packed bed of flat particles is
a result of double differentiation of function G(x) which in turn depends on the
experimentally obtained OEC Yexp. Apparently, a function F(a) straightforwardly
deduced from using Eq. (18) for an arbitrary experimental (noisy) curve Yexp, which
does not belong to �m, is not, in general, a cumulative distribution function at all.
It may take negative values, be greater than unity, or be non-monotonous. Thus,
a regularization procedure is required to explicitly impose these constraints and to
arrive at a physically reasonable approximation of F based on experimental OEC.

3.2 Numerical Algorithm for the Case of Spherical Particles

We do not have an explicit solution of Eq. (17) for spherical particles, m = 3,
since there is no analytical expression for ϕ−1

3 in Eq. (8). The non-linear equation is
solved numerically, using an iterative algorithm with solution (18) for flat particles
suggested and tested as a pre-conditioner.

For the numerical scheme, it is assumed that the searched distribution function
F belongs to the set CN(ξ;*) of continuous piece-wise linear functions with the
domain [ξ;*], where * > (t+ − 1)0.5 is an arbitrary fixed constant, t+ = t+[Yexp],
and ξ is the smallest particle size in the packed bed that can be deduced from the
available (discrete) Yexp-data. The lower bound for* assumes, see Eq. (12), that the
complete OEC is known, a complete extraction of the packed bed was reached at
the experiment. The subscriptN is the number of subsegments of the uniform mesh
introduced on the segment [ξ;*]. Corresponding nodes are ξ = a0 < a1 < · · · <
aN = *, where ai = ξ+ i(*−ξ)/N . Distribution functions are defined in ai-nodes
with linear interpolation in between. It is assumed that F(a0) = 0 and F(aN) = 1.
Finally, the set CN(ξ;*) is comprised of functions with bounded derivatives and
satisfies the following conditions

CN(ξ;*) =
{
F(a)|F(ξ) = 0 ≤ F ≤ 1 = F(*), 0 ≤ dF

da
≤ N

*− ξ
}
.

While every function F from CN(ξ;*) is analyzed solely in the domain [ξ;*], to
make it a cumulative distribution function, the following extrapolation outside the
[ξ;*]-domain is assumed

F(a) = 0, 0 ≤ a ≤ ξ, F (a) = 1, * ≤ a < +∞.
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The defined set of functions CN(ξ;*) is included in the normed space L1(ξ;*) of
integrable functions, and is a compact according to the Arzela-Ascoli theorem [18].
The norm || • ||L1 of L1(ξ;*)-space can be introduced to measure the “distance”
between two arbitrary elements from CN(ξ;*).

The experimental OECs Yexp are represented as continuous, piece-wise linear
functions known in the nodes ti = i(1+*2)/M of the uniform mesh 0 = t0 < t1 <
· · · < tM = 1+*2 over the segment [0; 1+*2]. The lower bound constraint on *
suggests that t+ < tM .

The discretized quasi-solution of the integral equation (17) at m = 3 is searched
iteratively after [19], as a solution of the following non-linear functional equation

A1
(
F̄ (k+1)

)− A1
(
F (k)

)

σ
= Yexp − A3

(
F (k)

)
, k = 1, 2 . . . .

Here, A1 is used as a preconditioner in the algorithm, σ is the relaxation parameter,
and k is the number of current iteration. The auxiliary function F̄ (k+1) is the solution
of Eq. (18) with the OEC given as Y (k+1)

1

Y
(k+1)
1 = A1

(
F (k)

)
+ σ

(
Yexp − A3

(
F (k)

))
, Y

(1)
1 = Yexp. (19)

As mentioned above, F̄ (k+1) does not necessarily belong to the set CN(ξ;*), and

F̄ (k+1) = A−1
1

(
Y
(k+1)
1

)
, F (k+1) = Pr

(
F̄ (k+1)

)
, (20)

where the operator Pr projects F̄ (k+1) onto the set CN(ξ;*).
The cumulative distributions are non-decreasing and bounded functions, 0 ≤

F (k+1) ≤ 1 inherited by the Pr-operator, which regularizes the ill-posed inverse
problem (13). At the first stage, an intermediate function F̂ (k+1) is defined as a
solution of the minimization problem

F̂ (k+1) = arg min
F

∥∥∥F̄ (k+1) − F
∥∥∥
L1
. (21)

Construction of F̂ (k+1) based on F̄ (k+1) is demonstrated in Fig. 3. First, an
integrated function

I
[
F̄ (k+1)

]
(a) =

∫ a

ξ

F̄ (k+1)(a)da

is introduced and can be evaluated explicitly, since the integrand F̄ (k+1) is a piece-
wise linear function. Thus, the integrand values I

[
F̄ (k+1)

]
are known at the same

set of a-nodes as F̄ (k+1). The integrand is convex in the regions where F̄ (k+1) is
monotonous, and non-convex otherwise. This explicitly indicates the regions where
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Fig. 3 The act of operator Pr on an arbitrary non-monotonous function. For demonstration,
I
[
F̄
] = a + a(1 − a) cos(5a) is assumed. (a) The original function F̄ and its non-decreasing

L1-analog F̂ . By construction, F̂ = F̄ where F̄ is monotonous, and F̂ takes a constant value

where F̄ is not monotonous. (b) The integrals I
[
F̄
]

and I
[
F̂
]

of F̄ and F̂ , respectively. Note that

I
[
F̂
]

is the lower convex-hull of I
[
F̄
]

the original function F̄ (k+1) has to be “repaired” to restore its global monotonicity.
Consider an integral function

I
[
F̂ (k+1)

]
(a) =

∫ a

ξ

F̂ (k+1)(a)da

of the searched monotonous function F̂ (k+1). It can be shown that I
[
F̂ (k+1)

]
is a

lower convex hull of I
[
F̄ (k+1)

]
. Since, each function is defined on a discrete, finite

set of points, the lower convex hull can be found using standard algorithms, like
Graham’s scan and Jarvis’ march [20]. Once the lower convex hull is deduced, it’s
derivative is calculated numerically to find the searched solution F̂ (k+1) of Eq. (21).
For instance, in MatLab this procedure is implemented using a built-in operator
“diff”. Finally, the projection F (k+1) is delivered by

F (k+1) = min(1,max(0, F̂ (k+1))).
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4 Test Runs

To test the algorithm convergence, an “experimental” OEC Yexp was generated
based on a predefined “experimental” cumulative distribution function Fexp with a
known maximum particle size amax. By definition, Yexp = A3(Fexp), and, thus, the
Fexp-function was the proxy of the inverse-problem solution to be inferred from the
values Yexp(ti) calculated in advance in a discrete set of time moments ti , i = 0..M .

The number of mesh nodes for Yexp and Fexp was chosen as N = 50 and M =
30, respectively. The minimum particle size ξ was fixed as 0.3, while* = 2(a2

max+
1) if not specified otherwise. The iterations of numerical algorithm (19) and (20)
were carried out until both conditions

∥∥∥F (k+1) − F (k)
∥∥∥
L1
< ε1, max

ti ,i=1..M

∣∣∣Yexp − A3

(
F (k+1)

)∣∣∣ < ε2

were satisfied. It was assumed that ε1 = ε2 = 10−3, and typically 10–15 iterations
were sufficient to attain the desired accuracy of the solution.

Convergence at different ξ was, first, investigated for a monodisperse packed bed
of particle size a = 1. Corresponding original particle size distribution function
Fexp was zero at a < 1 and unity otherwise, i.e. the density function was the
Dirac’s delta-function f (a) = δ(a − 1). The function Fexp generates the OEC
Yexp, which is shown by the red curve in Fig. 2a. Robustness of the algorithm
is demonstrated by Fig. 4. For relatively large ξ = 0.5 (Fig. 4a), the iterations
promptly tend to the “experimental” distribution function. The domain of non-zero
values of f (a) is approx. [0.9; 1.1]. The recursive algorithm of calculation of G(x)
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Fig. 4 The convergence of the iterative algorithm for monodisperse packed bed of particle size
a = 1 at N = 50, M = 30, * = 4, and (a) ξ = 0.5, (b) ξ = 0.1. The jump in (b) at a ∼ 0.15
indicates that the transition part of OEC is insufficiently resolved by the given uniform mesh of
N = 50 nodes to correctly infer the particle size distribution of smaller particles, a < 0.3
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requires the values of OEC at intermediate time-moments, between the nodes ti .
The interpolation introduces an error, though relatively small. Thus, the algorithm
does not converge to an exact Fexp.

At smaller ξ ∼ 0.1, an artifact is observed near a ∼ 0.15 (Fig. 4b). It shows
that ∼ 25% of packed bed volume is occupied by a false fraction of particles of
size a ∼ 0.15, while the other fraction representing the real particles is detected
near a = 1. While the two final approximations of distribution functions, F (5) and
F (6), are close in L1-space, the final approximation F (6) is far from the original
distribution Fexp. Thus, the algorithm did not converge at ξ = 0.1. Computational
experiments showed that the artefact remains at ξ < 0.25 and disappears otherwise
at fixed values of M and N.

We attribute the nature of this artifact with the resolution limitations of the
approach to the inverse problem solution. As we explained in Sect. 2.2 and Fig. 2b,
the small particle fraction of size a ∼ ξ determines the rate of the extraction process
transition from an initial linear stage to the final non-linear one. The smaller the
particle size the more rapid the transition is. Thus, for a coarse temporal mesh,
the linearly interpolated OECs render indistinguishable once the smallest particle
fraction size is reduced below a certain limit. Corresponding transition stage is so
short that it could not be resolved by the current temporal mesh. The numberM of
time-nodes must be increased in this case.

At ξ = 0.3, the iterative algorithm reveals reliable convergence for a variety of
experimental particle size distributions and fixed N = 50 and M = 30. This is
confirmed by a series of tests for two monodisperse and one bimodal distribution
functions Fexp(a) illustrated by Fig. 5. Comparison of Fig. 5b and d demonstrates
the effect of M and N on the algorithm output. A monodisperse packed bed with
f (a) = δ(a − 10) was studied at different discretization numbers M and N. A 10-
fold simultaneous increase of M and N reduces the uncertainty of a particle fraction
resolution by the same order of magnitude.

5 Conclusions and Future Work

Suggested iterative algorithm is a robust approach to solve a challenging essentially
non-linear inverse problem of inferring particle size distribution based on experi-
mental OEC. Once the typical particle size in the packed bed is determined by either
sieve analysis or other means, the diffusion coefficient can be deduced using the
expression (1) for typical scale asc. However, the algorithm has several limitations
that have to be underlined in concluding remarks.

First of all, the implementation of recursive algorithm for calculating G(x)
crucially depends on the measurement accuracy of the t+-moment of complete
extraction of the packed bed. Therefore, it was assumed that the discrete OEC
is known at least for the entire time frame [0; t+] with a uniform time step,
and a complete extraction of the packed bed was reached during the experiment.
This provides the resolution of the largest particle fraction, while the temporal
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Fig. 5 The convergence of the iterative algorithm at N = 50, M = 30, for (a) a = 5, (b, d) a =
10, (c) bimodal distribution with f (a) = 0.75δ(a−5)+0.25δ(a−15). (d) is obtained atN = 500,
and M = 300. A better resolution of a single particle fraction is observed if compared with (b).
Inserts are histograms of final particle size distributions

discretization sets up the resolution limit (given by ξ ) for the smallest particle
fraction. Such long-term experiments are expensive and rare in practice. Therefore,
the approach should be further developed to take into account that the largest particle
fraction is not resolved by the data.

An accurate specification of t+ as well as t− is challenging even for complete
OEC since the data is typically noisy. To deduce a way to project experimental,
noisy OECs onto the set�m is the main challenge in this problem since it drastically
affects the inferred values of t− and t+.
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Mathematical Model of a Dynamically
Loaded Thrust Bearing of a Compressor
and Some Results of Its Calculation

Nikolay V. Sokolov, Mullagali B. Khadiev, Pavel E. Fedotov,
and Eugeny M. Fedotov

Abstract The basic equations of the full three-dimensional periodic thermoelas-
tohydrodynamic (PTEHD) model of stationary and dynamic modes of operation
of a thrust sliding bearing with fixed pads of a centrifugal or screw compressor
are presented. The dynamic loading of the bearing is created by directly using the
equation of axial displacement of the thrust collar of the compressor rotor within the
bearing’s operating clearance. Some results of calculations of a loaded thrust bearing
are presented, showing the fundamental capabilities of the numerically implemented
Sm2Px3Txτ program.

1 Introduction

Thrust bearings (TB) are most widely used in designs of centrifugal and screw
compressors used in various industries. They are designed to absorb the axial load
from gas forces and/or helical gearing and transfer it to the compressor stator.
The working conditions of the TB can change significantly throughout the entire
period of their operation. This is primarily due to transient modes of compressor
operation [1]. These modes can occur when the compressor is connected to the
discharge network or when it is disconnected from it by transferring to the bypass
line, as well as when the characteristic of a centrifugal compressor changes, for
example, when changing from one rotor speed to another. They can also occur when
the characteristics of the suction and discharge networks change, when additional
sections with their hydraulic resistance are connected or disconnected.
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The most significant influence on the operation of a thrust bearing is also exerted
by non-stationary gas-dynamic processes occurring in the flow path of a centrifugal
compressor (CC), which include stall, rotating stall and surge [2, 3]. So, when the
CC surges, significant fluctuations occur with a frequency of (1. . . 10) Hz in the
volume of compressed gas filling the flow path of the compressor and the network.
As a result, the axial load, which acts on the rotor, changes significantly until the
sign changes and can reach the maximum value for the bearing. Under the action
of the load, the thrust collar of the rotor moves within the axial clearance, which
leads to a dynamic loading of the thrust bearing and a change in its local and integral
characteristics over time. An important local characteristic is the maximum lubricant
temperature in the hydrodynamic film of the bearing.

Of the integral characteristics, the most important are the bearing capacity
(load capacity), friction power losses, lubricant consumption through the inlet and
outlet sections of the lubricating film, heat fluxes through the sections of structural
elements and the lubricant film, etc. The results of experimental studies carried
out by the authors also confirm the dynamic nature of processes in lubricating
bearing films [4]. At large amplitudes of collar displacement, an increase in the
maximum lubricant temperature to the limit value, axial displacement of the rotor
and subsequent contact and, consequently, failure of the UPS can occur. It follows
from this that the study of the dynamic loading of the thrust bearing is directly
related to the increase in the reliability of centrifugal and screw compressors during
transient operating conditions.

In the present studies, a new three-dimensional periodic thermoelastohydrody-
namic (PTEHD) model of stationary and dynamic modes of operation of a thrust
bearing with fixed pads is used [5]. Based on the numerical experiments carried
out using the developed program Sm2Px3Txτ [6], some results of the dependence
of the local, distributed and integral characteristics of the TB on time during axial
displacement of the collar are presented, showing the fundamental capabilities of
the calculation program.

Studies of a dynamically loaded thrust bearing with a different profile of the
working surfaces of fixed pads were also carried out by the authors of [7, 8].
However, the researchers either do not take into account the mutual influence of the
pads on each other during the flow of the lubricant in the direction of rotation of the
collar, taking into account the supply of fresh fluid from the inter-pad channels, or
they neglect the joint heat exchange processes in the lubricating films and elements
of the bearing structure.

2 Formulation of the Problem: Non-stationary PTEHD
Model

The design of the thrust bearing of the compressor in accordance with the design
diagram shown in Fig. 1a–c, implies the presence of bearing fixed pads 1 with
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Fig. 1 Design diagram of a one-way thrust bearing: (a) the pad profile with a bevel parallel to the
IPC; (b) the pad profile with a helical surface; (c) section along A-A along the average radius

profiles having flat and wedge parts, and dividing them in the angular direction of
the inter-pad channels 2 (IPC). During the operation of the bearing, thin lubricating
films 4 are formed between the rotating thrust collar 3 and pads 1. During rotation
in channel 2, a thin boundary film 5 with a conditional boundary 6 is formed on
the surface of the collar, interacting with the lubricating films of adjacent pads and
fresh fluid of channel 2. Fresh liquid enters through the conditional boundary 6 of
the boundary film from the inter-pad channel 2 and further, mixing with the hot
waste stream of lubricant of the previous pad, it enters the inlet section at ϕ = 0 of
the lubricating film 4 of the next pad.

The mathematical description of the operation of a thrust bearing with fixed pads
was constructed using a non-stationary periodic TEHD model, which showed the
greatest convergence with the results of a physical experiment [9]. The mathematical
model is based on the fundamental laws of conservation of mass, momentum and
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internal energy. The numerical implementation of the PTEHD model provides a
subsequent rigorous analysis of the distributed and integral characteristics of the
bearing. A more detailed description of the model can be found in article [5].
The «−» sign above the coefficient means a dimensionless value. In view of the fact
that unsteady processes of lubricant flow are considered, the distinguishing features
of the compiled model from previous studies of the authors [9, 10] are:

1. volumetric three-dimensional heat distribution in the lubricating and boundary
films of the thrust bearing, in the rotating collar and fixed pads, providing a
complete thermal formulation of the problem;

2. non-stationary form of the governing equations of the mathematical model, such
as the Reynolds equations, energy and thermal conductivity, taking into account
the change in the bearing clearance over time ∂h/∂τ or the local component of
the temperature change ∂t/∂τ ;

3. the divergent form of the equations of energy and thermal conductivity in order
to adequately set the conditions for the conjugation of temperature fields and heat
fluxes at the boundaries of the lubricating and boundary films;

4. periodic thermal boundary conditions at the boundary of the lubricant and
boundary films of a single pad, provided that there is no skew of the thrust
bearing and collar runout, i.e., the equality of temperatures and heat fluxes at
ϕ = 0, −1 ≤ r ≤ 1, 0 ≤ y ≤ 1.

To describe the distribution of lubricant pressure on the surface of the pad, the
non-stationary form of the Reynolds equation in the area of the bearing lubricant
film L1(−1 ≤ r ≤ 1, 0 ≤ ϕ ≤ θn, 0 ≤ y ≤ 1) is used. The equation is
derived, taking into account the low clearance height in the bearing (about 20. . . 100
microns) and the constancy of pressure across the film thickness, as well as taking
into account the centrifugal force of inertia of the lubricant. The physical meaning
of the equation is that it is a flow balance equation. In dimensionless form, taking
into account the incompressibility of the lubricant, the equation has the form:

− λ2 ∂

∂r̄

[
(σ r̄ + 1)h̄3f̄0

∂p̄

∂r̄

]
− ∂

∂ϕ̄

[
h̄3

(σ r̄ + 1)
f̄0
∂p̄

∂ϕ̄

]
=

(1)

= −Reψσλ2 ∂(h̄
3f̄1)

∂r̄
+ ω(σ r̄ + 1)

∂(h̄f̄2)

∂ϕ̄
+Sh(σ r̄ + 1)Ā,

where Ā = ∂

∂τ̄

(
h̄

1∫
0
ρ̄dȳ

)
− ρ̄ȳ=1

∂h̄

∂τ̄
—the non-stationary multiplier; r̄ = (r −

Rav), ϕ̄ = ϕ/θ —dimensionless coordinates; p̄ = ph2
20/

(
μ0ω∗R2

avθ
)

—local
dimensionless pressure; λ = (2Ravθ)/(R2 − R1), σ = (R2 − R1)/(R2 + R1)

—the relative length and width of the pad, respectively; ψ = h20/(Ravθ) – relative
thickness of the lubricating film; Re = ρ0ω∗Ravh20/μ0—Reynolds criterion;
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Sh = (Ravθ)/(ωRavτ
∗)—Strouhal criterion; h20 – characteristic thickness, for

example, half of the total clearance of a double-sided bearing.
The dimensionless functions f̄0, f̄1, f̄2 included in Eq. (1), which take into

account the variability of the lubricant viscosity and the constancy of pressure over
the film thickness, have the form:

f̄0 =
1∫

0

ρ̄

(
ī1 − m̄1

m̄0
ī0

)
dȳ, f̄1 =

1∫

0

ρ̄

(
j̄ − n̄

m̄0
ī0

)
dȳ, f̄2 =

1∫

0

ρ̄

(
1− ī0

m̄0

)
dȳ

(2)

Equation (1) is supplemented with boundary conditions along the entire contour
of the pad:

1. at r̄ = −1 and r̄ = 1,
(
0 ≤ ϕ̄ ≤ θ̄p, 0 ≤ ȳ ≤ 1

)
, pressures p̄R1 and p̄R2 are set;

2. at ϕ̄ = 0 and ϕ̄ = θ̄p, (−1 ≤ r̄ ≤ 1, ), the pressure gradient ∂p̄/∂ϕ̄ = 0 is
specified (Neumann condition) or calculated by interpolation between p̄R1 and
p̄R2 pressure p̄ϕ=0 and p̄ϕ=θp (Dirichlet condition).

To describe the temperature distribution of the lubricant in the area of the
lubricant and boundary films L2(−1 ≤ r̄ ≤ 1, 0 ≤ ϕ̄ ≤ 1, 0 ≤ ȳ ≤ 1), a three-
dimensional non-stationary internal energy equation is used, which in dimensional
divergent form has the form:

cp

(
ρ
∂t

∂τ
+ t ∂ρ
∂τ

)
+ 1

r

∂

∂r
(cpρrVr t)+ ∂

∂ϕ

(
cpρ

r
Vϕt − λoil

r2

∂t

∂ϕ

)
+

(3)

+ ∂

∂y

(
cpρVt − λoil ∂t

∂

)
= μ[

(
∂Vϕ

∂y

)2

+
(
∂Vr

∂y

)2 ]
,

where t—the local temperature, cp, λoil—isobaric heat capacity and thermal
conductivity of the lubricant.

Equation (3) was reduced to a dimensionless form at the stage of numeri-
cal implementation using a dimensionless temperature t̄ = cpoρ0h

2
20 (t − t0) /

(μ0ω∗R2
avθ) and a Jacobi matrix. It should be noted that in the transition to a

dimensionless variable ȳ= y/(h20h̄), the dimensional area of L2 the thrust bearing
(Fig. 1a–c) is transformed from a curved view into a dimensionless area L2 having a
rectangular view. This simplifies the specification of the nodes of the approximating
mesh in the numerical implementation and analysis of the temperature level of the
areas L2, L3, L4. The lubricant flow rates are derived from the truncated Navier-
Stokes equations and have the form:

V̄r = Vr

ω∗Rav
= λh̄2 ∂p̄

∂r̄

(
ī1 − m̄1

m̄0
ī0

)
δ1 − Reψσλh̄2

(σ r̄ + 1)

(
j̄ − n̄

m̄0
ī0

)
(4)
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V̄ϕ = Vϕ

ω∗Rav
= h̄2

(σ r̄ + 1)

∂p̄

∂ϕ̄

(
ī1 − m̄1

m̄0
ī0

)
δ1 + ω̄(σ r̄ + 1)

(
1− ī0

m̄0

)
(5)

In order to adequately set the thermal boundary conditions at the boundaries
between the lubricating film and the surfaces of the pad and collar, the velocity V̄y
is calculated using two equations, where the transition boundary ȳ0 is approximately
equal to half the film thickness h:

V̄y = V

ω∗Rav
= − ψ

σρ̄

ȳ∫

0

[
Sh
∂ρ̄

∂τ̄
+ 1

(σ r̄ + 1)

(
h̄

{
θ
∂

∂r̄
((σ r̄ + 1)ρ̄V̄r )+

+σ ∂
∂ϕ̄
(ρ̄V̄ϕ)

}
− ȳ

{
h̄′̄r θ

∂

∂ȳ
((σ r̄ + 1)ρ̄V̄r )+ h̄′̄ϕσ

∂

∂ȳ
(ρ̄V̄ϕ)

})]
dȳ, (6)

0 ≤ ȳ ≤ ȳ0;

V̄y = V

ω∗Rav
= ψ

σρ̄

1∫

ȳ

[
Sh
∂ρ̄

∂τ̄
+ 1

(σ r̄ + 1)

(
h̄

{
θ
∂

∂r̄
((σ r̄ + 1)ρ̄V̄r )+

+σ ∂
∂ϕ̄
(ρ̄V̄ϕ)

}
− ȳ

{
h̄′̄r θ

∂

∂ȳ
((σ r̄ + 1)ρ̄V̄r )+ h̄′̄ϕσ

∂

∂ȳ
(ρ̄V̄ϕ)

})]
dȳ, (7)

ȳ0 ≤ ȳ ≤ 1,

where δ1 = {1, 0 ≤ ϕ̄ ≤ θ̄p and 0, θ̄p ≤ ϕ̄ ≤ 1}—the unit function. In order to
take into account, the inflowing fresh lubricant from the inter-pad channel over the
thickness of the boundary film, the velocity V̄y is calculated using Eq. (6), which is
completely ignored over the film thickness from 0 to h.

The initial condition for Eq. (3) is the calculated temperature of the stationary
process. At the boundaries ϕ̄ = 0 and ϕ̄ = 1, a periodic condition of equality of
temperatures and heat fluxes is set, which largely determines the operating mode
of the bearing [11]. Along the coordinate r̄ , when the velocity V̄r is directed inside
the area L̄2, the temperature t̄ = 0 of the inflowing lubricant is set; otherwise, the
condition is not set. At the boundaries of contact of the lubricant with the surfaces
of the pad and the thrust collar, the condition of equality of temperatures and heat
fluxes is also set. At the boundary of the boundary film and the IPC at (−1 ≤ r̄ ≤
1, θ̄p ≤ ϕ̄ ≤ 1, ȳ = 1), the temperature t̄ = 0 of the inflowing lubricant or the
condition ∂t̄/∂ȳ = 0 when heat transfer occurs only by convection can be specified.

To describe the temperature distribution in the thickness of the pad in the area
L3(−1 ≤ r̄ ≤ 1, 0 ≤ ϕ̄ ≤ θ̄p, 0 ≤ ȳp ≤  p) and the thickness of the thrust
collar in the region (Fig. 1a–c), three-dimensional unsteady equations of thermal
conductivity are used, where  p,d = Hp,d/(Ravθ) is the relative thickness of the
pad or collar. At the outer boundaries of the areas L3 and L4 to take into account the
heat transfer, the Newton-Richman boundary conditions are set. Thus, Eqs. (3)–(6)
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with the corresponding initial and boundary conditions simulate a three-dimensional
temperature field. It allows one to consider the picture of heat distribution in the
lubricant and boundary films and solid elements of the thrust bearing under various
operating conditions.

The thrust collar is the only element through which mechanical energy is
supplied from the outside to the bearing. In addition, the collar plays the role of
a heat accumulator, which gives off or absorbs heat when it comes into contact
with different parts of the lubricating and boundary films [11, p. 56]. Consequently,
the use of a three-dimensional equation of thermal conductivity of the collar with
appropriate boundary conditions is an improvement of the previously compiled
and studied mathematical model [9, 10]. This model improves the accuracy of the
calculations compared to previous studies. It also allows you to analyze the influence
of the external environment and collar material on bearing characteristics, check
the constancy of the collar temperature in the direction of rotation, and clarify the
temperature T̄dp of the working surface at ȳd =  d .

The governing differential equations of the mathematical model and their
boundary conditions are interconnected with the help of such physical properties of
the working lubricant as viscosity, density, heat capacity and thermal conductivity,
as well as with the shape of the bearing clearance, which includes the geometric
profile of the pad working surface and some operating parameters. At the same
time, different profiling of the working surface of the pads is considered (Fig. 1a–c).

To describe the axial displacement of the thrust collar along the rotor axis and
formulate the direct problem, the equation in dimensional form is used [12]:

yd.disp. = yst + yd (8)

where yst , yd—constant and dynamic components, respectively. In the case of soft
surge [2, p. 15], the component yd can be specified in the form of a harmonic law:

yd = A sin�τ (9)

where A, �—the amplitude and frequency of the disturbing force during the surge,
τ—the time.

In the case of hard surging, the displacement of the collar can be modeled
as a curve with a sawtooth shape [2, p. 15]. The specified displacement yd.disp.
as a term is substituted into the equation of the thrust bearing clearance shape,
which also takes into account thermal deformations of the pad, and is reduced to
a dimensionless form.

As a result of the numerical implementation, the local, distributed and integral
characteristics of the thrust bearing are determined, the most important of which are
the maximum lubricant temperature tmax in the film and the bearing capacity:

P = zPi = z
θp∫

0

R2∫

R1

pirdϕdr, (10)
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where z—the number of pads, Pi—the bearing capacity of a single pad. The
dimensionless bearing capacity coefficient is

P̄ = Ph2
20

μ0ωR3
avθ

2 (R2 − R1)
(11)

3 Calculation Results

One of the sides and some geometric dimensions of a thrust bearing with fixed pads
of the research stand located in the laboratory of the Compressor Machines and
Installations Department of the KNITU [4] was taken as the object of research. The
stand is based on a compressor unit with a single-stage centrifugal compressor of
the multiplier type, designed for air compression.

The stationary removable disc with fixed thrust bearing pads has pad bevels,
made parallel to the inter-pad channel [5, 10], with the following dimensions: inner
and outer diameters D1 = 70 mm and D2 = 115 mm; number of pads z = 8;
angular length θp = 38.8◦; bevel width and depth—hk = 20 mm and 
h = 0.05
mm; thrust collar thickness Hd = 25 mm; pad thickness Hp = 5 mm. The
coordinate of an arbitrary center for a one-way bearing is taken h20 = 0.5 mm.
The lubricant supply temperature is t0 = 40◦C; oil Tp-22S (ISO VG 32) was
used as a lubricant. For the Reynolds equation, the Dirichlet boundary conditions
are accepted at all edges of the pad. On the conditional boundary of the boundary
film, the temperature of the lubricant in the inter-pad channel is set, i.e. t = t0.
The rotational speed of the thrust collar is taken to be n = 5000 rpm, i.e., the
angular velocity of rotation is ω = 523.6 rad/s. The minimum thickness of the
lubricating film is defined as hmin = (h20 − yst ) = 50 μm. The frequency of the
perturbing displacement of the thrust collar during surge is taken from the interval
� = 2πf = (6.28 . . .62.8) rad/s = 31.4 rad/s, where f = (1 . . .10) Hz is
the surge frequency. The amplitude of the disturbing displacement is taken equal
to A = 7.5 μm or 15% of the minimum thickness of the lubricating film. In the
stationary mode, the amplitude is equal to A = 0.

The diagram of the distribution of isobars over the working surface of the pad in
the stationary mode is shown in Fig. 2. When the radial r̄ and angular ϕ̄ coordinates
change, the pressure increases monotonically, reaching the maximum value pmax =
1.11 MPa inside the pad, which has a wedge and flat parts, and then monotonically
decreases. The center of pressure pmax is displaced closer to the trailing edge and
the outer radius due to the curvature in the plan of the pad at σ = 0.24 and the
influence of centrifugal inertia forces. In this case, the profile of the working surface
of the pad with a bevel parallel to the IPC turns the pressure extrema (dashed line)
as the coordinate ϕ̄ increases to the outer radius of the pad due to the variability of
the gap height along the coordinate r̄ [10].

