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Preface

The 7th International Conference on Algorithmic Decision Theory (ADT 2021), held in
November 2021, at the University of Toulouse 1 Capitole, France, has continued in the
tradition established by previous ADT conferences in providing a unique opportunity
for scientific exchange among researchers and practitioners coming from diverse areas
of computer science, economics, and operations research. Their joint aim is to improve
the theory and practice of modern algorithmic decision support. Previous ADT con-
ferences were held in Venice, Italy (2009); Piscataway, NJ, USA (2011); Brussels,
Belgium (2013); Lexington, KY, USA (2015), Luxembourg (2017) and Durham, NC,
USA (2019).

ADT 2021 received 58 submissions, which were all rigorously peer-reviewed by at
least three Program Committee (PC) members, in a double-blind fashion. The papers
were evaluated on the basis of originality, significance, and exposition. The PC
eventually decided to accept 27 papers to be presented at the conference and to be
included in the proceedings. The acceptance rate was 46.5%.

The program also included three invited talks by distinguished researchers in
algorithmic decision theory, namely Battista Biggio (University of Cagliari, Italy),
Edith Elkind (University of Oxford, UK), and Christophe Labreuche (Thales Research
and Technology and SINCLAIR AI Lab, France). In addition, ADT 2021 featured a
PhD student day, co-chaired by Georgios Amanatidis (University of Essex, UK), Roi
Naveiro (Institute of Mathematical Sciences, Spain), and Arianna Novaro (University
of Amsterdam, Netherlands).

The works accepted for publication in this volume cover most of the major aspects
of algorithmic decision theory, such as preference modeling and elicitation, compu-
tational social choice, preference aggregation, voting, fair division and resource allo-
cation, coalition formation, stable matchings, and participatory budgeting.

We thank the authors for their interest in submitting and presenting their high
quality recent work to ADT 2021, as well as the PC members and the external
reviewers for their great work in evaluating the submissions. We also want to thank the
Artificial Intelligence Journal, the EURO Working Group on Preference Handling, the
University of Toulouse 1 Capitole, the European Office of Aerospace Research and
Development (EOARD), and the AXA Research Fund (through the AXA-ICMAT
Chair in Adversarial Risk Analysis) for their generous financial support. We are
grateful to the University of Toulouse 1 Capitole for hosting ADT 2021. Special thanks
also go to the members of the local organizing committee, Umberto Grandi (chair),
Sylvie Doutre, Laurent Perrussel, and Pascale Zaraté, for their excellent organization
and local arrangements work, and to Rachael Colley for her help with the conference
website. Finally, we want to thank Alexis Tsoukiàs, for his invaluable advice and



support, Anna Kramer at Springer for helping with the proceedings, and the EasyChair
conference management system.

August 2021 Dimitris Fotakis
David Ríos Insua
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Machine Learning (for) Security: Lessons
Learned and Future Challenges

Battista Biggio1,2

1 University of Cagliari, Italy
2 Pluribus One

Abstract. In this talk, I will briefly review some recent advancements in the area
of machine learning security [2] with a critical focus on the main factors which
are hindering progress in this field. These include the lack of an underlying,
systematic and scalable framework to properly evaluate machine-learning
models under adversarial and out-of-distribution scenarios, along with suitable
tools for easing their debugging. The latter may be helpful to unveil flaws in the
evaluation process [7], as well as the presence of potential dataset biases and
spurious features learned during training. I will finally report concrete examples
of what our laboratory has been recently working on to enable a first step
towards overcoming these limitations [1, 3], in the context of Android [6] and
Windows malware detection [4, 5].

Keywords: Machine learning � Computer security � Adversarial machine
learning � Malware detection
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Mind the Gap: Fair Division With Separation
Constraints

Edith Elkind

University of Oxford, UK
elkind@cs.ox.ac.uk

Abstract. This is the extended abstract for the ADT’21 invited talk. It is based
on a series of papers with Erel Segal-Halevi and Warut Suksompong [1, 2, 3].

Keywords: Cake cutting � Land division � Maximin fair share

Motivated by the social distancing rules, we consider the task of fairly distributing a
divisible good among several agents under the additional assumption that every two
agents’ shares must be separated. We start by analyzing the case where the good is the
[0, 1] segment (usually referred to as ‘cake’). In this model, the separation constraint is
captured by specifying a separation parameter s such that for every pair of agents i, j
and every pair of points x, y such that x is allocated to i and y is allocated to j it holds
that |x – y| � s; metaphorically, the cake is cut by a blunt knife of width s.

We observe that in this setting a proportional allocation cannot be guaranteed. We
therefore focus on the solution concept of maximin fair share. Intuitively, we first ask
each agent to determine their fair share by executing a mental experiment where they
need to cut the cake into n s-separated pieces (where n is the number of agents), and are
allocated the piece that they value the least; their fair share is then defined as the most
they can guarantee for themselves under this protocol, and an allocation is considered
fair if it provides each agent with a piece that they value at least as much as their fair
share.

We show that a natural moving-knife protocol guarantees that each agent receives
their fair share, i.e., maximin fair share allocations exist. However, to execute that
protocol, agents need to be able to compute their fair shares, and it turns out that there
is no finite algorithm that can accomplish this task. We circumvent this issue by
providing an algorithm that approximates the agents’ shares up to an arbitrarily small
error, as well as a polynomial-time algorithm for the case where all agents have
piecewise constant valuations that are specified explicitly as part of the input.

We then extend our analysis of fair division with separation to richer settings: we
consider fair division of a pie (i.e., a circular cake), land (i.e, a 2-dimensional good),
and graphical cake (i.e., the ‘cake’ formed by edges of a graph). In many of these
settings, maximin fair allocation is no longer guaranteed to exist. We therefore consider
its ordinal approximation, defined as follows. Recall that, in the definition of maximin
fair share, we asked each agent to perform a mental experiment where they cut the good
into n pieces. We now ask each agent to re-run that experiment, but cut the good into
k > n pieces, for a given value of k; we refer to the outcome of that experiment as
k-fair share. Increasing the value of k corresponds to the agents being less ambitious in



terms of what they want to receive, so we are interested in the smallest value of k such
that each agent can be guaranteed their k-fair share.

It turns out that for the circular cake with separation constraints it suffices to set
k = n + 1; however, the circular cake is more challenging than the interval cake from an
algorithmic perspective. For general graphical cakes, under a mild technical assump-
tion, we can set k = n + f, where f is the feedback vertex set number of the underlying
graph; in particular, if the graph is a tree, each agent can be guaranteed her maximin
fair share (however, somewhat surprisingly, a natural extension of the moving knife
protocol to trees may fail to find a maximin fair allocation).

For land division, our results depend on the geometric shape of the land itself as
well as the shapes of the agents’ pieces. For instance, if each agent has to be allocated a
square piece of land, we can set k = 4n − 5. However, if agents’ pieces can be arbitrary
axis-aligned rectangles (and the land itself is an axis-aligned rectangle), we get a much
weaker upper bound of k = 2n+2, and converting it into a finite algorithm comes at an
additional cost.
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Hierarchical Decision Models with Interacting
Criteria: Preference Learning, Identifiability

and Explainability

Christophe Labreuche1,2

1 Thales Research and Technology, Palaiseau, France
christophe.labreuche@thalesgroup.com

2 SINCLAIR AI Lab, Palaiseau, France

Multi-Criteria Decision Aiding (MCDA) aims at comparing several alternatives on the
basis of multiple and possibly conflicting criteria. In industrial applications such as Air
Traffic Management, elaborate decision models need to be used. Firstly, criteria are not
independent as there are often statistical correlations and/or preferential dependencies
among attributes. The leading model for capturing such interactions is the Choquet
integral. Secondly, the number of criteria can be relatively large. In order to have an
interpretable model, the set of criteria is organized in a hierarchical way instead of in a
flat way. This means that criteria are aggregated by means of several nested aggregation
functions. Each node in this hierarchy has a clear meaning to the decision maker. This
allows enriching the representation power of the model while reducing the complexity
thanks to a smaller number of parameters.

The combine use of hierarchical models and the representation of interacting cri-
teria is expected to bring significant added values in real applications. We will expose
recent results in three directions.

– Preference Learning. The existing approaches in Operation Research consists in
eliciting each aggregation function and each marginal utility function separately
from an interaction with the decision maker. However, providing only local pref-
erence information may yield global inconsistency. The promise of preference
learning is to go beyond these limitations, replacing time-consuming interactions
with a user, by machine learning from a large quantity of (possibly noisy) prefer-
ence data. The objective is to learn all parameters of the model simultaneously,
which is challenging as the underlying optimization problem is no more convex.
We will present a Preference Learning approach based on the representation of the
decision model as a neural network.

– Identifiability. To ease learning and interpreting the parameters of the model, there
should not be two hierarchical models with different parameters and possibly dif-
ferent hierarchies yielding the same decision function pointwise. We show identi-
fiability for the hierarchical Choquet integral model. We are in particular able to
relate structuring elements on the behavior of the model to the underlying hierarchy.

– Explainability. It is important in practice to explain the recommendations made by
the model. Most of the time, the user does not need an in-depth explanation of the
internal model mechanism, but he only wishes to understand which are the nodes in

https://orcid.org/0000-0002-8871-4379


the tree at the origin of the model outcome. This is obtained by computing an index
measuring the influence of each node in the tree, on the preference between two
alternatives. There are many connections with Feature Attribution (FA) in Machine
Learning. Computing the level of contribution of a feature in a classification
black-box model or that of a criterion in a MCDA model is indeed similar. The
Shapley value is one of the leading concepts for FA. Unlike our situation, feature
attribution only computes the influence of leaves in a model. We will show that the
Shapley value is not appropriate on trees, when we are interested in knowing the
contribution level of not only the leaves but also other nodes. We will then define a
consistent value for trees.
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Aggregating Preferences Represented
by Conditional Preference Networks

Abu Mohammad Hammad Ali(B), Howard J. Hamilton, Elizabeth Rayner,
Boting Yang, and Sandra Zilles

University of Regina, Regina, SK, Canada
{howard.hamilton,rayner3e,boting.yang,sandra.zilles}@uregina.ca

Abstract. This paper focuses on the task of aggregating preference
orders over combinatorial domains, where both the individual and the
aggregate preference orders are represented as Conditional Preference
Networks (CP-nets). We propose intuitive objective functions for finding
an optimal aggregate CP-net, as well as corresponding optimal efficient
aggregation algorithms for inputs with certain structural properties.

Keywords: Preference representation · Preference aggregation

1 Introduction

Preference aggregation aims at ranking a set of outcomes so as to collectively
represent the rankings for a group of individuals [11,21]. Applications include
recommender systems, multi-criteria object selection, and meta-search engines.

We assume each outcome is a tuple of attribute-value pairs, allowing for
a compact representation of preferences. For example, if outcomes represent
movies to be ranked, and genre is an attribute, the rule “genre= comedy is
preferred over genre= drama,” entails a large number of preference expressions
between specific movies. One formal model of preference relations over such
outcomes is the Conditional Preference Network (CP-net) [5], which expresses
user preferences of the form “given attribute-value pairs (V1, v1), . . . , (Vm, vm),
I prefer value w over w′ in attribute W”. Thus, preferences over the values of
an attribute W are conditioned on the values of other attributes (here V1, . . . ,
Vm), called the parents of W . Not all preference relations can be expressed by
CP-nets [6].

This paper is the first to treat the task of aggregating preferences represented
by CP-nets as an optimization problem, with the aggregate preference relation
itself represented as a CP-net, called consensus CP-net, that is optimally close
to the collection of input CP-nets using a proposed distance measure over out-
come pairs. Algorithms solving this problem, since they output CP-nets, can be
applied hierarchically and may hence be useful in applications where there are
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too many users (input CP-nets) to do a global optimization. Another advantage
of outputs in the form of CP-nets is that known methods for preference optimiza-
tion, constrained optimization, and outcome ordering work on them directly.

We first define three measures of dissimilarity between two CP-nets, which are
in turn used as the basis of objective functions. A noncommutative dissimilarity
measure we propose counts the outcome pairs on which a user expresses a clear
preference that is not entailed by the consensus CP-net; a commutative variant
is also defined. Both are called measures of total disagreement, since they take
all outcome pairs into account. However, due to the lack of efficient tools for
computing total disagreement, let alone minimizing it over a set of CP-nets, we
first approach a different measure, swap disagreement, which counts the so-called
swaps on which a user’s CP-net and the consensus CP-net disagree. A swap is a
pair of outcomes that differ only in a single attribute; reasoning with such pairs
is often of advantage compared to reasoning with general outcome pairs.

We present an algorithm that computes an optimal consensus CP-net for any
set of complete1 input CP-nets using the cumulative swap disagreement to the
inputs as an objective function. If the input CP-nets are “too dissimilar”, this
algorithm has exponential runtime. By contrast, it has linear runtime if the input
satisfies a natural structural condition. While we formally relate swap disagree-
ment to both notions of total disagreement, our algorithm for minimizing swap
disagreement does not minimize total disagreement in general. Even for aggre-
gating just two CP-nets of the simplest (“separable”) structure, rather complex
consensus CP-nets are needed to minimize noncommutative total disagreement.
In the same case, swap disagreement is minimized by a separable CP-net.

A fourth proposed objective function sums the squares of attribute-wise swap
disagreements, to penalize a consensus CP-net that disagrees with a user sub-
stantially in an individual attribute. A linear-time algorithm is shown to mini-
mize this objective function for separable input CP-nets.

To sum up, the main contribution of our paper is to (i) propose four CP-
net aggregation problems via four objective functions, (ii) solve one of these
problems optimally (on special inputs also efficiently), (iii) discuss how to solve
the other three optimally for special inputs, and (iv) show that the solution to
one of these problems is equivalent to the majority CP-net used in earlier work
on a completely different algorithmic problem.

2 Relation to Previous Work

When aggregating explicit preference orders, the input is a set of permutations
over the outcome space [21], and the output is a best collective permutation, i.e.,
one that minimizes some objective function wrt the set of input permutations
[2,10,11]. If outcomes are represented as tuples of values over attributes, one
can instead aggregate compact preference representations [1], using models like
CP-nets [5], LP-trees [4], or utility-based models. We focus on CP-nets.

1 Completeness is a limiting condition to be defined in Sect. 3.
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One approach to aggregating CP-nets is using an mCP-net [19,20] – a set
of partial CP-nets as opposed to a single CP-net with aggregate preferences.
Outcome ordering or optimization queries require applying a voting rule on
the set of partial CP-nets. For every query, a new round of voting is carried
out. By comparison, our approach, while limited to complete CP-nets so far,
builds a consensus CP-net with a single round of voting, upon which all subse-
quent queries can be answered using the consensus CP-net, without the need to
store the input CP-nets. Our algorithms have advantages over that by Cornelio
et al. [9]. The latter represents the aggregate preferences as a Probabilistic CP-
net (PCP-net) [3]. As a result, the notions of (and algorithms for) outcome
optimality and dominance must be modified to the probabilistic setting.

Lang [15] presents an algorithm, that, given acyclic input CP-nets, elicits
votes sequentially over attributes, choosing the winning value at each step. While
our approach is also sequential over attributes, it assigns conditional preference
rules for each attribute. Lang’s approach thus finds a consensus outcome, while
ours outputs a consensus CP-net. This enables us to answer dominance queries
in addition to optimization queries. Lang discusses preference aggregation, but
not with the focus on an objective function. Instead, his aim is to ensure certain
fairness properties for elections. Xia et al. [23,24] show that sequential voting
may lead to paradoxical outcomes. To avoid this problem, they assume that all
voters agree on a linear order over the attributes. Our approach makes no such
assumption. Methods for sequential voting over attributes are described in detail
in [16] and extended to constrained CP-nets in [13].

Voting over general CP-nets is possible by a hypercube-wise composition of
voting rules [7,8,17,22]. However, the size of the hypercube is exponential in
the number of attributes. While one of our methods also builds exponentially
large CP-nets in the worst case, it runs in polynomial time for CP-nets that
are structurally close (refer to Definition 2). Interestingly, the hypercube from
[8] and [17] is identical to that induced by the output CP-net for one of our
objective functions, and it is already mentioned in [7] that this CP-net can be
built directly from the input CP-nets, without the complex hypercube approach.
Further, the optimal outcome using one of the approaches from [9] equals that
of the hypercube, or our output CP-net. Thus, three different approaches of
multiagent reasoning yield identical results.

The primary difference between our work and previous studies on preference
aggregation is in our treating CP-net aggregation as an optimization problem for
a family of objective functions, which are based on pairwise distance between CP-
nets. We propose three new distance measures, two of which satisfy all properties
of distance functions. Loreggia et al. [18] also propose two distance functions for
CP-nets, both approximations to the Kendall Tau Distance extended for partial
orders [12], but they do not focus on aggregating CP-nets.

3 Definitions and Terminology

Following the notation in [5], a CP-net N is a directed graph (V,E), where
V = {V1, . . . , Vn} is a set of n binary attributes. Each vertex Vi ∈ V represents
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Fig. 1. A very simple CP-net N .

an attribute, with Dom(Vi) = {vi, v
′
i} denoting the set of possible values of Vi.

An edge e ∈ E from Vj to Vi indicates that the user’s preferences over Vi depend
on the value assigned to Vj , where a preference over Vi is a total order over the
values in Dom(Vi). We refer to Vj as a parent of Vi. The set of parents of Vi in
a CP-net N is denoted by Pa(N,Vi).

For each Vi, the preference order over Dom(Vi) is given in a Conditional
Preference Table (CPT), denoted CPT(N,Vi). For example, the entry vi � v′

i is
read “vi is preferred over v′

i.” If |Pa(N,Vi)| = k, then CPT(N,Vi) has up to 2k

entries, called CPT rules. In practice, CP-nets might be incomplete, i.e., some
CPTs do not have the maximum possible number of CPT rules. In this paper,
we exclusively consider complete CP-nets, i.e., the CPT for any attribute Vi with
k parents has 2k CPT rules, one for each assignment of values to Pa(N,Vi).

An assignment of values to each attribute in a set is called an instantiation of
the set. The set of all instantiations of a set X ⊆ V is denoted by Inst(X), where
Inst(∅) contains only the empty tuple. An outcome o is any element of Inst(V ).
For any outcome o ∈ Inst(V ) and any Vi ∈ V , we use o[Vi] (∈ Dom(Vi)) to denote
the value of Vi in o, so that we can think of o as the tuple (o[V1], . . . , o[Vn]).

Preferences over attributes are interpreted under a ceteris paribus assump-
tion, which is natural in many real-life applications [5]. A CPT rule for attribute
Vj , in the form β : vj � v′

j , where β ∈ Inst(Pa(Vj)), then means that, if two
outcomes are identical except for their value in Vj and their instantiation of the
parent attributes of Vj coincides with β, then the one with value vj is preferred
over the one with value v′

j in Vj . The transitive closure of these preferences given
by a CP-net N yields N ’s associated preference relation over the outcome space.

For example, consider the CP-net N in Fig. 1 with the set of attributes
{A,B}, Pa(N,A) = ∅, Pa(N,B) = {A}, Dom(A) = {a, a′}, Dom(B) = {b, b′},
CPT(N,A) = {a′ � a}, and CPT(N,B) = {a′ : b′ � b, a : b � b′}. Here
CPT(N,B) dictates that when A is assigned a, b � b′ and thus ab � ab′. Sim-
ilarly, we get a′b � ab and a′b′ � a′b. The transitive closure of these orderings
yields the preference order over the entire set of outcomes: a′b′ � a′b � ab � ab′.
Note that, in general, even complete CP-nets induce only a partial order over
the outcome space, with some outcome pairs not being comparable.

The term swap over Vi refers to a pair of outcomes differing on the value of
exactly one attribute, namely Vi. A separable CP-net is one in which no attribute
has any parents. The size of a CP-net is the total number of its CPT rules.

4 Disagreement and Objective Functions

Suppose N∗ is a proposed consensus CP-net for a set of CP-nets over the same
attribute set V . How to quantify the disagreement between N∗ and an individual
input CP-net N , depends on one’s interpretation of incomparability.
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One option would be to interpret incomparability as indifference. In partic-
ular, if the CP-net N entails neither o � o′ nor o′ � o, one would not count the
pair (o, o′) when measuring the disagreement between N and N∗. If, however,
N entails o � o′ or o′ � o, while N∗ finds (o, o′) incomparable, one would count
(o, o′) as a disagreement, since the user expresses a preference that would be
neglected by N∗. Formally, we define the resulting noncommutative disagree-
ment between two CP-nets for a given (o, o′) as follows.

δnc(N,N∗)(o, o′) =

⎧
⎪⎨

⎪⎩

0 if N does not order (o, o′)
0 if N and N∗ order (o, o′) the same way
1 otherwise

This disagreement notion makes our restriction to complete CP-nets less limiting:
any incomplete input CP-net N is subsumed by a complete CP-net N ′ such that
δnc(N,N ′)(o, o′) = 0 for all (o, o′), rendering the incomplete and the complete
CP-nets equivalent for our purposes.

A second option is to interpret incomparability of two outcomes as explic-
itly forbidding to favor one over the other, yielding the following commutative
disagreement measure.

δc(N,N∗)(o, o′) =

⎧
⎪⎨

⎪⎩

0 if neither N nor N∗ orders (o, o′)
0 if N and N∗ order (o, o′) the same way
1 otherwise

In what follows, X denotes the set of all outcome pairs (excluding duplicates,
i.e., X has only one of (o1, o2) and (o2, o1)) and Xswap ⊆ X is its subset of swaps.

Definition 1. The noncommutative total disagreement of two CP-nets N and
N∗ is defined as

Δtotal
nc (N,N∗) =

∑

(o,o′)∈X

δnc(N,N∗)(o, o′).

The commutative total disagreement Δtotal
c is defined analogously using δc

instead of δnc. The swap disagreement of N and N∗ is defined as

Δswap(N,N∗) =
∑

(o,o′)∈Xswap

δnc(N,N∗)(o, o′).

While Δtotal
nc is noncommutative, swap disagreement commutes for complete

CP-nets. In the latter, swaps are always comparable [6] as they differ in exactly
one attribute, whose CPT determines the preference order for the pair. Thus,

Δswap(N,N∗) =
∑

(o,o′)∈Xswap

δc(N,N∗)(o, o′),

i.e., δnc and δc can be exchanged in the definition of Δswap.
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When given a tuple T = (N1, . . . , Nt) of input CP-nets, we will try to con-
struct a CP-net N∗ that minimizes the cumulative total disagreement values
over all Ni, i.e., the sum

f total
α,T (N∗) = Σ1≤i≤tΔ

total
α (Ni, N

∗),

where α ∈ {nc, c}. Note that f total
nc,T (N∗) ≤ f total

c,T (N∗).
For reasons detailed below, we will first focus on finding a best consensus in

terms of swap disagreement, i.e., minimizing the cumulative swap disagreement

fswap
T (N∗) = Σ1≤i≤tΔ

swap(Ni, N
∗). (1)

We drop the subscript T from f total
α,T and fswap

T when T is clear from the context.
Note that the objective functions studied here may in general have multiple

optimal solutions for any given input. The focus of our work is to find one such
optimal solution – not all of them. We leave the latter problem for future work.

5 Why Swap Disagreement?

One might prefer to minimize f total
α,T rather than fswap

T , since total disagreement
captures differences between preference orders over the full outcome space. How-
ever, we also consider swap disagreement for several reasons.

First, the literature offers substantially more tools for addressing swap dis-
agreement than for addressing total disagreement. This is partly because decid-
ing whether a CP-net entails o1 � o2 is NP-hard for an arbitrary outcome pair
(o1, o2) but has an efficient solution when (o1, o2) is a swap [5]. In particular,
swap disagreement can be computed in polynomial time. Second, every com-
plete CP-net orders every swap, which means that both Δtotal

nc and Δtotal
c yield

the same notion of swap disagreement when restricted to only swaps. Third, a
preference on a swap can immediately be attributed to the CPT of the swapped
attribute, which allows us to decompose the problem of optimizing swap dis-
agreement into subproblems separated by attributes.

Interestingly, when comparing two separable CP-nets, our measures of total
disagreement become functions of the swap disagreement, as Theorem 1 shows.

Theorem 1. Suppose an input CP-net N is separable, and N∗ is an arbitrary
consensus CP-net that differs from N in exactly m ≤ n CPTs. Then

Δswap(N,N∗) ≤ m · 2n−1 and

Δtotal
nc (N,N∗) ≤

n∑

l=1

((
n

l

)

−
(

n − m

l

))

· 2n−l.

Moreover, if N∗ is separable, these two inequalities are equalities, while

Δtotal
c (N,N∗) =

m∑

l=1

(
m

l

)

· 2n−l + 2
m∑

l=1

n−m∑

k=1

(
m

l

)(
n − m

k

)

· 2n−l−k.
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Proof. (Sketch.) Let P ⊆ V be the set of attributes on which N and N∗ differ,
|P | = m. Since each CPT in the separable CP-net N orders exactly 2n−1 swaps,
the first inequality is obvious. If N∗ is separable, then all m attributes in P order
all of their 2n−1 swaps differently, yielding Δswap(N,N∗) = m · 2n−1.

For the second inequality, a counting argument (details omitted) shows that
exactly

∑n
l=1

(
n
l

) · 2n−l outcome pairs are comparable in N .
Now let (o1, o2) be an arbitrary pair of outcomes that differ on exactly l

attributes (the “swapped” attributes) such that (o1, o2) is comparable in N . Let
� ≤ l be the number of swapped attributes whose CPTs differ in N and N∗. For
(o1, o2) to be ranked differently in N∗ than in N , at least one of these � attributes
must be in P . That means, of the

(
n
l

) · 2n−l pairs with swapped attributes that
are comparable by N , at least

(
n−m

l

) · 2n−l will be ranked the same way in N
and N∗, because none of their l swapped attributes are among the m crucial
ones. Thus at most (

(
n
l

)−(
n−m

l

)
) ·2n−l outcome pairs with l swapped attributes

contribute to Δtotal
nc (N,N∗). Summing up over all choices for l yields the desired

upper bound. When N∗ is also separable, all outcome pairs counted in this sum
will actually be ordered differently by N and N∗, making the bound tight.

Finally, the formula for Δtotal
c (N,N∗) is obtained by adding to Δtotal

nc (N,N∗)
the number of pairs for which N∗ entails an order, while N does not. (Details
are omitted due to space constraints.) ��

6 Minimizing Cumulative Swap Disagreement

This section describes a simple algorithm Mswap that, given a tuple of arbitrary
complete CP-nets over an attribute set V , constructs a consensus CP-net N∗ that
minimizes fswap. Coincidentally, this algorithm is known to solve the problem
of finding non-dominated outcomes [7]. While Mswap does not generally run in
polynomial time, we will define an interesting class of inputs on which it does.

Algorithm Mswap works in two steps. First, for each input CP-net Ni and
each attribute Vj , it replaces Pa(Ni, Vj) by

⋃
i≤t Pa(Ni, Vj) without changing

the semantics of the input CP-nets. (When adding k parents to Pa(Ni, Vj), each
original CPT rule in CPT(Ni, Vj) is replaced by 2k rules with the same preference
order - one for each context over the k added parents). Now, given any j, all
input CP-nets have the same parent set for Vj . Second, Mswap aggregates the
preferences over the modified input CP-nets. For each instantiation of the (joint)
parent set of Vj , it lists in CPT(N∗, Vj) the majority preference over vj and v′

j

among the t modified input CP-nets. A useful third step would be to remove
irrelevant parents (as defined in [14]) from the consensus CP-net, yielding a more
compact representation of the final consensus CP-net. This third step takes time
linear in the size of N∗ and quadratic in |V |, but it is not essential to our formal
results and thus not mentioned any further.

Theorem 2. For any tuple of complete CP-nets, Mswap outputs a complete
consensus CP-net N∗ that minimizes fswap.
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Proof. Since the modified input CP-nets are semantically equivalent to the orig-
inal ones, it suffices to show that the CP-net N∗ output by Mswap minimizes
fswap wrt the modified CP-nets as input.

The latter is easy to see from the definition of fswap, which is the cumula-
tive pairwise swap disagreement between each individual input CP-net and the
consensus CP-net. The CPTs for any attribute Vj in all the augmented input
CP-nets contain rules for the same parent instantiations, and each such rule
decides on one of two possible orders of a fixed set of swaps. To minimize the
cumulative pairwise swap disagreement, one must simply order each of these
fixed sets of swaps as the majority of input CP-nets do. ��

Example 1 shows that the first step of Mswap may add an exponential number
of rules to a CPT. In particular, there are instances for which each optimal
solution must set the union of all parent sets of Vj in all input CP-nets as the
parent set of Vj (see the proof of Theorem 3).

Example 1. For each even n ≥ 4, consider a tuple Tn = (Nn
1 , . . . , Nn

n−1) of
n − 1 input CP-nets over V = {V1, . . . , Vn}. For each i, Pa(Nn

i , V1) = {Vi+1},
and CPT(Nn

i , V1) has rules (i) v′
i+1 : v′

1 � v1 and (ii) vi+1 : v1 � v′
1. Note

that the union of all parent sets of V1 across all input CP-nets is {V2, . . . , Vn}.
Further, for each i and each j 
= 1, let Pa(Nn

i , Vj) = ∅. While each original input
CP-net contains only (n+1) CPT rules, each modified one contains 2n−1 +n−1
preference rules, since the parent set for V1 becomes {V2, . . . , Vn}, and each
modified CPT for V1 contains one rule for each of the 2n−1 instantiations of
this parent set. Thus the size of the consensus CP-net N∗ output by Mswap is
2n−1 + n − 1. In general, the exponential size of the optimal consensus in this
case is unavoidable, cf. Theorem 3.

Theorem 3. There are tuples of CP-nets T over n attributes such that T is
of size O(n2), while any optimal consensus CP-net for T wrt fswap is of size
Ω(2n).

Proof. The claim is witnessed by T = Tn from Example 1, for which the
quadratic input size was already shown. For each even n ≥ 4, consider a tuple
Tn = (Nn

1 , . . . , Nn
n−1) of n − 1 input CP-nets over V = {V1, . . . , Vn}. For each

i, Pa(Nn
i , V1) = {Vi+1}, and CPT(Nn

i , V1) has rules (i) v′
i+1 : v′

1 � v1 and (ii)
vi+1 : v1 � v′

1. Note that the union of all parent sets of V1 across all input
CP-nets is {V2, . . . , Vn}. Further, for each i and each j 
= 1, let Pa(Nn

i , Vj) = ∅.
Thus, the input Tn to Mswap contains only (n − 1)(n + 1) CPT rules in total
(n+1 for each input CP-net). However, the output contains (n−1)(2n−1+n−1)
preference rules, since the modified parent set for V1 becomes {V2, . . . , Vn}, and
each CPT for V1 in N∗ contains one rule for each of the 2n−1 instantiations of
this parent set. Then the size of the CP-net output by Mswap is 2n−1 + n − 1.

It remains to verify that any optimal consensus CP-net for Tn wrt fswap is of
size Ω(2n). Note that a CPT for an attribute Vi in an optimal consensus CP-net
for Tn wrt fswap must assign, for each possible instantiation γ of the parents of
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Vi, the preference order over {vi, v
′
i} that would be preferred by the majority of

input CP-nets under the same instantiation γ.
Let N∗ be any acyclic CP-net such that there exists some Vk ∈ {V2, . . . , Vn}\

Pa(N∗, V1). For simplicity, we assume that Pa(N∗, V1) = {V2, . . . , Vn} \ {Vk}
(in case V1 has fewer than n − 2 parents in N∗, we can simply add parents that
are de facto irrelevant.)

Consider the instantiation

γk = v′
j1v

′
j2 ...v

′
jn

2 −1
vjn

2
...vjn−2 ,

where {j1, ..., jn−2} = {2, ...., n} \ {k}. This instantiation γk assigns values to
all parents of V1 in N∗. Given γk, clearly n

2 − 1 input CP-nets from the tuple
Tn have the preference v′

1 � v1 for attribute V1, and the remaining n
2 − 1 input

CP-nets from the tuple Tn have the preference v1 � v′
1 for V1.

Next, consider two instantiations extending γk, namely γkv′
k, which extends

γk by assigning the value v′
k to Vk, and γkvk, which extends γk by assigning

the value vk to Vk. With γkv′
k, more than half of the input CP-nets in Tn have

the preference v′
1 � v1 for attribute V1. With γkvk, more than half of the input

CP-nets in Tn have the opposite preference, namely v1 � v′
1, for attribute V1.

Thus, the following modification of N∗ would yield a decrease in fswap: add Vk

as a parent to attribute V1, and assign the different majority preference orders
for γkv′

k and γkvk over V1 correspondingly to the CPT of V1.
This means that N∗ is not optimal. In particular, any optimal consensus

CP-net for Tn wrt fswap has Vk as a relevant parent of V1, and, by analogy, all
attributes in {V2, . . . , Vn} as relevant parents of V1. Hence, the CPT for V1 in
such optimal consensus CP-net is of size Ω(2n). ��

Remark. One might raise the question whether the size of the optimal con-
sensus CP-net in this proof is exponential only because our representation of
complete CP-nets is unnecessarily large. When limiting ourselves to complete
CP-nets, it would be sufficient in each CPT to list only the instantiations that
lead to the less frequent preference rule. For example, the CPT

{ab : c � c′, a′b : c � c′, ab′ : c � c′, a′b′ : c′ � c}
could be stored in the more compact form {a′b′ : c′ � c}, implicitly stating that
all non-listed instantiations entail the opposite preference ordering.

However, it is not hard to see that this more compact representation of
complete CP-nets still requires size Ω(2n) for any optimal consensus CP-net N
for the tuple Tn wrt fswap. To this end, note that the preference v′

1 � v1 occurs
in exactly half of the rules in CPT (N,V1) for an optimal consensus CP-net N .
Thus, even an implicit form of CPT has at least 2n−2 entries.

Any two input CP-nets in Example 1 are dissimilar in the sense that their
preferences on V1 depend on two disjoint parent sets. Intuitively, in such a situ-
ation, preference aggregation is difficult, e.g., when user 1 bases their preference
over movie genres on the production year, while user 2 bases their preference over
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movie genres on the country of origin, and further users on yet further attributes.
It therefore seems reasonable to limit our aggregation task to cases in which, for
any input CP-net, the parent set of any attribute Vj misses a constant number
of parents that are relevant for Vj in other input CP-nets.

Definition 2. Let T = (N1, . . . , Nt) be a tuple of CP-nets. The maximum par-
ent difference of T is defined as

max
Vj∈V

{|
⋃

i≤t

Pa(Ni, Vj)| − min
i≤t

|Pa(Ni, Vj)|}.

This immediately yields the following result.

Corollary 1. Let k be a constant. Given a tuple T of complete CP-nets with
maximum parent difference at most k, Mswap runs in time linear in the sum of
the sizes of the CP-nets in T and quadratic in |V |, and yields a complete CP-net
N∗ that minimizes fswap.

When all input CP-nets are separable (implying a maximum parent difference
of 0), Mswap adds no parents, so the output CP-net N∗ is also separable. Theo-
rem 1 then allows us to efficiently calculate f total

nc (N∗) and f total
c (N∗), using the

number of CPTs in which N∗ differs from each individual input CP-net. Note
though that it is possible for two separable CP-nets N , N ′ to both minimize
fswap, while f total

nc (N) 
= f total
nc (N ′) and f total

c (N) 
= f total
c (N ′).

As an example, suppose n is even and consider the simple case of only two
input CP-nets N1 and N2, both of which are separable and differ in all CPTs.
Suppose CPT(N1, Vi) = {vi � v′

i} when 1 ≤ i ≤ n/2, and CPT(N2, Vi) = {vi �
v′

i} when n/2+1 ≤ i ≤ n. Then the CP-net N∗ output by our algorithm is equal
to each of N1 and N2 in exactly n/2 CPTs. By Theorem 2, it minimizes fswap

for (N1, N2). However, N1 also minimizes fswap; in fact, every separable CP-net
minimizes fswap for this particular input. For f total

nc (N∗) and f total
c (N∗), the

consensus N1 should be preferred over the consensus N∗: the value of f total
nc/c (N1)

is given by the formulas for Δtotal
nc/c using m = n (as Δtotal

nc/c (N1, N1) = 0), while
f total

nc/c (N∗) is twice the value of Δtotal
nc/c with m = n/2 (for the disagreements with

each of the two input CP-nets). It is easy to verify that f total
nc (N1) = f total

c (N1) <
f total

nc (N∗) < f total
c (N∗) when n = 4.

Corollary 2 will show that even for just two separable CP-nets, in most cases
no separable CP-net minimizes f total

nc .

7 Consensus of Two Separable CP-Nets

While the definitions of our commutative and noncommutative measures differ
just slightly, the difficulty of minimizing cumulative disagreements based on
the noncommutative measure become evident when looking at the seemingly
simple case of just two input CP-nets. Such inputs have a trivial solution when
optimizing f total

c , as is seen from Proposition 1, but a less trivial solution when
optimizing f total

nc , even when both input CP-nets are separable.
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Algorithm 1: Finding optimal consensus for f total
nc

Input : A pair T = (N1, N2) of separable CP-nets
Output: CP-net N∗ minimizing f total

nc

1 P1 = {Vi | CPT(N1, Vi) = CPT(N2, Vi)}
2 P2 = V \ P1

3 if P1 = ∅ or P2 = ∅ then {N∗ = N1; break }
4 for Vi ∈ P1 { CPT(N∗, Vi) := CPT(N1, Vi) }
5 for Vi ∈ P2 do
6 Set Pa(N∗, Vi) = P1

7 for all β ∈ Inst(Pa(N∗, Vi)) do
8 if β contains an even number of parents assigned 0 then
9 Add β : r to CPT(N∗, Vi) for r ∈ CPT(N1, Vi)

10 end
11 else
12 Add β : r to CPT(N∗, Vi) for r ∈ CPT(N2, Vi)
13 end

14 end

15 end

Proposition 1. Given a pair T = (N1, N2) of CP-nets, both N1 and N2 mini-
mize f total

c .

The proof is straightforward and omitted due to space constraints. It will
turn out that Proposition 1 does not hold for f total

nc . To optimize the latter, we
propose Algorithm 1.

If the input CP-nets N1 and N2 are identical or differ in all CPTs, Algo-
rithm1 outputs one of them. Otherwise, it constructs a consensus CP-net N∗

whose CPT for any attribute Vi is defined as follows. When N1 and N2 have
equal CPTs for Vi, this CPT is copied to N∗ (line 4). If the CPTs of N1 and N2

differ, Vi’s parent set in N∗ is the set of attributes for which N1 and N2 have
identical CPTs (line 6). The corresponding CPT is then set so that all parents
are relevant and one half of the rules side with N1, while the other half side
with N2. For simplicity, Algorithm1 assumes that {vi, v

′
i} = {0, 1} for all i.

The running time of Algorithm1 (and the size of its output) is exponential in
the size of P1 and linear in all other input parameters. In other words, the more
similar the two input CP-nets are (as long as they are not identical), the more
complicated the constructed consensus CP-net is, which seems counter-intuitive.
To prove the correctness of Algorithm 1, we first formulate an obvious fact.

Lemma 1. Given input T = (N1, N2), a CP-net N∗ minimizes f total
nc if it fulfills

the following conditions for each outcome pair (o1, o2) ∈ X: (i) if N1 and N2

both entail o1 � o2, then N∗ entails o1 � o2; (ii) if N1 and N2 entail opposite
orders on (o1, o2), then N∗ entails some order on (o1, o2); (iii) if exactly one
of N1, N2 entails an order over (o1, o2), then N∗ entails the same order over
(o1, o2).
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Theorem 4. Given a pair (N1, N2) of separable CP-nets, Algorithm1 yields a
complete consensus CP-net N∗ that minimizes f total

nc .

Proof. If P2 = ∅, the claim is trivial. If P1 = ∅, then any pair ordered by N1

is ordered in the opposite way by N2 and vice versa. Thus, any CP-net that
orders all outcome pairs that are ordered by N1 (and hence also by N2) is
optimal. No matter in which way such an outcome pair is ordered, it counts as
one disagreement (either with N1 or with N2). In particular, N1 is an optimal
consensus CP-net wrt f total

nc .
When neither P1 nor P2 is empty, let N∗ be the output of Algorithm1 and

let (o1, o2) ∈ X. We will show that the three conditions formulated in Lemma1
are fulfilled.

(i) is true, since o1 � o2 holds in both input CP-nets iff o1 and o2 differ only
in attributes in P1, where always o1 has the value preferred in the two (identical)
CPTs in N1 and N2. These CPTs stay in N∗, which thus also entails o1 � o2.

For (ii), note that opposite orders on (o1, o2) can only be entailed if o1 and
o2 differ only in attributes in P2. Let β be the instantiation of P1 that occurs
(identically) in o1 and o2. Depending on the number of zeroes in β, then N∗

orders (o1, o2) either as N1 does (line 9) or as N2 does (line 12).
To obtain (iii), consider any (o1, o2) ∈ X that is ordered by N1 but not by N2

(the opposite case is handled analogously). W.l.o.g., suppose N1 entails o1 � o2
and let V × be the set of all attributes on which o1 and o2 differ. It is not hard
to verify that Pi ∩ V × 
= ∅ for i = 1, 2. All attributes in P1 ∩ V × are assigned
the more preferred value (for both N1 and N2) in o1, while all attributes in
P2 ∩ V × are assigned the more preferred value for N1 in o1. We now claim that
N∗ entails o1 � o2. Let β2 be the instantiation of P1 in o2. If β2 has an even
number of zeroes, then the CPT rules for N∗ in P2 dictate that an outcome ô
with ô � o2 is obtained by changing all of o2’s values in P2 ∩V × to the values in
o1, since N∗ uses the same CPT rule as N1 for the instantiation β2 of P1. Now
N∗ entails o1 � ô, since o1 results from ô by flipping the values in P1∩V ×, which
invokes only CPT rules on which N1, N2 and N∗ all agree. Thus, by transitivity,
N∗ entails o1 � o2. If β2 has an odd number of zeroes, a similar argument is
obtained after first flipping one of the values of o2 in P1 ∩ V ×, which yields a
more preferred outcome in N∗ that also has an even number of zeroes in its
instantiation of P1. ��

An obvious, dual statement to Lemma1 is the following.

Lemma 2. Let T be any pair of CP-nets. If there exists a CP-net N∗ that
satisfies conditions (i)–(iii) from Lemma1, then every minimizer of f total

nc for T
must satisfy these conditions.

As a consequence, Proposition 1 does not hold for f total
nc :

Corollary 2. Let N1, N2 be separable CP-nets that differ in at least one and at
most n − 1 CPTs. Then no separable CP-net N∗ minimizes f total

nc .
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Proof. (Sketch). The proof of Theorem 4 showed that, for such N1 and N2, there
always exists a CP-net N∗ meeting the conditions from Lemma 1. By Lemma 2,
then every minimizer of f total

nc for T satisfies these conditions. A standard argu-
ment (details omitted) shows that every separable CP-net violates condition (iii)
and hence is sub-optimal wrt f total

nc . ��

8 Quadratic Objective for Swaps

For each Ni in a tuple (N1, . . . , Nt) of input CP-nets, one can decompose the
swap disagreement between Ni and N∗ in terms of the swap disagreement for
each attribute. dij denotes the pairwise swap disagreement between CP-nets Ni

and N∗ restricted to only the swaps in attribute Vj . The objective function from
Eq. (1) can then be written as

fswap(N∗) =
t∑

i=1

Δswap(Ni, N
∗) =

t∑

i=1

n∑

j=1

dij .

In this section, we propose a quadratic objective function based on the sum of
the squares of the dij :

fswap
q (N∗) =

t∑

i=1

n∑

j=1

d2ij .

This quadratic objective function takes an attribute-oriented view. In particular,
compare two situations, namely (a) the consensus CP-net disagrees with a single
user’s CP-net in � swap pairs over the same attribute Vj , (b) the consensus
CP-net has disagreements in a total of � swap pairs distributed over several
users and/or several attributes. While fswap would regard both consensus CP-
nets equally good, the squared distance would penalize the consensus CP-net in
situation (a) more than in situation (b). This objective function captures the
idea that a user might be more likely to accept incorrectly ranked items when
they are scattered than when they occur within a certain category of items (e.g.,
related to swaps over a specific attribute).

Minimizing fswap
q is more involved than minimizing fswap. Our approach

applies only to input tuples of separable CP-nets. In linear time, Algorithm2
builds a consensus CP-net minimizing fswap

q for such inputs. For each Vj ∈ V ,
it computes the fraction α of occurrences of the rule vj � v′

j among the input
CP-nets and adds enough parents to assign vj � v′

j to (roughly) a fraction of α
of the swaps over Vj .

Theorem 5. Given a tuple T of separable CP-nets, Algorithm2 runs in linear
time and outputs a complete consensus CP-net N∗ that minimizes fswap

q .

Proof. We only prove the optimality wrt fswap
q . Suppose that for Vj , t′ of the

input CPTs are {vj � v′
j} and t − t′ are {v′

j � vj}. The claim is trivial if
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Algorithm 2: Finding optimal consensus for fswap
q

Input : A tuple T = (N1, . . . , Nt) of separable CP-nets
Output: A consensus CP-net N∗

1 Set N∗ to a separable CP-net with empty CPTs
2 for each attribute Vj ∈ V do
3 t′ = # of occurrences of rule vj � v′

j in T
4 if t′ = t then CPT(N∗, Vj) = {vj � v′

j}
5 else if t′ = 0 then CPT(N∗, Vj) = {v′

j � vj}
6 else

7 Reduce t−t′
t

to r
s

where r and s are co-prime

8 Find a, b ∈ N s.t. 1 ≤ b < 2a ≤ min{s, 2n−1} that minimize | 2a−b
2a

− r
s
|

9 Add a parents to Pa(N∗, Vj), and build CPT(N∗, Vj) with exactly
2a − b rules v′

j � vj and b rules vj � v′
j

10 end

11 end

t′ ∈ {0, t}. Suppose 0 < t′ < t. Fix a consensus CP-net N∗ and let z1 (resp.
z2) be the proportion of all swaps of Vj on which the t′ (resp. t − t′) CP-nets
disagree with N∗. (Note z1 + z2 = 1.) If c is the number of swaps over Vj , then

t∑

i=1

d2ij = t′(cz1)2 + (t − t′)(cz2)2.

This is minimized when z1 = t−t′
t . The remaining proof details are omitted. ��

This result suggests a weakness of fswap
q . Which parents are introduced in

line 9 of the algorithm and which parent instantiations to use in which of the
two preference orders for Dom(Vj) plays no role – only their numbers matter.
Hence there is no meaningful relationship between the preferences over Dom(Vj)
and the parent attributes of Vj ; the parents and their instantiations just serve
as dummies in order to allow for enough rules in the CPTs. The same, in fact,
applies to all non-linear norms used in place of squared distance.

9 Conclusions

The simple algorithm Mswap was proven optimal in aggregating any input tuple
of complete CP-nets in terms of cumulative swap disagreement. Under intuitive
structural conditions on the input, it was shown to run in polynomial time.
Conditions like these may well translate into notions of “groupability” in the
context of clustering users – if a group of user preferences are too dissimilar, we
may want to refrain from aggregating them and instead split them into two or
more clusters. One would then aggregate preferences for each cluster separately.
The fact that Mswap outputs a CP-net presents the possibility of using it for
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hierarchical clustering. The output of Mswap corresponds to the preference rela-
tion constructed by earlier methods that targeted only non-dominated outcomes.
This implies the equivalence of two seemingly different algorithmic problems.

While we established formal relationships between swap disagreement and
both versions of total disagreement, the latter tend to be more complex to mini-
mize than the former. We further demonstrated that aggregation wrt non-linear
norms may result in unintuitive consensus CP-nets. Future research might hence
focus on generating interesting suboptimal solutions. Another problem to be
addressed is the aggregation of CP-nets with non-binary attributes.
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Abstract. After introducing a new distance measure of a preference
profile to single-peakedness, directly derived from the very definition of
single-peaked preferences by Black [4], we undertake a brief compari-
son with other popular distance measures to single-peakedness. We then
tackle the computational aspects of the optimization problem raised by
the proposed measure, namely we show that the problem is NP-hard and
we propose an integer programming formulation. Finally, we carry out
numerical tests on real and synthetic voting data. The obtained results
show the interest of the proposed measure, but also shed new light on
the advantages and drawbacks of some popular distance measures.

Keywords: Computational social choice · Structured preferences ·
Distance measure to single-peakedness

1 Introduction

The study of structured preferences in social choice [7,21] starts from the obser-
vation that, although the opinions of individuals on candidates in an election
are heterogeneous, the voters often agree on the way the candidates are related
to each other, more precisely on the ideological proximities between them. Var-
ious preference structures can be considered to model these proximities, among
which are single-peaked preferences [4] and its extensions (see e.g. [18]), as well
as Euclidean models where the ideological positions of voters and candidates are
viewed as points in an Euclidean space [8].

A preference structure is also called a domain restriction in social choice
theory, because it restricts the domain of possible preferences for the voters by
assuming a consistency of the preferences with the proximities between can-
didates. Domain restrictions often make it possible to overcome social choice
paradoxes (such as the famous Arrow’s impossibility theorem [1]), and impact
the computational complexity of determining the winner of an election, as well
as the complexity of manipulating an election. For more details regarding these
computational aspects, we refer the reader to the survey by Elkind et al. [12].

Another issue addressed in the survey is that of recognizing structures in
preferences, i.e., determining whether a set of preferences has a given struc-
tural property and, if yes, returning the corresponding structure (left-right axis,
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graph or positions in the Euclidean space). The work we present here deals with
this recognition problem. We focus on the most well-known domain restriction,
that of single-peaked preferences. More precisely, we introduce a new distance
measure to single-peakedness for an election.

As emphasized by Feld and Grofman [15], the assumption that preferences
are perfectly single-peaked is indeed very strong if the alternatives are candidates
in an election (the case of numerical alternatives, such as tax levels, is obviously
different). We recall that preferences are said to be single-peaked if 1) all voters
agree on a left-right axis on the alternatives, and 2) the preferences of all voters
decrease along the axis when moving away from their most preferred alternative
to the right or left. Single-peakedness in the strictest sense thus requires that
no individual preference deviates (even slightly) from the single-peakedness con-
dition. Given an axis A, the number of rankings consistent with A (i.e., such
that condition 2 holds) is 2m−1, over m! possible rankings in total, where m
is the number of alternatives. The proportion of consistent rankings within all
possible rankings thus quickly becomes tiny when m increases (2m−1/m! ≈ 0.01
for m = 7), as well as the likelihood that no voter deviates from this subset of
preferences. This observation is corroborated by the numerical tests carried out
by Sui et al. [20] on 2002 Irish General Election data in Dublin West and Dublin
North, where the best axes explain only 2.9% and 0.4% of voters’ preferences.

Conitzer [7] distinguishes between two interpretations of nearly single-
peakedness (see e.g. [13] for a systematic study of nearly single-peaked elec-
torates): an interpretation where preferences are said nearly single-peaked if only
a few voters’ preferences deviates from a given axis A and the other voters’ pref-
erences are perfectly single-peaked w.r.t. A (the numerical tests reported above
corresponds to this interpretation); another interpretation where one allows all
voters’ preferences to deviate to some extent from a given axis A. The distance
measure we propose in this paper falls under the second interpretation, which
has been less studied and tested than the first one.

Given an axis A on the candidates and a set P of preferences, the idea is to
measure how far from single-peakedness w.r.t. A each individual preference is.
Put another way, each preference in the electorate partially fits with the axis
(according to a non-binary measure), and one sums up the degrees of fitness of
preferences in P to obtain the “degree of single-peakedness” of P w.r.t. A. More
precisely, one defines a distance to single-peakedness, i.e., the degree is 0 if P
is single-peaked w.r.t. A. We are thus seeking a procedure that returns both a
degree of single-peakedness of a profile and an axis that witnesses the obtained
value. These outputs allow the analysis of a political landscape, by answering
the questions: How close to single-peakedness is an electorate? How the voters
perceive the ideological proximities between candidates?

Related Work. While recognizing perfectly single-peaked preferences is a polyno-
mial time problem [3,10], determining the distance to single-peakedness (accord-
ing to various measures) is often NP-hard. Various notions of nearly single-
peakedness are present in the literature. We briefly review here notions that
do not relax the assumption of a one-dimensional axis on all the candidates,
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which excludes other approaches that return, e.g., an axis on a subset of can-
didates [13], an axis on clone sets [9], or multiple axes [2,20]. Most of them
have been introduced and/or studied by Faliszewski et al. [14], Erdélyi et al.
[13] and Elkind and Lackner [11]. Faliszewski et al. [14] studied k-voter dele-
tion single-peakedness, also known as partial single-peakedness in economics [19].
One says that an electorate is k-voter deletion single-peaked consistent if all but
k of the voters preferences (“maverick” voters) are consistent with a common
axis on the candidates. The smallest number k such that there exists an axis
w.r.t. which the electorate is k-voter deletion single-peaked can be viewed as a
distance to single-peakedness. Erdélyi et al. [13] as well as Bredereck et al. [6]
have proved that determining this distance is NP-hard. Elkind and Lackner [11]
have proposed a polynomial time 2-approximation algorithm for this distance,
and have established fixed-parameter tractability results (complexity O∗(1.28k)
if k < n/2, and O∗(2.08k) if k ≥ n/2, where n is the number of voters).

Erdélyi et al. [13] introduced k-local candidate deletion single-peakedness.
They first defined single-peaked consistency of a partial preference (linear order
on a subset of candidates) w.r.t. an axis A on all candidates: a partial preference
is single-peaked w.r.t. A if it is single-peaked w.r.t. the axis obtained from A
by removing the missing candidates. Then they say that an electorate is k-local
candidate deletion single-peaked consistent if, by removing at most k candidates
from each preference, one obtains a set of partial preferences that are single-
peaked with respect to a common axis. As above, the smallest k for which the
property holds can be viewed as a distance. Here again, the authors have proved
that determining this distance is an NP-hard problem.

The class of distance measures that is the closest to our work is that of swap
distances. Erdélyi et al. [13] introduced k-global swaps single-peakedness, where k
is the number of swaps of consecutive candidates that need to be performed in the
preferences to make the election single-peaked. Following Faliszewski et al. [14],
they also considered a “local budget” for swaps, i.e., they allow up to k swaps per
vote. They call k-local swaps this notion of nearly single-peakedness. For both
notions, Erdélyi et al. [13] have proved that computing the smallest k enabling to
make the election single-peaked is NP-hard. Finally, let us mention the notion of
PerceptionFlipk single-peakedness [14]. An electorate is PerceptionFlipk single-
peaked if there exists an axis A such that, for each voter, the axis A can be
transformed into an axis A′ by at most k swaps of consecutive candidates in
A so that the voter’s preference is single-peaked with respect to A′. Erdélyi et
al. [13] have proved that k-local swaps single-peakedness and PerceptionFlipk

single-peakedness are equivalent, in the sense that an electorate is k-local swaps
single-peaked iff it is PerceptionFlipk single-peaked.

Our Contribution. The originality of the distance measure we introduce in
the paper is that it directly follows from the very definition of Black’s single-
peakedness condition. For a given axis on the candidates, it consists in counting
the number of violations of the single-peakedness condition in the preferences.
We give a formal definition in Sect. 2, as well as some insights on the differ-
ences between this measure, k-voter deletion single-peakedness and k-global swap
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single-peakedness. We tackle computational complexity in Sect. 3: we prove that,
as for most of the proposed measures in the literature, computing an axis at
minimum distance to an electorate is NP-hard for our measure. We nevertheless
propose an exact method to compute such an axis, that turns out to be efficient
in practice. Then, in Sect. 4, we present the results of numerical tests on both
real and synthetic election data, to evaluate the relevance of the returned axes
on the candidates, providing also comparisons with the other notions of nearly
single-peakedness. Some proofs are missing due to lack of space.

2 Definition and Comparison with Voter Deletion and
Global Swap

2.1 Definition

We start by recalling some basic terminology of social choice theory. Given a
set C = {c1, c2, . . . , cm} of candidates and a set V of n voters (|V | = n), each
voter v ∈ V ranks all the candidates from the most to the least preferred one.
This ranking is called the preference relation of v. The (multi)set P of preference
relations of all the voters in V is called a profile. The couple (C,P) is called an
election. The definition of a single-peaked profile states as follows:

Definition 1 (Single-Peakedness). Let an axis A be a total order �A over a
set C = {c1, . . . cm} of candidates. Let >v denote the preference relation (total
order) of a voter v over C. Let c∗ denote the most preferred candidate of v (also
called the peak of v), i.e., c∗ >v c for all c �= c∗. The preference >v is single-
peaked with respect to A if for any ci, cj ∈ C, if cj �A ci �A c∗ or c∗ �A ci �A cj

then c∗ >v ci >v cj holds. A profile P is said to be single-peaked with respect to
A if every vote is single-peaked with respect to A.

Definition 2 (Betweenness Relation). The betweenness relation induced
by an axis A is the relation RA defined by:

RA = {(ci, cj , ck) ∈ C3 : ci �A cj �A ck or ck �A cj �A ci}.

Put another way, (ci, cj , ck) ∈ RA means that cj is between ci and ck on the
axis A (note that ci, cj and ck do not need to be consecutive on A). The notion
of A-forbidden triple that we introduce now will make it possible to measure the
consistency of a profile with an axis:

Definition 3 (A-Forbidden Triple). Let c∗ be the peak of a voter v. If
c∗ >v ci >v cj and (c∗, cj , ci) ∈ RA, then the triple T = (c∗, ci, cj) is called
A-forbidden in v.

Counting the number of A-forbidden triples in a profile P (by summing over
all >v ∈ P) amounts to counting the number of violations of the definition
of single-peakedness w.r.t. A. Note that the number of A-forbidden triples per
voter is upper bounded by (m − 1)(m − 2)/2 as c∗ is unique.
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Example 1. Let us consider the following profile with 5 candidates {1, 2, . . . , 5}
and 20 voters with the following preferences:

– 5 > 4 > 3 > 2 > 1 for 1 voter (type I);
– 1 > 2 > 3 > 4 > 5 for 10 voters (type II);
– 1 > 5 > 3 > 2 > 4 for 9 voters (type III).

Let us consider the axis A: 1 �A 2 �A 3 �A 4 �A 5. The voter of type I is
single-peaked with respect to A, so there is no A-forbidden triple for her. Voters
of type II are also single-peaked w.r.t. A, so the A-forbidden triples only occur
with voters of type III. There, for each of them there are 4 A-forbidden triples:
(1, 3, 2) (as 1 > 3 > 2 for the voters, but 1 �A 2 �A 3), (1, 5, 2), (1, 5, 3) and
(1, 5, 4). Then the number of A-forbidden triples in the profile is 36.

More generally, we define a new notion of nearly single-peakedness, that also
entails a distance measure to single-peaked profiles. Let FT (P, A) denote the
number of A-forbidden triples in P, and FT (P) = minA FT (P, A).

Definition 4 (k-Forbidden Triples Single-Peakedness). We say that a
profile P is k-forbidden triples single-peaked consistent if FT (P) ≤ k.

We will denote by AFT (P) an optimal axis, i.e., AFT (P) ∈ arg minA FT (P, A).

Example 2 (Example 1, Continued). Now, let us consider the following axis B:
4 �B 2 �B 1 �B 3 �B 5. Voters of type II are single-peaked w.r.t. B. For voters of
type III there is only one B-forbidden triple ((1, 5, 3)), and there are 4 forbidden
triples for the unique voter of type I. In total, there are 13 B-forbidden triples,
much smaller than 36 A-forbidden triples. Indeed, 19 voters are single-peaked or
very close to being so w.r.t. B. Actually, B is an optimal axis, i.e., FT (P) = 13
and AFT (P) = B.

2.2 Forbidden Triples, Voter Deletion and Global Swap

Let us highlight some differences between k-forbidden triples single-peakedness
and other notions of nearly single-peakedness. We focus on the notions of k-voter
deletion single-peakedness (we denote by V D the corresponding distance mea-
sure), k-global swaps single-peakedness (GS), and of course k-forbidden triples
single-peakedness (FT ). They all result in a single axis on all candidates (con-
trary to, e.g., multi-dimensional single-peakedness [20] and k-candidate deletion
single-peakedness [13]). Formally, V D(P, A) =

∑
>∈P δ(>,A) where δ(>,A) = 0

if > is single-peaked w.r.t. A, otherwise 1, and GS(P, A) =
∑

>∈P dswap(>,A),
where dswap(>,A) is the minimum number of swaps of consecutive candidates
to make > single-peaked w.r.t. A.

A major difference between V D, on the one hand, and FT and GS, on the
other hand, lies on the fact that the latter ones are much smoother. Namely, they
quantify how far a preference is from being single-peaked with respect to an axis,
by a distance which lies from 0 (single-peaked) to Θ(m2). On the opposite side,
V D only looks if a preference is single-peaked or not, so the distance is 0 or 1.
This may prevent V D to find interesting axis, with respect to which almost all
the preferences are almost single-peaked. We illustrate this point on Example 1.



24 B. Escoffier et al.

Example 3 (Example 1, Continued). There is no axis compatible with voters of
type II and III, so the axis 1�A 2�A 3�A 4�A 5 is the (unique, up to reversal) axis
compatible with voters of type I and II. Thus, it is optimal for V D. As pointed
before, this axis is not satisfactory, as almost half of the voters have preferences
very far from being single-peaked with respect to this axis. The axis B optimal
for FT seems to better fit nearly single-peakedness, as among the 20 voters, 10
are single-peaked w.r.t. it and 9 are very close to being single-peaked.

GS and FT are intuitively closer to each other than V D, but still have
some important differences. A first difference is computational, and will be dealt
with in the next sections: while both of them are NP-hard, FT is much easier
to compute in practice. FT and GS have also qualitative differences, and we
illustrate this through a property for which they behave differently.

Let us consider the following unpopularity property. It states that beyond a
certain level of unpopularity a candidate c can hardly be viewed as intermediate
between others, and thus there should be an optimal axis where c is at an
extremity. Let us say that a candidate is unpopular if she is never ranked in first
position, and ranked last by at least �n/2� voters1.

Property 1 (Unpopularity). Let (C,P) be an election. A distance d verifies the
unpopularity property if for any unpopular candidate c there exists an axis A
minimizing d(P, A) where c is at an extremity.

It is well-known that, if a profile is single-peaked, then such an unpopu-
lar candidate is indeed necessarily at an extremity of any compatible axis [10].
Interestingly, we show that dealing with nearly single-peakedness, among the
considered measures, FT is the only one for which the unpopularity property
holds.

Theorem 1. FT satisfies the unpopularity property, while GS and V D do not.

Proof (sketch). We prove that the property holds for FT .
Let c be a candidate never ranked in first position, and ranked in last position

by at least half of the voters. Let A be an arbitrary axis such that c is not one of
its extremities. Let us denote by m1 the number of candidates on the left of c in
A, and by m2 the number of candidates on the right of c. We define two axes Al

and Ar obtained from A by putting c respectively on the extreme left position
for Al, and on the extreme right position for Ar. We prove that at least one of
the axis Al, Ar is at least as good as A. To do so, for each voter v, we count
down the difference of the number of forbidden triples with respect to A and
with respect to Al and Ar. It consists in counting for each of axes the number
of triples involving the candidate c. In fact, as c is never ranked first and the
restrictions of A, Al and Ar on C \{c} lead in the same axis, we observe that the
1 As in any axiomatic approach, the specific situation considered here does not need

to often happen in practice: it is a thought experiment in which one considers a
hypothetical situation and examines whether the measure would behave well in such
a case.
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triple (ci, cj , ck) (with ci, cj , ck different from c) is forbidden with respect to A
if and only if it is forbidden with respect to Al (resp. Ar). Let v be an arbitrary
voter and c∗ the peak of v. Four configurations are possible:

(i) v ranks c in last position and c∗ is on the left of c in A;
(ii) v ranks c in last position and c∗ is on the right of c in A;
(iii) v does not rank c in last position and c∗ is on the left of c in A;
(iv) v does not rank c in last position and c∗ is on the right of c.

