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Abstract. Preference modeling and preference learning are crucial
issues in multicriteria decision-making to formulate recommendations
that are tailored to the Decision Maker. In the field of multicriteria anal-
ysis, various aggregation functions have been studied to scalarize perfor-
mance vectors and compare solutions. Nonetheless, most of these models
do not take into account the presence of reference points in the criteria
scales. Since it has been observed that decision makers may exhibit differ-
ent attitudes towards aggregation depending on whether evaluations are
above or below reference values, we consider here bipolar extensions of
well-known aggregation models and propose incremental preference elici-
tation methods based on these models. In particular, we consider the elic-
itation of a 2-additive bipolar Choquet Integral, of a bipolar Weighted
Ordered Weighted Average (WOWA), and of a non-weighted bipolar
OWA. We propose a general approach that is implemented in all these
cases and provide numerical tests showing its practical efficiency.

Keywords: Bipolar Choquet Integral · biWOWA · biOWA · Capacity
elicitation

1 Introduction

In the field of multicriteria decision support, various decision models have been
proposed to determine the optimal choice within the set of Pareto optimal solu-
tions. The most common approach is to define an overall utility value from any
performance vector using an aggregation function synthesizing the advantages
and weaknesses of the solution considered. This aggregation function is often
parameterized by weighting coefficients allowing to control the relative impor-
tance of criteria and possibly their interaction in the aggregation. These param-
eters must be taylored to the value system of the Decision Maker (DM) to make
personalized recommendations.

There are many contributions on preference elicitation in the recent literature,
proposing to assess the parameters of a decision model. A first stream of research
concerns complete elicitation methods aiming to the determination of precise
weighting parameters. This approach requires much preference information from
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the DM but has the advantage to allow the construction of a fully specified
decision model that can be used to derive personalized recommendations or
predicting choices of the DM in any set of alternatives. Another approach, quite
popular in the last decade, is to perform an incremental and adaptive elicitation
of preferences. The goal is a bit less ambitious here, it is to obtain a sufficient
amount of preference information to be able find the preferred option in a given
set of alternatives. This second approach significantly reduces the elicitation
burden.

Various incremental elicitation methods have been proposed in the literature.
While some of them manage a probability distribution over the set of parameters
and use Bayesian revisions to progressively pass from a prior distribution repre-
senting ignorance to a more specific distribution concentrated on a subregion of
the parameter space (see e.g., [6]), some others proceed by a progressive reduc-
tion of the parameter space until the optimal choice can be identified without
ambiguity [5,14,26,28]. Both approaches are interesting but we will focus in this
paper on the latter approach. In the field of multicriteria decision making, this
approach is generally implemented by maintaining a set of possible parameter
vectors (named the uncertainty set hereafter) defined as a convex polyedron that
is progressively reduced as new (linear) constraints appear from new preference
statements. This approach obviously applies to weighted sums, but more gen-
erally to any scalarizing function linear in its parameter. Assume indeed that
the overall utility of any performance vector x = (x1, . . . , xn) is defined by
fw(x1, . . . , xn) where fw : Rn → R is a scalarizing function parameterized by w
and linear in w, then any preference statement of type “x is as least as good
as y” for any two vectors x and y translates into the constraint fw(x) ≥ fw(y)
which is linear in w.

This approach based on uncertainty sets defined as convex polyedra is not
restricted to weighted sums. For instance it can also be applied to rank-dependent
aggregation functions such as Ordered Weighted Averages (OWA) [29] and Cho-
quet integrals [13] as shown in [2,3]. In this paper we consider more general
rank-dependent decision models recently introduced in multicriteria analysis for
preference aggregation with bipolar preferences, in particular biOWA [16] and
biChoquet integrals [13,17]. The motivation for this is twofold:

– it has been observed in different contexts that DMs tend to think of out-
comes relative to a certain reference point and may exhibit different attitudes
towards positive evaluations (i.e. , evaluations above the reference point) and
negative evaluations (i.e., evaluations below the reference point) see, e.g., [25]).
The biOWA aggregator and more generally any biChoquet integral allow to
model such decision behaviors and their parameters must be elicited.

– the descriptive power of bipolar models comes at a cost: bipolarity requires
using more weighting parameters to keep the possibility to model different
attitudes in the aggregation, depending on whether we are in the positive
side or in the negative side of the evaluation space. Therefore the elicitation
process is more demanding in terms of preference information and there is a
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need of testing the practical feasibility of incremental elicitation methods on
such models.