The distribution of isotherms in the section of the lubricant and boundary
films at the average radius of the pad in the stationary mode is shown in Fig. 3.
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Fig. 2 Diagram of isobar distribution over the working surface of the pad (solid line is the
boundary of the transition from the wedge to the flat part at the variable ϕ̄k)
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0.5
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0.25

0
0.26 0.51 ϕκ θp ϕ0.75 1

Fig. 3 Distribution of isotherms in the section of the lubricant and boundary films at the average
radius of the pad at r̄ = 0

The temperature levels (isotherms) of the lubricant increase as the coordinate ϕ̄
increases, which is associated with the release and accumulation of heat due to the
dissipation of mechanical energy. Through the conditional boundary of the boundary
film (−1 ≤ r̄ ≤ 1, θ̄p ≤ ϕ̄ ≤ 1, ȳ = 1) fresh lubricant with a low temperature
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enters from the IPC into the boundary film. In turn, this leads to a decrease in
the temperature of the lubricant in the inlet section with the subsequent pad. The
maximum lubricant temperature is inside the area above the wedge part of the pad
and reaches tmax = 59.85 ◦C (point A). In this case, another center of elevated
temperature (point B) is formed at the boundary between the lubricant and boundary
films near the boundary ϕ̄ = θ̄p.

The distribution of isotherms on the working surfaces of the pad and thrust collar
in the stationary mode is shown in Fig. 4a, b. From Fig. 4a, it can be seen that as the
coordinate ϕ̄ increases, the temperature of the working surface of the pad increases.
This is due to an increase in the release and accumulation of heat along the flow of
the lubricant and its transfer due to thermal conduction into the pad body. The value
of the maximum temperature reaches tmax = 49.02 ◦C in the area located closer to
the outer radius of the pad due to the peculiarity of the pad profile (point C). Near the
trailing edge, the pad temperature drops due to taking into account the heat exchange
with the lubricant flowing through the inter-pad channel. Closer to the outer and
inner radii of the pad, the temperature also decreases slightly due to heat exchange
with the external environment. Figure 4b that when the coordinate ϕ̄ changes, the
thrust collar temperature remains practically constant due to significant convective
heat transfer along the collar rotation (coordinate ϕ̄) compared to conductive heat
transfer with lubricant and boundary films in the transverse direction (coordinate
ȳd ). As a result, the working surface of the thrust collar acquires a value averaged
over the coordinate ϕ̄. The maximum temperature value reaches Tcw = 56.73 ◦C
near the outer radius of the pad. In this case, with an increase in the coordinate due
to an increase in the circumferential speed of the collar, there is a slight increase in
the collar temperature with a difference of
Tc = 3.4 ◦C in the absence of the effect
of heat exchange with the external environment. When approaching the back of the
collar, this effect becomes more noticeable.

Under the harmonic action of the thrust collar, that is, when the gap h changes
depending on the time τ (Fig. 5, the first period of oscillation), the bearing capacity
of the bearing also changes harmonically without delay with a frequency equal to the
perturbation frequency of the collar � = 31.4 rad/s. The amplitude of the change
in the bearing capacity varies within A = (2596.99 . . .2974.04)N and significantly
depends o n the created minimum film thickness hmin = (h20−yd.disp.) = 42.5 μm
when the collar moves. At the same time, the maximum temperature tmax of the
lubricant at the beginning of the dynamic process slightly increases to 60.02 ◦C and
then sets during subsequent periods of collar oscillation.
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Fig. 4 Distribution of isotherms on the working surfaces: (a) of the pad at ȳp = 0; (b) of the
thrust collar at ȳd =  d
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Fig. 5 Change in bearing capacity (line with dots) of the thrust bearing when the collar is displaced

4 Conclusion

As a result of the research is carried out, the following conclusions can be drawn:

1. the PTEHD mathematical model was developed, which is the basis for the
numerically implemented program for calculating a thrust bearing with fixed
pads Sm2Px3Txτ [6];

2. the Sm2Px3Txτ calculation program, when formulating the direct problem,
makes it possible to directly determine the distributed and integral characteristics,
as well as the local parameters of lubrication, of a dynamically loaded thrust
bearing of a centrifugal or screw compressor depending on time;

3. on the basis of numerical experiments carried out using the Sm2Px3Txτ cal-
culation program, it is necessary to carry out a parametric analysis of the
characteristics of the thrust bearing. The results of numerical studies of static
and dynamic modes of operation of thrust bearings will be introduced into the
practice of creating compressor machines.
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Approximation of Positive Semidefinite
Nonlinear Eigenvalue Problems

Pavel S. Solov’ev, Diana M. Korosteleva, and Sergey I. Solov’ev

Abstract A positive semidefinite symmetric eigenvalue problem in an infinite-
dimensional Hilbert space with nonlinear dependence on the spectral parameter
is investigated. The existence of eigenvalues and eigenelements is established.
The initial infinite-dimensional nonlinear eigenvalue problem is approximated by
a nonlinear eigenvalue problem in a finite-dimensional subspace of the Hilbert
space. The convergence and accuracy of approximate eigenvalues, eigenelements,
and eigensubspaces are investigated.

1 Introduction

Linear and nonlinear differential eigenvalue problems apply in mathematical mod-
eling of complex technical processes and systems. A weak statement of the linear
differential eigenvalue problem is formulated as a variational eigenvalue problem
a(u, v) = λb(u, v) in an infinite-dimensional Hilbert space V. Suppose that
the bilinear form a(., .) is symmetric, positive definite, and bounded and the
bilinear form b(., .) is symmetric, nonnegative, and compact. Denote K = {v :
v ∈ V, b(v, v) = 0} and suppose that codimK = ∞. Then the formulated
eigenvalue problem has a sequence of positive eigenvalues λk , k = 1, 2, . . ., of
finite multiplicity with the limit point at infinity. To the sequence of eigenvalues,
there corresponds a complete in the spaceK⊥ orthonormal system of eigenelements
uk , k = 1, 2, . . . Define finite-dimensional subspaces Vh of the space V satisfying
the limit density condition. Approximate the original eigenvalue problem by the
following finite-dimensional problem a(uh, vh) = λhb(uh, vh) in the space Vh.
This problem has positive eigenvalues λhk , k = 1, 2, . . . , Nh, Nh = dimVh −
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dimKh, Kh = {vh : vh ∈ Vh, b(vh, vh) = 0}, and corresponding eigenfunctions
uhk , k = 1, 2, . . . , Nh, forming a complete orthonormal system in the spaceK⊥

h . For
sufficiently small h, the following error estimates are valid

0 ≤ λhk − λk ≤ c (εh)2, ‖uhk − uk‖ ≤ c εh, εh = sup
u∈Uk,‖u‖=1

inf
vh∈Vh

‖u− vh‖,

where c is a constant independent of h, Uk is the eigensubspace corresponding to
the eigenvalue λk , ‖ · ‖ is the norm on the space V .

In the present paper, the formulated results are generalized for nonlinear
eigenvalue problems. Eigenvalue problems with the nonlinear dependence on the
spectral parameter arise in various fields of science and engineering, for example, in
plasma physics [1–5], construction mechanics [6–8], numerical algorithms for mesh
equations [9–11], and eigenvibration modeling [12, 13]. Spectral approximations
for compact operators are investigated in the papers [14–17]. Generalizations of
spectral approximations for holomorphic Fredholm operator functions are derived
in the papers [18, 19]. Preconditioned iterative methods for solving linear spectral
problems are proposed and investigated in the papers [20–27]. Numerical methods
for solving nonlinear matrix eigenvalue problems were constructed and investigated
in the papers [28–38]. Error estimates for the finite difference methods for differ-
ential eigenvalue problems with the nonlinear entrance of the spectral parameter
were derived in [39, 40]. The finite element method for solving nonlinear eigenvalue
problems was investigated in [5, 41], and estimations of the effect of numerical
integration in finite element eigenvalue and eigenfunction approximations were
established in [42–44]. The investigations of approximate methods for solving vari-
ational eigenvalue problems with the nonlinear entrance of the spectral parameter in
a Hilbert space were carried out in the paper [41] with the help of general results for
linear variational and operator eigenvalue problems [42–44]. Numerical algorithms
without saturation for solving problems of mathematical physics and mechanics
were constructed and investigated in [45–52]. This paper develops and generalizes
the theoretical results of the papers [41, 42].

2 Statement of the Problem

Let V be a real infinite-dimensional Hilbert space with the norm ‖ · ‖, let R be the
real line, and let � = (ν1, ν2), 0 ≤ ν1 < ν2 ≤ ∞. Let us introduce mappings
a : �×V ×V → R and b : �×V ×V → R, that, for fixed μ ∈ �, are symmetric
bilinear forms a(μ) = a(μ, ., .) : V ×V → R and b(μ) = b(μ, ., .) : V ×V → R.
Suppose that, for fixed μ ∈ �, the bilinear form a(μ, ., .) is positive definite and
bounded; i.e., there exist positive continuous functions α1(μ) and α2(μ) such that

α1(μ)‖v‖2 ≤ a(μ, v, v) ≤ α2(μ)‖v‖2 ∀v ∈ V.
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Suppose that, for fixed μ ∈ �, the bilinear form b(μ, ., .) is nonnegative and
compact; i.e., b(μ, v, v) ≥ 0 for any v ∈ V and b(μ, vi, vi) → b(μ, v, v) as
i →∞ for vi ⇀ v in V as i →∞. The symbol⇀ denotes the weak convergence
of a sequence in a Hilbert space V . Denote K(μ) = ker b(μ), ker b(μ) = {v : v ∈
V, b(μ, v, v) = 0}, K(μ, η) = K(μ) ∪K(η), and assume that codimK(μ) = ∞.
Note that b(μ, v, v) > 0 for v ∈ V \K(μ) and there exists a positive constant β2(μ)

such that

b(μ, v, v) ≤ β2(μ)‖v‖2 ∀v ∈ V.

Let us formulate the nonlinear eigenvalue problem: find λ ∈ �, u ∈ V \ K(λ)
such that

a(λ, u, v) = λb(λ, u, v) ∀v ∈ V. (1)

A number λ and an element u satisfying (1) are called an eigenvalue and eigenele-
ment of the problem (1). The set U(λ) of eigenelements corresponding to an
eigenvalue λ and the zero element form a closed subspace in V , which is called an
eigensubspace corresponding to the eigenvalue λ. The dimension of this subspace
is called a multiplicity of the eigenvalue λ. If the dimension of an eigensubspace is
equal to unity, then the corresponding eigenvalue is said to be simple.

Define the norm of a symmetric bilinear form c : V × V → R by the formula

‖c‖ = sup
v∈V, ‖v‖=1

|c(v, v)|.

Assume that the bilinear forms a(μ) = a(μ, ., .) and b(μ) = b(μ, ., .) satisfy the
conditions α(μ, η)→ 0, β(μ, η)→ 0 as μ→ η, μ, η ∈ �, where

α(μ, η) = ‖a(μ)− a(η)‖, β(μ, η) = ‖b(μ)− b(η)‖.

Introduce the Rayleigh functional by the following relation

R(μ, v) = a(μ, v, v)

b(μ, v, v)
∀v ∈ V \K(μ),μ ∈ �,

and assume that

R(μ, v) ≥ R(η, v), μ < η,μ, η ∈ �, v ∈ V \K(μ, η).
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3 Parameter Problem

IfW is a subspace of V , then we denote

W⊥
a(μ) = {v : v ∈ V, a(μ, v,w) = 0 ∀w ∈ W }.

For fixed μ ∈ �, introduce the parameter-dependent linear eigenvalue problem:
find γ = γ (μ) ∈ R, y = y(μ) ∈ V \K(μ) such that

a(μ, y, v) = γ b(μ, y, v) ∀v ∈ V. (2)

There exists a sequence of positive eigenvalues of finite multiplicity numbered
concerning to multiplicity γk = γk(μ), k = 1, 2, . . ., 0 < γ1 ≤ γ2 ≤ . . . ≤
γk ≤ . . . , γk → ∞ as k → ∞, and corresponding eigenelements yk = yk(μ),
k = 1, 2, . . . , a(μ, yi, yj ) = γiδij , b(μ, yi, yj ) = δij , i, j = 1, 2, . . . The
eigenelements yk, k = 1, 2, . . . form a complete system in the space (K(μ))⊥a(μ).

Put

Ek(μ) = span{y1(μ), y2(μ), . . . , yk(μ)},

k = 1, 2, . . ., E0(μ) = {0}, (E0(μ))
⊥
a(μ) = V . By Ek(W) we denote the set of all

k-dimensional subspaces of the spaceW for k ≥ 1. The set E0(W) consists only of
E0(μ). Put Ek = Ek(V ) for k ≥ 0.

The eigenvalues of the problem (2) are characterized by the following variational
properties

γk = min
v∈(Ek−1(μ))

⊥
a(μ)

\K(μ)
R(μ, v) = max

v∈Ek(μ)\K(μ)
R(μ, v),

γk = max
W∈Ek−1

min
v∈W⊥

a(μ)\K(μ)
R(μ, v) = min

W∈Ek
max

v∈W\K(μ)
R(μ, v),

for k = 1, 2, . . . These variational relations imply the inequalities γk(μ) ≥ γk(η)

for μ < η, μ, η ∈ �, k = 1, 2, . . . , since

γk(η) = min
W∈Ek

max
v∈W\K(η)

R(η, v)

≤ max
v∈Ek(μ)\K(η)

R(η, v) = max
v∈Ek(μ)\K(μ,η)

R(η, v)

≤ max
v∈Ek(μ)\K(μ,η)

R(μ, v) ≤ max
v∈Ek(μ)\K(μ)

R(μ, v) = γk(μ).

Denote by c = c(μ, η) various constants continuously depending on μ, η ∈ �.
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Lemma 1 If μ, η ∈ � and |μ− η| is sufficiently small, then there exists a constant
c such that

|γk(μ)− γk(η)| ≤ c (α(μ, η) + β(μ, η)).

Proof By taking into account the variational properties of eigenvalues and by
applying the following equality

R(μ, v)−R(η, v) =
a(μ, v, v)− a(η, v, v)

a(μ, v, v)
R(η, v)+ b(η, v, v)− b(μ, v, v)

a(μ, v, v)
R2(η, v)

1− a(μ, v, v)− a(η, v, v)
a(μ, v, v)

− b(η, v, v)− b(μ, v, v)
a(μ, v, v)

R(η, v)

for sufficiently small |μ− η| and for v ∈ V \K(μ, η), μ, η ∈ �, we derive

γk(μ) = min
W∈Ek

max
v∈W\K(μ)

R(μ, v)

≤ max
v∈Ek(η)\K(μ)

R(μ, v) = max
v∈Ek(η)\K(μ,η)

R(μ, v)

≤ max
v∈Ek(η)\K(μ,η)

R(η, v) + max
v∈Ek(η)\K(μ,η)

|R(μ, v) − R(η, v)|

≤ γk(η)+ �(μ, η),

where

�(μ, η) =
α(μ, η)

α1(μ)
γk(η)+ β(μ, η)

α1(μ)
γ 2
k (η)

1− α(μ, η)
α1(μ)

− β(μ, η)
α1(μ)

γk(η)

≤ c (α(μ, η)+ β(μ, η)).

As a result, we obtain the following inequalities

γk(μ)− γk(η) ≤ c (α(μ, η)+ β(μ, η)),
γk(η)− γk(μ) ≤ c (α(μ, η)+ β(μ, η)),

which complete the proof of the lemma. ��
Let γi(μ), i = 1, 2, . . . be the sequence of eigenvalues of the problem (2), and

let yi(μ), i = 1, 2, . . . be the orthonormal system of corresponding eigenelements.
For fixed μ ∈ �, assume that γk = γk(μ) is an eigenvalue of the problem (2) of

multiplicity s such that

γk−1 < γk = γk+1 = . . . = γk+s−1 < γk+s,
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where k ≥ 1, γ0 = 0. For fixed η ∈ �, put

Yk(η) = span{yk(η), yk+1(η), . . . , yk+s−1(η)}.

Let W1 and W2 be two closed subspaces of the Hilbert space V , dimW1 =
dimW2 < ∞, and let P1 and P2 be the operators of orthogonal projections onto
W1 and W2, respectively. The gap between subspaces W1 and W2 of the Hilbert
space V is defined by the following relations

ϑ(W1,W2) = max
u∈W2,‖u‖=1

‖u− P1u‖ = max
u∈W1,‖u‖=1

‖u− P2u‖.

Lemma 2 If μ, η ∈ � and |μ− η| is sufficiently small, then there exists a constant
c such that

ϑ(Yk(μ), Yk(η)) ≤ c (α(μ, η)+ β(μ, η)).

Proof For some element y0(μ) ∈ K(μ), the element y ∈ Yk(μ) can be represented
in the form

y = Qk(η)y + vk(η)+ wk(η)

for

Qk(η)y =
k+s−1∑
i=k

βi(η)yi(η), vk(η) =
k−1∑
i=1

βi(η)yi(η),

wk(η) = y0(μ)+
∞∑

i=k+s
βi(η)yi(η), βi(η) = b(η, y, yi(η)), i = 1, 2, . . .

Here any sum
n∑
i=m

βi(η)yi(η) for n < m is zero by convention.

By Lemma 1, we choose η ∈ � such that

γk(μ)− γk−1(η) > 0, γk+s(η)− γk(μ) > 0.

Denote

δ(η, v) = sup
w∈V \{0}

|a(η, v,w)− γkb(η, v,w)|
‖w‖a(η) .
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For k ≥ 1, the following estimate holds

‖vk(η)‖a(η) ≤ γk−1(η)

γk(μ)− γk−1(η)
δ(η, y).

This estimate is obviously true for k = 1. For k ≥ 2, we get the relations

a(η, y, vk(η)) = a(η, vk(η), vk(η)),
b(η, y, vk(η)) = b(η, vk(η), vk(η)),

a(η, vk(η), vk(η)) ≤ γk−1(η)b(η, vk(η), vk(η)),

and hence

− a(η, y, vk(η))+ γkb(η, y, vk(η))
= −a(η, vk(η), vk(η))+ γkb(η, vk(η), vk(η))
≥ (γk(μ)− γk−1(η))b(η, vk(η), vk(η))

≥ γk(μ)− γk−1(η)

γk−1(η)
a(η, vk(η), vk(η)), k ≥ 2.

These relations imply the desired estimate.
Now let us prove the following estimate

‖wk(η)‖a(η) ≤ γk+s (η)
γk+s (η)− γk(μ) δ(η, y).

for k ≥ 1. One can readily see that

a(η, y,wk(η)) = a(η,wk(η),wk(η)),
b(η, y,wk(η)) = b(η,wk(η),wk(η)),

a(η,wk(η),wk(η)) ≥ γk+s(η)b(η,wk(η),wk(η)).

Then we obtain the relations

a(η, y,wk(η))− γkb(η, y,wk(η))
= a(η,wk(η),wk(η))− γkb(η,wk(η),wk(η))
≥ γk+s(η)− γk(μ)

γk+s (η)
a(η,wk(η),wk(η))

≥ (γk+s(η)− γk(μ))b(η,wk(η),wk(η)), k ≥ 1.

which imply the desired estimate.
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As a result, we derive

‖y −Qk(η)y‖a(η) ≤ ‖vk(η)‖a(η) + ‖wk(η)‖a(η)
≤
(

γk−1(η)

γk(μ)− γk−1(η)
+ γk+s(η)
γk+s(η)− γk(μ)

)
δ(η, y)

≤ c δ(η, y) ≤ c (α(μ, η) + β(μ, η))‖y‖a(η).

Consequently, we conclude

ϑ(Yk(μ), Yk(η)) = sup
y∈Yk(μ)\{0}

‖y − Pk(η)y‖
‖y‖

≤ c sup
y∈Yk(μ)\{0}

‖y −Qk(η)y‖a(η)
‖y‖a(η)

≤ c (α(μ, η)+ β(μ, η)),

where Pk(η) is the operator of orthogonal projection onto Yk(η). The proof of the
lemma is completed. ��

4 Existence and Properties of Solutions

Let us formulate the existence results for the nonlinear eigenvalue problem (1). Put
min{i : i ∈ I } = 0 for I = ∅,

γi(νj ) = lim
μ→νj

γi(μ), j = 1, 2, i = 1, 2, . . .

Theorem 1 Suppose 0 ≤ ν1 < ν2 <∞, 1 ≤ m ≤ n and denote

m = min{i : ν1 − γi(ν1) < 0, i ≥ 1},
n = max{i : ν2 − γi(ν2) > 0, i ≥ 0}.

Then the problem (1) has the positive eigenvalues λk , k = m,m + 1, . . . , n,
numbered concerning to multiplicities,

ν1 < λm ≤ λm+1 ≤ . . . ≤ λn < ν2.

Each eigenvalue λi , m ≤ i ≤ n is the unique root of the equation

μ− γi(μ) = 0, μ ∈ �, m ≤ i ≤ n.
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The eigensubspaceU(λi) of the problem (1) is the eigensubspace Y (μ) correspond-
ing to the eigenvalue γi(μ) of the linear eigenvalue problem (2) for μ = λi .
Theorem 2 Suppose ν1 ≥ 0, ν2 = ∞, m ≥ 1, and denote

m = min{i : ν1 − γi(ν1) < 0, i ≥ 1}.

Then the problem (1) has the positive eigenvalues λk , k = m,m+ 1, . . ., numbered
concerning to multiplicities,

0 < λm ≤ λm+1 ≤ . . . ≤ λk ≤ . . . , lim
k→∞λk = ∞.

Each eigenvalue λi , i ≥ m is the unique root of the equation

μ− γi(μ) = 0, μ ∈ �, i ≥ m.

The eigensubspaceU(λi) of the problem (1) is the eigensubspace Y (μ) correspond-
ing to the eigenvalue γi(μ) of the linear eigenvalue problem (2) for μ = λi .
Theorem 3 Let λi be the eigenvalue of the problem (1) of multiplicity s such as

λi−1 < λi = λi+1 = . . . = λi+s−1 < λi+s .

If μ ∈ � and |λi − μ| is sufficiently small, then there exists a constant c such that

|λi − γi(μ)| ≤ c (α(λi , μ)+ β(λi, μ)),
ϑ(U(λi), Yi(μ)) ≤ c (α(λi , μ)+ β(λi, μ)).

The proofs of Theorems 1–3 generalize the corresponding results from the
paper [41].

5 Approximation of the Problem

Introduce the finite-dimensional subspaces Vh of dimensionMh in the Hilbert space
V satisfying the limit density condition:

εh(v) = inf
vh∈Vh

‖v − vh‖ → 0

as h→ 0 for any element v from V . The limit density condition implies thatMh →
∞ as h→ 0.
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Denote Kh(μ) = {vh : vh ∈ Vh, b(μ, vh, vh) = 0}, Nh = codimKh(μ). Note
that b(μ, vh, vh) > 0 for vh ∈ Vh \ Kh(μ), Nh = codimKh(μ) = dimVh \
Kh(μ) = dimVh − dimKh(μ), Nh →∞ as h→ 0.

The nonlinear eigenvalue problem (1) is approximated by the following finite-
dimensional problem: find λh ∈ �, uh ∈ Vh \Kh(λh) such that

a(λh, uh, vh) = λhb(λh, uh, vh) ∀vh ∈ Vh. (3)

A number λh satisfying (3) is referred to as an approximate eigenvalue, and an
element uh is referred to as an approximate eigenelement corresponding to the
eigenvalue λh. The set Uh(λh) of eigenelements corresponding to the eigenvalue
λh and the zero element form a closed subspace in the space Vh, which is referred
to as the eigensubspace corresponding to the eigenvalue λh.

6 Existence of Approximate Solutions

IfWh is a subspace of Vh, then we denote

(Wh)
⊥
a(μ) = {vh : vh ∈ Vh, a(μ, vh,wh) = 0 ∀wh ∈ Wh}.

For fixed μ ∈ �, introduce parameter eigenvalue problem: find γ h = γ h(μ) ∈ R,
yh = yh(μ) ∈ Vh \Kh(μ) such as

a(μ, yh, vh) = γ hb(μ, yh, vh) ∀vh ∈ Vh. (4)

This problem has positive eigenvalues γ hk = γ hk (μ), k = 1, 2, . . . , Nh, of finite
multiplicity numbered concerning to multiplicities, 0 < γ h1 ≤ γ h2 ≤ . . . ≤
γ hNh, and the corresponding orthonormal system of eigenelements yhk = yhk (μ),

k = 1, 2, . . . , Nh such that a(μ, yhi , y
h
j ) = γ hi δij , b(μ, yhi , y

h
j ) = δij , i, j =

1, 2, . . . , Nh. The eigenelements yhk , k = 1, 2, . . . , Nh form a complete system in
the space (Kh(μ))⊥a(μ).

Put

Ehk (μ) = span{yh1 (μ), yh2 (μ), . . . , yhk (μ)},

k = 1, 2, . . . , Nh, Eh0 (μ) = {0}, (Eh0 (μ))⊥a(μ) = Vh. By Ehk (Wh) we denote the set

of all k-dimensional subspaces of the space Wh for 1 ≤ k ≤ Nh. The set Eh0(Wh)
consists only of Eh0 (μ). Put Ehk = Ehk (Vh) for 0 ≤ k ≤ Nh.
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The eigenvalues of the problem (4) are characterized by the following variational
properties

γ hk = min
vh∈(Ehk−1(μ))

⊥
a(μ)\Kh(μ)

R(μ, vh) = max
vh∈Ehk (μ)\Kh(μ)

R(μ, vh),

γ hk = max
Wh∈Ehk−1

min
vh∈(Wh)⊥a(μ)\Kh(μ)

R(μ, vh) = min
Wh∈Ehk

max
vh∈Wh\Kh(μ)

R(μ, vh),

γ hk = max
Wh∈EhNh−k+1

min
vh∈Wh\Kh(μ)

R(μ, vh),

where k = 1, 2, . . . , Nh. These variational relations imply the inequalities γ hk (μ) ≥
γ hk (η) for μ < η, μ, η ∈ �, k = 1, 2, . . . , Nh.

If μ, η ∈ � and |μ− η| is sufficiently small, then there exists a constant c such
that

|γ hk (μ)− γ hk (η)| ≤ c (α(μ, η)+ β(μ, η)).

Denote γ hi (νj ) = lim
μ→νj

γ hi (μ), j = 1, 2, i = 1, 2, . . . , Nh.

Theorem 4 Suppose 0 ≤ ν1 < ν2 <∞, 1 ≤ m ≤ n, and denote

m = min{i : ν1 − γ hi (ν1) < 0, i ≥ 1},
n = max{i : ν2 − γ hi (ν2) > 0, i ≥ 0}.

Then the problem (3) has the positive eigenvalues λhk , k = m,m + 1, . . . , n,
numbered concerning to multiplicities, ν1 < λ

h
m ≤ λhm+1 ≤ . . . ≤ λhn < ν2. Each

eigenvalue λhi , m ≤ i ≤ n is the unique root of the equation

μ− γ hi (μ) = 0, μ ∈ �, m ≤ i ≤ n.

The eigensubspace Uh(λhi ) of the problem (3) is the eigensubspace Yh(μ) corre-
sponding to the eigenvalue γ hi (μ) of the linear eigenvalue problem (4) for μ = λhi .
Theorem 5 Suppose ν1 ≥ 0, ν2 = ∞, m ≥ 1, and denote

m = min{i : ν1 − γ hi (ν1) < 0, i ≥ 1}.

Then the problem (3) has the positive eigenvalues λhk , k = m,m + 1, . . . , Nh,
numbered concerning to multiplicities, 0 < λhm ≤ λhm+1 ≤ . . . ≤ λhNh . Each

eigenvalue λhi , m ≤ i ≤ Nh is the unique root of the equation

μ− γ hi (μ) = 0, μ ∈ �, m ≤ i ≤ Nh.
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The eigensubspace Uh(λhi ) of the problem (3) is the eigensubspace Yh(μ) corre-
sponding to the eigenvalue γ hi (μ) of the linear eigenvalue problem (4) for μ = λhi .

The proofs of the Theorems 4 and 5 can be carried out by analogy with the
proofs of Theorems 1 and 2, respectively, with regard to the finite dimension of the
problem (3).

7 Convergence Analysis

Let λk be an eigenvalue of the problem (1) of multiplicity s such that

λk−1 < λk = λk+1 = . . . = λk+s−1 < λk+s ,

where λk−1 for k > m and λk+s for k ≥ m are eigenvalues of the problem (1) andm
is the number defined in Theorems 1 and 2; if k = m, then we set λk−1 = λm−1 = 0,
Uk = U(λk) is the eigensubspace corresponding to the eigenvalue λk , dimUk = s,
Uhk = span{yhk , yhk+1, . . . , y

h
k+s−1}, and yhi , i = k, k + 1, . . . , k + s − 1 are the

eigenelements of the approximate scheme (4) for μ = λhk .
For μ ∈ �, introduce an operator Ph(μ) : V → Vh by the rule

a(μ, u− Ph(μ)u, vh) = 0 ∀vh ∈ Vh,

where u ∈ V . Note that Ph(μ)u→ u as h→ 0, u ∈ V . Denote Ph = Ph(λk) and
set

εh = sup
u∈Uk,‖u‖=1

εh(u).

Note that εh → 0 as h→ 0.

Theorem 6 For sufficiently small h, the following error estimate

0 ≤ λhk − λk ≤ c (εh)2

is valid, where c is a constant independent of h.

Proof Since Ehk ⊂ Ek , Kh(μ) ⊂ K(μ), we derive

γk(μ) = min
W∈Ek

max
v∈W\K(μ)

R(μ, v) ≤ min
Wh∈Ehk

max
vh∈Wh\Kh(μ)

R(μ, vh) = γ hk (μ).
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To prove the inequality λhk ≥ λk, we suppose the contrary: λhk < λk . Then we arrive
at a contradiction

λk = γk(λk) ≤ γ hk (λk) ≤ γ hk (λhk ) = λhk .

Now, for sufficiently small h, we obtain

0 ≤ λhk − λk = γ hk (λhk )− γk(λk) ≤ γ hk (λk)− γk(λk) ≤ c (εh)2.

Here we have applied the error estimate for the linear eigenvalue problem from the
paper [42]. ��
Theorem 7 Suppose that λhk is the eigenvalue of the approximate scheme (3), uhk is
the corresponding eigenelement such that b(λhk , u

h
k , u

h
k ) = 1. Then the convergence

λhk → λk as h → 0 is valid, and each sequence h′ → 0 contains a subsequence
h′′ → 0 such that uhk → uk in V as h = h′′ → 0, where λk and uk are the
eigenvalue and corresponding eigenelement of the problem (1). If λk is the simple
eigenvalue and the sign of the eigenelements uk and uhk are chosen so as ensure that
b(λhk , u

h
k , Phuk) > 0, then uhk → uk in V as h→ 0.

Theorem 8 The convergence ϑ(Uk,Uhk )→ 0 as h→ 0 holds.

The proofs of Theorems 7 and 8 generalize the corresponding results from the
paper [41].