The Table 1 expresses FT (>v, Al) and FT (>v, Ar) in function of FT (>v, A) - if
the exact value can not be given, the upper bound (representing the worst case)
is given. For v of type (i), (c∗, c, c′) is forbidden (w.r.t. A) if and only if c′ is on
the right of c in A (there are m2 such positions). The candidate c is not involved
in any forbidden triple with respect to an axis Al or Ar, as it is placed on the
extremity. The same reasoning applies to v of type (ii). For a v of type (iii), in
the worst case c is not involved in any forbidden triple with respect to A, but
moving it on the left (resp. right) extremity will create up to m1 − 1 (resp. m2)
new forbidden triples. We reason the same way for type (iv).

Table 1. Values of FT (>v, Al) and FT (>v, Ar) in function of FT (>v, A), according
to the type of v.

Type FT (>v, Al) FT (>v, Ar)

(i) FT (>v, A) − m2 FT (>v, A) − m2

(ii) FT (>v, A) − m1 FT (>v, A) − m1

(iii) ≤ FT (>v, A) + m1 − 1 ≤ FT (>v, A) + m2

(iv) ≤ FT (>v, A) + m1 ≤ FT (>v, A) + m2 − 1

Assume that m1 ≤ m2. We prove that Al is always at least as good as A,
i.e., FT (P, Al) ≤ FT (P, A), which is written:

∑

>v∈P
FT (>v, Al) ≤

∑

>v∈P
FT (>v, A).

Thanks to Table 1 it is sufficient to prove that:

n(i)m2 + n(ii)m1 ≥ (n(iii) + n(iv))m1 − n(iii)

with nt the number of voters of type t. By assumption, n(i) + n(ii) ≥ n
2 . As we

assume that m1 ≤ m2, the inequality holds all the time.
If m1 ≥ m2, we prove in the same manner that Ar is always at least as good

as A. 	

We will present several other qualitative differences between the measures in

the experimental section.
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3 Computational Aspects

Given a preference profile P, we first note that determining FT (P, A) for a given
axis A can be handled in polynomial time O(nm2), where n = |P| and m = |C|,
by brute force enumeration of all triples. This complexity can be improved to
O(nm

√
log m) (proof omitted).

Let us now focus on the complexity of determining if FT (P) ≤ k for a given
k, i.e., the following problem:

FT Single-Peaked Consistency

Input: An election (C,P) and an integer k.
Output: Yes if FT (P) ≤ k, otherwise no.

We show that, similarly to other measures such as GS or V D, this is an NP-
complete problem:

Theorem 2. FT Single-peaked Consistency is NP-complete.

We now provide an Integer Program (IP) formulation, that turns out to be
efficient in practice in our experiments on this consistency problem. For each pair
{ci, cj} of candidates (with i �= j ∈ {1, . . . , m}), we introduce a binary variable
xij describing their relative position on the sought axis A. More precisely, the
constraints of type 1 and type 2 detailed below will ensure that: xij = 1 if ci�Acj ,
and 0 otherwise.

Additionally, for each voter v ∈ {1, . . . , n} and each pairwise preference
ci >v cj with π(v) �∈ {i, j}, where π(v) is the index of the peak of v, we define
a binary variable zvij related to the triple (cπ(v), ci, cj). More precisely, the
constraints of type 3 and type 4 detailed below will ensure that zvij = 1 if
(cπ(v), ci, cj) is A-forbidden in v, and 0 otherwise.

The sum of variables zvij is the number of forbidden triples in the profile
P. The IP objective function is then min

∑
(v,i,j)∈T zvij , where T = {(v, i, j) :

π(v) �∈ {i, j}, i �= j}.
We now detail the four types of constraints in the program:

1. For each pair {ci, cj} of candidates, one and only one of the variables {xij , xji}
equals 1.

2. For each tuple (ci, cj , ck), if xik = 1 and xkj = 1 then xij = 1 (because ci�Ack

and ck �A cj ⇒ ci �A cj).
3. For each (v, i, j) such that π(v) �∈ {i, j} and ci >v cj , if cπ(v) �A cj and cj �A ci

then zvij = 1 ((cπ(v), ci, cj) is A-forbidden in v, on the right side of the peak).
4. For each (v, i, j) such that π(v) �∈ {i, j} and ci >v cj , if ci �A cj and cj �A cπ(v)

then zvij = 1 ((cπ(v), ci, cj) is A-forbidden in v, on the left side of the peak).
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Altogether, we obtain the following IP, where T = {(v, i, j) : π(v) �∈ {i, j}, i �=
j}:

min
∑

(v,i,j)∈T

zvij

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xij + xji = 1 ∀{ci, cj} with i �= j (1)
xij ≥ xik + xkj − 1 ∀(ci, cj , ck) with i �= j �= k (2)
zvij ≥ xπ(v)j + xji − 1 ∀(v, i, j) ∈ T with ci >v cj (3)
zvij ≥ xjπ(v) + xij − 1 ∀(v, i, j) ∈ T with ci >v cj (4)
xij ∈ {0, 1} ∀i, j, zvij ∈ {0, 1} ∀(v, i, j) ∈ T

4 Experimental Study

We carried out numerical tests2 on real and randomly generated preference pro-
files in order to compare experimentally the distance measures GS, V D, FT . For
optimizing the V D distance, we used the C++ code developed by Sui et al. [20],
made available on the web3. For optimizing the FT distance, we used the Gurobi
software to solve the IP formulation. Finally, for optimizing the GS distance, we
used a brute force algorithm - to the best of our knowledge, no efficient algo-
rithm is known for this problem so far. In particular, no efficient IP formulation
is available in the literature for swap measures.

We study the quality of optimal axes on real data, compared to reference axes
whose design is detailed below. To evaluate the quality of an axis, we use the
following distance ρ between two axes A and A′ defined on the same set of can-
didates: ρ(A,A′) = |RA ∩ RA′ |/|RA| (note that |RA| = |RA′ |). Put another way,
we measure the proportion of the betweenness relation (see Definition 2) that
is common to the optimal axis and the reference axis. We call this proportion,
expressed in percentage in the sequel, recognition rate.

To go further and better understand the impact of the characteristics of the
profiles on the numerical results, we also study the quality of optimal axes on
profiles randomly generated according to diverse probability distributions for
structured preferences.

4.1 Numerical Tests on Real Data

The real data sets were taken from the 2007 Glasgow city council election and
a 2017 voting experiment during the French presidential election. The first data
set is available on the PrefLib website4, a library of preference data and links
assembled by Mattei and Walsh [17]. The second data set comes from the website
of the experiment called Voter autrement5 [5].

2 Tests performed on an Intel Core i7 (1.3 GHz base, 3.9 GHz turbo) with 8 GB RAM.
3 http://www.cs.toronto.edu/∼lex/code/asprgen.html.
4 https://www.preflib.org/data/index.php.
5 https://zenodo.org/record/1199545.

http://www.cs.toronto.edu/~lex/code/asprgen.html
https://www.preflib.org/data/index.php
https://zenodo.org/record/1199545
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The Glasgow election was separated in 21 wards (with one list of candidates
per ward). The data from 20 of them were used in our tests. Each ward involved
different candidates and voters, and elected 3 or 4 councillors using the Single
Transferable Vote (STV) system. This implies that some political parties had
several candidates for the same voting district. In order to fit the data with
our setting, we restricted ourselves to the votes (ballots) consisting of complete
rankings of the candidates. The number of candidates in the Glasgow data set
ranges from 8 to 11, and the number of complete votes from 320 to 1003. In the
Voter autrement data set, one file was usable for our purpose (file stv111.csv,
here also reporting the results of an experiment about STV), with 11 candidates
from as many distinct political parties and 4068 complete votes.

Regarding the computation times, an optimal axis for V D was computed in
less than 3 s (sec.) on all data sets, and generally in around 30–40 s (resp. 82 s)
for FT on a Glasgow ward (resp. on the French presidential election data). Of
course, the brute force algorithm used for GS was much slower: determining an
optimal axis with 6 candidates and 100 voters took about 20 s, which became
2 min for 7 candidates, and 10 min for 8 candidates.

For each election (at the level of a ward or a country), we built a reference
left-right axis on the candidates. To do so, we used Wikipedia as external source.
The free encyclopedia provides indeed a political position (of course debatable)
for each political party (e.g., left wing, centre, centre right, etc.). We assumed
that the political position of an affiliated candidate corresponds to that of the
belonging party, and we built an axis over the affiliated candidates based on
these positions. We excluded the non-affiliated candidates from the data sets as
we were not able to define a political position for them. Actually, the “Wikipedia
axis” is not unique since several parties can be labeled by the same political
position, or some parties can have several candidates in an election. For instance,
a Wikipedia axis reads ((1, 3), 2, (4, 5)), where the numbers are the indices of
candidates, and candidates {1, 3} as well as {4, 5} have indistinguishable political
positions. This leads to a set of 2·2 = 4 compatible axes : 1�3�2�4�5, 3�1�2�4�5,
1 � 3 � 2 � 5 � 4, and 3 � 1 � 2 � 5 � 4.

Note that indistinguishable political positions do not mean here that the
candidates share the same position on the political spectrum, but that we have a
partial knowledge of the exact axis. The sets of candidates with indistinguishable
political positions (as {1, 3} and {4, 5} above) are called blocks in the following.
Given a distance measure d (in {V D,FT,GS}) and a profile P, the recognition
rate is formulated in the following manner to take into account blocks:
min{ρ(Ad(P), A′) :A′ compatible with the Wikipedia axis}
where Ad(P) is an optimal axis according to d.

Apart from the recognition rate, we also distinguish three classes of results
for the optimal axis w.r.t. a distance:

– T (True): The optimal axis is compatible with the Wikipedia axis, e.g. 3 � 1 �
2 � 4 � 5 for ((1, 3), 2, (4, 5)).
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– EE (Exchanged Extremities): The optimal axis can be made compatible with
the Wikipedia axis by swapping the far left and far right blocks, e.g. an
optimal axis 5 � 2 � 6 � 4 � 3 � 1 for the Wikipedia axis ((1, 3), 2, 6, 4, 5).

– F (False): The optimal axis is called false otherwise.

We distinguish class EE because the experiments revealed a difficulty in
recognizing the two extreme blocks. To get an intuition of what is going on,
consider a profile where the two “extreme” candidates are ranked in the two last
positions by a large number of voters, in an arbitrary order, and the voters who
rank one of them in first position do not want to rank anyone else. The data do
not provide then much information to distinguish who is left wing and who is
right wing.

The results obtained are summarized in Table 2. Note that only the results
for the V D and FT measures are given in the table, because the brute force
algorithm used for the GS measure was not able to compute an axis in a reason-
able amount of time for more than 8 candidates. Regarding the two profiles with
8 candidates in the Glasgow data set, the results obtained with the GS measure
are of class EE, while with FT one result is of class T and the other of class EE
(the result is of class F in both cases with V D).

Table 2. Results on real election data. Rate means recognition rate.

d T EE F Rate T EE F Rate

Glasgow city council French election

V D 2 1 17 57.25% 0 0 1 58.8%

FT 5 5 10 67% 0 0 1 74.6%

Table 2 indicates how many times each class occurs for the V D and FT
measures (over 20 preference profiles for the Glasgow city council election and 1
for the French presidential election), as well as the average recognition rate. The
results tend to show that the recognition ability of the FT measure is better
than that of V D. When the FT measure is used, an axis perfectly compatible
with Wikipedia is recognized in nearly 24% of cases; it reaches 48% if one adds
the cases when the extremities are swapped.

Let us detail now in a more down-to-earth manner the results obtained on the
voting data from the French election. The Wikipedia axis is W = ((1, 2, 3), 4, 5,
(6, 7), (8, 9), 10), with one non-affiliated candidate excluded from the voting data
(for readability, the candidates are here numbered in function of their position
in W ). The axis AV D minimizing V D is 7 � 8 � 5 � 4 � 3 � 2 � 1 � 6 � 9 � 10, the
axis AFT minimizing the FT measure is 8 � 1 � 2 � 3 � 4 � 5 � 6 � 9 � 7 � 10; both
axes are not compatible with W , but AFT is much better than AV D in terms
of recognition rate. While it can be objected that this result may follow from
the fact that FT explicitly relates to triples while V D does not (although only
triples involving the peak are used in FT , not the whole betweenness relation),
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note that, by swapping candidates 7 and 9 and moving candidate 8 in AFT , an
axis compatible with W is obtained, while many more fixes are needed in AV D.

As for the recognition rate, it is slightly higher for the French election. It
may reflect the fact that a national election is commonly more structured by the
left-right political spectrum than a local election.

4.2 Numerical Tests on Synthetic Data

We also generated synthetic election data to deepen the analysis of the recogition
abilities of the V D, FT and GS measures. The aim is to model situations where
the preferences are noisy but there is a strong underlying structure. Given an
axis A, each preference relation is generated in two steps:

1. A candidate c∗ is drawn uniformly at random in C and an auxiliary prefer-
ence relation >0 of peak c∗ single-peaked w.r.t. A is generated uniformly at
random.

2. A preference relation > is drawn from the Mallows model centered around >0.

We recall that the Mallows model defines a probability distribution on rankings.
A central ranking >0 has the highest probability, and the probability of other
rankings > decreases in a Gaussian manner with the Kendall tau distance from
>0. The central ranking >0 is often interpreted as a “ground truth”, and rankings
> as noisy views of >0. Formally, given a dispersion parameter θ ≥ 0, the
probability P (>) of a ranking > is proportional to e−θd(>,>0), where d(., .) is
the Kendall tau distance. If θ = 0, the uniform distribution is obtained. The
greater the value of θ, the higher the probabilities of the rankings around >0. It
is known that using the Mallows model with parameters >0 and θ is equivalent to
generating a binary relation R where, for each pair ci, cj of candidates, if ci >0 cj ,
then ciRcj with probability p = eθ/(1 + eθ); if the obtained binary relation R
is transitive then stop and return the corresponding ranking, otherwise repeat
the process until R is transitive. For the sake of interpretability, in the tables,
we give the value of p instead of θ.

We used the PerMallows R package6 for generating rankings according to
the Mallows model. For a fast generation of the profiles, the number of voters
is set to 100 and the number m of candidates varies from 7 to 9. The above
probability p takes its values in {0.7, 0.75, 0.8, 0.85, 0.9}. For each couple (m, p)
of parameter values, 100 instances were generated and one counted the number
of instances for which the axis is perfectly recognized.

As the GS brute force algorithm is not usable in practice for more than 7
candidates, we give only the results for V D and FT . However, we generated
instances with 5 to 7 candidates and observed very similar results with GS and
FT .

The results are reported in Table 3. It appears that the V D measure is the one
for which axis A is the most often recognized. This result was quite unexpected
because it is well-known, as mentioned in the introduction, that an optimal axis
6 https://cran.r-project.org/package=PerMallows.

https://cran.r-project.org/package=PerMallows
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for V D explains only a few percentage of voter preferences in real election data
- and this is the case in these election data. Nevertheless, the good behaviour
of V D can be simply explained by the manner in which the preferences are
generated here: the probability that a voter preference is perfectly compatible
with A is low but is the highest among all the preferences, thus the law of large
numbers plays in favor of V D, and this with all the more intensity as probability
p is high.

To refine the analysis, we also studied the recognition rates for FT and V D,
since it is a smoother criterion than the previous one. The results are reported
in Table 4. The differences are then much narrower, which means that, for the
instances where A is not perfectly recognized, the optimal axis for FT is very
similar to A.

Computation Times for Optimizing the FT Distance. We also carried out some
numerical tests with a greater number of candidates and/or voters to evaluate
how the running time scales for initializing and solving the IP of Sect. 3. In
preliminary tests, the running times did not appear to vary significantly with the
value of θ used for generating the profiles, thus we set θ = 0, which corresponds
to a uniform distribution on the rankings. The running times obtained seem
to be much more sensitive to the number of candidates than to the number of
voters: on the one hand, for 100 voters, solving the IP took about 3–4 (resp. 10)
minutes for 15 (resp. 20) candidates; on the other hand, for 11 candidates, it
took about 50 s (resp. 2 min, 5 min) for 1000 (resp. 5000, 10000) voters.

Table 3. Percentage of profiles where the axis is perfectly recognized, w.r.t. distance
measure d and probability p.

p 7 candidates 8 candidates 9 candidates

d

VD FT VD FT VD FT

0.7 39% 9% 26% 5% 12% 3%

0.75 85% 46% 74% 29% 58% 16%

0.8 100% 93% 98% 81% 91% 67%

0.85 100% 98% 100% 98% 100% 95%

0.9 100% 100% 100% 100% 100% 100%

Robustness to Similar Candidates. Another case which can make single-peaked
preferences noisy is the presence of similar candidates. We say that candidates
c and c′ are similar if some voters perceive c as the left neighbour of c′ on the
left-right spectrum while others perceive the opposite. More generally, a subset
of candidates are similar if they are consecutive on the left-right spectrum and
the perception of their order changes with the voters. Such a subset of candidates
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Table 4. Recognition rates w.r.t. measure d and probability p.

p 7 candidates 8 candidates 9 candidates

d

VD FT VD FT VD FT

0.7 83.5% 75% 77.5% 72% 72% 69.1%

0.75 96% 89.1% 93.7% 86.7% 58% 83.2%

0.8 100% 99.1% 99.5% 97.3% 91% 96.2%

0.85 100% 99.8% 100% 99.9% 100% 99.7%

0.9 100% 100% 100% 100% 100% 100%

is called block below. We studied here the robustness to the presence of similar
candidates of each of the considered measures.

Let us call weak axis an axis where several candidates are similar, and
describe such an axis with the same notation used for Wikipedia axes. We con-
sidered weak axes where the blocks contained approximately the same number
of candidates - that means there were no political position shared by (consid-
erably) more candidates than the others. In practice, we worked with the axes
((1,2),(3,4),(5,6)) for m = 6 candidates, ((1,2),(3,4),(5,6),(7,8)) for m = 8, and
((1,2),(3,4,5),(6,7,8),(9,10)) for m = 10. For each weak axis, number of voters
and number of candidates, we generated 1000 profiles7 and computed an opti-
mal axis according to FT and V D. For each measure, we counted the number
of times the returned axis was compatible with the weak axis. Regarding the
FT measure, the optimal axis was compatible with the weak axis in all tests
performed, independently of the number of voters or candidates. In contrast,
the V D measure is much less robust to the presence of similar candidates: the
percentages of profiles for which the optimal axis for V D was compatible with
the weak axis are given in Table 5.

Table 5. Percentages of profiles for which the optimal axis for V D was compatible
with the weak axis.

#cand. #voters

100 200 500 1000

6 47% 25% 23% 10%

8 17% 8% 0% 0%

10 8% 1% 0% 0%

7 For a weak axis A, each preference relation in the profile is generated in two steps: (1)
an axis A′ compatible with A is generated uniformly at random; (2) a candidate c∗

is drawn uniformly at random in C, then a preference relation is generated uniformly
at random among preferences of peak c∗ single-peaked w.r.t. A′.
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5 Conclusion

We have proposed a new distance measure to single-peakedness, based on count-
ing the number of violations of Black’s definition. After a brief comparison with
other existing measures, we have shown that determining an optimal axis for this
measure is NP-hard. We have then presented an IP formulation, and carried out
numerical tests on real and synthetic data. They show that the proposed measure
compares favorably to other popular measures. In particular, the IP formulation
is operational while no efficient procedure is known for minimizing the number
of swaps in the preferences to make them single-peaked; it is more robust to
noise in preferences than minimizing the number of votes to delete.

For future work, from a computational viewpoint, one may wonder whether
problems that are NP-hard in general but polynomial time on single-peaked pro-
files remain tractable for nearly (w.r.t. FT ) single-peaked electorates. Besides,
a local version of the new measure (where, instead of the sum, we minimize the
maximum over the voters of the number of forbidden triples), together with a
comparison to local versions of V D and GS, might be investigated. Also, it would
be interesting to undertake the same type of approach, based on the very defi-
nition of a restricted domain, for defining distance measures to other domains,
such as the single-crossing domain [16], or single-peaked preferences on a graph
[18].
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Abstract. While traditional social choice models assume that the
set of candidates is known and fixed in advance, recently several
researchers [2,5,7,15,18] have proposed to reject this hypothesis. In par-
ticular, the unavailable candidate model of Lu and Boutilier [15] consid-
ers voting situations in which some candidates may not be available and
focuses on minimising the number of binary disagreements between the
voters and the consensus ranking. In this paper, we extend this model
and present two new voting rules based on a finer notion of disagree-
ment, called dissatisfaction. The dissatisfaction of a voter is defined as
the disutility gap between its preferred available candidate and the can-
didate elected by the consensus ranking. In the first approach, called
ex ante dissatisfaction rule, the disutility is independent of the set of
available candidates whereas the second approach, called ex post dissat-
isfaction rule, assumes that the disutility depends on which candidates
are actually available. We provide several results for the two rules. On
the one hand, we show that the ex ante rule actually coincides with
standard positional scoring rules; therefore, a consensus ranking can be
computed in polynomial time. On the other hand, we exhibit strong links
between ex post rule and Kemeny rule and we provide a polynomial-time
approximation scheme (PTAS) for the ex post problem.

Keywords: Computational social choice · Preference aggregation ·
Unavailable candidate model · Polynomial-time approximation scheme

1 Introduction

Traditional social choice theory assumes that the set of candidates is well known
before voting takes place. This assumption is not always valid especially in com-
puter science applications (such as recommender systems, decision aid tools,
electronic commerce applications) but also in more traditional settings, such as
choosing a candidate for a job (a candidate may accept a different job after the
hiring committee made its decision). In recent years, several approaches have

This work was mainly conducted while at LIP6, Sorbonne Université.
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been proposed to address the problem of candidates’ unavailability, in particular
within computational social choice [6]. Among these approaches, strategic candi-
datures have been studied extensively [8,9,13]. Some works have dealt with the
problem of finding robust winners when considering the addition of new candi-
dates [7] or in a context where it is possible to “query” the availability of the
candidates [5]. Oren et al. [18] study how many candidates the voters have to
rank to ensure the true winner with high probability despite the unavailability
hypothesis. Top-k voting may also be a way to deal with unavailability in [17].

An approach of particular interest is the unavailable candidate model (UCM)
proposed by Lu and Boutilier [15]. It assumes that candidates may become
unavailable after voters expressed their preferences; therefore there is a need to
make decisions in the face of uncertain candidate availability. The optimal rank-
ings are computed by minimisation of the expected number of disagreements
over all the possible subsets of available candidates. In [15], the probability dis-
tribution on these subsets is supposed to follow a Bernoulli law whereas several
other authors [2,11,12] used other distributions. Lu and Boutilier provide a clear
decision-theoretic justification for producing a ranking instead of a single win-
ner. Indeed, a ranking serves as a very compact decision policy: the winner is the
output ranking’s best candidate among the available ones. Yet, the binary dis-
agreement used in [2,11,12,15] relies on strong hypotheses that can be discussed,
as acknowledged by the authors: a voter is satisfied only if its favourite available
candidate is elected (as in “plurality” rule) and fully unsatisfied otherwise.

We argue that the voter’s satisfaction should vary more smoothly and depend
on the rank it gives to the candidate declared as winner by the aggregation. In
this paper, we extend the UCM by assuming that positions are associated with
disutility values and compute dissatisfaction as the disutility gap between the
voter’s preferred available candidate and the candidate declared as winner. The
goal is then to produce a ranking that minimises the expected dissatisfaction
under the probability distribution on the subsets of candidates. We observe that
there are two opposed ways to measure the satisfaction of the voters, either by
considering the ranks of the candidates in the whole preference order of the voter
(ex ante approach), or the ranks of the candidates within the subset of available
candidates (ex post approach). Hence, we analyse our generalisation of the UCM
from these two perspectives; we also show connections to other voting schemes.

We introduce background and notations, and review the UCM in Sect. 2. In
Sect. 3, we present our framework and introduce the two different models, ex
ante and ex post dissatisfactions, that we thoroughly analyse in Sects. 4 and 5
respectively. Finally we provide concluding remarks (Sect. 6).

2 Background

Throughout the paper, given a set E , P(E ) denotes the set of all the
subsets (powerset) of E and |E | denotes the cardinality of E . We define
�1;m� := {1, . . . , m}. We now present our basic assumptions (Sect. 2.1) and we
summarise the UCM (Sect. 2.2).
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2.1 Basic Assumptions

We assume that there are m candidates and we call C the set of all the can-
didates. Given a non-empty subset of candidates S ⊆ C, we use RS to denote
the set of rankings (permutations) of the candidates of S. We use R without
subscript to mean RC , the set of full rankings involving all candidates in C.
A ranking can be represented explicitly by the tuple that lists the candidates
from the most to the least preferred; for instance, the tuple (b, c, a) denotes the
ranking that ranks b in first position, c in second position and a in last position.
Given a ranking r, ri denotes the candidate ranked in i-th position by r. For
example, if r = (b, c, a), r1 = b, r2 = c and r3 = a.

We suppose that, for every voter v, the preferences of v over the candidates
can be modelled by a ranking. We will then identify voters with their associated
rankings and all the definitions that apply to rankings implicitly apply to voters
and vice-versa. Given a ranking r ∈ R, the associated preference order is denoted
as >r (and derived orders ≥r, <r and ≤r have the obvious meanings). For
example, a and b being two candidates, a >r b means that a is better ranked
(has a lower rank) than b in r.

Given a ranking r ∈ R and a candidate a ∈ C, r(a) denotes the position
(rank) given to a by r. If S is a non-empty subset of C, the expression rS(a)
denotes the rank of a in the restriction of ranking r that considers only elements
of S. In other words, rS(a) = 1 + |{b ∈ S|b >r a}|. In particular, rC(a) = r(a).
Using these notations amounts to see r as the bijection that maps a candidate
a ∈ C to its rank r(a) ∈ �1;m� in the whole set of candidates1 and to see rS

as the bijection that maps a candidate a ∈ S to its rank rS(a) ∈ �1; |S|� in the
subset S. Given a non-empty subset S of C and a ranking r ∈ R, topr(S) is the
candidate which is the most preferred by r among the candidates of S. In other
words, topr(S) = r−1

S (1) if we identify rS with the bijection from S to �1; |S|� as
explained above. By convention, topr(∅) = a∅ where a∅ is a default alternative
when none of the candidates are available (for instance, postpone the election).
Another convention is that, if r is a ranking, r∅(a∅) = r(a∅) = 12.

Under the assumption of anonymity, we will consider voting situations [4]
that we here model as multisets of rankings (since the same ranking may occur
several times). Considering n ∈ N fixed throughout the paper, we use V to
denote the collection of the multisets of n rankings (representing voters).

Given a ranking r and i ∈ �1;m�, we introduce Si(r) = {a ∈ C|a ≤r ri} =
{rj |j ∈ �i;m�}, the set of candidates that, in the ranking r, are in position i
or worse and Si(r) = P(Si(r)) the powerset of Si(r). In addition, Ti(r) =
{S ∪ {ri}|S ∈ Si(r)} = {S ∈ Si(r)|ri ∈ S} is the collection of all sets of
candidates that contain ri, and no candidate better than ri in the ranking r.
Note that Ti(r) is also equal to {S ⊆ C| topr(S) = ri} i.e. the collection of all
sets of candidates whose top-element according to r is ri.
1 With this point of view, the candidate in the i-th position can be seen as the preimage

of i by r, i.e. ri = r−1(i).
2 These conventions are aimed at simplifying the proofs and do not interfere with the

search of optimal rankings since a∅ is not in C.
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2.2 Unavailable Candidate Model

We consider a setting where the availability of the candidates is uncertain. We
assume a probability distribution P on P(C) that we will refer to as the unavail-
ability distribution (not necessarily known by the voters). For every S ⊆ C,
P (S) denotes the probability that the set of available candidates is exactly
S3. We use PC to denote the set of probability distributions on P(C). Given
P ∈ PC and an application g defined on P(C), the expectation of g under P is
E

S∼P
[g(S)]:=

∑
S⊆C P (S)g(S).

Definition 1. P ∈ PC is pair-sensitive if ∀S ⊆ C, |S| = 2 ⇒ P (S) > 0.

Definition 2. P ∈ PC is said impartial if it satisfies ∀S ⊆ C,∀S′ ⊆ C, |S| =
|S′| ⇒ P (S) = P (S′). P̃C denotes the set of impartial probability distributions
of PC . We then define, for P ∈ P̃C , P̃ as follows: for k ∈ �1;m�, P̃ (k) is the
probability P (S) for any S ⊆ C of cardinality k4. P is impartial means that P
treats all the candidates equally.

Lu and Boutilier [15] propose to evaluate a ranking with respect to the
expected disagreement that measures, for each voter, the binary disagreement
that evaluates to one if the winner (the elected candidate) is not the same as the
voter’s preferred choice among the available choices and zero otherwise. Assum-
ing that the probability of a candidate to be unavailable is p ∈ ]0; 1[, the expected
number of disagreements between two rankings r and r′ is defined as

Dp(r, r′) :=
∑

S⊆C

pm−|S|(1 − p)|S|1[topr(S) 
= topr′(S)] (1)

Observation 1. Dp is a metric.

An optimal ranking is a ranking that minimises
∑

v∈V Dp(r, v). Note that Dp

implicitly assumes that the best decision would be to follow plurality when the
set of available candidates is revealed. Since a ranking has to be produced before
the set S is revealed, the optimal ranking is the one that best approximates
“plurality a posteriori”. Plurality is a rule that is not perceived satisfactory
from the point of view of social theory [14] because it only takes into account
the first candidate of the voter’s preference and thus loses a lot of information.
Precisely, a major advantage of plurality is its simplicity and the small quantity
of information needed and, thus, the cognitive load for the voters is reduced. This
is not the case in the UCM where the complete ranking of preferences is anyway
needed for each voter. Generalising scoring rules via ex post dissatisfaction and
not only plurality provides a richer model and does not require more information,
except the disutility functions which may be, in a lot of scenarios, the same for
all voters.
3 The atomic elements being the subsets of C, P should actually be defined on
P(P(C)) and the probability that the set of available candidates is equal to S
would be P ({S}). We nevertheless write P (S) for the sake of readability.

4 The notation P̃ (k) must not be confused with the probability that the set of available
candidates is of cardinality k, which is actually equal to P̃ (k) × (

m
k

)
.
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3 Generalised Unavailable Candidate Model

In this work we provide a generalisation of the UCM by evaluating a ranking with
respect to the expected dissatisfaction that it imposes on the voters. A ranking
defines a policy for making a choice under uncertain availability of candidates.
The final choice is the top ranked candidate among the available ones. The voters
suffer a degree of dissatisfaction that depends on the position of the final choice
in their own ranking. In order to introduce our model, as the first thing, we need
to define a function that maps rank positions to “disutility” values.

Definition 3. A disutility function (DF) ρ is an increasing mapping from �1;m�
to R. ρ may be represented as a sequence i.e. ρ = (ρ(i))i∈�1;m�. ρ(i) measures
how much a voter is unsatisfied by the item at the i-th position in its ranking.

The overall idea of our generalised model is the following. Given a ranking
r, when the set S of available candidates is observed, the candidate topr(S) is
declared the winner; in other words the winner is the highest ranked candidate
in S with respect to r. As far as the voter v is concerned, its most desired
candidate is topv(S). We allow the disutility functions to depend on the voter
and note ρv the disutility function associated to voter v. This implies that, in
the generalised UCM, considering a voter v is actually considering the ranking
of the preference of v and the DF ρv, the definition of V being consequently
adapted. Nevertheless, in the absence of ambiguity and to lighten the notations,
v may refer to either the voter or its preference order in the remainder of the
paper. ρv and the position in v of a candidate a determine the disutility that
voter v suffers from the election of a. The dissatisfaction, with respect to S, is
then the difference between the disutility of topr(S) and that of topv(S). Finally,
the total dissatisfaction is the sum of the dissatisfactions of all the voters in V .
When we produce a ranking, the set of available candidates is not known but we
know the distribution P . We thus aim at providing the ranking that minimises
the total dissatisfaction in expectation over P .

In the following we make this reasoning more concrete and discuss two differ-
ent methods to compute dissatisfaction that differ on whether full or restricted
rankings are considered.

3.1 Ex ante Dissatisfaction

In this approach, the dissatisfaction is computed using the positions of the can-
didates in the whole set of candidates C. When a candidate a ∈ S is chosen as
winner, with S being the set of available candidates, voter v suffers disutility
ρv(v(a)), i.e. the disutility associated with the position of a in the full rank-
ing v, while its most preferred candidate in S would have given him disutility
ρv(v(topv(S))); this gives ρv(v(a)) − ρv(v(topv(S))) as value of dissatisfaction.
We then take the expectation of such a value under P , since the set S is not
known beforehand. Finally, we obtain Δ̂P (v, r), that we formally define now.
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Definition 4. Let P ∈ PC be a probability distribution, v be a voter (or rank-
ing), ρv be the DF associated to v, and r a ranking. We define

Δ̂P (v, r) := E
S∼P

[ρv(v(topr(S))) − ρv(v(topv(S)))]

and, if V ∈ V , Δ̂P (V, r) :=
∑

v′∈V Δ̂P (v′, r).

Proposition 1. For any P ∈ PC , Δ̂P ≥ 0 and, for any voter v, Δ̂P (v, v) = 05.

We call Δ̂P the ex ante dissatisfaction measure associated to P and
ρv(v(topr(S))) − ρv(v(topv(S))) is the ex ante dissatisfaction induced by r ∈ R
in S ⊆ C to the voter v. The ex ante dissatisfaction induced by r in the empty
set to v is ρ(v(a∅)) − ρ(v(a∅)) = 0 so the empty set does not contribute to
the ex ante dissatisfaction measure. Note that the singletons do not contribute
either since they cannot generate dissatisfaction. We also call the application
Δ̂P defined on V × R, the ex ante dissatisfaction measure associated to P .

Definition 5. The optimal rankings for V ∈ V are defined as the elements of
arg min

r∈R
(Δ̂P (V, r)). We also write this set R̂∗

P (V ).

Example 1. Let m = 3, C = {a, b, c}. Let P ∈ PC be the uniform probability
distribution: for all S ⊆ C, P (S) = 1

8 . Let n = 11. Let V ∈ V be a set of 11 vot-
ers, 4 of them voting according to the ranking r′ = (a, b, c) and 7 of them voting
according to the ranking r′′ = (c, a, b). We assume that all voters have the same
DF ρ = (0, 1, 2). Note that, for every r ∈ R, Δ̂P (V, r) = E

S∼P
[4ρ(r′(topr(S))) +

7ρ(r′′(topr(S)))]−χ(V ) where χ(V ) := E
S∼P

[4ρ(r′(topr′(S)))+7ρ(r′′(topr′′(S)))]

does not depend on r. The following array displays, for all r ∈ R, from left
to right, the value of topr(S) for every non-empty and non-singleton S ⊆ C,∑

S⊆C ρ(r′(topr(S)),
∑

S⊆C ρ(r′′(topr(S)) and Σ = 4
∑

S⊆C ρ(r′(topr(S)) +
7
∑

S⊆C ρ(r′′(topr(S)) = 8[Δ̂P (V, r) + χ(V )].

r S

abc ab ac bc ρ(r′(topr(S)) ρ(r′′(topr(S)) Σ

(a, b, c) a a a b 0 + 0 + 0 + 1 1 + 1 + 1 + 2 39

(a, c, b) a a a c 0 + 0 + 0 + 2 1 + 1 + 1 + 0 29

(b, a, c) b b a b 1 + 1 + 0 + 1 2 + 2 + 1 + 2 61

(b, c, a) b b c b 1 + 1 + 2 + 1 2 + 2 + 0 + 2 62

(c, a, b) c a c c 2 + 0 + 2 + 2 0 + 1 + 0 + 0 31

(c, b, a) c b c c 2 + 1 + 2 + 2 0 + 2 + 0 + 0 42

We deduce that the only optimal ranking is (a, c, b).

5 Referring to the definition of Δ̂P , one can note that the first argument of Δ̂P here
is voter v itself while the second argument is its preference order.
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3.2 Ex post Dissatisfaction

In this model, we assume that the disutility felt by a voter when a candidate
is elected depends on its position within the set S of the actually available
candidates. More precisely, when a candidate a ∈ S is chosen as winner, voter
v suffers disutility ρv(vS(a)), that is the disutility value associated to vS(a),
the position of a in the ranking obtained by restricting v to the set S. Voter v’s
most preferred candidate in S would have given him disutility ρv(vS(topv(S))) =
ρv(1), yielding dissatisfaction ρv(vS(a)) − ρv(1). The expectation of such value
under P gives ΔP (v, r), that we formally define now.

Definition 6. Let P ∈ PC , v be a voter (or ranking) with DF ρv and r be a
ranking.

ΔP (v, r):= E
S∼P

[ρv(vS(topr(S))) − ρv(1)].

and, if V ∈ V , ΔP (V, r) :=
∑

v′∈V ΔP (v′, r).

Proposition 2. For any P ∈ PC , ΔP ≥ 0 and, for any voter v, ΔP (v, v) = 0.

We call ΔP the ex post dissatisfaction measure associated to P whether it is
defined on R2 or V ×R. For a voter v, a ranking r, S ⊆ C, ρv(vS(topr(S)))−ρv(1)
is the ex post dissatisfaction induced by r in S to v. The ex post dissatisfaction
induced by r in the empty set to v is ρv(v∅(a∅)) − ρv(1) = ρv(1) − ρv(1) = 0 so
the empty set does not contribute to the ex post dissatisfaction measure. As in
the ex ante approach, the singletons do not contribute either.

Definition 7. The optimal rankings for V ∈ V are defined as the elements of
arg min

r∈R
(ΔP (V, r)). We also write this set R∗

P (V ).

Example 2. We will take the situation of Example 1 and study it with the ex
post approach. We keep the same notations as in Example 1. Let r ∈ R. Since
ρ(1) = 0, we directly have ΔP (V, r) = E

S∼P
[4ρ(r′

S(topr(S)))] + 7ρ(r′′
S(topr(S)))].

Let us summarise the computations in the following array, as in Example 1:

r S

abc ab ac bc ρ(r′
S(topr(S)) ρ(r′′

S(topr(S)) Σ

(a, b, c) a a a b 0 + 0 + 0 + 0 1 + 0 + 1 + 1 21

(a, c, b) a a a c 0 + 0 + 0 + 1 1 + 0 + 1 + 0 18

(b, a, c) b b a b 1 + 1 + 0 + 0 2 + 1 + 1 + 1 43

(b, c, a) b b c b 1 + 1 + 1 + 0 2 + 1 + 0 + 1 40

(c, a, b) c a c c 2 + 0 + 1 + 1 0 + 0 + 0 + 0 16

(c, b, a) c b c c 2 + 1 + 1 + 1 0 + 1 + 0 + 0 27

Hence, the optimal ranking is (c, a, b). Note that this is a different ranking from
the optimal ranking obtained in the ex ante approach, namely (a, c, b).
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The question whether the ex ante or the ex post approach is more relevant
is open. On the one hand, the ex ante model captures the idea that the “util-
ity” perceived by a voter when a candidate is elected should be independent of
whether another candidate is available or not. On the other hand, the ex post
approach is more relevant if we want to focus on the regret of the voters: if the
candidate a is elected, the more available candidates that voter v preferred to
a have been excluded, the more regret v will experiment. We also believe that
the ex post approach reduces the incentive of manipulating with regards to the
unavailability distribution. Indeed, a voter who knows the unavailability distri-
bution (but not the preferences of the other voters) may use this knowledge to
manipulate the vote in both approaches. Nevertheless, in a situation where two
candidates are much more likely to be available than the others for instance
(case of a partial unavailability distribution), the benefit of manipulating must
be higher in the ex ante approach since ranking these two candidates at the
extreme positions (first and last) will increase the influence of the voter in the
result of the aggregation. Quantitative results confirming this intuition would
require further work. We will see in the following that both ex ante and ex post
models are interestingly linked to several well known voting rules. Note that
the ex post approach is also considered in [2,11] and, in particular, by Lu and
Boutilier in [15] as the following proposition shows.

Proposition 3. Let p ∈ ]0; 1[. Dp is the ex post dissatisfaction measure ΔP

whose probability distribution is P : S ⊆ C �→ pm−|S|(1 − p)|S| (a Bernoulli
distribution as defined in Sect. 5) and with the DF 1 − 1{1} = (0, 1, ..., 1) for all
voters. We call 1 − 1{1} the binary DF.

Note that Lumet et al. [16] also proposed a double ex ante/ex post approach
in a problem of fair allocation of indivisible goods with the assumption that
some goods may turn out to be in bad condition and thus unusable. Choosing
between their two approaches consists of choosing whether the aggregation over
the agents is performed before or after the expectation over the conditions of the
objects in the computation of what the authors call the collective utility. The
utility of an object in good condition is well defined and fixed. By contrast, in our
work in which the aggregator over the voters is simply the sum6 and commutes
with the expectation, the ex ante/ex post distinction is based on the definition
of the dissatisfaction and on the fact that the disutility can be computed either
before or after knowing the actual set of available candidates.

4 Ex ante Dissatisfaction

4.1 Link with Scoring Rules

We now develop the theory of ranking with respect to ex ante dissatisfaction
measure and show the connection with positional scoring rules.
6 Studying other aggregators is a perspective that would allow us to give more focus

on fairness in the consensus production.
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Definition 8. Let V ∈ V . We define sV : a ∈ C �→ ∑
v∈V ρv(v(a)).

Definition 9. Let V ∈ V . We define R↑(V ) the set of rankings where the candi-
dates are ranked in the increasing order of sV (there can be several such rankings
if some candidates have equal scores).

The following theorem characterises the ex ante dissatisfaction rule. It shows
that, regardless of the unavailability distribution P , an optimal ranking can
be found by sorting alternatives with respect to their score. Moreover, if P is
pair-sensitive, the set of all optimal rankings is the exact output of the scoring
rule with scoring function −ρv for voter v. This result echoes the one from [20]
which characterises scoring rule via minimisation of the positional Spearman
semi-metric, with the restrictive assumption of strictly increasing scores.

Theorem 1. Let P ∈ PC and V ∈ V . Then, R↑(V ) ⊆ R̂∗
P (V ).

If, besides, P is pair-sensitive, R↑(V ) = R̂∗
P (V ).

Sketch of Proof. We show that minimising ΔP (V, r) amounts to minimising
ψ(V, r) = E

S∼P
[sV (topr(S))] and that, for any S ⊆ C, sV (topr(S)) is minimal

if r ∈ R↑(V ). In the case where P is pair-sensitive, if r /∈ R↑(V ) we can find
i ∈ �1;m − 1� such that sV (ri) > sV (ri+1). Exchanging the positions of ri and
ri+1 in r strictly reduces the value of ψ(V, r) so r is not optimal. Note that, if
P is not pair-sensitive and P ({a, b}) = 0, in the case where r∗ ∈ R↑(V ) with
r∗
m−1 = a and r∗

m = b, then r deduced from r∗ by swapping a and b is also
optimal, but not in R↑(V ) if sV (a) < sV (b).

Corollary 1. An optimal ranking for V ∈ V in the ex ante dissatisfaction model
can be found in polynomial time in m and n.

Corollary 2. Let V ∈ V . Let P ∈ PC and P ′ ∈ PC be two pair-sensitive prob-
ability distributions. Then R̂∗

P (V ) = R̂∗
P ′(V ).

The previous corollary expresses that the set of optimal rankings for V does not
depend on the unavailability distribution as long as the latter is pair-sensitive.

Example 3. Let C = {a, b, c, d}. Let V be the multiset of three voters among
which one votes according to (d, b, a, c), one according to (d, a, b, c) and one
according to (b, c, a, d). We suppose that all voters have the DF ρ = (0, 1, 2, 3).
We have: sV (a) = 2 + 1 + 2 = 5, sV (b) = 1 + 2 + 0 = 3, sV (c) = 3 + 3 + 1 = 7,
sV (d) = 0 + 0 + 3 = 3. The rankings that rank the candidates in the increasing
order of sV thus are (b, d, a, c) and (d, b, a, c). We deduce that these two rank-
ings are the optimal rankings for V whatever is the pair-sensitive unavailability
distribution.

5 Ex post Dissatisfaction

In this section, we study ex post dissatisfaction rule from an algorithmic point of
view and under natural assumptions on the unavailability distribution and the
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DF. It is obvious that the ex post dissatisfaction is unchanged by a translation
on any of the voters’ DF. Hence, without loss of generality, we will consider in
the following that all the DF are null in 1 and therefore non-negative on �1;m�.

Remark 1. Let P ∈ PC . If all the voters’ DF are null in 1 then, for all (V, r) ∈
V × R, ΔP (V, r) =

∑
v∈V E

S∼P
ρv(vS(topr(S)))7.

Definition 10. A DF ρ is discriminating at the top (DT) if ρ(1) < ρ(2).

Proposition 4. Let P ∈ PC pair-sensitive. Let v be a voter with DF ρv. We
have (∀r ∈ R,ΔP (v, r) = 0 ⇐⇒ r = v) if, and only if, ρv is DT.

Conversely, let P ∈ PC not pair-sensitive. For any voter v, there exists a
ranking r 
= v such that ΔP (v, r) = 0 (ρv being either DT or not).

Observation 2. Multiplying all voters’ DF by α ∈ R
∗
+ does not change R∗

P (V ).

Proof. Multiplying all the voters’ DF by the same α multiplies ΔP by α.

Definition 11. A DF ρ is overnormalised if it is DT, ρ(1) = 0 and ρ(2) ≥ 1.

Proposition 4 incentives us to study only DF that are DT. In this context,
Observation 2 shows that we can restrict our study to overnormalised DF without
loss of generality - it suffices to multiply all the DF by 1

min
v∈V

ρv(2)
.

As in the work of Lu and Boutilier [15], we introduce a specific kind of
probability distribution of PC . Assuming that the probability of a candidate to
be unavailable is independent of the presence of the other candidates and that
this probability is equal to p ∈ ]0; 1[ for all candidates, we get the probability
distribution S ⊆ C �→ pm−|S|(1 − p)|S|. We call it the Bernoulli distribution of
parameter p. Note that a Bernoulli distribution is impartial and pair-sensitive.

5.1 Connections with Kendall’s Tau Metric

In the following, for any (r, r′) ∈ R2, κ(r, r′) :=
∑

i<j 1[ri <r′ rj ] is the Kendall’s
tau metric between r and r′ and, for any (V, r) ∈ V ×R, κ(V, r) :=

∑
v∈V κ(v, r).

Remark 2. Let us suppose that all voters have the DF ρ = (0, 1, ..., 1), i.e. the
binary DF. Let P be the impartial probability distribution of PC that is non-
null only on the pairs; in other words, for S ⊆ C, if |S| = 2, P (S) = 2

n(n−1) ,
otherwise P (S) = 0. For any (V, r) ∈ V × R, ΔP (V, r) = 2

n(n−1)κ(V, r). Hence,
ΔP is the Kendall’s tau metric within a strictly positive factor.

A result of Baldiga and Green in [2] shows that the Kemeny rule and the ex
post dissatisfaction rule with binary DF for all voters and general impartial
unavailability distribution may produce different rankings and highlights in that
way the role of the unavailability distribution.
7 This remark motivates our choice of considering disutilities instead of utilities

because, when ρv(1) = 0 for all v ∈ V , the ex post dissatisfaction measure can
be seen as a simple sum of expectations of ρv(vS(topr(S))).
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Definition 12. For (r, r′) ∈ R2, i ∈ �1;m�, we define xr,r′(i) := |{a ∈ C|a >r

r′
i ∧a <r′ r′

i}| = rSi(r′)(r′
i)− 1 the number of candidates ranked after r′

i in r′ but
before r′

i in r.

We now recall a proposition established with other notations in the proof of
Theorem 11 of [15] that will be useful in the following.

Proposition 5. [15] Let (r, r′) ∈ R2. κ(r, r′) =
∑m

i=1 xr,r′(i) =
∑m−1

i=1 xr,r′(i).

Definition 13. The Borda DF maps i ∈ �1;m� to i − 1.

The Borda DF is overnormalised. The name Borda DF is justified by the
fact that, if all voters have the Borda DF and P ∈ PC is an arbitrary pair-
sensitive probability distribution, Theorem 1 shows that the ex ante dissatisfac-
tion rule based on the minimisation of Δ̂P is equivalent to the Borda rule.

Lemma 1. If ρ is a DF, P ∈ PC is a Bernoulli distribution of parameter
p ∈ ]0; 1[, (r, r′) ∈ R2 and i ∈ �1;m�,

∑

S∈Ti(r′)

P (S)ρ(rS(topr′(S))) =
xr,r′ (i)∑

j=0

ρ(j + 1)
(
xr,r′(i)

j

)
(1 − p)j+1pxr,r′ (i)+i−j−1.

The next proposition establishes the link with Kendall’s tau.

Proposition 6. Let p ∈]0; 1[ and P ∈ PC be the Bernoulli distribution of
parameter p. Let r ∈ R and v be a voter with the Borda DF.

It holds: ΔP (v, r) = (1 − p)2
∑m−1

i=1 xv,r(i)pi−1.

Proposition 6 shows that the ex post dissatisfaction measure associated to
the Borda DF and a Bernoulli distribution can be seen as a weighted version of
the Kendall’s tau metric but in a different sense than in [19] or [10] since here
the weight associated to an inversion in the computation of ΔP (v, r) does not
depend on the ranks of both candidates but only on the rank of the candidate
ranked before in r and after in v.

5.2 Solving the Ex post Dissatisfaction Problem

Complexity of the Ex post Dissatisfaction Rule. In the sequel, given
q ∈ [1;+∞[, a DF ρ is said to be q-sub-geometrical if ρ is overnormalised and,
for any k ∈ �2;m�, ρ(k) ≤ qk−2ρ(2). Theorem 2 shows that optimising ex post
dissatisfaction measure is NP-hard.

Theorem 2. We suppose that all the voters have the same DF ρ and that ρ is
q-sub-geometrical, for a q ∈ [1;+∞[. Let ε ∈]0, 1

nm(m−1)+1 [. Let p ∈ [max((1 −
ε)

1
m−1 , q−(1+ε)

1
m−1

q−1 ); 1[8. Let P ∈ PC be the Bernoulli distribution of parameter
p, and V ∈ V . Any ranking in R∗

P (V ) is also a Kemeny consensus.

8 ε > 0 so both (1 − ε)
1

m−1 and q−(1+ε)
1

m−1

q−1
are strictly lower than 1.
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Sketch of Proof. Using the assumptions on p and ρ, we prove, for all (V, r) ∈
V × R: ρ(2)(1 − p)2(1 − ε)κ(V, r) ≤ ΔP (V, r) ≤ ρ(2)(1 − p)2(1 + ε)κ(V, r). The
bounds on ε and these inequalities enable us to show a contradiction if we suppose
the existence of an optimal ranking which is not a Kemeny consensus.

Corollary 3. For any number of candidates m ∈ N
∗, we suppose that the voters’

DF are all qm-sub-geometrical, with qm ∈ [1;+∞[. For m ∈ N
∗, we consider

εm ∈ ]0, 1
nm(m−1)+1 [, pm ∈ [max((1 − εm)

1
m−1 , qm−(1+εm)

1
m−1

qm−1 ); 1[, Pm ∈ PC

the Bernoulli distribution of parameter pm, and Vm a voting situation for m
candidates. The problem of size m of finding r ∈ R minimising ΔPm

(Vm, r) is
NP-hard.

Proof. Since finding a Kemeny consensus is NP-hard [3], Theorem 2 gives us the
NP-hardness of the problem where all the voters have the same DF. Therefore,
the more general problem where DF depend on the voters is also NP-hard.

A Polynomial-Time Approximation Scheme. We here exhibit an approx-
imation algorithm for the ex post dissatisfaction rule and present some interme-
diary results that allow us to prove this is a PTAS under natural assumptions.
In this subsection, P denotes the Bernoulli distribution of parameter p ∈ ]0; 1[.
Firstly, let us introduce some definitions necessary to the construction of the
algorithm.

Definition 14. If there is no ambiguity on P and V , we define f : (S , a) ∈
P(P(C)) × C �→ ∑

v∈V

∑
S∈S
a∈S

P (S)ρv(vS(a)). For a ∈ C, let

f(a) := f(P(C), a).

Observation 3. Let V ∈ V , r ∈ R. ΔP (V, r) =
∑m

i=1 f(Si(r), ri).

Definition 15. For V ∈ V , r ∈ R, k ∈ �1;m�, l ∈ �k;m�, we
denote Δk,l

P (V, r) :=
∑

v∈V

∑l
i=k

∑
S∈Ti(r)

P (S)ρv(vS(ri)) =
∑l

i=k f(Si(r), ri)
the contribution to ΔP (V, r) of the subsets of C for which one of the candidates
of {ri|i ∈ �k; l�} is winning according to r.

We now define our MyopicTop algorithm (Algorithm 1). It is conceptually
similar to the one of Lu and Boutilier but makes use of a new notion of dominance
(Corollary 4) which encapsulates the complexity of ex post dissatisfaction rule
and applies to any DF.

Example 4. Let C = {a, b, c, d, e}, p = 1
4 , K = 2, V constituted of three voters

(a, b, c, d, e), one voter (a, c, b, d, e) and one voter (c, a, d, e, b), all voters with
Borda DF. a is dominant in C. In C \ {a}, there is no dominant candidate and
the rankings of C \ {a} minimising Δ2,3

P (V, r) are the rankings starting with
(c, b). Then, MyopicTop algorithm outputs (a, c, b, d, e) or (a, c, b, e, d).

Lemma 2. Let V ∈ V and a ∈ C. If there exists an optimal ranking that ranks
a in first position, then, for every candidate b ∈ C, (1 + p)f(b) ≥ (1 − p)f(a).
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Corollary 4. Let V ∈ V be a voting situation and a ∈ C. If, for all b ∈ C \{a},
(1 + p)f(a) < (1 − p)f(b), then, a is the first candidate of all optimal rankings.
In this case, we call a the dominant candidate.

Algorithm 1: MyopicTop
Input: C, p, V , K
Output: r = (r1, ..., rm)
C′ ← C; i ← 1;
while C′ �= ∅ and C′ has a dominant candidate do

ri ← the dominant candidate in C′;
C′ ← C′ \ {ri};
i ← i + 1;

end

Determine (ri, ..., ri+K−1) ∈ CK such that, for any r′ ∈ RC\{r1,...,ri+K−1},
(r1, ..., ri+K−1, r

′
1, ..., r

′
m+1−i−K) ∈ arg min

r′′∈R
r′′
j =rj ,j<i

Δi,i+K−1
P (V, r′′);

Arbitrarily order the remaining m + 1 − i − K candidates;

Proposition 7. The MyopicTop algorithm runs in O(nmmax(3,K+2)).

Sketch of Proof. Lemma 1 shows that the while loop can be performed in
O(nm3). The second part of the algorithm needs to test only m!

(m−K)! = O(mK)

rankings since, once the i − 1 first candidates are fixed, Δi,i+K−1
P (V, r) only

depends on the candidates between the ith and the i + K − 1th positions in r.
Besides, we can reuse Lemma 1 to show that Δi,i+K−1

P is computed in O(nm2).
Hence, the second part is performed in O(nmK+2). The last part is done in
O(m).

Lemma 3 allows us to apply Corollary 4 to subsets of C. We can then show
Theorem 3 which proves that MyopicTop algorithm is a PTAS for the ex post dis-
satisfaction rule when the normalised DF are bounded9. Note that here param-
eter p is assumed to be fixed and independent on n and m. This differs from
the assumptions made to establish the NP-hardness result in Theorem 2. The
question whether the problem with p fixed is NP-hard or not remains open.

Lemma 3. Let V ∈ V , r∗ ∈ R∗
P (V ) be an optimal ranking. For all k ∈

�1;m�, (r∗
k, ..., r∗

m) ∈ arg min
r∈RSk(r∗)

(∑
v∈V

∑
S∈Sk(r

∗) P (S)[ρv(vS(topr(S)))]
)

i.e.

(r∗
k, ..., r∗

m) is an optimal ranking for the reduced set of candidates Sk(r∗) =
{r∗

k, .., r∗
m}.

9 It is unclear whether there exists a PTAS if the normalised DF are not bounded.
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Theorem 3. We consider voting situations where voters’ DF are overnor-
malised and bounded by a fixed M ∈ R

∗
+: for any voter v, for all i ∈ �1;m�,

ρv(i) ≤ M . Let ε > 0, K = �log 1
p
( 2M
(1−p)3ε )� and V ∈ V . Let r∗ ∈ R∗

P (V )
be an optimal ranking and r be the ranking obtained via the MyopicTop algo-
rithm with inputs C, p, V , K. If ΔP (V, r∗) = 0 then ΔP (V, r) = 0. Otherwise,
ΔP (V,r)
ΔP (V,r∗) ≤ 1 + ε.

Sketch of Proof. First of all, we show that, if the while loop runs until there is no
remaining candidates, then r = r∗. This happens, for instance, when ΔP (V, r∗) =
0 and then, in this case, we also have ΔP (V, r) = 0. If the while loop ends
before, at an index i − 1, where i ∈ �1;m�, r coincides with r∗ for the first i − 1
candidates and Δi,i+K−1

P (V, r) ≤ Δi,i+K−1
P (V, r∗) by construction of r. Besides,

we show that Δi+K,m
P (V, r) ≤ nMpi+K−1 and, the fact that r∗

i is not dominant
in Si(r∗) enables us to show that f(Si(r∗), r∗

i ) ≥ n
2 pi−1(1 − p)3. Finally, by

construction of K, we get ΔP (V,r)
ΔP (V,r∗) ≤ 1 + Δi+K,m

P (V,r)

f(Si(r∗),r∗
i )

≤ 1 + 2MpK

(1−p)3 ≤ 1 + ε.

Note that, for the algorithm to be polynomial, the bound M must not depend
on the number m of candidates. The assumption whereby the DF are bounded
may seem restrictive but is actually quite reasonable if we suppose that a voter
cannot cognitively conceive an unbounded dissatisfaction. Indeed, one can natu-
rally consider that, after a fixed rank, all alternatives are equally disliked by the
voter, the disutility value M would then mean “I completely dislike this alter-
native”. DF can even be strictly increasing, but converging towards M . Hence,
this upperbound assumption models the increasing difficulty for the voters to
discriminate between alternatives as they go further in their preference rankings.

6 Conclusion

We provided an extension of the UCM accounting for rank-based dissatisfaction.
The voters’ preferences are aggregated in a ranking that minimise the overall
expected dissatisfaction and is used to select the winner once the available can-
didates are known. We considered two different settings, ex ante and ex post,
corresponding to different ways of defining dissatisfaction, provided a theoreti-
cal analysis of both cases, and gave algorithms for finding or approximating an
optimal ranking. This analysis showed that the assumption used to define dissat-
isfaction has a crucial impact on the complexity of the voting rule. Interestingly,
we showed that this two-sided model provides a unified representation for very
different voting rules, spanning from positional scoring rules to Kemeny rule.

Future works may include analysis of practical performance with simulations.
We now provide some theoretical directions of research. First of all, we are inter-
ested in studying other probability distributions (including non impartial ones)
than Bernoulli and thereby emphasising the fact that ex post model generalises
voting rules studied in [2,11,15]. Other aggregators than the sum could enable us
to include fairness considerations [16]. A quite different idea, inspired from [15],
would be to analyse the link between optimal rankings and optimal policies - i.e.
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choice functions - in the ex post approach. We believe that there is a connection
between the comparison ex ante/ex post optimal rankings and the rationalis-
ability of optimal policies; this would echo Theorem 1 from [2] that links the
rationalisability of optimal policies to the influence of the unavailability distri-
bution. More quantitavely, we could study the role of the inconsistency (in the
sense of [1]) of the optimal policies. Comparing ex ante and ex post approaches in
terms of manipulation could also be fruitful as mentioned in Sect. 3.2. Finally, we
are also interested in studying elicitation of preferences in a context of uncertain
availability.
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Abstract. Social choice deals with the problem of determining a con-
sensus choice from the preferences of different agents. In the classical
setting, the voting rule is fixed beforehand and full information con-
cerning the preferences of the agents is provided. This assumption of
full preference information has recently been questioned by a number of
researchers and several methods for eliciting the preferences of the agents
have been proposed. In this paper we argue that in many situations one
should consider as well the voting rule to be partially specified. Focusing
on positional scoring rules, we assume that the chair, while not able to
give a precise definition of the rule, is capable of answering simple ques-
tions requiring to pick a winner from a concrete profile. In addition, we
assume that the agent preferences also have to be elicited. We propose
a method for robust approximate winner determination and interactive
elicitation based on minimax regret; we develop several strategies for
choosing the questions to ask to the chair and the agents in order to
converge quickly to a near-optimal alternative. Finally, we analyze these
strategies in experiments where the rule and the preferences are simul-
taneously elicited.

Keywords: Uncertainty in AI · Computational social choice ·
Preference elicitation

1 Introduction

Aggregation of preference information is a central task in many computer sys-
tems (recommender systems, search engines, etc.). In many situations, such as
in group recommender systems, the goal is to find a consensus choice; social
choice theory can provide foundations for such applications. The traditional
approach to social choice assumes that 1) the full preference orderings of the
agents and 2) the social choice function are expressed beforehand. These repre-
sent two strong hypotheses. Requiring agents to express full preference orderings
can be prohibitively costly (in terms of cognitive and communication cost). This
observation has motivated several works assuming partial preference orders: one
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early work is by Conitzer and Sandholm [7] who studied the complexity of com-
munication when using different voting rules; Konczak and Lang [15] studied
the computation of possible and necessary winners for various voting rules; Xia
and Conitzer [34] then showed that, while the identification of a necessary co-
winner in scoring rules is polynomial, the determination of possible co-winners
is NP-hard; additional complexity results were given by Walsh [32] and Pini
et al. [25].

Since in many practical situations there would be too many possible winners
but no necessary winners, several works addressed the problem of agent prefer-
ences elicitation using a variety of approaches (minimax regret, Bayesian meth-
ods, etc.) with the goal of converging to a necessary winner [2,9,14,21,24,26].
Among those, Walsh [33] and Conitzer [6] analyzed when to stop the elicitation
process.

A second concern is the ability of the chair (the person or organization super-
vising the voting process) to provide a precise definition of the voting rule, sug-
gesting the relaxation of the second hypothesis. Indeed, it is often difficult for
non-experts to formalize a voting rule on the basis of some generic preferences
over a desired aggregation method. Here we provide two examples of such situ-
ations.

Consider, as a first example, a chair that is about to hire a new employee
whose performances are evaluated by several experts. The members of the chair
may not have a voting rule in mind at the start of the process, and might not
wish to agree on a specific voting rule. However, they might be willing to answer
a few questions requiring to select who should be the winner out of specific
profiles.

Consider, as a second example, the reviewing process of a conference where
the best paper must be elected. The agents express their preferences on the
papers they reviewed, but they are not aware of the voting rule the Program
Chair will apply when aggregating them. Nonetheless, reviewers are still willing
to participate in the process. Also, the PC may not have a specific voting rule
in mind, and she will find it hard to provide a precise scoring vector if asked.
Maybe she strongly believes that being ranked once in the first position is “much
more” valuable than being ranked two times second, but does not know exactly
how much more (though she can judge example cases).

In this paper, we focus on positional scoring rules with convex weights, that
are a particularly common method used to aggregate rankings. We develop meth-
ods, based on the notion of minimax regret, for determining a robust “winner”
under uncertainty of both the voting rule and the agent preferences. We pro-
vide incremental elicitation methods that at each step of the elicitation question
either one of the agents or the chair, and we discuss several heuristics to choose
questions that quickly reduce the regret. Answers to questions are encoded as
constraints; questions to the agents are comparisons between pairs of alternatives
while questions to the chair ask to select a winner out of a synthetic profile.

While some previous works have considered partially specified aggregation
methods [20,30,31], we do not know of any work considering both sources of
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uncertainty at the same time. Actually, very few works altogether have consid-
ered the problem of eliciting a voting rule by asking questions to the chair. We
mention the work of Cailloux and Endriss [5] that assumes a different repre-
sentation for the rule. Additionally, some works address the manipulability of
voting rules [1,8,10,11] and strategic behaviors [12,17,27].