The aim of this paper is to propose a preference elicitation method based
on the biChoquet integral for multicriteria evaluation with bipolar scales. Our
approach is to progressively specify the two capacities used in the model by an
iterative reduction of their uncertainty sets using preference queries. We will
implement this approach on the general biChoquet model and also on specific
subclasses, for interactive decision support on explicit sets. The paper is orga-
nized as follows: Sect. 2 introduces some background on biChoquet integrals and
on regret-based incremental elicitation methods. Section 3 introduces an incre-
mental elicitation algorithm for the case of 2-additive biChoquet integrals. We
then propose an adaptation of our elicitation algorithm to the case of bipolar
weighted ordered weighted averages (biWOWA, Sect. 4), which is then further
specialized in the case of bipolar weighted ordered averages (biOWA, Sect. 5).
In all cases, we provide the results of numerical tests to show their performance
both in terms of computation time and number of generated preference queries.

2 Background

2.1 Choquet and BiChoquet Integrals

Let N = {1, . . . , n} denote the set of criteria under consideration to assess the
performance of a solution in the decision problem. We assume that any feasible
solution is characterized by a performance vector x = (x1, . . . , xn) where xi

represents the value of x w.r.t. the ith criterion. In order to model the preferences
of the DM we consider here the Choquet integral which is a widely-used model in
decision theory [9,21] with various applications in multicriteria decision making
[7,10,15,23] and AI [1,3,8,22].

The Choquet integral is a kind of weighted aggregation operator where
weights are not only assigned to every criteria but also to groups of criteria.
This enables to model positive or negative interactions among criteria, giving
enhanced descriptive possibilities compared to linear models. The weights are
defined using a set function named capacity and defined as follows;

Definition 1. A capacity on N is a set function v : 2N → [0, 1] such that
v(∅) = 0 and for all A,B ⊆ N,A ⊆ B ⇒ v(A) ≤ v(B).

Throughout the paper we will always assume that the capacities under con-
sideration are normalized, i.e., v(N) = 1. Then the Choquet integral can be
defined from any capacity as follows:
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Definition 2. For any vector x = (x1, . . . , xn) ∈ R
n, the Choquet integral w.r.t.

capacity v is a scalarizing function Cv : Rn → R defined by:

Cv(x) =
n∑

i=1

[
v(X(i)) − v(X(i+1))

]
x(i) (1)

=
n∑

i=1

[
x(i) − x(i−1)

]
v(X(i)) (2)

where (.) is any permutation such that x(1) ≤ . . . ≤ x(n), and X(i) =
{x(i), . . . , x(n)} is the set of objectives where the performance is at least as good
as x(i), for i = 1, . . . , n. Furthermore we assume that x(0) = 0 and X(n+1) = ∅.

Given a capacity v we can define the dual capacity by v̄(A) = 1 − v(N\A).
For any vector x ∈ R

n, we have: Cv(x) = −Cv̄(−x). Let us give an example of
the use of the Choquet integral in preference modelling.

Example 1. Let X = {a, b, c} be a set of alternatives evaluated according to 3
criteria as follows:

a b c

criterion 1 −2 −1 0
criterion 2 5 2 −2
criterion 3 0 1 5

Assume that the DM prefers b to a and c. One can easily check that such
a preference is not representable by a weighted linear aggregator. However, it
is easily representable by a Choquet integral. For instance, let us consider the
following capacity (Table 1):

Table 1. Capacity of the decision maker in Example 1

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v 0 0.1 0.2 0.1 0.4 0.4 0.4 1

We have then Cv(a) = (−2) v(N) + [0 − (−2)] v({2, 3}) + [5 − 0] v({2}) =
−2 + 1 + 1 = 0, Cv(b) = (−1) v(N) + [1 − (−1)] v({2, 3}) + [2 − 1] v({2}) =
−1 + 1 + 0.3 = 0.3 and Cv(c) = −2 + 0.8 + 0.5 = −0.7, which implies that b is
preferred to a and c.

Despite its descriptive appeal, the Choquet integral has itself some descriptive
limits, especially when the DM uses different aggregation logics in the positive
and in the negative part of the utility scale, as illustrated in Example 2.
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a b c d
criterion 1 2 3 −3 −4
criterion 2 5 3 −3 −1

Example 2. Let X = {a, b, c, d} be a set of alternatives evaluated according to
2 criteria as follows:

Assume that the value system of the DM is as follows: when performances are
positive she wants to maximize the average performance. However, when some
performances are negative, she adopts a more cautious behavior towards losses
and favors a solution having a more balanced profile. Hence her preference order
could be a, b, c, d. Any representation of this preference order by the Choquet
integral should satisfy: x 	 y ⇔ Cv(x) > Cv(y) for all x, y ∈ X.