8 Error Investigation

Let λk be an eigenvalue of the problem (1) of multiplicity s such that

λk−1 < λk = λk+1 = . . . = λk+s−1 < λk+s ,

where λk−1 for k > m and λk+s for k ≥ m are eigenvalues of the problem (1) andm
is the number defined in Theorems 1 and 2; if k = m, then we set λk−1 = λm−1 = 0,
Uk = U(λk) is the eigensubspace corresponding to the eigenvalue λk , dimUk = s,
Uhk = span{yhk , yhk+1, . . . , y

h
k+s−1}, yhi , i = k, k+1, . . . , k+s−1 are eigenelements

of the approximate scheme (4) for μ = λhk . Denote δh = α(λk, λhk )+ β(λk, λhk ).
Theorem 9 For sufficiently small h, the following error estimate

ϑ(Uk,U
h
k ) ≤ c (εh + δh)

is valid, where c is a constant independent of h.
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Proof Denote βhi = b(λhk , Phu, yhi ), i = 1, 2, . . . , Nh, where yhi , i = 1, 2, . . . , Nh
eigenelements corresponding to an eigenvalue of the problem (4) for μ = λhk , u ∈
Uk , ‖u‖ = 1. Since eigenelements yhi , i = 1, 2, . . . , Nh of the scheme (4) for μ =
λhk form an orthonormal basis in the space (Kh(μ))⊥a(μ), for some element yh0 from

Kh(λk) the elementPhu ∈ Vh can be represented in the formPhu = Qhku+vhk+whk ,
where

Qhku =
k+s−1∑
i=k

βhi y
h
i , vhk =

k−1∑
i=1

βhi y
h
i , whk = yh0 +

Nh∑
i=k+s

βhi y
h
i .

For k ≥ m, by analogy with [41] the following estimates are valid:

‖vhk ‖ ≤ c (εh + δh), ‖whk ‖ ≤ c (εh + δh),

for sufficiently small h. Hence

ϑ(PhUk,U
h
k ) = sup

u∈Uk\{0}
‖Phu− Phk Phu‖

‖Phu‖
≤ c sup

u∈Uk,‖u‖=1
‖Phu−Qhku‖

≤ c sup
u∈Uk,‖u‖=1

(‖vhk ‖ + ‖whk ‖)

≤ c (εh + δh),

where Phk is the operator of orthogonal projection onto Uhk . Consequently, we
conclude ϑ(Uk,Uhk ) ≤ ϑ(Uk, PhUk) + ϑ(PhUk,Uhk ) ≤ c (εh + δh). The proof
of the theorem is complete. ��

Theorems 6 and 9 imply the following results.

Theorem 10 Suppose that uhk is the eigenelement of the scheme (3), λhk is the
corresponding eigenvalue, b(λhk , u

h
k , u

h
k ) = 1. Then there exists an eigenelement

u = u(uhk) ∈ Uk of the problem (1) such that for sufficiently small h the following
error estimate ‖uhk − u‖ ≤ c (εh + δh) is valid, where c is a constant independent
of h.

Theorem 11 Suppose that δh = O(εh) as h → 0, uhk is the eigenelement of
the scheme (3), λhk is the corresponding eigenvalue, b(λhk , u

h
k , u

h
k ) = 1, λk is the

eigenvalue of the problem (1). Then there exists an eigenelement u = u(uhk) ∈ Uk
of the problem (1) such that for sufficiently small h the following error estimates
0 ≤ λhk−λk ≤ c (εh)2, ‖uhk−u‖ ≤ c εh, are valid, where c is a constant independent
of h.
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Numerical Modelling of the Hydraulic
Fracturing Through Microseismic
Monitoring

Polina Stognii, Nikolay Khokhlov, and Igor Petrov

Abstract Hydraulic fracturing is the method, used during the seismic works on
hydrocarbon’s extraction. It is necessary to control the properties of the fracture to
provide the maximum safety and productivity of the works. The main problem is
to obtain the data from the direct modelling, based on which the inverse problem
is lately solved. In this paper we present the approach to the direct numerical
solution for the problem of hydraulic fracturing with the use of microseismic
monitoring. The grid-characteristic method of the third order of accuracy is applied
for the numerical modelling of the microseisms spread through the homogeneous
medium with the hydraulic fracture. The obtained wave fields and seismogramms
demonstrate the possibility of solving the problem of hydraulic fracturing using the
microseismic monitoring through the direct computer modelling. Later on, based on
the data obtained, the inverse problem of the fracture properties determining can be
solved.

1 Introduction

Hydrocarbon deposits are often situated in such locations of the geological areas,
where they are hard to extract. The traditional methods of collecting oil deposits,
when the well is drilled, are rather costly. In addition, the well flow rate decreases at
the final stages of the deposits extraction. Then, the method of hydraulic fracturing
can help to increase the oil-bearing bed delivery [1].

The hydraulic fracturing [2–4] is described by creating the artificial fault. For
this, the special fracturing fluid is injected into the well, which stimulates oil, gas
or any other collected deposit flow more freely. The problems, appearing while the
method of hydraulic fracturing, include the possible leakage of methane, triggering
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earthquakes and fracture size control [5]. In this paper we examine the problem
of controlling the hydraulic fracture size by fixing the required fracture size and
investigating further results using the methods of direct computer modelling.

The common method of seismic prospecting of the investigated territory includes
the use of the seismic source and the signal receivers [6]. In this case the
seismic waves, spreading from the impulse source, need to go straight to the
investigated object and backwards, as a consequence, extra reflections from different
heterogeneties add the sort of seismic noise to the seismogramms. One of the ways
to avoid it is the use of the microseisms as a natural seismic source. Microseisms are
the kind of small earthquakes, occurring in the geological area as a natural source of
seismic impulses [7]. The method of exploring the geological area using the natural
microsesms is known as microseismic monitoring of the researched area.

The method of seismic monitoring is often used for observing the size and form
of the hydraulic fracture [8]. In this case, the microseisms receivers are established
along the hydraulic fracture in order to detect the reflections from the fracture
directly. One of the main advantages of this method is the absence of the head wave
on the seismograms, which makes it easier to interpret them.

In this paper we present the results of modelling the microsesms spread through
the homogeneous medium with the hydraulic fracture. The grid-characteristic
method, well suitable for solving the direct seismology problems, was used in the
computations. The fracture was modelled using the model of a two-shore extremely
thin fracture. As a result, we obtained the wave fields and the seismogramms,
demonstrating the possibility of solving the problems of the hydraulic fracture
seismic monitoring .

The paper is organized as follows. The Introduction part presents the overall view
of the hydraulic fracturing, the possible ways of controlling the fracture form. In the
second part, we describe the numerical method used in the computations. In the
third part, we demonstrate the results of solving the problem of seismic monitoring
of the hydraulic fracturing using the methods of the direct computer modelling. The
problems of modelling the hydraulic fracture and the possible ways of their solution
are discussed in the fourth part of the paper. The last part concludes the presented
work.

2 Numerical Method

For describing the dynamic behaviour of the microseisms in the homogeneous
medium, we used the system for the linear-elastic medium [9]:

ρ
∂

∂t
υ = (∇ · σ)T , (1)

∂

∂t
σ = λ(∇ · υ)I + μ(∇ ⊗ υ + (∇ ⊗ υ)T ). (2)
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In (1), (2) υ is the seismic waves velocity, ρ is the medium density, σ is the
Cauchy stress tensor, t is the time, λ and μ are the Lame parameters.

We solved the Eqs. (1), (2) with the use of the grid-characteristic method of the
third order of accuracy [10]. For this, we present the system (1), (2) in a view:

∂q
∂t

+ Ax
∂q
∂x

+Ay
∂q

∂y
= 0. (3)

In (3) q = {υx, υy, σxx, σyy, σxy}T The matrixes Ax , Ay are constructed out of the
coefficients of the system (1), (2):

Ax =

⎛
⎜⎜⎜⎜⎜⎝

0 0 − 1
ρ

0 0

0 0 0 0 − 1
ρ

−λ− 2μ 0 0 0 0
0 −λ− 2μ 0 0 0
0 −μ 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
, (4)

Ay =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 − 1
ρ

0 0 0 − 1
ρ

0

0 −λ 0 0 0
−λ 0 0 0 0
−μ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
. (5)

Then, the splitting method in the space coordinates is applied to (3), and two 1D
systems of equations are obtained:

∂q

∂t
+Ai

∂q

∂i
= 0, i = x, y. (6)

Now, we examine the system (6) for the x-axis:

∂q

∂t
+Ax

∂q

∂x
= 0. (7)

The system (7) is hyperbolic, then it can be represented it as:

∂q

∂t
+
x

−1�x
x
∂q

∂x
= 0. (8)
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In (8) 
x is constructed out of the eigen vectors of the matrix Ax , �x is the
diagonal matrix with the eigen values {cs, 0,−cp, cp,−cs} on the diagonal. In (8)
cp is the longitudinal sound velocity, cs is the transverse sound velocity:

cp =
√
(λ+ 2μ)/ρ, (9)

cs =
√
μ/ρ. (10)

The analogical equations can be derived for the y-axis.
Then, after the variable change ν = 
q the system (8) will transfer to:

∂ν

∂t
+�

∂ν

∂x
= 0. (11)

The system (11) consists of five equations, each of which can be solved using
any differential scheme. We used the Rusanov scheme of the third order of accuracy
[11].

When all the components ν are transported, we can find the final solution:

qn+1 = 
−1νn+1. (12)

For calculating the points on the model boundaries, we applied the following
equation:

Bqn+1 = b. (13)

In (13) B is the matrix of the 3x9 size, b is the three-dimensional vector, qn+1 is
the vector of the velocity and the stress tensor meanings in the examined point on
the model boundary on the next time step tn+1.

The solution (12) on the next time step tn+1 will be:

qn+1 = 
(in)νn+1(in) +
(out)νn+1(out) = qn+1(in) +
(out)νn+1(out). (14)

In (14) 
(in) and 
(out) are the matrices, constructed out of the columns,
corresponding to the ingoing or outgoing characteristics of the matrix 
−1. The
vector νn+1(in) can be calculated the same way as the vector νn+1 for the inner
points The vector νn+1(out) can be obtained from the boundary conditions (13):

νn+1(out) = (B
(out))−1(b − Bqn+1(in)). (15)

If we unite the Eqs. (14) and (15), we will obtain the overall formula for calculating
the points on the model boundaries:

qn+1 = qn+1(in) +
(out)(B
(out))−1(b − Bqn+1(in)). (16)
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For describing the non-reflecting boundary condition, we used the equation:

B = 
(∗), b = 0. (17)

In (17) the matrix 
(∗) is constructed out of the columns of the matrix with the eigen
values on the diagonal �, corresponding to the outgoing characteristics.

For modelling the fracture, we used the model of a two-shore extremely thin
fracture [12], filled with fluid. Then, in order to calculate the points on the contact
boundary of the fracture, the free slip contact conditions were used:

νl
n = νr

n, (18)

f l
n = −f r

n , (19)

f l
τ = f r

τ = 0. (20)

In (18)–(20) the indexes l and r indicate the points on the different sides of the
fracture, f —is the density of the outdoor forces.

3 The Results of the Numerical Modelling for the Hydraulic
Fracturing Problem

In this section we present the results of the numerical solution for the problem of
the hydraulic fracture seismic monitoring. For this, we carried out the numerical
modelling of the seismic waves spread in a homogeneous medium in the presence of
the microfracture for the two-dimensional case. The model consisted of the medium
with the following parameters. The velocity of the longitudinal waves was equal to
5000 m/s, the velocity of the transverse waves was equal to 3000 m/s, the density of
the medium was 2500 kg/m3. The overall size of the model was 4500×4500 m2.

The microfracture was modelled as a vertical fluid-filled extremely thin fracture.
The length of the microfracture was 30 m.

The schematic image of the model is presented in Fig. 1. The source of
microseismic impulses is situated at the distance of 300 m from the fracture center.
The microseismic source is presented as a black cross in Fig. 1. The hydraulic
fracture and the row of the seismic receivers are shown as black lines in Fig. 1.

The consistent explosions from the seismic source were modelled with the period
of 5 ∗ 10−3 sec. We modelled six consistent explosions from the seismic source.
Twenty signal receivers were situated in the front of the fracture at the depth of 800
m. The receivers are shown as direct triangles, the fracture is shown as a vertical
black line in the center of Fig. 1.

The parameters of the calculations were the following.The time step was equal
to 7 ∗ 10−5 s, the grid step was 0.5 m. All in all, we computed 14,000 steps in time.
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Fig. 1 The schematic representation of the computed model. The seismic source is depicted as a
black cross, the seismic receivers and the fracture are shown as a short and long line, respectively

a) Wave field at time 0.042 sec. b) Wave field at time 0.112 sec.

c) Wave field at time 0.168 sec. d) Wave field at time 0.322 sec.

Fig. 2 Wave field for the described formulation of the problem for the model with the microfrac-
ture at different moments of time. (a) Wave field at time 0.042 s. (b) Wave field at time 0.112 s. (c)
Wave field at time 0.168 s. (d) Wave field at time 0.322 s

The wave fields for the described problem are presented in Fig. 2a–d at 0.042,
0.112, 0.168, 0.322 s. moments of time, accordingly. The images in Fig. 2a–d
demonstrate the overall view of the consequent spread of the seismic waves from
the microseismic impulse source. The reflections from the fracture can be hardly
distinguished due to the small size of the fracture (30 m) comparing with the
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distance of the waves spread (300 m). The fracture and the row of the receivers
are depicted as the vertical white lines in Fig. 2a,b. The black pointers 1, 2 indicate
the fracture and the receivers, accordingly. The pointer 3 in Fig. 2b indicates the
seismic reflections just from the fracture, where they can be clearly seen.

Figure 3 presents the seismograms for the given formulation of the problem.
Figure 3a demonstrates the seismogram for the x-component of the velocity, Fig. 3b
presents the seismogram for the y-component of the velocity for the twenty seismic
receivers. The consistent signals are clearly shown. The use of the microseisms
makes the seismograms distinct as they are free of the head wave.

The meanings of the Vx-components of the velocity for the first receiver, located
in the lowest point of the receivers row, are depicted in Fig. 4a, the meanings of the
Vy-components of the velocity for the same receiver are presented in Fig. 4b. The
consistent reflections with the same amplitude can be well seen, according to the
described formulation of the problem of consistent seismic explosions.

In reality, it is rather hard and costly to use a row of the receivers, the real
experience includes 2–3 receivers. Then, the graphs in Fig. 5a and b demonstrate
the meanings of the Vx-components of the velocity and the meanings of the Vy-
components of the velocity for the three receivers, which are situated at the distance
of 10 m from each other along the vertical row of the receivers. The amplitudes of
the signals demonstrate the same periodic behaviour with the time displacement due
to their location. The consequent peaks demonstrate the consequent reflections from
the fracture.

4 Discussion

The main problem, connected with the numerical solving of the hydraulic fracturing,
is the large difference between the fracture size and the distance between the
microseisms source and the fracture—30 m against 300 m, accordingly. In order
to speed up the computations, we need to increase the grid step [13]. However,
the accurate solution demands approximately 10–30 nodes for the fracture size.
Therefore, in our computations the grid step was equal to 0.5 m.

In addition, in reality the fracture contains special fluid inside with the char-
acteristic parameters, which makes the fracture increase in width and length [14].
Then, the width of the fracture is not equal to zero. However, the characteristic
width of the fracture is 20–30 sm, which is small in comparison to the height of the
fracture (30 m) and tiny if compare with the distance between the fracture and the
microseismic source. Therefore, we applied the model of an extremely thin fracture
in the computations.

One of the possible ways of solving the indicated problem of considering the
fracture width is the use of the hierarchical grids [15], where the grid step can be
decreased while approaching the fracture. However, we are not interested in the
fracture width consideration, but in the characteristic parameters of the fluid inside
it. Then, the Shoenberg model of fracture [16] is the best solution in this case as
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Fig. 3 Seismogramm for the Vx- and Vy-components of the velocity for the model with the
microfracture. (a) Seismogramm for the Vx-component of the velocity. (b) Seismogramm for the
Vy-component of the velocity
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Fig. 4 The graph of the Vx and Vy meanings on the first receiver. (a) The graph of the Vx
meanings on the first receiver. (b) The graph of the Vy meanings on the first receiver

Fig. 5 The graphs of the obtained data on the receivers at distance of 10 m between each other. (a)
The graph of the Vx meanings on the receivers. (b) The graph of the Vy meanings on the receivers

the fracture in this model is characterized by the special parameter of disclosure,
depending on the characteristic parameters of the fluid inside the fracture and on the
width of the fracture [17]. And the fracture width should not be considered while
building the mesh grid, which is the key point for this very problem.

The demonstrated results aimed to present the possible way of solving the
hydraulic fracturing problem using the grid-characteristic method on structured
grids of the third order of accuracy. The further research on the theme of the direct
numerical solving of the pointed problem is considering the fracture width as well
as the fluid filling it and the expansion of the numerical solution to the 3D case.

5 Conclusions

In this paper we presented the solution to the problem of the hydraulic fracturing
seismic monitoring. We discussed the main problems connected with the hydraulic
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fracturing and their possible solutions. Then, the grid-characteristic method, used in
all the computations, was described in detail.

We presented the results of the direct numerical modelling of the microseisms
spread through the homogeneous medium with the hydraulic fracture of the fixed
size. The fracture was modelled using the model of a two-shore extremely thin
fracture, previously approved in the research papers. The wave fields and the data on
the seismic receivers demonstrated the possibility of the fracture observation using
the microseisms. Further, it can be helpful in solving the inverse problem of the
fracture size characteristics control using the data, obtained by the direct numerical
solution of this problem.

We discussed the problem of the computational grid step choice and connected
with it the chosen model of an extremely thin fracture, applied in the computations.
Later on, the complications of the presented model can be made by using either the
hierarchical grids or the Shoenberg fracture model in order to consider the fracture
width and the fluid parameters inside it. In addition, the logical continuation of the
work is the numerical solution of the hydraulic fracturing problem for the 3D case.
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Modeling of Deformation of Solids
with Material Damage

Lenar U. Sultanov and Almaz M. Kadirov

Abstract The work is devoted to solving problems of large elastoplastic deforma-
tions taking into account the material damage. The resolving equation is obtained
from the equation of the principle of virtual work in velocity terms. The stress state
is described using the Cauchy stress tensor. Constitutive equations are obtained
using the potential energy of deformation. Modelling of plastic deformations is
based on the method of projecting stresses onto the yield surface with iterative
refinement of the current stress-strain state. For solving a nonlinear equation an
incremental method is used. The numerical implementation is based on the finite
element method. The necking problem of plate with plastic deformation and
material damage is solved.

1 Introduction

Fracture processes are described based on the concept of fracture as a loss of the
ability of a material to resist deformation due to a violation of internal bonds with
an increase in the concentration of microcracks [1–5]. Fracture mechanics studies
the mechanisms that are involved in the destruction of a material. At the microlevel,
destruction is the accumulation of microstresses between adjacent microdefects or
interfaces and the breaking of bonds, which damages the material. At the mesoscale,
this is the growth and fusion of microcavities and microcracks, which grows into a
crack. At the macro level, this is the growth and propagation of a crack. Processes at
the micro- and meso-levels can be studied using the damage variables of continuum
mechanics, while the macro-level processes are studied using fracture mechanics
with the variables defined at the micro level.

At the mesoscale, fracture can manifest itself in various ways, depending on
the nature of the material, the type of load and temperature, therefore, there are:
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brittle fracture, plastic fracture, creep fracture, low-cycle fatigue fracture, high-cycle
fatigue fracture.

To obtain a mathematically correct description of the destruction processes, var-
ious kinds of regularizers, for example, Scalar parameter of damage are introduced
into the constitutive equations. Scalar parameter of damage is responsible for the
ability of the medium to resist deformation. With an increase in damage, which
occurs when the criterion for the onset of fracture is met, the resistance of the
medium decreases: the effective elastic moduli decrease with an increase in damage.

2 Solving Algorithm

The deformation gradient tensor F is introduced, which shows the change in an
elementary oriented segment during deformation. To describe the finite strains and
strain rate, the Finger tensor B = F · FT , the velocity gradient tensor h = Ḟ · F−1

and the rate of deformation tensor d = 0.5
[
h+ hT

]
are used [6].

Solving a problem of plastic deformation involves reducing the nonlinear
problem to a sequence of linearized problems. When using the incremental method,
the resolving equations are constructed by time differentiation of the equation of the
principle of virtual work in the actual configuration [6–10]:

∫

�

σ · ·δdd� =
∫

�

f · δvd�+
∫

Sσ

tn · δvdS, (1)

where σ—Cauchy stress tensor, �—current volume, f—body forces per unit
volume, tn = pn—traction forces per unit area acting on the Sσ , n—surface normal,
v—velocity. A linearized equation (1) has the form:

∫
�

[
σ̇ · ·δd+ σ · ·δḋ+ J̇

J
σ · ·δd

]
d�+ ∫

Sσ

{
tn · h− J̇

J tn
}
· δvdS =

= ∫
�

[
ḟ+ f J̇

J

]
δvd�+ ∫

Sσ
ṫn · δvdS, (2)

where J = det(F)—volume change, ṫn = ṗn [6, 7, 10, 11].
The constitutive relations are obtained using the potential energy of elastic

deformation function W. The components of the Finger tensor B are accepted as
arguments of the function W, i.e.

W = W(B), (3)



Modeling of Deformation of Solids with Material Damage 507

then the Cauch stress tensor will be expressed in the following form [6]:

σ = 2

J
B · ∂W

∂B
. (4)

For an isotropic material the potential energy function is depend on the invariants of
the Finger tensor [6]:

W = W(I1B, I2B, I3B), (5)

where I1B, I2B, I3B—the corresponding invariants of the Finger tensor B. The stress
tensor can be expressed as

σ = 2

J
B ·

{
∂W

∂I1B
I+ ∂W

∂I2B
[I1BI− B]+ ∂W

∂I3B
I3BB−1

}
. (6)

Linearizing relation (4), the rate of the Cauchy stress is obtained:

σ̇ = ∂σ

∂B
· ·Ḃ (7)

and

σ̇ = 2
{

1
J
Ḃ · ∂W

∂B + 1
J

[
B · ∂2W

∂B2

]
· ·Ḃ− 1

J
B ∂W
∂B I1d

}
=

= �σ · ·d+ h · σ + σ · hT − σ I1d, (8)

where the notation is introduced

�σ = 4

J
B · ∂

2W

∂B∂B
· B. (9)

As a result, the constitutive relationship of elastic deformation was obtained in the
form of a linear equation:

σ T r = �σ · ·d, (10)

where σ T r = σ̇ + h · σ + σ · hT − I1dσ—the Truesdell derivative of the stress
tensor σ .

Total deformations are represented as the sum of elastic and plastic components
[7, 8].

d = de + dp. (11)
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The associative flow law is used:

dp = λ̇ ∂�
∂σ
, (12)

where λ̇—plastic strain rate, �—flow function. The von Mises condition as a
criterion for elastic deformation is used:

� = σi − σy(χ) ≤ 0 (13)

where σi =
√

3
2σ ′ · ·σ ′—stress intensity, σ ′—deviatric part of σ , σy(χ)—hardening

function, χ—hardening parameter. Using (13), the plastic deformation rate can be
written as follows

dp = λ̇ ∂�
∂σ

= λ̇ ∂σi
∂σ ′

= 3

2
λ̇

σ ′

σi
. (14)

For modelling plastic deformations the method of projecting stresses onto the
yield surface is used [7, 8, 10, 11, 16, 17]. Let all process parameters, including
configuration, stress state, values of elastic and inelastic deformations, etc. for the k-
th state are known. The parameters of the k+1-th state are determined by the formula
[7, 11]

k+1σ = kσ + k σ̇
t =
= kσ + [

kσ T r + kh · kσ + kσ · khT − I1d kσ
]

t =

= kσ +
{
� · ·

[
kd− 3

2 λ̇
k+1σ ′
k+1σ i

]
+ kh · kσ + kσ · khT − I1d kσ

}

t, (15)

where 
t is the parameter (time) increment, which determines the transition from
the previous state to the next.

The last equation can be written in the following form

k+1σ + 3λ̇

2σi
� · · k+1σ ′ = k+1σ̃ , (16)

where k+1σ̃ = kσ + {
� · · kd+ kh · kσ + kσ · khT − I1d kσ

}

t—trial stresses

tensor. Equation (16) defines the projection of stresses to the yield surface.
The deformation process is represented as a sequence of equilibrium states. The

transition from the previous equilibrium k-th state to the next equilibrium k+1-th
state occurs by a loading increment. When plastic deformations occur, the method
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of projecting the stress onto the yield surface is applied. The resolving equation at
the k-th step has the form [6, 7]:

∫
�k

{
kd · ·k� · ·δd+ 1

2
kσ · · [δhT · kh+ khT · δh]− kJ̇

kJ
f · δv

}
d�+

+ ∫
Sσ

{
kt∗n · kh−

k J̇
kJ

kt∗n
}
· δvdS = ∫

�k

˙kf∗ · δvdV + ∫
Sσ

˙kt∗n · δvdS −

− 1

t

{∫
�k

kσ · ·δddV − ∫
�k

kf∗ · δvdV − ∫
Sσ

kt∗n · δvdS
}
. (17)

Due to a quasi-static problem is considered, it is possible to pass from rates to
increments, for example v = 
u/
t , where u—displacement. Solving Eq. (17), we
obtain the displacement vector u, which can be used to determine the configuration
and stress state at k+1 loading step:

k+1R = kR+
ku, (18)

k+1σ̃ = kσ +
kσ . (19)

As a result of using the projection of stresses to the yield surface method (16),
the defined stress state does not satisfy the resolving system of equations (17).
Therefore, the iterative refinement of the stress-strain state is used. This iterative
procedure is based on introducing the power of an additional stresses on virtual
deformation rates into the resolving Eq. (17), where an additional stresses are
defined as the difference between true stresses k+1σ (16) and trial stresses k+1σ̃ (19)
[7, 11].

In according of the continuum damage mechanics, to characterize the damage to
the elementary volume of the material at the microlevel, the scalar parameter ω is
introduced [1]:

ω = S − Sω
S

, (20)

where S is the cross-sectional area of the plane of the elementary volume, and Sω
is the area of intersection of microdefects with this plane. ω takes values from 0
(material is not damaged) to 1 (material is completely destroyed).

Material damage at a given time can be determined by various mechanisms of
resource depletion (deformation, transitional creep, fatigue, brittle fracture, etc.),
therefore, the total material damage is the sum of the damage state functions ωn for
each class of defects [12]:

ω =
∑
n

ωn. (21)
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Determination of damageωn of the corresponding type presupposes a description
of the mechanics of the behavior of the environment within the framework of
the phenomenon under study, the construction of an evolutionary equation for
the accumulation of damage. Integrating it and conducting basic experiments to
determine the appropriate material characteristics.

At the final stage of the accumulation of damage scattered throughout the
volume, the effect of damage on the viscoplastic behavior of the material is
observed. This influence can be taken into account on the basis of the concept of
a degrading continuum (introduction of effective stresses) [12–15]:

σ̃ = σ

1− ω . (22)

The value of the increment of the current damage
ωk is determined as the sum
of the damage of those destruction mechanisms that are taken into account in the
calculation. For example, under plastic deformation, the damage can be defined as
[2, 3, 5]:


kω = −
kλ

1− ω
(
−

kY

a

)b

, (23)

where

−Y = σ 2
i

2E(1− ω)2
[

2

3
(1+ ν)+ 3(1− 2ν)

(
σ0

σi

)2
]
,

σ0 = 1

3
(σ11 + σ22 + σ33),

Y—damage energy release rate, E—elasticity modulus, ν—Poisson’s ratio, a, b—
material parameters.

3 Numerical Examples

The problem of stretching a rectangular strip with dimensions: h = 266.67 mm, w
= 64.13, d = 5 mm is considered. The von Mises condition is used as the plasticity
criterion. A material with nonlinear isotropic hardening is used [16, 17]. Table 1
lists the properties of the material [3]. An example of the construction of physical
relations for the following potential of elastic deformations is considered [18]:

W = λ+ 2μ

8
(I1B − 3)2 + μ (I1B − 3)− μ

2
(I2B − 3) , (24)

where λ,μ—Lame parameters, λ = Eν
(1+ν)(1−2ν) , μ = E

2(1+ν) .
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Table 1 Material parameters Parameter Value

Hardening law σy(χ) = σy + hχ + (σ∞ − σ0)(1 − e−δχ )
E, MPa 180,000

ν 0.32

σ∞, MPa 715

σy , MPa 450

h 0.129

δ 16.93

εpcr 0.44

a 2.4

b 2.4

ωcr 0.2

Fig. 1 Distribution of displacements along the OX axis at u = 55.725 mm

Fig. 2 The distributions of damage at u = 55.725 mm

Fig. 3 Equivalent plastic strain at u = 55.725 mm

An eight-node 3D finite element with linear approximation is used to calculate
numerical examples [19]. The problem is symmetric, therefore, the calculation is
performed for 1/8 of the strip, with the imposition of symmetry conditions and
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Fig. 4 Computational results of applied force P [kN] versus axial elongation 
l [mm]

a kinematic boundary condition. The displacements along the tensile axis, the
distributions of damage, the equivalent plastic strain for the current configuration
are shown in Figs. 1, 2, 3. Computational results of applied force P [kN] versus axial
elongation with and without material damage are shown in the Fig. 4. Inclusion of
damageability in the calculation entails a fast decrease of force, which means a drop
of a material resistance to load.

4 Conclusion

A method for numerical investigation of the deformations of solids with large plastic
strains and the material damage is developed. The resolving equation is obtained
from the equation of the principle of virtual work in velocity terms. The stress state
is described using the Cauchy stress tensor. Constitutive equations are obtained
using the potential energy of deformation. Modelling of plastic deformations is
based on the method of projecting stresses onto the yield surface with iterative
refinement of the current stress-strain state. Numerical calculation is based on
a finite element method. The necking problem of plate with plastic strains and
material damage is solved.
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Prediction of Temperature-Dependent
Processes in Multicomponent Fluid Flow
Through Porous Media

Marina A. Trapeznikova, Natalia G. Churbanova, and Antonina A. Chechina

Abstract The research deals with the development of efficient tools for the
simulation of thermal processes in porous media when flows of multiphase mul-
ticomponent slightly compressible fluids are considered. Such flows occur in the
subsurface during the hydrocarbon recovery or during remediation of contaminated
soils, fluid filtration also takes place in various industrial installations. For an
adequate description of non-isothermal processes the transfer of mass and energy
between phases should be reproduced, therefore the multicomponent composition
of fluids cannot be neglected. The classic model is modified to be implemented by
explicit difference schemes with sufficient accuracy and mild stability conditions.
The experience of constructing the hyperbolic quasi-gas dynamic system of equa-
tions was transferred to flows in porous media. Conservation laws are formulated for
the components in terms of the mass concentrations of components in phases. The
mass balance equation for each component contains the second time derivative and
a dissipative term with small parameters having the sense of minimum reference
sizes in time and in space. Constants of phase equilibrium are used to close the
system of equations. To verify the developed approach test calculations of two- and
three-phase flows were performed, physically correct results were obtained.