Our approach is evaluated on simulations with synthetic and real datasets
where both the voting rule and the agent preferences are initially unknown to the
system and incrementally revealed through questioning. We assume the chair to
be human, thus able to answer questions about a limited number of alternatives,
so we focus on small scale social choice situations. We compare the effectiveness
of several questioning strategies based on the current knowledge of the rule and
preferences. To summarize our contributions: 1) we provide a novel mechanism
for eliciting a voting rule by translating abstract questions about weights to
a choice of an alternative given a concrete profile; 2) we show that with our
elicitation method it is possible to reach low regret with a reasonable number
of questions; 3) we present elicitation strategies that achieve good results within
reasonable computation time; 4) we show that for the class of rules considered,
asking a few questions to the chair suffice to reach low regret; 5) our experiments
suggest that low degree of similarity among preferences (as in impartial culture)
is a more challenging setting than less varied profiles.

2 Social Choice with Partial Information

We now introduce some basic concepts. We consider a set A of m alternatives
(products, restaurants, public projects, job candidates, etc.) and an infinite set
N of potential agents.

A profile (�j , j ∈ N) considers a finite subset of agents N ⊂ N and associates
to each agent a preference order �j ∈ L(A), a linear order over the alternatives.
A profile is equivalently represented by v = (vj , j ∈ N) where vj(x) ∈ {1, . . . , m}
denotes the rank of alternative x in the preference order �j . A social choice func-
tion f : ∪∅�=N⊂N,NfiniteL(A)N → P∗(A) associates to each profile a set of (tied)
winners, where P∗(A) is the powerset of A excluding the empty set. Among
the many possible social choice functions, we consider convex positional scoring
rules (PSRs). A PSR fw is parameterized by a scoring vector w associating
weights wr ∈ [0, 1] to positions, with 1 = w1 ≥ w2 ≥ ... ≥ wm = 0. Let αx

r be
the number of times that alternative x was ranked in the r-th position. Given v
and w, an alternative x ∈ A obtains the score

s(x;v,w) =
∑

j∈N

wvj(x) =
m∑

r=1

αx
rwr. (1)

The winners fw (v) are the alternatives with highest score.
An important class of PSRs is the one using convex weights [19,30], meaning

that the difference between the weight of the first position and the weight of the
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second position is at least as large as the difference between the weights of the
second and third positions, etc.

∀r ∈ {1, . . . , m − 2} : wr − wr+1 ≥ wr+1 − wr+2. (2)

The constraint above is a natural and common assumption, often used when
aggregating rankings in sport competitions (such as F1 racing, alpine skiing
world cup): losing ranks at the top is more damaging than losing ranks at the
bottom. Let W denote the set of such convex weight vectors.

We consider a specific finite set of agents N∗ ⊂ N and let v∗ = (�∗
j , j ∈ N∗)

and w∗ denote the profile and weight vector, unknown to us, that represent the
preferences of the agents in N∗ and of the chair.

At a given time, our knowledge of agent j’s preference is encoded by
a partial order �p

j ⊆ �∗
j over the alternatives, a transitive and asymmet-

ric relation (we assume that preference information is truthful). An incom-
plete profile p = (�p

j , j ∈ N∗) maps each agent to a partial preference. Let
C(�p

j ) = {� ∈ L(A) | �p
j ⊆ �} denote the set of possible completions of �p

i

and C(p) =
∏

j∈N C(�p
j ) the set of complete profiles extending p. Note that

v∗ ∈ C(p).
The vector w∗ is also unknown but we assume that the chair is able to specify

additional preference information taking the form of linear constraints about w∗.
Let W ⊆ W denote the set of weight vectors compatible with the preferences
expressed by the chair about the scoring vector. We will show in Sect. 4 that the
additional preferences we use can be elicited by showing a complete profile of a
synthetic election and asking who should be elected in this case.

3 Robust Winner Determination

It is desirable in an elicitation protocol such as ours to be able to stop before
reaching full knowledge of the agent preferences or of the preferences of the chair
about the voting rule. As, often, there are no necessary winners and too many
possible winners, it is useful to declare a winner given partial information. As a
decision criterion to determine a winner, we propose to use minimax regret [29].
This decision criterion has been used for robust optimization under data uncer-
tainty [16] as well as in decision-making with uncertain utility values [3,28]. In
particular, Lu and Boutilier [21] have adopted minimax regret for winner deter-
mination in social choice where the preferences of agents are partially known,
while the social choice function is known.

We consider the simultaneous presence of incomplete knowledge in agent
preferences and in the weights of the PSR. We use maximum regret to quantify
the worst-case error, and let the alternatives that minimize this quantity win,
giving some robustness in face of ignorance. Intuitively, the quality of a proposed
alternative a is how far a is from the optimal one in the worst case, given the
current knowledge.

Given p and W (that represent the current knowledge about agent prefer-
ences and the PSR), the maximum regret is considered by assuming that an
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adversary can both 1) extend the partial profile p into a complete profile, and 2)
instantiate the weights choosing among any weight vector in W . We formalize
the notion of minimax regret in multiple steps. First of all, Regret(x,v,w) is
the “regret” of selecting x as a winner instead of the optimal alternative under
v and w:

Regret(x,v,w) = max
y∈A

s(y;v,w) − s(x;v,w).

The pairwise maximum regret of x relative to y given the partial profile p and
the set of weights W is the worst-case loss of choosing x instead of y under
all possible realizations of the full profile and all possible instantiations of the
weights:

PMR(x, y;p,W ) = max
w∈W

max
v∈C(p)

s(y;v,w) − s(x;v,w).

The maximum regret is the worst-case loss of x:

MR(x;p,W ) = max
y∈A

PMR(x, y;p,W ) = max
w∈W

max
v∈C(v)

Regret(x;v,w). (3)

MR(x;p,W ) is the result of an adversarial selection of the complete profile v ∈
C(p) and of the scoring vector w ∈ W that jointly maximize the loss between x
and the true winner under v and w. Finally, MMR(p,W ) = minx∈A MR(x;p,W )
is the value of minimax regret under p and W , obtained when recommending a
minimax optimal alternative x∗

p,W ∈ A∗
p,W = argminx∈A MR(x;p,W ). Picking

as consensus choice an alternative associated with minimax regret provides a
recommendation that gives worst-case guarantees. In cases of ties, we can return
all minimax alternatives A∗

p,W as winners or pick one of them using some tie-
breaking strategy.

Observe that if MMR(p,W ) = 0, then any x∗
p,W ∈ A∗

p,W is a necessary
winner: any valid completion of the profile and choice of w ∈ W gives to x∗

p,W

the highest score.
We note that our notion of regret gives some cardinal meaning to the scores:

instead of just being used to select winners under the corresponding PSR, their
differences are considered as representing the regret of the chair.

Computation of Minimax Regret. Given a voting rule and a partially specified
profile, Xia and Conitzer [34] determine necessary winners by showing construc-
tions that attempt to maximize the score difference between a proposed winner
and a chosen alternative. This reasoning was later adopted by Lu and Boutilier
[21] who used the considerations on the worst-case completions for computing
the minimax regret.

In order to compute pairwise maximum regret, and therefore minimax regret,
we decompose the PMR into the contributions associated to each agent by adapt-
ing this same reasoning to our setting. The context is however more challenging
due to the presence of uncertainty in the weights.

Recall that, in the computation of s(x;v,w), wvj(x) represents the score
that x obtains in the ranking vj (see Eq. (1)). Since scoring rules are additively
decomposable, we can consider separately the contribution of each agent to the
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total score. Thus, we can write the actual regret of choosing x instead of y as
s(y;v,w) − s(x;v,w) =

∑
j∈N wvj(y) − wvj(x), and we obtain

PMR(x, y;p,W ) = max
w∈W

∑

j∈N

max
vj∈C(�p

j )
[wvj(y) − wvj(x)].

The following propositions show that the procedure for completing a partial
profile, proposed by Lu and Boutilier [21] when considering a fixed weight vector,
also applies in our setting. We write a 
p

j b iff a �p
j b ∨ a = b and adopt the

canonical notation when considering a relation as a function, writing 
p
j (x) for

{y | x 
p
j y}.

Proposition 1. There exists a completion v̂ ∈ C(p) of the partial profile p
such that PMR(x, y;p,W ) = maxw∈W [s(y; v̂,w) − s(x; v̂,w)] and such that the
linear order v̂j of each agent j satisfies:

a �j x ⇔ ¬(x 
p
j a); (4)

y �j a ⇔ ¬(a 
p
j y) ∧ ¬((x 
p

j y) ∧ ¬(x 
p
j a)). (5)

Proof Sketch. Consider our knowledge 
p
j about the preference of the agent j.

The adversary’s goal is to make the score of y as high as possible and the score
of x as low as possible. To do this, he should complete �p

j to �j by placing
above x as many alternatives as possible; that is, all the alternatives except
those that are known to be worse than x (those a such that x 
p

j a); and
similarly, he should put below y all the alternatives he can. Two conditions must
be excluded for a to go below y. The alternatives such that a 
p

j y can’t be put
below y. Furthermore, the first objective must take priority over the second one:
when an alternative should go above x according to the first objective (because
¬(x 
p

j a)), and x is known to be better than y (thus x 
p
j y), then a should

be put above x (irrespective of whether a 
p
j y), which will move both x and y

one rank lower than if a had been put below y. This maximizes the adversary’s
interests: because the weight vector is convex, the score difference will be lower
when both alternatives are ranked lower (Eq. 2), and that difference of scores is
in favor of x when x �p

j y, thus to be minimized from the adversary’s point of
view. ��
Proposition 2. The rank of x in the PMR-maximizing linear orders of agent
j is v̂j(x) = 1 + |A| − |
p

j (x)|, and the rank of y is v̂j(y) = 1 + |≺p
j (y)| + |β|,

where |β| = |A \ (
p
j (x) ∪ ≺p

j (y))| if (x 
p
j y) and |β| = 0 otherwise.

Proof. The rank of x is directly obtained from Eq. (4). The rank of y is obtained
by complementing Eq. (5), obtaining a 
j y ⇔ (a 
p

j y)∨((x 
p
j y)∧¬(x 
p

j a)),
and, observing that a �j y ⇔ a �= y ∧ a 
j y, obtaining that a �j y if and only
if

(a �= y) ∧ [(a 
p
j y) ∨ ((x 
p

j y) ∧ ¬(x 
p
j a))], (6)

or equivalently, if and only if

(a �p
j y) ∨ ((x 
p

j y) ∧ ¬(x 
p
j a)). (7)
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Indeed, (6) ⇒ (7), and (7) ⇒ (6) because (x 
p
j y) ∧ ¬(x 
p

j a) ⇒ a �= y (as
when a = y, (x 
p

j y) and ¬(x 
p
j a) are opposite claims). Suffices now to rewrite

Eq. (7) to let the two disjuncts designate disjoint sets:

a �j y ⇔ (a �p
j y) ∨ ((x 
p

j y) ∧ ¬(x 
p
j a) ∧ ¬(a �p

j y)). (8)

��
Note that in Proposition 2, in the case (x 
p

j y), β is the number of alterna-
tives incomparable with both x and y.

Proposition 3. The PMR can be written as:

PMR(x, y;p,W ) = max
w∈W

∑

j∈N

wv̂j(y) − wv̂j(x) = max
w∈W

m∑

r=1

(α̂y
r − α̂x

r )wi, (9)

where α̂y
r (resp. α̂x

r ) is the number of times y (resp. x) has rank r in the complete
profile v̂ defined in Proposition 2.

Proposition 3 shows that PMR is linear in the weights. The pairwise max
regret PMR(x, y;p,W ) can thus be obtained by solving the following linear
program defined on the variables w1, ..., wm:

max
w

m∑

r=1

(α̂y
r − α̂x

r )wr s.t. w1 = 1 ≥ ... ≥ wm = 0,Eq. (2) and w ∈ W. (10)

The max regret MR(x;p,W ) is determined by computing the pairwise regret of
x with all other alternatives in A, and the recommended alternatives are the ones
with least max regret. Observe that when the PMR of an alternative x (against
some other alternative y) exceeds the best MR value found so far, we do not
need to further evaluate x. This idea can be exploited using a minimax-search
tree [4].

4 Interactive Elicitation

We propose an incremental elicitation method based on minimax regret. At
each step, the system may ask a question either to one of the agents about her
preferences or to the chair about the voting rule. The goal is to obtain relevant
information to reduce minimax regret as quickly as possible. The elicitation can
be terminated either after a given number of questions, or when the minimax
regret is lower than a threshold (or when it drops to zero if we wish optimality).

Question Types. We distinguish between questions asked to the agents and ques-
tions asked to the chair. As questions asked to the agents we consider comparison
queries relating two alternatives. The effect of a response to a question asked
to an agent is the increase in our knowledge about the agent rankings, thus
augmenting the partial profile p. If agent j answers a comparison query stating
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that alternative a is preferred to b, then the partial order �p
j is augmented with

a �p
j b and by transitive closure.
A bit more discussion is needed about questions asked to the chair. Such

questions aim at refining our knowledge about the scoring rule; a response gives
us a constraint on the weight vector w. In particular, we want to obtain con-
straints of the type wr −wr+1 ≥ λ(wr+1 −wr+2) for r ∈ {1, . . . , m− 2}, relating
the difference between the importance of ranks r and r + 1 with the difference
between ranks r + 1 and r + 2.

Building Concrete Questions for the Chair. Even if the chair might be consid-
ered able to answer directly such abstract questions, we want to ensure that
these questions can also, in principle, be asked in a more concrete way: in terms
of winners of example profiles. Such questions have clear semantics whose under-
standing can be assumed to be shared by the chair, contrary to abstract questions
about weights. Moreover, this way of questioning the chair is independent of the
voting rule that is being elicited; whereas questions about weights only make
sense when considering PSRs. Asking who should win in specific profiles has
been used in experimental settings investigating the feeling of justice of indi-
viduals [13], but, to the best of our knowledge, the use of such questions to
systematically guide an elicitation process about voting rules is novel. This is
similar to favor, in decision theory, direct choice questions (“please choose either
a or b”) compared to, say, questioning the decision maker about the shape of
her utility function. The former are considered “observable”: acts of choice are
translated to preference statements [22, Ch. 1].

Although questioning in terms of profiles and in terms of weights is logi-
cally equivalent in our setting, there is no a priori certainty that questioning the
chair using different phrasing would yield logically equivalent answers: research
in experimental psychology shows that participants’ answers differ widely when
changing the phrasing of preference-related questions [18]. To get out of such
conundrums, we need a language considered “fundamental”. Questions of the
form “In this profile, who should win?” arguably provides such a natural lan-
guage.

Thus, our task is to build a profile, given λ and r ≤ m − 2, in such a way
that the set of (tied) winners picked by the chair reveals whether wr − wr+1 ≥
λ(wr+1 − wr+2).

Proposition 4. Given a rational λ = p/q > 1 and a rank r between 1 and
m−2, there exists a profile P such that, for any weight vector w ∈ W, a ∈ f(P )
iff wr − wr+1 ≥ λ(wr+1 − wr+2) and b ∈ f(P ) iff wr − wr+1 ≤ λ(wr+1 − wr+2),
where f is the PSR parameterized with w.

Proof. Define a linear order >1 over A as placing a at rank r, b at rank r+1, and
the remaining alternatives arbitrarily. Define >2 over A as placing a at rank r+2,
b at rank r + 1, and the remaining alternatives arbitrarily. Define an arbitrary
linear ordering > over A \ {a, b}. Define a linear order >3 as placing a first, b
second, and following the order of > for the remaining positions. Finally, define
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a linear order >4 as placing b first, a second, and following the inverse order of
> for the remaining positions.

Define P as the profile of 3(p+ q) agents containing q times >1, p times >2,
and >3 and >4 each p + q times. As a result, a obtains the following ranks: q
times r, p times r + 2, p+ q times first, and p+ q times second. The alternative
b obtains the ranks r + 1, 2 and 1, each p + q times. Consider any alternative
c ∈ A\{a, b}. Its score is maximal when it comes first in >1, first in >2 and first
in >, by convexity of the weights. In that case, c is positioned at the ranks 1, 3
and m, each p + q times.

Letting s(x) denote the score of x at P , we obtain s(a) = qwr + pwr+2 +
(p + q)w1 + (p + q)w2, thus, s(a) ≥ (p + q)wm + (p + q)w1 + (p + q)w2;
s(b) = (p + q)wr+1 + (p + q)w2 + (p + q)w1; and, ∀c ∈ A \ {a, b}, s(c) ≤
(p + q)w1 + (p + q)w3 + (p + q)wm. It follows that a or b maximize s (as
s(a) ≥ s(c)). We conclude by observing that a ∈ f(P ) ⇔ s(a) ≥ s(b) ⇔ qwr +
pwr+2 ≥ (p + q)wr+1 ⇔ wr − wr+1 ≥ (p/q)(wr+1 − wr+2), and similarly for
b ∈ f(P ). ��
Example. Suppose we want to ask the following question to the chair: w2−w3 ≥
2(w3 − w4). We show the profile in Fig. 1a to the chair and ask who should win
(each column is the preference of one agent). Both a and b have scores higher
than c and d for all convex weights, thus either a or b will be picked under our
hypothesis; and s(a) ≥ s(b) ⇔ w2 + 2w4 ≥ 3w3. Figure 1b represents the same
profile using a compressed view, the numbers in bold indicating the number of
agents having the preference in the corresponding column. As the proof shows,
constructed profiles require only four different linear orders.

c d d a a a b b b
a c c b b b a a a
b b b c c c d d d
d a a d d d c c c

(a)

1 2 3 3
c d a b
a c b a
b b c d
d a d c

(b)

Fig. 1. Profile representing a question to the chair in extended (a) and compact (b)
form.

Elicitation Strategies. We develop several strategies for simultaneous elicitation
of agent preferences and of the PSR. While it is of course possible to first fully
elicit the agent preferences and afterwards elicit weights, we want to investigate
approaches that are able to recommend winning alternatives before obtaining
complete knowledge of the profile or the rule. We define here various strategies;
a strategy tells us, given the current partial knowledge (p,W ), which question
to ask next.

The Random strategy is used as a baseline. It first chooses equiprobably
whether to question the chair or the agents. In the first case, it draws one rank
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in 1 ≤ r ≤ m − 2 equiprobably, takes the middle of the interval of values for
λ that are still possible considering our knowledge so far, and asks whether
wr −wr+1 ≥ λ(wr+1−wr+2). In the second case, it draws equiprobably among
the agents whose preference is not known entirely; it then draws an alternative
a among those involved in some incomparabilities in �p

j and an alternative b
among those incomparable with a in �p

j .
Let (x∗, ȳ, v̄, w̄) be the current solution of the minimax regret, where x∗ is the

minimax optimal alternative and ȳ, v̄, w̄ the corresponding adversarial choices.
The Pessimistic strategy considers a set of n + (m − 2) candidate questions:
one per agent, and one per rank (excluding the first and the last one which are
known).

The candidate questions to the agents are chosen by extending the idea of
Lu and Boutilier [21], that privilege learning about the relationship of x∗ and ȳ
to the other alternatives if possible. Given j ∈ N∗, if x∗ and ȳ are incomparable
in �p

j , the candidate question concerns the pair (x∗, ȳ), otherwise, it concerns
the pair (x∗, z) for some z incomparable to x∗ (randomly chosen), or if none
such z exist, the pair (ȳ, z) for some z incomparable to ȳ, or, if both x∗ and ȳ
are comparable to every alternatives in �p

j , any incomparable pair is picked at
random.

The candidate questions to the chair are determined as in the Random strat-
egy.

Once having selected n + m−2 candidate questions, the Pessimistic strategy
selects the one that leads to minimal regret in the worst case. Assume that a
question q1 has type t1 (being “chair” or “agent”), and leads to the new knowledge
states (p1,W1) if answered positively and (p′

1,W
′
1) if the answer is negative.

Define
Rmax

1 = max{MMR(p1,W1),MMR(p′
1,W

′
1)}

and
Rmin

1 = min{MMR(p1,W1),MMR(p′
1,W

′
1)}εt + ε′

t.

The terms εt and ε′
t are real numbers associated to the type t of question; these

parameters are used to fine tune the choice of the question type. Define similarly
t2, Rmax

2 and Rmin
2 for q2. Pessimistic considers question q1 to be better than

q2 iff Rmax
1 < Rmax

2 or [Rmax
1 = Rmax

2 and Rmin
1 < Rmin

2 ]. In other words if the
maximal a posteriori MMR of two questions are (approximately) equal, then it
considers the (penalized) minimal MMR values.

The Extended pessimistic strategy uses the same criterion as the pessimistic
strategy, but extending it to a bigger set of candidate questions, the same as
those considered by the Random strategy. These candidate questions are then
evaluated using the same operator as for the Pessimistic strategy. Extended
pessimistic is applicable only to very small problem instances: its complexity is
in O(n2m5), because we consider O(m2) questions for each agent and need for
each question to compute MMR twice, whose complexity is O(nm3).

The Two phases strategy is developed in order to investigate the effect of
varying the proportion of questions of the two types, when asking all questions
to the chair at the beginning or at the end. It is parameterized by qc, the number
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of questions to be asked to the chair. The Two phases-ca variant first asks qc
questions to the chair, then k − qc questions to the agents, using in both cases
Pessimistic to select the specific questions; whereas the Two phases-ac variant
starts with k − qc questions to the agents, then questions the chair.

Finally, the Elitist strategy aims at uncovering as quickly as possible the top
alternatives of all agents. For any agent j, it asks to compare an alternative
currently undominated in �p

j with one that is currently incomparable. Thus, the
top alternative for j will be known after having asked exactly m−1 questions to
j. After having asked n(m−1) questions to the agents, it questions the chair only,
using the same approach as Pessimistic. This strategy can be expected to perform
well when the chair assigns a large weight to the first rank, as compared to the
other ranks. It is used to further challenge Pessimistic, which is not specifically
tailored to such a situation.

5 Empirical Evaluation

We performed several numerical experiments using both real data and randomly
generated profiles in order to validate our approach and test the performance of
our elicitation strategies.

Given a problem size (m,n), a number of questions k and a strategy to
test, we first create an “oracle”, representing the true preferences of the agents
(randomly generated or coming from real data) and the weights associated with
the chair’s scoring rule (randomly generated). We start with empty knowledge
(p = ∅,W = W) about the preference orderings of the agents and the weights
of the chair. We obtain the first question to be asked using the strategy under
test. We then use the oracle to answer the question and update the system’s
knowledge, which is thus used to obtain the next question. This is repeated until
k answers have been obtained, computing the resulting MMR values along the
way for various values of k. We repeat this whole experiment a variable number of
times, for a given (m,n, k), and report the average resulting MMR and standard
deviation sd. The sizes of the considered scenarios are comparable to the ones
used by Cailloux and Endriss [5].

The oracle is built as follows. For the real preferences, we used three datasets
from PrefLib [23]: T Shirt (researchers voted on tee shirt designs; m = 11, n =
30), Courses (students voted on courses; m = 9, n = 146; referred to as AGH on
PrefLib) and Skate (judges voted on skaters at the Euros Pairs Short Program;
m = 14, n = 9). For the synthetic datasets, we follow an Impartial Culture (IC)
assumption: the linear order of each agent is drawn i.i.d. uniformly. We believe
IC to be a challenging situation and expect the number of questions to ask,
in order to reach a certain level of regret, to decrease with less varied profiles.
To generate the scoring rule weights, we first draw m − 1 numbers uniformly
at random (in the interval �0, 1� representing weight “differences”), normalize
and sort them; a sequence of convex decreasing weights is then obtained by a
decumulative sum. The penalty parameters for the Pessimistic and Extended
pessimistic strategies are εchair = 1.1, ε′

chair = 10−6, εagent = 1.0 and ε′
agent = 0.

https://www.preflib.org/
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Fig. 2. Average MMR in problems of size (5, 10) after k questions.

Table 1. Average MMR in problems of size (10, 20) after k questions assuming geo-
metric weights.

k Pes. ± sd Eli. ± sd

0 20.0 ± 0.0 20.0 ± 0.0
50 16.0 ± 0.5 17.3 ± 0.4

100 12.5 ± 0.9 15.6 ± 0.4
150 9.6 ± 1.4 13.9 ± 0.8
200 7.4 ± 1.3 11.0 ± 1.1
250 5.3 ± 1.5 6.6 ± 0.8
300 3.5 ± 1.3 6.6 ± 0.8

Comparison of Strategies. Our first experiment concerns small size situations.
Figure 2 compares some of our strategies in the case m = 5, n = 10 (variations
around this size yield similar conclusions), where the results are averaged over
200 runs. We see that asking random questions does not allow to reach a low
regret level even after having asked 100 questions, whereas a low regret level
(MMR = 1) is reached by Pessimistic before having asked 60 questions. This
also holds for other problem sizes. For instance, for m = 10, n = 20 and 500
questions, Random strategy reaches an average regret (over 20 runs) of 9.3 (±0.7)
and Pessimistic 0.5 (±0.5). We notice that Pessimistic performs slightly better
than Extended pessimistic, showing that Pessimistic chooses candidate questions
wisely; this is good news since Pessimistic is much faster: it takes on average only
16 s for a complete elicitation session (for m = 5, n = 10 and 100 questions), while
Extended pessimistic takes 50 s. Although their performance is close, Pessimistic
performs systematically better in multiple runs of the experiment.

We also compared the Pessimistic strategy against Elitist in a situation specif-
ically tailored to advantage Elitist. For that experiment specifically, instead of
drawing the weights of the oracle randomly, we fix it to a “geometric” weight
vector, such that wr − wr+1 = 2(wr+1 − wr+2), for all r ≤ m − 2, so as to
dramatically increase the importance of the weights associated to the top ranks.
Even in that case, we see in Table 1 that Pessimistic performs better than Elitist.
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Evaluation of Pessimistic Strategy. Our next set of experiments evaluate the
Pessimistic strategy in absolute terms. We first wonder how many questions
should be asked in order to achieve low regret, fixed at n/10: this is equivalent
to the difference of score of an alternative x that results from switching from
a profile P to a profile P ′ where a tenth of the agents rank x last instead of
first. Table 2, first five columns, contains the result: it displays, for each dataset,
the number of questions asked to the chair (qMMR≤n/10

c ), and the quartiles of the
number of questions asked to the agents (qMMR≤n/10

a ), averaged over 20 runs. It
is interesting to note that about twenty or thirty questions per agent on average
suffice to reach a low regret in those instances. We find also noteworthy that the
Pessimistic strategy chooses to ask zero questions to the chair but still achieves
low regret, in most of those instances.

Another interesting measure is the average number of questions asked to
the chair (qMMR=0

c ) and to the agents (qMMR=0
a ) before reaching zero regret. The

results for various sizes are displayed in the last two columns of Table 2. Here, we
see that the Pessimistic strategy does choose to question the chair when reaching
low enough regret values. The m15n30 dataset did not reach zero regret in 1000
questions.

Table 2. Questions asked by Pessimistic strategy on several datasets to reach n
10

regret,
columns 4 and 5, and zero regret, last two columns.

Figure 3 shows the decrease in MMR according to the number of questions
asked for various problem sizes. In particular, this shows important differences
between some real datasets and the problems generated using IC. In the Skate
problem, the value MMR = 1 is reached after less than 100 questions, while
the IC case of the same size (m = 14, n = 9) requires more than 200 questions
to reach that value. This reasoning also applies to the Courses dataset but not
to the T Shirt dataset. This can be explained by the high degree of similarity
in the preference rankings of the Skate and the Courses problems, which helps
reducing the regret faster. For example, in Skate the top-2 alternatives are the
same for all agents, and 8 out of 9 agents rank the same alternative at position 3.
By contrast, in T Shirt, the alternatives are evenly distributed in the preference
rankings.
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Fig. 3. Average MMR (normalized by n) after k questions with pessimistic strategy
for different datasets.

Table 3. Average MMR in problems of size (10, 20) after 500 questions, among which
qc to the chair.

qc 2 ph. ca ± sd 2 ph. ac ± sd

0 0.6 ± 0.6 0.6 ± 0.6
15 0.5 ± 0.5 0.6 ± 0.6
30 0.3 ± 0.5 0.4 ± 0.5
50 0.1 ± 0.2 0.1 ± 0.3

100 0.4 ± 0.6 0.2 ± 0.5
200 2.1 ± 1.6 2.4 ± 1.2
300 5.8 ± 1.7 6.7 ± 1.5
400 11.3 ± 1.1 11.9 ± 1.2
500 20.0 ± 0.0 20.0 ± 0.0

Comparison with Two Phases. The experiments so far let the strategy free to
question either the chair or an agent at each step. One may wonder what is lost
in terms of regret by asking different proportions of questions to the chair and
the agents. Such restrictions may be useful because of (partial) unavailability of
the chair, or because the estimated cognitive costs may differ sensibly.

Table 3 shows the MMR value reached in problems of size m = 10, n = 20
after 500 questions, using the Two phases strategy, in the “ca” (chair then agents)
and in the “ac” (agents then chair) variants. These numbers are to be compared
with the MMR value reached after 500 questions with the Pessimistic strategy
(displayed in Fig. 3), which is 0.7; the Pessimistic strategy asks on average 13
(±13) questions to the chair in this setting. The line qc = 0, where no ques-
tion is asked to the chair, suggest that it is possible to obtain a good-quality
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recommendation while knowing only that the voting rule is a scoring rule with
convex weights, which is our basic hypothesis. However, we observe that asking
no questions to the chair does not permit to reach MMR = 0. The strategy,
indeed, obtains full knowledge of the profile after an average of 500 questions to
the agents but never reaches zero.

6 Conclusions

In this paper we have considered a social choice setting with partial informa-
tion about the agent preferences and voting rule. We have proposed the use of
minimax regret both as a means of robust winner determination and as a guide
to the process of simultaneous elicitation of preferences and voting rule. Our
experimental results suggest that regret-based elicitation is effective and allows
to quickly reduce worst-case regret significantly. They also show that, in our set-
ting, good quality (low regret) recommendations can be achieved short of having
full knowledge of weights or profile.

As part of our contribution, we provide an open-source library that can be
found at https://github.com/oliviercailloux/minimax, to reproduce our experi-
ments and perform many more.

Some directions for future works include developing new elicitation strate-
gies, considering alternative heuristics; extending the elicitation to voting rules
beyond scoring rules; eliciting preferences while restraining to concrete and easy
questions.
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Abstract. In robust incremental elicitation, it is quite common to make
recommendations and to select queries by using a minimax regret cri-
terion, which corresponds to a pessimistic attitude. In this paper, we
explore its optimistic counterpart, showing this new approach enjoys
the same convergence properties. While this optimistic approach does
not offer the same kind of guarantees than minimax approaches, it still
offers some other interesting properties. Finally, we illustrate with some
experiments that the best approach amongst the two approaches heavily
depends on the underlying setting.

Keywords: Preferences elicitation · Incremental · Minimax regret ·
Maximax utility

1 Introduction

Preference elicitation by interacting with an agent or a user is a crucial step to
identify and formalise her preferences. While there are different ways to interact
with a user, incremental elicitation [2] is a very interesting approach since each
new question takes into account the preferential information provided previously.
In the literature, one of the main approaches of incremental elicitation is the
robust approach, based on a Minimax regret optimisation [3,4]. Provided their
underlying hypotheses1 are satisfied, the interest of using such approaches is that,
due to their pessimistic stance (minimising the regret in the worst situation),
they come with strong guarantees about the recommended alternative. They
also converge in a reasonable number of steps to a good recommendation, as
the space of possible models is guaranteed to shrink after each question. In this
paper, we will work under the same hypotheses as the robust approaches to
simplify our exposure, as we could easily adapt our proposal to extensions of the
robust approach [10] which are able to deal with errors.

Minimax regret approach [14] is a popular choice for making decisions under
uncertainty, as it minimises the worst-case regret. Such a decision rule provides

1 The user is an oracle, and the chosen family of preference model includes the right
model.
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rather safe recommendations, corresponding to a situation where the agent is
rather pessimistic on the outcomes of a decision, fearing a possibly rare but
disastrous worst-case scenario. However, Minimax regret is only one amongst
many other decision rules under uncertainty (see, e.g., [16] for an account of
those), and as all other rules, it has drawbacks one may not appreciate. For
instance, it is sensitive to the addition of irrelevant alternatives, and does not
guarantee potentially optimal recommendations, i.e. recommendations that are
the best for at least one particular model within the set of possible models.

In this paper, we consider a somewhat opposed view, using a Maximax opti-
mist approach to make recommendations. There are multiple reasons to inves-
tigate such an alternative: one is that such optimistic approaches in presence
of uncertainty are often used in learning under uncertainty, for example to deal
with missing data [6] or to identify optimal models [13], hence adopting such
an optimistic view in preference elicitation that shares many similarities with
the aforementioned learning setting seems relevant; another is that optimistic
recommendations do not suffer the same drawbacks we have mentioned for the
Minimax regret2, hence may be acceptable in situations where the Minimax
regret is not. Last but not least, such an approach can be computationally more
efficient than regret based ones, since regret typically involves comparing pairs of
alternatives, whereas Maximax decision typically involves alternative-wise com-
putations.

We introduce in Sect. 2 all the necessary elements in preference elicitation
to understand our work. We then present in Sect. 3 an optimist approach that
we call Maximax gain, adapting the Current Solution Strategy (CSS) heuristic.
We also discuss some of its interesting properties. Lastly, Sect. 4 shows some
simulated experiments whose goal are to investigate whether there are situations
in which an optimist approach also increases recommendation performances.

2 Preliminaries

In this section, we introduce the various elements necessary to understand the
rest of our work. We also introduce a running example that we will repeatedly
use to illustrate the introduced notions.

2.1 Notations

Alternatives. We define X as the finite set of available alternatives. Alternatives
within X are denoted x1, x2, ..., xk. We assume that alternatives are summarised
by q real values, the criteria, such that x ∈ R

q. The ith criterion value of an
alternative x ∈ X is denoted xi. Given two alternatives x, y ∈ X, we denote:

– x �p y if and only if x is strictly preferred to y,
– x �p y if and only if x is preferred or equally preferred to y.

2 It does not, however, offer the same robust guarantees.
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Example 1 (Choosing the Best Sandwich (Running Example)). We
imagine that a user wants to choose the best possible sandwich among multiple
ones (the alternatives). Each sandwich is characterised by two criteria: flavour
and price. Each criterion is valued between 0 (worst) and 10 (best). Table 1 lists
the available sandwiches. We can see for instance that cheese sandwich is very
cheap but with a mediocre flavour, while duck sandwich is full of flavour yet
overpriced.

Table 1. Grades of sandwiches

Flavour 1/price

Cheese 5 9

Duck 10 0

Fish 8 4

Ham 7 7

Aggregation Models. We consider that each alternative x is valuated by its utility,
and that the utility depends on the preferences of the agent. We also suppose
that such an utility is modelled by a function fω(x), parameterised by ω ∈ Ω,
aggregating the different criteria. ω is also known as the preferential model. Given
this evaluation function fω, it is possible to compare two alternatives x, y ∈ X:

x �ω y ⇐⇒ fω(x) ≥ fω(y). (1)

A first model we consider is the weighted sum (WS) model. This is a very simple
model, which can be considered as the basic building block of decision theory and
is still widely used in multi-criteria decision-making. Given a vector of weights
ω = {ω1, ..., ωq} ∈ R

q, we have:

fω(x) =
q∑

i=1

ωixi, (2)

with ωi ≥ 0 and
∑

i ωi = 1.
We also consider the Ordered weighted averaging (OWA) model [17]. This

model generalises aggregation operators such as the arithmetic mean, median,
min or max. With an OWA model, criteria values are ordered increasingly. Given
a vector of weights ω ∈ R

q and the ordered criteria values x(1) ≤ ... ≤ x(q), we
have:

gω(x) =
q∑

i=1

ωix(i), (3)

with ωi ≥ 0 and
∑

i ωi = 1.
These two models are simple and can be used in most situations. More com-

plex models like Choquet integrals [7,9] exist that can be used, e.g., to model
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interactions between criteria. Provided the models are linear in ωonce x is fixed,
Equation (1) is equivalent to a linear constraint, meaning that we can use them
within a linear program [2]. All mentioned models so far are linear in ω.

Example 2 (Application of Models). Given the sandwiches we presented in
Table 1, we assume the user evaluates each sandwich with a WS model such that
ω = (0.8, 0.2). This means she values the flavour over the price. She then prefers
the duck sandwich, as it scores 8, over the fish sandwich, with a score of 7.2.

If she evaluates with an OWA model such that ω = (0.8, 0.2), meaning she
penalises a sandwich that is bad on at least one criterion, she will prefer the
more balanced fish sandwich: fω(fish) = 4 × 0.8 + 8 × 0.2 = 4.8 while fω(duck) =
0 × 0.8 + 10 × 0.2 = 2.

2.2 Robust Elicitation with Minmax Regret

Motivation. Finding a unique model ω from pairwise comparisons is difficult.
However, it is often possible to draw reasonable inferences without complete
information. Robust recommendation approaches aim at identifying a subset
Ω′ of possible models ω from preferential information. We then identify the
preferences that hold for every model ω ∈ Ω′. This results in a partial preorder
over X where:

x �Ω′
y ⇐⇒ ∀ω ∈ Ω′ fω(x) ≥ fω(y). (4)

A good elicitation strategy needs to reduce Ω′ as quickly as possible to make good
recommendations without exhausting the budget of questions. Such a strategy
should also make good recommendations even if �Ω′

does not have a single
maximal element, as in practice information collection may end before that.

Regret Based Elicitation. Minmax regret is a well-known notion for decision
problems under uncertainty and set-valued information [14]. It still provides
strong guarantees on the recommendation quality, while being less conservative
than standard Minmax.

We are now introducing the different measures to compute the Minmax regret.
The regret of choosing an alternative x over the alternative y given a model ω
is defined by:

Rω(x, y) = fω(y) − fω(x). (5)

Given a set Ω′ of models, the pairwise max regret is:

PMR(x, y,Ω′) = max
ω∈Ω′

Rω(x, y), (6)

which is the maximum regret of choosing x over y given any model ω ∈ Ω′.
The max regret of choosing x is:

MR(x,Ω′) = max
y∈X

PMR(x, y,Ω′), (7)

which is the regret of choosing x in the worst case scenario, i.e., considering the
worst model for its strongest opponent.
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Finally, the min max regret of a set X of alternatives given a set Ω′ of possible
models is:

mMR(Ω′) = min
x∈X

MR(x,Ω′), (8)

In this approach x∗ = arg mMR(Ω′) is the alternative giving the minimal regret
in a worst-case scenario, and is the current recommendation if no further infor-
mation can be collected.

Example 3 (Initial Choice with a Minmax Regret). We want to pick
the alternative which minimises the maximum regret in the worst-case scenario,
the preferences being evaluated with a WS model. The evolution of the score
of each alternative depending on the parameter ω1/price is depicted on Fig. 1.
The alternative which minimises the maximum regret is the ham sandwich, with
MR(ham) = 3 when we pick it instead of the duck sandwich for ω1/price = 0
(meaning only the flavour is considered).

Fig. 1. Choice of the best alternative given a Minmax approach

2.3 Elicitation Sequence and Regret CSS

Preferential information is often collected through pairwise comparison: we
present a pair (x, y) to the user, and she tells which one she prefers. We will
denote by

ωx�y = {ω ∈ Ω : fω(x) ≥ fω(y)}, (9)

the subset of models consistent with the assessment x � y, and ωy�x the subset
for y � x. In an elicitation sequence, we alternatively present a pair to the user,
and update the information with the answer. In the robust approach, if Ωk is
the possible subset of models at the kth step, the next step is to present a couple
(x, y) to the user, and then compute Ωk+1 = Ωk ∩ ωx�y if the user prefers x,
Ωk+1 = Ωk ∩ ωx�y otherwise.

Choosing a good pair (x, y) is therefore a critical step. We consider for our
work the well-known CSS strategy [5], where given a subset Ω′, the user compares
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the current regret-based recommendation x∗ = arg mMR(Ω′) (so our best option
w.r.t this criterion) to its worst opponent:

y∗ = arg max
y∈X

PMR(x∗, y, Ω′). (10)

This heuristic strategy provides good results in general, and guarantees that the
updated set will be non-empty.

Example 4 (Updating the Model Space). We assume the user decides with
a WS model, where ω∗ = (0.8, 0.2). In a first question q1, she has to choose
her favourite sandwich among the pair (xD, xF ). We have already shown in
Example 2 that she prefers xD (fω(xD) = 8, fω(xF ) = 7.2). We assume she
answers correctly that xD � xF . We then have Ω′ the set of models consistent
with her known preferences, such that Ω′ = ωxD�xF = {ω ∈ Ω :

∑2
i=1 ωi.(xi

D −
xi

F ) ≥ 0} = {ω ∈ Ω : ω1 ≥ 2ω2}, where ω1 corresponds to the flavour, and ω2

to 1/price. The updated model space Ω1 is shown on Fig. 2.

Fig. 2. Update of the model space Ω

With more questions, it is possible to further update the subset of possible
models Ω′ consistent with the preferences of the user.

An important property of robust approaches combined with CSS is that, by
construction, they guarantee that the elicitation sequence will converge, as we
remind here:

Proposition 1 [1,5]. Given Ωk+1 ⊆ Ωk, the sets of possible model at steps k
and k + 1, we have that:

PMR(x, y,Ωk) ≥ PMR(x, y,Ωk+1), (11)

MR(x,Ωk) ≥ MR(x,Ωk+1), (12)

mMR(Ωk) ≥ mMR(Ωk+1). (13)

Proof. PMR. Suppose we have a function f and two sets Ω, Ω′ such that Ω′ ⊆ Ω.
We have maxx∈Ω f(x) ≥ maxx∈Ω′ f(x), the maximum of Ω being either in Ω′

or in Ω \ Ω′. We can replace f by the PMR, Ω by Ωk and Ω′ by Ωk+1 since
Ωk+1 ⊆ Ωk. (11) is then proved. Proof for MR and mMR directly follows, as
they are maximum and minimum taken over decreasing values.
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3 Optimist Approach

Minmax regret is based on a pessimist decision rule: the user wants the alter-
native that minimises the maximum loss, i.e., in the worst-case scenario. The
user is risk-averse and does not mind if the gain is lower on average. However,
it is unclear in a preference framework that the user will always be risk-averse,
rather than opportunity-seeking. This is why we now consider the Maximax gain
approach and its direct CSS adaptation, that considers recommendations based
on another decision rule, where the user wants to maximise their gain in the
best-case scenario. The choice of the Maximax gain approach can be justified in
various ways: we show later in this section that an alternative suggested by a
Maximax gain approach is the best possible for at least one situation (one model
ω). This is not necessary the case with a Minmax regret, meaning that a risk-
adverse user may actually select an option known to be necessarily sub-optimal.
It does not mean that one strategy is better than the other, just that they have
different properties, as the choice can depend on the willingness of the user for
taking risks to maximise their possible gain. In this section, we discuss why such
an approach may be an interesting alternative to Minmax regret approaches.

3.1 Robust Elicitation with Maximax Gain

Given an alternative x, the maximal gain over a set Ω′ of possible models is:

MG(x,Ω′) = max
ω∈Ω′

fω(x), (14)

which corresponds to the gain in the best-case scenario. Given a set of alterna-
tives X and the set Ω′, the max maximal gain is:

MMG(Ω′) = max
x∈X

MG(x,Ω′), (15)

x∗ = arg MMG(Ω′) is the alternative giving the maximal possible gain in the
corresponding best-case scenario. As with Minmax regret, x∗ is the current rec-
ommendation if no additional information can be collected. When it comes to
choosing the question, we still retain the CSS heuristic approach that chooses
y∗ = arg maxy∈X PMR(x∗, y, Ω′) as an adversary. For convenience, we will refer
to the corresponding elicitation as gain CSS.

Example 5 (Initial Choice with an Optimist Approach). In Example 3
we have shown how to pick the best alternative based on a Minmax regret, when
we have no information on the preferences of a user. We will now find the best
alternative based on a Maximax gain, and show it can be different from the one
proposed with the Minmax regret, and the preferences are still evaluated with a
WS model.

As shown on Fig. 3, the maximum gain obtainable for the duck sandwich is
10 when ω = (1, 0). We also deduce that MG(xF , Ω) = 8 for ω = (1, 0), and
MG(xC , Ω) = 9 for ω = (0, 1). The maximum gain of the ham sandwich is a
particular case, since MG(xH , Ω) = 7 ∀ω ∈ Ω.
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Fig. 3. Choice of the best alternative given a Maximax approach

We then conclude that MMG(Ω) = 10 and that x∗ = xD. Pessimist and
optimist approaches give different current solutions. The duck sandwich is a
great candidate for maximising the gain in the best case scenario ω = (0, 1), but
this alternative is the worst if ωprice � 0.36.

3.2 Optimality

We first introduce the notion of possibly Ω′–optimal solutions [3]. Given the set
X and a subset Ω′ ⊆ Ω of possible models, the set POΩ′ is defined by:

POΩ′ = {x : ∃ω ∈ Ω′, x ∈ arg max
X

fw(y)}. (16)

In other words, an alternative x ∈ X is possibly Ω′–optimal if x is the best
alternative for at least one model ω ∈ Ω′. An optimist robust elicitation, based
on a Maximax gain, is interesting for the following property, that shows that the
recommended item could be the best (not guaranteed by a Minmax approach):

Proposition 2. The Maximax gain alternative x∗ = arg MMG(Ω′) is possibly
Ω′–optimal.

Proof. Consider the model ω for which is obtained x∗ = maxx∈X [maxω∈Ω′ fω(x)].
It is clear that for this model which is within Ω′, x∗ is the best alternative, hence
it is possibly Ω′–optimal.

In Fig. 4, xD, xC , and a modified version of xH equals to (0.6, 0.6) noted
xH∗ are displayed; xH∗ being the Minmax regret recommendation. As we can
see, such approaches cannot be expected to satisfy Proposition 2. On the other
side, one can see in Fig. 4 that the Maximax gain recommendation can be a very
bad choice in some situations, meaning that checking whether we are in such
situations may be of importance.
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3.3 Convergence

In the case of regret CSS, the elicitation provably converges to the optimal
model as long as no errors are made. It is guaranteed that after the kth update,
Ωk ⊆ Ωk−1 will never be empty, and that the inclusion will be strict under mild
assumptions. In the case of gain CSS, we have the same property:

Fig. 4. Visualisation of optimality of 3 alternatives

Proposition 3. Consider the pair xk = arg MMG(Ωk), yk = arg maxX

PMR(xk, y, Ωk) chosen at the kth step of gain CSS. Then we have:

Ωk ∩ ωxk�yk = ∅,

Ωk ∩ ωxk�yk = ∅.

Guaranteeing that Ωk ⊆ Ωk−1.

Proof. We prove that whatever the answer, the intersection with Ωk is non-
empty:

– Ωk ∩ ωxk�yk = ∅: immediate since xk ∈ POΩk , by Proposition 2, indicating
that there is a model ω ∈ Ωk such that fω(xk) � fω(yk).

– Ωk ∩ ωxk�yk = ∅: since we picked yk in accordance with the CSS, Eq. (10)
tells us that yk = arg maxy∈X PMR(xk, y, Ωk). Since PMR(xk, yk, Ωk) =
maxω∈Ωk

[
fω(yk) − fω(xk)

] ≥ 0, if follows that there is a ω ∈ Ωk (e.g., the
one for which the PMR is reached) with fω(yk) ≥ fω(xk), ending the proof.

This proposition tells us that our space of possible models will shrink after
each question in a non-degenerate way, guaranteeing us to converge to the true
model. Note that we have a strict inclusion, i.e., Ωk ⊂ Ωk−1 relation if the
arg MMG is unique, and if the corresponding PMR is strictly positive.
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3.4 Computation Complexity

Another advantage of an optimist approach based on a Maximax gain is its
lower computational complexity. With a pessimist approach based on a Minmax
regret, computing the PMR for all the possible pairs (x, y) such that x, y ∈ X

and x = y is equivalent to solving n2 − n linear optimisation problems, where
n = |X|.

With an optimist approach, computing the MG for all the alternatives x ∈ X

is equivalent to only solving 2n − 1 linear optimisation problems (n for the
MMG and n − 1 for the PMR between x and the other alternatives). The linear
optimisation problems in both approaches are similar. This lower complexity
cost is very interesting for decision problems with a large set of alternatives.

4 Experiments

While Sect. 3 did present some interesting properties of adopting a gain CSS
approach rather than a regret one, we need to check if this alternative heuristic
can provide reasonable, if not better, performances.

This section brings some elements of answer, by comparing regret and gain
CSS strategies in different situations.

4.1 Experimental Protocol

We performed numerical simulations to compare the performances of regret and
gain CSS approaches in different contexts, in which we change the kinds of
alternatives we consider, as well as the kind of models.

The first element of comparison we consider is the choice of the alternatives:

– In a first setting, we generated randomly multiple alternatives xi with 8 cri-
teria from a uniform distribution, such that xi ∈ [0, 1]8, until we obtained a
Pareto front of 100 alternatives. In this case, most alternatives have quite high
values on the different criteria, and we consider them to be good alternatives

– In a second setting, we generated randomly 100 alternatives xi with 8 criteria
from a Dirichlet distribution, such that xi ∈ [0, 1]8 and

∑8
j=1 xj

i = 1. We then
have alternatives whose average utility is the same, and on which trade-offs
have to be made. Since such alternatives are poorly noted (average utility of
1 when 8 is the best), we consider them to be bad alternatives

The second element of comparison is the choice of a function fω to estimate
the utility of an alternative. We compared both approaches with 4 different
functions, all generated randomly from different Dirichlet distributions:

– WSB: a “balanced” weighed sum (WS), where all criteria values are close.
Parameters: α = 1000.(1/8, 1/8, ..., 1/8).

– WSU: an “unbalanced” weighed sum (WS), where some criteria can have sig-
nificantly higher values than the others. Parameters: α = (1/8, 1/8, ..., 1/8).
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– OWAU: an “unfair” OWA, which favours the criteria with the higher values.
Parameters: α = 50.(1/36, 2/36, ..., 8/36).

– OWAR: a “redistributive” OWA, which favours the criteria with the lowest
values. Parameters: α = 50.(8/36, 7/36, ..., 1/36).

We propose two measures for evaluating the prediction quality of each app-
roach. A first measure is the real score of the current recommendation, computed
from the hypothetical true preference model of the user. A second measure is
the position of the current recommendation compared to the other alternatives,
given the real score of each alternative. 0 means we have the best alternative
and 99 the worst one.

We also reduce the variability of the two measures by averaging them on 200
simulations, and by computing a confidence interval of 95%.

4.2 Results

This section discusses the results of our experiments. Since displaying all graphs
renders the reading difficult, we only display some of them, picturing different
behaviours. Some synthetic statistics on all cases are given in Tables 2 and 3.

Fig. 5. Score and position with poor alternatives on a balanced WS model

Fig. 6. Score and position with good alternatives on a balanced WS model
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On one extreme of the spectrum, we can see on Figs. 5 and 6 the score and
position for the balanced WS. In this case, the superiority of a method highly
depends on the kind of available alternatives. On the other end of the spectrum,
we can see on Figs. 7 and 8 the results for the fair OWA model. While there is a
slight advantage for the regret CSS strategy, it is not remarkable, and even not
significant in the case of poor alternatives.

Fig. 7. Score and position with poor alternatives on a fair OWA model

Fig. 8. Score and position with good alternatives on a fair OWA model

Tables 2 and 3 provide synthetic information about the different settings.
Regarding the case of poor alternatives, the Gain CSS approach seems to give
overall either significantly better or similar performances across the different
scenarios. However, as indicated on Figs. 5, 6, 7 and 8, both methods tend to
quickly converge to the same result, and provide essentially the same quality
after 15 questions. If we go into more details about the case of poor alternatives:

– On balanced and unbalanced models (WSB and WSU), gain CSS is signifi-
cantly more interesting than regret CSS.

– On unfair models (OWAU), gain CSS finds the best alternative only after one
or two questions, which is very interesting. However, the regret CSS finds it
after around 5 questions, and the score difference is non-significant whatever
the number of questions is.
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– On redistributive models (OWAR), gain CSS is usually a bit less effective
than regret CSS. However, the differences are very small.

Regarding the case of good alternatives, the gain CSS appears overall less
effective than regret CSS. On all the experiments but one, our optimist approach
is slower to find a good solution. Again, both approaches converge to the best
alternative after some questions. Let us now give a bit more details about the
two approaches in the case of good alternatives:

– On balanced models, gain CSS is significantly worse than regret CSS.
– On unbalanced models, gain CSS is slightly worse than regret CSS, but they

quickly converge to the same recommendation (after 7 or 8 questions).
– On unfair and redistributive models, gain CSS is slightly slower to find the

best solution. The difference in score and position is small, yet significant.

Table 2. Current solution score after 5 questions on different contexts

Method Poor alternatives Good alternatives

WSB WSU OWAU OWAR WSB WSU OWAU OWAR

Optimist/gain 0.140 0.607 0.231 0.068 0.693 0.881 0.846 0.643

Pessimist/regret 0.135 0.451 0.231 0.071 0.740 0.887 0.853 0.659

Table 3. Current solution position after 5 questions on different contexts

Method Poor alternatives Good alternatives

WSB WSU OWAU OWAR WSB WSU OWAU OWAR

Optimist/gain 1.075 2.165 0.81 1.86 5.27 2.91 0.475 0.675

Pessimist/regret 10.91 7.505 1.335 0.34 0.795 2.065 0 0

4.3 Summary

The performances of gain CSS compared to the performances of regret CSS are
qualitatively summarised on Table 4.

The main conclusion to draw from this table is that both the nature of the
true underlying model, and the values of the alternatives, may have a huge
impact on the results.

In our opinion, this observation has two important impacts: the first is that
how simulations are carried out in the validation of preference elicitation methods
can have a huge impact on the results of these simulations, calling both for deeper
theoretical studies about the situations in which a given heuristic has chances
to work better, and for simulations considering large spectrum of situations.

Those results also show that in absence of strong inductive bias or refined
knowledge about the alternatives, choosing one elicitation technique can hardly
be based on performance requirements, and should therefore focus on which
axioms should be satisfied in a given problem.
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Table 4. Performance interest of gain CSS compared to regret CSS (++: quite inter-
esting, −−: quite uninteresting)

Poor alternatives Good alternatives

Balanced ++ −−
Unbalanced ++ −
Unfair ∼ −
Redistributive ∼ −

5 Conclusion

We studied the use of an optimist approach using a Maximax gain criterion
for recommending an alternative in a robust preference elicitation, instead of
a pessimist approach using a Minimax regret. We demonstrated that such an
optimist approach possesses the same convergence properties as the classical
regret-based one, and has interesting optimality and computational properties.
Experiments on simulated data have shown that an optimist approach can be
more effective in some contexts.

Our work has shown that the choice of the alternatives has some impacts
on the performances of both approaches. We believe that it could be interesting
to study more precisely the influence of the alternatives on the computation
of the regret. This could be useful for determining the best strategy to choose
alternatives in future works.

We cannot therefore give a definite answer to the question we asked in the
title. Section 3 gives some pros and cons in terms of properties and axioms that
are similar to the pros and cons of optimist and pessimist approaches one can
find in other settings [12]. However, selecting the strategy using a performance
requirement clearly calls for more theoretical studies regarding the situations
in which different heuristics will perform better. A more empirical way to solve
this issue could be to characterise elicitation problems through various quality
measures (see, e.g., [8]), and see if we can predict the optimal/winning strategy
from that, taking inspiration from machine learning methods [15]. Finally, let us
note that while we looked at the problem with a greedy approach, whose interest
is its efficiency and its agnosticity w.r.t. to the remaining number of questions,
it may also be interesting (but also far more difficult) to consider the sequential
version of our decision problem (see, e.g., [11]).
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Abstract. We introduce probabilistic lexicographic preference trees (or
PrLPTs for short). We show that they offer intuitive and often compact
representations of non-deterministic qualitative preferences over alterna-
tives in multi-attribute (or, combinatorial) binary domains. We specify
how a PrLPT defines the probability that a given outcome has a given
rank, and the probability that a given outcome is preferred to another
one, and show how to compute these probabilities in polynomial time. We
also show that computing outcomes that are optimal with the probabil-
ity equal to or exceeding a given threshold for some classes of PrLP-trees
is in P, but for some other classes the problem is NP-hard.

Keywords: Preference representation and reasoning · Lexicographic
preference trees · Probabilistic preference models

1 Introduction

Preferences play a key role in fields such as multi-agent systems, recommender
systems, marketing, and decision theory. To model and reason about preferences,
researchers proposed several deterministic preference formalisms including quan-
titative models such as penalty logic [7] and possibilistic logic [8], and qualitative
models such as lexicographic preference trees and forests [2,9,13,14], conditional
preference networks [3], and conditional importance networks [4].

However, preferences are often non-deterministic. For example, a restaurant
customer may have a preference “If having steak for the entree, with 80% prob-
ability the user prefers to drink beer and with 20% wine.” Given such non-
deterministic statements collected or learned by a learning algorithm, prob-
abilistic queries, arise such as probabilistic dominance testing (computing the
probability of one alternative is preferred over another), and probabilistic opti-
mality testing (computing the probability of some alternative being optimal). To
address such scenarios, formalisms for non-deterministic preference are needed.

Research of qualitative preference reasoning with uncertainty has resulted in
several formal preference models. Most notable are probabilistic conditional pref-
erence networks [1,6], and probabilistic preference logic networks [15]. Although
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both models represent uncertainty in an intuitive way, answering some decision
questions is computationally intractable. For instance, probabilistic dominance
testing for both formalisms is #P-hard.

Experimental studies on human decision making in economics and psychol-
ogy [5,10,17] show that humans often make decisions in a lexicographic manner,
and that human decision makers who use other decision models often trans-
late them to lexicographic models for a more compelling verbal communication
[16]. Motivated by this research and building on the concept of lexicographic
preference trees [2,14], we propose probabilistic lexicographic preference trees, or
PrLP -trees, as another model of qualitative preferences with uncertainty. We
also identify four classes of PrLP-trees that allow compact representations.

We show that PrLP-trees define the probability that a given outcome has a
given rank, and the probability that a given outcome is preferred to another one.
We show that the probabilities mentioned above can be computed in polynomial
time, both for “full” PrLP-trees and for all classes of compact PrLP-trees. On
the other hand, we show that finding the alternative with the highest probability
of being optimal is NP-hard.

The paper is organized as follows. Section 2 formally introduces PrLP-trees
and their probabilistic semantics, illustrates the concept, and gives some key
properties. Section 3 presents the collapsing algorithm and introduces classes of
compact PrLP-trees. It is followed by a discussion of complexity results and then
by conclusions.

2 Probabilistic Lexicographic Preference Trees

We consider preference relations over combinatorial objects. Formally, let A be
a finite set of n binary attributes, each attribute X ∈ A having the domain
{x, x̄}. A combinatorial domain over A, CD(A), is the Cartesian product of
the domains of all attributes in A: CD(A) =

�
X∈A{x, x̄}. We call elements of

CD(A) alternatives or outcomes.
A probabilistic lexicographic preference tree (PrLP-tree, for short) over a com-

binatorial domain CD(A) is a tree satisfying the following conditions:

1. Each node in the tree is a box node or a circle node.
2. The root of the tree, denoted by root, and the leaves are box nodes; box and

circle nodes alternate on each path from the root to a leaf.
3. Edges from a box node v to its children c ∈ C(v) are labeled by positive reals

pv
c so that

∑
c∈C(v) pv

c = 1, where C(v) is the set of children of node v.
4. Every circle node v is labeled by an attribute, say X ∈ A, and by a real

pv,x satisfying 0 ≤ pv,x ≤ 1. The latter represents the probability that x is
preferred to x̄ at v. We set pv,x̄ = 1 − pv,x to represent the probability that
x̄ is preferred to x at v.

5. Every circle node v has two children, left and right. Assuming that v is labeled
with an attribute X ∈ A, the edge to the left child is labeled with x and to
the right child with x̄. (With this convention, we do not need to make these
edge labels explicit.)
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6. Every attribute in A appears exactly once on every path from the root to a
leaf.

To evaluate outcomes in a PrLP-tree, we start at the root and move down
the tree. Along the way, the role of a box node is to identify the next attribute to
consider, and the role of a circle node labeled with an attribute X is to specify
which of the two values x and x̄ is preferred at that node. Deterministic LP-trees
[2] are special PrLP-trees, where each non-leaf box node has exactly one child
(determinism for the choice of the next attribute to consider), and the reals pv,x

are either 0 or 1 (determinism for the preference between x and x̄.
To illustrate these intuitions (cf. Fig. 1), let us consider the domain of dinners

with three attributes: Appetizer (A) with values salad (a) and soup (ā), Entree
(E) with values beef (e) and fish (ē), and Drink (D) with values beer (d) and
wine (d̄).
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Fig. 1. A PrLP-tree over the dinner domain

To determine which of the two outcomes, say α = aed̄ and β = aēd, is
preferred we proceed from the root to a leaf. First, at the root, we select the
attribute which (at the time of the decision) is regarded as the most important
one. The selection is random and follows the probability distribution given by
the labels of the edges starting at the root. Here Entree has probability 0.5,
Appetizer—0.2, and Drink—0.3. Say we selected Entree (the most likely choice).
We then move down to the corresponding circle node (labeled with E for Entree
in Fig. 1). Since the two outcomes differ on Entree, we can determine right at
that node whether α is better than β or the other way around. To do so, we
randomly select one of the values of the selected attribute (here, e or ē) based
on the probability of e being preferred, which is given as the label of that node.
Say, we chose that e as preferred (this happens 80% of the time). Thus, under
these random choices, α is preferred to β.

But, it could turn out differently. At the root, we might have selected Appe-
tizer as the most important attribute (this happens 20% of the time) and move
down to the circle node labeled A (for Appetizer). However, α and β have the
same value a for this attribute. So, unlike in the earlier scenario, we are unable
to decide at this node which of α and β is preferred. Thus, we move down the
left edge (it corresponds to the value a shared by both outcomes) to reach the
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next box node. In this box node, there is no uncertainty about the next most
important attribute. It is Entree and we move down to the corresponding circle
node. Since the two outcomes differ on this attribute, we will now be able to
order α and β. We use the probability information there (e is preferred to ē with
the probability 0.4) to select randomly the preferred value. Say, we selected ē
(happens with the probability 0.6). Then this time around, β is preferred to α.

Thus, each time we ask whether α is preferred to β and run this process,
we may get a different answer based on random choices made at box and circle
nodes according the probability distributions defined there. It is of interest then
to establish the probability that α is preferred to β. The formulas we present in
the paper provide the answer, formally specifying the random variable dominance
that returns for each pair (α, β) of distinct outcomes either α � β or β � α.

A similar process defines the random variable rank of an outcome α, which
counts how many other outcomes are preferred to α. To illustrate, let us consider
the outcome α = aed̄. As above, we start at the root and select the attribute
to take as the most important one. Say, we generated Entree. We descend to
the corresponding circle node and select one of the values e and ē as preferred.
We do it at random following the distribution specified in that node. Say, we
selected e as preferred (it happens 80% of the time). This means that the rank
of α is at most 3 (because every outcome with ē as its value for Entree is less
preferred than α and so, at most three outcomes are more preferred than α).

We can refine this estimate by continuing down the tree following the left
edge (according to our convention, this edge corresponds to the value α has for
Entree. In that box node we randomly select the next most important attribute
(using the probability distribution the box node defines). Say we selected Drink
(which happens 40% of the time). We descend to the corresponding circle node.
We randomly select d or d̄ as preferred (according to the probability labeling
this node). Say d is selected as preferred. This selection makes the outcomes ade
and adē preferred to α. Thus, we now have that the rank of α is 2 or 3. Finally,
we descend to the right box node (because α has d̄ on Drink). There is only
one attribute left, Appetizer, so there is no choice there and we descend to the
corresponding circle node. In that node, we randomly select the preferred value
for Appetizer (here, a is preferred with the probability 0.2). If we select a, the
rank of α is 2. If we select ā, the rank of α is 3, as āed̄ is preferred to α.

As before, each time we run this process to establish the rank of an outcome,
we may get a different result. It is then important to know what is the probability
(given a PrLP-tree) that an outcome has a specified rank, in particular, the
probability that an outcome is optimal (has rank 0). These probabilities formally
define the random variable rank.

We now present the formulas for the probabilities discussed above to define
the random variables rank and dominance.