We have a 	 b, therefore:

2 + 3 v({2}) > 3
⇔ 3 v({2}) > 1
⇔ v({2}) > 1/3

We have c 	 d, therefore:

− 4 + 3 v({2}) < −3
⇔ 3 v({2}) < 1
⇔ v({2}) < 1/3

The obtained contradiction demonstrates that no capacity v exists to repre-
sent the prescribed ranking. Therefore, the Choquet integral cannot model these
preferences.

The observation of such behaviors motivated the development of models able
to capture preferences that may vary depending on the position of the perfor-
mances relatively to some reference values. In this paper we will assume that a
vector of reference values p = (p1, . . . , pn) is known where pj is a neutral evalu-
ation on criterion j, separating the good and the bad part of the scale. For the
rest of this paper, when referring to a solution x = (x1, . . . , xn), we will consider
that it has already been centered on p, (i.e., x = x′ - p where x′ is the original
solution vector). Hence, 0 becomes the neutral value on all criteria scales. The
existence of such bipolar scales has motivated the introduction of the following
extension of the Choquet integral, defined for criterion values expressed on a
bipolar scale [11,12,17].

Definition 3. Let x ∈ R
n and u and v be two capacities. The bipolar extension

of the Choquet (biChoquet integral for short) is defined as follows:

Cu,v(x) = Cu(x+) − Cv(x−) (3)

where x+ = max(x, 0) and x− = max(−x, 0).

If we reinterpret Example 2 with this model, We obtain u({2}) > 2/6 and
v(2) < 2/6 which is no longer contradictory. Actually this model can eas-
ily describe the preference order given in Example 2 due to the combination
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of two capacities, one for the positive side and the other for negative side.
This general model includes several interesting subclasses. For example, when
u(A) = ϕ(

∑
i∈A pi) and v(A) = ψ(

∑
i∈A pi) for some functions ϕ and ψ

strictly increasing on the unit interval and such that ϕ(0) = ψ(0) = 0 and
ϕ(1) = ψ(1) = 1, then the biChoquet integral is nothing else but the model pro-
posed by Kahneman and Tversky in their Cumulative Prospect Theory (CPT)
[25]. In the context of CPT, pi represents the probability of a state i. If we
import the CPT model in the context of multicriteria aggregation, pi must be
interpreted as the weight of criterion i and we obtain a bipolar version of the
WOWA operator introduced by Torra [24] (when all criterion values are posi-
tive, we exactly obtain a WOWA). If we further specify the model by setting
pi = 1/n then capacities u and v are symmetric (their values only depend on
the cardinality of the set) and the resulting model is known as biOWA [16]. We
will come back to these models in the following sections.

Until now, we have made the assumption that preferences were known. This
is a strong hypothesis and, in practice, the parameters of these models must
be elicited. We now recall some background on incremental elicitation methods
based on the minimisation of regrets.

2.2 Elicitation Based on Regret Minimization

We consider an aggregation function fw where w is the unknown weighting
vector used in the model used to represent DM’s preferences. When no preference
information is available the uncertainty set defined as the set of all admissible
weighting vectors is defined by Ω = {w ∈ R

�

+, such that
∑n

i=1 wi = 1}. When a
set P of preference statements is eventually observed (under the form of a list
of ordered pairs of alternatives where the first is preferred to the second), the
initial set Ω can be reduced to a subset denoted ΩP using the linear constraints
induced by the preferences in P . Hence ΩP is a convex polyhedron, at any step
of the elicitation process.

Given an uncertainty set ΩP , an alternative is said to be necessarily optimal
in X, if fw(x) ≥ fw(y) for all y ∈ X and all w ∈ ΩP . In this context, the goal
of an incremental preference elicitation method is to iteratively generate pref-
erence queries to collect preference statements and further restrict ΩP until a
necessarily optimal element can be identified in X. In order to generate informa-
tive preference queries and to identify a necessarily optimal element as soon as
possible, we can use the notion of max-regret as suggested in [27]. Let us recall
the definition of regrets used in the elicitation process:

For two alternatives x and y, the Pairwise Max Regret (which quantifies the
regret of choosing x instead of y) is defined by:

PMR(x, y,ΩP ) = max
w∈ΩP

(fw(y) − fw(x)) (4)

Then, the Max Regret attached to a solution x ∈ X is defined by:

MR(x,ΩP ) = max
y∈χ

PMR(x, y,ΩP ) (5)
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The MinMaxRegret (MMR) is then the minimal value of the MaxRegret for
all elements in X.