1 Introduction

The solution of many industrial and environmental problems involves the calcula-
tion of fluid flows in porous media. Among such applications there are problems of
flows in the subsurface, in particular, a wide range of problems associated with
modeling the hydrocarbon recovery. The simulation of contaminant infiltration
into the underground space when solving problems of the soil remediation and
prevention of groundwater contamination is also worth mentioning. In addition,
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filtration of fluids serves as the basis for technological processes in various industrial
installations, for example, in the equipment for processing of organic fuels while
cleaning oil and gas from impurities. In all these problems the system under
consideration is essentially multiphase: liquid (aqueous and non-aqueous) and
gaseous phases are mobile, they are assumed to be immiscible; an immobile solid
phase, namely, the porous skeleton, is also taken into account. The studied processes
depend significantly on temperature: promising technologies for the recovery of
high-viscosity oil suppose the use of thermal methods (heat carrier pumping into
the stratum, in-situ combustion), and technologies for the soil restoration employ
the exposure by hot steam. For adequate description of non-isothermal processes, it
is necessary to reproduce the transfer of mass and energy between phases, therefore,
the multicomponent composition of the phases cannot be neglected.

The present paper develops an approach to modeling flows of multiphase mul-
ticomponent slightly compressible fluids in porous media in view of possible heat
sources. The original idea was to modify the classic model of fluid flow in a porous
medium [1–4] in such a way that it would be possible to implement it by logically
simple computational algorithms, namely, by explicit finite difference schemes with
sufficient accuracy and mild stability conditions. For this purpose the experience of
constructing a hyperbolic version of the known quasi-gas dynamic (QGD) system of
equations [5–7] was borrowed to describe flows in porous media. For the first time
the mathematical model created by analogy to the QGD system was presented in [8],
the hyperbolic form of the model was proposed and substantiated in [9, 10], then it
was generalized to the multicomponent case in [11, 12]. Since the numerical solution
of the applied problems of interest is extremely time consuming and practically
unrealizable without high performance computing, the authors pay attention mainly
to explicit-type algorithms that allow efficient parallel implementation, including
realization on hybrid architectures.

To verify the developed approach numerous test calculations have been carried
out. The most interesting problem solutions are presented in this paper—we
illustrate convection of a three-phase fluid in a porous medium in a reservoir with
differently heated walls as well as phase transition between the water and gas phases
in a heat pipe. The numerical results obtained are in good agreement with results of
other authors [13].

2 State of the Art in the Research Field

The present work corresponds to modern scientific trends and is comparable with the
achievements of other research teams as evidenced by publications in the literature.

Nowadays techniques called Enhanced Oil Recovery (EOR) methods [14] are
applied to improve the oil recovery in a hydrocarbon reservoir. EOR covers
secondary and tertiary recovery and is preceded by the waterflooding technique that
almost always has to be considered. Currently, all over the world, the concept of
intelligent oil and gas fields is being applied; it implies the use of both innovative
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mining technologies and advanced information technologies. Despite the great
experience in hydrodynamic modeling and many corresponding software packages,
there remains a need for their improvement, and mainly concerning the reservoir
models and algorithms for an adequate description of multiscale thermo-hydro-
mechanical-chemical processes [15].

Among publications on compositional modeling of multiphase compressible
flow in porous media paper [16] should be noted where the traditional strategy
of switching the primary variables (see [13], e.g.) is criticized. Instead, a general
approach based on the molar masses of components is developed. It is close to the
development of the present paper promoting also some general approach but the
mass concentrations instead of the molar concentrations are used here to simplify
the equations and computational algorithm when chemical reactions are not taken
into account. Article [16] considers the black oil model only, while the present paper
proposes a universal model that allows an arbitrary number of components and any
reasonable composition of phases.

Implicit, semi-implicit and explicit-implicit algorithms are mainly used in
modeling filtration processes, in particular, the traditional IMPES method [1]
still remains popular [17]. However the present paper substantiates advantages of
explicit schemes — not only high efficiency of parallelization but a gain when
performing calculations with critical accuracy [11, 18].

Quasi-gas and quasi-hydrodynamic models are also used by other teams to
develop algorithms for modeling flows in porous media, especially on the core
scale [19].

Note that the hyperbolization technique implied in the present paper to increase
the stability of difference schemes is a modern trend in CFD [6, 7, 20].

We must pay tribute that interesting multiprocessor implementations including
those for GPUs are presented in periodicals [21–23]. Nevertheless, there are not so
many works on modeling three-phase compositional flows. Basically, the literature
reflects the simulation of two-phase flows.

Simulation of flows in the subsurface as any large-scale computational problem
is connected with processing, storage and interpretation of huge amounts of
data. Appropriate hardware and software are invested in the promising Big Data
technology [24]: massively parallel processing (MPP) systems, uniting hundreds
and thousands of computational nodes, have to be used for the data treatment.

The actual performance of supercomputers and relevant architectures are intro-
duced by the list of the most powerful general purpose systems of the world—the
TOP 500 rating [25], the most powerful systems of CIS are introduced by TOP
50 [26]. Now the world top system is Fugaku manufactured by Fujitsu and
installed at RIKEN Center for Computational Science in Kobe, Japan. It turned
in a High Performance Linpack result of 415.5 petaflops. This is a rare example of
a supercomputer based on traditional CPU-only architecture: it involves 158,976
CPUs, each has 48 cores. Many modern supercomputers (144 systems on TOP
500) have hybrid architectures and include various computing accelerators, mainly
GPUs. Therefore, software developers have to ensure not only the scalability of
supercomputer applications, but also their portability in a wide class of hybrid
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architectures. In this sense, algorithms based on explicit difference schemes are
perfect.

Let us summarize with a quote from [27]:

The first exascale systems are expected to be available in about one year. For sure, there
is still a lot of work to be done to let cutting-edge science applications fully exploit their
potential.

3 Background of the Research

The QGD system of equations is the basis of the present research. The QGD system
is a differential approximation of the kinetically consistent finite difference (KCFD)
schemes [5] that belong to promising kinetic algorithms of gas- and hydrodynamics.
The QGD equations are based on the generalization of the Navier-Stokes equations
and differ from them by additional terms with a small parameter acting as the
solution stability regularizers. For the first time, the QGD system was proposed
in the 1980s by a group of researchers of Keldysh Institute of Applied Mathematics
(KIAM) under the leadership of Prof. Boris Chetverushkin. The convergence of the
QGD algorithm was illustrated numerically on a set of test problems [28].

The derivation of KCFD schemes and QGD system is guided by the so-called
principle of minimum sizes [29]. This principle states that for the numerical solution
of continuum mechanics problems it makes no sense to consider scales smaller
than some minimal reference values. In gas dynamics, for example, the minimal
reference length is the mean free path of a molecule. Applying this principle to
porous media flows one can derive that the scale of averaging at which the filtering
rock microstructure is negligible is such a length. The order of this value is a
hundred rock grain sizes. The concept of the minimum reference time scale is also
introduced: in gas dynamics this is the time interval between collisions of molecules,
and in the porous medium flow problems, the parameter can be interpreted as
the time for establishing internal equilibrium in a volume of the above mentioned
reference size.

In [8], for the first time, a mathematical model of single compressible fluid
filtration was constructed by analogy to the QGD system taking into account
the principle of minimum sizes. The continuity equation acquired an additional
dissipative term (a regularizer), which provided stability of the explicit scheme with
central differences for the convective term approximation. This was followed by a
series of works proposing a hyperbolized version of the model [9], its generalization
to the case of multiphase fluids [30, 31], and also implementation on MPP
systems and hybrid clusters [31, 32]. Paper [10] summarizes these developments
for isothermal processes and contains an alternative to the manner of obtaining
the modified continuity equation from [8]. A number of works are devoted to the
simulation of non-isothermal multiphase flows in porous media via the new model
including the total energy conservation equation modified after QGD system and
approximated by an explicit scheme [11, 31]. A detailed description of the complete
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model and the computational algorithm as well as attempts to generalize them to
the case of a multicomponent composition of fluids are reflected in [11]. Paper [12]
introduces the compositional model and the algorithm formulated for the simulation
of non-isothermal two-phase flow of water and gas where the gas phase consists of
two components—water (as steam) and air.

4 Governing Model

Flow of multiphase multicomponent fluid through a non-deformable homogeneous
isotropic porous medium is under consideration. By a component a single chemical
compound or a mixture of compounds is assumed. Let nα be the number of phases
(usually no more than three mobile phases) and nκ be the number of components (an
arbitrary number). Further speaking of phases we mean mobile phases, subscripts
w, n and g denote water, NAPL (Non-Aqueous Phase Liquid) and gas phases
respectively. Liquids are considered as slightly compressible, gas is ideal, the rock
skeleton is incompressible. The temperature of all phases and the rock is considered
identical.

Obviously the same component may be present in different phases. In the current
version of the model, the relative amount of the component in the phase is expressed
as the mass concentration:

Cκα =
mκα

mα
, κ = 1, . . . , nκ, α = w, n, g (1)

wheremκα is the mass of component κ in phase α, mα is the mass of phase α.
Based on conservation laws for components, one can formulate the next compo-

sitional model:

φ
∂

∂t

∑
α

ραSαC
κ
α + τ

∂2

∂t2

∑
α

ραSαC
κ
α +

∑
α

div
(
ραC

κ
αuα

) =

= Qκ +
∑
α

div
lcα

2
grad

(
ραSαC

κ
α

)
, κ = 1, . . . , nκ , (2)

uα = −K kα
μα
(gradPα − ραg) , α = w, n, g, (3)

∂

∂t

[
φ
∑
α

ραSαEα + (1− φ) ρrEr
]
+
∑
α

div (ραHαuα)+

+ div (−λeffgradT ) =
∑
α

div
lcα

2
ρα grad T , (4)
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ρα = ρα
(
Pα, T ,C

κ
α

)
, κ = 1, . . . , nκ , α = w, n, g, (5)

Pn − Pw = Pc nw (Sw) ,
Pg − Pn = Pc gn

(
Sg
)
, (6)

∑
α

Sα = 1, (7)

∑
κ

Cκα = 1, α = w, n, g, (8)

Cκα

Cκβ
= Kκαβ (P, T ) , κ = 1, . . . , nκ , α = w, n, g. (9)

The following notations are used: Sα is the saturation (of α-phase), Pα is the
pressure, ρα is the density, uα is the Darcy velocity, T is the temperature, Eα
is the internal energy, Hα is the enthalpy, λeff is the effective coefficient of heat
conductivity, φ is the porosity, K is the absolute permeability, kα is the relative
phase permeability, μα is the dynamic viscosity, Qκ is the source of component κ ,
g is the gravity vector, ρr = const—the rock density (subscript r denotes the rock),
cα is the sound speed in α-phase, small parameters l and τ are the minimal reference
length and time respectively, Pc nw (Sw) and Pc gn

(
Sg
)

are capillary pressures,Kκαβ
is the constant of phase equilibrium (so-called “K-value”).

The above model consists of:

• the mass balance equation for each component (2),
• the extended Darcy’s law (3),
• the total energy conservation law (4),
• the state equations (5),
• differences between the pressures (the capillary pressures) (6),
• constitutive relations (7) and (8),
• constants of phase equilibrium (9).

As it was mentioned in previous sections of the article this model naturally follows
from the hyperbolized QGD-based model of multiphase fluid flow in a porous
medium. The reasoning behind the model can be found in [11]. Attention should
be paid to the second time derivative with the small parameter τ in (2) as well as to
the right-hand sides of (2) and (4) including regularizers with the small parameter l.

Note that in the multicomponent case:

Hα =
∑
κ

Hκα (10)

where components′ enthalpies can be found via heat capacities of the components.
And the next connection between the internal energy and the enthalpy is used in
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computations:

Eα = Hα − Pα
ρα
, Er = Hr. (11)

Since local thermal equilibrium is assumed, the heat conductivity of the fluid-
filled porous medium is averaged from the known heat conductivities of the phases
and the solid matrix. In the current research the linear mixing model is used and the
effective coefficient of heat conductivity is expressed as follows:

λeff = φ
∑
α

Sαλα + (1− φ) λr . (12)

There are more complicated expressions for the averaging (see [13], e.g.) using
nonlinear mixing models and taking into account the change in heat conductivity
with increasing temperature.

Formally, the universal way to describe the thermodynamic state of a fluid is to
set equations of state for each component. It is possible to calculate the required
phase densities on their basis if the components′ concentrations are known. The
concentrations themselves are determined by the equations of phase equilibrium but
their solution is a computationally expensive task.

This work employs the technique that is often used in practice:

• the calculation of densities is performed via equations of state;
• phase equilibrium is calculated using K-values.

Currently we consider linear state equations for liquids and assume the validity
of the ideal gas law for all components in the gas phase. The phase densities are
determined as the weighted harmonic mean of the components densities. The phase
viscosity μα = μα

(
μκα(T ), C

κ
α

)
also depends on the component composition.

Generally speaking K-values are complicated functions of the pressure, the
temperature, the composition, the porous material, they should be specified for
all components to be condense. Correct setting of these functions can significantly
improve the accuracy of calculations. The most famous formula has been presented
by Wilson for weak solutions and low pressures [33], some K-values can be found
in [34], but all of them depend only on properties of the given component and do not
depend on properties of other components of the solution, what can lead to errors in
calculations for real mixtures.

The porous medium flow equations contain strongly nonlinear coefficients of
the relative phase permeability and the capillary pressures (6) depending on the
phase saturations. One can find different relations fitted to experimental data to
describe these functions. In the present research for the simulation of three-phase
flow we choose Parker’s model [35] to describe capillary pressures, the relative
phase permeability is presented by Stone’s Model I [1], these models are also cited
in [10, 11]. For the two-phase flow van Genuchten constitutive relationships [4] are
used.
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5 Computational Algorithm

A computational algorithm of the explicit type was developed for numerical
implementation of the QGD-based model of multiphase fluid flow in a porous
medium [10, 11, 32]. When constructing the algorithm, rectangular computational
domains covered by Cartesian grids were considered. High efficiency of parallel
implementation on CPU cores as well as on GPUs of a hybrid supercomputer was
demonstrated while solving infiltration problems [32].

The algorithm is naturally generalized to predict multicomponent fluid flow.
The set of primary variables usually includes the temperature, one phase saturation
and the other phase pressure in the two-phase case or two phase saturations and
the third phase pressure in the three-phase case. Now this set is enlarged due to
the concentrations of components in the phases (1). Their number depends on the
problem statement. In [12] the algorithm was formulated in the special case when
the two-phase two-component flow was considered, the phases were water and gas,
the components were water and air. Then the next primary variables were chosen:
T , Sw , Pg and Cwg (the steam concentration).

At each time step j the next main stages of the algorithm are fulfilled:

• Calculation of the term

(∑
α

ραSαC
κ
α

)j+1

(13)

from (2) for all components via the three-level explicit scheme with central
differences for convective term approximation (the scheme has the second order
in time and in space).

• Calculation of the internal energy

[
φ
∑
α

ραSαEα + (1− φ) ρrEr
]j+1

(14)

from (4) via the explicit scheme with central differences.
• Calculation of primary variables by solving a system of nonlinear algebraic

equations locally at each point of the computational grid. This system is formed
using state equations (5), expressions for internal energy (11) and K-values (9).
Values (13) and (14) obtained at the previous stages are used in the right-hand
sides of the given algebraic equations. The system is solved by Newton′s method
that takes only a few iterations.

Parallel implementation of the algorithm is based on the principle of geometric
parallelism (i.e. data partitioning is used): the computational domain is divided into
subdomains in different directions depending on the geometry of the considered
problem. On inner boundaries of subdomains data exchange takes place. The
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developed algorithm does not require inversion of the full matrix of unknowns and is
parallelized as explicit schemes. The system solution by Newton′s method does not
cause additional exchanges — only one two-way data exchange operation occurs on
each inner boundary at each time step.

6 Test Predictions

6.1 Heat Pipe Effect Simulation

The problem of the heat pipe effect [13] has been used to verify the compositional
model (2)–(9) and the algorithm discussed in Sect. 5. This is a two-phase two-
component flow problem: a thin tube is filled by a porous medium saturated with
water and air. The liquid phase consists of the water component only, the gas phase
can consists of two components—steam and air. Figure 1 illustrates the statement.

The initial conditions are as follows:

P 0
g = 1 atm, S0

w = 0.5, T 0 = 343.15 K,
(
Cwg

)0 = 0.05 .

A constant heat flux inside the domain as well as zero fluxes for all mass
components are given at the right-hand boundary (Neumann conditions). At the
left-hand boundary Dirichlet conditions are set:

Pg 1 = 1 atm, Sw 1 = 0.98, T1 = 343.15 K,
(
Cwg

)
1
= 0.29 .

The following physical process must be observed as a result of simulation: due
to the heat flux the water-air system is heated until water turns into steam, thus the
phase transition happens—some amount of the water component passes from the
water phase to the gas phase.

Fig. 1 The heat pipe problem statement
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Fig. 2 Temperature in the
heat pipe at different time
moments

In computations the followingK-value is used [36]:

Kwgw =
Cwg

Cww
= exp

[
5.373 (1+ ωw)

(
1− Tc

T

)]
Pc

Pg
(15)

where ωw is the water molecule acentric factor, Tc and Pc are known critical values
of the temperature and the pressure at which water turns into steam and they have
identical properties,

ωw = 0.76949, Tc = 647.1 K, Pc = 221.15 bar .

Figures 2, 3, 4, 5 illustrate the beginning of the process until the expected
phase transition occurs. The temperature and the pressure are increased gradually
at the right-hand boundary, where starting from some time moment the water phase
saturation is decreased while the concentration of water steam in the gas phase is
increased. Water also penetrates inside the domain from the left-hand boundary due
to capillary effects. One can conclude that the proposed computational technique
ensures a qualitatively correct prediction of multiphase multicomponent porous
media flow.

6.2 Filtration of Three-Phase Fluid in a Differentially Heated
Cavity

One of the popular test problems in CFD is the problem of natural convection of
air in a differentially heated square cavity [37]. The similar problem is solved at the
assumption that the cavity is filled by a porous medium, see [38] e.g. In the present
paper we suppose that the medium is saturated with three-phase (water-oil-air) fluid.
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Fig. 3 Gas phase pressure in
the heat pipe at different time
moments

Fig. 4 Water saturation in
the heat pipe at different time
moments

Fig. 5 Mass concentration of
the water component in the
gas phase inside the heat pipe
at different time moments
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Fig. 6 The cavity problem statement and obtained saturation fields. (a) The problem geometry.
(b) Gas saturation. (c) Oil saturation. (d) Water saturation

In the isothermal case fluids are eventually distributed over the domain according to
their densities [10] and this distribution becomes stationary. Now we are interested
in the case when the temperature gradient occurs between the vertical walls and the
mixed effect of the gravity and the temperature difference appears, Fig. 6a illustrates
the problem statement.

Initially all saturations are distributed uniformly over the reservoir with the size
of 1m2, T 0 = 300 K, P 0 = 1 atm.

The boundary conditions: T1 = 310 K, T2 = 290 K, all walls are impermeable,
the top and bottom are thermally insulated.

Calculations have been performed with the use of supercomputers installed in the
Collective Usage Centre of KIAM RAS [39]: 200 CPU cores of the K100 cluster
have been exploited.

The results obtained at some time moment of the early stage of calculations are
depicted in Fig. 6b–d. Red areas correspond to the maximum values, blue areas—to
the minimum. The saturation patterns are asymmetric, interesting behavior of fluids
is observed. Gradually gas accumulates at the top of the warm wall, water moves
down to the bottom of the cold wall and displaces oil that clings to the cold wall top.
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7 Conclusion

Robust computational tools including the QGD-based hyperbolic model of non-
isothermal flow of multiphase multicomponent fluid in a porous medium as well
as parallel algorithm of its implementation have been formulated and verified by
test predictions. Physically correct behavior of the fluid obtained by the simulation
indicates the adequacy of the developed approach.

At present, the approach is approved via the fourth SPE comparative solution
project involving three steam injection problems [34]. The first problem is the cyclic
steam injection in a heavy-oil reservoir. The problem is solved in the (r − z)-
geometry, therefore the equations are expressed now in the cylindrical coordinate
system. The given formulation is also useful for modeling processes in different
technological installations because cylindrical tanks are often included in their
constructions. In the future, the authors plan to simulate the processing of organic
fuels during the purification of crude oil or natural gas from various contaminants.
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A Difference Scheme Based on the
Schwarz Method for a Time-Dependent
Singular Perturbation Problem
in a Doubly Connected Domain

Irina V. Tselishcheva and Grigorii I. Shishkin

Abstract The object of our study is an initial–boundary value problem for a
singularly perturbed parabolic reaction–diffusion equation. The highest derivatives
are multiplied by a small perturbation parameter ε taking any values in the half-
open interval (0,1]. The Dirichlet problem is considered in the space-time domain
G = D × [0, T ], where D is a doubly connected domain in space, i.e., a rectangle
D1 with a removed circle D2. As ε → 0, boundary layers of different types
arise in neighborhoods of smooth parts of the lateral boundary and lateral edges.
The boundary layers decrease exponentially with the distance from the outer and
inner lateral boundaries. We discuss an approach to develop a reliable numerical
method based on the techniques for simply connected domains. Our aim is to
construct an iterative Schwarz method on overlapping subdomains that cover either
the boundary of the parallelepiped or the boundary of the cylinder. It is shown
that the method converges ε-uniformly in the maximum norm with increasing the
number of iterations (and the number of mesh points in the case of a difference
scheme). We use the Shishkin meshes that condense in the boundary layers and
are piecewise uniform along the normal to the smooth parts of the boundaries. To
construct meshes in regions near the outer and inner lateral boundaries, the Cartesian
and cylindrical coordinate systems are used, respectively.

1 Introduction

Recently, interest among numerical analysts grows in the development of reliable
numerical methods for solving singular perturbation problems in domains with
complex geometry and with quite complicated boundary layers. Reliable methods
are intended for the accurate resolution of boundary layers in the maximum norm
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for all possible values of the perturbation parameter. For this, it is attractive to apply
overlapping domain decomposition methods [1] that allow us to reduce the solution
of the problem to a sequence of problems on simpler subdomains containing
singularities of the same type and further to parallelize the solution process. We
discuss an approach to constructing a reliable numerical method for the case of
a doubly connected domain based on the techniques developed earlier for simply
connected domains. The aim of our study is to develop iterative schemes based on
the alternating Schwartz method. To construct difference schemes, we use classical
monotone approximations and the simplest piecewise uniform meshes condensing
in a neighborhood of the boundary layers in each coordinate, i.e., meshes piecewise
uniform along the normal to the smooth parts of the boundaries of the subdomains.

2 Problem Formulation

In the biconnected space-time domain (see Fig. 1)

G = D × [0, T ], (1)

where D is the rectangle D1 with the removed circle D2 (Fig. 2), D = D1 \ D2,
D1 = (−d1 < x1 < d1) × (−d2 < x2 < d2); D2 = {x : (x2

1 + x2
2)

1/2 < d};
d1, d2 > d > 0, we consider the Dirichlet problem for the singularly perturbed
parabolic reaction–diffusion equation1

L(2)u(x, t) ≡ ε2
u− a(x, t)u− p(x, t)∂u
∂t

= f (x, t), (x, t) ∈ G,
u(x, t) = ϕ(x, t), (x, t) ∈ S.

(2)

Here, S = G \G, the coefficients and the right-hand side a(x, t), p(x, t), f (x, t),
and also the boundary function ϕ(x, t) are assumed to be bounded and sufficiently
smooth on G and on S (on smooth parts of the boundary); a(x, t) ≥ 0, p(x, t) ≥
p0 > 0. The parameter ε takes arbitrary values in the interval (0,1].

A similar singularly perturbed problem is known as Hemker’s model problem [2]
but considered in an unbounded domain exterior of the unit disc.

As ε → 0, boundary layers of different types appear in neighborhoods of the
smooth parts of the lateral boundary SL and of the lateral edges. In a neighborhood
of the outer boundary, i.e., the lateral faces of the parallelepiped but outside regions
near its edges, there appear parabolic boundary layers; in a neighborhood of the
edges, the layer is angular. In a neighborhood of the inner lateral boundary (the

1 The notation L(k) (m(k),M(k), Dh(k)) means that this operator (constant, grid) was introduced in
formula (k). By M (m), we denote sufficiently large (small) positive constants independent of ε
and the stencils of difference schemes.
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Fig. 1 Doubly connected
domain G

Fig. 2 Doubly connected
domain D; �1 is the
boundary of the rectangle, �2
is the boundary of the circle

cylindrical surface), there appears a circular boundary layer that is regular. The
boundary layers decrease exponentially with the distance from the outer and inner
parts of SL. The boundary layers of such structure give rise to difficulties in
constructing ε-uniform grid approximations to the differential problem (2), (1)
and motivate the necessity for using special “connected” grids matched with the
boundaries and an overlapping Schwarz-type method for interfacing between the
grid subdomains. To construct grids in the neighborhoods of the outer lateral
boundary, where the boundary layer is sufficiently smooth, it is reasonable to use the
Cartesian coordinate system, while it is proposed to apply a cylindrical coordinate
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system in a biconnected annular region near the inner lateral boundary. Next, we
apply the overlapping domain decomposition method with a sufficient width of the
overlap so that the subdomains contains either the boundary of the parallelepiped or
the boundary of the cylinder.

3 A Priori Estimates for the Solution and Derivatives

Let us discuss bounds for the solution of problem (2), (1) and its derivatives used
later in the construction and convergence proof of schemes. For simplicity, we
assume that the problem data are sufficiently smooth and satisfy compatibility
conditions at the angular points that ensure a sufficiently smooth solution on G
for each fixed ε.

The solution of (2), (1) satisfies a rough “standard” estimate

∣∣∣∣∣
∂k+k0

∂x
k1
1 ∂x

k2
2 ∂t

k0
u(x, t)

∣∣∣∣∣ ≤ M ε
−k, (x, t) ∈ G, k + 2k0 ≤ K. (3)

Let us give more “subtle” estimates obtained on the basis of asymptotic solution
decompositions (so-called Shishkin decompositions).

We represent the solution as the sum of functions

u(x, t) = U(x, t)+ V (x, t), (x, t) ∈ G, (4)

where U(x, t) and V (x, t) are the regular and singular components of the solution.
The functions U(x, t) and V (x, t), (x, t) ∈ G, are solutions of the appropriate
inhomogeneous and homogeneous equations, respectively. The smooth component,
U(x, t), satisfies the bound

∣∣∣∣∣
∂k+k0

∂x
k1
1 ∂x

k2
2 ∂t

k0
U(x, t)

∣∣∣∣∣ ≤ M
[
1+ ε2−k] , (x, t) ∈ G, k + 2k0 ≤ K. (5)

The function V (x, t) can be represented in its turn as the sum of boundary layers of
dimensions 1 and 2:

V (x, t) = V0(x, t)+
4∑
j=1

Vj (x, t)+
4∑

i,j=1

Vij (x, t), (x, t) ∈ G. (6)

Here V0(x, t) is the regular circular layer in a neighborhood of the inner boundary
SL2 ; Vj (x, t) and Vij (x, t) are the regular and angular parabolic boundary layers in
a neighborhood of the outer boundary SL1 .
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The singular components from (6) satisfy the estimates

∣∣∣∣
∂k+k0

∂n∂tk0
V0(x, t)

∣∣∣∣ ≤ Mε−k exp(−mε−kr(x, �2)),

∣∣∣∣∣
∂k+k0

∂x
k1
1 ∂x

k2
2 ∂t

k0
Vj (x, t)

∣∣∣∣∣ ≤M
[
ε−kj + ε1−k] exp(−mε−1r(x, �

j

1 )), 1 ≤ j ≤ 4,

(7)
∣∣∣∣∣

∂k+k0

∂x
k1
1 ∂x

k2
2 ∂t

k0
Vij (x, t)

∣∣∣∣∣ ≤ Mε
−kmin

[
exp(−mε−1r(x, �i1)), exp(−mε−1r(x, �

j

1 ))
]
,

(x, t) ∈ G, k ≤ K,

where r(x, �) is the distance from x to the boundary �; ∂k/∂n is the derivative
along the normal to the boundary �2; kj = 1 for j = 1, 3 and kj = 2 for j = 2, 4;

0 < m < m0, m0 = min
G

[
a1/2(x, t)

]
.

By �j1 , j = 1, 2, 3, 4, we denote the sides of the rectangleD1. Assume that �1
1 and

�3
1 are orthogonal to the x1-axis, while �2

1 and �4
1 are orthogonal to the x2-axis; the

sides �1
1 and �2

1 contain the vertex (−d1,−d2).
It is easy to see from (7) that the boundary-layer functions decrease exponentially

with the distance from the corresponding boundaries. In (5) and (7), K ≥ 4.

4 Difference Schemes

4.1 Simply Connected Case

LetD2 = ∅.
On G, we introduce the rectangular grid

Gh = Dh × ω0, Dh = ω1 × ω2, (8)

where ω0 is a uniform mesh in [0, T ]; ωs is a mesh, generally nonuniform, in
[−ds, ds ] on the xs-axis, s = 1, 2. Define his = xi+1

s − xis , xis, x
i+1
s ∈ ωs ,

hs = maxi his , h = maxs hs , s = 1, 2. We denote by N0 the number of mesh
intervals in ω0 (h0 = T N−1

0 is the step of the grid ω0) and by Ns the number of
mesh interval in ωs , N = mins Ns , s = 1, 2. We assume that h ≤ MN−1.
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On the gridGh, we approximate problem (2) by the difference scheme [3]

�(9)z(x, t) = f (x, t), (x, t) ∈ Gh, z(x, t) = ϕ(x, t), (x, t) ∈ Sh. (9)

HereGh = G ∩Gh, Sh = S ∩Gh,

�(9) = ε2
∑
s=1,2

δxs x̂s − a(x, t)− p(x, t)δt ,

δxs x̂s z(x, t) are the second difference derivatives in xs on a nonuniform mesh:

δxs x̂s z(x, t) = 2
(
his + hi−1

s

)−1 [
δxs z(x, t)− δxs z(x, t)

]
,

and δt z(x, t) is the first backward difference derivative in t .
Scheme (9), (8) is monotone [3] ε-uniformly on meshes with arbitrarily dis-

tributed nodes. The scheme converges only for fixed values of the parameter ε,
namely, under the condition h = o(ε), with an error bound given by

| u(x, t)− z(x, t) | ≤ M[ (
ε +N−1

)−1
N−1 +N−1

0

]
, (x, t) ∈ Gh. (10)

Let us introduce the special grid [4]

G
c

h = Dch × ω0, D
c

h = ω c1 × ω c2 , (11a)

where ω cs = ωcs (σs) is a piecewise uniform mesh condensing near the endpoints of
[ −ds, ds ], σs is a mesh parameter depending on ε andN , σs ≤ 4−1ds . To construct
the mesh ωcs (σs), we divide the interval [ −ds, ds ] in three subintervals [ 0, σs ],
[ σs, ds − σs ], and [ ds − σs, ds ]. We place a uniform grid in each part with Ns/4
intervals on [ 0, σs ] and [ ds−σs, ds ] andNs/2 intervals on [ σs, ds−σs ]. The mesh
parameter σs is defined by

σs = σs(ε,Ns) = min [ ds/4,Mε lnNs ], where M ≥ 2(m(7))
−1. (11b)

The difference scheme (9), (11) converges ε-uniformly:

| u(x, t)− z(x, t) | ≤ M
[
N−1 lnN +N−1

0

]
, (x, t) ∈ Gc

h. (12)

Theorem 1 Suppose that the data of problem (2) are sufficiently smooth and satisfy
the compatibility conditions that yield the required smoothness of the solution. Let
the solution and its components satisfy estimates (3), (5), and (7) with K = 4. Then
the solution of scheme (9) on grid (11) converges ε-uniformly with bound (12).
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4.2 Doubly Connected Case

In a similar way, we construct an ε-uniformly convergent scheme if D2 �= ∅.
In the case of the doubly connected ring in space

D
∗
3 = D3 \D2, (13)

whereD3 is some r0-neighborhood ofD2, passing to polar coordinates r andψ such
that x1 = r cosψ , x2 = r sinψ (Fig. 3), we consider the boundary value problem in
cylindrical coordinates (r, ψ, t)

L
r, ψ

(2) u(r, ψ; t) = f (r, ψ; t), (r, ψ) ∈ D∗
3 , t ∈ [0, T ],

(14)
u(r, ψ; t) = ϕ(r, ψ; t), (r, ψ) ∈ �∗3 , t ∈ [0, T ].