Let T be a PrLP-tree over a combinatorial domain A. We write PrT (r(α) =
k) for the probability that an outcome α has rank k in T . Similarly, we write
PrT (α � β) for the probability that an outcome α is (strictly) preferred to an
outcome β in T . We define both probabilities by induction.
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In the base case we have A = ∅. In that case, CD(A) consists of just one
outcome, the empty outcome, which we denote by ε. Further, every PrLP-tree T
over A consists of a single node (which must be a box node). We set PrT (r(ε) =
k) = 1, if k = 0, and PrT (r(ε) = k) = 0, otherwise. Similarly, for every outcomes
α, β ∈ CD(A), since they necessarily are equal (each being equal to ε), we set
PrT (α � β) = 0.

Let us now assume that |A| = n > 0 and let A ∈ A be an attribute labeling
one of the children, say v, of the root. We first define the probability

PrT (r(α) = k|A)

that an outcome α has rank k in T given that A is chosen as the most important
attribute (this happens with the probability given by proot

v ).
Let Ta and Tā be the two PrLP-trees rooted in the two children of v. Clearly,

Ta and Tā are PrLP-trees over the set of attributes A \ {A}. Let us consider an
outcome α. We set α′ = α[A\{A}] and write x for α[A] (clearly, x = a or ā). We
also adopt the convention that ¯̄a = a. If k < 2n−1, then for r(α) = k to hold, we
must have that x is preferred to x̄ at v, which happens with the probability pv,x,
and that α′ has rank k in the tree Tx. If k ≥ 2n−1, then for r(α) = k to hold,
we must have that x̄ is preferred to x at v, which happens with the probability
pv,x̄, and that α′ has rank k − 2n−1 in the tree Tx. Therefore, we define,

PrT (r(α) = k|A) =
{

pv,xPrTx
(r(α′) = k) if k < 2n−1

pv,x̄PrTx
(r(α′) = k − 2n−1) if k ≥ 2n−1.

(1)

Next, we define PrT (r(α) = k) by setting

PrT (r(α) = k) =
∑

v∈C(root)

proot
v PrT (r(α) = k|Av), (2)

where Av denotes the attribute labeling the node v.
A similar reasoning leads to a recursive definition of PrT (α � β). Using the

notation introduced above and writing β′ = β[A\{A}], we define the probability
PrT (α � β|A) that α is preferred to β, assuming that A is the first (most
important attribute) in the evaluation of the dominance, by setting

PrT (α � β|A) =
{

pv,α[A] if α[A] �= β[A]
PrTα[A](α

′ � β′) if α[A] = β[A].

(3)

We then define PrT (α � β) by the formula

PrT (α � β) =
∑

v∈C(root)

proot
v PrT (α � β|Av), (4)

where Av denotes the attribute labeling the node v.
It is clear from the recursive definitions that the probabilities PrT (r(α) = k)

and PrT (α � β) can be computed efficiently.



Probabilistic Lexicographic Preference Trees 91

Theorem 1. The probabilities PrT (r(α) = k) and PrT (α � β) can be computed
in linear time in the size of T .

The following three theorems capture natural properties to be expected of the
probabilities we defined above. That they hold provides an additional support
for the soundness of our definitions.1

Theorem 2. For every PrLP-tree T over a set of attributes A and an integer
k, 0 ≤ k ≤ 2|A| − 1,

∑

α
PrT (r(α) = k) = 1.

Proof. We prove the theorem by induction. If A = ∅, the only outcome in the
corresponding combinatorial domain is the empty outcome ε. Moreover, k = 0.
By definition, Pr(r(ε) = 0) = 1 and the assertion holds.

Let us now consider a tree T over a set of attributes A, where |A| > 0 and let
us assume that the claim holds for all trees over a smaller set of attributes. Let
us denote n = |A|. We will present the argument for the case when k < 2n−1.
The other case is similar. By the formulas (1) and (2) in the main paper,

∑

α

PrT (r(α) = k)

=
∑

α

∑

v∈C(root)

proot
v pv,α[Av]PrTα[Av ](r(α

′) = k)

=
∑

v∈C(root)

∑

α

proot
v pv,α[Av]PrTα[Av ](r(α

′) = k)

=
∑

v∈C(root)

proot
v

∑

α

pv,α[Av ]PrTα[Av ](r(α
′) = k).

The set of outcomes over A splits into two disjoint sets: one with all outcomes
that have a as the value on A and the other one with all outcomes that have ā
as the value of A. Thus,

∑

α

pv,α[Av]PrTα[Av ](r(α
′) = k)

=
∑

β

pv,aPrTa
(r(β) = k) +

∑

β

pv,āPrTā
(r(β) = k)

= pv,a + pv,ā = 1.

The sums on the right hand side of the equality in the second line are over all
outcomes β over A \ {A} and the first equality in the last line follows by the
induction hypothesis applied to the trees Ta and Tā.

It follows that
∑

α

PrT (r(α) = k) =
∑

v∈C(root)

proot
v = 1,

which completes the inductive step argument. �	
1 Due to space restrictions, we provide a proof to the first of these results only.
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Theorem 3. For every PrLP-tree T over A and an outcome α ∈ CD(A),∑

k∈[0,2|A|−1]

PrT (r(α) = k) = 1.

Theorem 4. For every PrLP-tree T and two outcomes α and β such that α �= β,
PrT (α � β) + PrT (β � α) = 1.

Our PrLP-tree model can be viewed as a concise representation of certain
probability distributions over the space of standard deterministic LP-trees [2].
Let T be a PrLP-tree. Selecting for each box node exactly one of its circle
children (according to the probability distribution at that node), and selecting at
each circles node one of the two possible preference orders on the corresponding
attributes domain (again, according to the probability distribution at that node)
yields an LP-tree and its probability (the product of the probabilities of each
random selection made).

Let LP (T ) be the probability space described above: the set of LP-trees
derivable from T and their probabilities. Each such space supports reasoning
about uncertain preferences. For instance, given an outcome α, to find its rank,
we select an LP-tree R from the family LP (T ) at random according to the
probabilities of trees in LP (T ), and then use R to compute the rank of α. In this
approach, the probability that α has rank k is equal to the sum of probabilities
of all trees R in LP (T ) in which α has rank k. The dominance for two outcomes
α and β could be handled similarly.2 We conjecture that this approach yields
probabilities for the rank and dominance that are identical to those proposed
originally for PrLP-trees. Reasoning with probability spaces of LP-trees is more
direct, while PrLP-trees provide a much more concise representation. An in-
depth study of this relation is the subject of future work.

3 Compact Representation

The size of a PrLP-tree is exponential in the size of the attribute domains.
However, PrLP-trees can be collapsed to a more compact representation. Let us
consider a circle node v labeled by attribute X. If the two subtrees Tx and Tx̄ of
v are the same except possibly for the probability labels on the corresponding
circle nodes, then these two subtrees can be merged into one.

To merge Tx and Tx̄, we replace them with a single subtree of v, say R,
that has the same structure as Tx (or, equivalently, as Tx̄), and we modify the
probability labels on the circle nodes in R. Let us consider a circle node w in
R, let w′ and w′′ be the corresponding nodes in Tx and Tx̄, respectively, and
let p′ and p′′ be the probability labels of w′ and w′′. If p′ = p′′ then we label
w in R with p′, the common probability label of w′ and w′′. If p′ �= p′′, the
probability label of w is a conditional probability table (CPT) that consists of
two rows: x : p′ and x̄ : p′′. The table gives the conditional probabilities that a

2 We refer to the work by Lang et al. [11] for the definitions of ranks and dominance
for LP-trees.
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is preferred to ā (where we write A for the attribute labeling w′ and w′′). The
condition is the value of the attribute X and the probabilities reflect those in
the corresponding nodes in the subtrees Tx and Tx̄.

We note, that when we merge the subtrees of v, the probability labels of
circle nodes in Tx and Tx̄ may be CPTs and not reals (since we may already
have applied merging at nodes other than v). Let us now consider this more
general case. That is, let us assume that the labels of w′ and w′′ are CPTs P ′

and P ′′. To produce a CPT P to label w in R, we rewrite each row u′ : p′

in P ′ with x, u′ : p′, each row u′′ : p′′ in P ′′ with x̄, u′′ : p′′, and we put all
rewritten rows together. In this way, the merged CPTs in R contain conditional
probabilities that a is preferred to ā, with the conditions representing values on
the attributes labeling the ancestor nodes of w at which we applied the merging.

To collapse the tree we apply merging at all circle nodes at which merging
is possible. One can show that the order in which we select nodes for merging is
immaterial. Once this phase is complete, we may have box nodes with just one
child. These nodes carry no information (because there is no uncertainty about
the next circle node). Therefore, we remove them. We also remove the box nodes
representing leaves, for they also do not convey any specific meaning.

This process is formalized in Algorithm 2, which performs individual merg-
ing steps bottom-up by calling a recursive Algorithm 1, and then applies post-
processing that removes leaves and all box nodes that only have one child. It is
illustrated with several examples of collapsible PrLP-trees and the corresponding
compacted trees in Fig. 2.

When a PrLP-tree is collapsed into one path of circle nodes labeled by prob-
ability values (not CPTs), we call such a tree an unconditional importance and
unconditional preference (UI-UP) tree. If a collapsed tree only has one path
of circle nodes some of which are labeled by CPTs, we call it an unconditional
importance and conditional preference (UI-CP) tree. We show such types of trees
in Fig. 2b and d. UI trees indeed are compact with linear size in the attribute
domains, if the number of conditioning attributes in trees is bounded by a small
constant.

In general, even after collapsing, the tree structure can still have branching
points and so multiple paths from the root to leaves. We refer to such trees as
conditional importance (CI) trees. If, in a CI tree, nodes with the same attribute
unanimously are labeled by the same probability label, we call the tree a condi-
tional importance and unconditional preference (CI-UP) tree. All other CI trees
are called conditional importance and conditional preference (CI-CP) trees. One
example of a CI-CP tree is given in Fig. 2f. Note that, should the numerals for
all appearances of each attribute be the same in Fig. 2e, we would obtain a CI-
UP tree with the same tree structure as in Fig. 2f but with all nodes labeled
by probability numerals, not CPTs. We see that CI trees are of polynomial size
when both the number of box nodes and the number of conditioning attributes
in trees are bounded by a small constant.

PrLP-trees can be used to simulate agent’s reasoning about the quality of out-
comes. We already discussed the use of a PrLP-tree to find a rank of an outcome
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Algorithm 1: The recursive procedure collapseRec in method collapse
Input: A full PrLP-tree T
Output: T collapsed

1 if T is a leaf then
2 return;
3 else
4 for Each child c of T do
5 collapseRec(c);
6 end
7 if T �= � then
8 if Tx and Tx̄ are equivalent then
9 Merge Tx and Tx̄ to R;

10 Disconnect Tx and Tx̄ from T ;
11 Connect R straight down as a child to T ;

12 end

Algorithm 2: The procedure collapse to collapse a full PrLP-tree
Input: A full PrLP-tree T
Output: T collapsed

1 collaspseRec(T );
2 Eliminate all leaf nodes and all box nodes in T that only has one outgoing edge;

or to compare two outcomes. The corresponding probabilities PrT (r(α) = k) and
PrT (α � β) can also be evaluated efficiently based on a compact representation
of a PrLP-tree T .

Theorem 5. (1) There is a linear time algorithm to solve the ProbRank prob-
lem: given a collapsed PrLP-tree T in any class of {UI,CI}×{UP,CP}, an
outcome α and an integer 0 ≤ k ≤ 2n−1, compute PrT (r(α) = k).

(2) There is a linear time algorithm to solve the ProbDom problem: given
a collapsed PrLP-tree T in any class of {UI,CI} × {UP,CP}, and two
different outcomes α and β, compute PrT (α � β).

Proof (Sketch). One can show that Algorithms 3 and 4 presented below have the
claimed properties. �	

We illustrate these two algorithms with the two examples below.

Example 1. Let us consider the CI-CP tree in Fig. 2f. Let outcome α = ade and
a rank of 5. Algorithm3 starts by calling probRank(t1, α, 5, 0, 1, 0). Since r < 22

is false, P is updated to 1 ∗ 0.6 = 0.6, and probRank(t2, α, 1, 1, 0.6, 0) is called.
Because t2 is a box node, the algorithm goes through its both children nodes t3
and t5 to call probRank for t3 and probRank for t5, respectively.

First, for probRank(t3, α, 1, 1, 0.36, 0), since r < 21 is true, P is updated
to 0.36 ∗ 0.3 = 0.108, and probRank(t4, α, 1, 2, 0.108, 0) is called. For this call,
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Fig. 2. Collapsing to compact PrLP-trees

because r < 20 is false, P is updated to 0.108 ∗ 0.4 = 0.0432 and probRank(∅, α,
0, 3, 0.0432, 0) is called. Therein, PP is updated to 0.0432.

Secondly, for probRank(t5, α, 1, 1, 0.24, 0.0432), since r < 21 is true, P is
updated to 0.24 ∗ 0.6 = 0.144, and probRank(t6, α, 1, 2, 0.144, 0.0432) is called.
For this call, because r < 20 is false, P is updated to 0.144 ∗ 0.7 = 0.1008 and
probRank(∅, α, 0, 3, 0.1008, 0.0432) is called. Therein, PP finally is updated to
0.144.

Example 2. Let us again consider the CI-CP tree in Fig. 2f. Let outcomes α =
ade and β = adē. Algorithm 4 starts by calling probDom(t1, α, β, 1, 0). Since
α[A] = β[A], probDom(t2, α, β, 1, 0) is called. Because t2 is a box node, the
algorithm goes through its both children nodes t3 and t5 to call probDom for t3
and probDom for t5, respectively.

First, for probDom(t3, α, β, 0.6, 0), since α[D] = β[D], probDom(t4, α, β, 0.6,
0) is called. For this call, because α[E] �= β[E], PP is updated to 0 + 0.6 ∗ 0.6 =
0.36 and this call returns.

Second, for probDom(t5, α, β, 0.4, 0.36), since α[E] �= β[E], PP is updated
to 0.36 + 0.4 ∗ 0.6 = 0.6, the final result.
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Algorithm 3: The recursive procedure probRank to solve the ProbRank

problem
Input: A collapsed PrLP-tree T labeled by attribute X, an alternative α, rank

r, number of circle ancestors c preceding T initialized to 0, path
probability P initialized to 1, and resulting probability PP (global)
initialized to 0

1 if c = n then
2 PP ← PP + P ;
3 return;

4 end
5 if T �= � then
6 if r < 2n−c−1 then

7 P ← P ∗ Pr(α[X] � α[X]);
8 probRank(Tα[X], α, r, c + 1, P , PP );

9 else

10 P ← P ∗ Pr(α[X] � α[X]);
11 probRank(Tα[X], α, r − 2n−c−1, c + 1, P , PP );

12 end

13 else
14 for Each child i of T do
15 probRank(i, α, r, c, P ∗ pT

c , PP );
16 end

17 end

Algorithm 4: The recursive procedure probDom to solve the ProbDom

problem
Input: A collapsed PrLP-tree T labeled by attribute X, two distinct

alternatives α and β, path probability P initialized to 1, and resulting
probability PP (global) initialized to 0

1 if T �= � then
2 if α[X] �= β[X] then
3 PP ← PP + P ∗ Pr(α[X] � β[X]);
4 else
5 probDom(Tα[X], α, β, P , PP );
6 end

7 else
8 for Each child i of T do
9 probDom(i, α, β, P ∗ pT

c , PP );
10 end

11 end

4 Complexity Results

Reasoning about optimality of outcomes or, in the case of uncertainty, about the
probability of an outcome to be optimal, is an essential component of preference
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reasoning. In this section we study the complexity of the optimality problem for
PrLP-trees. Specifically, we consider the following two problems.

1. (Optimality): Given a collapsed PrLP-tree T in any class of {UI,CI} ×
{UP,CP}, find an alternative with the highest probability of being optimal,
in symbols, find argmax

α
PrT (r(α) = 0).

2. (Optimality-D) (the decision version of the previous problem): Given a
collapsed PrLP-tree T in any class of {UI,CI} × {UP,CP}, and positive
integers a ≤ b, decide whether there is an alternative α such that PrT (r(α) =
0) ≥ a/b.

It turns out that the complexity of these problems depends on whether prob-
abilities assigned to attributes in an input PrLP-tree are conditional or not.

Theorem 6. For UP PrLP-trees, the problems Optimality and Optimality-

D can be solved in linear time.

Proof (Sketch). Let T be an input tree. By the assumption, for every attribute A,
the probability label of any node in T labeled with A is the same. Let us denote
this common value by pA. To define an optimal outcome, say α, we set α[A] = a,
if pA ≥ 1/2, otherwise, we set α[A] = ā. One can prove that for that outcome α,
Pr(r(α) = 0) is maximized. This solves the Optimality problem. Next, one can
show that this maximum probability is given by the products q of the quantities
max{pA, 1 − pA} taken over all attributes A. Now, the problem Optimality-D

has an answer YES for a threshold a/b if and only if q ≥ a/b. �	
When the input trees allow for conditional probabilities, both problems are

intractable.

Theorem 7. The problem Optimality-D is NP-complete for the class of CP
PrLP-trees.

Proof. Due to space restrictions, we only show proof for UI-CP trees. The mem-
bership in NP is clear. To prove hardness, we construct a reduction from 3-SAT.
Let Φ be a CNF formula over propositional variables X1, . . . , Xn and with clauses
C1, . . . , Cn. We construct an instance of the problem Optimality-D, restricted
to UI-CP trees as follows. We consider a combinatorial domain C in which the
variables Xi and the clauses Cj serve as attributes. When we view Xi as an
attribute, Xi has values xi and x̄i. With some abuse of notation, we will take
the values xi and x̄i as the logical values true and false, respectively. Thus,
outcomes in C restricted to attributes X1, . . . , Xn can be identified with truth
assignments to propositional variables X1, . . . , Xn.

We construct a UI-CP tree TΦ, its structure is given by a path of n + m
nodes, by labeling the nodes of the path with first X1, . . . Xn (in any order) and
then with C1, . . . , Cm (also in any order). We assign a probability 1/2 to every
node labeled with Xi (these probabilities are unconditional). We label each node
labeled with a clause Cp with a conditional probability table. To describe it, let
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us assume that Cp = �(Xi) ∨ �(Xj) ∨ �(Xk), where �(Xi), �(Xj), and �(Xk) are
the three literals of Cp, and Xi,Xj , and Xk are the atoms in these literals.

We make the probabilities that cp is preferred to c̄p at that node depend on
the attributes, Xi,Xj and Xk. For each combination of values for which Cp is
satisfiable, we set the probability that cp is preferred to c̄p to 1. For the only
combination of values that falsifies the clause, we set that probability to 1/2.

To complete the construction of an instance to the Optimality-D problem,
we set a = 1 and b = 2n. It is clear the entire construction can be done in time
linear in the size of Φ. We now observe that if a truth assignment α to X1, . . . , Xm

satisfies every clause in Φ, then the outcome consisting of α appended with
c1, c2, . . . , cm is optimal with the probability 1/2n. That is, there is an outcome
α′ such that PrT (r(α′) = 0) ≥ a/b.

Conversely, let α′ be an outcome of the combinatorial domain C such that
PrT (r(α′) = 0) ≥ a/b. It follows that every attribute Cj contributes a factor of
1 to the product defining PrT (r(α′) = 0) (if any of these attributes contributed
1/2, we would have PrT (r(α′) = 0) ≤ 1/2n+1 < a/b). This implies each clause
Cj is satisfied by the assignment given by α′[X1, . . . , Xn], that is, Φ is satisfiable.

Consequently, our construction is indeed a reduction from 3-SAT and so, the
hardness part for the problem Optimality-D follows. �	

This result has an immediate consequence for the Optimality problem.

Corollary 1. Optimality is NP-hard for CP PrLP-trees.

Indeed, if one could compute in polynomial time an outcome α with the
highest probability of being optimal, one could next compute that probability,
say p, also in polynomial time. Therefore, the answer to the problem whether
there is an outcome α such that PrT (r(α) = 0) ≥ a/b is YES if an only if
p ≥ a/b.

We conclude this section with a summary of our complexity analysis in Fig. 3,
omitted from which due to space limit is that Optimality is in P for UP trees
and is NP-hard for CI trees.

UP CP
UI P (Thm 5) P (Thm 5)
CI P (Thm 5) P (Thm 5)

(a) ProbRank & ProbDom

UP CP
UI P (Thm 6) NPC (Thm 7)
CI P (Thm 6) NPC (Thm 7)

(b) Optimality-D

Fig. 3. A summary of complexity results

5 Related Work

Probabilistic Conditional Preference Networks. Generalizing the deter-
ministic CP-net models, PCP-net introduces uncertainty to the conditional pref-
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erence tables, where each local preference is annotated with a probabilistic dis-
tribution [1]. The dependency graph in the PCP-net still is deterministic, render-
ing it unable to express uncertainty over the dependency relationships between
nodes.

A PCP-net can be seen as a compact representation of deterministic CP-nets
coming from multiple agents. However, these agents must all share the same
dependency graph and the relationship between the PCP-net and its CP-nets
is not clear. For acyclic PCP-nets, the ProbDom problem is #P-hard, and the
probabilistic optimality problem, i.e., a special case of the ProbRank problem
with the rank being 0, is in P. However, the Optimality problem for acyclic
PCP-nets still remains open.

Probabilistic Preference Logic Networks. Unlike PrLP-trees and PCP-nets
that are structured preference relations over combinatorial domains, PPL-nets
[15] express non-structured preferences over explicitly given alternatives. In a
PPL-net, a set of pairwise comparisons with their importance degree is given,
and we are to compute a normalized weight for every world represented by a
permutation of the alternatives. The probability of a preference query is the
sum of all the normalized weights of the worlds where the query holds true. As
for the complexity of reasoning, the ProbDom problem for PPL-nets is #P-
hard [15]. However, other problems we considered has yet to be formalized and
studied.

6 Conclusion and Future Work

We introduced probabilistic lexicographic preference trees, an intuitive and often
compact representation to reason about qualitative preferences with uncer-
tainty over alternatives of binary attributes. We defined the semantics of PrLP-
trees, proposed for them a compact representation, and identified four impor-
tant classes of compact PrLP-trees. We studied reasoning with PrLP-trees. We
showed that the ProbDom and ProbRank problems can be solved in polyno-
mial time for “full” PrLP-trees and for all classes of compact PrLP-trees. We
proved that the Optimality problem is in P for UP trees but is NP-hard for CP
trees. Future work includes extending these results to partial lexicographic pref-
erence trees [12], algorithms for learning compact PrLP-trees from datasets, and
a study of the relationship between PrLP-trees and probability spaces consisting
of LP-trees.

Acknowledgements. This work was partially supported by the NSF grant IIS-
1618783.
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Abstract. Preference modeling and preference learning are crucial
issues in multicriteria decision-making to formulate recommendations
that are tailored to the Decision Maker. In the field of multicriteria anal-
ysis, various aggregation functions have been studied to scalarize perfor-
mance vectors and compare solutions. Nonetheless, most of these models
do not take into account the presence of reference points in the criteria
scales. Since it has been observed that decision makers may exhibit differ-
ent attitudes towards aggregation depending on whether evaluations are
above or below reference values, we consider here bipolar extensions of
well-known aggregation models and propose incremental preference elici-
tation methods based on these models. In particular, we consider the elic-
itation of a 2-additive bipolar Choquet Integral, of a bipolar Weighted
Ordered Weighted Average (WOWA), and of a non-weighted bipolar
OWA. We propose a general approach that is implemented in all these
cases and provide numerical tests showing its practical efficiency.

Keywords: Bipolar Choquet Integral · biWOWA · biOWA · Capacity
elicitation

1 Introduction

In the field of multicriteria decision support, various decision models have been
proposed to determine the optimal choice within the set of Pareto optimal solu-
tions. The most common approach is to define an overall utility value from any
performance vector using an aggregation function synthesizing the advantages
and weaknesses of the solution considered. This aggregation function is often
parameterized by weighting coefficients allowing to control the relative impor-
tance of criteria and possibly their interaction in the aggregation. These param-
eters must be taylored to the value system of the Decision Maker (DM) to make
personalized recommendations.

There are many contributions on preference elicitation in the recent literature,
proposing to assess the parameters of a decision model. A first stream of research
concerns complete elicitation methods aiming to the determination of precise
weighting parameters. This approach requires much preference information from
c© Springer Nature Switzerland AG 2021
D. Fotakis and D. Rı́os Insua (Eds.): ADT 2021, LNAI 13023, pp. 101–116, 2021.
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the DM but has the advantage to allow the construction of a fully specified
decision model that can be used to derive personalized recommendations or
predicting choices of the DM in any set of alternatives. Another approach, quite
popular in the last decade, is to perform an incremental and adaptive elicitation
of preferences. The goal is a bit less ambitious here, it is to obtain a sufficient
amount of preference information to be able find the preferred option in a given
set of alternatives. This second approach significantly reduces the elicitation
burden.

Various incremental elicitation methods have been proposed in the literature.
While some of them manage a probability distribution over the set of parameters
and use Bayesian revisions to progressively pass from a prior distribution repre-
senting ignorance to a more specific distribution concentrated on a subregion of
the parameter space (see e.g., [6]), some others proceed by a progressive reduc-
tion of the parameter space until the optimal choice can be identified without
ambiguity [5,14,26,28]. Both approaches are interesting but we will focus in this
paper on the latter approach. In the field of multicriteria decision making, this
approach is generally implemented by maintaining a set of possible parameter
vectors (named the uncertainty set hereafter) defined as a convex polyedron that
is progressively reduced as new (linear) constraints appear from new preference
statements. This approach obviously applies to weighted sums, but more gen-
erally to any scalarizing function linear in its parameter. Assume indeed that
the overall utility of any performance vector x = (x1, . . . , xn) is defined by
fw(x1, . . . , xn) where fw : Rn → R is a scalarizing function parameterized by w
and linear in w, then any preference statement of type “x is as least as good
as y” for any two vectors x and y translates into the constraint fw(x) ≥ fw(y)
which is linear in w.

This approach based on uncertainty sets defined as convex polyedra is not
restricted to weighted sums. For instance it can also be applied to rank-dependent
aggregation functions such as Ordered Weighted Averages (OWA) [29] and Cho-
quet integrals [13] as shown in [2,3]. In this paper we consider more general
rank-dependent decision models recently introduced in multicriteria analysis for
preference aggregation with bipolar preferences, in particular biOWA [16] and
biChoquet integrals [13,17]. The motivation for this is twofold:

– it has been observed in different contexts that DMs tend to think of out-
comes relative to a certain reference point and may exhibit different attitudes
towards positive evaluations (i.e. , evaluations above the reference point) and
negative evaluations (i.e., evaluations below the reference point) see, e.g., [25]).
The biOWA aggregator and more generally any biChoquet integral allow to
model such decision behaviors and their parameters must be elicited.

– the descriptive power of bipolar models comes at a cost: bipolarity requires
using more weighting parameters to keep the possibility to model different
attitudes in the aggregation, depending on whether we are in the positive
side or in the negative side of the evaluation space. Therefore the elicitation
process is more demanding in terms of preference information and there is a
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need of testing the practical feasibility of incremental elicitation methods on
such models.

The aim of this paper is to propose a preference elicitation method based
on the biChoquet integral for multicriteria evaluation with bipolar scales. Our
approach is to progressively specify the two capacities used in the model by an
iterative reduction of their uncertainty sets using preference queries. We will
implement this approach on the general biChoquet model and also on specific
subclasses, for interactive decision support on explicit sets. The paper is orga-
nized as follows: Sect. 2 introduces some background on biChoquet integrals and
on regret-based incremental elicitation methods. Section 3 introduces an incre-
mental elicitation algorithm for the case of 2-additive biChoquet integrals. We
then propose an adaptation of our elicitation algorithm to the case of bipolar
weighted ordered weighted averages (biWOWA, Sect. 4), which is then further
specialized in the case of bipolar weighted ordered averages (biOWA, Sect. 5).
In all cases, we provide the results of numerical tests to show their performance
both in terms of computation time and number of generated preference queries.

2 Background

2.1 Choquet and BiChoquet Integrals

Let N = {1, . . . , n} denote the set of criteria under consideration to assess the
performance of a solution in the decision problem. We assume that any feasible
solution is characterized by a performance vector x = (x1, . . . , xn) where xi

represents the value of x w.r.t. the ith criterion. In order to model the preferences
of the DM we consider here the Choquet integral which is a widely-used model in
decision theory [9,21] with various applications in multicriteria decision making
[7,10,15,23] and AI [1,3,8,22].

The Choquet integral is a kind of weighted aggregation operator where
weights are not only assigned to every criteria but also to groups of criteria.
This enables to model positive or negative interactions among criteria, giving
enhanced descriptive possibilities compared to linear models. The weights are
defined using a set function named capacity and defined as follows;

Definition 1. A capacity on N is a set function v : 2N → [0, 1] such that
v(∅) = 0 and for all A,B ⊆ N,A ⊆ B ⇒ v(A) ≤ v(B).

Throughout the paper we will always assume that the capacities under con-
sideration are normalized, i.e., v(N) = 1. Then the Choquet integral can be
defined from any capacity as follows:
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Definition 2. For any vector x = (x1, . . . , xn) ∈ R
n, the Choquet integral w.r.t.

capacity v is a scalarizing function Cv : Rn → R defined by:

Cv(x) =
n∑

i=1

[
v(X(i)) − v(X(i+1))

]
x(i) (1)

=
n∑

i=1

[
x(i) − x(i−1)

]
v(X(i)) (2)

where (.) is any permutation such that x(1) ≤ . . . ≤ x(n), and X(i) =
{x(i), . . . , x(n)} is the set of objectives where the performance is at least as good
as x(i), for i = 1, . . . , n. Furthermore we assume that x(0) = 0 and X(n+1) = ∅.

Given a capacity v we can define the dual capacity by v̄(A) = 1 − v(N\A).
For any vector x ∈ R

n, we have: Cv(x) = −Cv̄(−x). Let us give an example of
the use of the Choquet integral in preference modelling.

Example 1. Let X = {a, b, c} be a set of alternatives evaluated according to 3
criteria as follows:

a b c

criterion 1 −2 −1 0
criterion 2 5 2 −2
criterion 3 0 1 5

Assume that the DM prefers b to a and c. One can easily check that such
a preference is not representable by a weighted linear aggregator. However, it
is easily representable by a Choquet integral. For instance, let us consider the
following capacity (Table 1):

Table 1. Capacity of the decision maker in Example 1

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v 0 0.1 0.2 0.1 0.4 0.4 0.4 1

We have then Cv(a) = (−2) v(N) + [0 − (−2)] v({2, 3}) + [5 − 0] v({2}) =
−2 + 1 + 1 = 0, Cv(b) = (−1) v(N) + [1 − (−1)] v({2, 3}) + [2 − 1] v({2}) =
−1 + 1 + 0.3 = 0.3 and Cv(c) = −2 + 0.8 + 0.5 = −0.7, which implies that b is
preferred to a and c.

Despite its descriptive appeal, the Choquet integral has itself some descriptive
limits, especially when the DM uses different aggregation logics in the positive
and in the negative part of the utility scale, as illustrated in Example 2.
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a b c d
criterion 1 2 3 −3 −4
criterion 2 5 3 −3 −1

Example 2. Let X = {a, b, c, d} be a set of alternatives evaluated according to
2 criteria as follows:

Assume that the value system of the DM is as follows: when performances are
positive she wants to maximize the average performance. However, when some
performances are negative, she adopts a more cautious behavior towards losses
and favors a solution having a more balanced profile. Hence her preference order
could be a, b, c, d. Any representation of this preference order by the Choquet
integral should satisfy: x 	 y ⇔ Cv(x) > Cv(y) for all x, y ∈ X.

We have a 	 b, therefore:

2 + 3 v({2}) > 3
⇔ 3 v({2}) > 1
⇔ v({2}) > 1/3

We have c 	 d, therefore:

− 4 + 3 v({2}) < −3
⇔ 3 v({2}) < 1
⇔ v({2}) < 1/3

The obtained contradiction demonstrates that no capacity v exists to repre-
sent the prescribed ranking. Therefore, the Choquet integral cannot model these
preferences.

The observation of such behaviors motivated the development of models able
to capture preferences that may vary depending on the position of the perfor-
mances relatively to some reference values. In this paper we will assume that a
vector of reference values p = (p1, . . . , pn) is known where pj is a neutral evalu-
ation on criterion j, separating the good and the bad part of the scale. For the
rest of this paper, when referring to a solution x = (x1, . . . , xn), we will consider
that it has already been centered on p, (i.e., x = x′ - p where x′ is the original
solution vector). Hence, 0 becomes the neutral value on all criteria scales. The
existence of such bipolar scales has motivated the introduction of the following
extension of the Choquet integral, defined for criterion values expressed on a
bipolar scale [11,12,17].

Definition 3. Let x ∈ R
n and u and v be two capacities. The bipolar extension

of the Choquet (biChoquet integral for short) is defined as follows:

Cu,v(x) = Cu(x+) − Cv(x−) (3)

where x+ = max(x, 0) and x− = max(−x, 0).

If we reinterpret Example 2 with this model, We obtain u({2}) > 2/6 and
v(2) < 2/6 which is no longer contradictory. Actually this model can eas-
ily describe the preference order given in Example 2 due to the combination
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of two capacities, one for the positive side and the other for negative side.
This general model includes several interesting subclasses. For example, when
u(A) = ϕ(

∑
i∈A pi) and v(A) = ψ(

∑
i∈A pi) for some functions ϕ and ψ

strictly increasing on the unit interval and such that ϕ(0) = ψ(0) = 0 and
ϕ(1) = ψ(1) = 1, then the biChoquet integral is nothing else but the model pro-
posed by Kahneman and Tversky in their Cumulative Prospect Theory (CPT)
[25]. In the context of CPT, pi represents the probability of a state i. If we
import the CPT model in the context of multicriteria aggregation, pi must be
interpreted as the weight of criterion i and we obtain a bipolar version of the
WOWA operator introduced by Torra [24] (when all criterion values are posi-
tive, we exactly obtain a WOWA). If we further specify the model by setting
pi = 1/n then capacities u and v are symmetric (their values only depend on
the cardinality of the set) and the resulting model is known as biOWA [16]. We
will come back to these models in the following sections.

Until now, we have made the assumption that preferences were known. This
is a strong hypothesis and, in practice, the parameters of these models must
be elicited. We now recall some background on incremental elicitation methods
based on the minimisation of regrets.

2.2 Elicitation Based on Regret Minimization

We consider an aggregation function fw where w is the unknown weighting
vector used in the model used to represent DM’s preferences. When no preference
information is available the uncertainty set defined as the set of all admissible
weighting vectors is defined by Ω = {w ∈ R

�

+, such that
∑n

i=1 wi = 1}. When a
set P of preference statements is eventually observed (under the form of a list
of ordered pairs of alternatives where the first is preferred to the second), the
initial set Ω can be reduced to a subset denoted ΩP using the linear constraints
induced by the preferences in P . Hence ΩP is a convex polyhedron, at any step
of the elicitation process.

Given an uncertainty set ΩP , an alternative is said to be necessarily optimal
in X, if fw(x) ≥ fw(y) for all y ∈ X and all w ∈ ΩP . In this context, the goal
of an incremental preference elicitation method is to iteratively generate pref-
erence queries to collect preference statements and further restrict ΩP until a
necessarily optimal element can be identified in X. In order to generate informa-
tive preference queries and to identify a necessarily optimal element as soon as
possible, we can use the notion of max-regret as suggested in [27]. Let us recall
the definition of regrets used in the elicitation process:

For two alternatives x and y, the Pairwise Max Regret (which quantifies the
regret of choosing x instead of y) is defined by:

PMR(x, y,ΩP ) = max
w∈ΩP

(fw(y) − fw(x)) (4)

Then, the Max Regret attached to a solution x ∈ X is defined by:

MR(x,ΩP ) = max
y∈χ

PMR(x, y,ΩP ) (5)
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The MinMaxRegret (MMR) is then the minimal value of the MaxRegret for
all elements in X.

MMR(x,ΩP ) = min
x∈χ

MR(x,ΩP ) (6)

A necessarily optimal solution has a Max Regret value of 0. Hence, we have
to collect preference statements until the MMR drops to 0. Preference queries
are generated using the current solution strategy that consists in comparing a
solution x∗ having a minimal MR value to its strongest challenger, i.e., any solu-
tion y∗ maximizing PMR(x∗, y∗, ΩP ). In practice, to save a significant number
of queries, we can stop the process when MMR drops below a given ε > 0 without
loosing much in the quality of the returned solution. When the set of alterna-
tives X is finite and defined explicitly, this general elicitation process interleaving
preference queries and the exploration of the set of alternatives is formalized in
Algorithm 1. The computation of the PMR is specific to each aggregation func-
tion and will be discussed later in the paper.

Result: x∗: a necessarily optimal alternative
initialization;
X = {x1, . . . , xm}, ΩP = Ω;
do

for x ∈ X do
for y ∈ X do

Compute PMR(x, y,ΩP );
end
Update MR(x,ΩP );

end
x∗, mmr = Update MMR;
(a, b) := Select a query for the DM in X ;
preference(a, b) := Ask (a, b) to the DM ;
Update(ΩP , preference(a, b)) ;

while mmr ≥ ε;
Return x∗

Algorithm 1: Elicitation of preferences

This algorithm can be used to incrementally elicit the capacities u and v in
Cu,v (Eq. 3). In this case, the aggregator fw is the biChoquet integral and its
parameter w is defined by the pair of capacities u, v. In the following sections, we
introduce some computational models based on linear programming to efficiently
obtain the PMR values in the simultaneous elicitation of u and v. We successively
consider three different families of instances of biChoquet integrals.

3 Elicitation of a 2-Additive BiChoquet Integral

Capacities u and v are useful mathematical functions to model the interactions
among criteria but their definition or approximation would require to work with
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2(2n − 2) weighting coefficients where n is the number of criteria. In order to
introduce more compact representations of interactions while keeping some flexi-
bility in the model, we use the Möbius inverse of the capacities. Given a capacity
v, the Möbius inverse of v is defined by mv(A) =

∑
B⊆A(−1)|A\B|v(B) for all

A ⊆ N . Then, Cu,v can be rewritten from mu and mv as follows:

Proposition 1. Let u and v be two capacities and x a performance vector, we
have:

Cu,v(x) =
∑

A⊆N

mu(A)min
i∈A

x+
i −

∑

A⊆N

mv̄(A)max
i∈A

x−
i (7)

with mu the Möbius inverse of u and mv̄ the Möbius inverse of v̄ the dual capacity
of v, x+ = max(x, 0) and x− = max(−x, 0).

Proof. We recall that Cv(x) = −Cv̄(−x) and that Cv(x) =
∑

A⊆N m(A)
mini∈A xi. We have then Cu,v(x) = Cu(x+) − Cv(x−) = Cu(x+) − (−Cv̄(−x−))
and therefore Cu,v(x) = Cu(x+) − (−∑

A⊆N mv̄(A)mini∈A(−x−
i )) =∑

A⊆N mu(A)mini∈A x+
i − ∑

A⊆N mv̄(A)maxi∈A x+
i .

This formulation suggests that more compact representations of subclasses
of biChoquet integrals can easily be obtained. We can indeed restrict u and v̄
to k-additive capacities. A capacity u is said to be k-additive if and only if its
Möbius inverse mu verifies for all A ⊆ N, |A| > k,mu(A) = 0 and it exists at
least B ⊆ N, |B| = k such as mu(B) �= 0. For example, a 2-additive capacity is
completely characterized by n(n + 1)/2 Möbius masses (one for every singleton
and every pair). Such a capacity makes it possible to model non-linearities due to
pairwise interactions between pairs of criteria while involving only a polynomial
number of parameters. Moreover, by restricting u and v to 2-additive capacities,
we can exploit the following result [18]:

Proposition 2. We set Q = {A ⊆ N, 1 ≤ |A| ≤ 2} and Q′ = {B ⊆ N, |B| =
2}. The class of 2-additive capacities forms a convex polytope whose extreme
points are of two types:

– For all A ∈ Q, we define the extreme point MA as, for all X ⊆ N, MA(X) =
1 if X = A, 0 otherwise.

– For all B ∈ Q′, we define the extreme point M ′
B as, for all X ⊆ N, M ′

B(X) =
−1 if X = B, 1 if ∅ �= X ⊂ B, 0 otherwise.

Every 2-additive capacity has then its Möbius inverse m defined as a convex
combination of those extreme points:

m =
∑

A∈Q

αA · MA +
∑

B∈Q′
α′

B · M ′
B

with ∀A ∈ Q, αA ≥ 0, ∀B ∈ Q′, α′
B ≥ 0 and

∑
A∈Q αA +

∑
B∈Q′ α′

B = 1.
Therefore, every 2-additive capacity is defined by an unique positive vector of
size 2 × (

n
2

)
+ n, formed by the concatenation of α and α′. In our context, we
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consider two 2-additive capacities u and v̄ and their Möbius inverse mu and
mv̄. Their coefficients in the combination of extreme points of the polytope will
be denoted (αu

A, α
′u
B ) and (αv̄

A, α
′v̄
B ) in the sequel. Using the previous notions

and definitions, we present the following linear program to compute the PMR
between x and y, with a set of possible parameters ΩP , defined as the set of all
possible 2-additives capacities u and v̄ characterized by their Möbius masses mu

and mv̄ and described by variables αu
A,α′u

B , αv̄
A, α′v̄

B .

max
∑

A⊆Q
mu(A)(min

i∈A
y+

i − min
i∈A

x+
i ) − ∑

A⊆Q
mv̄(A)(max

i∈A
y−

i − max
i∈A

x−
i )

(P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mu(X) =
∑

A∈Q
αu

AMA(X) +
∑

B∈Q′
α

′u
B M ′

B(X), ∀X ⊆ Q
mv̄(X) =

∑
A∈Q

αv̄
AMA(X) +

∑
B∈Q′

α
′v̄
B MB(X), ∀X ⊆ Q

∑
X∈Q

αu
X +

∑
X∈Q′

α
′u
X = 1

∑
X∈Q

αv̄
X +

∑
X∈Q′

α
′v̄
A = 1

∑
A⊆Q

mu(A) min
a+
i ∈A

a+
i − mv̄(A) max

a−
i ∈A

a−
i ≥

∑
A⊆Q

mu(A) min
b+i ∈A

b+i − mv̄(A) max
b−
i ∈A

b−
i , ∀(a, b) ∈ ΩP

mu(A), mv̄(A) ≥ 0, ∀A ⊆ N

αu
A, αv̄

A ≥ 0, ∀A ⊆ Q, α
′u
B , α

′v̄
B ≥ 0, ∀B ⊆ Q′

For any two 2-additive capacities u and v̄, this linear program has 6
(
n
2

)
+3n con-

tinuous variables and 2
(
n
2

)
+ 2n + |P | constraints, with |P | the number of added

constraints induced by preferences statements. We implemented Algorithm 1 to
elicit u and v in Cu,v using program P1 for the computation of PMR values. To
run our tests, we used Gurobi 8.1.1 solver, a cluster of computers with 252 GB
of RAM and 32 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz processors. Our
elicitation algorithm has been tested on randomly generated instances with capac-
ities randomly drawn using Proposition 2. Alternatives are randomly sampled to

Fig. 1. Comparison of CSS and Random strategies - Average regrets evolution - 5
criteria and 25 alternatives
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form a Pareto-front with a significant part of unsupported solutions (which do not
belong to the frontier of the convex envelope and thus that cannot be considered
optimal by a linear model). For each instance, the elicitation sequence is iterated
until we observe a decrease of the MMR value of at least 90% (ε = 0.1). The follow-
ing Figure compares the evolution of the regret (i.e., the MMR value) throughout
the elicitation process, for strategies CSS and Random (in the latter, the prefer-
ence query is randomly selected at each step) (Fig. 1).

The curves reflecting the decay of MMR values show that when ε = 0.1,
the elicitation algorithm stops after about 15 preference queries with the CSS
whereas much more queries would be necessarily for the Random strategy. As
observed for other models, CSS appears to be effective to find informative queries
reducing regrets. Through the rest of this paper, we will focus on this query
strategy to perform tests with different families of bipolar models.

Now, we report the average computation times and the average number of
preference queries used to solve instances of different sizes (n the number of
criteria varies from 5 to 10 and m, the size of the set of alternatives, varies from
50 to 100).

Even though the number of parameters is two times greater than in the
monopolar case (standard 2-additive Choquet integrals), we observe that the
solution times of Algorithm 1 remain reasonably low. Actually, they are in the
same order of magnitude that the computation times we use to obtain for stan-
dard 2-additive Choquet integrals. Moreover, we observe that the elicitation cost
in terms of number of preference queries asked to the DM does not increase dras-
tically when considering the bipolar extension of the Choquet Integral.

n m = 50 m = 75 m = 100
5 2.85 7.1 9.77
7 4.6 10.63 19.43
10 7.42 21 40.07

(a) CSS-times (s) - Choquet

n m = 50 m = 75 m = 100
5 5.12 9.37 17.27
7 8.93 18.56 33.64
10 14.63 35.98 70.48

(b) CSS-times (s) - BiChoquet

n m = 50 m = 75 m = 100
5 13.95 15.8 19.05
7 23.35 28.3 27.8
10 39.2 50.7 54.35

(a) CSS-queries - Choquet

n m = 50 m = 75 m = 100
5 16.15 17.1 17.35
7 31.45 35.5 34.95
10 46.35 64.85 78.5

(b) CSS-queries - BiChoquet

4 Elicitation of a Bipolar WOWA

In this Section we consider another subclass of the general biChoquet model intro-
duced in Eq. 3. We are no longer restricted to two additive capacities but consider
all capacities that are defined as monotonic transformed of an additive measure.
Formally, we assume that u and v have the following forms: u(A) = ϕ(

∑
i∈A pi)

and v(A) = ψ(
∑

i∈A pi) where pi are the criteria weights. As mentioned at the
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end of Subsect. 2.1, the resulting subclass of biChoquet functions is a counter-
part of CPT in the setting of multicriteria aggregation. The aggregators in this
family can also be seen as bipolar extensions of WOWA (the weighted extension
of OWA proposed in [24]). For this reason, these operators are named biWOWA
hereafter. More formally they are defined as follows:

Definition 4. Let x ∈ R
n be a performance vector, p ∈ R

n an importance vector
over the set of criteria, ϕ and ψ two increasing functions with ϕ(0) = ψ(0) =
0 and ϕ(1) = ψ(1) = 1. The Bipolar Ordered Weighted Averaging operator
(biWOWA) is defined as the aggregation function fϕ,ψ : Rn → R such that:

fϕ,ψ(x) =
n∑

i=1

ϕ(
n∑

k=i

p(k))
[
x+
(i) − x+

(i−1)

] −
n∑

i=1

ψ(
n∑

k=i

p(k))
[
x−
(i) − x−

(i−1)

]

with x+ = max{x, 0}, x− = max{−x, 0} and (.) the permutation of criteria
which sorts x in the increasing order.

We assume here that the weighting vector p is known and we focus on the
elicitation of ϕ and ψ. This is a challenging problem because we have to consider
a continuous set of non-linear increasing functions. To overcome this difficulty, we
use a spline representation of ϕ and ψ. Spline functions are piecewise polynomials
whose elements connect with a high level of smoothness. Further details on spline
functions can be found in [19,20], but an interesting property of these functions
is that they can be generated with a linear combination of basis monotonic spline
functions. This allows to reduce the elicitation of ϕ and ψ to their corresponding
weighting vectors bϕ and bψ in the spline basis. More precisely, we have ϕ(x) =∑r

j=1 bϕ
j Ij(x) and ψ(x) =

∑r
j=1 bψ

j Ij(x), where Ij(x), j = {1, . . . , l} are the basic
monotonic spline functions (see Fig. 2). A similar approach, based on the use of
spline functions, has been proposed for the WOWA model in [4] on the robust
assignment problem.

Fig. 2. I-spline basis of order 3

In order to compute PMR(x, y) for two alternatives x and y when preferences
are represented with the biWOWA model, we propose the linear program P2.
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For any two increasing functions ϕ and ψ, this linear program has 2r continuous
variables and 2l + |P | constraints, with |P | the number of added constraints
induced by preferences statements and l the size of the spline functions basis.

max
[ n∑

i=0
[

l∑

j=1
bϕ(j)Ij(

n∑

k=i
p(k)))](y

+
(i)

− y+
(i−1)

) − [
l∑

j=1
bϕ(j)Ij(

n∑

k=i
p(k)))](x

+
(i)

− x+
(i−1)

)
]

−[ n∑

i=0
[

l∑

j=1
bψ(j)Ij(

n∑

k=i
p(k)))](y

−
(i)

− y−
(i−1)

) − [
l∑

j=1
bψ(j)Ij(

n∑

k=i
p(k)))](x

−
(i)

− x−
(i−1)

))
]

(P2)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

l∑

j=1
bϕ(j) = 1

l∑

j=1
bψ(j) = 1

fϕ,ψ(a) ≥ fϕ,ψ(b), ∀(a, b) ∈ ΩP

bϕ(j), bψ(j) ≥ 0, j = 1, . . . , l

We implemented Algorithm 1 using program P2 to compute the PMR values
to elicit ϕ and ψ in fϕ,ψ. In our tests, we used the experimental setting of Sect. 3.
We simulated the DM’s answers to preferences queries using fϕ′,ψ′ where ϕ′ and
ψ′ were randomly drawn using the basis of spline functions. The execution times
and the number of queries asked to the DM are given in the tables below;

n m = 50 m = 75 m = 100
5 1.51 2.75 3.71
7 2.05 3.55 5.61
10 3.6 5.15 6.34

(a) CSS-times (s) - WOWA

n m = 50 m = 75 m = 100
5 3.43 5.89 9.89
7 6.42 8.08 18.66
10 12.45 21.40 37.25

(b) CSS-times (s) - biWOWA

n m = 50 m = 75 m = 100
5 4.75 4.65 4.8
7 4.7 5.6 4.75
10 5.5 5.25 5.2

(a) CSS-queries - WOWA

n m = 50 m = 75 m = 100
5 5.35 4.8 5.4
7 5.8 5.2 5.8
10 6.5 6.2 6.55

(b) CSS-queries - biWOWA

We observe that, even though computation times remain low in the bipolar
case, the increase between WOWA and BiWOWA operator is significant. How-
ever, when it comes to the number of generated preference queries, we observe
only a slight increment when passing from WOWA to biWOWA. The increase of
computation time seems to be related to the computation of PMR using linear
program P2.

5 Elicitation of a Bipolar OWA

In this section we consider the bipolar Ordered Weighted Averaging (biOWA),
introduced in [16] to generalize OWA to the bipolar case. As mentioned before,
this is an instance of the biWOWA obtained when the criteria weights are equal
(pi = 1/n). This instance can be elicited by the general method proposed for
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biWOWA but we are going to introduce a more specific and direct method,
taking advantage of the fact that biOWA admits a much simpler formulation
when all criteria weights have the same value.

Definition 5. Let x ∈ R
n be a performance vector and α, β ∈ R

n
+ two weight-

ing vectors, the bipolar ordered weighted averaging (biOWA) is the aggregation
function gα,β : Rn → R defined by:

gα,β(x) = α · x+
↑ − β · x−

↓ (8)

with x+ = max{x, 0}, x− = max{−x, 0} and x↑ (resp. x↓) is the vector obtained
from x by rearranging its components in the increasing (resp. decreasing) order.

In this case, the parameter of the model is defined by the pair α, β of weight-
ing vectors defining how the DM focuses on good and bad positive (resp. negative)
evaluations. As in the OWA operator, these weights are not attached to criterion
values but to their rank in the ordered list of positive (resp. negative) criterion
values. In order to compute the PMR values for this model, we use program (P3)
given below:

max
n∑

i=1

αi (y+
(i) − x+

(i)) − βi (y−
(i) − x−

(i))

(P3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑
i=1

αi = 1
n∑

i=1

βi = 1
n∑

i=1

αi a+
(i) − βi a−

(i) ≥
n∑

i=1

αi b+(i) − βi b−
(i), ∀(a, b) ∈ ΩP

αi, βi ≥ 0, ∀i ∈ {1, .., n}
For any two weighting vectors α and β, this linear program has 2n continuous

variables and 2 + |P | constraints, with |P | the number of added constraints
induced by preferences statements. We implemented Algorithm 1 using program
P3 to compute PMR values and elicit a biOWA. We also implemented the method
for the elicitation of a standard OWA in order to compare execution times and
the number of asked queries. To run our tests, we used the same experimental
setting as before and the DM’s answers were simulated using gα′,β′ where α′ and
β′ were randomly drawn weighting vectors. The results of the tests are given in
the tables hereafter.



114 H. Martin and P. Perny

n m = 50 m = 75 m = 100
5 0.27 0.41 0.57
7 0.28 0.48 0.87
10 0.31 0.66 0.82

(a) CSS-times (s) - OWA

n m = 50 m = 75 m = 100
5 0.45 0.61 1.42
7 0.55 0.96 1.45
10 0.61 1.27 1.65

(b) CSS-times (s) - biOWA

n m = 50 m = 75 m = 100
5 5.65 5.8 5.65
7 7.25 7.45 8.05
10 8.55 9.75 10.0

(a) CSS-queries - OWA

n m = 50 m = 75 m = 100
5 16.1 6.0 6.3
7 9.05 8.9 8.45
10 11.95 13.15 11.7

(b) CSS-queries - biOWA

As in Sect. 3, we observe that computation times are at most two times
more important when passing from OWA to biOWA. This good result can be
explained by the partial elicitation of preferences and the efficient computation
of PMR values due to program P3. The number of preference queries is similar
for OWA and biOWA, which is an encouraging result for the use of biWOWA
in other incremental elicitation contexts (e.g., when the alternatives are defined
implicitly).

6 Conclusion

Preferences modeling and learning in multicriteria decision-making problems are
crucial issues. Moreover, bipolar models are gaining importance in the field of
decision theory to overcome descriptive limitations of usual aggregation func-
tions when a reference point must be considered. For these reasons, we have
proposed new computational models to perform an incremental elicitation of
preferences based on a bipolar rank-dependent model. We applied our approach
to biOWA, biWOWA and 2-additive biChoquet integrals, which extends our pre-
vious contributions on the elicitation of monopolar models (OWA, WOWA and
Choquet).

The elicitation methods proposed here and the tests performed concern the
case where the set of alternatives is defined explicitly. A natural continuation of
this work would be to extend the approach to sets of alternatives that are implic-
itly defined (e.g., for preference-based combinatorial optimization). Another
extension could be to consider the elicitation of the biChoquet model for more
general classes of capacities, and the elicitation of bi-capacities for the Choquet
model. The major challenge will be the increased number of parameters to be
learned in the model and the efficient computation of PMR values.

Acknowledgement. We wish to thank anonymous reviewers for their useful com-
ments on a preliminary version.
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Abstract. Consider n agents forming an egalitarian, self-governed com-
munity. Their first task is to decide on a decision rule to make fur-
ther decisions. We start from a rather general initial agreement on the
decision-making process based upon a set of intuitive and self-evident
axioms, as well as simplifying assumptions about the preferences of the
agents. From these humble beginnings we derive a decision rule. Cru-
cially, the decision rule also specifies how it can be changed, or amended,
and thus acts as a de facto constitution. Our main contribution is in pro-
viding an example of an initial agreement that is simple and intuitive,
and a constitution that logically follows from it. The naive agreement
is on the basic process of decision making – that agents approve or dis-
approve proposals; that their vote determines either the acceptance or
rejection of each proposal; and on the axioms, which are requirements
regarding a constitution that engenders a self-updating decision making
process.

Keywords: Voting · Constitutions · Self-governance · Democracy

1 Introduction

Consider a group of n agents that gather to form a self-governed community. To
make collective decisions, they first need to agree on a rule by which to do so;
but offering to vote on the voting rule leads to infinite regress.

Thus, in this paper we offer a different approach. In particular, we assume
that the agents first agree on a common set of axioms, and aim to infer an
initial decision rule from these axioms. Ideally, the axioms will logically imply
an identifiable set of permissible decision rules, and a unique decision rule from
this set to serve as the initial rule, so that an agent who agrees to the axioms
cannot object to the initial rule they imply, nor to the set of permissible rules.

Furthermore, it is crucial that the decision rule be amendable. Once the
agents have passed the first hurdle and founded their rudimentary constitution,
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agent preferences over the various permissible decision rules become material.
Thus, we assume that the agents also agree on a common set of axioms that relate
to the amendment procedure to change the decision rule itself. Again, ideally,
the axioms will logically imply a unique amendment procedure such that, taking
agent preferences over possible decision rules into account, agents who agree to
the axioms would have no objections to the amendment procedure.

We view the initial decision rule as the foundation of the constitution of the
community and the amendment procedure as the process by which the consti-
tution changes itself. We look at our work as a step towards understanding how
a group of agents can congeal into a self-governed, rule-based, egalitarian com-
munity with a decision making mechanism that is not dictated by an external
agent.

1.1 Paper Structure

We discuss some related work in Sect. 2. In Sect. 3 we discuss how to found
and amend a constitution; we do so in an informal way, to mimic the way by
which the agents may freely discuss the principles by which they wish to be
self-governed, and to introduce the intuitions behind the formal treatment that
follows. In Sect. 4 we formally define the set of axioms and their logical conse-
quences – a unique decision rule and amendment procedure. In Sect. 5 we present
an alternative axiomatic basis, explore its consequences, and compare it to the
initial axiomatic basis proposed. We conclude, in Sect. 6, with a discussion on
future research directions.

2 Related Work

Kenneth May’s seminal paper [21] demonstrates that majority rule is the only
voting rule that satisfies a compact, intuitive set of axioms. We have taken May’s
Theorem as inspiration to answer the question of how a group of agents could
establish a set of rules for themselves where none existed before. While our
axioms lead the agents to use majority rule initially when founding their consti-
tution, they also enable the agents to change this rule according to their collective
preferences. While there is a large literature on characterizing social choice rules
axiomatically (see, e.g., [7,26]) and implementation theory (see, e.g., [17]), and
a small body of work on voting on criteria [10,23,31], we believe that our work
is the first to introduce a set of axioms that simultaneously lead to the formu-
lation of an initial rule and the process by which it can amend itself. Perhaps
the closest work to this comes from the study of legislative procedures and pro-
cedural choice [11,12] We consider two alternative axioms for how the agents
can determine what proposal should win if multiple incompatible proposals are
viable, namely Condorcet-consistency and Conservatism. Extensions of the Con-
dorcet principle have a long history in social choice [5,15], and the principle of
Conservatism comes from reality-aware parameter update rules [27]. Our axiom
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of Minimalism and assumptions about agent preference structure overcome the
general impossibility result of [16] without concern of infinite regress [30].

One line of research on constitutional amendments assumes that voter pref-
erences over possible rules are derived from their preferences over the outcomes
that each rule produces [19]. This is the “consequentialist approach” used in
game theoretic analysis [20]. Perhaps the work here most similar to ours is that
of Bhattacharya [4] as they consider single-peaked preferences. We take a dif-
ferent approach to modeling preferences over constitutional amendments, more
similar to that of Barbera and Jackson [3]. In their model, constitutions are just
a set of voting rules. A constitution may be a single rule used to update itself,
or it can consist of a fixed amendment rule used to update the decision rule. In
contrast to Barbera and Jackson, who conclude that a rule used to update itself
is too simple for their setting, we see this simplicity as a virtue in bootstrapping
a constitution.

3 Founding and Amending a Constitution, Informally

We begin by informally discussing the processes of founding and amending a
constitution; later, we delve into a rigorous mathematical treatment.

3.1 Founding a Constitution, Informally

We assume that all n agents agree that they need a procedure for accepting or
rejecting proposals. Proposals are considered individually, and for each proposal,
each agent either approves it or not. The agents wish to establish a decision
rule that determines whether the group as a whole accepts or rejects a given
proposal, based on the votes of its members. To achieve that, they first agree on
the following axioms that a decision rule must fulfill.

We first introduce the axioms without mathematical precision, to demon-
strate how unassuming they are, and show that the claims that follow from them
make intuitive sense. In the next Sect. 4 we rephrase the axioms mathematically,
rewrite the claims as propositions, and prove the propositions formally.

Axioms for a Decision Rule

1. Decisiveness: For a given proposal, the decision is either to accept or to
reject it, as determined by the votes.

2. Monotonicity: A decision to accept a proposal will remain so if some agents
that do not approve the proposal change their vote to approve.

3. Anonymity: A decision to accept a proposal shall not depend on the iden-
tities of the agents approving it.

4. Concordance: If two proposals are incompatible, in the sense that no agent
may approve both, then not both can be accepted.

5. Minimality: Among the decision rules consistent with the axioms above,
choose an initial rule that requires a minimal number of approvals.
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Axioms 1–3 imply that the decision rule is based on the size of the fraction
of the agents approving the proposal.

Informal Claim 1 (Fractional Approval Voting). Axioms 1–3 imply that
the decision rule shall accept a proposal if approved by at least some fraction of
the agents.

Adding Axiom 4 implies that the fraction shall be at least a half.

Informal Claim 2 (Supermajority Approval). Axioms 1–4 imply that the
fraction of approvals needed to accept a proposal is greater than 1

2 .

We refer to a fraction of approvals greater than δ ≥ 1
2 as a δ-supermajority,

with the case of δ = 1
2 being simple majority and δ = 1 − ε, where 0 < ε ≤ 1

n ,
being unanimous consent.

Note that, unlike Axioms 1–4, which effectively restrict the set of possible
decision rules, Axiom 5 compares and prioritizes some decision rules over others.

Informal Claim 3 (Initially, Simple Majority Approval). Axioms 1–5
imply that the initial decision rule is approval via a simple majority.

To summarize, we claim that, according to Axioms 1–5, the decision rule
must always be a δ-supermajority approval rule, 1

2 ≤ δ < 1, with the initial
supermajority being a simple majority δ = 1

2 .

3.2 Amending a Constitution, Informally

The initial decision rule of the community is simple majority according to
Axiom 5, but the axioms are consistent with amending it to any δ-supermajority,
with 1

2 ≤ δ < 1. So, once the initial rule is established as simple majority, some
agents may wish to amend it to a higher supermajority rule. Some agents may
aspire for a decision by unanimous consent, while others may prefer to require
more than simple majority but less than unanimous consent, for example to pro-
tect minorities. Our assumption that agents may prefer greater supermajorities
for decisions is consistent with analytical and empirical research that suggests
this often holds even for agents in the majority [11]. Agents may also wish to
employ different rules for different decisions in the future. Furthermore, agents’
preferences may change over time. Thus, below we focus on the fundamental
question of how the decision rule can be amended.

Naturally, the axioms agreed upon by the community apply to the decision
of whether to accept a newly-proposed decision rule just like they would for any
other decision. Hence, the decision to change the present δ-supermajority deci-
sion rule must be approved by a δ-supermajority. However, proposals to amend
the decision rule itself require additional considerations, reflected in the consis-
tency requirements introduced below. But first we provide some background in
order to express them.

We assume that agents have preferences over decision rules, and that an agent
approves a proposal to amend the decision rule if and only if the agent prefers
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the newly-proposed rule over the decision rule in force. Concretely, we identify
agents with their index i ∈ [n], and make the simplifying assumption that agent
preferences are single-peaked in the following sense: Every agent i ∈ [n] has an
ideal point δi, 1

2 ≤ δi < 1, such that: (i) agent i strictly prefers δi over all other
proposed δ’s; (ii) among any two proposed values larger than δi, the agent prefers
the smaller of the two; (iii) among any two proposed values smaller than δi, the
agent prefers the larger of the two; and (iv) the agent i has no other pairwise
preferences.

Secondly, we say that a proposal p is preferred over another proposal (aka
dominates) p′ if the set of agents that prefer p over p′ are a majority. A proposal
p is most-preferred if no other proposal p′ is preferred over p. Note that, if p
is the only most-preferred proposal, then it is a Condorcet winner [6]. Also, as
preference is transitive and there are at most n

2 significant values of δ ( 12 , 1
2 +

1
n , . . . , n−1

n ), a knock-out tournament among these values for δ, choosing the
preferred value in each match, may quickly result in a most-preferred value
for δ.

Using these terms, we express two amendment axioms. The first axiom,
named Posterior Consistency, says that, to change the current decision rule to
a new decision rule, this amendment decision must be justifiable in retrospect
according to the new rule, as opposed to being consistent only with current rule
in force. This is in essence an “anti-hypocrisy” axiom. The second axiom requires
that among all alternative decision rules consistent with the other axioms, we
choose a most-preferred decision rule.