MMR(x,ΩP ) = min
x∈χ

MR(x,ΩP ) (6)

A necessarily optimal solution has a Max Regret value of 0. Hence, we have
to collect preference statements until the MMR drops to 0. Preference queries
are generated using the current solution strategy that consists in comparing a
solution x∗ having a minimal MR value to its strongest challenger, i.e., any solu-
tion y∗ maximizing PMR(x∗, y∗, ΩP ). In practice, to save a significant number
of queries, we can stop the process when MMR drops below a given ε > 0 without
loosing much in the quality of the returned solution. When the set of alterna-
tives X is finite and defined explicitly, this general elicitation process interleaving
preference queries and the exploration of the set of alternatives is formalized in
Algorithm 1. The computation of the PMR is specific to each aggregation func-
tion and will be discussed later in the paper.

Result: x∗: a necessarily optimal alternative
initialization;
X = {x1, . . . , xm}, ΩP = Ω;
do

for x ∈ X do
for y ∈ X do

Compute PMR(x, y,ΩP );
end
Update MR(x,ΩP );

end
x∗, mmr = Update MMR;
(a, b) := Select a query for the DM in X ;
preference(a, b) := Ask (a, b) to the DM ;
Update(ΩP , preference(a, b)) ;

while mmr ≥ ε;
Return x∗

Algorithm 1: Elicitation of preferences

This algorithm can be used to incrementally elicit the capacities u and v in
Cu,v (Eq. 3). In this case, the aggregator fw is the biChoquet integral and its
parameter w is defined by the pair of capacities u, v. In the following sections, we
introduce some computational models based on linear programming to efficiently
obtain the PMR values in the simultaneous elicitation of u and v. We successively
consider three different families of instances of biChoquet integrals.

3 Elicitation of a 2-Additive BiChoquet Integral

Capacities u and v are useful mathematical functions to model the interactions
among criteria but their definition or approximation would require to work with



108 H. Martin and P. Perny

2(2n − 2) weighting coefficients where n is the number of criteria. In order to
introduce more compact representations of interactions while keeping some flexi-
bility in the model, we use the Möbius inverse of the capacities. Given a capacity
v, the Möbius inverse of v is defined by mv(A) =

∑
B⊆A(−1)|A\B|v(B) for all

A ⊆ N . Then, Cu,v can be rewritten from mu and mv as follows:

Proposition 1. Let u and v be two capacities and x a performance vector, we
have:

Cu,v(x) =
∑

A⊆N

mu(A)min
i∈A

x+
i −

∑

A⊆N

mv̄(A)max
i∈A

x−
i (7)

with mu the Möbius inverse of u and mv̄ the Möbius inverse of v̄ the dual capacity
of v, x+ = max(x, 0) and x− = max(−x, 0).

Proof. We recall that Cv(x) = −Cv̄(−x) and that Cv(x) =
∑

A⊆N m(A)
mini∈A xi. We have then Cu,v(x) = Cu(x+) − Cv(x−) = Cu(x+) − (−Cv̄(−x−))
and therefore Cu,v(x) = Cu(x+) − (−∑

A⊆N mv̄(A)mini∈A(−x−
i )) =∑

A⊆N mu(A)mini∈A x+
i − ∑

A⊆N mv̄(A)maxi∈A x+
i .

This formulation suggests that more compact representations of subclasses
of biChoquet integrals can easily be obtained. We can indeed restrict u and v̄
to k-additive capacities. A capacity u is said to be k-additive if and only if its
Möbius inverse mu verifies for all A ⊆ N, |A| > k,mu(A) = 0 and it exists at
least B ⊆ N, |B| = k such as mu(B) �= 0. For example, a 2-additive capacity is
completely characterized by n(n + 1)/2 Möbius masses (one for every singleton
and every pair). Such a capacity makes it possible to model non-linearities due to
pairwise interactions between pairs of criteria while involving only a polynomial
number of parameters. Moreover, by restricting u and v to 2-additive capacities,
we can exploit the following result [18]:

Proposition 2. We set Q = {A ⊆ N, 1 ≤ |A| ≤ 2} and Q′ = {B ⊆ N, |B| =
2}. The class of 2-additive capacities forms a convex polytope whose extreme
points are of two types:

– For all A ∈ Q, we define the extreme point MA as, for all X ⊆ N, MA(X) =
1 if X = A, 0 otherwise.