The problem data in the cylindrical coordinates are assumed to be sufficiently
smooth; the differential operator Lr, ψ(2) is given by the expression

L
r, ψ
(2) = ε2

(
∂2

∂r2 +
1

r

∂

∂r
+ 1

r2

∂2

∂ψ2

)
− a(r, ψ; t)− p(r,ψ; t) ∂

∂t

or in the divergence form

L
r, ψ
(2) = ε2

(
1

r

∂

∂r

(
r
∂u

∂r

)
+ 1

r2

∂2u

∂ψ2

)
− a(r, ψ; t)− p(r,ψ; t) ∂

∂t
.

Fig. 3 Plane polar
coordinates
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We approximate problem (12) by the implicit difference scheme

�
r, ψ

(9) z(r, ψ; t) = f (r, ψ; t), (r, ψ) ∈ D∗
3h, t ∈ ω0,

(15)
z(r, ψ; t) = ϕ(r, ψ; t), (r, ψ) ∈ �∗3h, t ∈ ω0.

For the solution of this scheme, we obtain an error bound similar to (10)

| u(r, ψ; t)− z(r, ψ; t) | ≤M[ (
ε + N−1∗

)−1
N−1∗ + N−1

0

]
,

(16)
(r, ψ) ∈ D ∗

3h, t ∈ ω0,

where N∗ + 1 is the minimal number of mesh points in r and ψ .
On the grid piecewise uniform in r and uniform in ψ and t , we have the error

bound

|u(r, ψ; t) − z(r, ψ; t) | ≤ M
[
N−1∗ lnN∗ +N−1

0

]
, (r, ψ) ∈ D ∗

3h, t ∈ ω0.

(17)

5 Domain Decomposition Schemes

To implement the numerical solution of problem (2), we use the overlapping
Schwarz method successfully applied to singular perturbation problems in [5–8].

5.1 Continual Domain Decomposition Scheme

Let us describe the classical alternating Schwarz method that allows us to perform
analytic computations, similar to that considered in [9, 10]. We give conditions
to provide the ε-uniform convergence of a sequence of iterative solutions as
the number of iterations grows. The techniques from [4, 11] are used in the
constructions.

Let open subdomains

D1,D2, . . . ,DK, (18a)

with piecewise smooth boundaries �k = Dk \Dk , coverD: D =
K⋃
k=1
Dk , and let

Gk = Dk × (0, T ], k = 1, . . . ,K. (18b)
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The subdomains Dk are assumed convex. By D[ k ] we denote the union of the
subdomainsD1, . . . ,DK that do not contain the set Dk :

D[ k ] =
K⋃

i=1, i �=k
Di . (18c)

The minimal width of overlapping the sets Dk and D[ k ] is denoted by δk . The
minimal overlap δ of the subdomains from (18) is the smallest of δk; i.e.

δ = min
k,x1,x2

ρ(x1, x2), x1 ∈ D k
, x2 ∈ D [ k ]

,

x1, x2 �∈ { Dk ∩D[ k ] }, k = 1, 2,

where ρ(x1, x2) is the distance between points x1 and x2 ∈ D. The value δ,
generally speaking, may depend on the parameter ε: δ = δ(ε).

Let

u0(x, t), (x, t) ∈ G (19a)

be an arbitrary initial function in the iteration process that satisfies the boundary con-

dition from (2). The auxiliary functions un+ k
K (x, t), (x, t) ∈ G, k = 1, . . . ,K, n =

1, 2, . . . , can be found by a sequential solving of the problems

L(19)(u
n+ k

K (x, t)) ≡ L(2)u(x, t)− f (x, t) = 0, (x, t) ∈ Gk,

un+ k
K (x, t) = un+ k−1

K (x, t), (x, t) ∈ G \Gk, k = 1, . . . ,K, (19b)

un+1(x, t) = un+K
K (x, t), (x, t) ∈ G, n = 0, 1, 2, . . . .

Each function un+ k
K (x, t), (x, t) ∈ G, is the solution of the Dirichlet problem on

G
k

and coincides with un+ k−1
K (x, t) on G \ Gk . To compute the function un(x, t),

(x, t) ∈ G, we solve problems (19b) onG
k

successively.
The sequence of the functions un(x, t), (x, t) ∈ G, n = 1, 2, . . ., is called the

solution of iteration process (19), (18), i.e., the Schwarz alternating method.
The condition on the minimal overlap width of the subdomains

δ = δ(ε) > 0, ε ∈ (0, 1], inf
ε∈(0,1]

[
ε−1δ(ε)

]
> 0, (20)
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which is equivalent to the condition δ = δ(ε) ≥ m(20)ε, is sufficient for the solutions
un(x, t) of the Schwarz method to converge ε-uniformly to the solution u(x, t) of
the initial-boundary value problem as n→∞:

∣∣un(x, t)− u(x, t)∣∣ ≤ Mqn, (x, t) ∈ G, where q ≤ 1−m. (21)

Note that the quantity q is, generally speaking, q(ε, δ) and tends to unity as δ → 0
for fixed ε. For δ = 0, the functions un(x, t) do not converge as n → ∞ even for
fixed ε.

Condition (20) is also necessary. If (20) is violated and the quantity δ satisfies
the condition

δ = δ(ε) > 0, ε ∈ (0, 1], inf
ε∈(0,1]

[
ε−1δ(ε)

]
> 0, (22)

then the functions un(x, t) as n → ∞ do not converge ε-uniformly. Under
condition (22), for any arbitrarily large number n, there is a value of the parameter
ε, ε = ε(n), such that the functions un(x, t) = un(x, t; ε(n), δ(ε)) and u(x, t) =
u(x, t; ε(n)) satisfy the inequality

max
G

∣∣u(x, t)− un(x, t)∣∣ ≥ m,

wherem is independent of n.

Theorem 2 Condition (20) is necessary and sufficient for the solution un(x, t) of
the iterative Schwarz method (19), (18) to converge ε-uniformly as n → ∞ to the
solution u(x, t) of problem (2). Let the hypotheses of Theorem 1 hold. Then, under
condition (20), the solution of Schwarz method (19), (18) satisfies error bound (21).

5.2 Difference Domain Decomposition Scheme

In a similar way, we construct iterative difference schemes of the Schwarz method
on piecewise uniform grids condensing in the boundary layers.

On each of the sets G
k
, we introduce the special grids

G
k

h ≡ Gk c

h = Gk⋂
G
c

h(11). (23)

We assume that the boundaries of G
k

pass through nodes of the grid Gh.
Let the function z0(x, t), (x, t) ∈ Gh, be an arbitrary function satisfying the

condition

z0(x, t) = ϕ(x, t), (x, t) ∈ Sh. (24a)
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We find the sequence of auxiliary functions zn+ k
K (x, t), k = 1, . . . ,K , n =

1, 2, . . ., by solving the grid problems

�(24)(z
n+ k

K (x, t)) ≡ �(9)z
n+ k

K (x, t)− f (x, t) = 0, (x, t) ∈ Gkh,

zn+
k
K (x, t) = zn+ k−1

K (x, t), (x, t) ∈ Gh \Gk, k = 1, . . . ,K, (24b)

zn+1(x, t) = zn+K
K (x, t), (x, t) ∈ Gh, n = 0, 1, 2, . . . .

Each function zn+ k
K (x, t) is defined on the set Gh, being a solution of the grid

Dirichlet problem, and it coincides with the function zn+ k−1
K (x, t) on the setGh\Gk .

The function zn(x, t), (x, t) ∈ Gh, n = 1, 2, . . ., is called the solution of the iterative
grid Schwarz method (24), (23).

Taking bounds (12), (17), and (21) into account, we find that the solution zn(x, t)
of the grid iterative Schwarz method on overlapping subdomains containing either
the boundary of the parallelepiped or the boundary of the cylinder converges ε-
uniformly:

∣∣u(x, t)− zn(x, t)∣∣ ≤M(
N−1 lnN +N−1∗ lnN∗ + N−1

0 + qn), (x, t) ∈ Gh,
(25)

as the numbers of mesh points N, N∗, N0 and the number n of iterations in the
Schwarz method grow. In (25), q ≤ 1−m.

Theorem 3 Let the hypotheses of Theorem 1 hold. Then, under condition (20), the
solution of the iterative grid Schwarz method (24) on the grid (23) converges ε-
uniformly as N, N∗, N0, n → ∞ to the solution of the initial-boundary value
problem (2) with error bound (25).

6 Conclusion

In the case of Dirichlet’s initial-boundary value problem for a singularly perturbed
parabolic reaction-diffusion equation in a doubly connected domain, we have
constructed and investigated a continual and difference (on piecewise-uniform grids
condensing in the boundary layers) schemes of the overlapping domain decomposi-
tion method with subdomains containing either the boundary of the parallelepiped or
the boundary of the cylinder. A priori estimates for the solution of the problem and
its derivatives are obtained, showing that the derivatives of the singular components
of the solution in neighborhoods of the boundary layers grow unboundedly as the
perturbation parameter ε tends to zero; the boundary layers decrease exponentially
with distance from the outer and inner lateral boundaries. Necessary and sufficient
conditions are given that provide the ε-uniform convergence of solutions of the
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decomposition schemes as n → ∞, where n is the number of iterations. It is
shown that the iterative Schwarz method converges ε-uniformly in the maximum
norm as the number of iterations (and the number of mesh points in the case of
difference schemes) grows. We used the Shishkin meshes, i.e., piecewise uniform
meshes along the normal to the smooth parts of the boundaries of the subdomains.
In the case of meshes with an arbitrary distribution of nodes, in particular, uniform
meshes, the grid method converges only for fixed values of the parameter ε, namely,
under the condition h = o(ε), where h is the maximum effective step of the space
grid.

The present paper is a continuation of our study in [12, 13]. Note that the classical
Schwarz method was constructed in a such way that we have to repeatedly solve
the subproblems at each point of the domain G. An open question is to develop a
modified Schwarz method in which the problem is repeatedly solved only at the
intersection of the subdomains when the subdomains alternate.
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Advection Equation
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Abstract Two finite volume schemes for two-dimensional advection equation are
compared. First one is based on Gauss-Ostrogradsky theorem for volume bounded
by a small rectangle at upper time level, four sides formed by characteristic
trajectories issued out backward in time from boundary of this rectangle, and
curvilinear quadrangle carved by these trajectories at the previous time level. The
curvilinear quadrangle at the previous time level is approximated by straight-sided
quadrangle. The solution is sought in the class of piecewise constant functions on
a rectangular grid. The substantiation of the first order of approximation and the
convergence for the obtained grid problem is carried out. In the second scheme, two-
dimensional advection operator is decomposed in two one-dimensional operators.
The justifying the approximation and the convergence for this scheme is obtained by
a simple generalization of these properties for one-dimensional discrete operators.
Comparison of algorithmic realization of these schemes demonstrates the different
properties. The first one is more complicated for assembling but is more appropriate
for implementation to the problems with high velocities.
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1 Introduction

Nowadays a semi-Lagrangian approximation of the advection operator is intensively
developed in fluid dynamics [1–4]. The main feature of the initial semi-Lagrangian
approaches consists in the approximation of advection operator as the directional
(Lagrangian) derivative in the motion direction (see [3, 5] and the references
therein).

In this paper, an initial-boundary value problem is considered for the two-
dimensional advection equation. We start with the integral balance equality between
two neighboring time levels [6]. To construct the first discrete problem, the finite
volume method is used with the approximation of each integral in this balance
equality. In the second discrete scheme, two-dimensional advection operator is
decomposed in two one-dimensional operators and the separate approximation is
used for them.

Algorithmic realizations of these schemes have the different properties. The
first scheme is more complicated for assembling but is more appropriate for
implementation to the problems with high velocities than the second one.

2 The Differential Problem

LetD = (0, 1)× (0, 1) be the unit square with the boundary�. Denote D̄ = D∪�.
In the closed domain [0, T ] × D̄, T > 0, consider the two-dimensional advection
equation

∂ρ

∂t
+ ∂ (ρu)

∂x
+ ∂ (ρv)

∂y
= 0. (1)

Here ρ (t, x, y) is an unknown function (such as a density or a concentration);
u (t, x, y) and v (t, x, y) are the known components of a velocity vectorU = (u, v).
Let the boundary � consist of three parts: � = �in ∪ �out ∪ �rigid. At the inlet
boundary �in = {(0, y) : 0 ≤ y ≤ 1} we suppose that

U · n ≤ 0 ∀ (t, x, y) ∈ [0, T ]× �in (2)

where n = (
nx(x, y), ny(x, y)

)
is the outward normal to �; U · n is scalar product

of two vectors. At the outlet boundary �out = {(1, y) : 0 ≤ y ≤ 1} we suppose

U · n ≥ 0 ∀ (t, x, y) ∈ [0, T ]× �out. (3)

Finally, at the rigid boundary �rigid = {(x, y) : x ∈ [0, 1], y = 0, 1} we impose no-
slip condition

U = (0, 0) ∀ (t, x, y) ∈ [0, T ]× �rigid. (4)
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For the function ρ, the initial and the boundary conditions are specified

ρ (0, x, y) = ρinit (x, y) ∀ (x, y) ∈ D̄, (5)

ρ (t, 0, y) = ρin (t, y) ∀ (t, y) ∈ [0, T ]× �in. (6)

Let functions u, v and ρ be bounded on [0, T ]× D̄:

|u| ≤ umax, |v| ≤ vmax, |ρ| ≤ ρmax. (7)

Suppose also boundedness of its all first and second partial derivatives on [0, T ]×D̄.

3 The Local Conservation Law

To construct the semi-Lagrangian method for problem (1)–(7), we put integers
Nx,Ny ≥ 1, and define a uniform grid D̄h for mesh-sizes hx = 1/Nx and
hy = 1/Ny in the x- and y-directions:

D̄h =
{(
xi, yj

) : xi = ihx, yj = jhy; i = 0, . . . , Nx, j = 0, . . . , Ny
}

and Dh = D̄h ∩D.

Introduce also the cells ωi,j =
[
xi−1/2, xi+1/2

) × [
yj−1/2, yj+1/2

) ∩ D̄ with the
auxiliary points xi±1/2 = xi ± hx

/
2, yj±1/2 = yj ± hy

/
2. On the time segment

[0, T ] introduceK+1 time levels tk = τk for k = 0, . . . ,K with the step τ = T/K .
To simplify theoretical justification, first we suppose

τ ≤ min
{
hx
/

2umax, hy
/

2vmax} , max
{
hx, hy

} = h, and h ≤ cτ. (8)

We will discuss disturbance of inequalities (8) in the conclusion.
Hereinafter we use the notation f ki,j = f

(
tk, xi, yj

)
. For any node

(
xi, yj

) ∈ D̄h
introduce the basis function ϕi,j (x, y) which equals 1 in ωi,j and 0 at any other
point of D̄h. At each time level tk , we find the approximate solution ρkh (x, y) in the
form of piecewise constant function

ρkh (x, y) =
Nx∑
i=0

Ny∑
j=0

ρkh,i,j ϕi,j (x, y) . (9)

For this function, put the initial condition

ρ0
h

(
xi, yj

) = ρinit
(
xi, yj

) ∀ (
xi, yj

) ∈ D̄h (10)
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and the boundary one

ρkh
(
0, yj

) = ρin
(
tk, yj

) ∀ k = 0, . . . ,K ∀ (
0, yj

) ∈ �in ∩ D̄h. (11)

Let us fix the cell ωi,j at level tk and construct the trajectories from its boundary
back in time to tk−1. The trajectory

(
x̂(t), ŷ(t)

)
from point (tk, x̄, ȳ) is constructed

as a solution of the Cauchy problem for the system of ordinary differential equation

x̂ ′(t) = u (t, x̂(t), ŷ(t)) , ŷ ′(t) = v (t, x̂(t), ŷ(t)) ∀ t ∈ [tk−1, tk] (12)

with the initial condition

x̂(tk) = x̄, ŷ(tk) = ȳ. (13)

Denote solution of problem (12)–(13) by x̃ (t; x̄, ȳ), ỹ (t; x̄, ȳ). Thus, at the plane
t = tk−1 we get a curvilinear quadrangle Qk−1

i,j (Fig. 1). Let V k−1
i,j be a volume

bounded by the following surfaces: ωi,j at the plane t = tk , Qk−1
i,j at the plane t =

tk−1, and the trajectories those issue out of all boundary points of ωi,j between time
levels tk−1 and tk . We integrate equality (1) over V k−1

i,j and with help of divergence
theorem we arrive the following statement.

Statement 1 For a smooth solution of problem (1)–(7) the equality is valid

∫

ωi,j

ρ (tk, x, y) dxdy =
∫

Qk−1
i,j

ρ (tk−1, x, y) dxdy (14)

∀ i = 1, . . . , Nx; j = 0, . . . , Ny.

Fig. 1 The curvilinear quadrangles Qk−1
i,j and the straight-sided quadrangles P k−1

i,j (a) x- and y-
irregular cases; (b) x- and y-regular cases
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4 The First Scheme: Approximation of the Curvilinear
Domain

To construct the first scheme, we approximate each term of equality (14).

1. In the left-hand side of (14) we replace the exact solution ρ (tk, x, y) by an
approximate one ρkh (x, y) and get

∫

ωi,j

ρ (tk, x, y) dxdy ≈
∫

ωi,j

ρkh (x, y) dxdy = ρkh,i,j meas
(
ωi,j

)
.

Here meas
(
ωi,j

)
is a square of ωi,j . If i �= 0, i �= Nx , j �= 0, or j �= Ny , then

meas
(
ωi,j

) = hxhy . In other cases, it equals half or quarter of this value.
2. To calculate integral in the right-hand side of (12), we substitute numerical

solution ρk−1
h (x, y) instead of exact solution ρ (tk−1, x, y). Let An =

(
Axn,A

y
n

)
,

n = 1, . . . , 4, be vertices of rectangle ωi,j at the level tk .We put Bn =
(
Bxn , B

y
n

)
are vertices of the curvilinear quadrangle Qk−1

i,j at the level tk−1. To compute
the coordinates of Bn approximately, we solve system (12) backward in time
on [tk−1, tk] with corresponding initial conditions x̂(tk) = Axn, ŷ(tk) = A

y
n by

Euler method:

Bxh,n = Axn − τu
(
tk, A

x
n,A

y
n

)
, B

y
h,n = Ayn − τv

(
tk, A

x
n,A

y
n

)
. (15)

Lemma 1 The following inequalities are valid:

∣∣Bxh,n − Bxn
∣∣ ≤ O(τ 2),

∣∣∣Byh,n − Byn
∣∣∣ ≤ O(τ 2). (16)

Proof Firstly, we prove the left inequality. We issue out trajectory from point An =(
Axn,A

y
n

)
backward in time from time level tk to level tk−1. We expand the function

x̂(t) in the neighborhood of point t = tk into a Taylor series

x̂(tk − τ ) = x̂(tk)− τ dx̂
dt
(tk)+ τ 2

2

d2x̂

dt2
(tk)+O(τ 3).

��
Here x̂(tk − τ ) = Bxn , x̂(tk) = Axn, and dx̂

/
dt(tk) = u

(
tk, A

x
n,A

y
n

)
. Therefore

Bxn = Axn − τu
(
tk, A

x
n,A

y
n

)+ τ
2

2

d2x̂

dt2
(tk)+O(τ 3). (17)

We subtract from this equality the left relation from (15) and get

Bxn − Bxh,n =
τ 2

2

d2x̂

dt2
(tk)+O(τ 3).
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The following equalities are valid for d2x̂
/
dt2

(
t, x̂(t), ŷ(t)

)
:

d2x̂

dt2
(t) = du

dt

(
t, x̂(t), ŷ(t)

) =
(
∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y

) (
t, x̂(t), ŷ(t)

)
. (18)

Therefore, with the help of
∣∣x̂(t)− xi

∣∣ ≤ hx and
∣∣ŷ(t)− yj

∣∣ ≤ hy we get

Bxn − Bxh,n =
τ 2

2

(
∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y

)∣∣∣∣
(tk,xi ,yj )

+O(τ 3).

Thus, taking into account smoothness of functions u and v we prove the first
inequality in (16). Second one is verified in the same way.

Recall that Pk−1
i,j is the straight-sided quadrangle with 4 vertices Bh,n (Fig. 2).

Then we put

ρkh,i,jmeas
(
ωi,j

) =
∫

Pk−1
i,j

ρk−1
h (x, y) dxdy. (19)

Combine these equalities for i = 1, . . . , Nx, j = 0, . . . , Ny with discrete
boundary conditions

ρkh,0,j = ρin
(
tk, yj

)
, j = 0, . . . , Ny . (20)

Fig. 2 The straight-sided
quadrangle P k−1

i,j
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As the result, we get the system of linear algebraic equation to compute ρkh,i,j for
all i = 0, . . . , Nx; j = 0, . . . , Ny . Taking into consideration the initial conditions

ρ0
h,i,j = ρinit

(
xi, yj

)∀ i = 0, . . . , Nx; j = 0, . . . , Ny, (21)

we get the explicit monotone difference scheme [7] for computing ρh(t, x, y).
Give a sketch of proof for the convergence of this scheme. Firstly, evaluate the

square of the lune between the segments of Pk−1
i,j and the corresponding arcs of the

curvilinear polygonQk−1
i,j (Fig. 1). For example, consider the segment Bh,3Bh,2 and

the arc B̂3B2 at Fig. 1a. They form a curved quadrangleB2Bh,2Bh,3B3 with two self-
intersecting sides. We place this quadrangle into a rectangle for which we prove its
square equalO(τ 2hx). Each point of arc B̂3B2 is the mark

(
x̂(tk−1; x̄), ŷ(tk−1; x̄)

)
of the solution of system (10) with the initial condition x̂(tk; x̄) = x̄, ŷ(tk; x̄) =
yj−1/2 with a parameter x̄ ∈ [

xi−1/2, xi+1/2
]
. Each point of the segment Bh,2Bh,3

is also the mark
(
x̃(tk−1; ¯̄x), ỹ(tk−1; ¯̄x)

)
at level tk−1 of the solution of the system

∀ t ∈ [tk−1, tk]

x̃ ′(t; ¯̄x) = u (tk, xi−1/2, yj−1/2
) (
xi+1/2 − ¯̄x) /hx+

u
(
tk, xi+1/2, yj−1/2

) ( ¯̄x − xi−1/2
) /
hx,

ỹ ′(t; ¯̄x) = v (tk, xi−1/2, yj−1/2
) (
xi+1/2 − ¯̄x) /hx+ (22)

v
(
tk, xi+1/2, yj−1/2

) ( ¯̄x − xi−1/2
) /
hx

with the initial condition

x̃(tk; ¯̄x) = ¯̄x, ỹ(tk; ¯̄x) = yj−1/2 (23)

with some parameter ¯̄x ∈ [
xi−1/2, xi+1/2

]
.

Let P = (
Px, P y

)
and P1 =

(
Px1 , P

y
1

)
be two points in plane Oxy. We define

distance between them in the following form:

|P − P1| =
((
Px − Px1

)2 + (
Py − Py1

)2
)1/2

.

Also we define distance between point P and a set M as dist (P,M) =
min
P1∈M

|P − P1|
Let point Pmax ∈ B̂2B3 be located most far from segment Bh,2Bh,3. Point

Pmax corresponds to a parameter x̄ in such conception that Pmax is trace of(
x̂(tk−1; x̄), ŷ(tk−1; x̄)

)
. Consider the solution of problem (22)–(23) with initial

data x̃(tk; x̄) = x̄, ỹ(tk; x̄) = yj−1/2 with parameter ¯̄x = x̄. We put P1 is trace
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of solution (x̃(t; x̄), ỹ(t; x̄)) at time level t = tk−1. Due to Lemma 1 we get
|Pmax − P1| = O(τ 2). Since P1 ∈ Bh,2Bh,3, then

∀P ∈ B̂2B3 dist (P,Bh,2Bh,3) ≤ dist (Pmax, Bh,2Bh,3) ≤

|Pmax − P1| = O(τ 2). (24)

In general case points of arc B̂2B3 can be located on both sides of segment
Bh,2Bh,3. Therefore, the width of the rectangle containing Bh,2Bh,3 is twice greater
than numerical estimation of |Pmax − P1| in (24). Despite this reasoning, the width
of this rectangle is O(τ 2). Due to restriction (8), the length of this rectangle is
limited by 2h. Thus, the square of this rectangle containing curvilinear quadrangle
B2Bh,2Bh,3B3 is O(τ 2h).

There are four such quadrangles. Finally, we summarize errors together and get
the following estimation:

meas
(
Qk−1
i,j \Pk−1

i,j

)
= O(τ 2h) and meas

(
Pk−1
i,j \Qk−1

i,j

)
= O(τ 2h). (25)

Unfortunately, estimation (25) is not enough to prove first order of convergence.
Although, convergence is confirmed by numerical experiments [8]. Actually, we
can improve evaluation (25) in same cases. For instance, consider curvilinear
quadrangle B2Bh,2Bh,3B3 with intersecting sides, see Fig. 1a. We prove that square
of B2Bh,2Bh,3B3 is O(τ 2h2). For this purpose, put Pint = (P xint , P yint ) be the point
of across of quadrangle sides. This point is trace of a trajectory issued out from point
(tk, x̄, yj−1/2). Therefore, similar to (17) the following Taylor expansions are valid:

Pxint = x̄ − τu
(
tk, x̄, yj−1/2

)+ τ
2

2

d2x̂

dt2
(tk)+O(τ 3), (26)

P
y

int = yj−1/2 − τv
(
tk, x̄, yj−1/2

)+ τ
2

2

d2ŷ

dt2
(tk)+O(τ 3). (27)

Another point
(
PxEul, P

y
Eul

)
issued out from (tk, x̄, yj−1/2) and computed by Euler

method on segment Bh,2Bh,3 has the following coordinates:

PxEul = x̄ − τu
(
tk, x̄, yj−1/2

)
and PyEul = yj−1/2 − τv

(
tk, x̄, yj−1/2

)
. (28)

From Lemma 1 we get

Pxint − PxEul = O(τ 2). (29)

Now we show that incline of segment Bh,2Bh,3 to axis Ox is O(τ). To
prove it, we consider subtraction B

y

h,3 − B
y

h,2 = τv
(
tk, xi+1/2, yj−1/2

) −
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τv
(
tk, xi−1/2, yj−1/2

) = O(τhx). Due to (8) we see that Bxh,3 − Bxh,2 ≥ hx/2.
Therefore, incline of segment Bh,2Bh,3 to axisOx is evaluated by relation

(
B
y

h,3 − Byh,2
)/ (

Bxh,3 − Bxh,2
) = O(τ). (30)

Thus, from (27) we see that

P
y
int − PyEul = O(τ 3). (31)

From definition of Pint and PEul we get

P
y
int − PyEul =

τ 2

2

d2ŷ

dt2
(tk) = O(τ 3).

Therefore,

d2ŷ

dt2
(t) = dv

dt

(
t, x̂(t), ŷ(t)

) =
(
∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y

) (
t, x̂(t), ŷ(t)

) = O(τ).

Due to boundedness of the second derivatives, the last equalities mean that

(
∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y

)
(t, x, y) = O(τ + h) on [tk−1, tk] × ωi,j . (32)

Now we repeat our reasoning from (22) to (25) and with the help of (30), (32) we
get more accurate estimation

meas
(
Qk−1
i,j \Pk−1

i,j

)
≤ c1τ

2h2 and meas
(
Pk−1
i,j \Qk−1

i,j

)
≤ c1τ

2h2 (33)

for curvilinear quadrangle with intersecting sides.
Also we construct the similar evaluation for quadrangle without intersecting

sides. In the Fig. 3 at the plane t = tk−1 are presented curvilinear quadran-
gles B2Bh,2Bh,3B3 and B1Bh,1Bh,4B4, obtained from segments with vertices
(xi±1/2, yj−1/2) and (xi±1/2, yj+1/2). Quadrangle B12Bh,12Bh,34B34 is designed in
the same way from segment with vertices (xi±1/2, yj ). We make parallel transfer of

B2Bh,2Bh,3B3 to
−−−−−−−−−→
B2Bh,2Bh,3B3 by changing of variables in the following way:

x′ = x + τhy

2

∂u

∂y

(
tk, xi, yj

)
, y′ = y + hx

2
+ τhy

2

∂v

∂y

(
tk, xi, yj

)
. (34)
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Fig. 3 Three curvilinear
quadrangles

Hereinafter the arrow in
−−−−−−−−−→
B2Bh,2Bh,3B3 means the parallel transfer and do not

indicate vector. Now we show that the curvilinear quadrangle
−−−−−−−−−→
B2Bh,2Bh,3B3 differs

slightly from B12Bh,12Bh,34B34 in the following sense:

meas
(
B12Bh,12Bh,34B34

)−meas
(−−−−−−−−−→
B2Bh,2Bh,3B3

)
= O(τ 2h2). (35)

Firstly, show that distance between corresponding quadrangles vertices is O(τh2).