Axioms for a Decision Rule Applied to Amend Itself

6. Posterior Consistency: A proposal to amend the decision rule is accepted
only if accepted according to the newly accepted decision rule as well.

7. Condorcet Consistency: Among the decision rules that satisfy all axioms
above, choose a most-preferred one.

Given our assumptions on agent preferences and Axioms 1–5, we claim that
there is a unique amendment process that is also consistent with Axioms 1–7.

Informal Claim 4 (Condorcet Amendment Rule). Axioms 1–7 together
with our assumptions on agent preferences imply that the process to amend the
current δ-supermajority approval decision rule must be:

1. Increase δ to δ′ > δ, if and only if there is a δ′-supermajority that prefers δ′

over δ and δ′ is the maximal supermajority with this property;
2. Decrease δ to δ′ < δ, if and only if there is a δ-supermajority that prefers δ′

over δ and δ′ is the minimal supermajority with this property; and
3. Retain the present δ-supermajority rule otherwise.

This completes the informal presentation.

4 Founding and Amending a Constitution, Formally

In this section we rephrase the assumptions, axioms, and claims formally.
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4.1 Founding a Constitution, Formally

Let B = {0, 1}; these values represent approving or disapproving a given proposal
by each agent, as well as accepting or rejecting the proposal by the group of
agents as a whole. For the set of n agents, we refer to V ∈ Bn as a voter profile.
For a profile V , we define �V � := |{i | Vi = 1}| to be the number of approvals in
V . For two profiles V, V ′ ∈ Bn, define V ≤ V ′ if Vi ≤ V ′

i for all 1 ≤ i ≤ n.
Indeed, we assume a set of n agents that wish to agree on a decision rule d

that takes a proposal and a profile V , where each voter specifies either approve
(1) or not approve (0); and produces (i.e., outputs) a decision of either to accept
(1) or to reject (0). In the axioms below, V, V ′ ∈ Bn and the given proposal is
assumed and not specified as an explicit parameter.

Formal Axioms for a Decision Rule

9. Decisiveness: The decision rule d is a function d : Bn −→ B.
10. Monotonicity: If d(V ) = 1 and V ≤ V ′ then d(V ′) = 1.
11. Anonymity: If V ′ is a permutation of V then d(V ) = d(V ′).
12. Concordance: If Vi + V ′

i ≤ 1 for all 1 ≤ i ≤ n, then d(V ) + d(V ′) ≤ 1.
13. Minimality: If d and d′ are consistent with the axioms above, and d′(V ′) ≤

d(V ) implies �V ′� ≤ �V � for all V, V ′ ∈ Bn, but not vice versa (exchanging
d and d′), then prefer d′ over d.

We now rephrase Informal Claims 1–3 into propositions, and prove them.

Proposition 1 (Fractional Approval Voting). Axioms 9–11 imply that
there is some fraction 0 ≤ f < 1 such that d(V ) = 1 if and only if �V �/n > f .

Proof. Let V ∗ ∈ Bn be a voter profile V ∗ = arg min V ∈Bn

d(V )=1
�V �, and let f =

�V ∗�−1
n . Naturally, for any profile �V ′� < �V ∗�, d(V ′) = 0 by the definition of

V ∗. Let V ′ be a profile for which �V ∗� ≤ �V ′� and hence f < �V ∗�/n ≤ �V ′�/n.
We wish to show that d(V ′) = 1. Consider a voter profile V ′′ ∈ Bn such that
V ′′ ≤ V ′ and �V ′′� = �V ∗�. By anonymity, d(V ′′) = d(V ∗) and by monotonicity,
d(V ′′) ≥ d(V ′) = 1, assuming of course that d is a function d : Bn → B
(Axiom 9). ��

With n voters, a decision rule d using fraction f = k
n for k ∈ N will return

the same outcome as any decision rule d′ using fraction k
n + ε for ε < 1

n , for
all possible profiles. We therefore do not differentiate between these functionally
equivalent rules. For example, the decision rule using fraction f = 1

2 is majority
rule whether the number of voters is even or odd.

Proposition 2 (Supermajority Approval). If d(V ) = 1 then �V � > n
2 .

Proof. By way of contradiction, assume d(V ) = 1 and �V � ≤ n
2 . Then V has

a non-overlapping permutation V ′ such that Vi + V ′
i ≤ 1 for all i ∈ [n]. By

Axiom 11, d(V ′) = d(V ), implying via the assumption that d(V ) + d(V ′) = 2,
contradicting Axiom 12. ��
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Proposition 3 (Initially, Simple Majority Approval). Axioms 1–5 imply
that the initial decision rule is d(V ) = 1 if �V �/n > 1

2 .

Proof. Let d be the initial decision rule. By Proposition 1 it is fractional, with
some fraction 0 ≤ f < 1. By Proposition 2, f ≥ 1

2 . We claim that f ≤ 1
2 . By

way of contradiction, assume f = 1
2 + 1

n , and consider a decision rule d′ with a
fraction f ′ = 1

2 . Just like d, the rule d′ is consistent with all the Axioms 9–13.
Furthermore, it satisfies that d′(V ′) ≤ d(V ) implies �V ′� ≤ �V �, as f < f ′.
However, the converse is not true. Assume �V � = 1

2 + 1
n and �V ′� = 1

2 . Then
d(V ) ≤ d′(V ′) as both equal 0, but �V � > �V ′�, contradicting Axiom 13. Hence
the initial decision rule is fractional with f = 1

2 , namely approval by a simple
majority. ��

Let Δ := [12 , 1). To summarize, Propositions 1–3 prove that, according to
Axioms 9–13, the decision rule must always be a δ-supermajority approval rule,
δ ∈ Δ, with the initial supermajority being a simple majority δ = 1

2 . Next, we
rewrite Axioms 6–7(a, b) formally, recast Claims 4–6 as proper theorems, and
prove them.

4.2 Amending a Constitution, Formally

We have established that all decision rules are δ-supermajority rules for some
δ ∈ Δ. We therefore identify each decision rule d with its δ, and denote it by dδ.

Agent Preferences. Recall that each agent i has a preference �i⊆ Δ × Δ
over the decision rules, where x ≺i y if x �i y but not vice versa. Furthermore,
agent preferences are single-peaked in that every agent i ∈ [n] has an ideal point
δi ∈ Δ, such that: (i) δ ≺i δi for all δ �= δi ∈ Δ; (ii) if δi < δ < δ′ then δ′ ≺i δ;
(iii) if δi > δ > δ′ then δ′ ≺i δ; and (iv) ≺i is the smallest relation satisfying
(i)–(iii).

Hence, a voter approves a proposals if and only if it is in between the status
quo and her ideal point, and the voter profile V δ,δ′

on the amendment decision
dδ(δ′) for δ �= δ′ is defined accordingly by V δ,δ′

i = 1 iff δi ≤ δ′ < δ or δi ≥ δ′ > δ.
We can now specify formally Posterior Consistency:

14. Posterior Consistency: Given an ideal points profile δi, i ∈ [n], and δ, δ′ ∈
Δ, dδ(V δ,δ′

) = 1 only if dδ′
(V δ,δ′

) = 1.

According to Axiom 15, the amendment process is not a simple approval
vote on a proposed amendment, but a selection of an most-preferred decision
rule based on the reported ideal points of the agents. Hence, the decision on an
amendment is of a different type, Δ × Δn −→ Δ, which takes the δ in force and
the ideal points profile δi, i ∈ [n], as input, and produces the amended δ′ as
output.

Recall that a proposal p is preferred over (aka dominates) another proposal
p′ if |{i ∈ [n] : p′ ≺i p}| > n

2 . A proposal p is most-preferred (aka undominated)
if no other proposal p′ is preferred over p. With this we can specify Condorcet
Consistency:
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15. Condorcet Consistency: Given an ideal points profile δi, i ∈ [n], choose
a most-preferred1 δ′ ∈ Δ for which dδ(V δ,δ′

) = 1.

In other words, given the current δ-supermajority approval rule, Condorcet Con-
sistency requires the choice of an amendment δ′ that maximizes �V δ,δ′

�.
We can now state our main theorem.

Theorem 1 (Condorcet Amendment). Given ideal points profile δi for i ∈
[n], Axioms 9–15 and our assumptions on agent preferences imply that dδ should
be amended to dδ′

for δ′ �= δ if either:

1. δ′ = arg maxδ<x<1 |{i ∈ [n] : δi ≥ x}| > xn exists, or

2. δ′ = arg min1/2≤x<δ |{i ∈ [n] : δi ≤ x}| > δn exists

Otherwise, no proposal to amend the decision rule is accepted.

Remark 1. Note that the two definitions of δ′ could be made more similar tex-
tually by replacing the right-hand side of the equations with > max(x, δ) · n.

Proof. First, recall that, in all cases, the result is a δ-supermajority rule, which
is consistent with Axioms 9–13. Next we argue that the δ′ computed by the rules
above is uniquely consistent with Axioms 9–15:

1. If such a δ′ > δ exists, then dδ would accept a proposal to amend δ to
δ′ since δ′ is preferable to δ by a δ′-supermajority, which is more than a
δ-supermajority. Furthermore, it is Posterior Consistent as the proposal to
amend δ to δ′ will be approved by dδ′

for the same reason. Now we argue
that δ′ uniquely satisfies the axioms. A δ′′ > δ′ cannot be chosen without
violating Posterior Consistency, since there is no δ′′-supermajority approval
for that amendment by the maximality of δ′. A δ′′ < δ′ cannot be chosen
without violating Condorcet consistency, since δ′ is preferred over δ′′ by a
δ′-supermajority and hence by a majority.

2. If such a δ′ < δ exists, note that accepting dδ′
as the new decision rule

satisfies dδ by the definition of δ′, namely the use of δn on the right hand
side. Furthermore, since δ′ is preferable to δ by a δ-supermajority, which
is greater than a δ′-supermajority, it is also Posterior Consistent. We now
argue that δ uniquely satisfies the axioms. A δ′′ < δ′ cannot be accepted by
dδ, since there is no δ-supermajority approval for amending δ to δ′′, by the
minimality of δ′. And a δ′′ > δ′ cannot be chosen without violating Condorcet
consistency, since δ′ is preferred over δ′′ by a δ′-supermajority and hence by
a majority.

3. If there is no δ-supermajority to increase or decrease δ then of course δ should
not change. No amendment proposal could be accepted according to δ itself,
so remaining at δ in the face of any proposal is Posterior Consistent and
trivially Condorcet-consistent.

1 The standard definition of Condorcet Consistency is the selection of the unique
Condorcet winner (namely undominated alternative) when it exists. Our definition
is a bit more general.
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This finishes the proof of Theorem1. ��
We have shown that a group of n agents that agree on a simple and self-

evident axioms and a minimal set of assumption, can obtain from these a definite
decision rule that also determines its own amendment process, via formal logical
deduction.

5 Alternative Approaches: Conservative Amendment

Naturally, there are many possible alternatives to the axiomatic basis proposed
herein, as well as to the assumptions made. Here we explore an alternative to
Axiom 7.

7. a. Conservatism: Among the decision rules that satisfy all axioms above,
choose the one closest to the current decision rule.

Given our assumptions on agent preferences and Axioms 1–5, we also claim
that there is a unique amendment process that is consistent with Axioms 1–7(a).

In practice, Condorcet Amendment happens to select the furthest δ-
supermajority rule from the current rule that satisfies Axioms 1–6. By contrast,
Conservative Amendment requires that the rule selected be as close to the cur-
rent rule as possible.

Informal Claim 5 (Conservative Amendment). Axioms 1–7(a) together
with our assumptions on agent preferences imply that the process to amend the
current δ-supermajority approval decision rule must be:

1. Increase δ to δ′ > δ, if and only if there is a δ′-supermajority that prefers δ′

over δ and δ′ is the minimal supermajority with this property;
2. Decrease δ to δ′ < δ, if and only if there is a δ-supermajority that prefers δ′

over δ and δ′ is the maximal supermajority with this property; and
3. Retain the present δ-supermajority rule otherwise.

While the Condorcet and Conservative Amendment rules seem rather differ-
ent, they are related in the sense that the second leads to the same result of
the first if applied iteratively, in an exhaustive way – in case the rule in force is
simple majority.

Informal Claim 6 (Iterate from Simple Majority). For any given ideal
points profile, if the rule in force is δ = 1

2 then the iterative application of the
Conservative Amendment rule until no further amendments occur halts at the
decision rule characterized by Informal Claim4.

To recap the informal presentation, if agents found their constitution accord-
ing to Axioms 1–5, their initial decision rule will be simple majority. If they
amend their initial rule by applying iteratively either of two amendment rules
that satisfy posterior consistency, with a given set of ideal points, the result
would be the δ characterized by Informal Claim 4.

We now proceed with the formal analysis, considering Conservatism instead
of Condorcet Consistency. First, we offer a formal statement of Conservatism:



128 B. Abramowitz et al.

15. a. Conservatism: Given an ideal points profile δi, i ∈ [n], choose a δ′ �=
δ ∈ Δ closest to δ for which dδ(V δ,δ′

) = 1.

The resulting Theorem 2 looks very similar to Theorem 1, but the two cases
swap the minimization and maximization over values of δ. The proof is similar
as well.

Theorem 2 (Conservative Amendment). Given ideal points δi for i ∈ [n],
Axioms 9–15(a) imply that dδ should be amended to dδ′

for δ′ �= δ if either:

1. δ′ = arg minδ<x<1 |{i ∈ [n] : δi ≥ x}| > xn exists, or

2. δ′ = arg max1/2≤x<δ |{i ∈ [n] : δi ≤ x}| > δn exists

Otherwise, no proposal to amend the decision rule is accepted.

Proof. First, recall that in all cases the result is a δ-supermajority rule, which is
consistent with Axioms 9–13. Next we argue that the δ′ computed by the rules
above is uniquely consistent with Axioms 9–15(a):

1. If such a δ′ > δ exists, then dδ would accept a proposal to amend δ to
δ′ since δ′ is preferable to δ by a δ′-supermajority, which is more than a
δ-supermajority. Furthermore, it is Posterior Consistent as the proposal to
amend δ to δ′ will be approved by dδ′

for the same reason. We now show
that δ′ uniquely satisfies the axioms. Any δ′′ > δ′ cannot be chosen without
violating Conservatism because δ′ would be accepted. No δ′′ < δ′ could be
accepted, because this would imply that δ′′ is preferred by a δ′′-supermajority
according to Posterior Consistency, which violates the definition of δ′.

2. If such a δ′ < δ exists, note that accepting dδ′
as the new decision rule satisfies

dδ from the definition of δ′, namely the use of δn on the right hand side.
Furthermore, since δ′ is preferable to δ by a δ-supermajority, which is greater
than a δ′-supermajority, it is also Posterior Consistent. We now argue that δ′

uniquely satisfies the axioms. A δ′′ > δ′ cannot be chosen because according
to Posterior Consistency it must be preferred by a δ′′-supermajority, which
violates the definition of δ′. A δ′′ < δ′ cannot be accepted without violating
Conservatism because δ′ would be accepted.

3. If there is no δ-supermajority to increase or decrease δ then of course δ should
not change. No amendment proposal could be accepted according to δ itself,
so remaining at δ is Posterior Consistent and trivially Conservative.

This finishes the proof of Theorem2. ��
Proposition 4 (Increasing Condorcet Amendment is Idempotent).
Given the initial decision rule δ = 1

2 and any ideal points profile, the application
Condorcet Consistent Amendment is idempotent.

Proof. When the current rule is δ = 1
2 , any change to the decision rule must

increase δ. From Theorem 1, under Condorcet Amendment, δ′ will be the largest
such that the number of agents with ideal points at least δ′ is strictly greater



In the Beginning There Were n Agents 129

than δ′n. Let us refer to this decision rule as δ̂ ∈ Δ. Since a δ′-supermajority
prefer δ̂ over δ, we know the majority cannot prefer any δ′′ < δ̂ over δ̂, so
once δ̂ takes over as the current decision rule, no proposal to decrease it will
be accepted. For an amendment δ′′ > δ̂ to occur, there would have to be a δ′′-
supermajority who prefer δ′′ over δ̂, but this violates the definition of δ̂. Thus,
Condorcet Amendment is idempotent and chooses δ̂.

Proposition 5 (Iterate from Simple Majority). Given the initial decision
rule δ = 1

2 and any ideal points profile, the result of iterative application to
completion of Conservative Amendment is the same as a single application of
Condorcet Amendment.

Proof. Suppose that the iterative application of Conservative Amendment were
to select some δ′ �= δ̂. First, suppose that δ′ < δ̂. A δ̂-supermajority prefers δ̂
to δ′, which is larger than a δ-supermajority, so Conservative Amendment, given
δ′, would approve the proposal δ̂. This contradicts the fact that the iterative
application of Conservative Amendment reached completion. Second, suppose
δ′ > δ̂. From Theorem 2, this implies that more than δ′n agents have ideal
points of at least δ′, because it is accepted when proposed against a smaller δ.
This contradicts the definition of δ̂. ��

Here, we have offered an alternative axiomatic basis, replacing Condorcet
Consistency (Axioms 7, 15) with Conservatism (Axioms 7(a) and 15(a)), dis-
cussed its consequences, and compared it to the initial axiomatic basis proposed.

6 Discussion

We considered a set of agents forming an egalitarian, self-governed community
needing to establish by what process they will make decisions.

We started by assuming that the agents agree on a small set of intuitive
axioms, and showed that from these axioms alone arises a simple constitution
– an initial decision rule for making decisions on whether to accept or reject
proposals, which can be applied to itself if the agents wish to change the rule. One
of the axioms, Minimality, was unique among the axioms because it compared
possible rules and prioritized one over the rest rather than restricting the set of
possible rules. There are possible replacements to consider, including Unanimity.

We have argued that a rule that amends itself requires additional consider-
ations, and offered additional axioms for that case. We have shown that basic
assumptions on the structure of agent preferences over possible rules and these
axioms result in a unique amendment process. We have considered two alter-
natives for the final axiom - Condorcet Consistency and Conservatism. While
Condorcet Consistency results in a different amendment process from Conser-
vatism, we have shown that repeated application of the Conservatism process,
starting from the initial simple majority rule, results in the same rule produced
by the Condorcet Consistent amendment process.

One natural next step following our work is to consider different structures
of agent preferences over rules (e.g., metric preferences) with the same axioms.
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A second is to determine what alternative sets of axioms might lead to different
sets of rules that can also be used to amend themselves.

Lastly, a key assumption we have made here is that the set of agents is fixed.
However, any self-governed community must determine who its members are
when founding (i.e. whose votes count), and must decide for itself how to add
and remove members in the future [1,2,8,9,13,14,18,22,24,25,28,29,32–34].
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Abstract. This paper investigates the so-called ODP -problem that has
been formulated by Caragiannis and Micha [8]. This problem considers
a setting with two election alternatives out of which one is assumed to
be correct. In ODP, the goal is to organise the delegations in a social
network in order to maximize the probability that the correct alternative
is elected. While the problem is known to be computationally hard, we
strengthen existing hardness results and show that the approximation
hardness of ODP highly depends on the connectivity of the social network
and the individual accuracies. Interestingly, under some assumptions, on
either the accuracies of voters or the connectivity of the network, we
obtain a polynomial-time 1/2-approximation algorithm. Lastly, we run
extensive simulations and observe that simple algorithms relying on the
abilities of liquid democracy outperform direct democracy on a large
class of instances.

Keywords: Liquid democracy · Truth revelation · Approximation
algorithms

1 Introduction

Liquid Democracy (LD) is a recent voting paradigm which aims to modernize
the way we make collective decisions to make it more flexible, interactive and
accurate [3,6]. In a nutshell, LD allows voters to delegate transitively along
a Social Network (SN). Indeed, each voter may decide to vote directly or to
delegate her vote to one of her neighbors. This neighbor can in turn delegate
her vote and the ones that have been delegated to her to someone else. As a
result, these delegations will flow until they reach a voter who decides to vote.
This voter is called the guru of the people she represents. LD is implemented in
several online tools [3,21,22] and has been used by several political parties (e.g.,
the German Pirate party) for inner-decision making. The framework is praised
for its flexibility, as it enables voters to vote directly for issues on which they
feel both concerned and expert and to delegate for others.
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Recently, several questions related to LD have been investigated. This ques-
tions are for instance related to (1) the propensity to which LD leads to an
unequal voting power distribution [12,18,24,26]; (2) inconsistencies that could
occur if voters would vote on different but related issues [7,9]; (3) the ability that
LD has to incentivise participation in the delegation/voting process [10,27]; or
(4) the stability of LD’s delegation process [5,16,17,25,32].

Another line of research examines the accuracy of LD as a collective deci-
sion paradigm [8,24,33]. Indeed, as delegations can be motivated by the will
to find a more expert representative than oneself, LD should concentrate the
voting power in the hands of the most expert voters. This seems as a desirable
feature in particular when the election aims to discover a ground truth (i.e., one
of the alternative is the correct one to elect). This claim was previously investi-
gated by Kahng, Mackenzie, and Procaccia [24] and Caragiannis and Micha [8].
Their works follow the long-standing line of research in social choice studying the
accuracy of group-judgmental processes using the uncertain dichotomous choice
model [4,11,19,30] and is closely related to recent works analysing the accuracy
of other voting frameworks allowing delegations [28,29]. Both of these two works
considered the following simple model. The election has two alternatives: a cor-
rect alternative and an incorrect one. Voters are nodes in a SN, modeled by a
directed graph and each voter has an accuracy associated to her that indicates
how well-informed she is. The authors investigated the accuracy of the majority
of voters in LD and mostly provided negative results. In particular, Caragiannis
and Micha [8] showed that the Optimal Delegation Problem (ODP for short)
in which one aims to set the delegations of the voters so as to maximize the
probability of selecting the ground truth is an NP-hard problem.

This work further investigates the accuracy of the LD paradigm. While some
of our results are also negative, our gaze is not particularly severe on LD. Indeed,
we believe that a loss of accuracy resulting from concentrating the voting power
in too few hands is a pitfall which has been well understood since the Condorcet
jury theorem [11]. Moreover, we believe that the hardness of ODP is the rule more
than the exception for non-trivial graph problems involving probabilities. Our
aim here is to provide indications through approximation results and simulations
on the type of elections on which LD can be beneficial or problematic.

Our Contribution. We prove that, for any constant C > 0, unless P = NP ,
there is no polynomial-time algorithm for ODP that achieves an approximation
guarantee of α ≥ (ln n)−C , where n is the number of voters. The reduction
designed for this result uses poorly connected SNs in which some voters suffer
from misinformation. Interestingly, under some assumptions on either the voters’
accuracies or the SN’s connectivity, we instead obtain 1/2-approximation algo-
rithms. Lastly, we run extensive simulations and observe that simple algorithms
outperform direct democracy on a large class of instances. The simulations also
show that increasing the SN’s connectivity increases the accuracy of all heuris-
tics confirming that it is a key feature for LD’s accuracy. Omitted proofs and
material is available in a long version of the paper [2].
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2 Preliminaries

We consider a binary election involving a set {T, F} of two alternatives and a
set V = {1, . . . , n} of n voters. For the sake of simplicity, we assume that the
number of voters n is odd. The alternative T denotes the ground truth, i.e., T
is more desirable than F . However, voters do not have a direct access to which
alternative is the ground truth. Indeed, we consider a simple model in which each
voter vi has a probability pi of voting for T if she votes directly. Value pi is called
the accuracy of voter i and measures her expertise level. Note that we assume
that voters vote independently from one another. We denote by p the accuracy
vector of size n defined by p[i] = pi. One might expect that values pi should be
greater than or equal to 0.5. Indeed, even if a voter is ignorant of a topic she
cannot do worse than a random choice. However, similarly as Caragiannis and
Micha [8], we allow probabilities to be lower than 0.5 modeling the fact that
some voters may suffer from misinformation on a sensitive topic. Hence, even if
such a voter could make a better choice by flipping a coin, this argument would
necessitate that the voter actually knows she is misinformed.

Moreover, we assume the voters to be nodes V of a SN modeled as a digraph
G = (V,E), where a (directed) edge (i, j) ∈ E corresponds to a social relation
between voter i and voter j. The set of out-neighbors of voter i is denoted by
Nbout(i) = {j ∈ V |(i, j) ∈ E}.

Each voter i has two possible choices: either she can vote directly, or she can
delegate her vote and all the votes she has received through delegations to one
of her neighbors in Nbout(i). In the first (resp. second) case, she is called a guru
(resp. follower). These different choices are formalized by a delegation function
d : V → V such that d(i) = j if i delegates to j ∈ Nbout(i), and d(i) = i if i
votes directly. A delegation function d implies a delegation graph Hd which is
the subgraph of G where there is an edge (i, j) iff d(i) = j and i �= j. Hence, the
set of gurus denoted by Gu(d) corresponds to the set of nodes with outdegree 0.

Example 1. Let us illustrate our notations with an example. We consider an
instance with 7 voters involved in the SN displayed by Fig. 1 and an accu-
racy vector p = [0.9, 0.65, 0.45, 1, 0.5, 0.35, 0.8]. Consider the following delega-
tion function d defined by d(1) = d(2) = 1, d(3) = d(4) = 4, d(5) = 6, and
d(6) = d(7) = 7. Hence voters 2, 3, 5 and 6 are followers, and voters 1, 4 and 7
are gurus. The graph Hd is represented in Fig. 1.

Fig. 1. The SN and voters’ accuracy levels (left side of the figure) and the delegation
graph with gurus being dotted (right side of the figure).
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We will consider delegation functions d such that Hd is acyclic and we denote
by Δ(G) the set of delegation graphs that can be obtained from G. Under this
assumption, the graph Hd is a forest of directed in-trees {t1, . . . , t�} such that ti
is rooted in some guru gi. Then, each guru gi receives a voting weight w(gi) = |ti|,
where |t| denotes the number of nodes in tree t. We also extend this notation to
subsets S of Gu(d) by letting w(S) =

∑
g∈S w(g).

Given a delegation graph, the election uses a weighted majority rule where
guru g has weight w(g). Given d and p, the probability Pd,p [T ] of electing T can
be computed as follows:

Pd,p [T ] =
∑

S⊆Gu(d)

∏

i∈S

pi

∏

j∈Gu(d)\S

(1 − pj)1w(S)>n/2. (1)

Indeed, the probability that a set S ⊆ Gu(d) corresponds to the gurus voting
correctly is

∏
i∈S pi

∏
j∈Gu(d)\S(1 − pj) and this set will then be successful in

electing T iff w(S) > n/2. When clear from the context, we will write Pd,p in
place of Pd,p [T ]. In Example 1, as p4 = 1, T wins when voter 1 or 7 (or both)
votes correctly. Hence, we get that Pd,p = 0.98.

We now make two remarks. First, note that looking for an optimal delegation
function d to maximize Pd,p is related to looking for an optimal weighting func-
tion. By observing that w(S) > n/2 if and only if w(Gu(d) \ S) < n/2, we can
conclude that an upper bound to Pd,p can be obtained if weights are set such
that w(S) > n/2 when

∏
i∈S pi

∏
j∈Gu(d)\S(1−pj) >

∏
j∈Gu(d)\S pj

∏
i∈S(1−pi).

These conditions can be obtained easily if for each guru g = vi, w(g) is propor-
tional to log(pi/(1 − pi)) [30]. Of course, these weights may not be compatible
with any delegation function as they may be non-integral or even negative.

Second, note that using Eq. 1 does not make it possible to compute Pd,p

in polynomial time. However, we propose a simple recursive formula (which is
novel to the best of our knowledge) to compute Pd,p in a tractable way. Start by
ordering the gurus in Gu(d) from g1 to g|Gu(d)|. Then, Pd,p can be computed by
using the following recursive formula where F (τ, i) denotes the probability that
the set of gurus voting for T in {gi, . . . , g|Gu(d)|} has weight at least τ :

F (τ, i)=

⎧
⎨

⎩

1 if τ ≤ 0
pgi

1w(gi)≥τ if i = |Gu(d)|
pgi

F (τ − w(gi), i + 1) + (1 − pgi
)F (τ, i + 1) otherwise.

(2)

Equation 2 is composed of three sub-cases. The first one states that this prob-
ability is trivially one if τ ≤ 0. If it does not apply, the third sub-case states
that if gi votes correctly (which occurs with probability pgi

) then the threshold
τ will be met if gurus voting for T in {gi+1, . . . , g|Gu(d)|} have weight at least
τ − w(gi), while if gi votes incorrectly (which occurs with probability 1 − pgi

)
then the threshold will be met if they have weight at least τ . This reasoning can
only be applied if gi is not the last guru. This is sub-case 2 stating that this last
guru can meet the threshold τ if she votes correctly and has weight at least τ .
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Obviously, Pd,p = F (�n/2	, 1). To compute F (�n/2	, 1), it suffices to com-
pute values F (τ, i) for τ ∈ {0, . . . , �n/2	} and i ∈ {1, . . . , |Gu(d)|} (where
|Gu(d)| ≤ n). Hence, using memoization, we get:

Proposition 1. Given a delegation function d, the probability Pd,p of electing
T can be computed using O(n2) operations.

Following the works of Caragiannis and Micha [8] and Kahng, Mackenzie,
and Procaccia [24], we investigate the Optimal Delegation Problem (ODP) which
aims to coordinate the delegations to maximize Pd,p .

ODP
Input : A social network G and an accuracy vector p.
Feasible Solution: A delegation function d such that Hd is acyclic.
Measure: Pd,p to maximize.

Remarks. Several remarks should be made on the ODP problem. First, the
problem suggests that a central authority knows voters’ accuracy values. Note
that they may be approximated from past elections and that it is not because the
central authority knows the accuracy values that she knows which alternative is
the ground truth. Second, one could argue that if a central authority can have
access to the accuracy values of the voters, then she could reverse the votes of
the misinformed voters to make a more correct decision or even use the optimal
weights from [30]. We do not consider such actions as they could be considered
undemocratic. Third, the ODP problem suggests that a central authority may
select the delegations of the voters which may not seem acceptable. In fact,
we assume when studying ODP that G is more specific than just a SN. We
indeed assume that there is an arc between i and j if i knows of j and agrees to
delegate to her. Put another way, all voters specify a subset of neighbors they
would accept to delegate to and ask for a central authority to guide their choice.
A similar approach has been taken by Gölz et al. [18]. Lastly, note that another
motivation to investigate the ODP problem is to investigate an upper bound on
the performance achievable by voters when acting in a decentralized way.

Caragiannis and Micha [8] have shown that ODP is hard to approximate
within an additive term of 1/16. The next section provides a complementary
approximation hardness result. Notably, this result will show that from an
approximation viewpoint, the complexity of the problem is sensitive to the con-
nectivity of the SN as well as the presence of misinformation (i.e., accuracies
below 0.5).

3 Hardness of ODP

For r ∈ (0, 1), let ODPr be the restriction of problem ODP to instances in which
all voters have accuracy greater than r. In this section, we show that for any
r ∈ (0, 0.5) and any constant C > 0, ODPr cannot be approximated within a
factor of α ≥ (ln n)−C unless P = NP . This provides a strong approximation
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Fig. 2. An example of graph G resulting from the reduction. Each set Vi includes L−1
nodes and there is an arc from each node in Vi to the element voter vi1. The set I
includes K isolated nodes with accuracy r.

hardness result for ODP whenever some voters suffer from misinformation. Two
interesting observations can be made. First, this result does not require very
small accuracy values as it holds for any value r = 0.5 − ε with ε > 0. Second,
this result is in strong contrasts to ODPr with r ≥ 0.5, for which the direct
voting strategy (and in fact any strategy) provides a 1/2-approximation:

Theorem 1. For any r ∈ (0, 0.5) and constant C > 0, there is no polynomial-
time algorithm for ODPr that achieves an approximation guarantee of α ≥
(ln n)−C , unless P = NP .

Our result is obtained through a reduction from Minimum Set Cover (MSC)
which cannot be approximated better than within a factor of (1 − o(1)) ln N (N
is the number of elements in the MSC instance) unless P = NP [13]. In the
MSC problem, we are given a universe U = {x1, . . . , xN} of N elements, and a
collection S = {S1, S2, ..., SM} of subsets of U . The goal is to find the minimum
number of sets from S, denoted by OPTSC , covering all elements of U .

The Reduction. We set β ∈ (0, 0.5) and r = 0.5 − β. From an instance I =
(U, S) of MSC, we create an instance I ′ of ODPr as follows. As Fig. 2 illustrates,
the graph G = (V,E) is compounded of the following elements:

– A set I with K = 8N2M/β2 isolated nodes of accuracy r.
– For each element xi ∈ U , we create L voters vi1, vi2, . . . , viL. Let Vi =

{vi2, vi3, . . . , viL}. We create an arc from each node in Vi to voter vi1. Each
voter vij has an accuracy of r and L is set to

⌊
β(4N−1)
N(2N−1)K + M

N

⌋
+ 1. These

voters will be called element voters in the following.
– One node vSi

is created for each Si ∈ S with an accuracy of 0.5. These
voters will be called set voters in the following. For every i ∈ {1, . . . , N} and
j ∈ {1, . . . , M}, we create a directed edge from vi1 to vSj

if xi ∈ Sj .

Note that, interestingly, each voter can only delegate to voters which are at
least as accurate as them in this reduction. We denote by n the number of
voters obtained, i.e., n = |V | = K + NL + M .

Idea of the Reduction. The reduction is built with the following idea: the value
of K, i.e., the number of nodes in I, is chosen carefully so that with large
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probability, the ground truth is elected iff all element voters directly or indirectly
vote correctly. Indeed, by using Hoeffding inequality (see Lemma 1), we can
give lower and upper bounds on the number of correct votes in I which are
likely to hold. To maximize the probability that all element voters vote correctly,
these voters should concentrate their voting power in the hands of as few many
set voters as possible, hence looking for a minimum set cover. This connection
between the two problems will enable us to show Theorem 1.

Lemma 1. (Hoeffding inequality [23]) Let S be the number of successes in K
trials of a Bernoulli random variable, which takes value 1 with probability r.
Then, for every ε > 0:

Pr[S ≥ (r + ε)K] ≤ exp(−2ε2K), P r[S ≤ (r − ε)K] ≤ exp(−2ε2K).

We start formalizing the ideas expressed in the previous paragraph by giving
a sequence of lemmas. Thereafter, we set ε = β

2(2N−1) . Lemma 1 shows that it is
likely that the number of voters voting correctly in I belongs to ((r − ε)K, (r +
ε)K). The next two lemmas will be used to argue that in that case the ground
truth will be elected if all element voters vote (directly or indirectly) correctly.

Lemma 2. If at least (r − ε)K voters in I vote correctly, then it is enough that
all NL element voters vote correctly to elect the ground truth.

Lemma 3. Let K ′ be a number such that n ≥ K ′ ≥ K. If at most (r + ε)K ′

voters out of K ′ voters vote correctly, then it is not enough that min{(N −1)L+
M,n − K ′} other voters vote correctly to elect the ground truth.

We now create a connection between a delegation function d in I ′ and a set
cover X ⊆ S in I. For this purpose, we introduce a transformation on delegation
functions. Given a delegation function d, we define d̃ as the delegation function
obtained from d by making all element voters which are not delegating (directly
or indirectly) to a set voter do so.1 For a delegation function d, let us denote
by Xd the subset of gurus in {vS1 , vS2 , ..., vSM

} that receive some delegations
according to d̃. Importantly, note that Xd corresponds to a set cover in I.

Let Jd be the set of voters in I ∪ {vi,j |1 ≤ i ≤ N and 2 ≤ j ≤ L} which
vote directly according to d and Kd = |Jd| ≥ K. Note that these voters have
necessarily a weight of 1 as they may not receive any delegation. Let S (resp.
Sd) be a random variable representing the number of voters voting correctly
in I (resp. Jd). Let X = (S ≤ (r − ε)K), Y = (S ≥ (r + ε)K), and Yd =
(Sd ≥ (r + ε)Kd). Importantly, note that due to Lemmas 2 and 3, we have that
Pd̃,p [T |X ∩Y ] = 2−|Xd| (where Z denotes the complement of Z). Hence, if X ∪Y
is a rare event, then Pd̃,p will be highly dependent on the size of Xd. Interestingly,
Lemma 1 allows us to show that events X ∪ Y and X ∪ Yd are indeed rare.

Lemma 4. We have the following inequalities:

P [X ∪ Y] ≤ 2 exp(−M), P [X ∪ Yd] ≤ 2 exp(−M).

1 The choice of a set voter can be done arbitrarily when several choices are possible.
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Let η be a constant in (0, 1). We can assume M large enough such that
2 exp(−M) ≤ η and 2 exp(M ln(2))/(exp(M) − 2) ≤ η. Using Lemma 4, we
prove the following relations between Pd̃,p and |Xd|.
Lemma 5. The following inequalities hold,

Pd̃,p ≥ (1 − 2 exp(−M))2−|Xd| ≥ 2 exp(−M)/η and Pd̃,p ≤ 3 × 2−|Xd|.

Lastly, we provide an inequality between Pd,p and Pd̃,p :

Lemma 6. The following inequality holds between Pd,p and Pd̃,p .

Pd,p ≤ (1 + η)Pd̃,p .

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let OPTSC and Pd∗,p be the optimal values in I and I ′

respectively. Moreover, Let dSC be a strategy such that XdSC
= OPTSC . Then

Pd∗,p ≥ Pd̃SC ,p ≥ (1 − 2 exp(−M))2−|XdSC
| ≥ (1 − η)

(1
2

)OPTSC

(3)

using Lemma 5 and the fact that 2 exp(−M) ≤ η.
Let us assume that there exists a polynomial-time approximation algorithm

A for ODP with approximation factor α ≥ (ln n)−C for some constant C > 0.
We obtain that α ≥ (ln(4)N)−C .2 Let c be a constant such that η < c < 1, and
D = 3(1+η)

1−η , then we can assume that (ln(4)N)−C/D ≥ N−(C+η), OPTSC ≥
C+η

(c−η) ln(2) and ln(N)η ≥ 1, otherwise, OPTSC is bounded by some constant and
we can solve I in polynomial time. Hence, from α ≥ (ln n)−C we obtain that:

ln(α/D)
ln(0.5)

≤ C + η

ln(2)
ln(N) ≤ OPTSC(c − η) ln(N) ≤ OPTSC(c ln(N) − 1)

Let d be the solution returned by algorithm A, we deduce that

(0.5)|Xd| ≥ Pd̃p

3
≥ Pdp

3(1 + η)
≥ α

3(1 + η)
Pd∗,p ≥ α(1 − η)

3(1 + η)
× (0.5)OPTSC

using Lemma 5 and Eq. 3. We conclude that

(0.5)|Xd| ≥ α/D(0.5)OPTSC ⇒ |Xd| ≤ ln(α/D)
ln(0.5)

+ OPTSC ≤ c ln(N)OPTSC .

Hence, A would provide a c ln(N) approximation with c < 1 for minimum set
cover which is not possible unless P = NP . �

2 We use that n ≤ 4N , whose proof is available in a long version of the paper [2].
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Note that if all voters have an accuracy greater than or equal to 0.5, then direct
voting or any other delegation strategy would yield a 0.5-approximation. More-
over, there exists a straightforward polynomial-time approximation scheme for
ODPr, with r > 0.5. Indeed, in this case, for any ε, the Condorcet jury theorem
states that there exists a constant dependent on ε and r such that if the number
of voters exceeds this constant then direct voting will have an accuracy greater
than 1 − ε (this can easily be turned into an 1 − ε′ multiplicative approximation
factor). Below this constant, one can simply use brute-force.

We now show that if the graph is strongly connected, the simple strat-
egy in which all voters delegate (directly or indirectly) to the same voter
v∗ ∈ arg max{pi|i ∈ V } among the most competent voters yields a 1/2-
approximation algorithm for ODP. We call this strategy the Best Guru Strategy
(BGS).

Theorem 2. When the SN is strongly connected, the best guru strategy leads to
a 1/2-approximation algorithm for ODP.

As this result is straightforward when pmax = max{pi|i ∈ V } is greater than
or equal to 0.5, we focus on the case where pmax < 0.5. We show that in this case,
BGS is in fact optimal. For this purpose, we will require the following lemma.

Lemma 7. Given an accuracy vector p, let pmax be the vector obtained from p
by raising all entries to pmax, then for any delegation function d, Pd,p ≤ Pd,pmax .

Once all the entries of p have been raised to pmax, we can use a result by
Berend and Chernyavsky (Theorem 3 in [4]). This result states that the expert
rule (where one voter has all the voting power) is the less effective rule to elect
the ground truth when p ≥ 0.5. We equivalently use it to state that it is the most
effective rule to elect the ground truth when p ≤ 0.5. Moreover, note that in
their setting, an important difference is that weights are not attached to voters
but rather distributed uniformly at random before voting. However, note that
their setup is equivalent to ours when all voters have the same accuracy as with
pmax. Indeed, in this case, the way in which the weights are allocated to voters
do not impact Pd,p . We may then state the following lemma to prove Theorem 2.

Lemma 8. When the SN is strongly connected, BGS is an optimal solution for
ODP when pmax=max{pi|i ∈ V }≤0.5.

The conclusion of this section is that educating the members of the SN and
making them more connected are two levers to address the limits pointed out by
Theorem 1 as they can lead to easier instances from an approximation viewpoint.
In the next section, we will provide exact and heuristic approaches for ODP.

4 Exact and Heuristic Methods

To solve ODP optimally, we provide a Mixed Integer Linear Program (MILP).
This MILP (omitted due to lack of space) uses two batches of constraints, one
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to ensure that the variables encode a valid delegation function d without any
cycle, and one to ensure that the objective function corresponds to Pd,p . While
this MILP is not efficient, it provides an exact method to solve small instances.
In the rest of this section, we propose some heuristic methods.

Centralized Heuristic Methods for ODP. We first design some centralized heuris-
tic methods. The methods maintain a set S of mandatory gurus and itera-
tively modify S following either a greedy or a local search strategy. Given S,
we provide two centralized methods to organize the delegations. The first one,
greedy delegation, works in the following way. It considers each guru g ∈ S in
descending order of accuracy value and allocates to g all remaining non-gurus
v ∈ V \ S that can reach g in G[(V \ S) ∪ {g}]. Voters that cannot reach any
guru in S vote for themselves. The second one, voronoi delegation, works by
making each non-guru v ∈ V \S delegate to the “closest” guru in S. To take into
account accuracies, the “distance” between a voter v and a guru g is defined as
the length of the shortest path from v to g divided by the accuracy of g. This
yields a kind of weighted Voronöı graph structure [15]. Once again, voters who
cannot reach any guru in S vote for themselves. In what follows, the delegation
function dS corresponding to a set S is obtained using one of the two procedures:
greedy delegation or voronoi delegation.

Our greedy heuristics start from the delegation function d1 = d corresponding
to the direct voting strategy, and an empty set S = {}. At each iteration i, we
determine the node v whose addition to S provides the largest PdS∪{v},p value.
If adding v to S results in a positive increment larger than some small ε value,
we set S to S ∪ {v} and update di = dS∪{v} accordingly. Otherwise the method
returns the current delegation function.

Our local search heuristics start from an initial delegation function d1 =
d, and a set S initialized as Gu(d). Then, at each iteration i, we determine
the single-node addition or removal operation on S which leads to the largest
increment value. If Z is the set resulting from S by this optimal modification,
then di is set to dZ . The local search stops when no add or removal operation
can result in a positive increment larger than some small ε value.

Decentralized Heuristics. Another method, called emerging, simulates what
could happen in an LD election without any central authority organizing the
delegations. This method assumes that voters have some intuition about the
ranking of the accuracy values and the difference between them, which we model
in a probabilistic manner. More formally, it assumes that each voter i approves
the set Ai := {j ∈ Nbout(i) : pj > pi} ∪ {i} as possible delegates. Then, each
voter i delegates to a voter j ∈ Ai with probability pj/

∑
k∈Ai

pk and votes with
probability pi/

∑
k∈Ai

pk. The resulting delegation graph is necessarily acyclic.

5 Numerical Tests

This section performs simulations to evaluate the performance of the heuristics
presented in Sects. 4. We notably estimate how a decentralized LD approach
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would perform compared to a more centralized one by comparing the perfor-
mance of emerging w.r.t. the more centralized approaches. The performance of
the heuristics is confronted to the ones of the GreedyCap algorithm [24] and
direct democracy. Our simulations were executed on a computer server running
Ubuntu 16.04.5LTS with 24 Intel(R) Xeon(R) CPU E5-2643 3.40 GHz cores
and a total of 128 GB RAM. Our algorithms are implemented in python using
networkx [20] and our code was executed with python version 3.7.6. We used
gurobi version 9.0.2 for solving the MILPs in order to obtain the exact solutions
to ODP.

Experimental Setting. We tested our algorithms on randomly generated networks
built using the following different models: the Gn,m model [14], i.e., graphs are
chosen uniformly at random from the set of graphs with n nodes and m edges;
the Barabási-Albert preferential attachment model [1]; and the Newman- Watts-
Strogatz small-world model [31]. Let us motivate the use of these networks. The
empirical analysis by Kling et al. [26] suggests that delegative networks have
some voters receiving most delegations while most voters receive very little. This
suggests that delegative networks can share several observed features of SNs as
scale-freeness (the Barabási-Albert model respects this property). The use of the
Gn,m model easily allows to explore how the density of the graph impacts the
results. Lastly, the use of the Watts- Strogatz model allows to study small world
networks which is a property observed in many SNs and hence may remain to
some extent in delegation networks.

To be close to a real world setting, voters’ accuracies are generated as a
mixture of Gaussians, where there is one Gaussian for experts N (0.7, 0.1) (10%
of the voters), one for misinformed voters N (0.3, 0.1) (20% of the voters) and one
for average voters N (0.5, 0.1) (70% of the voters). These values are sampled until
they are in (0, 1). We suppose that each method (except the MILP) does not have
access to the exact accuracy values but only approximations. For this purpose, we
partition the interval (0, 1) in cells of the shape (iprec,min((i+1)prec, 1)] with
i ∈ {0, 1, . . . , �1/prec�} and where prec is a parameter indicating the precision
with which the accuracies can be approximated (when not specified prec = 0.1).
The approximation of an accuracy value p is set to the arithmetic mean of the
interval I = [iprec,min((i + 1)prec, 1)] for which p ∈ I.

Errorbars in our plots denote 95%-confidence intervals. The measurement
points in our plots are averages over 50 experiments, 5 generations of random
accuracies on each of 10 random graphs generated according to the respective
graph model. For the experiments involving the MILP and for testing the impact
of the parameter prec, in order to further reduce variance, we generate accuracies
10 times on each of the graphs.

The seven heuristic algorithms evaluated are: greedy cap [24];3 ls gr, ls vo,
greedy gr and greedy vo our local search and greedy strategies organizing the
delegations using either greedy delegation or voronoi delegation; for these
last four methods the parameter ε is set to 0.05; emerging and direct demo.

3 This method uses a parameter α set to 1 and a cap function C : x → 10 log(x)1/3.
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We evaluate the solutions returned by the different methods on the proba-
bility of electing the ground truth, denoted by score in the figures below.

Research Questions. We investigate the three following questions. (i) How well do
the heuristics (and notably the decentralized one) perform w.r.t. direct democ-
racy and w.r.t. the best possible delegation function obtained by the MILP? (ii)
How much does parameter prec impact these results? Stated differently, how
well do we need to evaluate voters’ accuracies to have efficient heuristics? (iii)
How much does m = |E| impact these results? Indeed, the theoretical results of
Sect. 3 suggest that connectivity is key for ODP.

Results. The probabilities of finding the ground truth resulting from applying
our heuristics to random networks with increasing values of n = |V | are plotted
in Fig. 3. We observe that, for all three types of random networks, all heuristics
achieve high scores with the local search methods performing best. Interestingly,
the greedyCap and emerging methods which are less centralized methods also
perform well, electing the ground truth with large probability. In particular, the
performance of the emerging method suggests that an LD election would lead
to a highly accurate decision even without the help of a centralized entity. As
illustrated in the first plot of Fig. 3, all these methods outperform by far direct
voting. Indeed, as in our setting, the average accuracy is slightly below 0.5, direct
voting will perform poorly and its accuracy will not increase in n. Conversely, as
the LD heuristics make it possible to concentrate the voting power in the hands
of the most expert voters, we observe that the probability of electing the ground
truth increases with the number of such voters and hence in n.

To complement these results on the accuracy of our heuristics, we compare
the probabilities of finding the ground truth that they yield with the one of the
optimal delegation function computed using the MILP on small Gn,m graphs.
In the first plot of Fig. 4, we observe that local search strategies seem to provide
solutions almost as accurate as the optimal ones.

Lastly, we evaluate the impact of parameters m and prec. The probabilities of
finding the ground truth resulting from applying our heuristics to Gn,m networks
with increasing values of m (resp. prec) are shown in the second (resp. third)
plot of Fig. 4. We observe that, for all heuristics, their accuracy increases with the
connectivity of the network confirming the importance of this parameter. Indeed,
the more connected the network is, the easier it is for voters to find a suitable
guru. Conversely, increasing prec decreases the accuracies of all methods as it
becomes increasingly difficult to estimate voters’ accuracies. However, even for
a large value of prec as 0.3, the methods remain quite efficient. This suggests
that LD can be an efficient collective decision framework, even if voters cannot
perfectly evaluate the accuracy of their neighbors.

Evaluation on Other Measures. We also evaluated the solutions on the number of
gurus; the average distance from voters to their guru; and the average accuracy of
gurus. Related plots are provided in a long version of the paper [2]. We observe
that greedy strategies have much fewer gurus, much larger average accuracy
values and average distance values than other heuristics. Interestingly, all other
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Fig. 3. Results for score using random
graphs, n increasing from 11 to 201 in
steps of 10: (1) Gn,m graphs with m =
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are the same for these three plots.

●

●

●

● ●

●
●

0.4

0.5

0.6

0.7

5 10
n

sc
or
e

●

ls_gr
ls_vo

greedy_gr
greedy_vo

emerging
greedy_cap

direct_demo
milpODP

●

●

●
●

●

●
●

● ● ● ● ●
● ● ● ● ● ● ● ●

0.4

0.6

0.8

0 100 200 300 400
m

sc
or
e

●

● ● ●
● ●

●
● ● ● ●

●

●
●

● ●
●

●

●
●

●

0.75

0.80

0.85

0.90

0.0 0.1 0.2 0.3
prec

sc
or
e

●
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increasing from 1 to 13 in steps of 2;
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20 to 400 in steps of 20; (3) n = 101
nodes, m = 2n and prec increasing
from 0.015 to 0.3 in steps of 0.015.

heuristics yield low average distance values and a higher number of gurus which
are desirable features for LD’s acceptability.

6 Conclusion

Following recent works by Caragiannis and Micha [8] and Kahng, Mackenzie,
and Procaccia [24], we have provided new results on the accuracy of the LD
paradigm. We have showed that the complexity of finding a delegation graph
that maximizes the accuracy of voters as a whole is hard from an approximation
viewpoint. Moreover, we have stressed that this hardness result depends on the
connectivity of the social network and on the voters’ accuracies. Lastly, we have
provided an exact and several heuristic methods and we have argued through
simulations that some simple strategies in the LD framework could yield accurate
decisions even when decentralized and relying on approximate accuracy values.

As a future work, designing other algorithms that would provide interesting
approximation guarantees under some conditions on the social network would
be a worthwhile contribution. Moreover, it would be interesting to study the
accuracy of the LD framework by using alternative and maybe more complex
models than the one of the uncertain dichotomous choice model.
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Abstract. Kemeny’s voting rule is a well-known and computation-
ally intractable rank aggregation method. In this work, we propose an
algorithm that finds an embeddable Kemeny ranking in d-Euclidean
elections. This algorithm achieves a polynomial runtime (for a fixed
dimension d) and thus demonstrates the algorithmic usefulness of the
d-Euclidean restriction. We further investigate how well embeddable
Kemeny rankings approximate optimal (unrestricted) Kemeny rankings.

Keywords: Euclidean preferences · Kemeny’s voting rule · Rank
aggregation algorithms · Computational complexity

1 Introduction

Rank aggregation is the problem of combining a collection of rankings into a
social “consensus” ranking, with applications ranging from multi-agent plan-
ning [22] and collaborative filtering [32] to internet search [5,17]. The classic
application of rank aggregation is voting and thus rank aggregation methods are
extensively studied in social choice theory, where rankings correspond to voters’
preferences. A prominent rank aggregation method is Kemeny’s voting rule, also
known as Kemeny-Young method. This method is based on the Kendall-tau dis-
tance between rankings and outputs a consensus ranking (or Kemeny ranking)
that minimizes the sum of distances to the input rankings.

Kemeny’s voting rule is of particular importance for two reasons: First, it is
the only rank aggregation method satisfying three desirable properties (neutral-
ity, consistency, and being a Condorcet method) [39]. Second, it is the maximum
likelihood estimator for the “correct” ranking if the input is viewed as noisy per-
ceptions of a ground truth (assuming a very natural noise model) [40]. However,
Kemeny’s rule has a main disadvantage: its computational complexity [7,27]. In
particular, computing the Kemeny score is NP-hard even for four voters [17].

Due to the importance of Kemeny’s rule, much algorithmic research has been
conducted with the goal to overcome this computational barrier. The majority
of this work has focused on approximation algorithms, parameterized algorithms
and heuristical methods (see related work below). In this paper, we take an app-
roach that is widely used in computational social choice: to restrict the input
to a smaller preference domain [20]. If the input rankings possess a favorable
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structure, it may be possible to circumvent hardness results that hold in the
general case. For Kemeny’s rule, this is the case if the input has a certain 1-
dimensional structure; more specifically, Kemeny’s rule is polynomial-time com-
putable for single-peaked rankings [11] and for rankings with bounded single-
peaked or single-crossing width [14]. In contrast, Kemeny’s rule remains NP-hard
for preferences that are single-peaked on a circle [34] and, as very recently shown
in [24], for d-Euclidean preferences with d ≥ 2. In fact, both preference domains
admit an interesting connection: In [38] it has been shown that preferences that
are single-peaked on a circle can capture specific 2-Euclidean preferences.

The d-Euclidean preference domain [10,21] is a d-dimensional spatial model
based on the assumption that voters and candidates can be placed in R

d and
a voter’s preference ranking is derived from the Euclidean distance between her
coordinates and the candidates—closer candidates being more preferable. This
model captures situations where voters’ preferences are mainly determined by
real-valued attributes of candidates (e.g., a political candidate may be placed in a
two-dimensional space with axes corresponding to her position on economic and
social issues, or a textbook might be judged on its focus on theory/applications
and on its complexity level). It is intuitively clear that a one-dimensional model
is too simplistic to capture most real-world situations, and more dimensions
greatly increase the applicability of this domain. However, as mentioned before,
it is not the case that simply restricting the input to d-Euclidean preferences
yields a computational advantage as the problem remains NP-hard [24].

The goal of our paper is to find an efficient algorithm for Kemeny’s vot-
ing rule given d-Euclidean preferences (for d ≥ 2) by additionally imposing
reasonable restrictions on the output. We work under the assumption that an
embedding witnessing the d-Euclidean property is known and that the consensus
ranking (i.e., the output) has to be embeddable via the same embedding. The
embeddability of the consensus ranking is a sensible assumption as it extends the
explanation of the preference structure to the consensus ranking, i.e., if voters’
preferences can be understood as points in a d-dimensional space, then also the
output should be explainable via this space. Our main result is that this problem
can be solved in time in O(|C|4d) for strict orders and Õ(|C|4.746·d+2) for weak
orders (with ties), i.e., it is solvable in polynomial time for a fixed dimension d.
This algorithm makes use of a correspondence between embeddable rankings and
faces of a hyperplane arrangement in which each hyperplane is equidistant to two
embedded candidates. The determination of an embeddable consensus ranking
is then performed on an appropriately constructed vertex- and edge-weighted
graph, which is extracted from the arrangement.

We further show that this algorithm can be adapted to an egalitarian variant
of the Kemeny problem, which minimizes the maximum Kendall-tau distance.
Finally, we study the restriction of requiring an embeddable consensus ranking in
more detail. We prove that an embeddable consensus ranking has at most twice
the Kemeny score of the optimal, unrestricted Kemeny ranking. In numerical
experiments, we show that the embeddable Kemeny ranking and the optimal
Kemeny ranking coincide in most small instances.
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Related Work. In addition to the results by Escoffier et al. [24] who showed
NP-hardness of Kemeny’s voting rule given d-Euclidean preferences for d ≥ 2,
the work of Peters [33] on the recognition of d-Euclidean elections is of partic-
ular importance to our problem. Peters shows that this problem is NP-hard for
d ≥ 2 [33] (it is even ∃R-complete). Thus, one cannot hope for a polynomial-
time algorithm for our problem if the embedding is removed from the input.
Instead, we assume that the embedding is either found in a preprocessing stage
(with sufficient time available) or is known due to understanding the origin of
preferences (which adhere to a d-dimensional geometry). In contrast, recognizing
1-Euclidean elections is possible in polynomial time [16,29].

As mentioned before, Kemeny’s rule has attracted much attention from
an algorithmic perspective: exponential-time search-based techniques [6,13,15],
approximation algorithms [1,28], parameterized algorithms [8,14], and heuristi-
cal algorithm [2,36]. As Kemeny’s voting rule is of practical importance, much
work has also been invested in runtime benchmarks [3].

2 Preliminaries

A weak order � over a set X is a complete (x � y or y � x for all x, y ∈ X)
and transitive binary relation. We write x � y if x � y but not y � x. Further,
we write x ∼ y if x � y and y � x. A weak order � is a strict order if it has no
ties, i.e., if x �= y then either x � y or y � x.

We define an election (C,V, (�v)v∈V) as a set of candidates C, a set of voters
V, and for each v ∈ V, a weak order �v over the candidates called the preference
(order) of v. Whenever c �v c′, we say that v prefers c over c′

Let d be positive integer and let p : C ∪ V → R
d be an embedding in the

d-dimensional space. Further, let ‖ · ‖d denote the Euclidean norm in R
d. We

say that a voter’s preference order �v for v ∈ V on C is p-embeddable if for all
c, c′ ∈ C, c � c′ if and only if ‖p(v) − p(c)‖d ≤ ‖p(v) − p(c′)‖d. Generally for
a weak order � on C that do not coincide with a voter’s preference order, we
say � is p-embeddable if there is some x ∈ R

d such that for all c, c′ ∈ C, c � c′

if and only if ‖x − p(c)‖d ≤ ‖x − p(c′)‖d. An election (C,V, (�v)v∈V) is said to
be p-embeddable if �v for all v ∈ V are p-embeddable. Finally, an election is
d-Euclidean if it it is p-embeddable for some p.

We define the Kendall-tau distance of two weak orders �,�′ over C as

K(�,�′) =
∑

{x,y}⊆C
d�,�′(x, y), where

d�,�′(x, y) =

⎧
⎪⎨

⎪⎩

2 if (x � y and y �′ x) or (y � x and x �′ y)
1 if (x ∼ y and x �∼′ y) or (x �∼ y and x ∼′ y)
0 otherwise (i.e., � and �′ agree on the order of x and y).

Equivalently,

K(�,�′) = |{{x, y} ⊆ C | (x � y ∧ y �′ x) ∨ (y � x ∧ x �′ y)}|
+ |{(x, y} ⊆ C | (x �′ y ∧ y � x) ∨ (y �′ x ∧ x � y)}|.
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For strict orders � and �′, this definition simplifies to K(�,�′) = |{(x, y) ∈
C2 | (x � y ∧ y �′ x) ∨ (y � x ∧ x �′ y)}|.

We can now define Kemeny’s voting rule and the corresponding consensus
rankings, which we refer to as optimal Kemeny rankings in the following.

Definition 1. Given an election (C,V, (�v)v∈V), a strict order � on C is an
optimal Kemeny ranking if there is no other strict order �′ on C with

∑

v∈V
K(�′,�v) <

∑

v∈V
K(�,�v),

i.e., an optimal Kemeny ranking minimizes the sum of Kendall-tau distances to
the preference orders. We refer to

∑
v∈V K(�,�v) as the Kemeny score of �.

We note that Definition 1 could be adapted to define Kemeny rankings as
weak orders; this would not change our results.

From a computational viewpoint, Kemeny’s voting rule is captured by the
following NP-hard decision problem [7,17,27]:

We furthermore consider an egalitarian variant which minimizes the maximal
dissatisfaction of each voter.

Definition 2. Given an election (C,V, (�v)v∈V), we say that a strict order �
on C is an egalitarian Kemeny ranking if there is no other strict order �′ �= �
on C with maxv∈V K(�′,�v) < maxv∈V K(�,�v).

Like for Kemeny Score, the corresponding decision problem Egalitarian

Kemeny Score, i.e., given (C,V, (�v)v∈V), z ∈ N, decide whether there is a
strict order � on C such that maxv∈V K(�,�v) ≤ z, is NP-hard even for four
voters which was independently proved by Biedl et al. [9] and Popov [35].

3 Embeddable Kemeny Rankings

The main focus of this paper is on the constrained setting of d-Euclidean elec-
tions, that is, we assume that the input is an embedding p as well as a p-
embeddable election. In addition, we require that the output (i.e., the Kemeny
ranking) is also p-embeddable.

Definition 3. Given an embedding p : C∪V → R
d and a p-embeddable election

(C,V, (�v)v∈V), a strict order � on C is a p-embeddable Kemeny ranking if � is
p-embeddable and there is no other p-embeddable strict order �′ on C such that∑

v∈V K(�′,�v) <
∑

v∈V K(�,�v).

A p-embeddable egalitarian Kemeny ranking is defined analogously.
First we observe that a p-embeddable Kemeny ranking does not need to

coincide with any optimal Kemeny rankings for a given p-embeddable election.
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c3c2

c1
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Fig. 1. Election from Example 1.

c2c1v3

v1

v2

m

Fig. 2. Election from Example 2

Example 1. Consider the voting setting depicted in Fig. 1. The preferences of
voter v1 are given by c2 �1 c3 �1 c1 �1 c4, the preferences of voter v2 are
c4 �2 c3 �2 c2 �2 c1 and v3 prefers c1 �3 c4 �3 c2 �3 c3. The unique Kemeny
ranking is c4 � c2 � c3 � c1 (with a Kemeny score of 14) since K(�,�1) = 6,
K(�,�2) = 2, K(�,�3) = 6, and

∑
i≤3 K(�′,�vi

) > 14 for all �′ �=�. Now
observe that � is not embeddable in Fig. 1. Among embeddable rankings, the
Kemeny score is minimized by �1, �2, and �3, all of which achieve a Kemeny
score of 16. These are the embeddable Kemeny rankings.

One may ask whether it is sensible to use an ordinal voting rule such as
Kemeny’s rule in our setting where voters and candidates can be represented in
a coordinate space. It is important to note that we do not assume that a voter’s
position in R

d, given by an embedding, is actually a correct representation of this
voter’s preferences. In particular, we do not assume that distances between voters
and candidates is an accurate measure of intensities. That is, a voter prefers a
candidate with distance 1 over a candidate with distance 2, but not necessarily
twice as much. Hence, our assumption of embeddability in d-Euclidean space
is significantly weaker than assuming a model where distances correspond to
voters’ utilities. In such a model, ordinal voting rules indeed are less useful
and choosing the geometric median of the set of voter points1 is more natural
than computing a Kemeny ranking (in contrast to Kemeny’s rule, the geometric
median can be computed efficiently [12]). The next example shows that these
two concepts differ.

Example 2. Consider a 2-Euclidean election with two candidates C = {c1, c2}
and three voters V = {v1, v2, v3} (cf. Fig. 2). The embedding p is given by p(c2) =
−p(c1) = (1, 0); p(v1) = (3, 6), p(v2) = (3,−6), p(v3) = (−10, 0). Voters v1, v2
prefer c2 over c1 while voter v3 prefers c1 over c2. The optimal Kemeny ranking is
1 The geometric median of a set of points S is a point that minimizes the sum of

distances to points in S (as does the Kemeny ranking albeit for a different metric).
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thus c2 � c1 (which is clearly p-embeddable). In contrast, the geometric median
m is the point ≈ (−0.46, 0) which lies on the side of p(c1) and thus corresponds to
the ordering c1 � c2. The crucial point here is that if we changed the embedding
so that p(v1) = (4, 6), p(v2) = (4,−6), the geometric median would lie at ≈
(0.54, 0) and thus correspond to the Kemeny ranking.