– For all B ∈ Q′, we define the extreme point M ′
B as, for all X ⊆ N, M ′

B(X) =
−1 if X = B, 1 if ∅ �= X ⊂ B, 0 otherwise.

Every 2-additive capacity has then its Möbius inverse m defined as a convex
combination of those extreme points:

m =
∑

A∈Q

αA · MA +
∑

B∈Q′
α′

B · M ′
B

with ∀A ∈ Q, αA ≥ 0, ∀B ∈ Q′, α′
B ≥ 0 and

∑
A∈Q αA +

∑
B∈Q′ α′

B = 1.
Therefore, every 2-additive capacity is defined by an unique positive vector of
size 2 × (

n
2

)
+ n, formed by the concatenation of α and α′. In our context, we
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consider two 2-additive capacities u and v̄ and their Möbius inverse mu and
mv̄. Their coefficients in the combination of extreme points of the polytope will
be denoted (αu

A, α
′u
B ) and (αv̄

A, α
′v̄
B ) in the sequel. Using the previous notions

and definitions, we present the following linear program to compute the PMR
between x and y, with a set of possible parameters ΩP , defined as the set of all
possible 2-additives capacities u and v̄ characterized by their Möbius masses mu

and mv̄ and described by variables αu
A,α′u

B , αv̄
A, α′v̄

B .

max
∑

A⊆Q
mu(A)(min

i∈A
y+

i − min
i∈A

x+
i ) − ∑

A⊆Q
mv̄(A)(max

i∈A
y−

i − max
i∈A

x−
i )

(P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mu(X) =
∑

A∈Q
αu

AMA(X) +
∑

B∈Q′
α

′u
B M ′

B(X), ∀X ⊆ Q
mv̄(X) =

∑
A∈Q

αv̄
AMA(X) +

∑
B∈Q′

α
′v̄
B MB(X), ∀X ⊆ Q

∑
X∈Q

αu
X +

∑
X∈Q′

α
′u
X = 1

∑
X∈Q

αv̄
X +

∑
X∈Q′

α
′v̄
A = 1

∑
A⊆Q

mu(A) min
a+
i ∈A

a+
i − mv̄(A) max

a−
i ∈A

a−
i ≥

∑
A⊆Q

mu(A) min
b+i ∈A

b+i − mv̄(A) max
b−
i ∈A

b−
i , ∀(a, b) ∈ ΩP

mu(A), mv̄(A) ≥ 0, ∀A ⊆ N

αu
A, αv̄

A ≥ 0, ∀A ⊆ Q, α
′u
B , α

′v̄
B ≥ 0, ∀B ⊆ Q′

For any two 2-additive capacities u and v̄, this linear program has 6
(
n
2

)
+3n con-

tinuous variables and 2
(
n
2

)
+ 2n + |P | constraints, with |P | the number of added

constraints induced by preferences statements. We implemented Algorithm 1 to
elicit u and v in Cu,v using program P1 for the computation of PMR values. To
run our tests, we used Gurobi 8.1.1 solver, a cluster of computers with 252 GB
of RAM and 32 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz processors. Our
elicitation algorithm has been tested on randomly generated instances with capac-
ities randomly drawn using Proposition 2. Alternatives are randomly sampled to

Fig. 1. Comparison of CSS and Random strategies - Average regrets evolution - 5
criteria and 25 alternatives
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form a Pareto-front with a significant part of unsupported solutions (which do not
belong to the frontier of the convex envelope and thus that cannot be considered
optimal by a linear model). For each instance, the elicitation sequence is iterated
until we observe a decrease of the MMR value of at least 90% (ε = 0.1). The follow-
ing Figure compares the evolution of the regret (i.e., the MMR value) throughout
the elicitation process, for strategies CSS and Random (in the latter, the prefer-
ence query is randomly selected at each step) (Fig. 1).

The curves reflecting the decay of MMR values show that when ε = 0.1,
the elicitation algorithm stops after about 15 preference queries with the CSS
whereas much more queries would be necessarily for the Random strategy. As
observed for other models, CSS appears to be effective to find informative queries
reducing regrets. Through the rest of this paper, we will focus on this query
strategy to perform tests with different families of bipolar models.