We consider subtraction
−−→
Bh,2 − Bh,12 =

(−−→
Bxh,2 − Bxh,12,

−−→
B
y
h,2 − Byh,12

)
. With the

help of Taylor expansion alongOy andOx axes we obtain

∣∣∣−−→Bxh,2 − Bxh,12

∣∣∣ =
∣∣∣− τu(tk, xi+1/2, yj−1/2)+

τhy

2

∂u

∂y
(tk, xi, yj )+ τu(tk, xi+1/2, yj )

∣∣∣ =
∣∣∣∣
τhy

2

∂u

∂y
(tk, xi, yj )− τhy

2

∂u

∂y
(tk, xi+1/2, yj )+O(τh2

y)

∣∣∣∣ = O(τh2).

(36)

By the same way we get

∣∣∣−−→Bxh,3 − Bxh,34

∣∣∣ = O(τh2). (37)

Therefore, all points of Bh,34Bh,12 and
−−−−−→
Bh,3Bh,2 are located at distance O(τh2).
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Now we consider two points B = (Bx, By) ∈ B̂34B12 and B1 =
(
Bx1 , B

y

1

) ∈
B̂3B2. They are traces at plane t = tk−1 of trajectories issued out from points A =(
x, yj

)
and A1 =

(
x, yj−1/2

)
at the plane t = tk for x ∈ [xi−1/2, xi+1/2]. We use

Taylor expansion along Ot axis and receive

∣∣∣−→Bx1 − Bx
∣∣∣ =

∣∣∣∣−τu(tk, x, yj−1/2)+ τhy
2

∂u

∂y
(tk, xi, yj ) + τu(tk, x, yj )+

τ 2

2

d2x̂

dt2
(tk;A1)− τ

2

2

d2x̂

dt2
(tk;A)+O(τ 3)

∣∣∣∣ .

First three terms in the right-hand side are evaluated by O(τh2) similar to (36).
Additional arguments A and A1 in two penultimate members mean corresponding
initial condition for trajectories (12)–(13). To evaluate them, we use formula (18)
and get

d2x̂

dt2
(tk;A1)− d

2x̂

dt2
(tk;A) =

(
∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y

)∣∣∣∣
(tk,x,yj−1/2)

(tk,x,yj )
.

Taking into account the difference of arguments in the right-hand side we obtain

τ 2

2

∣∣∣∣
d2x̂

dt2
(tk;A1)− d

2x̂

dt2
(tk;A)

∣∣∣∣ ≤ O(τ 2hy).

Combining it together with previous equality we get
∣∣∣−→Bx1 − Bx

∣∣∣ ≤ O(τ 2h). In the

same way we prove inequality

∣∣∣∣
−→
B
y
1 − By

∣∣∣∣ ≤ O(τ 2h). Therefore,

∣∣∣−→B1 − B
∣∣∣ ≤ O(τ 2h). (38)

So, any point of boundary B12Bh,12Bh,34B34 is located no further than

O(τ 2h) from boundary
−−−−−−−−−→
B2Bh,2Bh,3B3. Due to (8), length of boundary do not

exceed O(h). It leads to evaluation (35) which is equivalent to approximate
equality meas

(
B2Bh,2Bh,3B3

) = meas
(
B12Bh,12Bh,34B34

) + O(τ 2h2). Similar
reasoning leads to approximate equality of squares meas

(
B1Bh,1Bh,4B4

) =
meas

(
B12Bh,12Bh,34B34

)+O(τ 2h2). Finally, from the transitivity we get

meas
(
B1Bh,1Bh,4B4

) = meas
(
B2Bh,2Bh,3B3

)+O(τ 2h2). (39)

We consider “regular” case when both curvilinear quadrangles are located on the
same side of corresponding straight segments (in previous example Bh,1Bh,4 and
Bh,2Bh,3). What happened when they are located on different sides of corresponding
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straight segments? In this case proof of estimation (29) is the same. Therefore,

any point of arc
←−−−
B1B4 is located no further than O(τ 2h) from a point on arc−−−→

B2B3. It means that images of both curvilinear quadrangles
←−−−−−−−−−
B1Bh,1Bh,4B4 and−−−−−−−−−→

B2Bh,2Bh,3B3 are located in rectangle with width O(τ 2h). Since the length of this
rectangle is no further than 2hx , we get equalities

meas
(
B1Bh,1Bh,4B4

) = O(τ 2h2) and

meas
(
B2Bh,2Bh,3B3

) = O(τ 2h2).

(40)

Summarizing our reasoning about estimation of squares of regular and irregular
curvilinear quadrangles we receive the following statement.

Lemma 2 Square of an irregular curvilinear quadrangle is evaluated byO(τ 2h2).
For every adjacent pair of a regular curvilinear quadrangle difference between their
squares is O(τ 2h2).

These estimations together with property of function smoothness lead to follow-
ing evaluation of approximation error.

Lemma 3 For smooth functions u, v, ρ the estimate holds

∣∣∣∣∣
∫

Qk−1
i,j

ρ (tk−1, x, y) dxdy −
∫

Pk−1
i,j

ρ (tk−1, x, y) dxdy

∣∣∣∣∣ = O(τ
2h2). (41)

Proof Considered integral subtraction for case of irregular curvilinear quadrangles,
for instance shown in the Fig. 1a, can be changed and evaluated in the following
way:

∣∣∣∣∣
∫

Qk−1
i,j \Pk−1

i,j

ρ (tk−1, x, y) dxdy −
∫

Pk−1
i,j \Qk−1

i,j

ρ (tk−1, x, y) dxdy

∣∣∣∣∣ ≤

ρmaxmeas
(
Qk−1
i,j \Pk−1

i,j

)
+ ρmaxmeas

(
Pk−1
i,j \Qk−1

i,j

)
= O(τ 2h2).

In case of regular curvilinear quadrangles, we additionally use the relation
ρ (tk−1, x, y) = ρ

(
tk−1, xi , yj

)+O(h). Therefore,

∣∣∣∣∣
∫

Qk−1
i,j \Pk−1

i,j

ρ (tk−1, x, y) dxdy −
∫

Pk−1
i,j \Qk−1

i,j

ρ (tk−1, x, y) dxdy

∣∣∣∣∣ ≤

∣∣∣ρk−1
i,j meas

(
Qk−1
i,j \Pk−1

i,j

)
− ρk−1

i,j meas
(
Pk−1
i,j \Qk−1

i,j

)∣∣∣+
∣∣∣O(h)meas

(
Qk−1
i,j \Pk−1

i,j

)
+O(h) meas

(
Pk−1
i,j \Qk−1

i,j

)∣∣∣ = O(τ 2h2).
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Combination in a curvilinear quadrangle regular and unregular pairs does not change
the main meaning of proof. ��

From geometrical reasoning we see that union of quadrangles satisfies the
following properties

⋃

i = 0, . . . , Nx
j = 0, . . . , Ny

P k−1
i,j = �̄, P k−1

i,j ∩ Pk−1
i′,j ′ = ∅ ∀ i �= i ′, j �= j ′.

Introduce the norm of grid function s defined on grid D̄h

‖s‖ =
∑

i = 0, . . . , Nx
j = 0, . . . , Ny

meas
(
ωi,j

) ∣∣∣si,j
∣∣∣ .

Due to initial condition (21), we have
∥∥∥ρ0
i,j − ρ0

h,i,j

∥∥∥ = 0. Now, suppose that at

the time level tk−1 we have already proved evaluation

∥∥∥ρk−1 − ρk−1
h

∥∥∥ ≤ C2τ tk−1. (42)

Confirm this inequality at time level tk . Firstly, we use the simple estimation carried
out from limitation of second derivatives

∫

ωi,j

∣∣ρ (tk, x, y)− ρ
(
tk, xi , yj

)∣∣ dxdy = Õ(h4). (43)

Here Õ(h4) meansO(h4) when ωi,j lies insideD andO(h3) when it lies along the
boundary �. Therefore, due to (8) from (43) we get

∫

�

∣∣∣ρ (tk−1, x, y)− ρh (tk−1, x, y)

∣∣∣ dxdy ≤ c2τ tk−1. (44)

We decompose the difference of these functions at time level tk into several parts

meas
(
ωi,j

) ∣∣∣ρki,j − ρkh,i,j
∣∣∣ ≤

∣∣∣∣∣
∫

ωi,j

ρki,j − ρ (tk, x, y) dxdy

∣∣∣∣∣+∣∣∣∣∣
∫

ωi,j

ρ (tk, x, y) dxdy −
∫

Qk−1
i,j

ρ (tk−1, x, y) dxdy

∣∣∣∣∣+
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∣∣∣∣∣
∫

Qk−1
i,j

ρ (tk−1, x, y) dxdy −
∫

Pk−1
i,j

ρ (tk−1, x, y) dxdy

∣∣∣∣∣+∣∣∣∣∣
∫

Pk−1
i,j

ρ (tk−1, x, y) dxdy −
∫

Pk−1
i,j

ρk−1
h (x, y) dxdy

∣∣∣∣∣+

∣∣∣∣∣
∫

Pk−1
i,j

ρk−1
h (x, y) dxdy − ρkh,i,jmeas

(
ωi,j

)
∣∣∣∣∣ .

Due to (14) and (19) two members in the right hand sides are equal to zero. Two
other terms are evaluated in (41), (44). Finally,

meas
(
ωi,j

) ∣∣∣ρki,j − ρkh,i,j
∣∣∣ ≤

∣∣∣∣∣
∫

Pk−1
i,j

ρ (tk−1, x, y) dxdy−

∫

Pk−1
i,j

ρk−1
h (x, y) dxdy

∣∣∣∣∣+ Õ(h
4).

Summing up these inequalities over all elements on � and due to (42) we get

∥∥∥ρk − ρkh
∥∥∥ ≤

∫

�

∣∣∣ρ (tk−1, x, y) − ρk−1
h (x, y)

∣∣∣ dxdy +
∑

i = 0, . . . , Nx
j = 0, . . . , Ny

Õ(h4) ≤ c2τ tk.

So, we prove convergence of numerical scheme (19)–(21) with the first order of
accuracy.

5 The Second Scheme: Decomposition of Operator

Decompose the initial operator in two one-dimensional ones

∂ρ

∂t
+ ∂ (ρu)

∂x
+ ∂ (ρv)

∂y
=

(
1

2

∂ρ

∂t
+ ∂ (ρu)

∂x

)
+
(

1

2

∂ρ

∂t
+ ∂ (ρv)

∂y

)
. (45)

After that we use have already considered above method with a simplifications for
one-dimensional operators [9]. For the first operator in right hand side of (45), the
equation holds

1

2

∂ρ

∂t
+ ∂ (ρu)

∂x
= f1 with right hand side f1 = −1

2

∂ρ

∂t
− ∂ (ρv)

∂y
. (46)
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Fig. 4 Location of nodes
Cx± , C

y
± and corresponding

rectangles

For cell ωi,j located at time level tk we construct two trajectories issued out from
points

(
tk, xi±1/2, yj

)
backward in time to level tk−1. Thus, we get two nodes Cx−

andCx+ in the directionOx at the level tk−1, see Fig. 4. Note that equations described
these trajectories are transformed from (12) to

x̂ ′(t) = 2u
(
t, x̂(t), yj

) ∀ t ∈ [tk−1, tk]. (47)

After applying one-dimensional divergence theorem we have

∫ xi+1/2

xi−1/2

ρ
(
tk, x, yj

)
dx =

∫ Cx+

Cx−
ρ
(
tk−1, x, yj

)
dx +

∫

�
f1 dx dt, (48)

where �—is curvilinear quadrangle in plane Otx bounded by
[
xi−1/2, xi+1/2

]
at

time level tk , segment
[
Cx−, Cx+

]
at level tk−1 and two trajectories connected ends of

these segments. To compute Cx− and Cx+, we usually use one step of Euler method.
Therefore, instead of Cx− and Cx+ we appeal to

Cxh,± = Cx± − 2τu
(
tk, C

x±, yj
)
. (49)

Therefore, we change Cx± to Cxh,± in (48) and employ quadrature formula in point(
tk, xi , yj

)
for last integral. After dividing by hx we get the difference equation

ρkh,i,j=
∫ Cx+

Cx−
ρh

(
tk−1, x, yj

)
dx + τf1

(
tk, xi , yj

)
. (50)

In the same way we get the difference equation for the second operator with the
right hand side f2 = −1/2 · ∂ρ/∂t − ∂ (ρu)/∂x :

ρkh,i,j=
∫ C

y
+

C
y
−
ρh (tk−1, xi, y) dy + τf2

(
tk, xi, yj

)
. (51)
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Summing up (50) and (51), we cancel sum f1 + f2 and get

ρkh,i,j=
1

2

∫ Cx+

Cx−
ρh

(
tk−1, x, yj

)
dx + 1

2

∫ C
y
+

C
y
−
ρh (tk−1, xi, y) dy,

i = 1, . . . , Nx, j = 0, . . . , Ny .

(52)

Combine these equalities with the discrete boundary conditions (20) and the
initial conditions (21), we get the second explicit monotone difference scheme [9]
for computing ρh(t, x, y).

Approximation of the one-dimensional schemes with the first order is justified
in [9]. The further proof of convergence is similar to that carried out for the first
scheme and therefore we will not dwell on their proof here.

6 Conclusion

Let us compare two considered algorithms. Obviously, the second scheme is
substantially comfortable for forming grid equations than the first one. Especially,
it is valid for explicit format of coefficients of difference equation [9]. However,
the first scheme has advantage appeared during computations with high values
of velocity functions. It has already mentioned in literature that semi-Lagrangian
approximations allow to avoid Courant-Friedrichs-Lewy condition for time step.
For this purpose, adaptive templates with time shift along flow are used. In
described approaches cancelling restriction τ ≤ min{hx

/
umax, hy

/
vmax} should

be accompanied by more accurate computation of nodes Bh,i in first scheme and
Cx±, C

y
± in the second method. We can achieve it by using, for instance, one full

step of Runge-Kutta method.
In the first scheme, the location of nodes Bh,i is compact. Moreover, these nodes

are moving along flow. More often the solution of problem is smoother along flow
than in transverse to flow directions. For example, transfer of stair under high
constant velocity makes zero derivative along flow and infinity item of time and
space derivatives in point of gap. Therefore, approximation used along flow leads to
sufficiency small errors than approximations along time or space axes.

In the second scheme in case of high velocities, nodes Cx±, C
y
± diverge in

different paths. It brings to significant growth of scheme template. Finally, it reduces
approximation possibilities of scheme in compared with the first scheme during
cancelling of Courant-Friedrichs-Lewy condition.

The second scheme is more convenience for three-dimensional problem because
the corresponding operator can be easy decomposed into three one-dimensional
operators. In contradistinction to the first scheme, the second one requires some
algebraic complications and sufficient efforts for theoretical justification. At the
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same time it keeps valid for three-dimensional problem the useful property of low
dependence from Courant-Friedrichs-Lewy condition.
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Mathematical Modeling and Diagnostics
Using Neural Networks and a Genetic
Algorithm for Epilepsy Patients

Tatiana V. Yakovleva, Vitalii V. Dobriyan, Tatiana Yu. Yaroshenko,
and Vadim A. Krysko-jr

Abstract Medical and biological electroencephalogram (EEG) signals are widely
used for diagnosis, further medical support and treatment of such disease as
epilepsy. A method for detecting of epileptiform activity presence in patients has
been developed based on analysis of EEG signals taken during the 1st, 2nd and
3rd sleep phases. To implement this task, an approach was designed with use of
genetic algorithm and artificial neural network (ANN), which can be classified
according to the following criteria: the network is analog; self-organizing; a direct
distribution network, static. The input neurons count in the neural network is equal
to the channels count in the EEG recording, and in this study it is equal to 21, 15
neurons in the hidden layer, 1 output neuron. The input layer accepts data in the form
of numbers representing the calculated characteristics for each channel: the largest
Lyapunov exponent calculated by the Rosenstein, Wolf, Sano-Sawada methods, for
men and women with epilepsy and from the control group. Test sample: 33 patients,
of which 6 were healthy and 27 patients with epilepsy with different diagnoses.
Some of the combinations made it possible to obtain 100% accuracy in determining
the presence or absence of disease in patients.

1 Introduction

At present, dynamic processes studies of a very different nature (mechanical,
natural, medico-biological, social, historical) based on neural networks are gaining
in popularity. Human body can be viewed as a complex, nonlinear biological shell,
consisting of nervous, bone, muscular, cardiovascular and other systems, and is a
continuous medium. Therefore, when studying it, one should apply all the variety of
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mathematical and probabilistic methods, including the human brain study. Medical
and biological EEG signals are widely used in the diagnosis, further medical
support and treatment for some forms of such disease as epilepsy. According to
the WHO (World Health Organization), about fifty million people suffer from this
neurological disease. Electroencephalography plays an important role in diagnosis
of this disease and in monitoring the brain activity of patients with epilepsy. EEG
recordings are time-varying signals of brain activity—time series, so they have a
non-linear nature. Analysis of signals by methods of non-linear dynamics makes it
possible to describe quantitatively EEG recordings, since signal characteristics can
be measured. To diagnose a disease in the process of changing of the EEG signal, it
is important to highlight the features (characteristic patterns) that accompany it.

For this kind of research, several neural networks types are used: artificial
(ANN), probabilistic (PNN), convolutional (CNN). ANN can be considered as a
directed graph with weighted connections and nodes—artificial neurons. According
to the architecture of connections, artificial neural networks can be grouped into two
classes: feedforward networks, recurrent networks, or feedback networks (RNN). In
feedforward networks (multilayer perceptrons), neurons are arranged in layers and
have unidirectional connections between layers. These networks are static, that is,
for a given input they generate one set of output values that do not depend on the
previous network state. Recurrent networks are dynamic, due to feedbacks in them
the inputs of neurons are modified, and thereby the network state changes. They
consist of a straight line neural network with circular connections.

In a number of papers [1–9], the authors propose an ANN-based automatic detec-
tion system for characteristic epileptic patterns that can work with the complexities
associated with EEG signals to predict the most appropriate solution. In the research,
the analysis is carried out using an artificial neural network of EEG obtained from
an epileptic and healthy brain. To minimize the root mean square error (MSE) of
the network, a genetic algorithm is used [1]. In [2], the epilepsy signs classification
is carried out by the EEG signal based on the genetic algorithm (GA) and artificial
neural network (ANN). Epileptic EEG signals are pre-processed using a discrete
wavelet transform to be divided into frequency subbands (delta, theta, alpha,
beta, gamma) using such feature as entropy. The results comparisons of studying
the healthy person EEG signals and patients suffering from epilepsy in different
periods—ictal and postictal, are carried out. ANN multilayer neural network with
feedback and integrated GA improves classification accuracy when diagnosing and
grouping EEG signals. In [3], the analysis is carried out using an artificial neural
network (ANN), where FFT coefficients are used training of a values. The aim
of the work was to select the most accurate method for training of a multilayer
network for the qualitative classification of the EEG epilepsy features. For this,
several learning methods comparisons are carried out: Levenberg-Marquardt (LM),
Quickprop (QP), Delta-bar delta (DBD), Momentum and Conjugate Gradient (CG),
genetic algorithm (GA). The best performance was achieved by optimizing the
learning rate weights using GA. In [4], EEG segments are analyzed using a time-
frequency distribution, and then, for each segment, several features are identified
that represent the energy distribution in the time-frequency plane. Functions are
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used to train a neural network. The Fast Fourier Transform and multiple time-
frequency distributions are compared. In [5], ANN acts as a features classifier that
have been sorted from signals using a combination of discrete wavelet transform
(DWT) and fast Fourier transform (FFT). Using this methods combination, a good
accuracy of 98.889% can be achieved. In [6], the features analysis of epilepsy
EEG signals is carried out using the genetic algorithm GAFDS. Several types of
classifiers are compared. For this, the frequency domain elements are identified
and combined with non-linear characteristics. Classifiers such as k-nearest neighbor,
linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, naive
Bayesian method are used. Combined with GAFDS, the accuracy is 99% and 97%.
When conducting cross-sectional analyzes, the authors found that GAFDS performs
well in identifying effective features for EEG classification. Therefore, the proposed
model for characteristics selection and optimization can improve the classification
accuracy. In [7], an artificial neural network (ANN) with feedback is used to identify
the epileptic EEG signal. The classification criteria are the wavelet coefficients of
the studied signals. GA is used for training. Harmonic weights are used to improve
the classification accuracy, thus achieving an accuracy of 99.19%. In [8], the ictal
state identification by calculating the maximum Lyapunov exponent (STLmax) is
carried out according to the Kantz method. The proposed approach is based on
dividing the EEG signal into periods corresponding to epileptic and non-epileptic
activity. The STLmax values are used to classify the EEG signal. Segmentation and
calculation of STLmax values are performed using a trained neural network. For the
study, EEG signals of 5 healthy volunteers with open and closed eyes and 5 epilepsy
patients were used. In [9], the EEG signal is first preprocessed using discrete wavelet
transform (DWT) to remove noise and extract features. The processed data are the
input values of the RNN for classification. Several experiments were carried out
to obtain the optimal parameter for the model. The model then compared with
Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Random Forest (RF), and Decision Tree (DT).

In a series of works [10, 11], a probabilistic neural network (PNN) is used to
classify the EEG signals features. A probabilistic neural network PNN is a kind of
neural networks for classification and pattern recognition problems, where the class
membership probability density is estimated by means of a kernel approximation.
It is one of the so-called Bayesian networks type. This neural network type
was derived from Bayesian network and Fisher’s statistical algorithm. With this
method, the misclassification probability is minimized. In [10], comparisons are
made between analysis results for probabilistic (PNN) and recurrent (RNN) neural
networks. In general, according to the proposed methodology, the authors found
that the recurrent network analysis results are more accurate than for feedforward
network models. The Lyapunov exponents have become the attribute on which the
classification is based. The probabilistic neural network has shown that it can be
useful in the analysis of long-term EEG signals for the electroencephalographic
changes early detection. In [11], the algorithm is constructed in such a way that
decision-making is carried out in two stages: the Lyapunov exponents calculation in
the feature vectors form and classification using classifiers trained on the extracted
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features. The combination of the Lyapunov exponent values and the probabilistic
neural network was aimed to identify the optimal classification algorithm for
the epileptic EEG in order to identify characteristic patterns and their possible
regularities.

A convolutional neural network (CNN) is suitable for recognizing patterns
characteristic of an epileptic EEG. Recognition is considered as the neural network
ability to extract the necessary features and at the same time be invariant to various
kinds of interference and image distortions. A number of works are devoted to this
[12–15].

The Lyapunov exponents technique is well suited for the study of nonlinear
biomedical signals [16–18]. The epilepsy diagnosis is based on the EEG chaotic
behavior assessment. Lyapunov exponents are a quantitative measure for distin-
guishing of orbits in phase space according to their sensitivity to initial conditions
and are used to determine the stability of any steady-state time series, as well
as to determine the system dynamics complexity [19]. Previously, the use of the
Lyapunov exponents analysis was very effective for studying the chaotic dynamics
of distributed mechanical structures [20, 21].

In well-known works, studies were carried out for EEGs taken while patients
were awake, and the values of wavelet transforms, Fourier transforms, k-nearest
neighbor were most often used as a features classifier. There are separate works
where only one Kantz [22] method was used in the study of the largest Lyapunov
exponent. Considering that there is currently no universal method for calculating
Lyapunov exponents, it is necessary to apply several methods for calculating
Lyapunov exponents to obtain reliable results.

In the present work, it was possible to develop a method for detecting the
epileptiform activity presence in patients based on the analysis of EEGs taken during
various sleep stages, using methods for calculating the largest Lyapunov exponent
and further training of the neural network using a genetic algorithm.

2 Neural Network

To implement this task, a neural network was designed, which can be classified
according to the following criteria: belongs to the ANN class (artificial neural
networks); according to the input information, the network is analog (information
is presented in the form of real numbers); by the training form, the network is self-
organizing (it forms the output solutions space only on the input actions basis); by
the connections nature, the network is a direct propagation network (all connections
are directed strictly from input neurons to output neurons) and static (each neuron
output is connected to all inputs of the next layer neurons and there are no dynamic
connections) (Fig. 1).

The designed neural network has three layers. The number of neurons in the
hidden layer is configurable. The hidden and output layers neurons have different
combinations of three different activation functions types (Fig. 2).
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Fig. 1 Three-layer neural network

Fig. 2 Activation functions

1. Step activation function. It is represented by the function f (x) =
{

0, x < 0
1, x ≥ 0

}

and has a derivative f ′ (x) =
{

0, x �= 0
?, x = 0

}
.

2. Linear activation function. It is represented by the function f (x) = Cx and has
a derivative f ′ (x) = C.

3. Sigmoid activation function. It is represented by the function f (x) = σ (x) =
1

1+e−x and has a derivative f ′(x) = f (x)(1− f (x)).
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3 Genetic Algorithm

Genetic algorithm is used to solve optimization problems and in essence is a
heuristic search algorithm. The algorithm mechanisms resemble those of biological
evolution and work by sequential selection, combination, and variation of the
sought parameters. The genetic algorithm focuses on the “crossing”, which performs
operation of recombining of available solutions.

At the very beginning, there is a certain ancestor population, from which
evolution process begins. The algorithm operation is divided into the following
stages.

Stage 1. Crossbreeding. It takes two parents to get a child. In the crossing
process, the offspring inherits traits of both parents. All possible pairs
of individuals are collected from the population, between which crossing
occurs. In addition, the process of crossing also includes a mechanism
that allows one to get a greater offspring variety—mutations. In the
mutation process, each individual with some probability can receive
some “unplanned distortion” in the genes (Fig. 3).

Stage 2. Selection. At this stage, a limited set of individuals is selected from the
population that satisfy goal criteria more than others. For this, the fitness
function is calculated for each individual and the population is sorted
in result descending order of this function. The fitness function, in fact,
directs evolution towards the optimal solution.

Stage 3. Formation of a new generation. In this step, the next individuals popula-
tion is created, which is based on the “best” individuals from the previous
generation. Individuals not included in the new generation “die” and do
not participate in further evolution.

Fig. 3 Gene crossing and mutation
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4 Approach Implementation

To increase efficiency of problem solving, a neural network, described in paragraph
1, was taken as the population individuals for the genetic algorithm. This approach
will significantly speed up the neural networks training.

The algorithm was trained on a sample that included people with a known
diagnosis (there is epilepsy, there is no epilepsy).

4.1 Object of Study

Patients EEG recording was performed at the Epineiro Medical Center for Neurol-
ogy, Epilepsy Diagnosis and Treatment in Saratov city using 21 channels: O2, O1,
P4, P3, C4, C3, F4, F3, Fp2, Fp1, T6, T5, T4, T3 , F8, F7, Pz, Cz, Fz, A2, A1 with
the electrode arrangement shown in Fig. 4. On average, one signal duration is 10
seconds, sampling rate is 250 Hz. A neurophysiologist cleared the artifacts. EEGs
taken during the first, second and third stages of sleep were analyzed for patients
with epilepsy with different diagnoses (headaches, focal tonic spasms, generalized
and focal seizures, absences) and in the control group.

Fig. 4 Arrangement of EEG
electrodes
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Fig. 5 Linearization of synapses and neurons into a gene sequence

4.2 Crossbreeding and Mutations

In order to solve the problem of crossing and mutating of neural networks, a method
was developed that allows to linearize the neural network into a genes sequence
(chromosome), as well as restoring the network back from this sequence (Fig. 5). To
increase efficiency and broaden offspring diversity, several mechanisms of crossing
and mutation have been developed. Both neurons themselves and synapses weights
of the neural network are subject of crossing. With mutation, one of the following
mechanisms is performed with equal probability: weights in the neural network
synapses undergo mutations; neuron activation function parameters are mutated;
mutates the entire neuron (one activation function is replaced by another).

As an adaptation function for individual, the calculation number of the correctly
defined EEG signals (sick or healthy) is used. If more correctly defined EEGs, then
better neural network is trained and more likely for its offspring to “survive”.

4.3 Neural Network Configuration

Input neurons count of the neural network is equal to channels in the EEG signal,
and in this study, it is equal to 21. Input layer receives data as numbers representing
calculated characteristics for each channel. The following characteristics were used:
the largest Lyapunov exponent calculated by Rosenstein method [23]; the largest
Lyapunov exponent according to Wolf method [24]; the largest Lyapunov exponent
according to Sano-Sawada method [25].

Test sample: 33 patients, of which 6 are healthy and 27 patients with epilepsy
with different diagnoses (headaches, generalized, focal). For each EEG channel, the
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Fig. 6 Visualization of the
trained neural network during
the EEG analysis

first Lyapunov exponent was calculated by the methods of Sano-Sawada, Rosenstein
and Wolf.

Training: For training, a neural network of the following configuration was used:
21 input neurons (the channels count in the EEG), 15 neurons in hidden layer, 1
output neuron. The largest Lyapunov exponents were fed to the neurons input of the
input layer along all EEG channels (Fig. 6).

5 Results and Conclusions

In this work, a comprehensive approach has been developed for detecting of epilepsy
presence for patients based on the EEG analysis taken during the first, second and
third stages of sleep. EEG analysis is carried out using three different methods
for calculating of the largest Lyapunov exponent, namely Rosenstein, Wolf, Sano-
Sawada, and further training of neural network using a genetic algorithm.

In the studies course, it was possible to find out that the following combinations
turned out to be the most accurate in determining of the epilepsy presence: EEG
analysis of the first sleep stage using Sano-Sawada and Wolf methods, as well as
the EEG of the third sleep stage by Sano-Sawada method. In general, Rosenstein
method showed the worst results.

Some of the combinations made it possible to obtain 100% accuracy in determin-
ing the presence or absence of patients disease. Other combinations showed lower
accuracy, which, however, was at least 85%. The data are presented in Table 1.
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Table 1 Results accuracy

Sleep stage Sano-Sawada method Wolf method Rosenstein method

1 sleep stage 100% 100% 85%

2 sleep stage 96% 92% 78%

3 sleep stage 100% 92% 97%
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A Two-Stage Cutting-Plane Method
for Conditional Minimizing Function

Igor Zabotin, Oksana Shulgina, and Rashid Yarullin

Abstract A cutting-plane method is proposed for solving conditional minimiza-
tion problem. In this method each main iteration point is constructed by two
stages. At the first stage, a set is fixed which approximates the feasible set, and
on the basis of some auxiliary points it is performed approximation of an epigraph
of the objective function. The first stage is finished, when the approximation quality
of the epigraph is quite good. At the second stage, the next main iteration point
is constructed by cutting the previous ones from the set which approximates the
feasible set and it is performed a process of updating the set which approximates
the epigraph. Computational aspects of the proposed method are discussed.

1 Introduction

One of the classes of methods for solving mathematical programming problems is
the so-called cutting-plane methods (for example, [1–19]). The method proposed
here belongs to the mentioned class. When using approximations, it uses approxi-
mation by polyhedral sets of both feasible set and epigraph of the objective function.