A similar observation can be made in the case of the egalitarian Kemeny
ranking; minimizing the maximum Euclidean distance is known as the 1-center
problem or smallest enclosing ball problem.

For the 1-dimensional case, the question is easy to answer.

Proposition 1. In a p-embeddable 1-Euclidean election, any optimal Kemeny
ranking is also p-embeddable and coincides with the geometric median.

As we have seen before, Proposition 1 does not extend to higher dimensions:
Examples 1 and 2 are counter-examples for d = 2.

4 Computing Embeddable Kemeny Rankings

In this section, we give a brute-force algorithm to determine all p-embeddable
Kemeny rankings of a given p-embeddable election. In order to traverse all strict
p-embeddable orders, we observe their correspondence to faces of the hyperplane
arrangement that contains all hyperplanes consisting of points equidistant to any
two embedded candidates. This correspondence is also important for our main
algorithm (Sect. 5), which drastically improves the asymptotic runtime.

Consider a d-Euclidean election (C,V, (�v)v∈V) embedded via p : C∪V → R
d.

For any pair c, c′ ∈ C of candidates we consider the hyperplane Sc,c′ = {x ∈ R
d |

‖x − p(c)‖d = ‖x − p(c′)‖d}. Each Sc,c′ divides R
d into two halfspaces—one

containing p(c), we also say this halfspace lies on the same side of Sc,c′ as c; and
one containing p(c′). Each halfspace is assumed to be closed, that is, it contains
its bounding hyperplane. A face of the hyperplane arrangement {Sc,c′ | c, c′ ∈ C}
is a connected non-empty subspace of Rd obtained by intersecting halfspaces of
the arrangement with at least one halfspace chosen for each hyperplane Sc,c′ .
We write P to denote the set of all faces of the arrangement.

Let f ∈ P be a face. For any pair of candidates c, c′ ∈ C, we say that f
lies on the same side of Sc,c′ as c, if it is a subset of the halfspace that lies
on the same side of Sc,c′ as c. This allows us to identify f by the set X =
{(c, c′) ∈ C2 | c and the subspace lie on the same side of Sc,c′}; we write fX to
denote the face identified by X, i.e., fX = f . A face f is called k-face if it has
dimension k. Observe that for every face fX , either (c, c′) ∈ X or (c′, c) ∈ X
for every pair c, c′ ∈ C. Further note that X can also contain both tuples (c, c′),
(c′, c)—in that case, fX ⊆ Sc,c′ . For a face fX , if (c, c′) ∈ X then fX ⊆ {x ∈
R

d | ‖x−p(c)‖d ≤ ‖x−p(c′)‖d}. Additionally we denote the set of d-dimensional
faces as R and refer to them as regions. In the following, we use the standard
notation f◦ for the interior of a set f .
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Intuitively, each face fX corresponds to a weak p-embeddable order for the
given d-Euclidean election and embedding p. This correspondence is formally
captured by the following result.

Lemma 1. Let Φ : P → {� ⊆ C2 | � is a p-embeddable weak order} be a func-
tion defined by Φ(fX) =� where c � c′ ⇔ (c, c′) ∈ X. Then Φ is a bijection.

Since we require that Kemeny rankings are strict, the following observation
showing that each region corresponds to a strict p-embeddable ordering for the
given embedded d-Euclidean election is also useful.

Lemma 2. Let Φ′ : R → {� ⊆ C2 | � is a p-embeddable strict order} be the
restriction of Φ (from Lemma 1) to regions. Also Φ′ is a bijection.

For a face f ∈ P, we write �f instead of Φ(f) (this is a weak order). Further,
for a region R, we write �R instead of Φ′(R) (this is a strict order).

We can now use the preceding correspondences to give a straightforward
polynomial time algorithm that enumerates all p-embeddable strict orders.

Theorem 1. Determining all p-embeddable Kemeny rankings for a d-
Euclidean election (C,V, (�v)v∈V) given by p : C ∪ V → R

d is possible in time
polynomial in |C|, more specifically in time in O(|C|6d).

Proof. Consider the d-Euclidean preference profile given by the function p :
C ∪ V → R

d. For every f ∈ P, let #(f) denote the number of voters in f , i.e.
#(f) = |{v ∈ V | p(v) ∈ f}|. By comparing the corresponding values for each
R ∈ R, we can determine R ∈ R which minimizes

∑
f ′∈P #(f ′)·K(�f ′ ,�R), and

denote such an R by Rmin. We return �Rmin as p-embeddable Kemeny ranking.

Correctness. For R ∈ R and f ′ ∈ P,
∑

f ′∈P
#(f ′) · K(�f ′ ,�R) =

∑

f ′∈P

∑

v∈V
p(v)∈f ′

K(�f ′ ,�R)

=
∑

f ′∈P

∑

v∈V
p(v)∈f ′

K(�v,�R)

=
∑

v∈V
K(�v,�R)

Since we are looking for a p-embeddable Kemeny ranking, it has to have the
form �R for some R ∈ R by Lemma 2, which implies correctness.

Runtime. The hyperplane arrangement induces O(|C|2d) faces (by [26, Corollary
28.1.2] as we consider at most

(|C|
2

)
distinct hyperplanes) and can be computed

in time in O(|C|2d) [18, Theorem 7.6]. For each face R ∈ R, the computation and
comparison of the objective function naively requires time in O(|P|2) ⊆ O(|C|4d).
Thus the overall complexity of the procedure lies in O(|C|6d). ��

An analogous procedure works for the egalitarian variant.
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5 Increasing Efficiency

To achieve a better runtime—in particular for large d—we conduct a more in-
depth graphical analysis of the relation of p-embeddable orders to each other.
Specifically, this section is dedicated to proving our following main result.

Theorem 2 (Main Theorem). Determining all p-embeddable Kemeny rank-
ings for a d-Euclidean election (C,V, (�v)v∈V) given by p : C∪V → R

d is possible
in time in Õ(|C|2(d·ω+1)), where ω < 2.373 [4] is the exponent of matrix multi-
plication.

5.1 Preference Graph

We define the preference graph Gpref as the edge-weighted graph given by setting

– V (Gpref) = {vf | f ∈ P};
– E(Gpref) = {{vf , vf ′} | (dim(f) = dim(f ′)−1∧f ⊂ f ′)∨(dim(f ′) = dim(f)−

1 ∧ f ′ ⊂ f)}; and
– w : E(Gpref) → N, {vf , vf ′} �→ |{{c, c′} ⊆ C | (dim(f ′ ∩ Sc,c′) = dim(f ′) ∧

dim(f ∩ Sc,c′) �= dim(f)) ∨ (dim(f ∩ Sc,c′) = dim(f) ∧ dim(f ′ ∩ Sc,c′) �=
dim(f ′))}|.
In other words, vertices corresponding to faces one of which is contained in

the other are connected to each other by edges in Gpref whenever the dimension
of one face differs from the other by exactly one. The edge weights correspond
to the number of pairs (c, c′) of candidates inducing this respective hyperplane.
An example is given in Fig. 3. By a bound on the number of faces [26, Corollary
28.1.2] and since we consider at most

(|C|
2

)
different hyperplanes, we can bound

the number of vertices by |V (Gpref)| ∈ O(|C|2d).

Fig. 3.Gpref for candidates as given in Example 1. Vertex shapes encode the dimensions
of the corresponding faces, and dash-styles encode weights where edges without weight
labels have unit-weight. Exemplary vertices are annotated with the corresponding p-
embeddable orders.
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Gpref without weights coincides with the incidence graph of a hyperplane
arrangement as defined in [18] which is constructed in O(|C|2d)-time [18, The-
orem 7.6]. We modify this procedure to include appropriate edge weights for
Gpref .

Lemma 3. Gpref can be constructed in time in O(|C|2d).

Note that at this point, we have set up or shown natural bijective correspon-
dences between: the vertices of Gpref , the faces in P, all p-embeddable orders of
C and sets of pairs of candidates in C which explicitly encode the pairwise com-
parisons according to such p-embeddable orders. In this way, it will be natural
to write any v ∈ V (Gpref) as vf for some f ∈ P, any p-embeddable order of C
as �f for some f ∈ P, and any f ∈ P as fX for some X ⊆ C2.

5.2 Shortest Paths in the Preference Graph

The crucial property of the preference graph, apart from capturing p-embeddable
orders through its vertices, is that the chosen edge weights reflect the Kendall-tau
distance between embeddable orders. We first can show this for single edges.

Lemma 4. For {vf , vf ′} ∈ E(Gpref), w({vf , vf ′}) = K(�f ,�f ′).

This previous lemma acts as the base case for the general correspondence of
distances in Gpref and the Kendall-tau distance between the orders associated to
the vertices of Gpref (i.e. the p-embeddable orders). We denote by distGpref (v, w)
the length of a shortest (in terms of summed edge weights) v-w-path in Gpref .

Lemma 5. For f, f ′ ∈ P, K(�f ,�f ′) = distGpref (vf , vf ′).

Proof Sketch. We present a proof by induction over the length � of cardinality-
minimal shortest vf -vf ′-paths (i.e., a path having minimum number of vertices
among all weight-minimal paths between vf , vf ′). The proof makes use of the
observation that the Kendall-Tau distance between two faces fX , fY corresponds
to the symmetric difference |XΔY |. The base case � = 2 is covered by Lemma 4.

Now assume that the statement holds for any cardinality-minimal shortest
path of length � − 1 and observe that each proper subpath of a cardinality-
minimal shortest vf -vf ′-path consisting of � vertices in Gpref is cardinality-
minimal; otherwise one can replace the subpath with a cardinality-minimal short-
est path, contradicting the assumption on vf . . . vf ′ . Together with the triangle-
inequality for the Kendall-tau distance, we get K(�f ,�f ′) ≤ distGpref (vf , vf ′).

To show distGpref (vf , vf ′) ≤ K(�f ,�f ′), we construct a vf -vf ′-path of weight
K(�f ,�f ′) by connecting two arbitrary points pf ∈ f◦ and pf ′ ∈ f ′◦ via a
straight line l and extracting a path along the traversal of l from pf to pf ′ . The
path consists of vertices vg with l ∩ g �= ∅ such that g ∈ P satisfies dim(g) <
dim(g′) for all g′ ∈ P with l ∩ g = l ∩ g′; also, we connect every two vertices
vi, vi+1 which are—w.r.t. the ordering along the line traversal —“adjacent” but
not connected via an edge (i.e., |dim(fi) − dim(fi+1)| > 1 for the corresponding
faces fi, fi+1) via a weight- and vertex-minimal path.
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Let vf = vf1 . . . vfs
= vf ′ denote the constructed vf -vf ′-path P and let

X1, . . . , Xs ⊆ C2 denote the pairs of candidates such that fi = fXi
according to

our notation introduced in Sect. 4. We verify that the constructed path P has
the desired weight K(�f ,�f ′) = |X1�Xs| by showing that a pair (c, c′) ∈ C2

contributes to the weight of P exactly once if and only if (c, c′) ∈ X1�Xs.
Indeed, it can be shown that there is at most one edge {vfi

, vfi+1} ∈ P satisfying
fi ∩Sc,c′ = ∅ but fi+1 ∩Sc,c′ �= ∅; also there is at most one edge {vfi

, vfi+1} ∈ P
satisfying fi ∩ Sc,c′ �= ∅ but fi+1 ∩ Sc,c′ = ∅; i.e., P “enters” and “exists” a
hyperplane Sc,c′ only once. This follows from the construction and by the fact
that a straight line intersects a hyperplane at most once. ��

5.3 The Algorithm

Having established the correspondence between the Kendall-tau distance and the
shortest paths in the edge-weighted graph Gpref we obtain the following result.

Theorem 2 (Main Theorem). Determining all p-embeddable Kemeny rank-
ings for a d-Euclidean election (C,V, (�v)v∈V) given by p : C∪V → R

d is possible
in time in Õ(|C|2(d·ω+1)), where ω < 2.373 [4] is the exponent of matrix multi-
plication.

Proof. Consider the d-Euclidean preference profile given by the function p :
C ∪ V → R

d. We construct the corresponding preference graph Gpref using
Lemma 3. We then apply the Shoshan-Zwick all-pairs shortest path algorithm
for undirected graphs with integer weights (proposed in [37] and corrected in
[19]) which returns a matrix Mdist ∈ N

V (Gpref)×V (Gpref ) containing the length
of the shortest path between every pair of vertices in Gpref . For every vertex
vf ∈ V (Gpref), let #(vf ) denote the number of voters in f , i.e. # : V (Gpref) → N

with #(vf ) = |{v ∈ V | p(v) ∈ f}|, or equivalently #(vf ) = |{v ∈ V |�v=�f}|.
By comparing the corresponding values for each R ∈ R, we can determine all
R ∈ R which minimize

∑
f ′∈P #(vf ′)·distGpref (vf ′ , vR), and denote such an R by

Rmin. We return the (set of) all such �Rmin as p-embeddable Kemeny rankings.
Correctness follows from the Lemmas 5, 2, and 1.

Runtime. The construction of the preference graph takes time in O(|C|2d) by
Lemma 3. By [19,37], the all-pairs shortest path algorithm for undirected graphs
with integer weights runs in time in Õ(M · |V (Gpref)|ω) where M is the largest
edge weight and ω < 2.373 is the exponent of matrix multiplication. Since M ≤(|C|

2

)
we get Õ(M ·|V (Gpref)|ω) = Õ(|C|2(dω+1)) The computation and comparison

of the objective function for each f ∈ P naively requires time in O(|P|2) ⊆
O(|C|4d). Thus the overall complexity lies in Õ(|C|2(dω+1)). ��

Weak Kemeny Rankings. We remark that whenever we allow p-embeddable
Kemeny rankings to be weak rather than strict, we can easily adapt our algo-
rithm by comparing the values of

∑
f ′∈P #(vf ′)·distGpref (vf ′ , vf ) for each f ∈ P,

denoting an f that minimizes this value by fmin, and returning �fmin as Kemeny
ranking. Correctness then follows immediately from Lemma 1.
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Egalitarian Kemeny Rankings. An analogous result for the p-embeddable egal-
itarian Kemeny method can be obtained by an appropriate adaption of the
objective function in the proof of Theorem 2.

Strict Preferences. Conversely whenever we restrict ourselves to instances in
which all voters have only strict p-embeddable orders as preferences, we can focus
on a proper minor of Gpref rather than the whole graph. More specifically we can
restrict ourselves to the vertex set given by {v ∈ V (Gpref) | ∃R ∈ R v = vR};
where edges between the vertices correspond to traversals of single hyperplanes:
We contract paths of length 2 in Gpref between such vertices to single edges while
summing up the weight of contracted edges. More explicitly instead of Gpref we
can consider the graph Hpref given by the following information:

– V (Hpref) = {vR | R ∈ R};
– E(Hpref) = {{vR, vR′} | ∃c, c′ ∈ C dim(R ∩ R′ ∩ Sc,c′) = d − 1}; and
– w : E(Hpref) → N, {vR, vR′} �→ 2|{{c, c′} ⊆ C | dim(R ∩ R′ ∩ Sc,c′) = d − 1}|.
Without weights, this graph is also known as the region graph or the dual graph
of the embedded election induced hyperplane arrangement. Using the represen-
tation of the region graph as medium, i.e., as a system of states and transitions
between states via tokens [23], we can employ a faster quadratic time all-pairs-
shortest-paths algorithm [23] to achieve a better runtime for strict orders.

Theorem 3. Determining all p-embeddable Kemeny rankings for a d-Euclidean
election (C,V, (�v)v∈V) in which all voters have strict preferences given by p :
C ∪ V → R

d is possible in time in O(|C|4d).

6 Approximating the Kemeny Score

Our main algorithm fundamentally rests on the assumption that we are inter-
ested in an embeddable Kemeny ranking. As we have already seen in Example 1,
such an embeddable Kemeny ranking may differ from an optimal Kemeny rank-
ing. It is thus natural to ask

1. how often embeddable Kemeny rankings differ from optimal Kemeny rank-
ings; and

2. how far these rankings can be apart (measured by their Kendall-tau distance).

We investigate these questions via numerical experiments and prove a bound on
the worst-case approximation ratio of embeddable Kemeny rankings.

6.1 Approximation

Our goal is to quantify how much an embeddable Kemeny ranking and an
optimal Kemeny ranking may differ. This can be phrased as an approxima-
bility results for computing Kemeny’s voting rule in d-Euclidean elections. We
can show that p-embeddable Kemeny rankings 2-approximate optimal Kemeny
rankings.
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Proposition 2. Let ≺ be an optimal Kemeny ranking, p be a given embedding
and ≺res be a p-embeddable Kemeny ranking. Then

∑
v∈V K(≺res,≺v)∑
v∈V K(≺,≺v)

≤ 2.

However, it is unclear whether our ratio 2 is tight (even for d = 2). The
largest ratio we are aware of is 8/7 and arises, e.g., in Example 1.

Fig. 4. Percentage of instances with ratio r > 1.

6.2 Experiments

We conducted numerical experiments on randomly generated 2-Euclidean elec-
tions to test the approximation quality of embeddable Kemeny rankings and
to record how often embeddable Kemeny rankings do not achieve an optimal
Kemeny score. In brief, our experiments suggest that the optimal Kemeny rank-
ing is p-embeddable in 98.9% of the cases when considering up to 7 candidates.

To compute optimal Kemeny scores, we implemented Kemeny’s rule with a
trivial brute-force algorithm. The implementation for the p-embeddable Kemeny
score used in these experiments2 does not exploit all runtime improvements from
the algorithm for strict orderings described in Sect. 5.3; its runtime currently
inhibits experiments on larger instances. We randomly generated instances of
2-Euclidean elections with n voters, 3 ≤ n ≤ 15, with strict preferences and
m candidates, 4 ≤ m ≤ 7, both of which we identify with points in [0, 1000]2. For
each pair (m,n), we generated 150 instances: 50 each assuming that (a) candi-
dates and voters are component-wise uniformly distributed; that (b) candidates
and voters are component-wise truncated normally distributed with mean 500
and variance 150; and that (c) candidates are uniformly distributed and voters
are truncated normally distributed with mean 500 and variance 150.
2 We construct the preference graph Hpref by adapting the dual arrangement construc-

tion from CGAL (The CGAL Project, https://www.cgal.org) and apply Johnson’s
all-pairs shortest path algorithm to determine the p-embeddable Kemeny rankings.

https://www.cgal.org
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In total, we ran 7800 tests; among them, only 84 exhibited a p-embeddable
Kemeny ranking that differs from the optimal Kemeny ranking. In these
84 instances, the ratio r of embeddable and optimal Kemeny rankings is
between 1.0077 and 1.11. A difference in the scores of the optimal and the
p-embeddable Kemeny rankings occurred slightly more often in uniformly dis-
tributed instances—1.85% of uniformly distributed instances have ratios r > 1,
which is the case for only ≈ 0.7% for other distributions. Figure 4 gives an
overview of the percentage of instances where r > 1. The results indicate that
an increasing number of voters does not cause a significant rise in the num-
bers of instances with suboptimal p-embeddable Kemeny rankings. Interestingly,
instances with an odd number of voters have suboptimal p-embeddable Kemeny
rankings significantly more often (77 out of 84), possibly due to fewer ties. On
the other hand, the results indicate a positive correlation between the number of
candidates and the number of instances with suboptimal p-embeddable Kemeny
ranking (for m = 4, there is only one of 1950 instances with r > 1 (≈ 0.05%),
while for m = 7, 52 instances out of 1950 admit ratio r > 1 (≈ 2.66%)). This
suggests that the low overall percentage is due to the choice of the candidate
range. Further tests with a larger number of candidates remains—due to limited
computational power and, in terms of runtime, suboptimal implementation of
the p-embeddable Kemeny ranking computation—a point on our future agenda.

7 Conclusions and Open Problems

We have shown that p-embeddable Kemeny rankings can be computed in time
in O(|C|4d) for strict orders and Õ(|C|4.746·d+2) for weak orders. Apart from
improving these runtimes, it would be interesting to provide lower bounds on
the computational complexity. In particular, a W-hardness result for computing
p-embeddable Kemeny rankings could show that the dimension d has to occur
in the exponent.

Further, our polynomial time solvability result juxtaposes the NP-hardness
for the Kemeny Score problem on d-Euclidean elections, i.e., when one assumes
p-embeddable preferences (given by p) but allows non-embeddable Kemeny rank-
ings. To slightly relax our embeddability requirement on solutions with the hope
of still remaining in P it would also be interesting to consider the problem where
one requires a solution to be embeddable together with all voter preferences in
the same dimension as the input, but allows the embedding to differ from the
input embedding.

Let us end with a conceptual note. While d-Euclidean preferences are well-
motivated and used in applications [21,30,31], there have been no successful
attempts to leverage their structural properties for tractability results for d ≥ 2,
to the best of our knowledge. A likely reason for this is that combinatorial
properties implied by d-Euclidean preferences seem to be difficult to derive. Our
constructions of Gpref (and Hpref for strict preferences) in Sect. 5 may thus be of
independent interest as a concise representation of d-Euclidean preferences and
their mutual Kendall-tau distances under a fixed embedding. We would like to
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encourage the study of d-Euclidean preferences also for other computationally
hard voting rules (such as Dodgson, Young). On this note, very recently many
approval based multiwinner voting rules which are polynomial times solvable on
1-Euclidean elections were shown to be NP-hard on 2-Euclidean elections [25].
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FWF through projects P31890, P31336, W1255-N23, and Y1329.
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Abstract. We investigate an iterative deliberation process for an agent
community wishing to make a joint decision. We develop a general model
consisting of a community of n agents, each with their initial ideal point
in some metric space (X, d), such that in each iteration of the iterative
deliberation process, all agents move slightly closer to the current winner,
according to some voting rule R. For several natural metric spaces and
suitable voting rules for them, we identify conditions under which such
an iterative deliberation process is guaranteed to converge.

Keywords: Deliberation · Social choice · Iterative process · Metric
aggregation

1 Introduction

Agent communities wishing to reach joint decisions usually get involved in
some voting process: agent preferences wrt. some agreed-upon options are being
elicited, and their preferences are being aggregated through the use of some
aggregation method. Correspondingly, much of the research in computational
social choice [4] evolves around such aggregation methods, usually referred to as
voting rules.

If voter preferences are rather diverse, then using a voting rule in a straight-
forward way might mean that the aggregated result (i.e., the result of the elec-
tion) is not well-accepted by the agent community (e.g., a large minority may
feel that their opinions are not being sufficiently heard). To overcome this issue,
it can be useful to precede the voting phase with a deliberation phase, in which
agents may interact, mutually hoping to find some common grounds [6]. When
taken to the extreme, the best outcome of such a deliberation phase is that it
would end in consensus: i.e., in a situation in which all agents eventually hold the
same opinion; when all agents are in consensus. Then, informally speaking, the
use of a voting rule is not needed, as all agents would be pleased with choosing
the consensus opinion (technically, any unanimous voting rule – that chooses
the consensus opinion whenever it exists – would be accepted).

Naturally, there are many ways by which voting and deliberation may coexist
and interact; we discuss some of them in Sect. 2. In this paper, our point of view
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is that the effect of deliberation is a change of the opinions of the agents (as a
simplistic example, a right-wing voter may be more centrist after deliberating
with a left-wing voter1). Correspondingly, in our model we view deliberation as
a “black-box” process whose result is the change of agent opinions. In particular,
we do not discuss nor model the specifics of deliberation, but rather model the
result of using deliberation in diminishing the opinion distances between agents.

In particular, here we consider an iterative process of deliberation: initially,
each agent holds to her position, which is modeled as an element of some metric
space; then, each iteration consists of an implicit voting step, followed by a dis-
cussion step. In the voting step, an aggregated outcome is identified using some
voting rule; then, in the discussion step, agents slightly change their opinions,
to be more inline with the aggregated outcome computed in the voting step
(specifically, agents move slightly closer to the aggregated outcome).

Note that the voting rule ingredient of our model only affects the specifics
of how agents change their opinions due to discussion, as it affects the aggre-
gated outcome. Our main interest is to characterize the situations for which
such an iterative deliberation process converges, as we view converged processes
as successful ones, in particular if the converged configuration is a consensus
configuration (i.e., configurations in which all agents share the same opinion).

Specifically, throughout the paper we consider various metric spaces that
correspond to certain social choice settings and several voting rules for each of
these settings. Then, for each specific realization of our model – that is, for
each metric space (X, d) and voting rule R – we analyze whether our iterative
deliberation process is guaranteed to be successful (i.e., whether for any initial
configuration it is always the case that the agents will end up in consensus).

For the settings that guarantee convergence, we are also interested in worst-
case upper bounds for the time needed for such convergence (i.e., for the number
of iterations until convergence, in the worst case). Finally, we are also inter-
ested in analyzing the possible results of such iterative deliberation processes,
by comparing the initial agent opinions to the consensus opinion reached by such
processes, whenever a consensus opinion is reached.

Indeed, our model is very extreme in assuming that, in each iteration, all
agents move slightly closer to the aggregated opinion, in a deterministic way. In
Sect. 8 we discuss some relaxations to our model. Note that the extremeness of
our model means that our negative results – in which we show that an iterative
deliberation process need not be successful – are very strong, as such negative
results imply that, for such settings, even a very extremely optimistic delibera-
tion process might not succeed. Generally speaking, we believe that our results
shed more light on the relation between deliberation and voting by effectively
distinguish between metric spaces and voting rules that are more problematic
wrt. deliberation as such for which deliberation has greater potential to be suc-
cessful.

1 Indeed, the result of such deliberation may be the opposite – that the right-winger
would be radicalized; we do not focus on such cases, but mention them in Sect. 8.
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Due to space constraints, some of the proofs are deferred to the full version
(available on the arXiv).

Paper Structure. After discussing related work (Sect. 2) and formally defining
our model (Sect. 3), we prove general observations that apply to any metric
space (Sect. 4). Then, we consider deliberation in Euclidean spaces (Sect. 5),
in hypercubes (Sect. 6), and in ordinal elections (Sect. 7), and conclude with
model relaxations and other avenues for future research (Sect. 8). Our results
are summarized in Table 1.

Table 1. Summary of our main results. For each model realization – i.e., a metric
space (X, d) and a voting rule R – we report whether convergence is guaranteed, and,
if so, what is the upper bound of the number of iterations. VNW (Variable Number
of Winners [13]) stands for the set of all subsets of some underlying candidate set,
and is modeled via hypercubes; MW (Multi-winner [12]) stands for the set of all k-size
subsets of some underlying candidates set, and is modeled via subsets of hypercubes;
and SWF (Social Welfare Functions [4]) stands for the set of all rankings over some
underlying candidate set.

X d R Convergence Time Theorem

R
T �1 Mean∗ ✓ O

(
max

v∈V 0
d(v,w0)

ε

)
8

R
T �2 Mean∗ ✓ O

(
max

v∈V 0
d(v,w0)

ε

)
10

R
≥3 �∞ Mean∗ ✗ ✗ 14

R
T �1, �2 Median∗ ✓ max

v∈V 0� d(v,w0)
ε

� 12

R
≥3 �∞ Median∗ ✗ ✗ 15

VNW Hamming Majority ✓ max
v∈V 0� d(v,w0)

ε
� 18

VNW First changed Monotonic ✓ �m/ε� Omitted

MW Hamming Majority ✓ max
v∈V 0� d(v,w0)

ε
� Omitted

MW First changed Monotonic ✓ �m/ε� Omitted

SWF Arbitrary Kemeny ✓ max
v∈V 0� d(v,w0)

ε
� 22

SWF Swap Monotonic scoring ✓ ? 26

SWF Swap STV ✓ ? 30

SWF First changed Monotonic ✓ �m/ε� 31
∗Mean and median both being element-wise.

2 Related Work

The most relevant literature pointer to our work is the paper of Bulteau et al. [5],
in which the authors study aggregation methods for metric spaces. In particular,
their model includes a metric space (X, d), where X is the set of elements of the
space and d is a metric between pairs of elements of X; the opinion of an agent
is an element x ∈ X – referred to as the agent’s ideal point – and the distance d
determines the ordinal preferences of an agent over all X, where an agent prefers
elements that are closer to its ideal point; a voting rule in their framework is
a function that takes n points of X and returns an aggregated point in the
metric space as the winner of the election. The jargon we use in this paper is
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largely due to Bulteau et al.; viewed from our angle, Bulteau et al. study a
one-time aggregation process in which voters provide their ideal points and an
aggregation method is used to find an aggregated point in the space, while we
study an iterative process in which the aggregation method is used iteratively,
each time causing the agents to move slightly closer to the aggregated point.
Note that Bulteau et al. mention that their model may be indeed the basis for
studying a process that combines voting and deliberation, as we set to do in the
current paper. Indeed, we chose to build on the framework of metric aggregation
as it evolves around a notion of distance between opinions (and it is general
enough to capture many relevant social choice settings at once); this makes it
natural for us to model the effect of deliberation by having each agent change
its position to be slightly closer – according to some distance function d – to the
aggregated point, in each iteration.

There are other works that consider iterative deliberation processes: e.g., Fain
et al. [8] consider a process in which, in each iteration, two agents negotiate and
move slightly closer to each other’s point in the space; Elkind et al. [7] consider
a process of deliberation in a metric space, concentrating on coalitions that may
form around compromise points in the metric space; and Garg et al. [14] consider
a model in which all agents are moving in the confined radius of a ball around
their compromise point. There are also works that consider deliberation and
aim at capturing the internal mechanics of deliberation [2,3,18]; we, however,
similarly to Elkind et al. [7], abstract away the internal mechanism of deliberation
and concentrate on the possibility of reaching consensus by deliberation.

We also mention work on opinion diffusion in social networks [9,15], in which
agents are connected via a social network that affects the opinions of neighbors of
agents and thus are propagated throughout the network. Technically, our model
can be seen as a model of opinion diffusion where the social network is a complete
graph (while in standard opinion diffusion the graph is usually not complete),
however we prefer to think about our model as a model of deliberation. Further-
more, we mention work on iterative voting [19], in which agents change their
votes iteratively after seeing the current votes of other agents. Technically, our
model can be also seen as a model of iterative voting where in each iteration all
voters change their vote slightly closer to the current aggregated point (while in
standard iterative voting, usually voters strategically change their vote), how-
ever, again, we prefer to think about our model as a model of deliberation.

3 Formal Model

We describe our formal model, which is parameterized by a metric space (X, d)
and a voting rule R. The first three ingredients of our model – namely, the metric
space, the agent population, and the voting rule – are adapted from the model
of Bulteau et al. [5] – while the discussion ingredient, which is the center of our
work, is novel.

Metric Space. Let (X, d) be a metric space with X being a set of elements in
the metric space and d : X × X → R being a metric function, so that (1) d is
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symmetric, with d(x, y) = d(y, x) for every pair x, y ∈ X, (2) d is non-negative,
with d(x, y) ≥ 0 and d(x, y) = 0 ↔ x = y, and (3) d satisfies the triangle
inequality i.e., d(x, z) ≤ d(x, y) + d(y, z) holds for all x, y, z ∈ X.

Agent Population. Let V = {v0, . . . , vn−1} be an agent population. Each agent
v ∈ V is associated with its initial ideal point, which is an element x ∈ X,
understood as the element of X that is most preferred by v. We denote the
initial ideal point of agent vi by v0

i . (Note that, effectively, the metric space sets
the agents’ ballot type as well as a distance function between possible ballots.)

Voting Rule. For a metric space (X, d), let R be a function that takes n elements
of X and returns an element w ∈ X. We refer to a set of n elements of X as a
profile V (of voter ballots) and write R(V ) = w to denote that the R-winner of
the election (with profile V ) is w.

Deliberation. We model deliberation as an iterative process, such that, in each
iteration, the positions of the voters might change. Initially, the positions of the
voters are given by their initial ideal points. Then, in each iteration, we apply
the voting rule R; consequently, all voters move slightly closer to the current R-
winner: specifically, denoting by vj

i the ideal point of voter i at the beginning of
the jth iteration (so, in particular, v0

i are the initial ideal points), and denoting
by V j = {vj

0, . . . , v
j
n−1} and the R-winner of the jth iteration by wj (i.e., wj

is the result of applying R on V j), we have the following constraints, for some
value of ε.2

Constraint 1. d(vj+1
i , wj) = max(0, d(vj

i , w
j) − ε) .

Constraint 2. d(vj+1
i , vj

i ) = ε unless d(vj+1
i , wj) = 0 and then d(vj+1

i , vj
i ) ≤ ε .

That is, each voter moves an ε-closer to the current winner (unless it is
already at most an ε-close to the current winner, in which case it moves to the
winner itself); the second constraint is to make sure that voters do not “jump
around” too arbitrarily.

We say that the iterative deliberation process converges if all agents cease
to move after some finite number of iterations; note that, when an iterative
deliberation process converges all agents are in consensus.

We say that convergence is guaranteed for some metric space (X, d) and
voting rule R if all possible deliberation processes converge, for every ε > 0; note
that in each iteration, the agents can have multiple options to move, sometimes
even an infinite number of options, and there may be an infinite number of initial
profiles, so there may be an infinite amount of different deliberation processes.

2 Indeed, for some sparse spaces these two constraints may not be always satisfiable,
as agents moving towards the current winner may need to jump “too far”. In the
metric spaces we consider in this paper there is always at least a specific ε for which
these constraints are indeed satisfiable.
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Example 1. Let (X, d) be with X being Z and d(x, y) = |x − y|. Let R(V ) =∑
v∈V �vi/n� (so the R-winner is the average, rounded down). Let V =

{v0, v1, v2} with v0
0 = 3, v0

1 = 5, and v0
2 = 8. Let ε be 1. Then, the iterative delib-

eration process proceeds as follows: (1) at the beginning of the first iteration, v0
stands on 3, v1 on 5, and v2 on 8. The R winner is w := �(3+5+8)/3� = 5. Now,
each vi moves an ε-closer to 5; (2) at the beginning of the second iteration, v0
stands on 4, v1 remains on 5, and v2 stands on 7. The R winner is again w := 5;
(3) at the beginning of the third iteration, v0 stands on 5, v1 remains on 5, and
v2 stands on 6. The R winner is again w := 5; (4) at the beginning of the fourth
iteration, v0 stands on 5, v1 remains on 5, and v2 stands on 5. The R winner is
again w := 5. In particular, for this example, the iterative deliberation process
converges, as, after the fourth iteration, nobody would move. See Fig. 1.

Fig. 1. Illustration for Example 1. The top box shows the initial configuration, with
voter v0 at 3, voter v1 at 5, and voter v2 at 8, implying that the aggregated point w is
at 5. The second box from the top depicts the situation at the second iteration, each
box below shows the situation after another iteration, and the process converges at the
fourth iteration, as shown in the bottom box, in which all voters are in consensus at 5.

4 General Observations

We begin with some observations, regarding general sufficient conditions that
guarantee convergence (later we will discuss specific metric spaces).

First, we observe that, whenever the process converges, it indeed converges
to consensus. This follows as, if the voters are not in consensus, then at least
one voter would move in the current iteration.
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Observation 1. In a converged configuration, the profile is consensus.

The next theorem roughly says that, if the winner does not move too much,
then deliberation is guaranteed; the proof follows the intuition that, if all agents
move ε-closer to the winner, but the winner moves “slower” than this (in partic-
ular, by less than ε by a δ > 0, for if the demand was only less than ε, we could
have just approached convergence in the limit where the number of iterations
approaches ∞), then eventually the process shall converge.

Theorem 2. Consider some (X, d) and R. If, for each profile V and for each ε,
there is an index k such that for each j ≥ k there exists δ > 0, and it holds that
d(wj , wj+1) ≤ ε − δ, then convergence is guaranteed.

Proof. The following holds, by the triangle inequality:
∑

i(d(vj+1
i , wj+1)) ≤

∑
i(d(vj+1

i , wj) + d(wj , wj+1)). Using Constraint 1, the theorem’s assumption,
and contraction of the ε, it follows that

∑
i(d(vj+1

i , wj+1)) ≤ ∑
i(d(vj

i , w
j)) − δ.

Thus, the sum of all distances of all vi from w is decreasing, by at least a δ in each
iteration, from index k, until it reaches zero, in a maximum of

∑
i(d(v0

i , w
0))/δ

iterations, and convergence follows. 
�
The next theorem deals with the time complexity of the iterative process and

the winner of the last iteration.

Theorem 3. For any (X, d) and R where the iterative process is such that for
every profile V , the R-winner of the profile reached in the next iteration V ′ is
equal to the R-winner of V , and let D = maxv∈V0d(v, w0), the maximal distance
of any agent from the R-winner of the initial state, w0, then the number of
iterations until convergence is reached is exactly �D/ε and the R-winner of the
last iteration is w0.

Proof. From Theorem 2 convergence is guaranteed, and since for any profile the
R-winner doesn’t change, so the R-winner in the last iteration must be w0. Also,
the voter which is the farthest from w, must reduce its distance in each iteration
by ε, so in each iteration the maximal distance reduces by ε, so in exactly D/ε
iterations, convergence shall be reached. 
�

The next theorem roughly says that, if the agents move to the center of mass,
then convergence is guaranteed.

Theorem 4. For any (X, d), if R = arg min
x∈X

∑
v∈V d(v, x), then convergence is

guaranteed.

Proof. We show that in all iterations, the winner stays the same, and therefore,
by Theorem 2, convergence follows. Let w denote the winner for some iteration
V , so w has the minimum sum of distances from the agents in that iteration
- w = arg minx∈X

∑
v∈V d(v, x). In the next iteration V ′, suppose that some

element y is the winner - y = arg minx∈X

∑
v∈V ′ d(v, x) Note that every agent

got closer to w by ε, unless it was already less than ε-far away from w, in
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which case it moved to w. We denote by V1 the group of agents that were ε or
more far away from w, and V2 = V − V1. So, the new sum of distances from
w is dw =

∑
v∈V ′ d(v, w) =

∑
v∈V1

(d(v, w) − ε) +
∑

v∈V2
d(v, w) − ∑

v∈V2
(v, w)

where we replaced V ′
1 by V1 by reducing ε, and just added and subtracted all

elements in V2. dw =
∑

vinV d(v, w) − nε − ∑
v∈V2

d(v, w), where we joined V1

and V2 into V . dx =
∑

v∈V ′ d(v, x). But by the triangle inequality, for v′ ∈ V ′

and the corresponding v ∈ V , d(x, v′) + d(v, v′) ≥ d(x, v), and by Constraint 2
d(v, v′) ≤ ε, so d(x, v′) ≥ d(x, v) − ε. Replacing that in the first equation, dx ≥∑

v∈V (d(v, x) − ε) =
∑

v∈V d(v, x) − nε. If we combine the two values, we get
dx ≥ dw, because the first sum is just the sum of distances in iteration V , where
w was the argmin. Thus, x = w and the claim follows by Theorem 2. 
�

5 Deliberation in Euclidean Spaces

In this section we consider Euclidean spaces; these are natural spaces that are
studied extensively in social choice [1]. Formally, we consider metric spaces
(X, d) in which X is a T -dimensional3 Euclidean space, X = R

T , for some
T = {1, 2, 3, . . .}; as for the distance function d, we consider �p norms for
p ∈ {1, 2,∞} (other distances are indeed possible, however here we concen-
trate on �p norms). As for the voting rule R, we consider the element-wise mean
and median, as formally defined below.

Definition 5. The element-wise mean of n points/voters vi, i ∈ [n], in
some R

T , is a point in R
T such that the value in each dimension is the mean

of the values of the voters in that dimension; that is, the value at dimension t,
t ∈ [T ], is

∑
i∈[n] vi[t]/n.

Definition 6. The element-wise median of n points/voters vi, i ∈ [n], in
some R

T is a point in R
T such that the value in each dimension is the median

of the values of the voters in that dimension; that is, the value at dimension t,
t ∈ [T ], is median(vi[t]), where we define the median of an even number of real
numbers to be the larger between the two middle numbers.

First, we show that, for �1, every coordinate of every agent moves closer to
the winner and does not pass it.

Lemma 7. Let (X, d) be such that X = R
T and d is �1. Then for any agent v,

element i and iteration j, it holds that either w[i] ≤ vj+1[i] ≤ vj [i] or w[i] ≥
vj+1[i] ≥ vj [i] where w is the winner of the j’s iteration.

Proof. In �1 the contribution of every coordinate is just added with absolute;
thus, if vj+1[i] is not between vj [i] and w[i], then the contribution of vj+1[i] to
d(vj+1, w), will need to be compensated by the other coordinates to accommo-
date for the ε reduction, and then d(vj , vj+1) will be greater than ε. 
�

3 We use “T” and not the standard “d”, as “d” is taken by the metric space (X, d).
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We use Lemma 7 to show that convergence is guaranteed, for �1, for element-
wise mean.

Theorem 8. Let (X, d) be such that X = R
T and d is �1, and let R be the

element-wise mean. Then, convergence is guaranteed.

Proof. We know that each coordinate can only approach the mean. So each voter
has an ε total distance to move to change the mean, because it is �1. But in each
dimension, some voters are larger than the mean, and some voters are smaller
than it, so they will contribute contradictory values, and thus the mean will
move strictly less than ε, and by Theorem 2 convergence is guaranteed. 
�

Next we show that, in the case of �2, each voter, under our constraints, must
move directly to the R-winner in a straight line.

Lemma 9. Let (X, d) be such that X = R
T and d is �2, then for every agent v

and iteration j, there exists only one point vj+1 that adheres to the constraints,
and that point is an ε closer on a straight line from vj to the R-winner of the
j’s iteration.

We use Lemma 9 to show that, with �2 and the element wise mean, conver-
gence is guaranteed.

Theorem 10. Let (X, d) be such that X = R
T and d is �2, and let R be the

element-wise mean. Then, convergence is guaranteed.

Proof. If we look in a coordinate system in which only one axis aligns with the
vector between each v and the mean (rotation is invariant to �2), then we can
see that the contribution of v is just ε/n in the direction from v to the mean, by
Lemma 9, because only one axis has a delta which is not 0. Because it cannot
be that all those vectors are in the same direction (in that case, the mean would
be closer in the opposite direction until it passed one of them), it follows that
the mean moves strictly less than ε; by Theorem 2, convergence follows. 
�

Next, we look at the time order and the last converged winner in �1 and �2 in
element wise-mean, and we show that if we look at the smallest T-dimensional
ball that contains all the agents, then the time order is of the diameter of that
ball divided by ε, and the converged winner is inside that ball.

Theorem 11. Let (X, d) be such that X = R
T and d is �1 or �2, and let R be

the element-wise mean, and let D be the diameter of the smallest T -dimensional
ball that contains all n agents. Then, the process would converge to a point inside
that ball in O(D/ε) iterations.

Now we show, using both Lemma 7 and Lemma 9, that for both �1 and �2,
in the case of element-wise median, convergence is guaranteed.

Theorem 12. Let (X, d) be such that X = R
T and d is �1 or �2, and let R be

the element-wise median. Then, convergence is guaranteed.
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Proof. In �1, by Lemma 7, each coordinate stays between the R-winner and
the last coordinate, and in �2, by Lemma 9, also each coordinate stays between
the R-winner and the last coordinate, so the median in each coordinate does
not change, and because d is the element-wise median, the R-winner does not
change, and by Theorem 2, convergence is guaranteed. 
�

The time order and final winner are known from Theorem 3.

Corollary 13. Let (X, d) be such that X = R
T and d is �1 or �2, and let R

be the element-wise median, and let D = maxv∈V 0d(v, w0), then the number of
iterations until convergence is reached is exactly �D/ε and the R-winner of the
last iteration is w0.

In contrast to the results above, below we show that, for �∞, for the element-
wise mean and element wise median, convergence is not guaranteed, at least
for T -dimensional Euclidean spaces with T ≥ 3. We show this by two counter
examples. The first (second) example deals with element-wise mean (respectively,
median).

Example 14. Set ε = 1, n = 3, v0
0 = (−4, 2, 2), v0

1 = (2,−4, 2), v0
2 = (2, 2,−4).

Running the iterative process for these initial conditions would result in adding 1
to each voter, in each dimension, in each step of the process. I.e.: v1

0 = (−3, 3, 3),
v1
1 = (3,−3, 3), v1

2 = (3, 3,−3); and generally: vj
0 = (−4 + j, 2 + j, 2 + j), vj

1 =
(2+j,−4+j, 2+j), vj

2 = (2+j, 2+j,−4+j). Indeed, this is an endless behavior,
exploding to infinity. It is possible to adapt both this example and the following
one to any dimension T > 3, by adding as many zero dimensions as needed.

Example 15. The same pattern repeats for the element wise median v0
0 =

(0, 0, 0), v0
1 = (−2, 0, 0), v0

2 = (0,−2, 0), v0
3 = (0, 0,−2). vj+1

0 = (j, j, j),
vj+1
1 = (−1+j, 1+j, 1+j), vj+1

2 = (1+j,−1+j, 1+j), vj+1
3 = (1+j, 1+j,−1+j).

As we defined the median to be the larger number when there is an even number
of agents, the median increases by 1 in every dimension in every iteration.

Remark 16. Generally speaking, non-convergence can be due to two possibilities:
(1) Getting stuck in a cycle; or (2) moving to infinity. Note that Example 14
and Example 15 are of the second type, which, in a way, is more dramatic; and,
perhaps, less intuitive.

6 Deliberation in Hypercubes

Next we consider T -dimensional hypercubes; these spaces naturally correspond
to multiple referenda [17] as well as to multiwinner elections [12] and committee
selection with variable number of winners [13]; below, we consider the latter two
settings separately (indeed, for convenience, we use the jargon of multiwinner
elections). We consider approval ballots here (in the next section we consider
ordinal elections).

An important point to make, to all the discrete metric spaces we look at, is
that we consider only ε ∈ N , because otherwise our metric spaces would be too
sparse, and our constraints could not be met.
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6.1 Committee Elections with Variable Number of Winners

The social choice setting here consists of a set of candidates and a set of agents
such that each agent provides a subset of the candidates; then, a subset of the
candidates – without restrictions on its size – is to be selected as the winner of
the election. This setting is studied under the umbrella of committee elections
with variable number of winners [13]; following the literature, we refer to this
setting as VNW.

Formally, we have a metric space (X, d), where X = {0, 1}m for some inte-
ger m and d(u, v) is the Hamming distance. An important class of VNW rules
are monotonic rules, as defined next.

Definition 17. A VNW rule R is monotonic if the following holds: for each
profile V and its R-winner w, it holds that the R-winner w′ for V ′, where V ′

is similar to V except for one agent that either (1) flips some 1 to 0 for some
candidate not in w; or (2) flips some 0 to 1 for some candidate in w; then w′ = w
(i.e., w stays).

We show a rather general result next, applying to all monotonic VNW rules.
Indeed, many VNW rules are monotonic: in particular, Majority is.

Theorem 18. Let (X, d) be such that X is VNW and d is the Hamming dis-
tance, and let R be a monotonic VNW rule, then convergence is guaranteed.

Proof. In each iteration, each agent v must reduce its Hamming distance from
w by ε. So, that means it must flip ε bits that are either 1 in v and 0 in w, or 0 in
v and 1 in w. (If d(v, w) < ε then it flips fewer bits, or even 0 bits if it coincides
with w.) Now, using – for m · ε times – the fact that R is monotonic, we deduce
that the winner stays the same; the result then follows from Theorem 2. 
�

The time order and final winner are known from Theorem 3.

Corollary 19. Let (X, d) be such that X is VNW and d is the Hamming dis-
tance, and let R be a monotonic VNW rule, then R-winner of the last itera-
tion is the R-winner of the first iteration, w0, and the number of iterations is
maxv∈V 0�d(v, w0)/ε.
Remark 20. The setting of committee election (i.e., multiwinner elections; MW),
is similar to the setting of VNW, thus is omitted (and is available in the full
version).

Remark 21. We mention another metric distance, which we developed to imitate
the �∞ property in Euclidean spaces in our quest for non-convergence, however
this distance also converges: The first changed distance is defined as a function
d : X × X → N which is equal to d(v1, v2) = arg mini v1[i] �= v2[i]. And indeed,
it turns out that for any (X, d) such that X is MW or VNW and d is the first
changed distance, and where R is a monotonic voting rule, then convergence is
guaranteed, and the number of iterations is �m/ε. Full details are available in
the full version.
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7 Ordinal Elections

Here we consider the standard ordinal model of elections [4]: in this setting
there is a set of candidates and a set of agents such that each agent provides
a linear order (i.e., a ranking, or, equivalently, a permutation) over the set of
candidates; then, the result of the aggregation method – that is usually called
a social welfare function – is an aggregated ranking; following the literature, we
refer to this setting as SWF. Formally, we have a metric space (X, d) where X is
the set of linear orders over some underlying set of candidates and d is the swap
distance (of course, other distances are possible, however the swap distance is
perhaps the most natural and most popular distance in this context [10,11,16]).
In this setting too, we consider only ε ∈ N , as explained in Sect. 6.

As for the voting rule R, first we observe that, as Kemeny is the realization
of arg minx∈X

∑
v∈V d(v, x) for this context, the next result follows Theorem 4.

Corollary 22. Let (X, d) be such that X is SWF and d is any distance, and let
R be Kemeny, then convergence is guaranteed.

And from Theorem 3, the winner of the last iteration is the winner of the
first iteration, and the number of iterations is maxv∈V0d(v, w0)/ε.

Corollary 23. Let (X, d) be such that X is SWF and d is any distance, and let
R be Kemeny, then the R-winner of the final iteration is w0, and the number of
iterations is maxv∈V 0�d(v, w0)/ε.

As for other voting rules, we provide a rather general result, following the
next definition.

Definition 24. An SWF rule R is a scoring rule if it corresponds to a function
f : Xn → R

m (i.e., it takes a profile of n agents, and assigns an individual score
(real number) to each candidate - m in the number of candidates), such that
it chooses the R-winner by sorting the candidates in decreasing order of their
scores (Ties can be handled by an arbitrary, fixed order O over the candidates).

Definition 25. A scoring rule is a monotonic scoring rule if for every two pro-
files V and V ′, if a candidate c is ranked at least as high in V compared to V ′

for every agent, then f(V )[c] ≥ f(V ′)[c].

Theorem 26. Let (X, d) be such that X is SWF and d is the swap distance,
and let R be a monotonic scoring rule, then convergence is guaranteed.

Proof. The proof follows a potential function argument. To this end, we define
a potential function that assigns a vector to each profile, and we define a lexico-
graphic order on these vectors, and show that each iteration of the deliberation
process can only advance in that order in one direction. We also show that the
only way that we can stop advancing is if we are in consensus, in which case we
have reached a maximum and the process would halt.

More formally, for a profile V , denote by w the R-winner of V . Then, define
a triplet for each candidate with index i in w (denoted by wi), as follows:
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(f(V )[wi], O[wi], B(V )[wi]), where B(V )[wi] is the Borda score of candidate wi.
(i.e., for each candidate c, B(V )[c] :=

∑
v∈V m − posv(c), where posv(c) is the

position of c in the vote of v.) Then, define a vector combining all triplets in the
order that their respective candidates appear in w, and consider an order on all
profiles V according to the lexicographic order of these vectors.

Example 27. Let R be Plurality, let the set of candidates be {a, b, c}, let O =
(a, b, c), and let V = {v0, v1, v2} with v0 = {a, b, c}, v1 = {a, b, c} and v2 =
{c, a, b}. Then w = {a, c, b}, and the triplet for a is (2, 2, 5), for c it is (1, 0, 2),
and for b it is (0, 1, 2). The combined vector for V is thus (2, 2, 5, 1, 0, 2, 0, 1, 2).

In case of consensus, no swap is made, thus the profile remains the same, so we
stay with the same vector and place in the order. Otherwise, we look at the index
i in the R-winner (of the iteration before the swap) of the first candidate that
was swapped in some agent. First we notice, that it could not have been swapped
backwards in any of the agents, because that would violate constraint 1 (that the
distance from w must reduce by ε; we could not have swapped it back, and make
up for it by swapping forward one more candidate, because that would violate
constraint 2). Next, its potential must have increased, because at the least, its
Borda score must have increased (Borda is strictly monotonic); and because our
scoring rule is monotonic, its scoring function did not decrease, and O stayed
the same because it is constant. Also, all the candidates in front of candidate
indexed i in w did not swap, so their scoring function, Borda score and O did not
decrease. Thus, so far we showed that if all the candidates in the new R-winner
until place i remained in the same order as the old one, our potential must have
increased, and our proof is done. If their order has changed, then we look at the
first index j ≤ i that has changed (that replaced its candidate). Now, because
the switch had occurred, we know that the new candidate must have a higher
f score, or the same f score, and a higher O score, by our definition of the
monotonic scoring rule, and so, our potential increased. So, we proved that the
potential must increase in all cases, and so we must advance in our order, until
consensus is reached. 
�

As Plurality, Borda, and Copeland are all monotonic scoring rules, they all
converge.

Corollary 28. Let (X, d) be such that X is SWF and d is the swap distance,
with R ∈ {Plurality, Borda, Copeland}, then convergence is guaranteed.

We look at another voting rule, STV, with swap distance.

Definition 29. STV is a SWF rule that chooses the winner as follows: V0 is set
to be V , the input profile of the voting rule; then, in iteration k (of the STV rule
procedure, not the iterative process), the Plurality looser of Vk, c, is determined,
and w[m − 1 − k] is set to be c. Then Vk+1 is set to be Vk, with all instances of
c removed, leaving m − 1 − k candidates in each agent. This process repeats for
m iterations, until w is filled, from the last place to the first. Note that because
the definition uses Plurality, then there is also a vector O that defines an order
on the candidates for it.
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Theorem 30. Let (X, d) be such that X is SWF and d is the swap distance,
and let R be STV, then convergence is guaranteed.

The same proof as with committee elections with first changed distance works
in Ordinal elections as well.

Corollary 31. Let (X, d) be such that X is SWF and d is the first changed
distance, and let R be any monotonic voting rule, then convergence is guaranteed,
and the number of iterations is exactly maxv∈V 0�d(v, w0)/ε.

8 Outlook

We introduced a model of iterative deliberation in metric spaces and instantiated
it with several natural social choice settings, by selecting appropriate metric
spaces and voting rules. We identified those settings for which convergence of
the process is guaranteed, and provided upper bounds regarding the number of
iterative steps required for consensus (for those settings in which deliberation is
guaranteed to succeed in finding a consensus). Below we mention some directions
for future research:

– It is natural to consider further metric spaces, as well as further voting rules;
a natural place to look for relevant metric spaces and voting rules is the work
of Bulteau et al. [5].

– Another, more relaxed model, that comes to mind, is one where each voter
must approach the winner by up to ε, instead of exactly by ε, and at least
one voter must approach the winner by at least δ. This is a more general
model, which is a bit closer to reality, where there is only an upper bound
on the movement, and a demand that there is movement in each iteration.
The demand is at least δ and not just larger than zero, because otherwise
we could only reach convergence in the limit when the number of iterations
approaches ∞.

– It is natural to study a stochastic model of iterative deliberation, including
such that include radicalization (meaning, that an agent can move away from
the aggregated point, instead of approaching it). A stochastic model, in which
such moves happen according to some probability or probability distribution
may be closer to reality, thus has the potential of shedding more light on set-
tings for which a deterministic process may converge, but a stochastic process
may not. For a stochastic model that incorporates a non-zero probability for
radicalizing voters, intuitively, if the probability mass of radicalization is not
too large, then convergence shall be maintained.

– Another idea would be to consider coalition structures (such as those of Elkind
et al. [7]) in which the agents of each coalition move slightly towards the
center of each coalition and study issues of convergence there. (This would be
different than the one-coalition setting we consider here; in a way, this would
be like several dynamic deliberation groups.)
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Abstract. The Gibbard-Satterthwaite theorem states that no unani-
mous and non-dictatorial voting rule is strategyproof. We revisit voting
rules and consider a weaker notion of strategyproofness called not obvi-
ous manipulability that was proposed by Troyan and Morrill (2020). We
identify several classes of voting rules that satisfy this notion. We also
show that several voting rules including k-approval fail to satisfy this
property. We characterize conditions under which voting rules are obvi-
ously manipulable. One of our insights is that certain rules are obviously
manipulable when the number of alternatives is relatively large com-
pared to the number of voters. In contrast to the Gibbard-Satterthwaite
theorem, many of the rules we examined are not obviously manipulable.
This reflects the relatively easier satisfiability of the notion and the zero
information assumption of not obvious manipulability, as opposed to the
perfect information assumption of strategyproofness. We also present
algorithmic results for computing obvious manipulations and report on
experiments.

Keywords: Social choice · Voting · Manipulation · Strategyproofness

1 Introduction

Throughout history, voting has been used as a means of making public decisions
based on the citizens’ preferences. The ancient Greeks would give a show of
hands to disclose their most preferred public official, and the winner of the
election was chosen as the official with the most first preferences [4]; such a
voting system is called the plurality vote. Many other voting systems have been
developed over time, such as the Borda Count, developed by Jean-Charles de
Borda in 1770. The Borda Count gives each candidate a score based on their
position in the voters’ preference orders. This system was opposed by Marquis
de Condorcet, who instead preferred the Condorcet method, which elects the
candidate that wins the majority of pairwise head-to-head elections against the
other candidates [2]. However, voting systems are not just used in politics; voting
theory is frequently used and studied in artificial intelligence to aggregate the
preferences of multiple agents into a single decision.

The studies of electoral systems in social choice theory have been wrought
with negative results. Arrow’s impossibility theorem [1] showed that there exists
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no voting system with three reasonable requirements. In a similar vein, the
Gibbard-Sattherthwaite theorem [10,18] states that when there are at least three
alternatives, every unanimous voting rule is either dictatorial, meaning only
one voter’s preferences are taken into account, or prone to manipulative voting,
meaning a voter can give an untruthful ballot to gain a more preferred outcome.

Such strategic behaviour is a commonly studied problem in mechanism design
and social choice, as many mechanisms sacrifice efficiency or fairness to ensure
strategyproofness. The original notion of strategyproofness fails to explain the
variation we observe in voters’ tendency to strategically vote in different elec-
toral systems. This has motivated research toward alternative concepts of strate-
gyproofness that may be able to capture such variations. One such notion is not
obvious manipulability, recently theorized by Troyan and Morrill [23]. Whilst
strategyproofness assumes agents have complete information over other agent
preferences and the mechanism operation, not obvious manipulability assumes
agents are ‘cognitively limited’ and lack such information. As such, they are only
aware of the possible range of outcomes that can result from each mechanism
interaction. Put simply, a mechanism satisfies not obvious manipulability (NOM)
if no agent can improve its best case or worst case outcome under any manip-
ulation. A mechanism is obviously manipulable (OM) if either an agent’s best
case or worst case outcome can be improved by some untruthful interaction.

The assumptions made for not obvious manipulability are suitable when
applied to voting rules, as ballots are commonly hidden from the voters, restrict-
ing their ability to compute a desirable manipulation. In this paper, we explore
which voting rules are obviously manipulable, and if so, what the conditions are
for obvious manipulability.

Contributions. Our main contribution is to apply the concept of obvious manip-
ulations to the case of voting rules for the first time. We study which voting rules
are obviously manipulable, and what conditions are required for obvious manip-
ulability. Whilst many classes of voting rules including Condorcet extensions and
strict positional scoring rules with weakly diminishing differences are not obvi-
ously manipulable, we show that certain voting rules, including k-approval, are
obviously manipulable. We also characterize the conditions under which posi-
tional scoring rules are obviously manipulable in the best case. For the class of
k-approval voting rules, we characterize the conditions under which the rules are
obviously manipulable. Many of our results apply to large classes of voting rules
including positional scoring rules or Condorcet extensions. Table 1 summarizes
several of our results.

One of our insights is that certain rules are obviously manipulable when the
number of alternatives is relatively large compared to the number of voters. We
also look at the problem of checking whether a particular instance of a voting
problem admits an obvious manipulation. For the class of positional scoring rules,
we provide a general polynomial-time reduction to the well-studied unweighted
coalitional manipulation problem. As a corollary, we show that the problem of
checking the existence of an obvious manipulation is polynomial-time solvable
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Table 1. List of rules and conditions for voting rules to be NOM or OM.

NOM OM

Does not admit a voter with veto power

k-Approval (n > m−2
m−k

) k-Approval (n ≤ m−2
m−k

)

Plurality

Almost-unanimous

Condorcet-extension

STV

Plurality with runoff

Positional scoring rule (n > s1
s1−s2

+ 1) Positional scoring rule that

admits a voter with veto power (existence)

Positional scoring rule with weakly

diminishing differences

Borda rule

for the k-approval rule. Finally, we report on experimental results on the fraction
of instances that admit obvious manipulations for the k-approval rule.

2 Related Work

Our paper belongs to the rich stream of work in social choice on the manipulabil-
ity of voting rules. The reader is referred to the book by Taylor [21] that surveys
this rich field. A comparison of the susceptibility of voting rules to manipula-
tion has a long history in social choice. For example, one particular approach is
to count the relative number of preference profiles under which voting rules are
manipulable (see, e.g., [8]). Another approach is analyzing the maximum amount
of expected utility an agent can gain by reporting untruthfully [3].

Our work revolves around the concept of obvious manipulations, which was
proposed by Troyan and Morrill [23]. This concept was inspired by a paper on
‘obviously strategyproof mechanisms’ by Li [11]. The latter paper describes the
cognitively-limited agent that is only aware of the range of possible outcomes
ranging from each report. In the paper, Li then proposes the characterization
of ‘obvious strategyproofness’, a strengthening of strategyproofness. A mecha-
nism is defined as obviously strategyproof if each agent’s worst case outcome
under a truthful report is strictly better than their best case outcome under
any untruthful report. Troyan and Morrill [23] studied obvious manipulations in
the context of matching problems. In particular, they showed that whereas the
Boston mechanism is obviously manipulable, many stable matching mechanisms
(including those that are not strategyproof) are not obviously manipulable.

Other, weaker notions of strategyproofness specific to voting rules have been
proposed in the literature. Slinko and White [19,20] considered safe strategic
voting to represent the coalitional manipulation of scoring rules. Assuming every
member of the coalition reports the same ballot, a manipulation is a safe strategic
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vote if it guarantees an outcome which is weakly preferred over truth-telling.
Another notion has also been proposed by Conitzer et al. [6], who state that a
ballot dominates another ballot if it guarantees a weakly more preferred outcome.
The authors define a voting rule as being immune to dominating manipulations
if there are no ballots that dominate any voter’s true preferences, and classify
the immunity of certain rules under varying levels of information known by the
manipulator. In particular relevance to our paper, they find that certain voting
rules such as Condorcet-consistent rules and the Borda count are immune to
dominating manipulations under zero information. We remark that immunity to
dominating manipulations under zero information is a weaker notion than not
obvious manipulability, and thus our work investigates a stronger notion defining
a voting rule’s resistance to manipulation than some existing notions. For further
discussion on the strategic aspects of voting with partial information, the reader
is referred to Chaps. 6 and 8 of the book by Meir [12], where similar concepts
such as local dominance are discussed.

In many elections, voters often lack information of other voters’ preferences.
This has prompted a probabilistic perspective into the manipulability of voting
rules, often assuming a uniform distribution over each preference ordering. In
1985, Nitzan showed that in point scoring rules, a manipulation is more likely to
succeed as the number of outcomes increases, and the number of voters decreases
[14]. A similar probabilistic perspective was used by Wilson and Reyhani [24].
Computer scientists have also extensively researched the computational complex-
ity of calculating a manipulative ballot; as the number of voters and outcomes
becomes large, it can be computationally infeasible to compute a manipulation
if the problem is intractable (see, e.g. [5,7]).

3 Preliminaries

We consider the standard social choice voting setting (N,O,�) that involves a
finite set N = {1, 2, . . . , n} of n voters and a finite set O = {o1, o2, . . . , om} of m
outcomes. We also assume that n ≥ 3 and m ≥ 3. Each voter i has a transitive,
complete and reflexive preference ordering �i over the set of outcomes O. We
denote the preference profile of each voter i ∈ N as �= (�1, . . . ,�n), and use
L(O)n to denote the set of all such profiles for a given n. For a given voter i ∈ N ,
we use �−i= (�1, . . . ,�i−1,�i+1, . . . ,�n) to denote the preference profile of the
voters in N\{i}. A voting rule f : L(O)n → O is a function that takes as input
the preference profile and returns an outcome from O.