Now, we report the average computation times and the average number of
preference queries used to solve instances of different sizes (n the number of
criteria varies from 5 to 10 and m, the size of the set of alternatives, varies from
50 to 100).

Even though the number of parameters is two times greater than in the
monopolar case (standard 2-additive Choquet integrals), we observe that the
solution times of Algorithm 1 remain reasonably low. Actually, they are in the
same order of magnitude that the computation times we use to obtain for stan-
dard 2-additive Choquet integrals. Moreover, we observe that the elicitation cost
in terms of number of preference queries asked to the DM does not increase dras-
tically when considering the bipolar extension of the Choquet Integral.

n m = 50 m = 75 m = 100
5 2.85 7.1 9.77
7 4.6 10.63 19.43
10 7.42 21 40.07

(a) CSS-times (s) - Choquet

n m = 50 m = 75 m = 100
5 5.12 9.37 17.27
7 8.93 18.56 33.64
10 14.63 35.98 70.48

(b) CSS-times (s) - BiChoquet

n m = 50 m = 75 m = 100
5 13.95 15.8 19.05
7 23.35 28.3 27.8
10 39.2 50.7 54.35

(a) CSS-queries - Choquet

n m = 50 m = 75 m = 100
5 16.15 17.1 17.35
7 31.45 35.5 34.95
10 46.35 64.85 78.5

(b) CSS-queries - BiChoquet

4 Elicitation of a Bipolar WOWA

In this Section we consider another subclass of the general biChoquet model intro-
duced in Eq. 3. We are no longer restricted to two additive capacities but consider
all capacities that are defined as monotonic transformed of an additive measure.
Formally, we assume that u and v have the following forms: u(A) = ϕ(

∑
i∈A pi)

and v(A) = ψ(
∑

i∈A pi) where pi are the criteria weights. As mentioned at the
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end of Subsect. 2.1, the resulting subclass of biChoquet functions is a counter-
part of CPT in the setting of multicriteria aggregation. The aggregators in this
family can also be seen as bipolar extensions of WOWA (the weighted extension
of OWA proposed in [24]). For this reason, these operators are named biWOWA
hereafter. More formally they are defined as follows:

Definition 4. Let x ∈ R
n be a performance vector, p ∈ R

n an importance vector
over the set of criteria, ϕ and ψ two increasing functions with ϕ(0) = ψ(0) =
0 and ϕ(1) = ψ(1) = 1. The Bipolar Ordered Weighted Averaging operator
(biWOWA) is defined as the aggregation function fϕ,ψ : Rn → R such that:

fϕ,ψ(x) =
n∑

i=1

ϕ(
n∑

k=i

p(k))
[
x+
(i) − x+

(i−1)

] −
n∑

i=1

ψ(
n∑

k=i

p(k))
[
x−
(i) − x−

(i−1)

]

with x+ = max{x, 0}, x− = max{−x, 0} and (.) the permutation of criteria
which sorts x in the increasing order.

We assume here that the weighting vector p is known and we focus on the
elicitation of ϕ and ψ. This is a challenging problem because we have to consider
a continuous set of non-linear increasing functions. To overcome this difficulty, we
use a spline representation of ϕ and ψ. Spline functions are piecewise polynomials
whose elements connect with a high level of smoothness. Further details on spline
functions can be found in [19,20], but an interesting property of these functions
is that they can be generated with a linear combination of basis monotonic spline
functions. This allows to reduce the elicitation of ϕ and ψ to their corresponding
weighting vectors bϕ and bψ in the spline basis. More precisely, we have ϕ(x) =∑r

j=1 bϕ
j Ij(x) and ψ(x) =

∑r
j=1 bψ

j Ij(x), where Ij(x), j = {1, . . . , l} are the basic
monotonic spline functions (see Fig. 2). A similar approach, based on the use of
spline functions, has been proposed for the WOWA model in [4] on the robust
assignment problem.