The construction of each point of the main sequence occurs in two stages. At
the first stage, the set is fixed which approximate the feasible set, and on the
basis of some auxiliary points, the sets approximating the epigraph are sequentially
constructed. When the approximation quality of the epigraph becomes in a certain
sense acceptable, the first stage is completed. At the second stage, the main
iteration point is found, and, by cutting this point, another set is constructed which
approximates the feasible set. Note, that after finding the main iteration point, it is
possible to update the approximating epigraph of the set by discarding any number
of previously constructed cutting planes.
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2 Problem Settings

Solve the problem

min{f (x) : x ∈ D}, (1)

where D = ⋂
j∈J={1,...m}

Dj , the sets Dj , j ∈ J , are convex and closed from an n-

dimensional Euclidian space Rn, it is assumed that intDj �= ∅ for each j ∈ J , and
f (x) is a convex function attained its minimum value f ∗ on the set D. Note that
the equality intD = ∅ is admissible in (1).

Suppose X∗ = {x ∈ D : f (x) = f ∗}, x∗ ∈ X∗, epi(f,Rn) = {(x, γ ) ∈ Rn+1 :
x ∈ Rn, γ ≥ f (x)}. LetW(z,Q) be a set of normalized generalized support vectors
at the point z for the setQ, K = {0, 1, . . .}.

3 Minimization Method

For solving problem (1) the proposed method constructs a sequence of points {xk},
k ∈ K , as follows. Choose points vj ∈ intDj , j ∈ J , and v ∈ int epi(f,Rn).
Construct a convex bounded closed set M0 ⊂ Rn and a convex closed set G0 ⊆
Rn+1 such that

x∗ ∈ M0, epi(f,Rn) ⊂ G0.

Define numbers γ̄ , εk, τk , k ∈ K such that γ̄ ≤ f (x) for all x ∈ M0, εk > 0, τk ≥ 0,
k ∈ K ,

εk → 0, k→∞, τk → 0, k→∞, (2)

1 ≤ q < +∞. Assign i = 0, k = 0.

1. Find a solution ui = (yi, γi), where yi ∈ Rn, γi ∈ R1, of the problem

min{γ : x ∈ Mk, (x, γ ) ∈ Gi, γ ≥ γ̄ }. (3)

If

yi ∈ D, f (yi) = γi, (4)

then yi ∈ X∗, and the process of solving problem (1) is completed.
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2. A point ūi /∈ int epi(f,Rn) is found from the interval (v, ui ] such that there
exists a point

zi ∈ epi(f,Rn) (5)

which satisfies the inequality

‖ui − zi‖ ≤ q‖ui − ūi‖.

Choose a finite set Ai ⊂ W(ūi , epi(f,Rn)).
3. If the inequality

‖ui − ūi‖ > εk‖v − ūi‖ (6)

is fulfilled, then

Gi+1 = Gi
⋂
{u ∈ Rn+1 : 〈a, u− ūi〉 ≤ 0 ∀a ∈ Ai}, (7)

and go to Step 1 with incremented i. Otherwise, execute Step 4.
4. Choose a point ỹi ∈ Mk such that

f (ỹi) ≤ f (yi)+ τk, (8)

and assign

ik = i, xk = ỹi, σk = γi,

Gi+1 = Gri
⋂
{u ∈ Rn+1 : 〈a, u− ūi〉 ≤ 0 ∀a ∈ Ai}, (9)

where 0 ≤ ri ≤ i.
5. Form a set Jk = {j ∈ J : xk /∈ Dj }.
6. If Jk = ∅, then assign

Mk+1 = Mk, (10)

and go to Step 10. Otherwise, execute Step 7.
7. For each j ∈ Jk the point x̄jk /∈ intDj is chosen from the interval (vj , xk) such

that there exists a point zjk ∈ Dj satisfied the inequality

‖xk − zjk‖ ≤ q‖xk − x̄jk ‖. (11)
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8. Find an index jk ∈ Jk according to condition

‖xk − x̄jkk ‖ = max
j∈Jk

‖xk − x̄jk ‖. (12)

9. Choose a finite set Bk ⊂ W(x̄jkk ,Djk ), and assign

Mk+1 =Mk
⋂
{x ∈ Rn : 〈b, x − x̄jkk 〉 ≤ 0 ∀b ∈ Bk}. (13)

10. For all j ∈ J \ Jk assign

z
j
k = x̄jk = xk. (14)

Increase the values of i and k by one, and go to Step 1.

First, let’s comment parameters settings which are installed at the initial step of
the developed method.

Remark 1 It is natural to define M0, G0 as polyhedral sets. Then for finding
auxiliary points ui the linear programming problems will be solved. Moreover, if
D is a polyhedron, then it is useful to putM0 = D. In this case, for each k ∈ K the
equation Jk = ∅ is valid. Therefore, according to Step 6 we haveMk = M0, k ∈ K ,
and cutting planes won’t be constructed to approximate the constraint regionD.

Remark 2 It is not difficult to obtain the point v. Namely, if we put v = (b, f (b)+
τ ), where b ∈ Rn, τ > 0, then according to definition of epi (f,Rn) we get v ∈
int epi (f,Rn). Note that if intD �= ∅ and there is some point w ∈ intD, then it is
conveniently to assign vj = w for all j ∈ J .

Remark 3 The number γ̄ can be selected, for example, as a solution of the
minimization problem

γ → min
γ∈R1

,

〈c, x〉 − γ ≤ 〈c, u〉 − f (u),

x ∈ M0,

where u ∈ Rn, c is a subgradient of the function f (x) at the point u. If problem (3)
has a solution under i = 0, k = 0 without constraints, then the parameter γ̄ can be
considered as a large negative number.

The points xk, k ∈ K , are constructed by the proposed method with approxi-
mating the epigraph epi (f,Rn) by the sets Gi , i ∈ K , and with approximating the
feasible set D by the sets Mk , k ∈ K , according to two stages. At the first stage
the set Gik is constructed under the fixed set Mk with enough good approximation
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of the epigraph epi (f,Rn). At the second stage, if it is necessary the set Gik is
updated, the point xk is found, and using this point the next approximating setMk+1
is constructed.

The above updates of the sets, which approximate the epigraph, can be performed
in the iterations i = ik as follows. When inequality (6) is fulfilled, it is assumed that
the quality of the epigraph approximation is considered unsatisfactory, and Gi+1 is
built on the basis of Gi . If we have

‖ui − ūi‖ ≤ εk‖v − ūi‖, (15)

then the main iteration point xk is fixed, and the set Gik+1 is constructed in
accordance with (9) on the basis of any setG0, . . . ,Gik . In case rik < ik the cutting
planes are dropped. Below it will be proved that for each k ∈ K inequality (6)
holds only for a finite number of numbers i ∈ K . This means that for each k ∈ K
the number ik will be fixed, i.e. it will be possible to update the set Gik+1, and, in
addition, the point xk will be constructed.

Remark 4 We can put rik = ik at Step 4 of the proposed method. In this case,
the approximating set Gik+1 is constructed on the basis of Gik without discarding
cutting planes, and equality (7) is valid for each i ∈ K .

Remark 5 The selection of points ūi , x̄
j

k is valid at Steps 2, 7. In particular, they can
be chosen as boundary points of the sets epi(f,Rn), Dj respectively. At Step 4 it is
possible to put, for example, xk = ỹik = yik .

According to technique [16], taking into account conditions of choosing the sets
M0, G0 and the approach of constructing cutting planes, it is easy to prove on the
basis of induction the following

Lemma 1 The point (x∗, f ∗) satisfies constraints of problem (3) for all i ∈ K ,
k ∈ K .

Note that on the basis of Lemma 1 the estimation holds

γi ≤ f ∗ (16)

for the solution ui = (yi, γi) of problem (3) under any i ∈ K , k ∈ K .
Now let’s prove the stopping criterion which is represented at Step 1 of the

developed method.

Theorem 1 Suppose that expressions (4) are fulfilled. Then yi is a solution of
problem (1).

Proof Since the point (x∗, f ∗) is a admissible solution of problem (3) according
to Lemma 1, and ui = (yi, γi) is a minimum point of this auxiliary problem by
construction, then from (4), (16) we obtain f (yi) ≤ f ∗. But in accordance with
conditions of the theorem yi ∈ D, consequently, f (yi) ≥ f ∗. Thus, f (yi) = f ∗,
the statement of the theorem is proved. ��
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Further, let’s research properties of the sequence {ui}, i ∈ K . The following
lemma is proved in [20].

Lemma 2 Let U ⊂ Rn be a convex set, L be its carrier subspace,Q be a bounded
set defined in the affine shell of the set U , andQ∩ riU = ∅, where riU is a relative
interior of the set U . If the point u ∈ Rn is determined according to u ∈ riU , then
there exists a number δ > 0 such that z ∈ Q\riU and the inequality 〈a, u−z〉 ≤ −δ
is fulfilled for all a ∈ L⋂

W(z,U).

Lemma 3 The sequence {ui}, i ∈ K , is bounded.

Proof Since ui = (yi, γi) is a solution of problem (3), and according to Steps 6, 9
of the proposed method the inclusionMk+1 ⊂Mk is defined, then we have yi ∈ M0
for all i ∈ K , k ∈ K . Consequently, taking into account boundness of the set M0
there exists a number ρ > 0 such that

‖yi‖ ≤ ρ ∀i ∈ K. (17)

Further, from (3), (16) it follows that γ̄ ≤ γi ≤ f ∗ for all i ∈ K , k ∈ K .
Therefore, the expression holds

0 ≤ |γi − γ̄ | ≤ |f ∗ − γ̄ | ∀i ∈ K.

Hence and from (17) we get

‖ui‖ ≤ ‖yi‖ + |γi ± γ̄ | ≤ ρ + |f ∗ − γ̄ | + |γ̄ | ∀i ∈ K.

The lemma is proved. ��
Lemma 4 Suppose that the sequence {ui}, i ∈ K , is constructed by the way that
the sets Gi+1 have form (7) at Steps 3, 4 of the proposed method. Then

lim
i∈K ‖ūi − ui‖ = 0. (18)

Proof Assume that the statement is not correct. Then there exists a subsequence
{ui}, i ∈ K ′ ⊂ K such that

‖ūi − ui‖ ≥ 
 > 0 ∀i ∈ K ′. (19)

Select a convergence subsequence {ui}, i ∈ K ′′ ⊂ K ′, from the sequence {ui},
i ∈ K ′. Let i, pi ∈ K ′′ be numbers such that pi > i. In view of (7) we have
Gpi ⊂ Gi . But upi ∈ Gpi , and, more over, Ai ⊂ W(ūi ,Gpi ). Consequently,

〈a, upi − ūi〉 ≤ 0 ∀a ∈ Ai.
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By construction for each l ∈ K we have

ūl = ul + αl(v − ul), (20)

where αl ∈ (0, 1). Hence and from the last inequality it follows that

〈a, ui − upi 〉 ≥ αi〈a, ui − v〉 ∀a ∈ Ai.

Since v ∈ int epi (f,Rn), then according to Lemma 2 there exists a number σ > 0
such that for each l ∈ K we get

〈a, v − ul〉 ≤ −σ ∀a ∈ Al.

In this regard,

‖ui − upi‖ ≥ 〈a, ui − upi 〉 ≥ αiσ ∀a ∈ Ai.

Hence and from convergence of the sequence {ui}, i ∈ K ′′, we obtain αi → 0, i ∈
K ′′. Consequently, from equality (20), where l = i, it follows that ‖ūi − ui‖ → 0,
i ∈ K ′′. This limit relation contradicts (19). The lemma is proved. ��
Lemma 5 Let {ui}, i ∈ K , may be constructed by the proposed method. Then for
each k ∈ K there exists a number i = ik such that inequality (15) is fulfilled.
Proof Note that the sequence {ūi}, i ∈ K , corresponds to the sequence {ui}, i ∈ K .
Since v ∈ int epi(f,Rn) by construction, and ūi /∈ int epi(f,Rn) for all i ∈ K , then
there exists a constant ρ > 0 such that

‖v − ūi‖ ≥ ρ ∀i ∈ K.

(1) Suppose k = 0. If inequality (15) is determined for k = 0, i = 0, then according
to Step 4 of the method we get i0 = 0, x0 = ỹi0 = ỹ0, where ỹ0 satisfies
condition (8). Therefore, assume that ‖u0 − ū0‖ > ε0‖v− ū0‖. Let’s show that
there exists a number i = i0 > 0 which satisfies the inequality

‖ui0 − ūi0‖ ≤ ε0‖v − ūi0‖.

Assume the inverse, i.e.

‖ui − ūi‖ > ε0‖v − ūi‖ ≥ ε0ρ, ∀i ∈ K, i > 0. (21)

In this case, according to Step 3 of the method the set Gi+1 has form (7) for
each i > 0. Consequently, in view of 4 we have lim

i∈K ‖ūi − ui‖ = 0. Hence and

from (21) we obtain the contradictory statement 0 < ε0ρ ≤ 0.
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(2) Now suppose that the inequality (15) is fulfilled under some k ≥ 0, i.e. xk = ỹik ,
where ỹik is chosen according to (8). Let’s show that there exists a number
ik+1 > ik such that

‖uik+1 − ūik+1‖ ≤ εk+1‖v − ūik+1‖.

Assume the inverse, i.e.

‖ui − ūi‖ > εk+1‖v − ūi‖ ≥ εk+1ρ ∀i ∈ K, i > ik. (22)

Consequently, according to the proposed method the setsGi+1 are given in form (7)
for all i > ik, and limit equality (18) holds by Lemma 4. Hence and from (22) we
get the contradictory expression 0 < εk+1ρ ≤ 0. Thus, we have shown the existence
of a number ik+1 which satisfied condition (15). The lemma is proved. ��
Lemma 6 Suppose that {xk}, k ∈ K ′ ⊂ K , is a convergence subsequence of the
sequence {xk}, k ∈ K , and x̄ is its limit point. Then we get the inclusion

x̄ ∈ D. (23)

Proof If we propose that the inclusion xk ∈ D is fulfilled for an infinite count of
numbers k ∈ K ′, then according to closeness of the setD statement (23) is obvious.
Therefore, let’s assume that xk /∈ D for all numbers k ∈ K ′ starting from the number
N ∈ K ′.

Let l ∈ J be an index such that the number jk satisfies condition (12) and equals
to l for an infinite count of numbers k ∈ K ′, k ≥ N .

Put

Kl = {k ∈ K ′ : jk = l, k ≥ N},

and, firstly, let’s prove the equality

lim
k∈Kl

‖x̄lk − xk‖ = 0, (24)

and taking into account the fact that the sequences {x̄jk }, {zjk}, k ∈ Kl are
constructed for each j ∈ J with the sequence {xk}, k ∈ Kl .

Note that for all k ∈ K and j ∈ J we have

x̄
j
k = xk + γ jk (vj − xk), (25)

by construction, where γ jk ∈ [0, 1), moreover, γ lk > 0 for all k ∈ Kl .
Let’s fix a number pk ∈ Kl for arbitrary k ∈ Kl such that pk > k. According

to (10), (13) the inclusion Mpk ⊂ Mk is fulfilled. Moreover, in view of (3) xpk ∈
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Mpk , and any element of the set Bk is generalized support ones for the set Mpk at
the point x̄lk too. Consequently,

〈a, xpk − x̄lk〉 ≤ 0 ∀a ∈ Bk.

Hence taking into account (25) under j = l we have

〈a, xk − xpk 〉 ≥ γ lk〈a, xk − vl〉

for all a ∈ Bk .
According to Lemma 2 there exists a number δl > 0 such that 〈a, xk − vl〉 ≥ δl

for all k ∈ Kl, a ∈ Bk. Therefore, 〈a, xk − xpk 〉 ≥ γ lkδl for all a ∈ Bk , and since
‖a‖ = 1 for all a ∈ Bk , then

‖xk − xpk‖ ≥ γ lkδl ∀k, pk ∈ Kl, pk > k, k ≥ N. (26)

Since the sequence {xk}, k ∈ Kl , is convergence, then in accordance with (26)
we get γ lk → 0, k → ∞, k ∈ Kl . Therefore, from (25) under j = l taking into
account boundness of the sequence {‖vl − xk‖}, k ∈ Kl , it follows equality (24).

Further, in view of condition (12) for all k ∈ Kl the inequalities

‖x̄lk − xk‖ ≥ ‖x̄jk − xk‖, j ∈ Jk
are valid. Moreover, according to Step 10 of the method we have ‖x̄jk − xk‖ = 0 for
all j ∈ J \ Jk, k ∈ Kl. Consequently,

‖x̄lk − xk‖ ≥ ‖x̄jk − xk‖

for any k ∈ Kl, j ∈ J . Then in view of (24) we get

lim
k∈Kl

‖x̄jk − xk‖ = 0 ∀j ∈ J. (27)

In accordance with Steps 6, 10 of the algorithm for each k ∈ Kl and j ∈ J the
point zjk either equals to xk or satisfies condition (11). Since the sequence {xk}, k ∈
Kl , is bounded, then taking into account (25) it follows that sequences {zjk}, k ∈
Kl , are bounded for all j ∈ J . Now for each j ∈ J let’s select the convergence
subsequence {zjk }, k ∈ Kjl ⊂ Kl , from the sequence {zjk }, k ∈ Kl , and let wj be its
limit point. Note that wj ∈ Dj , j ∈ J , in view of closeness of the sets Dj . Hence
for each j ∈ J taking into account (11), (14) and (24) we obtain

lim
k∈Kjl

‖xk − zjk‖ ≤ q lim
k∈Kjl

‖xk − x̄jk ‖ = 0.

Consequently, x̄ = wj for all j ∈ J , i.e. x̄ ∈ D. The lemma is proved. ��
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Finally, let us formulate a convergence theorem for the proposed method.

Theorem 2 For any limit point (x̄, σ̄ ) of the sequence {(xk, σk)}, k ∈ K ,
constructed by the proposed method the expressions

x̄ ∈ X∗, σ̄ = f ∗

are valid.

Proof Since according to Lemma 3 the sequence {ui}, i ∈ K , is bounded, the points
zi , ūi , i ∈ K , belong to the interval (v, ui ], and the point ỹik satisfies condition (8)
for each ik ∈ K , then it is not difficult to show that the sequence {zi}, i ∈ K ,
are bounded, and, moreover, taking into account (2) it is possible to prove that the
sequences {(ỹik , γik )}, {(xk, σk)}, k ∈ K , are bounded too.

Let K ′ ⊂ K be a set of numbers such that the sequences {(xk, σk)}, {(yik , σk)},
{zik }, k ∈ K ′, are convergence, and (x̄, σ̄ ), (ȳ, σ̄ ), z̄ be their limit points respectively.

Since the set epi (f,Rn) are closed, then

z̄ ∈ epi (f,Rn). (28)

Taking into account condition (2) of selection εk , boundedness of the sequence {‖v−
ūi‖}, i ∈ K , and the equalities uik = (yik , σk) from the inequalities

‖uik − zik‖ ≤ q‖ūik − uik‖ ≤ qεk‖v − ūik‖, k ∈ K ′,

it follows that (ȳ, σ̄ ) = z̄ ∈ epi(f,Rn). Therefore, f (ȳ) ≤ σ̄ . But according to (8)
we have f (xk) ≤ f (yik )+ τk , k ∈ K . Then taking into account (2) under k →∞,
k ∈ K ′, we obtain f (x̄) ≤ σ̄ . And in view of σk ≤ f ∗ we get f (x̄) ≤ f ∗.

On the other hand, x̄ ∈ D by Lemma 6, i.e. f (x̄) ≥ f ∗. Consequently, f (x̄) =
f ∗ is valid. The theorem is proved. ��
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Self-Consistent Model of Low Pressure
Inductively Coupled RF Discharge

Viktor Zheltukhin, Aleksandr Shemakhin, Timur Terentev,
and Ekaterina Samsonova

Abstract A new approach has been modeled for the description of low-pressure
inductively coupled RF discharge. Within the framework of the investigated model,
the system of differential equations is interpreted as an eigenvalue problem. The
model takes into account the influence of electromagnetic fields and boundary
conditions of various types. The developed approach makes it possible to obtain
an internal self-consistent solution that requires a minimum number of input
parameters.

1 Introduction

At the present time, it is difficult to imagine the study of complex physical
phenomena without resorting to methods of mathematical modeling. Both experi-
mental methods and mathematical modeling are equally effective tools for studying
processes in RF plasmas [1–5], they complement each other.

Low-pressure radio-frequency discharges occur as a result of the action of an
electromagnetic field with a frequency of 1.76 − 13.56 MHz generated by either a
solenoid or electrodes in a quartz tube of 1–5 cm in diameter at a plasma-forming gas
pressure of 1.33− 133 Pa. The plasma generated by the discharge has the following
properties: the degree of ionization 10−7−10−4, electron concentrationne = 1015−
1019 m−3, electron temperature Te = 1−4 eV, temperature of atoms and ions in the
center of the plasma Ta = 0.2− 0.3 eV.

Taking into account the properties of a quasineutral plasma of an RF discharge at
low pressure in inert gases, one can write a system of 15 nonlinear boundary-value
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problems [5] in unknowns H 2
L,E

2
L,H

2
C,E

2
C,ψH ,ψE, γHL, γEC , ne, Te, na, Ta, v,

which are the squared moduli of inductively part {HL,EL}, the squared moduli
of capacitively part {HC,EC}, phases, and angular functions of the vectors of the
magnetic and electric fields {H,E}, the concentration and temperature of electrons,
the concentration and temperature of neutral atoms, and components of the plasma
velocity vector, consequently. Here HL = Hr ir + Hziz,EL = Eϕiϕ,HC =
Hϕiϕ,EC = Er ir + Eziz, and ir , iϕ, iz are the unitary vectors of cylindrical
coordinate system. Even taking into account the mathematical complexities of the
system, the correctness of the solution depends on the adequate formulation of the
boundary conditions for the set of equations. Unfortunately, there are currently no
models that meet these requirements, the exception is work [6].

The purpose of this work is to find a self-consistent solution of the system
of equations describing an inductively coupled RF (ICRF) discharge in a one-
dimensional model at local approximation when diffusion and ionization coeffi-
cients depends from the reduced electric field (ratio E/N). In this case, the unknown
parameters are the squared moduli of the strength of the magnetic and electric fields
H 2
L,E

2
L, the electron density ne.

The problem studied in this work is solved as an eigenproblem with boundary
conditions of the third kind. Such approach reflects the most important property
of the positive column of a gas-discharge plasma which is a self-adjusting, self-
regulating system. It means that the electrons density and their energy (electron
temperature) are automatically adjusted to changes in the energy introduced into
the plasma, and in a nonlinear manner. Therefore, the existence of a solution to the
eigenvalue problem is a condition for the existence of a steady-state of the discharge
within the framework of the considered model.

2 Formulation of the Problem

Within the framework of this problem, the discharge chamber is interpreted as
an infinite cylindrical tube with the infinite solenoid. Based on the shape of the
discharge chamber, calculations will be performed in the polar coordinate system. It
is assumed that the ionization frequency νi and the ambipolar diffusion coefficient
Da are functions of the ratio E(r)/N . The dependence of the coefficients of the
equations is based on the results of calculations using the Bolsig+ program [7, 8] .

For the first time the boundary value problem

−Da 1

r

d

dr

(
r
dne

dr

)
= νine, (1)

dne

dr

∣∣∣
r=0

= 0, ne

∣∣∣
r=R = 0, (2)
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at Da = const, ne = const was solved by Schottky in 1924 [9]. Schottky have
considered the problem (1), (2) as an eigenproblem, and have interpreted the
minimal eigenvalue λ0 = √

νi/DaR = 2.405 as a characteristic diffusion length.
The solution made it possible to estimate the characteristic value of the electric field
strength required to sustain the discharge, and the radial distribution of the relative
electron density.

In the one-dimensional ICRF discharge the electromagnetic field is equal HL =
Ḣ iz,EL = Ė iϕ and Maxwell’s equations take the form:

dḢ

dr
= (σ + iε0εω)Ė, (3)

dĖ

dr
= −iμ0εωḢ , (4)

where

Ḣ = H · exp(iωt + ψH ), (5)

Ė = E · exp(iωt + ψE). (6)

Hereμ0 is the magnetic constant, ε0 is the electric constant, ω = 2πf is the circular
frequency of the electromagnetic field, f is generator frequency, i is the imaginary
unit, i2 = −1,, t is time,

σ = nee
2νc

me
(
ν2
c + ω2

) , ε = 1− nee
2ω

ε0me
(
ν2
c + ω2

) , (7)

me is the electron mass, e is the elementary charge, νc is frequency of the electron
elastic collision with atoms and ions.

Applying the generalized Sobolev rearrangement [10, 11] to Maxwell’s equa-
tions, we obtain

1

r

d

dr

(
r

σ

dH 2

dr

)
= 2σE2, (8)

1

r

d

dr

(
1

r

d
(
r2E2

)

dr

)
= 2 (μ0ω)

2H 2, (9)

with boundary conditions:

dH 2

dr

∣∣∣
r=0

= 0, H 2(R) = H 2
R, (10)

E(0) = 0,
d

dr

(
r2E2

) ∣∣∣
r=R = 2μ0ωR

2 |E| |H | . (11)
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If the equation describing the distribution of the electrons density is added to the
first kind boundary condition at r = R like (2), then the electron velocity

ve = Da

ne

dne

dr
,

either grows infinitely or must have a finite limit at r limR. The latter means that

−
(
Da
dne

dr

) ∣∣∣
r=R = αne(R), (12)

where α is the constant which is specified by equality of electron and ion fluxes
on the tube wall [12]. Thus, the third kind boundary conditions (12) for ne is more
correct than (2).

3 System of Equations as a Self-Consistent Eigenvalue
Problem

The mathematical model consists of the following system of equations with the
corresponding boundary conditions:

1

r

d

dr

(
r

σ

dH 2

dr

)
= 2σE2, (13)

dH 2

dr

∣∣∣
r=0

= 0, H 2
∣∣∣
r=R = H

2
R, (14)

1

r

d

dr

[
1

r

d

dr

(
r2E2

)]
= 2 (μ0ω)

2H 2, (15)

E

∣∣∣
r=0

= 0,
d

dr

(
r2E2

) ∣∣∣
r=R = 2μ0ωR

2 |E| |H | , (16)

−1

r

d

dr

(
rDa

dne

dr

)
= νine, (17)

(
Da
dne

dr

) ∣∣∣
r=0

= 0, −Da dne
dr

∣∣∣
r=R = αne

∣∣∣
r=R. (18)

The connection of equations in the system is specified through the dependence
of the equation coefficients.

Based on the form of the equation, we note that one of the solutions of the
Eq. (17) with boundary conditions (18) is the identity zero, ne ≡ 0. However, in
accordance with the physical sense of the problem, only a nontrivial solution is of
interest, which, moreover, must be non-negative, ne ≥ 0. Note that the solution
of the problem (17), (18) is determined up to an arbitrary factor: any function of
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the form ne(r) = n∗e · ne(r) where n∗e is an arbitrary factor and ne(r) is some
solution, will also be another solution. This fact means that the problem (17), (18)
is an eigenproblem, and the electron density ne (r) is an eigenfunction.

But there is no a parameter in the primary formulation of the problem (17), (18),
it describes a balance between processes generation and loss of charged particles.
Therefore, it is necessary to carry out the mutual agreement the Eq. (17) with
Eqs. (13) and (15) . It is known from the theory of boundary value problems [13] that
the generalized eigenvalue problem has nontrivial solutions at the certain discrete set
of the parameter λn, n = 0, 1, 2, . . ., which are complex in the general case [14].
Moreover, there is the unique positive eigenfunction, which corresponds to the real
least eigenvalue λ0.

The electron diffusion equation (17) can be rewrite in the dimensionless form

− 1

ρ

(
ρD

dn

dρ

)
= λν · n, (19)

(
D
dn

dρ

) ∣∣∣
ρ=0

= 0, D
dn

dρ

∣∣∣
ρ=1

= αn
∣∣∣
ρ=1
. (20)

where ρ = r/R,D = Da/max (Da) , n = ne/max (ne) , ν = νi/max (νi) , α =
α/max (Da) , λ = max (νi) R2/max (Da) .

As far as n ≥ 0 ⇒ λ ≡ λ0 = min
{
λk
}
, k = 0, 1, 2, . . ..

It is known that the minimum eigenvalue is the infimum of the Rayleigh quotient
on the set of all possible functions that are not identically equal to 0, and is attained
on the eigenfunction corresponding to the least eigenvalue [15, 16].

λ0
[
E∗

] =

∫ 1

0
D
[
E∗ · (E/p)]

(
dn

dρ

)2

ρdρ

∫ 1

0
ν
[
E∗ · (E/p)] n2ρdρ

. (21)

Go back to the primary equation (17) we obtain that the problem (17), (18) has
the nonnegative nontrivial solution if and only if the condition

λ0
(
E∗

) = 1, (22)

as has been fulfilled, where λ0 is calculated in the same Rayleigh quotient as (21).

4 Results of Calculation

To calculate the task, a program was written in the Python programming language.
Calculations were carried out with the following parameters: p = 133 Pa, f =
1.76 MHz, R = 12 mm, ne = 1018 m−3, νc = 108 Hz.
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The system of boundary value problem (13)–(18) was solved by a finite-
difference scheme using an iterative method.

The block diagram of the program is shown in the Fig. 1. The calculation results
are presented in graphs Figs. 2, 3, 4.

The distribution of the electron density along the tube radius is shown in Fig. 2.
At the center of the tube, the concentration has a maximum.

Fig. 1 Block diagram of the problem calculation

Fig. 2 Distribution of the electron concentration on the tube radius (p = 133 Pa)
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Fig. 3 Graph of the dependence of the magnetic field strength along the RF radius plasmatron.
The dots indicate the experimental data. p = 133 Pa, f = 1.76 · 106 Hz

Fig. 4 The graph of the dependence of the modulus of the electric field strength on the tube radius
(p = 133 Pa)

In Fig. 3 the r-dependence of the modulus of the magnetic field strength is shown.
Calculations show that the modulus of the electric field strength increases linearly

along the tube radius to values 668 V/m (Fig. 4).
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5 Conclusions

In this work, the necessity of introducing boundary conditions of the third kind for
the boundary value problem of electron gas diffusion is substantiated.

It is easy to see that the system of boundary value problems (13)–(18) reviewed
as an eigenproblem with the supplementary condition (22) is closed. This means that
the solution of the system of boundary value problems for low-pressure RF plasma
is completely determined by specifying the transfer coefficients using the Bolsig+
program, material equations of the medium, and boundary conditions. In this case,
the solution of the system automatically determines the value of the electric field
strength on the tube wall.

As a result of the analysis of the system of boundary value problems (17), (18)
the conditions (22) for the existence of a self-consistent solution are obtained, which
are necessary to sustain a stationary ICRF discharge of reduced pressure.

Numerical calculations are showed that the formulation of the problem is correct,
and the developed methods are applicable for further study of plasma properties.