An outcome o ∈ O is called a possible outcome under a voting rule f if there
exists some preference profile � such that f(�) = o. Since we are considering
voting rules that return a single outcome, we will impose tie-breaking over social
choice correspondences (voting rules that return more than one outcome) to
return a single outcome. Unless specified otherwise, we will assume a fixed tie-
break ordering over the outcomes.

Definition 1. A voting rule f is manipulable if there exists some voter i ∈ N ,
two preference relations �i,�′

i of voter i, and a preference profile �−i of other
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voters such that f(�′
i,�−i) �i f(�i,�−i). Such a manipulation is defined as a

profitable manipulation for voter i. A voting rule is strategyproof (SP) if it is
not manipulable.

Under voting rule f , a given set of outcomes and a fixed number of voters, we
denote by B�i

(�′
i, f) the best possible outcome (under i’s preference �i) when

she reports �′
i, over all possible preferences of the other voters. We also denote

by W�i
(�′

i, f) the worst possible outcome (under i’s preference �i) when she
reports �′

i, over all possible preferences of the other voters. We now present the
central concept used in the paper, which has been adapted from the paper by
Troyan and Morrill [23] to the field of voting.

Definition 2. A voting rule f is not obviously manipulable (NOM) if for every
voter i with truthful preference �i and every profitable manipulation �′

i, the
following two conditions hold:

W�i
(�i, f) �i W�i

(�′
i, f) (1)

B�i
(�i, f) �i B�i

(�′
i, f). (2)

If either condition does not hold, then we say the voting rule is obviously manip-
ulable. Specifically, if (1) does not hold, then we say the voting rule is worst case
obviously manipulable. Similarly, if (2) does not hold, then we say it is best case
obviously manipulable.

4 Sufficient Conditions for Not Being Obviously
Manipulable

In this section, we identify certain conditions that imply not obvious manipula-
bility when satisfied by voting rules.

Definition 3. For a given voting rule f and a fixed number of voters n and
outcomes m, a voter i has veto power if there exists a possible outcome o ∈ O
and report �i such that f(�i,�−i) �= o for all �−i.

Our first result is a sufficient condition for a voting rule being NOM.

Lemma 1. If a voting rule is obviously manipulable, then it must admit a non-
dictatorial voter with veto power.

However, existence of a voter with veto power does not imply obvious manip-
ulability. We will illustrate this later in the paper.

Definition 4. A voting rule f is almost-unanimous if it returns an outcome o
when o is the most preferred outcome for at least n−1 voters. Almost-unanimity
implies unanimity.

Theorem 1. For n ≥ 3, no almost-unanimous voting rule is obviously manip-
ulable.
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Proof. Note that an almost-unanimous voting rule is not dictatorial. By defi-
nition, a rule that is almost-unanimous cannot admit a voter with veto power.
Hence it follows from Lemma 1 that for n ≥ 3, no almost-unanimous voting rule
is obviously manipulable. �	
Corollary 1. Any majoritarian (Condorcet extension rule) is NOM.

Similarly, Theorem 1 applies to several voting rules including STV [22] and
Plurality with runoff [13] that are almost-unanimous.

Corollary 2. STV and Plurality with runoff are NOM.

We have shown that many voting rules are not obviously manipulable, so we
question whether there are any obviously manipulable voting rules. We next
investigate positional scoring rules.

5 Positional Scoring Rules

In this section, we consider positional scoring rules, a major class of voting rules
which assigns points to candidates based on voter preferences and chooses the
candidate with the highest score. A formal definition of a positional scoring rule
is given below.

Definition 5. A positional scoring rule assigns a score to each outcome using
the score vector w = (s1, s2, . . . , sm), where si ≥ si+1∀i ∈ {1, 2, . . . ,m − 1} and
∃i ∈ {1, 2, . . . ,m − 1} : si > si+1. Each voter gives si points to their ith most
preferred candidate, and the score of a candidate is the total number of points
given by all voters. The candidate with the highest number of points is returned
by the rule.

Note that this positional scoring rule definition rules out unreasonable, patho-
logical scoring vectors such as (1, 2, 3). Several well-known rules fall in the class
of positional scoring rules. For example if si = m − i for all i ∈ [m], the rule is
the Borda voting rule. If s1 = 1 and si = 0 for all i > 1, the rule is plurality. If
sm = 0 and si = 1 for all i < m, the rule is anti-plurality.

Next, we identify a sufficient condition for a positional scoring rule to be
NOM.

Theorem 2. A positional scoring rule is NOM if n > s1
(s1−s2)

+ 1.

Proof. It is sufficient to show that for n > s1
(s1−s2)

+ 1, the rule is almost-
unanimous. Any outcome a that is the most preferred by n − 1 voters has a
score of at least (s1)(n − 1). We show that this score is greater than the score
of any other candidate. The maximum score any other outcome b can get is by
being in the first position of one voter and second position of all other voters so
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its score is (s2)(n − 1) + s1. The score of a is greater than the maximum score
of b if and only if

(s1)(n − 1) > (s2)(n − 1) + s1

⇐⇒ (n − 1)(s1 − s2) > s1

⇐⇒ n >
s1

(s1 − s2)
+ 1.

�	
This result suggests that many positional scoring rules are NOM when there

are sufficiently many voters, and that scenarios with few voters may be required
for a positional scoring rule to be obviously manipulable.

5.1 k-Approval

The k-approval rule is a subclass of positional scoring rules that lets voters
approve of their k most preferred candidates, or voice their disapproval for their
m − k least preferred candidates. It is a scoring rule with weight vector w =
(1, . . . , 1, 0, . . . , 0), where there are k ones, m − k zeroes and 0 < k < m.

Note that the k-approval rule is the same as the plurality rule when k = 1,
and it is the same as the anti-plurality rule when m − k = 1.

Lemma 2. The k-approval rule (kApp) is obviously manipulable if n ≤ m−2
m−k .

Proof. Suppose there are n voters, the number of outcomes m is at least n(m−
k) + 2, voter i’s true preferences are

�i: o1 �i o2 �i · · · �i om−1 �i om,

and the fixed tie-break ordering is

�L: ok �L o1 �L o2 �L · · · �L ok+1 �L ok+2 �L · · · �L om−1 �L om.

Under a k-approval rule, any voter may disapprove of their m − k least
preferred outcomes. Since there are a total of n(m − k) disapprovals and m ≥
n(m−k)+2, by the pigeonhole principle, there are at least 2 outcomes with zero
disapprovals. Therefore the selected outcome must be the tie-break winner of the
outcomes with zero disapproval votes, as they are approved by every voter.

Under a truthful ballot �i, voter i disapproves of outcomes {ok+1, . . . , om},
so W�i

(�i, kApp) /∈ {ok+1, . . . , om}. We therefore have W�i
(�i, kApp) = ok as

at least two outcomes in {o1, . . . , ok} must have zero disapproval votes, and ok
has the highest tie-break priority.

If voter i instead disapproves of the outcomes in {ok}∪{ok+1, . . . , om}\{oi′},
where k + 1 ≤ i′ ≤ m, then the worst case outcome satisfies W�i

(�′
i, kApp) �i

ok−1, as oi′ always loses the tie-break with any outcome from {o1, . . . , ok−1}.
We therefore have W�i

(�′
i, kApp) �i W�i

(�i, kApp), concluding the proof. �	



186 H. Aziz and A. Lam

Lemma 3. The k-approval rule (kApp) is NOM if n > m−2
m−k .

Proof. Suppose that there are n voters, m ≤ kn−1
n−1 outcomes and without loss

of generality that voter i’s true preferences are

�i: o1 �i o2 �i · · · �i om.

We note that m ≤ kn−1
n−1 ⇐⇒ n(m − k) ≥ m − 1, so there are at least m − 1

disapproval votes as each of the n voters disapproves of m−k outcomes. We first
show that under these conditions, the k-approval rule is not best case obviously
manipulable. Under �i, voter i’s best case outcome of B�i

(�i, kApp) = o1 is
achievable by the voters voting such that o1 has zero disapprovals and each of
the other outcomes has at least one disapproval. Since i’s best case outcome is
his first preference, it cannot be strictly improved by any manipulation.

We next show that in this scenario, the k-approval rule is not worst case
obviously manipulable. By the pigeonhole principle, there must be at least one
outcome with zero disapprovals. Under a truthful ballot, voter i disapproves of
outcomes {ok+1, . . . , om}, so his worst case outcome is W�i

(�i, kApp) = ok,
achieved by the other voters disapproving of outcomes {o1, . . . , ok−1}. Now
under any manipulation, at least one outcome from {ok+1, . . . , om} must be
approved by voter i. This results in W�i

(�′
i, kApp) ∈ {ok+1, . . . , om}, as the

other voters can vote such that every outcome except for voter i’s least pre-
ferred approved outcome has been disapproved at least once. We therefore have
W�i

(�i, kApp) �i W�i
(�′

i, kApp), concluding our proof. �	
Remark 1. We note that the obvious manipulability of k-approval when m ≥
n(m−k)+2 and the not obvious manipulability of k-approval when m = n(m−
k) + 1 also holds in the case of weighted voters, as the argument relies on the
number of outcomes exceeding the total number of disapprovals.

Based on the two lemmas proved above, we achieve a characterization of the
conditions under which the k-approval rule is obviously manipulable.

Theorem 3. The k-approval rule is obviously manipulable if and only if n ≤
m−2
m−k .

Corollary 3. The plurality rule is NOM.

Since plurality is generally considered to be one of easiest rules to manipulate,
the corollary above underscores the strength of obvious manipulations. We give
the following intuition for the result on k-approval. Suppose a small committee
is applying the k-approval rule to select a prize winner out of many candidates,
and that certain candidates will be approved by every voter. The manipulator
may also have a general idea of these candidates conditional on their report. If
a fixed tie-break method is used (such as selecting the oldest candidate), the
manipulator may disapprove of the oldest candidate who would otherwise win,
instead approving a younger candidate who would not be selected regardless.
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5.2 Strict Positional Scoring Rules

In the previous section, we noted that the k-approval rule is obviously manip-
ulable. This may lead to the question of whether the lack of strictly decreasing
scoring weights contributes to the obvious manipulability of a positional scoring
rule. Hence, we focus on strict positional scoring rules in the following section.

Definition 6. A positional scoring rule with weight vector w = (s1, s2, . . . , sm)
is strict if si > si+1 for all i ∈ {1, 2, . . . ,m − 1}.

We first note a strict positional scoring rule can be obviously manipulable.

Lemma 4. There exists a strict positional scoring rule that can admit a voter
with veto power and is obviously manipulable.

In the following lemma, we also find that a strict positional scoring rule is
not necessarily obviously manipulable if it admits a voter with veto power.

Lemma 5. There exists a class of strict positional scoring rules that can admit
a voter with veto power but are NOM.

Definition 7. A strict positional scoring rule with w = (s1, s2, . . . , sm) has
diminishing differences if si − si+1 > si+1 − si+2 for all i ∈ {1, 2, . . . ,m − 2}.
We say it has weakly diminishing differences if si − si+1 ≥ si+1 − si+2 for all
i ∈ {1, 2, . . . ,m − 2}.
An example of such a rule is the Harmonic-Borda/Dowdall system used in Nauru,
which has weight vector w = (1, 1/2, . . . , 1/m) [17]. It is more favourable towards
candidates that are the top preference of many voters, and has been described
as a scoring rule that “lies between plurality and the Borda count” [9].

Next, we prove that a strict positional scoring rule with weakly diminishing
differences is NOM.

Theorem 4. A strict positional scoring rule with weakly diminishing differences
is NOM.

Corollary 4. The Borda and Harmonic-Borda/Dowdall rules are NOM.

Remark 2. Lemma 5 exemplifies a class of strict positional scoring rules which
do not satisfy weakly diminishing differences but are NOM.

5.3 Obvious Manipulability in the Best Case

Although our previous results focus on worst case obvious manipulability, it is
possible for a positional scoring rule to be best case obviously manipulable.

Lemma 6. Assuming m,n ≥ 3, a positional scoring rule f is best case obviously
manipulable if and only if for some k > 1, the first k elements of the scoring
vector are the same and n ≤ m−2

m−k .
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Next, we demonstrate a fundamental connection between best case obvious
manipulations and worst case obvious manipulations.

Theorem 5. Assuming m,n ≥ 3, for any positional scoring rule, if a voter’s
preference relation �i admits a best case obvious manipulation, then it also
admits a worst case obvious manipulation.

Proof. Suppose for some positional scoring rule f that a voter’s preference rela-
tion �i admits a best case obvious manipulation. From Lemma 6, for some
k > 1, the first k elements of the scoring vector must be the same, and we have
n ≤ m−2

m−k . Consequently, any outcome selected under f must be in the top k out-
comes of each voter’s report. We say that a voter ‘approves’ his k most preferred
outcomes, and ‘disapproves’ of his m − k least preferred outcomes. An outcome
cannot be chosen by f if it has a disapproval vote from at least one voter.

We now construct the set of feasible outcomes Of which can be selected
under the voter’s preference relation �i and some �−i. Let Ov be the m − k
disapproved outcomes by i under �i. Since any outcome with at least one disap-
proval vote cannot be chosen, no outcome in Ov can be selected. Now consider
the set O\Ov. Suppose without loss of generality that O\Ov = {o1, . . . , ok},
with tie-break ordering �L: o1 �L · · · �L ok. Denote c := (n − 1)(m − k) as
the number of disapproval votes that the other n − 1 voters can distribute. For
j ∈ {1, . . . , c+1}, outcome oj can be selected if the other voters cast disapproval
votes for outcomes {o1, . . . , oc+1}\{oj}. Furthermore, outcomes oc+2, . . . , ok can-
not be selected, regardless of how the other voters report. Therefore the set of
feasible outcomes Of are the c + 1 highest tie-breaking ranked outcomes of the
set O\Ov. Voter i’s best case outcome is its most preferred outcome in Of ,
whilst its worst case outcome is its least preferred outcome in Of . We denote
ob := B�i

(�i, f) as i’s best case outcome, and ow := W�i
(�i, f) as i’s worst

case outcome.
We now define the set of feasible outcomes O′

f under any preference report
by voter i. This is the n(m − k) + 1 highest tie-break ranked outcomes of O.
Now suppose �i admits a best case obvious manipulation. There must exist
an outcome o′

b ∈ O′
f\Of that i prefers over ob. Consider the set O′

v = {ow} ∪
O′

f\(Of ∪ o′
b). Since ow �∈ O′

f\Of and o′
b �∈ Of , we have

|O′
v| = |{ow}| + |O′

f | − |Of | − |{o′
b}|

= 1 + n(m − k) + 1 − (n − 1)(m − k) − 1 − 1
= m − k.

We now deduce i’s worst case outcome W�i
(�′

i, f) under the manipulation �′
i

where voter i disapproves of all outcomes from O′
v. Under �′

i, every outcome in
O′

f\Of except for o′
b has a disapproval vote and therefore cannot be selected. The

outcome o′
b satisfies o′

b �i ob and therefore cannot be the worst case outcome.
Finally, ow has a disapproval vote, so by elimination, we have W�i

(�′
i, f) ∈

Of\{ow}. Since ow is voter i’s least preferred outcome in Of , we have W�i
(�′

i

, f) �i ow, meaning that �′
i is a worst case obvious manipulation. �	
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6 Computing Obvious Manipulations

In the previous parts of the paper, we focussed on understanding the condi-
tions under which a voting rule is obviously manipulable. Next, we consider the
problem of computing an obvious manipulation for a given problem instance.
We present algorithmic results for computing obvious manipulations under posi-
tional scoring rules.

Obvious Manipulation (OM)

Input: Number of voters n, set of outcomes O = {o1, o2, . . . , om}, preference
relation �i of voter i, tie-break order �L and voting rule f .

Problem: Find a preference relation �′
i such that

W�i
(�′

i, f) �i W�i
(�i, f) or B�i

(�′
i, f) �i B�i

(�i, f).

If we only consider the best case manipulation, we refer to the problem as
Best-case Obvious Manipulation (BOM). If we only consider the worst
case manipulation, we refer to the problem as Worst-case Obvious Manip-

ulation (WOM).
We present algorithms for the obvious manipulation problems. The algorithms

are based on reductions to the Constructive Coalitional Unweighted Manipulation
(CCUM) that is well-studied in computational social choice (see e.g., [25,26]). We
now introduce the Constructive Coalitional UnweightedManipulation

(CCUM).

Constructive Coalitional Unweighted Manipulation (CCUM)

Input: Voting rule f , set of outcomes O, distinguished candidate o ∈ O, set
of voters S that have already cast their votes and set of voters T that
have not cast their votes.

Problem: Is there a way to cast the votes in T such that o wins the election
under f?

We show that for any voting rule, there is a polynomial-time algorithm for
computing a best case obvious manipulation if CCUM can be solved in polyno-
mial time.

Lemma 7. For any voting rule, there is a polynomial-time algorithm for BOM

if CCUM can be solved in polynomial time.

Proof. Denote ob := B�i
(�i, f). We can compute ob as follows. We fix the

preference �i of voter i and solve CCUM for each possible outcome while keeping
all the other voters as manipulators. This can be checked in |O| calls to an
algorithm to solve CCUM. Next, we find i’s best possible outcome if she is
allowed to report any other preference. This can be checked by solving CCUM
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for each possible outcome while keeping all the voters as manipulators. Let o∗

be the possible outcome that is most preferred with respect to �i. The instance
is best case obviously manipulable if and only if o∗ �i ob. �	

We then show that for any positional scoring rule, there is a polynomial-time
algorithm for OM if CCUM can be solved in polynomial time.

Lemma 8. For any positional scoring rule, there is a polynomial-time algorithm
for WOM if CCUM can be solved in polynomial time.

Proof. First we compute the worst case outcome W�i
(�i, f) of i when she

reports the truth. This is easily computed by running an algorithm that solves
CCUM with i’s report being fixed, and checking which outcomes are possible.

We check whether i can improve her worst case outcome by misreporting. We
denote ow := W�i

(�i, f) and Obad := {o ∈ O : ow �i o} ∪ {ow}. We also denote
Ogood := A\Obad. We want to check whether i can ensure that no outcome from
Obad is selected irrespective of how the other voters vote. We define a misreport
�′

i as follows. In �′
i, the outcomes of Ogood are preferred over the outcomes

of Obad. In Ogood the outcomes are ordered so that higher (tie-break) priority
outcomes come earlier. In Obad the outcomes are ordered so that higher priority
outcomes come later. We solve CCUM with respect to �′

i and check whether
some outcome in Obad can be selected. If such an alternative cannot be selected,
we return yes. Otherwise we return no. �	

Combining the two lemmas above, we get the following.

Theorem 6. For any positional scoring rule, there is a polynomial-time reduc-
tion from solving OM to solving CCUM.

Conitzer and Walsh [5] discuss the computational complexity of CCUM for
various different voting rules. In particular, CCUM can be solved in polynomial
time for the k-approval problem. For example, Zuckerman et al. [26] present a
greedy polynomial-time algorithm for computing CCUM. For the sake of com-
pleteness, we explicitly write this algorithm for the k-approval rule with a fixed
tie-break ordering. The algorithm assigns approved outcomes to the manipula-
tors as follows. First, it assigns the distinguished outcome as each manipulator’s
first preference. Each manipulator then approves the k − 1 outcomes with the
lowest scores. If there are more than k − 1 tied outcomes, the ones with the
lowest tie-break priority are selected.

Corollary 5. OM can be solved in polynomial time for k-approval.

Experimental Results
Since the k-approval rule is obviously manipulable and obvious manipulations
can be found in polynomial time, we further investigate these manipulations in an
experiment. Below, we experimentally determine the effects of k, m and n on the
proportion of obviously manipulable voter preferences under the k-approval rule.
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Assuming a fixed tie-break ordering, we generate 1 million randomly permuted
voter preference orderings and determine what proportion of these orderings
admit an OM for a given set of parameters. It suffices to simply consider indi-
vidual preference orderings as the best- and worst-case outcomes (and therefore
obvious manipulability) for an agent’s preference relation are over all possible
preferences of the other agents. Note that from Theorem 5, the set of WOM-
admitting preference orderings is the same as the set of OM-admitting preference
orderings.

Effect of n: Figure 1 depicts the results from our experiments determining the
effect of the number of voters n on the proportion of obviously manipulable
preference orderings. The downwards trend is concurrent with the existing theory
that the proportion of individually manipulable voting profiles approaches zero
as the number of voters tends to infinity [16]. A significantly lower proportion of
preference orderings admit a BOM than those that admit a WOM. These trends
are consistent for other values of m and k, though other figures are omitted due
to space restrictions.

Effect of m and m − k: In Fig. 2, we show heat maps of the proportion of
OM-admitting preferences for m ∈ {21, . . . , 30} and m − k values for which the
preference profile is obviously manipulable. It is more appropriate to consider
the number of disapprovals m−k than the number of approvals k, as the impact
of k is relative to its difference from the number of outcomes. For example, it
is better to compare m = 21, k = 20 with m = 30, k = 29 than with m =
30, k = 20. For a fixed number of disapprovals, the proportion of OM-admitting
preferences increases with the number of outcomes. This is likely because a
lower proportion of the outcomes can be ‘blocked’ by the other voters under the
worst case outcome. The proportion increases steadily then rapidly decreases as
the number of disapprovals increases, suggesting that an intermediary number
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Fig. 1. Effect of n on proportion of preferences that admit WOM and BOM (k =
14,m = 15)
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Number of outcomes m

N
o.

of
di
sa
pp

ro
va

ls
m

−
k 21 22 23 24 25 26 27 28 29 30

1 0.610.610.620.620.630.630.640.640.650.65
2 0.800.810.820.830.840.840.850.850.860.86
3 0.850.870.880.890.900.900.910.920.920.93
4 0.830.860.880.890.910.920.930.940.940.95
5 0.740.800.830.860.890.900.920.930.940.95
6 0.470.600.700.770.820.850.880.900.920.93
7 0 0 0.280.480.610.710.780.830.870.89
8 0 0 0 0 0 0.290.490.620.720.79
9 0 0 0 0 0 0 0 0 0.290.50

Fig. 2. Effect of m and m− k on proportion of OM-admitting preferences (n = 3)

of disapprovals increases individual manipulative power in comparison to the
manipulative coalition of the other voters.

7 Conclusion

In this paper, we initiated research on the obvious manipulability of voting rules.
One of our key insights is that certain rules are obviously manipulable when the
number of outcomes is relatively large as compared to the number of voters. The
k-approval rule is an example of such a rule, and we have also shown that under
the rule, an obvious manipulation can be computed in polynomial time. Despite
all unanimous, non-dictatorial voting rules being manipulable for n ≥ 3, most
commonly used rules are NOM, suggesting that NOM is a significantly weaker
notion than strategyproofness. We remark that in the positional scoring rules
that we have classified as OM, the obvious manipulations are dependent on a
fixed, deterministic tiebreak ordering which is standard in the voting literature.
To gain further insights into which voting rules are more manipulable than oth-
ers, a Bayesian approach could be used, in which voters have prior beliefs on the
distribution of other votes. This approach lies between the perfect information of
strategyproofness and the lack of information in NOM. As a new concept, NOM
has currently been examined only for a handful of settings. It will be interesting
to consider it when analyzing the strategic behaviour of agents in other settings
such as fair division (see, e.g., [15]).

Acknowledgments. The authors thanks Anton Baychkov, Barton Lee and the anony-
mous reviewers of ADT 2021 for useful feedback.
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Abstract. Weighted voting games are an important class of compactly
representable simple games that can be used to model collective decision-
making processes. The influence of players in weighted voting games is
measured by power indices such as the Shapley-Shubik and the Penrose-
Banzhaf power indices. Previous work has studied how such power indices
can be manipulated via actions such as merging or splitting players [1,12],
adding or deleting players [13], or tampering with the quota [21]. We
study graph-restricted weighted voting games [8,9,18], a model in which
weighted voting games are embedded into a communication structure
(i.e., a graph). We investigate to what extent power indices in such games
can be changed by adding or deleting edges in the underlying communi-
cation structure and we study the resulting problems in terms of their
computational complexity.

1 Introduction

Weighted voting games are one of the most important classes of succinctly repre-
sentable simple games in cooperative game theory, see, e.g., the books by Chalki-
adakis et al. [3] and Taylor and Zwicker [19] and the book chapters by Chalki-
adakis and Wooldridge [4] and Elkind and Rothe [6]. Weighted voting games are
used in various domains where collective decision-making processes are modeled,
such as in legislative bodies or parliaments, but also in less politics-related areas
such as shareholder voting in joint stock companies where each shareholder gets
votes in proportion to the ownership of a stock. When analyzing weighted voting
games, one usually focuses on the strength or influence of a player in a game
and uses power indices for that purpose. The best known and most intensively
studied power indices are the normalized Penrose-Banzhaf power index [2,11]
and its probabilistic variant [5] and the Shapley-Shubik power index [17]; we
focus on the probabilistic Penrose-Banzhaf index and the Shapley-Shubik index.
We are interested in their values, how they can change in different situations,
and in the computational complexity of problems defined on them.

In the definition of weighted voting games it is assumed that any player is able
and willing to communicate and to cooperate with all others, which is a really
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https://doi.org/10.1007/978-3-030-87756-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87756-9_13&domain=pdf
http://orcid.org/0000-0002-0589-3616
https://doi.org/10.1007/978-3-030-87756-9_13


Manipulation in Graph-Restricted Weighted Voting Games 195

strong assumption in real-life situations. Myerson [8] provided a model for coop-
erative games that does not rely on this assumption, i.e., he introduced graph-
restricted games: cooperative games embedded into a communication structure
(i.e., an undirected graph) that describes which other players any player can form
a coalition with. Based on his model, Napel et al. [9] presented graph-restricted
weighted voting games, a combination of weighted voting games with graph-
restricted games generalizing the standard notion of weighted voting games.

For weighted voting games, it has been analyzed how the Penrose-Banzhaf
index and the Shapley-Shubik index can change when they are subject to manip-
ulation via actions such as merging or splitting players [1,12] (the latter is a.k.a.
false-name manipulation) or modifying the quota [21], or when they are sub-
ject to structural control by adding or deleting players [13]. For graph-restricted
weighted voting games, we study how these power indices can change when edges
in the graph are added or deleted, i.e., when some players are enabled or dis-
abled to communicate or to cooperate with certain other players, for instance as
a part of a political strategy, by legal changes, or simply by opening or closing
communication channels between them. In particular, we study the associated
problems in terms of their computational complexity.

2 Preliminaries

We start with providing the needed background of cooperative game theory. Let
N = {1, . . . , n} denote a set of players. A coalitional game is a pair (N, v), where
v : 2N → R+ assigns a nonnegative real value to each coalition (i.e., subset) of
players; it is said to be simple if it is monotonic (i.e., v(A) ≤ v(B) whenever
A ⊆ B) and v(C) ∈ {0, 1} for each C ⊆ N (where v(C) = 1 means that coalition
C wins, and v(C) = 0 means that C loses).

Definition 1. A weighted voting game G = (w1, . . . , wn; q) is a simple coali-
tional game that consists of a quota q ∈ N (i.e., a given threshold) and nonneg-
ative integer weights wi, where wi is the i-th player’s weight, i ∈ N . For each
coalition S ⊆ N , letting wS =

∑
i∈S wi, S wins if wS ≥ q, and loses otherwise:

v(S) =
{

1 if wS ≥ q,
0 otherwise.

One of the most important information about players is their significance
in the games that is measured usually by so-called power indices, which take
into consideration how many coalitions a player can make win. We study two of
the most popular power indices: the probabilistic Penrose-Banzhaf power index,
which Dubey and Shapley [5] introduced as an alternative to the original normal-
ized Penrose-Banzhaf index [2,11], and the Shapley-Shubik power index intro-
duced by Shapley and Shubik [17]. These two indices are defined as follows:
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Definition 2. Let n = |N | be the number of players in G and i ∈ N . The
probabilistic Penrose-Banzhaf power index of player i in G is defined by

β(G, i) =

∑
S⊆N\{i}(v(S ∪ {i}) − v(S))

2n−1
.

The Shapley-Shubik power index of player i in G is defined by

ϕ(G, i) =

∑
S⊆N\{i} |S|!(n − 1 − |S|)!(v(S ∪ {i}) − v(S))

n!
.

Next, we assume that there is some communication structure among the
players and define the corresponding notion of graph-restricted weighted voting
games, first studied in the early work by Myerson [8] and later on, e.g., by Napel
et al. [9] and Skibski et al. [18].

Definition 3. A graph-restricted weighted voting game is a weighted voting
game G = (w1, . . . , wn; q) together with a graph G = (N,E), where

v(S) =
{

1 if S has a connected part S′ with wS′ ≥ q,
0 otherwise.

Graph-restricted weighted voting games generalize weighted voting games,
which are the special cases with a complete graph as their communication struc-
tures. In this situation, whether a coalition wins or loses is determined only by
its total weight. However, if we limit the possibilities in communication among
players, a coalition’s weight alone is not enough. Before we define appropriate
power indices in graph-restricted weighted voting games, let us present a few
useful notions referring to coalitions in the sense of graph restrictions.

Definition 4. Let (G, G) be a graph-restricted weighted voting game with players
N and graph G = (N,E). For S ⊆ N , we denote a maximal connected subset of
S in G as S/G. The set of all winning connected coalitions is defined as WC =
{S ⊆ N | wS ≥ q and S is connected} and the set of winning connected coali-
tions with player i is denoted by WCi. The set of all pivotal winning connected
coalitions of player i is defined as PWCi = {S ∈ WCi | ((S \{i})/G)∩WC = ∅}.

Skibski et al. [18] provided the following general formulas for the analogues of
the Penrose-Banzhaf power index and the Shapley-Shubik power index in graph-
restricted weighted voting games. Let N (i) = {j ∈ N | {i, j} ∈ E} denote the
neighborhood of i in graph G, and let N (S) =

(⋃
i∈S N (i)

) \ S be the set of
neighbors of S.

Theorem 1 (Skibski et al. [18]). Let (G, G) be a graph-restricted weighted
voting game with players N and the set of winning connected coalitions WC. For
S ⊆ N , let γS = 1

2|S|+|N(S)|−1 , γS
1 = (|S|−1)!|N (S)|!

(|S|+|N (S)|)! , and γS
2 = |S|!(|N (S)|−1)!

(|S|+|N (S)|)! .
The Penrose-Banzhaf index of player i in (G, G) satisfies β((G, G), i) =∑

S∈PWCi
γS =

∑
S∈WCi

γS − ∑
S∈WC
i∈N (S)

γS. The Shapley-Shubik index of player

i in (G, G) satisfies ϕ((G, G), i) =
∑

S∈PWCi
γS
1 =

∑
S∈WCi

γS
1 − ∑

S∈WC
i∈N (S)

γS
2 .
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We assume the reader to be familiar with the basic concepts of graph theory
and computational complexity theory, such as the complexity classes P, NP, and
coNP and the notions of completeness and hardness for a complexity class based
on polynomial-time many-one reducibility. DP was introduced by Papadimitriou
and Yannakakis [10] as the class of sets that can be represented as the difference
of two NP sets; it is in the second level of the boolean hierarchy over NP.

In some of our proofs, we will apply the following lemma due to Wagner [20]
that previously has proven useful for showing DP-hardness of various “exact”
variants of graph problems (such as whether the chromatic number of a given
graph is exactly four; see [14–16]).

Lemma 1 (Wagner [20]). Let A be some NP -complete problem and let B be
an arbitrary problem. If there exists a polynomial-time computable function f
such that, for all input strings x1 and x2 for which x2 ∈ A implies x1 ∈ A, we
have that (x1 ∈ A ∧ x2 /∈ A) ⇐⇒ f(x1, x2) ∈ B, then B is DP-hard.

3 Adding Edges to a Communication Graph

We now consider the impact of adding new edges to the communication struc-
ture of a given graph-restricted weighted voting game on changing the Penrose-
Banzhaf and the Shapley-Shubik power index of a given player. By this structural
change to the game, we allow some players to communicate with each other for
whom this was impossible before. Let us start with defining the decision problem
in which we ask whether some power index PI can be increased :

Analogously, we define the decision problems for decreasing and maintaining
a distinguished player’s power (by replacing “>” in the question by “<” or “=”).
Before we present our results, let us see this type of manipulation in the game
of Example 1 to better understand the possible changes of the power indices.

Example 1. Let (G, G) be a graph-restricted weighted voting game with G =
(1, 2, 3, 4, 5; 8) and the following communication structure G = (N,E):

1

2 3 4

5

v
y

zx
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The players have the following values of their Penrose-Banzhaf and Shapley-
Shubik power index:

β((G, G), 1) = 7/16 and β((G, G), i) = 3/16 for i ∈ {2, . . . , 5};
ϕ((G, G), 1) = 7/15 and ϕ((G, G), i) = 2/15 for i ∈ {2, . . . , 5}.

Thus, for both indices, 1 (even though having the smallest weight) is the most
powerful player and the others have the same power, even though their weights
are different (also, 2 has a higher degree than 3, 4, and 5 in the graph G).

Let e be an edge between players 3 and 5 and let f be an edge between
players 3 and 4. Consider the new game (G, G∪{e}): For both power indices,
players 3 and 5 have become the most powerful players by adding the new
edge e, whereas the power of the previously strongest player 1 has decreased:

β((G, G∪{e}), 1) = 1/4, β((G, G∪{e}), 2) = β((G, G∪{e}), 4) = 1/8, and
β((G, G∪{e}), 3) = β((G, G∪{e}), 5) = 1/2;
ϕ((G, G∪{e}), 1) = 1/6, ϕ((G, G∪{e}), 2) = ϕ((G, G∪{e}), 4) = 1/12, and
ϕ((G, G∪{e}), 3) = ϕ((G, G∪{e}), 5) = 1/3.

It is also not hard to see that adding the edge f to G does not change the
(Penrose-Banzhaf and Shapley-Shubik) power indices of the players at all.

We will now show to what extent (in terms of the number of new connec-
tions) the Penrose-Banzhaf and the Shapley-Shubik power index can change after
adding edges to a player in a communication graph. Theorem 2 (whose proof
is omitted due to space limitations) presents these change intervals. Moreover,
adding edges among other players than the distinguished player can reduce the
distinguished player’s power indices even to 0.

Theorem 2. Let (G, G) be a graph-restricted weighted voting game and let E′,
|E′| = m, be a set of edges that are to be added to G, between a player i and
other players, creating a new game (G, G∪E′). For player i and for χ ∈ {β, ϕ},
let diff χ(G, G,G∪E′ , i) = χ((G, G), i) − χ((G, G∪E′), i). The old and the new
Penrose-Banzhaf index and the old and the new Shapley-Shubik index of player
i can differ as follows:

−1 + 2−(|N (i)|+m) ≤ diff β(G, G,G∪E′ , i) ≤ (1 − 2−m)β((G, G), i);

−1 +
1

|N (i) + m + 1| ≤ diff ϕ(G, G,G∪E′ , i) ≤
(

1 − (n − m)!
n!

)

ϕ((G, G), i).

The next two results are concerned with the complexity of the decision prob-
lems regarding control by adding edges between players that we defined at the
beginning of this section. Our results are summarized in Table 1 in Sect. 5. Note
that these problems are hard to solve even if we add only one edge to the com-
munication graph.
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Theorem 3. Control by adding edges between players to decrease a distinguished
player’s Penrose-Banzhaf index in a graph-restricted weighted voting game is
NP-hard, to maintain this index is coNP-hard, and to increase it is DP-hard.

Proof. For the first two statements, we use a reduction from the Partition
problem [7]: Given a set A = {1, . . . , n}, a function a : A → N\{0}, i → ai, such
that

∑n
i=1 ai is even, does there exist a partition into two subsets of equal weight,

that is, does there exist a subset A′ ⊆ A such that
∑

i∈A′ ai =
∑

i∈A\A′ ai? Let
(a1, . . . , an) be a Partition instance with n > 1 and α =

∑n
i=1 ai, and let ξ =

#Partition(a1, . . . , an) denote the number of its solutions. Now, construct the
control problem instance consisting of a game G = (1, a1, . . . , an, 2α, α

2 ; 5α
2 + 1)

with n + 3 players, the distinguished player p = 1, and the communication
structure G = (N,E), where all the players but n+3 form a complete subgraph
and the player n + 3 is an isolated vertex. Let Ec be the set of edges not in E,
so we can add them to the graph G. Set the addition limit to 1. It holds that

(∃e ∈ Ec)[β((G, G∪{e}), 1) − β((G, G), 1) < 0] ⇐⇒ ξ > 0, (1)
(∃e ∈ Ec)[β((G, G∪{e}), 1) − β((G, G), 1) = 0] ⇐⇒ ξ = 0, (2)
(∃e ∈ Ec)[β((G, G∪{e}), 1) − β((G, G), 1) > 0] ⇐⇒ ξ = 0. (3)

To see this, note that in the structure G, there are only two types of edges
that can be added: an edge x between players 1 or n + 2 and n + 3, and an edge
y between player n + 3 and a player i, i ∈ {2, . . . , n + 2}.

Let ξ = 0. Then β((G, G), 1) = 0. If we add the edge x, the players 1 and
n + 3 will form a winning coalition and the player 1’s Penrose-Banzhaf index
will increase to β((G, G∪{x}), 1) = 1

2n+2 . If we add any of the y-edges, there will
still not be any winning coalition for which the player 1 is pivotal, so the index
will not change. Therefore, if there is no solution for Partition((a1, . . . , an)),
the Penrose-Banzhaf index can either increase or stay unchanged.

Let ξ > 0. Then β((G, G), 1) = ξ
2n+1 = 2ξ

2n+2 = 4ξ
2n+3 . It does not matter which

edge from Ec we add, player 1’s Penrose-Banzhaf index will always decrease: for
the edge x because β((G, G∪{x}), 1) = ξ

2n+2 + 1
2n+2 = ξ+1

2n+2 and ξ is even, and for
y-edges because β((G, G∪{y}), 1) = ξ

2
1

2n+2 + ξ
2

1
2n+1 = 3ξ

2n+3 .
By (1), (2) and (3), control by adding edges to decrease a given player’s

Penrose-Banzhaf index is NP-hard, and to maintain it or to increase it is coNP-
hard.

Note that we can similarly show NP-hardness of control by adding edges to
increase a given player’s Penrose-Banzhaf index.1 However, as claimed in the
third statement of the theorem, we can show even more, namely DP-hardness
1 Specifically, construct from the given Partition instance (a1, . . . , an) the game H =
(1, 2a1, . . . , 2an, 1;α+2) with n+2 players, the distinguished player p = 1, and the
communication structure H = (M, C), where as before all players but the (n+2)nd
player form a complete subgraph and the (n+ 2)nd player is an isolated vertex. Set
the addition limit to 1. Let Cc be the set of edges not in C, which can be added
to H. We can show that (∃e ∈ Cc)[β((H, H∪{e}), 1) − β((H, H), 1) > 0] if and only
if ξ > 0, which gives the desired NP-hardness of our control problem.
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of this problem. To this end, we provide a reduction from the NP-complete
SubsetSum problem (which will play the role of the set A in Lemma 1): Given
a sequence (c1, . . . , cn) of positive integers and a positive integer q, do there exist
y1, . . . , yn ∈ {0, 1} with

∑n
i=1 yici = q?

Let x1 = ((c1, . . . , cn1), q) and x2 = ((d1, . . . , dn2), q) be two instances of
SubsetSum, γ =

∑n1
i=1 ci, δ =

∑n2
i=1 di, and let ξi be the number of solutions of

SubsetSum(xi) for i ∈ {1, 2}.
Consider the graph-restricted weighted voting game

F =
(
1, c1 · 10s, . . . , cn1 · 10s, d1 · 10, . . . , dn2 · 10, 10t, q · 10; 10t + q · 10s + q · 10 + 1

)

with n1+n2+3 players, where 10s > (δ+q)·10+2 and 10t > γ·10s+(δ+q)·10+2,
and the communication graph F = (L,D) looks as follows: All players except
the player with weight q · 10 form a complete subgraph and this last player is
isolated. Thus it is only possible to add an edge between the isolated player and
another player. Let the first player (with weight 1) be the distinguished player
and let the addition limit be 1.

Assuming that x2 ∈ SubsetSum implies x1 ∈ SubsetSum, we show that

(∃e ∈ Dc)[β((F , F ), 1) − β((F , F∪{e}), 1) < 0]
⇐⇒ (x1 ∈ SubsetSum ∧ x2 /∈ SubsetSum). (4)

Indeed, if x1 ∈ SubsetSum and x2 /∈ SubsetSum, then β((F , F ), 1) = 0,
and if we add an edge e between our distinguished first player and the isolated
last player, then the index increases to

β((F , F∪{e}), 1) =
ξ1

2n1+n2+2
> 0.

On the other hand, if both x1 /∈ SubsetSum and x2 /∈ SubsetSum, then
the index is equal to 0 and adding any edge does not change this.

Finally, if both x1 ∈ SubsetSum and x2 ∈ SubsetSum, then

β((F , F ), 1) =
ξ1ξ2

2n1+n2+1
=

2ξ1ξ2
2n1+n2+2

.

Now, if we add an edge between the isolated player and either the distin-
guished player or the player with weight 10t, then

β((F , F∪{e}), 1) =
ξ1ξ2 + ξ1
2n1+n2+2

≤ ξ1ξ2 + ξ1ξ2
2n1+n2+2

= β((F , F ), 1),

since ξ2 ≥ 1, so the index remains unchanged or decreases in those cases. And if
we add an edge between the isolated player and a player ci, then let ξ1,ci be the
number of solutions of SubsetSum(x1) containing the player ci, and we get

β((F , F∪{e}), 1) =
ξ1,ciξ2

2n1+n2+2
+

(ξ1 − ξ1,ci)ξ2
2n1+n2+1

+
ξ1,ci

2n1+n2+2

=
2ξ1ξ2 − ξ1,ciξ2 + ξ1,ci

2n1+n2+2
≤ 2ξ1ξ2

2n1+n2+2
= β((F , F ), 1),
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so again, the index remains unchanged or decreases. Finally, if we add an edge
between the isolated player and a player di, then let ξ2,di

be the number of
solutions of SubsetSum(x2) containing the player di and in this case we obtain

β((F , F∪{e}), 1) =
ξ1ξ2,di

2n1+n2+2
+

ξ1(ξ2 − ξ2,di
)

2n1+n2+1

=
2ξ1ξ2 − ξ1ξ2,di

2n1+n2+2
≤ 2ξ1ξ2

2n1+n2+2
= β((F , F ), 1),

so in this case, the index does not increase either.
Since (4) is satisfied, Lemma 1 implies that the problem of control by adding

edges between players to increase a distinguished player’s Penrose-Banzhaf index
in a graph-restricted weighted voting game is DP-hard. ��

We now turn to the Shapley-Shubik index for control by adding edges. The
proof of Theorem 4, which makes use of games constructed in the proof of The-
orem 3, is omitted due to space limitations.

Theorem 4. Control by adding edges between players to increase or to decrease
a distinguished player’s Shapley-Shubik index in a graph-restricted weighted vot-
ing game is NP-hard and to maintain the index is coNP-hard.

As one could see in the previous proofs (and also by looking at the formulas
of the power indices presented by Skibski et al. [18] for graph-restricted weighted
voting games), in some situations adding edges can be equivalent to adding new
players to the winning connected subgraph in a game. Control by adding players
in weighted voting games (without any graph restrictions) were analyzed by
Rey and Rothe [13]. Of course, the resulting decision problems (of control by
adding edges and by adding players) in these two different settings are not the
same problems. Therefore, we need to be careful when comparing their and our
results and drawing conclusions.

4 Deleting Edges from a Communication Graph

As in the previous section, we define the problem of control by deleting
edges to increase a power index PI; the other two definitions (where the goal is
to decrease and to maintain an index) are analogous.

Before presenting our results, we give two short examples.
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Example 2. Let (G, G) be a graph-restricted weighted voting game with G =
(10, 3, 10; 12) and the communication structure G = (N,E) being a complete
graph. In this game, the players have equal power with respect to both indices:

β((G, G), 1) = β((G, G), 2) = β((G, G), 3) = 1/2;
ϕ((G, G), 1) = ϕ((G, G), 2) = ϕ((G, G), 3) = 1/3.

Now, let us delete from G the edge between the players 1 and 3; let us call
it x. In the new game, the power indices of player 2 increase and the indices of
the other two players decrease:

β((G, G\{x}), 2) = 3/4, whereas β((G, G\{x}), 1) = β((G, G\{x}), 3) = 1/4;
ϕ((G, G\{x}), 2) = 2/3, whereas ϕ((G, G\{x}), 1) = ϕ((G, G\{x}), 3) = 1/6.

This illustrates that if we limit communication among players, it will be
possible for players with smaller weights to become more powerful than players
with larger weights.

Example 3. Consider again the game from Example 1. If we delete either the
edge x or the edge y or both, we will get the same Penrose-Banzhaf and Shapley-
Shubik power indices of the players, i.e., for E′ ∈ {{x}, {y}, {x, y}}, we have:

β((G, G\E′ , 1) = β((G, G\E′ , 3) = β((G, G\E′ , 4) = 1/4 and
β((G, G\E′ , 2) = β((G, G\E′ , 5) = 0;
ϕ((G, G\E′ , 1) = ϕ((G, G\E′ , 3) = ϕ((G, G\E′ , 4) = 1/3 and
ϕ((G, G\E′ , 2) = ϕ((G, G\E′ , 5) = 0.

This illustrates that the power indices can change the same way (increase or
decrease) for both the stronger and the weaker players, even after deleting one
or more connections.

In the following theorem, whose proof again is omitted, we see how a distin-
guished player’s Penrose-Banzhaf power index and Shapley-Shubik power index
can change after deletion of a certain number of edges, i.e., after removing the
possibility of communication between a player and his or her neighbors in the
graph. Note that after removing edges in another part of a communication struc-
ture a player’s power indices can increase even if he or she was not pivotal for any
coalition (but stays nonpivotal for the two-element coalitions with any neighbor
and for the singleton coalition containing only this player).

Theorem 5. Let (G, G) be a graph-restricted weighted voting game and let E′,
|E′| = m, be the set of those edges between a player i and his or her neighbors
that are to be deleted from G, creating a new game (G, G\E′). The old and the
new Penrose-Banzhaf index and the old and the new Shapley-Shubik index of
player i can differ as follows:

(1 − 2m)β((G, G), i) ≤ β((G, G), i) − β((G, G\E′), i) ≤ β((G, G), i);
(1 − n!/(n−m)!) ϕ((G, G), i) ≤ ϕ((G, G), i) − ϕ((G, G\E′), i) ≤ ϕ((G, G), i).
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The remaining theorems in this section are concerned with the computational
complexity of the decision problems defined earlier in this section. Our results
are again summarized in Table 1 in Sect. 5. Note that these problems are hard
to solve even if we delete only one edge from the communication graph.

Theorem 6. Control by deleting edges between players to decrease or to increase
a distinguished player’s Penrose-Banzhaf index in a graph-restricted weighted
voting game is DP-hard.

Proof. We restrict our proof to the goal of decreasing the distinguished player’s
Penrose-Banzhaf index (the proof for increasing it is similar), and we show DP-
hardness by providing a reduction from the NP-complete SubsetSum prob-
lem (which plays the role of the set A from Wagner’s Lemma 1). Let x1 =
((c1, . . . , cn1), q) and x2 = ((d1, . . . , dn2), q) be two instances of SubsetSum, γ =∑n1

i=1 ci, δ =
∑n2

i=1 di, and let ξi be the number of solutions of SubsetSum(xi)
for i ∈ {1, 2}. Construct the graph-restricted weighted voting game

G =
(
1, c1 · 10s, . . . , cn1 · 10s, d1, . . . , dn2 , 10t, q, y − q, 2y; 10t + q · 10s + 3y + 1

)
,

where y > max(2q, 2γ, 2δ) and s ∈ N and t ∈ N are chosen such that 10s > 4y
and 10t > (γ+δ) ·10s +4y and large enough for the quota to be greater than half
of the total sum of all players’ weights. Let the first player with weight 1 be the
distinguished player and let the deletion limit be 1. Define the communication
graph G = (V,E) as follows:

G1

1q 10t
z

Here, the subgraph G1 looks as follows: It consists of the players with weights
c1 · 10s, . . . , cn1 · 10s, d1, . . . , dn2 , y − q, and 2y, which form a clique. The player
with weight 2y in this clique is connected to the players with weights 1 and 10t.

Assuming that x2 ∈ SubsetSum implies x1 ∈ SubsetSum, we now prove:

(∃e ∈ E)[β((G, G), 1) − β((G, G\{e}), 1) > 0]
⇐⇒ (x1 ∈ SubsetSum ∧ x2 /∈ SubsetSum). (5)

First, if x1 /∈ SubsetSum and x2 /∈ SubsetSum, then

(∀e ∈ E)[β((G, G), 1) = β((G, G\{e}), 1) = 0].

And if x1 ∈ SubsetSum and x2 ∈ SubsetSum, then

β((G, G), 1) =
ξ1 + ξ1ξ2
2n1+n2+4

.
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It is easy to see that if we delete any edge other than z, the index stays
unchanged. If we delete the edge z, however, then

β((G, G\{z}), 1) =
ξ1ξ2

2n1+n2+3
=

ξ1ξ2 + ξ1ξ2
2n1+n2+4

≥ ξ1 + ξ1ξ2
2n1+n2+4

= β((G, G), 1),

since ξ1, ξ2 ≥ 1. So, the power index either increases or stays unchanged after
deleting one edge from G in this case.

Conversely, if x1 ∈ SubsetSum and x2 /∈ SubsetSum, then β((G, G), 1) > 0
and β((G, G\{z}), 1) = 0, so the index decreases by deleting the edge z.

Since (5) is satisfied, our control problem is DP-hard by Lemma 1. ��
Next, we show that for the goal of decreasing or increasing the Shapley-

Shubik power index, control by deleting edges to limit communication between
players is NP-hard.

Theorem 7. Control by deleting edges between players to decrease or to increase
a distinguished player’s Shapley-Shubik power index is NP-hard.

Proof. We give a reduction from the Partition problem. Let (a1, . . . , an) with
ai ≤ α/2 for i ∈ {1, . . . , n} be a Partition instance with n > 1, where α =∑n

i=1 ai and ξ = #Partition((a1, . . . , an)) denotes the number of its solutions.
Consider the game G = (1, 2a1, . . . , 2an, 1;α+2) with n+2 players, distinguished
player p = 1 with weight 1, and deletion limit k = 1. The communication
structure G = (N,E) is defined by:

2a2 · · · 2an

1 1

2a1

y

x

y

y y

We will now show for this game that

(∃e ∈ E)[ϕ((G, G\{e}), 1) − ϕ((G, G), 1) < 0] ⇐⇒ ξ > 0.

Let ξ = 0. Then ϕ((G, G), 1) = 0, and if we delete any of the edges, the
Shapley-Shubik index of player 1 will still be equal to 0, so it does not decrease.

Let ξ > 0. Then ϕ((G, G), 1) > 0. After deleting the edge x, the Shapley-
Shubik index of 1 decreases to 0. Therefore, control by deleting edges to decrease
a distinguished player’s Shapley-Shubik index is NP-hard.

For the goal of increasing the distinguished player’s Shapley-Shubik index,
let us consider the game

H = (1, 4a1, . . . , 4an, 2, 1; 2α + 3)
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with n + 3 players, distinguished player p = 1 and the communication structure
H = (M,F ), where all the players but 1 are connected only with the distin-
guished player. Let x be the edge between 1 and n + 3. Set the deletion limit
to 1.

We now show that for this game, we have

(∃e ∈ F )[ϕ((H,H\{e}), 1) − ϕ((H,H), 1) > 0] ⇐⇒ ξ > 0.

Let ξ = 0. Then ϕ((H,H), 1) = 0, and if we delete any of the edges, the
Shapley-Shubik index of player 1 will still be equal to 0, so it does not increase.

Let ξ > 0. Then

ϕ((H,H), 1) =
∑

S∈PWC1

(|S| − 1)!|N(S)|!
(n + 3)!

.

Let rS = |N(S)| from the formula above. After deleting the edge x, the Shapley-
Shubik index of player 1 increases to

ϕ((H,H\{x}), 1) =
∑

S∈PWC1

(|S| − 1)!(rS − 1)!
(n + 2)!

=
∑

S∈PWC1

(|S| − 1)!rS !
(n + 3)!

|S| + rS

rS

=
∑

S∈PWC1

(|S| − 1)!rS !
(n + 3)!

(

1 +
|S|
rS

)

>
∑

S∈PWC1

(|S| − 1)!rS !
(n + 3)!

.

Therefore, control by deleting edges to increase a distinguished player’s
Shapley-Shubik index is NP-hard as well. ��

Finally, for the Penrose-Banzhaf power index, we show that control by delet-
ing edges between players to maintain a distinguished player’s power is coNP-
hard.

Theorem 8. Control by deleting edges between players to maintain a distin-
guished player’s Penrose-Banzhaf index in a graph-restricted weighted voting
game is coNP-hard.

Proof. We will show both coNP-hardness results by means of a reduction from
the Partition problem. Let (a1, . . . , an) be a Partition instance with n > 1,
let α =

∑n
i=1 ai, and let ξ = #Partition((a1, . . . , an)) denote the number of

its solutions.
For the Penrose-Banzhaf index, construct the control problem instance con-

sisting of a game

G = (1, 4a1, . . . , 4an, 2, 1, 2α − 2, 2α − 2; 4α + 1)

with n+5 players, distinguished player p = 1 with weight 1, deletion limit k = 1,
and the following communication structure G = (N,E):
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4a2 · · · 4an

1 2α − 2

4a1

1

2

2α − 2

y

x

y y y

z

v

w

We now show that

(∃e ∈ E)[β((G, G\{e}), 1) − β((G, G), 1) = 0] ⇐⇒ ξ = 0.

Let ξ = 0. Then

β((G, G), 1) =
1

2n+2
.

If we delete either the edge w or the edge z, the index will not change; therefore,
it is possible to maintain the Penrose-Banzhaf power index if there is no solution
of Partition((a1, . . . , an)).

Let ξ > 0. Then

β((G, G), 1) =
1

2n+2
+

ξ

2n+4
+

ξ

2n+3
=

4 + 3ξ

2n+4
.

If we delete the edge x, the new Penrose-Banzhaf index will increase:

β((G, G\{x}), 1) =
1

2n+1
+

ξ

2n+2
=

2 + ξ

2n+2
=

8 + 4ξ
2n+4

.

If we delete the edge z, the index will also increase:

β((G, G\{z}), 1) =
1

2n+2
+

2ξ

2n+3
=

4 + 4ξ
2n+4

.

If we delete any of the y-edges, the index will decrease:

β((G, G\{y}), 1) =
ξ

2
1

2n+3
+

ξ

2
1

2n+2
=

3ξ

2n+4
.

If we delete the edge v, the new Penrose-Banzhaf index will decrease, too:

β((G, G\{v}), 1) =
1

2n+1
=

8
2n+4

≤ 4 + 2ξ

2n+4
.

And finally, if we delete the edge w, the new Penrose-Banzhaf index will also
decrease:

β((G, G\{w}), 1) =
1

2n+2
+

ξ

2n+3
=

2 + ξ

2n+3
=

4 + 2ξ
2n+4

.



Manipulation in Graph-Restricted Weighted Voting Games 207

Therefore, control by deleting edges to maintain a distinguished player’s Penrose-
Banzhaf index is coNP-hard. ��

We leave the complexity of control by deleting edges between players to
maintain a distinguished player’s Shapley-Shubik index in a graph-restricted
weighted voting game open.

5 Conclusions

We have analyzed the (probabilistic) Penrose-Banzhaf and the Shapley-Shubik
power index in graph-restricted weighted voting games in terms of manipulation
of their communication structures by adding or deleting edges in the graphs.
Related to the model due to Skibski et al. [18], we presented upper and lower
bounds on how much these power indices can change in Theorems 2 and 5. Fur-
ther, we have analyzed the resulting control problems related to the goals of
increasing, decreasing, or maintaining a power index in terms of their computa-
tional complexity. Our complexity results are summarized in Table 1, where the
open question mentioned above is marked by a question mark.

Table 1. Overview of complexity results for control problems in graph-restricted
weighted voting games with respect to the Shapley-Shubik (ϕ) and the probabilistic
Penrose-Banzhaf index (β)

Goal Control by adding an edge Control by deleting an edge

Decrease β NP-hard (Theorem 3) DP-hard (Theorem 6)

ϕ NP-hard (Theorem 4) NP-hard (Theorem 7)

Increase β DP-hard (Theorem 3) DP-hard (Theorem 6)

ϕ NP-hard (Theorem 4) NP-hard (Theorem 7)

Maintain β coNP-hard (Theorem 3) coNP-hard (Theorem 8)

ϕ coNP-hard (Theorem 4) ?

Interesting tasks for future research include the question of whether our com-
plexity lower bounds can be raised and whether we can pinpoint the complexity
of these problems exactly.

Acknowledgments. This work was supported in part by Deutsche Forschungsge-
meinschaft under grant RO 1202/21-1.

References

1. Aziz, H., Bachrach, Y., Elkind, E., Paterson, M.: False-name manipulations in
weighted voting games. Journal of Artificial Intelligence Research 40, 57–93 (2011)



208 J. Kaczmarek and J. Rothe

2. Banzhaf, J., III.: Weighted voting doesn’t work: a mathematical analysis. Rutgers
Law Rev. 19, 317–343 (1965)

3. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational aspects of coopera-
tive game theory. Synth. Lect. Artif. Intell. Mach. Learn. 5, 1–168 (2011)

4. Chalkiadakis, G., Wooldridge, M.: Weighted voting games. In: Brandt, F.,
Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.) Handbook of Compu-
tational Social Choice, chap. 16, pp. 377–395. Cambridge University Press (2016)

5. Dubey, P., Shapley, L.: Mathematical properties of the Banzhaf power index. Math-
ematics of Operations Research 4(2), 99–131 (1979)

6. Elkind, E., Rothe, J.: Cooperative game theory. In: Rothe, J. (ed.) Economics
and Computation. An Introduction to Algorithmic Game Theory, Computational
Social Choice, and Fair Division, chap. 3, pp. 135-193. Springer, Cham (2015).
https://doi.org/10.1007/978-3-662-47904-9 3

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

8. Myerson, R.: Graphs and cooperation in games. Mathematics of Operations
Research 2(3), 225–229 (1977)

9. Napel, S., Nohn, A., Alonso-Meijide, J.: Monotonicity of power in weighted voting
games with restricted communication. Mathematical Social Sciences 64(3), 247–
257 (2012)

10. Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of
complexity). Journal of Computer and System Sciences 28(2), 244–259 (1984)

11. Penrose, L.: The elementary statistics of majority voting. Journal of the Royal
Statistical Society 109(1), 53–57 (1946)

12. Rey, A., Rothe, J.: False-name manipulation in weighted voting games is hard for
probabilistic polynomial time. J. Artif. Intell. Res. 50, 573–601 (2014)

13. Rey, A., Rothe, J.: Structural control in weighted voting games. B.E. J. Theor.
Econ. 18(2), 1–15 (2018)

14. Riege, T., Rothe, J.: Completeness in the boolean hierarchy: Exact-Four-
Colorability, minimal graph uncolorability, and exact domatic number problems -
a survey. Journal of Universal Computer Science 12(5), 551–578 (2006)

15. Riege, T., Rothe, J.: Complexity of the exact domatic number problem and of the
exact conveyor flow shop problem. Theor. Comput. Syst. 39(5), 635–668 (2006).
https://doi.org/10.1007/s00224-004-1209-8

16. Rothe, J.: Exact complexity of Exact-Four-Colorability. Information Processing
Letters 87(1), 7–12 (2003)

17. Shapley, L., Shubik, M.: A method of evaluating the distribution of power in a
committee system. The American Political Science Review 48(3), 787–792 (1954)

18. Skibski, O., Michalak, T., Sakurai, Y., Yokoo, M.: A pseudo-polynomial algorithm
for computing power indices in graph-restricted weighted voting games. In: Pro-
ceedings of the 24th International Joint Conference on Artificial Intelligence, pp.
631–637. AAAI Press/IJCAI, July 2015

19. Taylor, A., Zwicker, W.: Simple Games: Desirability Relations, Trading, Pseu-
doweightings. Princeton University Press, Princeton (1999)

20. Wagner, K.: More complicated questions about maxima and minima, and some
closures of NP. Theoretical Computer Science 51(1–2), 53–80 (1987)

21. Zuckerman, M., Faliszewski, P., Bachrach, Y., Elkind, E.: Manipulating the quota
in weighted voting games. Artificial Intelligence 180–181, 1–19 (2012)

https://doi.org/10.1007/978-3-662-47904-9_3
https://doi.org/10.1007/s00224-004-1209-8


Strategic Voting in Negotiating Teams

Leora Schmerler and Noam Hazon(B)

Department of Computer Science, Ariel University, Ariel, Israel
{leoras,noamh}@ariel.ac.il

Abstract. A negotiating team is a group of two or more agents who
join together as a single negotiating party because they share a common
goal related to the negotiation. Since a negotiating team is composed of
several stakeholders, represented as a single negotiating party, there is
need for a voting rule for the team to reach decisions. In this paper, we
investigate the problem of strategic voting in the context of negotiating
teams. Specifically, we present a polynomial-time algorithm that finds
a manipulation for a single voter when using a positional scoring rule.
We show that the problem is still tractable when there is a coalition of
manipulators that uses a x-approval rule. The coalitional manipulation
problem becomes computationally hard when using Borda, but we pro-
vide a polynomial-time algorithm with the following guarantee: given a
manipulable instance with k manipulators, the algorithm finds a success-
ful manipulation with at most one additional manipulator. Our results
hold for both constructive and destructive manipulations.

Keywords: Voting · Negotiation · Manipulation.

1 Introduction

Voting is a common way to combine the preferences of several agents in order to
reach a consensus. While being prevalent in human societies, it has also played
a major role in multi-agent systems for applied tasks such as multi-agent plan-
ning [16] or aggregating search results from the web [14]. In its essence, a voting
process consists of several voters along with their ranking of the candidates, and
a voting rule, which needs to decide on a winning candidate or on a winning
ranking of the candidates.

Another common mechanism for reaching an agreement among several agents
is a negotiation [19]. In a negotiation there is a dialogue between several agents
in order to reach an agreement that is beneficial for all of them. Extensive work
has been invested in developing negotiation protocols for many settings, but
bilateral negotiations, where there are only two negotiating parties, is the most
common type of negotiations [6]. Many works have focused on the case where
each negotiating party represents a single agent. However, there are many cases
in which a negotiating party represents more than one individual.
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For example (motivated by Sánchez-Anguix et al. [25]), consider an agricul-
tural cooperative that negotiates with the government. Even though the mem-
bers of the cooperative have a common goal, they may have different prefer-
ences regarding the prohibition of importing products, government supervision
of prices, insect control, tax concessions, etc. As another example, consider the
government of the United Kingdom that negotiates with the European Union
(EU) regarding withdrawal from the EU (i.e., the Brexit). The members of the
EU have similar interests and objectives, and thus they are considered a single
party in the negotiation process. Nevertheless, the EU is composed of differ-
ent countries, and they may have different preferences regarding sovereignty,
migrants and welfare benefits, economic governance, competitiveness, etc. These
situations are denoted by social scientists as negotiating teams, in which a group
of two or more interdependent persons join together as a single negotiating party
because their similar interests and objectives relate to the negotiation [8].