Fig. 2. I-spline basis of order 3

In order to compute PMR(x, y) for two alternatives x and y when preferences
are represented with the biWOWA model, we propose the linear program P2.
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For any two increasing functions ϕ and ψ, this linear program has 2r continuous
variables and 2l + |P | constraints, with |P | the number of added constraints
induced by preferences statements and l the size of the spline functions basis.

max
[ n∑

i=0
[

l∑

j=1
bϕ(j)Ij(

n∑

k=i
p(k)))](y

+
(i)

− y+
(i−1)

) − [
l∑

j=1
bϕ(j)Ij(

n∑

k=i
p(k)))](x

+
(i)

− x+
(i−1)

)
]

−[ n∑

i=0
[

l∑

j=1
bψ(j)Ij(

n∑

k=i
p(k)))](y

−
(i)

− y−
(i−1)

) − [
l∑

j=1
bψ(j)Ij(

n∑

k=i
p(k)))](x

−
(i)

− x−
(i−1)

))
]

(P2)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

l∑

j=1
bϕ(j) = 1

l∑

j=1
bψ(j) = 1

fϕ,ψ(a) ≥ fϕ,ψ(b), ∀(a, b) ∈ ΩP

bϕ(j), bψ(j) ≥ 0, j = 1, . . . , l

We implemented Algorithm 1 using program P2 to compute the PMR values
to elicit ϕ and ψ in fϕ,ψ. In our tests, we used the experimental setting of Sect. 3.
We simulated the DM’s answers to preferences queries using fϕ′,ψ′ where ϕ′ and
ψ′ were randomly drawn using the basis of spline functions. The execution times
and the number of queries asked to the DM are given in the tables below;

n m = 50 m = 75 m = 100
5 1.51 2.75 3.71
7 2.05 3.55 5.61
10 3.6 5.15 6.34

(a) CSS-times (s) - WOWA

n m = 50 m = 75 m = 100
5 3.43 5.89 9.89
7 6.42 8.08 18.66
10 12.45 21.40 37.25

(b) CSS-times (s) - biWOWA

n m = 50 m = 75 m = 100
5 4.75 4.65 4.8
7 4.7 5.6 4.75
10 5.5 5.25 5.2

(a) CSS-queries - WOWA

n m = 50 m = 75 m = 100
5 5.35 4.8 5.4
7 5.8 5.2 5.8
10 6.5 6.2 6.55

(b) CSS-queries - biWOWA

We observe that, even though computation times remain low in the bipolar
case, the increase between WOWA and BiWOWA operator is significant. How-
ever, when it comes to the number of generated preference queries, we observe
only a slight increment when passing from WOWA to biWOWA. The increase of
computation time seems to be related to the computation of PMR using linear
program P2.

5 Elicitation of a Bipolar OWA

In this section we consider the bipolar Ordered Weighted Averaging (biOWA),
introduced in [16] to generalize OWA to the bipolar case. As mentioned before,
this is an instance of the biWOWA obtained when the criteria weights are equal
(pi = 1/n). This instance can be elicited by the general method proposed for
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biWOWA but we are going to introduce a more specific and direct method,
taking advantage of the fact that biOWA admits a much simpler formulation
when all criteria weights have the same value.

Definition 5. Let x ∈ R
n be a performance vector and α, β ∈ R

n
+ two weight-

ing vectors, the bipolar ordered weighted averaging (biOWA) is the aggregation
function gα,β : Rn → R defined by:

gα,β(x) = α · x+
↑ − β · x−

↓ (8)

with x+ = max{x, 0}, x− = max{−x, 0} and x↑ (resp. x↓) is the vector obtained
from x by rearranging its components in the increasing (resp. decreasing) order.

In this case, the parameter of the model is defined by the pair α, β of weight-
ing vectors defining how the DM focuses on good and bad positive (resp. negative)
evaluations. As in the OWA operator, these weights are not attached to criterion
values but to their rank in the ordered list of positive (resp. negative) criterion
values. In order to compute the PMR values for this model, we use program (P3)
given below:

max
n∑

i=1

αi (y+
(i) − x+

(i)) − βi (y−
(i) − x−

(i))

(P3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑
i=1

αi = 1
n∑

i=1

βi = 1
n∑

i=1

αi a+
(i) − βi a−

(i) ≥
n∑

i=1

αi b+(i) − βi b−
(i), ∀(a, b) ∈ ΩP

αi, βi ≥ 0, ∀i ∈ {1, .., n}
For any two weighting vectors α and β, this linear program has 2n continuous

variables and 2 + |P | constraints, with |P | the number of added constraints
induced by preferences statements. We implemented Algorithm 1 using program
P3 to compute PMR values and elicit a biOWA. We also implemented the method
for the elicitation of a standard OWA in order to compare execution times and
the number of asked queries. To run our tests, we used the same experimental
setting as before and the DM’s answers were simulated using gα′,β′ where α′ and
β′ were randomly drawn weighting vectors. The results of the tests are given in
the tables hereafter.
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n m = 50 m = 75 m = 100
5 0.27 0.41 0.57
7 0.28 0.48 0.87
10 0.31 0.66 0.82