Acknowledgments Work was supported by Russian Science Foundation, project No. 19-71-
10055.
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Robust One/Two-Grid Solver
for Black-Box Software in the
Computational Continuum Mechanics

Weixing Zhou and Sergey Martynenko

Abstract We present and analyse a linear one/two-grid algorithm for solving
boundary value problems in black-box manner on globally/locally structured and
unstructured grids. The key ingredient of the new algorithm is Robust Multigrid
Technique used on the auxiliary structured grid to minimize the number of
problem-dependent components. The theoretical analysis predicts h-independent
convergence of the solver with close-to-optimal algorithmic complexity. In addition,
comparison with a basic one-grid algorithm (Vanka-type smoother) gives all extra
problem-dependent components of the proposed approach.

1 Introduction

Scientific and engineer software development can be approached in various ways.
The most promising approach is to develop autonomous (black-box) codes, for
which the user has to specify only the physical problem. We define software to
be black-box if it does not require any additional input from the user apart from
the physical problem specification consisting of the domain geometry, boundary
and initial conditions, the enumeration of equations to be solved (heat conductivity
equation, Navier–Stokes equations, Maxwell equations, etc.) and mediums. The
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user does not need to know anything about numerical methods, or high-performance
and parallel computing [1].

A promising and challenging trend in numerical simulation and scientific
computing is development of new computational techniques for black-box software.
In [2] it has been formulated the basic requirements for the numerical methods for
black-box software:

– the least number of the problem-dependent components;
– close-to-optimal algorithmic complexity in a wide range of the problem parame-

ters;
– the highest possible parallel efficiency (speed-up over the fastest sequential

algorithm);
– high adaptability (opportunity to flexibly change the method and order of the

government equation approximation);
– minimal memory requirement.

Robust multigrid technique (RMT) has been proposed and developed for solving
(initial-)boundary value problems of the continuum mechanics in black-box soft-
ware [3]. In order to minimize the number of the problem-dependent components,
RMT is based on the application of the essential multigrid principle1 in one-grid
algorithm [1–3].

Previously, RMT has been used only to solve the boundary value problems of
the continuum mechanics on globally structured grids [4–6]. Goal of this article
is to analysis convergence and algorithmic complexity of the technique on locally
structured and unstructured grids [7–9].

2 Computational Grids and Basic One-Grid Algorithm

Let NG0
is the number of grid points of grid G0. Assume that the original grid G0

generates subgridsGi ∈ G0 so that

G0 =
I⋃
i=1

Gi and Gn ∩Gm = ∅, n �= m.

NGi
are the number of grid points of subgridsGi .

1 The essential multigrid principle is to approximate the smooth (long wavelength) part of the error
on coarser grids. The non-smooth or rough part is reduced with a small number (independent of h)
of iterations with a basic iterative method on the fine grid [10].
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All subgridsGi , i = 1, 2, . . . , I form a grid level

I∑
i=1

NGi
= NG0

,

but the original grid G0 forms zero level. These subgrids Gi may be generated in
different ways, but we will use those subgrids that allow to minimize discretization
error of the boundary value problem.

Definition 1 Computational grid G0
1 is called globally structured, if its subgrids

Glk , l = 1, 2, . . . , L+, k = 1, 2, . . . ,K have the following properties:

Property 1. Each grid Glk (l �= L+, where L+ is the coarsest level) can be
represented as a union of K coarser subgrids of level l + 1. As a
consequence, the original gridG0

1 can be represented as a union of all
subgrids of the same level l:

G0
1 =

K⋃
k=1

Glk , l = 0, . . . , L+ .

Property 2. Subgrids of the level l have no common points, i.e.

Gln ∩Glm = ∅, n �= m, l = 1, . . . , L+.

Property 3. Each finite volume on the subgridsGlk can be represented as union of
K finite volumes on the original grid G0

1.

The set of all computational grids will be called a multigrid structure.

Definition 2 Assume that a domain � can be represented as union of subdomains
�m. Structured grids G(m)0 can be generated in each subdomain �m, but the

composite grid G0 =
M⋃
m=1

G
(m)
0 is not a globally structured grid. Such grids will

be referred as a locally structured or a multi-block grids.

Let � ∈ R
3 is an arbitrary bounded domain with a boundary ∂�. Our problem

is to found a solution u(x) = (
u(1)(x), u(2)(x), . . . , u(NM)(x)

)T of 3D boundary
value problem for a system of linear partial differential equations

NM∑
j=1

L(ij)� u(j)(x) = f (i)� (x), x ∈ �, i = 1, 2, . . . , NM, (1a)

NM∑
j=1

L(ij)∂� u
(j)(x) = f (i)∂�(x), x ∈ ∂�, i = 1, 2, . . . , NB, (1b)
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Here x = (
x1, x2, x3

)T , L(ij)� and L(ij)∂� are linear differential operators and f (i)� and

f
(i)
∂� are known functions in the domain � and its boundary ∂� (NM ≤ NB ). For

brevity we will denote this boundary value problem as Lu = f and assume that it
has a unique solution u = L−1f .

First, we formulate a basic one-grid algorithm (Vanka-type smoother) for coupled
solution of (1). Let a globally structured grid G0 with NG0

vertices has been
generated for approximation of (1). Discrete analogue of (1) can be written in the
matrix form

A0ϕ0 = b0,

where the vector of unknowns ϕ0 approximates the vector u(x). Basic one-grid
algorithm (Vanka-type smoother [11]) becomes

WV
(
ϕ
(ν+1)
0 − ϕ

(ν)
0

) = b0 − A0ϕ
(ν)
0 , ν = 0, 1, 2, . . . , (2)

whereWV is a splitting matrix of the Vanka iterations. The basic one-grid algorithm
(Vanka-type smoother [11, 12]) can be rewritten as

ϕ
(ν+1)
0 = (

I −W−1
V A0

)
ϕ
(ν)
0 +W−1

V b0. (3)

An iterative method (3) whose related system (I − SV )ϕ0 = W−1
V b0 has a unique

solution ϕ0 which is the same as the solution of A−1
0 b0 is said to be completely

consistent [13]. It leads to

ϕ0 − ϕ
(ν)
0 = SνV

(
ϕ0 − ϕ

(0)
0

)
,

where SV = I−W−1
V A0 is real Vanka iteration matrix for the basic one-grid method.

Algorithmic complexity of iterations (2) is W = O
(
n−2
b (NG0

NM)
3+k/d)

arithmetic operations, where 1 / nb � NG0
NM , d = 2, 3, nb is the number of

unknown blocks, k is a constant, NG0
is the number of points of the gridG0, NM is

the number of equations in the system (1). The optimal (minimum) complexity of
the fastest algorithm is Wopt = O

(
NG0

NM) arithmetic operations. Development of
the robust computational technique for black-box software means reduction of the
basic one-grid algorithm complexity down to close-to-optimal one using the least
number of the problem-dependent components.

3 Linear One/Two-Grid Solver

From the multigrid point of view, unstructured grids are a complication. For a
given unstructured grid, it is usually not difficult to define a sequence of finer
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grids, but it may be difficult to define a sequence of reasonable coarser grids
[14]. To develop robust solver, one/two-grid preconditioning technique is used
for computation of correction on an auxiliary structured grid and smoothing on
the original (un)structured grid [15, 16]. Linear one/two-grid algorithm can be
represented as

1. Computational of the residual on the original gridG0:

b0 − A0ϕ
(q)

0 .

2. Restriction of the residual b0 − A0ϕ
(q)
0 from the original grid G0 onto the

auxiliary grid GA:

R0→A
(
b0 − A0ϕ

(q)

0

)
.

3. Computation of the correction cA on the auxiliary gridGA:

cA = A−1
A R0→A

(
b0 − A0ϕ

(q)

0

)
.

4. Prolongation of the correction cA from the auxiliary grid GA onto the original
grid G0:

c0 = PA→0cA.

5. Vanka smoothing of the original grid G0:

c
(ν+1)
0 = SV c

(ν)
0 + (I − SV )A−1

0

(
b0 − A0ϕ

(q)
0

)
, ν = 0, 1, 2 . . . ,V.

where starting guess is c
(0)
0 = PA→0cA.

6. Computation of new approximation to the solution A−1
0 b0:

ϕ
(q+1)
0 = ϕ

(q)
0 + c

(V+1)
0 .

7. Check convergence, continue if necessary.

Here q is intergrid iteration counter, R0→A and PA→0 are the restriction and
prolongation operators, SV is Vanka smoothing iteration matrix, V is the number of
the Vanka smoothing iterations, and subscripts 0 and A refer to the original gridG0
and the auxiliary gridGA, respectively.

Linear one/two-grid algorithm can be written in the matrix form

b0 − A0ϕ
(q+1)
0 =M(

b0 − A0ϕ
(q)
0

)
, (4)
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where

M = A0S
ν
V

(
A−1

0 − PA→0A
−1
A R0→A

)
(5)

is the iteration matrix. Note that main computational efforts are needed to solve the
system of linear equation AAcA = R0→A

(
b0 − A0ϕ

(q)
0

)
on auxiliary gridGA.

Convergence proof of the multigrid methods is a very difficult problem due to the
complicated matrix of multigrid iterations [17]. In classical convergence analysis we
need the following:

(a) Smoothing property: existence of a monotonically decreasing function η(ν) :
R+ → R+ such that η(ν)→ 0 for ν →∞ and

‖A0S
ν
V ‖ � η(ν)‖A0‖. (6)

(b) Approximation property: existence of a constant CA > 0 such that

‖A−1
0 − PA→0A

−1
0 R0→A‖ � CA‖A0‖−1. (7)

The smoothing and approximation properties should be proved for each case.

Assume that the smoothing property (6) and approximation property (7) hold,
then

‖M‖ � ‖A0S
ν
V ‖ · ‖A−1

0 − PA→0A
−1
A R0→A‖ � CAη(ν) < 1 (8)

with enough smoothing iterations ν. It results in h-independent convergence of the
linear one/two-grid algorithm

‖b0 − A0ϕ
(q)

0 ‖ � (
CAη(ν)

)q‖b0 − A0ϕ
(0)
0 ‖. (9)

The average reduction factor of the residual is defined as

ρq =
(
‖b0 − A0ϕ

(q)

0 ‖
‖b0 − A0ϕ

(0)
0 ‖

)1/q

with q the number of intergrid iterations [10]. Then (9) can be rewritten as

ρq � CAη(ν) < 1.

The linear one/two-grid algorithm can be considered as two level preconditioning
technique with the preconditioning matrix P−1 = A−1

0 (I −M)

P−1A0ϕ0 = P−1b0.
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Remark 1 Numerical solution of the auxiliary systemAAcA = R0→A
(
b0−A0ϕ

(q)

0

)
is more expensive than the Vanka smoothing on the original gridG0. Computational
cost of the Vanka smoothing iteration is WG0

= O
(
n−2
b N

3
G0
N3
M

)
arithmetic

operations (ao), 1 / nb � NGNM . The complexity of solving the auxiliary

system should not exceed WGA
= O(

n−2
b N

3
GA
N3
M logN1/d

GA

)
arithmetic operations,

1 / nb � NGNM . Since NG0
≈ NGA

, then computational cost of the intergrid

iteration W(1) is

W(1) = O(
n−2
b N

3
G0
N3
M logN1/d

G0

)
ao, 1 / nb � NGNM.

Remark 2 The linear one/two-grid algorithm is a variant of well-known approach
called defect correction [14]. The final solution ϕ0 = A−1

0 b0 is independent on
the auxiliary system. Therefore, the linear one/two-grid algorithm allows to flexibly
change the type and order of approximation, as well as the ordering of unknowns.

Remark 3 The linear one/two-grid algorithm has the following problem-dependent
components:

(a) coefficient matrix A0 and vector b0 of the resulting system of linear equations
A0ϕ0 = b0 obtained after approximation of the system (1) on the original grid
G0;

(b) auxiliary system AAcA = R0→A
(
b0 − A0ϕ

(q)
0

)
;

(c) intergrid operators RA→0 and PA→0;

(d) iterative solution of the auxiliary system A1c1 = R̄0→1

(
b0 − A0ϕ

(q)
0

)
;

(e) the number of smoothing iterations V on the original gridG0;
(f) the unknowns ordering;
(g) a stopping criterion iterations of the intergrid iterations.

Problem-dependent components (b), (c) and (d) of the linear one/two-grid
algorithm have no analogues in the basic algorithm (2). Next, we will analyse the
one/two-grid assuming that the Robust Multigrid Technique (RMT) is used to solve
the auxiliary system.

3.1 Globally Structured Grids

Let G0 a globally structured grid, i.e. G0 generates the multigrid structure. Since
RMT uses the essential multigrid principle in the single grid algorithm, this
approach can be considered as a problem-independent technique of the Vanka
iteration (2) convergence acceleration. In this case, the auxiliary grid G1 coincides
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with the original one G0. In addition, it is possible to avoid a smoothing on the
original gridG0

G1 = G0 ⇒ RA→0 = PA→0 = I and SV = I.

As a result, the linear one/two-grid algorithm (4) transforms to a single grid solver
with the iteration matrix

M = I − A0A
−1
A ,

where A0 �= AA defines the defect correction iterations. If A0 = AA then we have
one-grid pseudomultigrid solver (4) with the iteration matrixM = A0Q0 [1], where

Ql =
⎧
⎨
⎩
S
νl
l

(
dlR0→l + Pl+1→lQl+1

)
, l = 0, 1, 2, . . . , L+ − 2

S
νl
l dlR0→l , l = L+ − 1

,

dl = A−1
l − Pl+1→lA

−1
l+1Rl→l+1.

Theorem 1 Assume that the smoothing and approximation properties hold, and
‖R0→l‖ ≤ CR. Then RMT is a convergent iterative method and the multigrid
iteration matrix norm is estimated by

‖M‖ � CAη(ν0)+ CACR
L+−1∑
l=1

Clη(νl).

Remember that the coarse grid problems (Al) and transfer operators (Pl+1→l and
Rl→l+1) are the problem-independent components of the RMT [1]. As compared
with the basic one-grid algorithm (Vanka-type smoother) (3), the number of Vanka
smoothing iteration is single problem-dependent component of the RMT. In fact, the
amount of computational work is weakly dependent on the number of smoothing
iterations [2]. Algorithmic complexity of RMT is W = O

(
n−2
b N

3
GN

3
M logN1/d

G

)
arithmetic operations, 1 / nb � NGNM , in a wide range of the problem
parameters.

3.2 Locally Structured Grids

Consider a linear BVP

L�1
g(x) = f�1

(x), x ∈ �1, (10a)

L�2
g(x) = f�2

(x), x ∈ �2. (10b)
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Here x = (x1, . . . , xd)
T and � ∈ R

d is the given open domain with the boundary
∂�, L�1

and L�2
are elliptic differential operators defined in the subdomains �1

and �2, f�1
and f�2

are known functions on�1 and �2. Boundary condition

L∂�g(x) = f∂�(x), x ∈ ∂�, (10c)

is given on the external boundary ∂� of the domain �, and

L∂�1
g(x) = L∂�2

g(x) (10d)

on (internal) boundary ∂�2.

Let structured gridsG(1)0 andG(2)0 be generated in domains�1 and �2 as shown

on Fig. 1. Approximation of a BVP on the grid formed byG(1)0 andG(2)0 leads to the
resulting system

(
B C

D F

)(
u

v

)
=

(
bu

bv

)
, (11)

where u and v are discrete analogues of the functions g on G
(1)
0 and G(2)0 ,

respectively. The matrices B and F are invertible, while C and D are generally
rectangular and CT �= D. Pattern of the matrices C and D depends on the grids

G
(1)
0 and G(2)0 (which may have a common boundaries or intersect) and the method

of interpolation between blocks of grids.
Consider the simplest iterative method for solving (11)

WB
(
u(n+1) − u(n)

) = bu − Bu(n) − Cv(n), (12a)

WF
(
v(n+1) − v(n)

) = bv −Du(n+1) − Fv(n), (12b)

whereWB andWF are splitting matrices for B and F .

Fig. 1 Domain � = �1 ∪�2 and locally structured (two block) grid
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The iterations can be rewritten as

ψ(n+1) = (
I −W−1Ã

)
ψ(n) +W−1b̃, (13)

where

ψ =
(

u

v

)
, Ã =

(
B C

D F

)
−
(

0 0

0 DW−1
B

)(
0 0

B C

)
,

W =
(
WB 0

0 WF

)
, b̃ =

(
I 0

−DW−1
B I

)(
bu

bv

)
.

To simplify the analysis, we rewrite (13) as

ψ(n+1) = (
I − W̃−1A

)
ψ (n) +W−1ÃA−1b.

where

W̃ = AÃ−1W.

In nonsymmetric case, the smoothing property of damped smoother had been
analysed in [1]. Iteration (13) becomes

ψ(ν+1) = S(ω)ψ (ν) +W−1ÃA−1b, (14)

where S(ω) is the iteration matrix

S(ω) = I − 1

1+ ωW̃
−1A,

and ‖S(ω)‖ < 1, and ω � 0 is some parameter.
Smoothing analysis is based on the following theorems:

Theorem 2 Let a matrix Q ∈ R
n×n satisfies to ‖Q‖ < 1 for some operator norm

and 3− 2
√

2 � ω � 3+ 2
√

2, then

1

(1+ ω)ν+1 ‖
(
I −Q)(ωI +Q)ν‖ � 1√

eων
, ν = 1, 2, . . . (15)

Theorem 3 Let a smoothing iteration matrix S(0) ∈ R
n×n satisfies to ‖S(0)‖ < 1

and ‖W̃‖ � C‖A‖ in some operator norm, C is some constant and 3−2
√

2 � ω �
3+ 2

√
2. Then

‖ASν(ω)‖ � C 1+ ω√
eων

‖A‖. (16)
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Pseudomultigrid iterations of RMT (4) on this two block grid have the iteration
matrixM = A0Q0, where

Ql =
⎧
⎨
⎩
S
νl
l (ωl)

(
dlR

∗
0→l + Pl+1→lQl+1

)
, l = 0, 1, 2, . . . , L+3 − 2

S
νl
l (ωl)dlR

∗
0→l, l = L+3 − 1

,

R∗0→l = W−1
l ÃlA

−1
l R0→l .

Convergence theorem on the two-block grid becomes

Theorem 4 If the smoothing and approximation properties hold, ‖I − W̃−1
l Al‖ <

1, ‖R∗0→l‖ � CR and 3−2
√

2 � ωl � 3+2
√

2. Then iterations of RMT converges
and

ρq � ‖Ã0Q0‖ � CACCR
L+3 −1∑
l=0

Cl∗
1+ ωl√
eωlνl

< 1. (17)

This theorem predicts h-independent convergence of RMT.

4 Conclusion

In this article, a linear two-grid algorithm was analyzed. Three possible cases are
considered:

(1) If the original grid G0 is globally structured, then the auxiliary grid GA
coincides with the original one (GA = G0) resulting in the one-grid algorithm.
Compared to the basic algorithm (3), proposed one-grid solver has one addi-
tional problem-dependent component (the number of smoothing iterations).

(2) If original grid G0 is locally structured, then the auxiliary grid GA coincides
with the original one (GA = G0) resulting in the one-grid algorithm. Compared
to the basic algorithm (3), proposed one-grid solver has two additional problem-
dependent components (the number of smoothing iterations and interpolation
between grid blocks).

(3) If the original grid G0 is unstructured, then the auxiliary grid GA may be
a structured boundary unfitted grid (GA �= G0). Compared to the basic
algorithm (3), proposed two-grid solver has additional problem-dependent
components: the number of smoothing iterations and the intergrid interpolation
GA �= G0.

Note that the total amount of computational work is weakly dependent on the
number of smoothing iterations [2].
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If the smoothing and approximation properties hold, then h-independent conver-
gence of the linear one/two-grid solver is expected. Application of RMT for solving
the auxiliary system of linear equations makes it possible to reduce algorithmic
complexity of the basic algorithm (3) W = O

(
n−2
b (NG0

NM)
3+k/d) arithmetic

operations down to close-to-optimal value WGA
= O

(
n−2
b N

3
GA
N3
M logN1/d

GA

)
arithmetic operations.
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Large Deformations of Biaxial
Tension-Compression of the Plate,
Consisting Two Pre-deformed Layers
Made of Incompressible Treloar Material

Konstantin M. Zingerman, Vladimir A. Levin, Leonid M. Zubov,
Anton E. Belkin, and Danila R. Biryukov

Abstract For the case of large strains, the paper presents an exact analytical
solution to the problem of the stress-strain state of a composite slab obtained by
joining two pre-deformed layers. Each layer is obtained by straightening a curved
panel originally shaped as a sector of a hollow circular cylinder. The cylinders
are made of incompressible nonlinear elastic material—the Treloar (neo-Hookean)
material. The axes of the cylinders are orthogonal before deformation. After joining,
the slab is subjected to biaxial tension or compression in its plane. The problem is
formulated on the basis of the theory of superimposed large deformations. An exact
analytical solution to the problem is obtained. Nonlinear effects are investigated.
The obtained solution can be used to verify the software designed for the numerical
solution of problems on the stress-strain state of structural elements made by
junction of pre-deformed parts.

1 Introduction

The production of structural elements may be accompanied by the connection of
pre-deformed parts. The theory of superimposed large deformations is used to
analyze the stress-strain state of such structural elements in the case of finite strains
[1]. Some problems on the stress-strain state of bodies, made by connecting pre-
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deformed parts, were solved earlier [2–4]. This article presents an exact analytical
solution of the problem on the stress-strain state of the composite plate, obtained by
joining two pre-deformed layers for the case of finite strains. Each layer is obtained
by straightening a curved panel, initially shaped as a sector of a hollow circular
cylinder. We assume that the cylinder axes before deformation are orthogonal. After
connecting the layers, the composite plate undergoes biaxial tension or compression
in its plane. The solution is obtained for the case when the cylinders are made
of incompressible nonlinear elastic material—the Treloar (neo-Hookean) material
[5–7].

2 The Generalized Statement of Problem

Let’s consider two cylindrical panels, having mutually orthogonal axes (Fig. 1). For
the upper panel let’s define the cylindrical coordinates ρ, θ, ξ by formulas

x2 = ρsinθ , y2 = ξ, z2 = ρcosθ

For the lower panel the cylindrical coordinates r, ϕ, ζ are introduced by formulas

x1 = rcosϕ , y1 = rsinϕ , z1 = ζ

Here x, y, z are Cartesian coordinates of points in space.

Fig. 1 Scheme of junction and loading of two prestrained plates
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Coordinates ρ, θ, ξ and r, ϕ, ζ are the Lagrangian coordinates of particles in the
initial configurations, which are assumed to be natural, unstressed. It is assumed that
ρ0 ≤ ρ ≤ ρ1, and r1 ≤ r ≤ r0, where ρ0, ρ1, r0 and r1 are the radii of panels in the
initial configuration.

Below we consider a composite prestressed rectangular plate consisting of two
layers obtained by straightening (unbending) these cylindrical panels. This state of
the two-layer plate is taken as an intermediate configuration. After that, the plate
is subjected to biaxial tension-compression by forces parallel to the axes y, z and
attached to the flat edges of the plate y = const and z = const and goes into the
final state (configuration).

Treloar’s constitutive relations for an incompressible elastic material have the
form

T = −pI+ μB, (1)

where I is the unit tensor, μ is the material constant, B = F · FT is the
Finger strain measure, F = Finit · Fadd is the total deformation gradient; Finit is
the initial deformation gradient, corresponding to the transition from the initial
configuration to the intermediate one; Fadd is the additional deformation gradient,
which corresponds to the transition from the intermediate configuration to the final
one; T is the true stress tensor in the final state; p is the Lagrange multiplier.

3 The Initial Deformation of Panels

Let us denote by x, y, z the Cartesian coordinates of body particles in the interme-
diate configuration and set the straightening deformation, that is, the transition of
the lower and upper panels from the natural configuration to the intermediate one,
respective to the formulas

x = x (r) , y = τ1ϕ, z = α1ζ,

x = x (ρ) , y = α2ξ, z = τ2θ,
(2)

where τ1, α1, τ2, α2 are constants, x (r) , x (ρ) are unknown functions.
Hereinafter, functions with an argument r will be considered to belong to the

lower panel, with an argument ρ—to the upper one. I.e., x (r) and x (ρ) are different
functions.

Initial deformation gradients, corresponding to the transition from a natural
reference configuration to an intermediate one, have the following form for the top
and bottom panels [8–10]:
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Finit (r) = x ′ (r) er ⊗ i1 + τ1
r
eϕ ⊗ i2 + α1i3 ⊗ i3

Finit (ρ) = x ′ (ρ) eρ ⊗ i1 + τ2
ρ
eθ ⊗ i3 + α2i2 ⊗ i2

x ′ (r) = df1(r)
dr

x ′ (ρ) = df2(ρ)
dρ

er=i1cosϕ + i2sin ϕ eϕ=− i1sinϕ + i2cosϕ

eρ=i3cos θ + i1sin θ eθ=− i3sin θ + i1cosθ

(3)

Here i1, i2, i3 are constant unit vectors of Cartesian coordinates.
In the case of an incompressible material the following ratio, allowing to

determine functions x(r) and x(ρ) must be satisfied:

detFinit = 1 (4)

The formula (4), taking into account the ratios (3), can be rewritten as

α1τ1x (r) = r, α2τ2x (ρ) = ρ (5)

The solutions of Eq. (5) must satisfy the conditions x (ρ1) = 0, x (r0) = x (ρ0).
The last condition means that the straightened panels are connected without a gap
and form a two-layer plate.

From (2) and (5) the dependence between x and r (for the lower panel,
respectively) and ρ (for the upper panel, respectively) can be determined:

x (r) = r2 − r2
0

2α1τ1
+ ρ

2
0 − ρ2

1

2α2τ2
, x (ρ) = ρ2 − ρ2

1

2α2τ2
(6)

4 The Additional Deformation of the Composite Plate

Next, let’s consider the problem of tension-compression in two directions of a pre-
stressed two-layer plate by forces distributed over its edges y = const, z = const.
The deformation of the transition from the intermediate configuration to the final
state will be considered in the form of

X = X (x) , Y = β2y,Z = β3z

β2 = const, β3 = const
(7)

Here X,Y,Z are the Cartesian coordinates of body particles in the final state.
The additional deformation gradient:

Fadd = dX (x)

dx
i1 ⊗ i1 + β2i2 ⊗ i2 + β3i3 ⊗ i3 (8)



Large Deformations of the Plate, Consisting Two Pre-deformed Layers 613

We can rewrite (8) for each layer using (2):

Fadd (r) = 1
x ′(r)

dX(r)
dr

i1 ⊗ i1 + β2i2 ⊗ i2 + β3i3 ⊗ i3

Fadd (ρ) = 1
x ′(ρ)

dX(ρ)
dρ

i1 ⊗ i1 + β2i2 ⊗ i2 + β3i3 ⊗ i3
(9)

In the case of an incompressible material, the following ratios allowing to
determine the functionsX (r) and X (ρ) must be satisfied:

detFadd = 1 (10)

The formula (10), taking into account the ratios (6) and (9), can be rewritten as

β2β3
dX (r)

dr
= r2 − r2

0

2α1τ1
+ ρ

2
0 − ρ2

1

2α2τ2
, β2β3

dX (ρ)

dρ
= ρ2 − ρ2

1

2α2τ2
(11)

The solutions of Eq. (11) must satisfy the conditions X (ρ1) = 0, X (r0) =
X (ρ0). The dependency between X and r (for the lower panel, respectively) and ρ
(for the upper panel, respectively) we get in the form of:

X (r) = 3α1τ1
(
ρ2

0−ρ2
1

)
(r−r0)+α1τ1

(
ρ3

0+2ρ3
1−3ρ0ρ

2
1

)+α2τ2
(
r3+2r3

0−3rr2
0

)
6β2β3α1α2τ1τ2

X (ρ) = ρ3 − 3ρ1ρ + 2ρ3
1

6β2β3α2τ2

(12)

From the above formulas, it can be seen that the components of the Finger strain
measure tensor in this problem are independent of the Y and Z coordinates, but
depend only on the X coordinate. Assuming that the Lagrange multiplier p also
depends only on X, it is possible, based on formula (1), to conclude that the true
stresses will also depend only on this coordinate. In this case, the equilibrium
equations in the absence of mass forces are reduced to one equation dT11

dx
= 0,

whence follows T11 = const. In the absence of stresses in the final state on the
foundations of the plate T11 = 0.

Using (1) and the equality T11 = 0 in the final state, one can express the Lagrange
multiplier p, substituting X (r) and X (ρ) with received expressions (12):

p (r) = μ
(
dX (r)

dr

)2

p (ρ) = μ
(
dX (ρ)

dρ

)2 (13)

Formulas (1) and (13) allow us to calculate the remaining components of the
tensor T.
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5 Numerical Results

Figures 2, 3, and 4 show the stress graphs for layers with the following boundary
radii:

ρ1/r1 = 1.1, ρ0/r1 = 1, r0/r1 = 1.1.

Fig. 2 Top left: the dependence of stress T22
μ

on the strain α2 for ρ = ρ0 and different β2. Top

right: the dependence of stress T22
μ

on the strain α2 for ρ = ρ1 and different β2. Bottom left: the

dependence of stress T22
μ

on the strain β3 for ρ = ρ0 and different β2. Bottom right: the dependence

of stress T22
μ

on the strain β3 for ρ = ρ1 and different β2. The values of β2 are shown below every
graph
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Fig. 3 Top: the dependence
of stress T22

μ
on the strain τ2

for ρ = ρ0 and different β2.
Bottom: the dependence of
stress T22

μ
on the strain τ2 for

ρ = ρ1 and different β2. The
values of β2 are shown below
every graph
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Fig. 4 Top: the distribution
of stress T22

μ
in the upper

layer for different β2. Bottom:
the distribution of stress T33

μ
in the upper layer for
different β2. The values of β2
are shown below every graph
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Figures 2 and 3 show the dependencies of the true stress T22
μ

at the boundaries of
the first layer on the characteristics of deformations for different values of the strain
parameter β2. The following values of strain parameters are used:

Graphs on Fig. 2 (top): α1 = β3 = 1, τ1 = τ2 = 0.9r1.
Graphs on Fig. 2 (bottom): α1 = 1, α2 = 1.1, τ1 = τ2 = 0.9r1.
Figure 3: α1 = β3 = 1, α2 = 1.1, τ1 = 0.9r1.
The material constant μ is the same for both layers.
Graphs on Fig. 4 show the stress distribution in the upper layer for different

values of β2 for the following values of strain parameters: α1 = β3 = 1, α2 = 1.1,
τ1 = τ2 = 0.9r1. The values of β2 for each line type of the graph are shown below
the graphs.

6 Conclusion

The model of junction of two straightened panels and further biaxial stretch of
the obtained composite plate is developed within the framework of the theory
of superimposed large strains. The analysis is performed for the incompressible
nonlinear-elastic material (Treloar’s material). The exact analytical solution of the
problem is obtained, and some numerical results are given. These results can be used
to verify the software designed for the finite-element analysis of structural elements
made by junction of pre-deformed parts [11–13]. In addition, the results may be
applied for the modeling of composite plates and shells [14–16], in particular,
sandwich plates [17, 18].

The solution can be further generalized for micropolar incompressible materials
[19].
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