(a) CSS-times (s) - OWA

n m = 50 m = 75 m = 100
5 0.45 0.61 1.42
7 0.55 0.96 1.45
10 0.61 1.27 1.65

(b) CSS-times (s) - biOWA

n m = 50 m = 75 m = 100
5 5.65 5.8 5.65
7 7.25 7.45 8.05
10 8.55 9.75 10.0

(a) CSS-queries - OWA

n m = 50 m = 75 m = 100
5 16.1 6.0 6.3
7 9.05 8.9 8.45
10 11.95 13.15 11.7

(b) CSS-queries - biOWA

As in Sect. 3, we observe that computation times are at most two times
more important when passing from OWA to biOWA. This good result can be
explained by the partial elicitation of preferences and the efficient computation
of PMR values due to program P3. The number of preference queries is similar
for OWA and biOWA, which is an encouraging result for the use of biWOWA
in other incremental elicitation contexts (e.g., when the alternatives are defined
implicitly).

6 Conclusion

Preferences modeling and learning in multicriteria decision-making problems are
crucial issues. Moreover, bipolar models are gaining importance in the field of
decision theory to overcome descriptive limitations of usual aggregation func-
tions when a reference point must be considered. For these reasons, we have
proposed new computational models to perform an incremental elicitation of
preferences based on a bipolar rank-dependent model. We applied our approach
to biOWA, biWOWA and 2-additive biChoquet integrals, which extends our pre-
vious contributions on the elicitation of monopolar models (OWA, WOWA and
Choquet).

The elicitation methods proposed here and the tests performed concern the
case where the set of alternatives is defined explicitly. A natural continuation of
this work would be to extend the approach to sets of alternatives that are implic-
itly defined (e.g., for preference-based combinatorial optimization). Another
extension could be to consider the elicitation of the biChoquet model for more
general classes of capacities, and the elicitation of bi-capacities for the Choquet
model. The major challenge will be the increased number of parameters to be
learned in the model and the efficient computation of PMR values.

Acknowledgement. We wish to thank anonymous reviewers for their useful com-
ments on a preliminary version.
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interaction. Fuzzy Sets Syst. 151(2), 211–236 (2005)

12. Grabisch, M., Labreuche, C.: Bi-capacities - II: the Choquet integral. Fuzzy Sets
Syst. 151(2), 237–259 (2005)

13. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions, vol. 127.
Cambridge University Press, Cambridge (2009)

14. Ha, V., Haddawy, P.: Problem-focused incremental elicitation of multi-attribute
utility models. In: UAI, pp. 215–222 (1997)

15. Labreuche, C., Grabisch, M.: The Choquet integral for the aggregation of interval
scales in multicriteria decision making. Fuzzy Sets Syst. 137(1), 11–26 (2003)

16. Martin, H., Perny, P.: BiOWA for preference aggregation with bipolar scales: appli-
cation to fair optimization in combinatorial domains. In: Kraus, S. (ed.) Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, 10–16 August 2019, pp. 1822–1828 (2019)

17. Martin, H., Perny, P.: New computational models for the Choquet integral. In:
ECAI 2020 - 24th European Conference on Artificial Intelligence. Frontiers in Arti-
ficial Intelligence and Applications, vol. 325, pp. 147–154 (2020)

18. Miranda, P., Combarro, E.F., Gil, P.: Extreme points of some families of non-
additive measures. Eur. J. Oper. Res. 174(3), 1865–1884 (2006)

19. Perny, P., Viappiani, P., Boukhatem, A.: Incremental preference elicitation for
decision making under risk with the rank-dependent utility model. In: Uncertainty
in Artificial Intelligence (2016)

https://doi.org/10.1007/978-1-4899-7637-6_23
https://doi.org/10.1007/978-3-319-67504-6_7
https://doi.org/10.1007/978-3-319-67504-6_7


116 H. Martin and P. Perny

20. Ramsay, J.O., et al.: Monotone regression splines in action. Stat. Sci. 3(4), 425–441
(1988)

21. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc.
97(2), 255–261 (1986)

22. Tehrani, A.F., Cheng, W., Dembczynski, K., Hüllermeier, E.: Learning mono-
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