Since a negotiating team comprises several stakeholders represented as a
single negotiating party, there is need for a coordination mechanism, and a voting
rule is a natural candidate. Ideally, the voters report their true preferences so that
the voting rule will be able to choose the most appropriate outcome. However, as
shown by Gibbard [20] and Satterthwaite [26], every reasonable voting rule with
at least 3 candidates is prone to strategic voting. That is, voters might benefit
from reporting rankings different from their true ones. Clearly, this problem of
manipulation also exists in a negotiating team. For example, suppose that there
is a EU council committee that negotiates with the UK on agricultural and
fishery policies. The committee may decide that the UK will be excluded from
the agricultural policy due to Brexit, or the UK will still be included. Similarly,
the committee may decide that the fishery policy no longer applies to the UK or
include the UK. Therefore, there are 4 possible outcomes, denoted by o1, o2, o3
and o4. Now, suppose that Germany prefers o1 over o2, o2 over o3, and o3 over o4.
We may assume that the preferences of the UK government are publicly known,
and it is also possible that Germany, which currently holds the presidency of the
EU council, is familiar with the preferences of the other EU council members.
Since the negotiation protocol usually is also known, Germany might be able to
reason that o3 is the negotiation result, but if Germany will vote strategically
and misreport its preferences then o2 will be the negotiating result. To the best
of our knowledge, the analysis of manipulation in the context of negotiating
teams has not been investigated to date.

In this paper, we investigate manipulation in the context of negotiating
teams. We assume that there is a negotiation process between two parties. One
of the parties is a negotiating team, and the team uses a voting rule to reach
a decision regarding its negotiation strategy. Specifically, the negotiating team
uses a positional scoring rule as a social welfare function (SWF), which outputs
a complete preference order. This preference order represents the negotiating
party, and is the input in the negotiation process. We thus assume that there is
a negotiation protocol that can work with ordinal preferences. We use the Voting
by Alternating Offers and Vetoes (VAOV) protocol [1], since it is intuitive, easy
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to understand, and the negotiation result is Pareto optimal. Moreover, Erlich
et al. [17] have shown that we can identify the negotiation result of the VAOV
protocol if both parties follow a sub-game perfect equilibrium with an intuitive
procedure.

We analyze two types of manipulation, constructive and destructive. We
begin by studying constructive manipulation by a single voter, where there is a
single manipulator that would like to manipulate the election so that a preferred
candidate will be the negotiation result. We show that placing the preferred can-
didate in the highest position in the manipulative vote is not always the optimal
strategy, unlike in the traditional constructive manipulation of scoring rules, and
we provide a polynomial-time algorithm to find a manipulation (or decide that
such a manipulation does not exist). We then analyze the constructive coalitional
manipulation problem, where several voters collude and coordinate their votes
so that an agreed candidate will be the negotiation result. We show that this
problem is still tractable for any x-approval rule, but it becomes computationally
hard for Borda. However, we provide a polynomial-time algorithm for the coali-
tional manipulation of Borda with the following guarantee: given a manipulable
instance with k manipulators, the algorithm finds a successful manipulation with
at most one additional manipulator. Finally, we show that our hardness result
and algorithms can be adapted for destructive manipulation problems, where
the goal of the manipulation is to prevent a candidate from being the result of
the negotiation.

The contribution of this work is twofold. First, it provides an analysis of a
voting manipulation in the context of negotiating teams, a problem that has
not been investigated to date. Our analysis also emphasizes the importance of
analyzing voting rules within an actual context, because it leads to new insights
and a deeper understanding of the voting rules. Second, our work concerns the
manipulation of SWF, which has been scarcely investigated.

2 Related Work

The computational analysis of voting manipulation was initially performed by
Bartholdi, Tovey, and Trick [3], and Bartholdi and Orlin [2], who investigated
constructive manipulation by a single voter. Following these pioneer works, many
researchers have investigated the computational complexity of manipulation,
and studied different types of manipulation with different voting rules in varied
settings. We refer the reader to the survey provided by [18], and more recent
survey by [11]. All of the works that are surveyed in these papers analyze the
manipulation of voting rules as social choice functions, that is, the voting rules
are used to output one winning candidate (or a set of tied winning candidates).
In our work we investigate manipulation of a resolute SWF, i.e., it outputs a
complete preference order of the candidates.

There are very few papers that investigate the manipulation of SWFs. This
is possibly since the opportunities for manipulation are not well-defined without
additional assumptions. That is, since the output of a SWF is an order, and vot-
ers do not report their preferences over all possible orderings, some assumptions
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have to be made on how the voters compare possible orders. Indeed, the first
work that directly deals with the manipulation of SWF was by [5], who assumed
that a voter prefers one order over another if the former is closer to her own pref-
erences than the latter according to the Kemeny distance, and mainly presented
impossibility results. Bossert and Sprumont [4] assumed that a voter prefers one
order over another if the former is strictly between the latter and the voter’s
own preferences. Built on this definition their work studies three classes of SWF
that are not prone to manipulation (i.e., strategy-proof). Dogan and Lainé [13]
characterized the conditions to be imposed on SWFs so that if we extend the
preferences of the voters to preferences over orders in specific ways the SWFs
will not be prone to manipulation. Our work also investigates the manipula-
tion of SWF, but we analyze the SWF in the specific context of a negotiation.
Therefore, unlike all of the above works, the preferences of the manipulators are
well-defined and no additional assumptions are needed.

Our work is also connected to committee elections or multi-winner elections,
where manipulation of scoring rules has been considered [7,22,24]. However, in
committee election we are given the size of the committee as an input. In our
setting the output of the voting rule (i.e., the ranking) essentially determines the
point in which RC terminates (see Sect. 3 for the definition of RC). Using the
model of committee election in our setting we can say that the ranking deter-
mines the size of the committee. That is, each possible manipulation determines
not only the position of each candidate but also the size of the committee.

The work that is closest to ours is the paper by Sánchez-Anguix et al. [25],
which involves the use of voting rules for the decision process of a negotiating
team, i.e., the same basic scenario that we consider. The paper presents several
strategies they developed, which use some specific, tailored-made, voting rules,
and experimentally analyzes them in different environments. Our work analyzes
voting in the context of a negotiation from a theoretical perspective. We formally
define the general problem, show polynomial-time algorithms for some cases, and
provide hardness results and approximations for others.

Finally, we note that in our setting there is a SWF, which outputs an order
over the candidates, and this order is used as an input for the negotiation pro-
cess. In Sect. 3 we note that there is a connection between the sub-game perfect
equilibrium of the negotiation and the Bucklin voting rule. Therefore, our set-
ting is also related to a multi-stage voting. Several variants of multi-stage voting
have been considered [9,12,15,23]. All of these works did not consider the case
of SWF in the first round, as we do. More importantly, in all of these works the
set of voters remains the same throughout the application of the voting rules.
In our case the set of the voters in the first stage is different from the set in the
second stage. In the first stage the voters are the agents in the negotiating team,
and they use a scoring rule as a SWF. In the second stage there are only two
voters, which are the negotiating parties, and they use an equivalent of Bucklin
on their full preference orders.
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3 Preliminaries

We assume that there is a set of outcomes, O, |O| = m and a set of voters
V = {1, ..., n}. Each voter i is represented by her preference pi, which is a total
order over O. We write o �pi

o′ to denote that outcome o is preferred over
outcome o′ according to pi. The position of outcome o in preference pi, denoted
by pos(o, pi), is the number of outcomes that o is preferred over them in pi.
That is, the most preferred outcome is in position m − 1 and the least preferred
outcome is in position 01. We also refer to the outcomes of O as candidates, and
to the total orders over O as votes.

A preference profile is a vector �p = (p1, p2, ..., pn). In our setting we are
interested in a resolute social welfare function, which is a mapping of the set of
all preference profiles to a single strict preference order. A scoring vector for m
candidates is �s = (sm−1, . . . , s0), where every si is a real number, sm−1 ≥ . . . ≥
s0 ≥ 0, and sm−1 > s0. A scoring vector essentially defines a voting rule for
m candidates: each voter awards si points to the candidate in position i. Then,
when using the rule as a SWF, the candidate with the highest aggregated score
is placed in the top-most position, the candidate with the second highest score is
placed in the second highest position, etc. Since ties are possible, we assume that
a lexicographical tie-breaking rule is used. We study positional scoring rules,
where each rule in this family applies an appropriate scoring vector for each
number of candidates. That is, a scoring rule is represented by an efficiently
compu table function f such that for each m ∈ N, f(m) = (sm

m−1, . . . , s
m
0 ) is a

scoring vector for m candidates. Some of our results hold only for x-approval
rules, in which f(m) = (1, . . . , 1, 0, . . . , 0), where the number of 1’s is x. Note
that the well-known Plurality rule (where each voter awards one point to her
favorite candidate) is 1-approval and the Veto rule (where each voter awards one
point to all the candidates, except for the least preferred one) is (m-1)-approval
and they are thus both x-approval rules. We also analyze the Borda rule, where
each voter awards the candidate a score that equals the candidate’s position,
i.e., f(m) = (m − 1,m − 2, . . . , 1, 0). In general, we denote the resulting social
welfare function F .

In the negotiation process we assume there are two parties: t is the nego-
tiating team, which comprises a set of voters, and there is another party. The
parties negotiate over the set of outcomes O, and their preferences are also total
orders over O. However, since t is a negotiating team that comprises several
stakeholders, the preference order of t, pt, is determined by the social welfare
function over the preference profile of the members of t, that is, pt = F(�p). We
denote by po the preference order of the other party.

We assume that negotiating parties use the Voting by Alternating Offers
and Vetoes (VAOV) protocol [1], which is a negotiation protocol that works

1 Our definition of a candidate’s position in a voter’s ranking is the opposite of the
commonly used, and we chose it to enhance the readability of the proofs: pos(o, pi) ≥
pos(o′, pj) is naturally translated to “o is ranked in pi higher than o′ is ranked in
pj”.
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with ordinal preferences. The protocol works as follows. Let p1 be the party that
initiates the negotiation and let p2 be the other party. At round 1, party p1 offers
an outcome o ∈ O to p2. If p2 accepts, the negotiation terminates successfully
with o as the result of the negotiation. Otherwise, party p2 offers an outcome
o′ ∈ O \ {o}. If p1 accepts, the negotiation terminates successfully with o′ as the
result of the negotiation. Otherwise, p1 offers an outcome o′′ ∈ O \ {o, o′} to p2,
and so on. If no offer was accepted until round m then the last available outcome
is accepted in the last round as the result of the negotiation. We further assume
that the negotiating parties are rational and each party has full information
on the other party’s preferences. Therefore, the parties will follow a sub-game
perfect equilibrium (SPE) during the negotiation. Anbarci [1] showed that if
both parties follow an SPE the negotiation result will be unique. We can thus
also call this outcome the SPE result. The SPE result depends on pt, po, and on
the identity of the party that initiates the negotiation, and we thus denote by
Nt(pt, po) the SPE result if the negotiation team t initiates the negotiation, and
by No(pt, po) the SPE result if the other party initiates the negotiation.

In some negotiation settings there is a central authority that can force the
parties to offer specific outcomes in a specific order. In this case it is common to
use a bargaining rule, which is a function that assigns each negotiation instance
a subset of the outcomes that is considered the result of the negotiation. One
such bargaining rule is the Rational Compromise (RC) bargaining rule [21]. Let
Aj

(pt)
= {the j most preferred outcomes in pt}. Aj

(po)
is defined similarly for po.

RC is computed as follows:

1. Let j = 1
2. If |Aj

(pt)
∩ Aj

(po)
| > 0 then return Aj

(pt)
∩ Aj

(po)
.

3. Else, j ← j + 1 and go to line 2.

Note that the RC bargaining rule is equivalent to Bucklin voting with two voters
and no tie-breaking mechanism. An important finding of [17] shows that the
negotiation result of the VAOV protocol if both parties follow an SPE (i.e., the
SPE result) is always part of the set returned by the RC rule. We use this
connection between RC and the VAOV negotiation protocol whenever we need
to identify the SPE result. Specifically, if RC returns one outcome, this is also
the SPE result. If RC returns two outcomes then the SPE result depends on the
number of outcomes and on the party that initiates the negotiation.

4 Constructive Manipulation by a Single Voter

We begin by studying the problem of constructive manipulation by a single
voter. In this setting a manipulator v′ would like to manipulate the election
so that a preferred candidate p will be the SPE result. We assume that the
decision of which party initiates the negotiation is not always known in advance.
Therefore, we require that both Nt and No returns the preferred candidate. The
Constructive Manipulation in the context of Negotiations (C-MaNego) is defined
as follows:
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Definition 1. (C-MaNego) We are given social welfare function F , a prefer-
ence profile �p of honest voters on the negotiating team t, the preference of the
other party po, a specific manipulator v′, and a preferred candidate p ∈ O. We
are asked whether a preference order pv′ exists for the manipulator v′ such that
Nt(F(�p ∪ pv′), po) = No(F(�p ∪ pv′), po) = p.

We first observe that manipulation problems in the context of negotiations
are inherently different from the traditional voting manipulation problems. First,
in voting manipulation there is one set of voters in which their preferences are the
inputs of the voting rule. The manipulator only needs to take these preferences
into account when she decides on her manipulative vote. In our case there are two
stages: in the first stage there is a set of voters and in the second stage there are
two negotiating parties, and the manipulator needs to consider the preferences of
all of these agents when she decides on her manipulative vote. In addition, unlike
constructive manipulation in many voting rules, placing the preferred candidate
p in the highest position in the manipulative vote is not always the optimal
strategy, since constructive manipulation in our case requires sometimes also
destructive actions. Indeed, the following example describes a scenario where
there is no manipulation where p is placed in the highest position. However,
manipulation is possible if p is placed in the second highest position, since this
placement allows for a destructive action against another candidate.

Example 1. Assume that po is the following preference order: po = b � p �
a � c. There is one manipulator v′, and �p comprises 4 voters with the following
preferences: p � c � a � b, p � b � a � c, b � p � a � c, b � a � c � p. Assume
that we use the Borda rule, and thus the voters of �p give the following scores:
b gets 8 points, p gets 8 points, a gets 5 points and c gets 3 points. Since we
assume that the tie-breaking rule is a lexicographical order, pt = b � p � a � c.
In order to find a successful manipulation v′ needs to make sure that b will not
be in the two highest positions in F(�p ∪ pv′). Now, if the manipulator places p
in the highest position then p gets 11 points. Then, placing the other candidates
in every possible order results in b in the second highest positions in F(�p ∪ pv′).
Alternatively, if v′ votes as follows: a � p � c � b, then p gets 10 points, a and
b get 8 points, and c gets 4 points; thus F(�p ∪ pv′) = p � a � b � c. Now the
SPE result is p.

We now present a polynomial-time algorithm for C-MaNego with any scoring
rule. Let pa be the order that the algorithm finds (i.e., pa is a possible pv′), and
let pa

t = F(�p ∪ pa). Note that during the algorithm we use F(�p ∪ pa), where pa

is not a complete preference order, i.e., pa comprises m′ candidates, m′ < m,
that are placed in specific positions. In these situations we assume that all of the
candidates that are not in pa get a score of 0 from pa. Given i, 1 ≤ i ≤ 	m/2
,
let Hi be the set that contains p, and the i − 1 most preferred outcomes in pt

that do not belong to Ai
(po)

.
Our algorithm works as follows. It uses the connection between RC and the

negotiation protocol to identify the SPE result. Clearly, if the position of p in
po is less than 	m/2
 then for any possible pa RC does not return p. Therefore,
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there is no manipulation and the algorithm returns false (lines 1–2). Otherwise,
we use the variable i to indicate the iteration number in which RC terminates.
Thus, the algorithm iterates over the values of i from 1 to 	m/2
 (line 3). For a
given i, the algorithm tries to ensure that no outcome from Ai

(po)
will be placed

in the i highest positions in pa
t . Consequently, the algorithm places the outcomes

from Hi in the highest positions and they receive the highest scores. Moreover,
the outcomes are placed in a reverse order (with regards to their order in pt)
to ensure that even the least preferred outcome in Hi will receive a score that
is as high as possible (in order to be included in the highest positions in pa

t ).
Then, the algorithm places the remaining outcomes, denoted C, so that they
will not prevent p from being the negotiation result (lines 5–10). Specifically,
the algorithm places the outcomes of C in the lowest positions in pa and the
outcomes are placed in a reverse order, with regards to their order in pt. Then,
if pa is a successful manipulation the algorithm returns it (line 12). Otherwise,
the algorithm proceeds to the next iteration.

ALGORITHM 1: Constructive manipulation by a single voter
1 if pos(p, po) < �m/2� then
2 return false

3 for i = 1 to �m/2� do
4 pa ← Hi in a reverse order of the positions in pt

5 C ← O \ Hi

6 for j = 1 to |O \ Hi| do
7 c ← the most preferred outcome from C under pt

8 place c in pa such that pos(c, pa) = j − 1
9 j ← j + 1

10 remove c from C

11 if Nt(F(�p ∪ pa), po) = No(F(�p ∪ pa), po) = p then
12 return pa

13 return false

Theorem 1. Algorithm 1 correctly decides the C-MaNego problem with any
positional scoring rule in polynomial time.

Proof. Clearly, the algorithm runs in polynomial time since there are two loops,
where each loop iterates at most m times. In addition, if the algorithm suc-
cessfully constructs a manipulation order, p will be the negotiation result. We
need to show that if an order that makes p the negotiation result exists, then our
algorithm will find such an order. Assume that we have a manipulative vote, pm,
that makes p the negotiation result, and let pm

t = F(�p∪pm). Thus, Nt(pm
t , po) =

No(pm
t , po) = p. In addition, given a set Hi let Li = {�|∃h ∈ Hi s.t. h ≺pt

�}
and Ri = {o|o ∈ O, o /∈ Hi and o /∈ Li}.

We show that Algorithm 1 returns pa in line 12, when i equals the iteration in
which RC terminates given pm

t and po. There are two possible cases to consider:
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• Ai
(pa) = Ai

(pm) : according to Algorithm 1, Ai
(pa) = Hi, and since Ai

(pa) =
Ai

(pm), Ai
(pm) = Hi. By definition, ∀r ∈ Ri and ∀h ∈ Hi, r ≺pt

h and
r ≺pm h. Since we use a scoring rule, ∀r ∈ Ri and ∀h ∈ Hi, r ≺pm

t
h. Since

pm is a successful manipulation and RC terminates at iteration i, then ∀� ∈ Li

where � ∈ Ai
(po)

, � /∈ Ai
(pm

t ). For any other � ∈ Li we know that p ≺pt
� and

for any h ∈ Hi \ {p}, � ≺pt
h. Since pm is a successful manipulation and RC

terminates at iteration i, p ∈ Ai
(pm

t ). Overall, Ai
(pm

t ) = Hi.

We first assume that all the candidates that are not in Hi get a score of
0 from pa, and we show that Ai

(pa
t )

= Hi. For any h ∈ Hi, if pos(h, pa) ≥
pos(h, pm) then pos(h, pa

t ) ≥ pos(h, pm
t ). Otherwise, let h ∈ Hi be a candidate

such that pos(h, pa) < pos(h, pm) and let s = pos(h, pa). There are m − s − 1
candidates from Hi above h in pa. According to the pigeonhole principle, at
least one of them, denoted h′, that is placed in pm at position s or lower. That
is, pos(h′, pm) ≤ pos(h, pa). By the algorithm construction, all of the candidates
that are ranked higher than h in pa are ranked lower than h in pt. That is,
h′ ≺pt

h. However, h′ ∈ Ai
(pm

t ) and thus h ∈ Ai
(pa

t )
. Overall, Ai

(pa
t )

= Hi.
We now show that Algorithm 1 (lines 6–10) can assign scores to all the

candidates in O\Hi such that pa is a successful manipulation. For any o ∈ O\Hi,
if pos(o, pa) ≤ pos(o, pm) then pos(o, pa

t ) ≤ pos(o, pm
t ). Since o /∈ Ai

(pm
t ) then

o /∈ Ai
(pa

t )
. Otherwise, let o ∈ O \ Hi be a candidate such that pos(o, pa) >

pos(o, pm) and let s = pos(o, pa). There are s candidates from O \ Hi below o
in pa. According to the pigeonhole principle, at least one of them, denoted o′,
is placed in pm at position s or higher. That is, pos(o′, pm) ≥ pos(o, pa). By
the algorithm construction, all of the candidates c ∈ O \ Hi that are ranked
lower than o in pa are ranked higher than o in pt. That is, o ≺pt

o′. However,
o′ /∈ Ai

(pm
t ) and thus o /∈ Ai

(pa
t )

. Overall, after placing the candidates from O \Hi

in pa, ∀o ∈ O \Hi, o /∈ Ai
(pa

t )
. That is, Ai

(pa
t )

= Hi, and thus Nt(F(�p∪ pa), po) =
No(F(�p ∪ pa), po) = p.

• Ai
(pa) �= Ai

(pm): let pm′ be the manipulation pm with the following changes:
each r ∈ Ai

(pm
t ) \ Hi is replaced with a candidate hr ∈ Hi \ Ai

(pm
t ). That

is, pos(r, pm′) = pos(hr, p
m) and pos(hr, p

m′) = pos(r, pm). Since pm is a
successful manipulation, if r ∈ Ai

(pm
t ) \ Hi then r /∈ Ai

(po)
. Thus, by the

definition of Hi, ∀r ∈ Ai
(pm

t ) \Hi and ∀h ∈ Hi \Ai
(pm

t ), pos(r, pt) < pos(h, pt).
Therefore, since each r ∈ Ai

(pm
t ) \ Hi is ranked in the highest i positions in

pm
t , then hr is ranked in the highest i positions in pm′

t . Similarly, since each
hr is not ranked in the highest i positions in pm

t , then r is not ranked in the
highest i positions in pm′

t . That is, hr ∈ Ai
(pm′

t ) and r /∈ Ai
(pm′

t ), and thus,
Hi = Ai

(pm′
t ). Let pm′′ be the manipulation pm′ with the following changes:

each r ∈ Ai
(pm′) \ Hi is replaced with a candidate hr ∈ Hi \ Ai

(pm′). That
is, Ai

(pm′′) = Hi. Note that c /∈ Ai
(pm′

t ) for every c ∈ O \ Hi, and therefore
c /∈ Ai

(pm′′
t ). Thus, Ai

(pm′′
t ) = Hi. That is, pm′′ is a successful manipulation, and
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Ai
(pm′′) = Ai

(pa). This brings us back to the first case we already considered
and showed that pa is a successful manipulation.

��

5 Constructive Coalitional Manipulation

We now consider the problem of constructive manipulation by a coalition of
voters. That is, several manipulators, denoted by M , might decide to collude
and coordinate their votes in such a way that an agreed candidate p will be
the SPE result. The constructive coalitional manipulation problem is defined as
follows:

Definition 2 (CC-MaNego). Given a social welfare function F , a preference
profile �p of honest voters on the negotiating team t, the preference of the other
party po, a number of manipulators k, and a preferred candidate p ∈ O, we check
whether a preference profile �pM for the manipulators exists such that Nt(F(�p ∪
�pM ), po) = No(F(�p ∪ �pM ), po) = p.

We show that CC-MaNego can be decided in polynomial time for any x-
approval rule using Algorithm 2, which works as follows. Similarly to Algo-

ALGORITHM 2: Coalitional manipulation
1 if pos(p, po) < �m/2� then
2 return false

3 for i = 1 to �m/2� do
4 �pM ← []
5 for � = 1 to |M | do
6 pa ← empty preference order

7 C ← Hi

8 for j = 1 to |Hi| do
9 c ← the least preferred outcome from C under F(�p ∪ �pM )

10 place c in pa such that pos(c, pa) = m − j
11 j ← j + 1
12 remove c from C

13 C ← O \ Hi

14 for j = 1 to |O \ Hi| do
15 c ← the most preferred outcome from C under F(�p ∪ �pM )
16 place c in pa such that pos(c, pa) = j − 1
17 j ← j + 1
18 remove c from C

19 add pa to �pM

20 if Nt(F(�p ∪ �pM ), po) = No(F(�p ∪ �pM ), po) = p then
21 return �pM

22 return false
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rithm 1, the algorithm iterates over the possible values of i, where i indicates
the iteration number in which RC terminates. For any given i, the algorithm
iterates over the number of manipulators and determines their votes (Lines 5–
19). We refer to each of these iterations as a stage of the algorithm. In each
stage, a vote of one manipulator is determined, denoted by pa. We begin with
an empty set of votes, �pM . Then, the algorithm places the outcomes from Hi

in the highest positions in pa. The outcomes are placed in a reverse order, with
regards to their order in F(�p∪ �pM ). Similarly, the algorithm places all the other
outcomes in the lowest positions in pa and the outcomes are placed in a reverse
order, with regards to their order in F(�p ∪ �pM ). Note that the set Hi does not
change throughout the algorithm’s stages. However, the order of the outcomes
in Hi and O\Hi according to F(�p∪�pM ) may change when we update �pM , which
implies that the order in which we place the outcomes from Hi and O \ Hi in
pa may differ from one vote to another. Due to space constraints, the full proofs
of this theorem and all subsequent theorems are provided in the full version of
this paper [27].

Theorem 2. Algorithm 2 correctly decides the CC-MaNego problem with x-
approval rule in polynomial time.

Proof. (sketch) In order to prove the theorem we use the following definitions.
Given i, 1 ≤ i ≤ 	m/2
, let U i

0 = arg minh∈Hi pos(h, pt). For each s = 1, 2, ...,
let U i

s ⊆ Hi be U i
s = U i

s−1 ∪ {u : u was ranked above some u′ ∈ U i
s−1 in

some stage l, 1 ≤ l < k, but u was ranked below some u′ ∈ U i
s−1 in stage

l + 1}. Now, let U i =
⋃

0≤s U i
s. The set Di is defined similarly. Specifically, let

Di
0 = arg maxd∈O\Hi pos(d, pt). For each s = 1, 2, ..., let Di

s ⊆ O \ Hi be Di
s =

Di
s−1 ∪ {d : d was ranked below some d′ ∈ Di

s−1 in some stage l, 1 ≤ l < k, but
d was ranked above some d′ ∈ Di

s−1 in stage l + 1}. Now, let Di =
⋃

0≤s Di
s. We

first show that the scores in F(�p∪�pM ) of the candidates in U i (Di) are extremely
dense. That is, the difference between the scores of every two candidates from
U i (Di) is at most 1. Therefore, the difference between the minimal (maximal)
score of a candidate from U i (Di) and the average score of the candidates in
U i (Di) is less than 1. Using this property we show that if for every given i,
1 ≤ i ≤ 	m/2
, ∃d ∈ Di and ∃u ∈ U i, u ≺pa

t
d, then there is no manipulation.

Now, ∀h ∈ Hi \ U i and ∀u ∈ U i, u ≺pa
t

h, and ∀o ∈ O \ (Hi ∪ Di) and ∀d ∈ Di,
o ≺pa

t
d. Therefore, if there exists i, 1 ≤ i ≤ 	m/2
, such that ∀d ∈ Di and

∀u ∈ U i, d ≺pa
t

u, then ∀h ∈ Hi and ∀o ∈ O \ Hi, o ≺pa
t

h. By definition of Hi,
Ai

(po)
∩ Hi = {p}. Therefore, Ai

(po)
∩ Ai

(pa
t )

= {p}. That is, Algorithm 2 finds a
successful manipulation. ��

Unlike with the family of x-approval rules, CC-MaNego is computationally
hard with Borda. The reduction is from the Permutation Sum problem [29].

Theorem 3. CC-MaNego is NP-Complete with Borda.

Even though CC-MaNego with Borda is NP -complete, it might be still possi-
ble to develop an efficient heuristic algorithm that finds a successful coalitional
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manipulation. We now show that Algorithm 2 is such a heuristic, and show its
theoretical guarantee. Specifically, the algorithm is guaranteed to find a coali-
tional manipulation in many instances, and we characterize the instances in
which it may fail. Formally,

Theorem 4. Given an instance of CC-MaNego with Borda,

1. If there is no preference profile making p the negotiation result, then Algo-
rithm 2 will return false.

2. If a preference profile making p the negotiation result exists, then for the same
instance with one additional manipulator, Algorithm 2 will return a preference
profile that makes p the negotiation result.

That is, Algorithm 2 will succeed on any given instance such that the same
instance but with one less manipulator is manipulable. Thus, it can be viewed
as a 1-additive approximation algorithm (this approximate sense was introduced
by [30] when analyzing Borda as a social choice function (SCF)).

Proof. (sketch) Interestingly, this proof is in the same vein as the proof of The-
orem 2, and we again use the sets U i and Di. However, the proof here is more
involved. Let s�(c) be the score of candidate c in F(�p ∪ �pM ) after stage �. We
first show that, given i, 1 ≤ i ≤ 	m/2
, the sets of scores {sk−1(u) : u ∈ U i}
and {sk−1(d) : d ∈ Di} are 1-dense, which is the following:

Definition 3 (due to [30]). A finite non-empty set of integers B is called 1-
dense if when sorting the set in a non-increasing order b1 ≥ b2 ≥ · · · ≥ bi (such
that {b1, . . . , bi} = B), ∀j, 1 ≤ j ≤ i − 1, bj+1 ≥ bj − 1 holds.

Let q(U i) and q(Di) be the average score of candidates in U i and Di, respec-
tively, after k − 1 stages. Using the 1-dense property we show that q(U i) ≤
minu∈Ui{sk(u)} − m + |U i|, and similarly, maxd∈Di{sk(d)} ≤ q(Di) + |Di| − 1.
That is, we bound the distance between the minimal score in U i (the maximal
score in Di) after stage k and the average score in U i (Di) after stage k−1. Now,
suppose that there is a successful manipulation for Borda with k − 1 manipula-
tors. Then, we show that there exists i, 1 ≤ i ≤ 	m/2
, such that q(Di) ≤ q(U i).
Now, by definition of U i and Di, |U i|+ |Di| ≤ m. Combining all the inequalities
we get that maxd∈Di{sk(d)} < minu∈Ui{sk(u)}. Then, it is possible to show
that by adding one additional manipulator the algorithm will find a successful
manipulation. ��

6 Destructive Manipulation

In this section we study the destructive manipulation problem, where the goal
of the manipulation is to prevent an outcome from being the SPE result. We
begin with the destructive variant of manipulation by a single voter.
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Definition 4 (D-MaNego). We are given a social welfare function F , a pref-
erence profile �p of honest voters on the negotiating team t, the preference of the
other party po, a specific manipulator v′, and a disliked candidate e ∈ O. We
are asked whether a preference order pv′ exists for the manipulator v′ such that
e �= Nt(F(�p ∪ pv′), po) and e �= No(F(�p ∪ pv′), po).

Recall that C-MaNego is in P for any scoring rule, but this does not immedi-
ately imply that D-MaNego is also in P . Indeed, it is possible to run Algorithm 1
for each candidate c �= e. However, since Algorithm 1 returns a manipulation
only when Nt(F(�p ∪ pv′), po) = No(F(�p ∪ pv′), po) = c, it does not find a solu-
tion where Nt(F(�p ∪ pv′), po) = c and No(F(�p ∪ pv′), po) = c′, c �= c′, and both
c, c′ �= e, which is a possible solution for D-MaNego. Nevertheless, we can use a
slightly modified version of Algorithm 1 for D-MaNego.

Theorem 5. D-MaNego with any positional scoring rule can be decided in poly-
nomial time.

We now continue with the destructive coalitional manipulation problem,
where several manipulators might decide to collude and coordinate their votes in
such a way that an agreed candidate e will not be the SPE result. The problem
is defined as follows:

Definition 5 (DC-MaNego). Given a social welfare function F , a prefer-
ence profile �p of honest voters on the negotiating team t, the preference of the
other party po, a number of manipulators k, and a disliked candidate e ∈ O,
we check whether a preference profile �pM exists for the manipulators such that
e �= Nt(F(�p ∪ �pM ), po) and e �= No(F(�p ∪ �pM ), po).

Similar to C-MaNego, we show that a slightly modified version of Algorithm 2
decides DC-MaNego with any x-approval rule.

Theorem 6. DC-MaNego with any x-approval rule can be decided in polynomial
time.

Indeed, DC-MaNego with Borda is computationally hard. Note that this
result is surprising, since the destructive coalitional manipulation problem when
using Borda as an SCF is in P [10].

Theorem 7. DC-MaNego with Borda is NP-Complete.

Finally, similar to CC-MaNego, we show that the modified Algorithm 2 is an
efficient heuristic algorithm that finds a successful destructive manipulation, and
we guarantee the same approximation. That is, the algorithm succeeds in finding
a destructive manipulation for any given instance such that success for the same
instance with one less manipulator is possible.

Theorem 8. There is a 1-additive approximation algorithm for DC-MaNego
with Borda.
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7 Conclusion and Future Work

In this paper we analyze the problem of strategic voting in the context of nego-
tiating teams. Specifically, a scoring rule is used as a SWF, which outputs an
order over the candidates that is used as an input in the negotiation process
with the VAOV protocol. We show that the single manipulation problem is in
P with this two stage procedure, and the coalitional manipulation is also in
P for any x-approval rule. The problem of coalitional manipulation becomes
hard when using Borda, but we provide an algorithm that can be viewed as
a 1-additive approximation for this case. Interestingly, our complexity results
hold both for constructive and destructive manipulations, unlike the problems
of manipulation when using Borda as an SCF. Note also that our algorithms are
quite general. Algorithm 1 provides a solution with any scoring rule. Algorithm 2
solves the coalitional manipulation problem with any x-approval rule and it is
also an efficient approximation with Borda.

For future work we would like to extend our analysis to other voting rules.
In addition, designing FPT algorithms for CC-MaNego and DC-MaNego with
Borda is a promising open research direction, since there is an FPT algorithm
for the constructive coalitional manipulation of Borda as a SCF with respect to
the number of candidates [28].
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Abstract. We introduce a new parameter which we call the nonmanip-
ulative vote-deficit (NMVD) for single-winner voting rules. In particular,
the NMVD of a voting rule at an election is the minimum number of votes
needed to be added to transform this election into a nonmanipulable one
yet without changing the winner. A voting rule has a bounded NMVD
if the NMVDs of this rule at all elections are bounded from above by
a constant. We show that the prevalent voting rules Borda, Plurality
with Runoff, and Maximin have bounded NMVDs. In addition, we show
that the NMVD of r-Approval, r-Veto, and Bucklin at every election can
be bounded by a function of the number of candidates. For Copelandα,
though that in general the NMVDs at elections cannot be bounded by
a function of the number of candidates, we show that many special elec-
tions are still expected to have small NMVDs. Many of our results are
tight.

Keywords: Voting rules · Manipulation · Nonmanipulative
vote-deficits · Borda · Maximin · Copeland · Plurality with runoff ·
Tournaments

1 Introduction

We consider single-winner voting where every voter holds a linear preference over
a given set of candidates, and a voting rule is applied to select one candidate
as the winner. An election is a tuple consisting of a set of candidates and a
multiset of preferences (votes) over the candidates. We put forward the notion
of nonmanipulative vote-deficit (NMVD). In particular, we define the NMVD of
a voting rule at an election as the minimum number of votes needed to be added
so that

(1) the resulting election yields the same winner as the original one; and
(2) it is impossible to change the preference of any one voter in the election to

improve the result in favor of the voter.

A voting rule has a bounded NMVD if the NMVDs of this rule at all elections
are bounded from above by a constant.

Our notion of NMVD is related to the classic problem Construc-

tive/Destructive Coalition Manipulation (CCM/DCM) which has been
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extensively and intensively studied in the literature [1,4,6,16,24–26]. Recall that
in the CCM (resp. DCM) problem, we are given an election and an integer k (the
number of manipulators), and the question is whether we can add k new votes
(cast by the manipulators) so that a distinguished candidate wins (resp. does
not win) the election. Instead of changing the winner in a particular way, our
notion is concerned with enhancing the winning status of the current winner by
adding the minimum number of votes, assuming that everyone is self-interested
and may manipulate the election as long as doing so makes herself better off.

The NMVD of a voting rule at an election is related to the margin of victory of
the rule, which is defined as the minimum number of votes needed to be changed
in order to change the winner (who is the new winner does not matter) [8,14,23].
It is easy to see that the margin of victory of a voting rule at an election is at
least 2 if and only if the NMVD of this rule at the election is 0, and the margin of
victory of a voting rule at an election is 1 if and only if the NMVD of this rule at
the election is at least 1. It should be pointed out that the problem of computing
margin of victory has been also studied under the name Destructive Bribery

(see [11] for further details on Destructive Bribery).
NMVD is also related to the renowned Gibbard-Satterthwaite (G-S) theo-

rem [12,20], which implies that every nondictorial (deterministic) and onto vot-
ing rule is manipulable at some election, i.e., for every voting rule there exists
at least one election such that at least one voter can benefit from misreporting
her true preference under this rule. Since the publication of this fundamental
result, much effort has been made to circumvent the G-S theorem, including the
adoption of randomized rules, the restriction of preference domains, the estab-
lishment of the complexity barrier against manipulations, etc. [3–5,7,13,17,19].
Our notion more or less provides a different approach to prohibiting manipula-
tions via the operation of adding dummy votes.

Our Contributions. We show that several commonly used voting rules have
their NMVDs bounded by two. Moreover, for many voting rules, a constant num-
ber of votes satisfying the two conditions given above can be constructed without
knowing the exact votes. What we need to know is merely the candidate set and
who is the current winner, or head-to-head comparisons among candidates, or
the majority graph of the election, depending on which rules are considered and
which bounds are used.

Motivated by the fact that in many real-world applications the number of
candidates is often small, for voting rules whose NMVDs are not bounded, we
also investigate their NMVDs in this special case and obtain many interesting
results.

For most of the upper bound results, we also show their tightness by providing
concrete elections at which the NMVD of a voting rule matches these bounds.

Due to space limitations, proofs of several theorems (labeled by �) are omit-
ted.
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2 Preliminaries

For an integer i > 0, let [i] denote the set of all positive integers not greater
than i.

An election is a tuple (C, V ) where C is a set of candidates and V is a
multiset of votes. Each vote �∈ V is defined as a linear order over C, indicating
the preference of the vote where a candidate a is preferred to another candidate b
if a is ordered before b, i.e., a � b. Sometimes we omit the notation of a vote if we
are only interested in the preference. For instance, when we say a vote with the
preference a b c we mean a vote who prefers a to b to c. The position of a candidate
in a vote is the number of candidates ordered before this candidate plus one. A
voting rule ϕ maps each nonempty election (C, V ) to a candidate ϕ(C, V ) ∈ C
which is called the winner. For an election (C, V ) and two candidates a and b
in C, let n(C,V )(a, b) be the number of votes preferring a to b. We drop (C, V )
from the notation when it is clear which election is considered. We say that a
beats b if n(a, b) > n(b, a), and a ties b if n(a, b) = n(b, a). We consider the
following voting rules.

Table 1. Some important positional scoring rules. For r-Approval and r-Veto we have
that 0 < r < m. 1-Approval is also referred to as Plurality in the literature.

Rules Vectors

Borda 〈m − 1, m − 2, . . . , 0〉
r-Approval 〈1, . . . , 1, 0, . . . , 0〉 (exactly r many 1s)

r-Veto 〈1, . . . , 1, 0, . . . , 0〉 (exactly r many 0s)

Positional scoring rules. A positional scoring rule is characterized by a func-
tion mapping a nonnegative integer m to a vector 〈β1, β2, . . . , βm〉 of m ratio-
nal numbers such that βi ≥ βi+1 for each i ∈ [m − 1]. Here, m is considered
as the number of candidates. Each vote gives βi points to the candidate in
the i-th position. The winner is a candidate with the maximum total score.
Table 1 summarizes some important positional scoring rules.

Plurality with runoff (PluRun). This rule has two stages. First, all candi-
dates except the first and the second candidates with the maximum Plurality
score(s) are eliminated. (We may need some tie-handling rule to select exactly
two candidates in this stage) In the second stage, between the two candidates
surviving the first stage, the one who is preferred by a majority of votes is
selected as the winner. (We may also need to break ties in this stage if the
two candidates are tied)

Maximin. The Maximin score of a candidate c is defined as minc′∈C\{c} n(c, c′).
The winner is a candidate with the maximum score.

Copeland α (0 ≤ α ≤ 1). For a candidate c ∈ C, let nB(c) = |{c′ ∈ C \ {c} :
n(c, c′) > n(c′, c)}| and nT(c) = |{c′ ∈ C \ {c} : n(c, c′) = n(c′, c)}|. The
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Copelandα score of c is nB(c)+α ·nT(c). The winner is a candidate with the
maximum score.

Bucklin. The Bucklin score of a candidate c ∈ C is defined as the minimum inte-
ger i such that a majority of votes rank c in the top-i positions. A candidate
with the minimum score is the winner.

In the above descriptions, when several candidates have the same maximum
score (for all except PluRun and Bucklin) or have the minimum score (for Buck-
lin), a particular tie-breaking rule is used to determine the winner. In this paper,
unless stated otherwise, ties are broken by a predefined order � over the can-
didates. This is one of the most important tie-breaking rules studied in the
literature (see, e.g., [9]). However, many of our results also hold no matter which
tie-breaking rules are used.

Manipulation. Let (C, V ) be an election and w = ϕ(C, V ) be the winner of
(C, V ) with respect to a voting rule ϕ. We say that a vote �∈ V is manipulable (or
is a manipulative vote) at (C, V ) with respect to ϕ if there exists a candidate c ∈
C \ {w} and a linear order �′ over C such that c � w and c becomes the winner
under ϕ if � is replaced with �′ in V . More precisely, we call � a c-manipulator
at (C, V ) with respect to ϕ.

For an election E = (C, V ) and a manipulative vote �∈ V , let Cϕ(�, E) be
the set of candidates c ∈ C such that � is a c-manipulator at E with respect
to ϕ. For a nonmanipulative vote �, we define Cϕ(�, E) = ∅. Let Cϕ(E) =⋃

�∈V Cϕ(�, E).1

Nonmanipulative Vote-Deficit. For an election (C, V ) and a voting rule ϕ,
the NMVD of ϕ at (C, V ), denoted NMVD(C,V )(ϕ), is defined as the minimum
integer � such that there exists a multiset U of � votes over C such that ϕ(C, V ) =
ϕ(C, V ∪ U) and no vote in V is manipulable at (C, V ∪ U). In particular, we
say that the NMVD of ϕ is bounded if there exists a constant t such that for all
elections (C, V ) it holds that NMVD(C,V )(ϕ) ≤ t.

3 NMVDs in General

In this section, we study the NMVDs of many well-studied voting rules in the
general case. Our main results are summarized in Table 2.

First, it is easy to check that the NMVD of PluRun is at most six no matter
which tie-breaking rule is used in the first stage. Suppose that w and b are the
two candidates surviving the first stage. Then, after adding three votes ranking b
in the top, and adding three votes ranking w in the top, the winner remains
unchanged and, moreover no manipulative vote exists.

Observation 1 . The NMVD of PluRun is bounded by six and, moreover, this
holds no matter which tie-breaking rule is used in the first stage.
1 Based on a polynomial-time algorithm for a manipulation problem (CCM with

exactly one manipulator) presented in [4,18], Cϕ(E) can be calculated in polyno-
mial time for all ϕ considered in this paper.
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Table 2. The upper bounds of NMVDs of many voting rules. Here, m and n are the
numbers of candidates and votes, respectively. Results marked by � hold regardless of
the tie-breaking rules, and marked by ♥ mean that the bounds are tight.

Rules NMVDs References

Borda 2 (�, ♥) Theorem 2

Maximin 6 (�) Theorem 7

PluRun 6 (�, ♥) Observation 1

r-Approval
⌈

m−1
m−r

⌉
Theorem 3

r-Veto
⌈

m−1
r

⌉
Theorem 4

Bucklin min{n + 1, 2(m − 1)} Corollary 1

Copelandα n + 1 (�) Theorem 8

The result of the above observation is tight, in the sense that there exist
tie-breaking rules and elections at which the NMVD of PluRun is exactly six,
as illustrated by the following example.

Example 1. Consider an election with three candidates a, b, w, and with 30
votes defined as follows (number of votes: preferences):

10: w b a 10: b a w 5: a w b 5: a b w

In the first stage, ties are broken so that (1) when all candidates have the
same highest Plurality score, b and w survive the first stage; (2) when w has
the unique highest Plurality score, and a and b have the same Plurality score, a
is the one who survives the first stage with w; (3) when a or b has the highest
Plurality score and the other two have the same Plurality score, a and b survive
the first stage. In the second stage, ties are broken so that when w ties b, w is
the winner. One can check that the NMVD of PluRun at this election is six.

If we use a fixed linear order to break ties in the first stage, the NMVD of
PluRun decreases to four.

Theorem 1. The NMVD of PluRun is at most four if in the first stage a pre-
defined linear order is used to break ties.

The result of the above lemma is also tight, which can be illustrated by an
election obtained from the one in Example 1 by adding one more vote with
the preference w b a and one more vote with the preference b a w, and the
tie-breaking order is a � b � w for the first stage. Now we study the NMVD of
Borda.

Theorem 2. The NMVD of Borda is bounded by two for all tie-breaking rules.
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Proof. Let (C, V ) be an election with w ∈ C being its Borda winner. Addition-
ally, let (c1, c2, . . . , cm−1) be any arbitrary but fixed order of C \ {w}. Let U be
a set consisting of two votes with respectively the preferences w c1 c2 · · · cm−1

and w cm−1 cm−2 · · · c1. The addition of these two votes increases the score
gap between w and every other candidate by exactly m. We claim that in the
election (C, V ∪ U) no vote in V is manipulable. Assume for contradiction that
there is a c-manipulator in V for some c ∈ C \ {w}. Recall that c is ranked
before w in this vote. Hence, changing this vote can only decrease the score gap
between w and c by at most m−2, implying that c has Borda score smaller than
that of w no matter how this vote is changed, a contradiction. 
�

The upper bound of NMVD for Borda in Theorem 2 is tight, in the sense
that no matter which tie-breaking rules are used, there are elections at which
the NMVD of Borda is exactly two, as shown in the following example.

Example 2. Consider an election (C, V ) where C = {c1, c2, c3, c4}. We have the
following votes in V . In particular, for each ci ∈ C, where i ∈ [4], there are 12
votes in V as follows ((cx, cy, cz) is the order over C \ {ci} such that x < y < z):
3: cx cy ci cz 3: cy cz ci cx 3: cz cx ci cy 1: ci cx cy cz 1: ci cy cz cx 1: ci cz cx cy

In total, V consists of 48 votes. Obviously, all candidates have the same Borda
score 72. Without loss of generality, assume that ci for some i ∈ [4] is selected as
the Borda winner according to a tie-breaking rule. It is easy to see that there is at
least one manipulator in this election. For instance, the vote with the preference
cx cy ci cz could be changed into cy cx ci cz to make the candidate cy the winner.
Hence, to preclude manipulation we need to add at least one additional vote.
However, we show that adding one vote does not do the job. First, as we request
that the original winner should remain as the winner after adding additional
votes in our model, the added vote must rank ci in the top. Without loss of
generality, assume that the candidate in the second position of the added vote
is cx. Then, a vote with the preference cz cx ci cy is a manipulator, because by
changing it into cx cz cy ci, the candidate cx becomes the Borda winner.

Notice that to find the two votes in the proof of Theorem 2, we need only to
know the candidate set C and the current winner. Now we study r-Approval.

Theorem 3. For ϕ being r-Approval, NMVD of ϕ at every election E = (C, V )
is bounded by

⌈ |Cϕ(E)|
m−r

⌉
≤

⌈
m−1
m−r

⌉
, where m = |C|.

Proof. Let � be the predefined tie-breaking order for E. Let w be the current
r-Approval winner of E with respect to ϕ. Let b =

⌈ |Cϕ(E)|
m−r

⌉
. We construct b

votes as follows. In particular, we partition Cϕ(E) into b subsets denoted by
C(w, 1), C(w, 2), . . . , C(w, b) such that every subset contains at most m− r can-
didates. Then, we create b votes where the i-th vote ranks w in the top, and
ranks all candidates in C(w, i) and any arbitrary m − r − |C(w, i)| candidates
in C \ (C(w, i) ∪ {w}) in the last m − r positions. The relative orders among
candidates that are not specified do not matter. Let E′ be the election obtained
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from E by adding the above votes. Apparently, w remains as the winner in E′.
In the following, we show that none of V is a manipulative vote at E′.

For the sake of contradiction, assume that there is a c-manipulator �∈ V
where c ∈ C \{w} in E′. Observe that, when ties are broken by a predefined lin-
ear order over the candidates, if a vote is not a c-manipulator in E, it cannot be a
c-manipulator in E′ too. In other words, it holds that Cϕ(E′) ⊆ Cϕ(E). As a con-
sequence, c must be from Cϕ(E). Then, note that all added votes approve w but
at least one of them does not approve c (the vote corresponding to C(w, i) such
that c ∈ C(w, i)). Therefore, adding the above b votes increases the score gap
between w and c by at least one. Observe also that because � is a c-manipulator,
c � w holds and, moreover, either both w and c are ranked in the top-r posi-
tions, or both are ranked in the last m − r positions in �. Hence, changing �
decreases the score gap between w and c by at most one. The proof proceeds by
distinguishing between two cases.

Case 1. Candidates c and w have the same r-Approval score in E.
In this case, as w is the winner in E, it holds that w � c. By the above dis-

cussion, w receives at least one more point than c in E′. However, as changing �
only decreases the score gap between w and c by at most one, no matter how �
is changed, c has at most the same score as w in E′. Given w�c, we know that �
cannot be a c-manipulator in E′, a contradiction.

Case 2. The winner w has one more point than that of c in E.
In this case, w has at least two more points than c in the new election E′.

Changing � only decreases the score gap between w and c by at most one, as
discussed above. Therefore, no matter how � is changed, c has at least one fewer
point than w in E′, contradicting that � is a c-manipulator in E′ too. 
�

In the proof of Theorem 3, we can replace Cϕ(E) by C \ {w} to get the

bound
⌈

m−1
m−r

⌉
. An advantage of using C \ {w} is that in this case, to construct

the desired added votes, we need only to know the current winner other than
calculating Cϕ(E), which needs the definition of all votes. Theorem 3 also shows
that the NMVD of r-Approval is bounded for all constants r. Additionally, as
r-Veto is exactly (m−r)-Approval, Theorem 3 also offers us the following result.

Theorem 4. For ϕ being r-Veto, the NMVD of ϕ at an election E = (C, V ) is
at most

⌈ |Cϕ(E)|
r

⌉
≤ ⌈

m−1
r

⌉
, where m = |C|.

Now we consider Maximin and Copelandα. Unlike other rules studied in the
paper, Maximin and Copelandα are Condorcet-consistent2. We show that the
NMVDs of these rules differ largely—Maximin has a bounded NMVD while
Copelandα does not.
2 A Condorcet winner is a candidate which beats all the other candidates. A voting rule

is Condorcet-consistent if it selects the Condorcet winner as the winner whenever the
Condorcet winner exists. Condorcet-consistency is a significant axiomatic property
of voting rules (see [22, Figure 9.3] or [21, Table 2] for voting rules and their axiomatic
properties).
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Theorem 5. (�). The NMVD of Maximin is bounded by three.

We omit the proof of Theorem 5 because it relies on several lemmas on certain
special directed graphs whose proofs take some space. However, we would like
to point out that to construct the three votes needed to be added, we need to
know not only the original winner but also the head-to-head comparisons among
all candidates. If we are only aware of the original winner, can we still prevent
manipulation by adding a constant number of votes? The following theorem
answers the question.

Theorem 6. (�). Let (C, V ) be an election. If V is hidden but we know the
Maximin winner of (C, V ), we can add four votes to prevent manipulation with-
out changing the winner.

Furthermore, if we add two more votes, we could even prohibit manipulation
without minding the tie-breaking rules.

Theorem 7. (�). The NMVD of Maximin is bounded by six for all tie-breaking
rules.

Additionally, we would like to show by the following example that the upper
bound given in Theorem 5 is tight.

Example 3. Let us consider an election with four candidates a, b, c, and w, and
with the following votes (the head-to-head comparisons among the candidates
are summarized in the table on the right side, where each entry indexed by a
row candidate x and a column candidate y is n(x, y)):

3: b a w c 1: w a b c 1: a b c w
3: c b w a 1: w b a c 1: c b a w
3: a c w b 1: w c a b 1: c b a w

a b c w
a - 6 9 9
b 9 - 6 9
c 6 9 - 9
w 6 6 6 -

In the tie-breaking order, w is ranked in the first place. Hence, w is the
Maximin winner. Clearly, there are manipulators in the election. For instance,
if one vote with the preference b a w c shifts a one position up, a becomes the
Maximin winner. We show that the NMVD of Maximin at this election cannot
be smaller than 3. For the sake of contradiction, assume that we can add t votes
where t ∈ [2] so that w remains the winner, and there are no manipulators after
adding the vote(s). Observe first that we may assume that w is ranked in the
top in the added vote(s), and hence the Maximin score of w in the new election
is 6 + t. Let x ∈ {a, b, c} be a candidate that is in the second place of at least
one of the added vote(s). Therefore, in the new election, x has Maximin score
at least 7. If x = a (resp. x = b, x = c), one vote with the preference b a w c
(resp. c b w a, a c w b) can improve the result in its favor by changing it into
a b c w (resp. b c a w, c a b w). Precisely, after the change, the Maximin score
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of w decreases from 6 + t to 5 + t ≤ 7, but the Maximin score of x increases to
at least 8, making x the new winner, a contradiction.

Now we study Copelandα.

Theorem 8. (�). Regardless of tie-breaking rules, the NMVD of Copelandα at
an election (C, V ) is bounded by n + 3 − 2 · minc∈C\{w}n(w, c) ≤ n + 1, where n
is the number of votes and w is the Copelandα winner of (C, V ).

In the next section, we shall see that there are elections with only three
candidates at which the NMVD of Copelandα is not bounded by any constant.

Now we consider the NMVD of Bucklin. A trivial upper bound is n + 1,
because after adding n + 1 votes ranking the current winner w in the top, the
Bucklin score of w is one and this holds even if some original vote is changed. In
the following, we give a bound with respect to the number of candidates. First,
we have the following lemma regarding the Bucklin score of Bucklin winners.

Lemma 1. For every election (C, V ) with m > 0 candidates, the Bucklin score
of the Bucklin winner is at most

⌈
m+1
2

⌉
.

Proof. For each c ∈ C and i ∈ [m], let ni
c be the number of votes in V ranking c

in the i-th position, and let n≤i
c =

∑i
j=1 nj

c be the number of votes ranking c in
the top-i positions. Clearly, for each i ∈ [m], it holds that

∑

c∈C

ni
c = n. (1)

Let t =
⌈

m+1
2

⌉
. For the sake of contradiction, assume that the Bucklin score of

the winner is larger than t. Then, we have n≤t
c ≤ n/2 for every candidate c ∈ C.

It follows that
∑

c∈C n≤t
c ≤ n·m

2 . However, due to Eq. (1), we also have

∑

c∈C

n≤t
c =

∑

c∈C

t∑

i=1

ni
c =

t∑

i=1

∑

c∈C

ni
c = n · t >

n · m

2
,

a contradiction. 
�
Based on Lemma 1, we can prove the following theorem.

Theorem 9. Let (C, V ) be an election with m > 0 candidates and n > 0 votes
such that the Bucklin winner has score at most m/2�. Then, the NMVD of
Bucklin at (C, V ) is bounded by 2(m − 1) if n is even and by m − 1 if n is odd.

Proof. Let C = {c1, c2, . . . , cm}. We prove the theorem by distinguishing the
following cases. Without loss of generality, let us assume that w = cm is the
Bucklin winner of (C, V ). Moreover, let x ≤ ⌈

m
2

⌉
denote the Bucklin score of w.

Finally, let A (resp. B) denote the set of candidates ranking before (resp. after) w
in the tie-breaking order.
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Case 1. n = 2k + 1 and m = 2t for some k and t.
In this case, for each integer i ∈ [2t − 1] we add one vote with the preference

w ci ci+1 · · · c2t−1 c1 · · · ci−1. Hence, we add in total 2t − 1 votes such that
each candidate ci ∈ C \ {w} is ranked in the top-x positions at most t− 1 times.
Let E′ denote the new election after adding these votes. Note that for every
c ∈ A, at most k votes in V rank c in the top-x positions. Therefore, at most
k + t − 1 votes rank c in the top-x positions in the new election E′. In this case,
even if some vote is changed there can be at most k + t votes ranking c in the
top-x positions, implying that there exist no c-manipulators in E′ for any c ∈ A.
Analogously, we can show that there is no c-manipulator for any c ∈ B.

Case 2. n = 2k and m = 2t for some k and t.
In this case, for each i ∈ [2t−1] we add two votes with the same preference as

in the first case, and analogously we can show that there are no c-manipulators
for any c ∈ C \ {w} after adding these 2(2t − 1) votes.

Case 3. n = 2k + 1 and m = 2t + 1 for some k and t.
If the Bucklin score of w is at most t, the proof is analogous to the above

cases. So, let us assume that x = t + 1. If (C, V ) is not manipulable, we don’t
need to add any vote. Otherwise, V contains at least one vote which ranks w
in the last m − t − 1 positions. Hence, the 2t candidates in C \ {w} occupy at
least n · t + 1 top-(t + 1) positions of votes in V , implying that there exists at
least one candidate c ∈ C \ {w} whose Bucklin score is t + 1 too. Moreover, c
must be ranked after w in the tie-breaking order. Then, we add 2t − 1 votes so
that (1) w is ranked in the top, and c is ranked in the (t + 1)-th positions in all
these votes; and (2) every candidate in C \{c, w} is ranked in the top-t positions
at most t − 1 times. Such votes clearly exist (they can be constructed in a way
similar to the one in Case 1). Analogous to Case 1, it can be shown that there
are no manipulators after adding these votes.

Case 4. n = 2k and m = 2t + 1 for some k and t.
In this case, after adding 4t − 2 votes where w is ranked in the top, some

candidate c �= w who has Bucklin score t+1 is ranked in the (t+1)-th positions,
and every other candidate is ranked in the top-t positions at most 2t − 2 times,
there are no manipulators. 
�

Now we consider the case where the Bucklin winner w has score exactly⌈
m+1
2

⌉
. Notice that when m is odd, we have

⌈
m
2

⌉
=

⌈
m+1
2

⌉
. Hence, we need only

to consider the case where m is even. We have the following result.

Theorem 10. (�). Let (C, V ) be an election of m candidates and n votes such
that m = 2t > 0 is even and the Bucklin winner w has score t+1. Then, it holds
that

1. |V | is even; and
2. the NMVD of Bucklin at (C, V ) is at most 2(m − 2).

Due to Lemma 1, Theorems 9 and 10, and the trivial bound n + 1, we have
the following corollary.
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Corollary 1. The NMVD of Bucklin at every election with m candidates and n
votes is at most min{n + 1, 2(m − 1)}.

4 NMVD with a Small Candidate Set

In many real-world applications, the number of candidates is a small constant
(see, e.g., [15]). Therefore, it makes much sense to study the NMVDs of voting
rules at elections with only a few candidates. This is the focus of this section.
For Borda, Maximin, and PluRun, their NMVDs are bounded, regardless of the
number of candidates and tie-breaking rules (see Table 2). Due to Theorems 3
and 4, and Corollary 1, if m is a constant, r-Approval, r-Veto, and Bucklin also
have constant bounded NMVDs. So, the most interesting rules in this section
are Copelandα where α ∈ [0, 1].

One may wonder whether the NMVD of Copelandα can be bounded by a
constant too, or at least some function of m. Our answers are somewhat inter-
esting. For Copeland1, the answer is “Yes”. In particular, we obtain a bound
γ · m

log m , where γ is a constant. However, for Copelandα where α ∈ [0, 1), our
answer is in the negative: even when there are only three or four candidates, the
NMVD of Copelandα cannot be bounded by a constant. However, if we consider
only elections without ties in head-to-head comparisons (e.g., when the number
of votes is odd), we again have a positive answer. Our main results in this section
are summarized in Tables 3 and 4.

Table 3. Upper bounds of the NMVDs of Copelandα. Here, n denotes the number of
votes. “odd” and “even” are with respect to n.

Number of candidates m

3 4 m ≤ 8 m ≤ 11 general

α = 0 Odd 2 3 3 5 O( m
log m

)

Even n − 1 n + 1 n + 1 n + 1 n + 1

α = 1 Odd 2 6 6 10 O( m
log m

)

Even 2 3 3 5 O( m
log m

)

α ∈ (0, 1) Odd 2 5 6 10 O( m
log m

)

Even 2 n + 1 n + 1 n + 1 n + 1

Table 4. Upper bounds of the NMVDs of Copelandα at every election with n votes
whose majority graph without the current winner is �-inducible. Results in a row labeled
with ♥ hold only when the majority graph without the current winner is a tournament.

Odd n Even n

α = 0 (♥) max{�, 2} �

α ∈ (0, 1) (♥) 2� 2�

α = 1 2� max{�, 2}
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The majority graph of an election E = (C, V ) (or simply V ), denoted GE , is
a digraph with C being the vertex set, and there is an arc from c ∈ C to c′ ∈ C
if and only if c beats c′ in E. A tournament is a digraph such that between every
pair of candidates there exists exactly one arc. A digraph G with vertex set C
is �-inducible if there exists a multiset V of � linear orders over C such that the
majority graph of (C, V ) is G. In particular, the minimum integer � such that G
is �-inducible is called the dimension of G. For a digraph G and a subset S of
vertices of G, G[S] is the subgraph of G induced by S. The following lemma is
due to [10].

Lemma 2. There exists a constant γ such that every digraph with m vertices is
γ · m

log m -inducible.

4.1 Copeland1

In this section, we study Copeland1. Our main result is as follows.

Theorem 11. Let E = (C, V ) be an election and w ∈ C the Copeland1 winner
of E. If the majority graph of E without w (i.e., GE [C \ {w}]) is �-inducible,
then the NMVD of Copeland1 at E is at most max{�, 2} if n is even, and is at
most 2� if n is odd.

Proof. Let T be the majority graph of E without w. If � = 0, all candidates are
tied in head-to-head comparisons and, moreover, w is the first candidate in the
tie-breaking order. In this case, it is easy to check that after adding two votes
ranking w in the top, there does not exist any manipulator.

For � ≥ 1, let �1, . . . ,�� be � linear orders over C\{w} whose majority graph
is T . If n is even, say n = 2k for some integer k > 0, and � ≥ 2, we add � votes
obtained from �1, . . . ,�� by inserting w in the top. Let E′ be the new election.
Clearly, the score of w in E′ is at least that in E and, moreover, in the new
election E′ the score of w does not decrease even if one vote in V is changed.
We claim that the score of every candidate a ∈ C \ {w} in E′ is at most that
in E, even if one vote in V is changed. To this end, it suffices to show that every
candidate b ∈ C \ {a} who beats a in E still beats a in the new election E′ even
after some vote in V is changed. If b beats a in E, at least k+1 votes in V prefer b
to a. In the above added votes, there are at least

⌈
�+1
2

⌉
votes preferring b to a. It

follows that in the new election E′, there are at least k +1+
⌈

�+1
2

⌉ ≥ ⌈
2k+�
2

⌉
+1

votes who prefer b to a. Then, given that � ≥ 2, even if some vote is changed,
there are still a majority of votes preferring b to a.

For all the other remaining cases (i.e., the case where n is even and � = 1,
and the case where n is odd), we add one more copy of the � votes added in the
above case. Similarly, we can show that after adding these votes there are no
manipulators. 
�

The above theorem together with Lemma 2 directly give us the following
corollary.
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Corollary 2. The NMVDs of Copeland1 at elections with m candidates are
bounded by γ · m

log m , where γ is a constant.

For tournaments of small sizes, Bachmeier et al. [2] studied the following
lemma.

Lemma 3. All tournaments of up to 7 and 10 vertices are respectively 3-
inducible and 5-inducible.

The largest integer i such that all tournaments of up to i vertices are 5-
inducible is still unknown in the literature. Due to Theorem 11, Lemma 3, and
the fact that all tournaments of up to two vertices are 1-inducible, we have the
following corollary.

Corollary 3. Let (C, V ) be an election with m ≤ 11 candidates and n votes.
The NMVD of Copeland1 at (C, V ) is bounded by 10 if n is odd, and bounded
by 5 if n is even. In addition, if m ≤ 8, it is bounded by 6 if n is odd and by 3
if n is even. Moreover, if m = 3, it is bounded by 2.

4.2 Copelandα<1 with at Most Four Candidates

Now we study NMVD of Copelandα where α ∈ [0, 1). Somewhat surprisingly,
even when there are only three candidates, the NMVD of Copeland0 cannot be
bounded by a constant, standing in a sharp contrast to Copeland1.

Theorem 12. (�). Let (C, V ) be an election with three candidates and let n =
|V | > 0. Then, the NMVD of Copelandα where α ∈ [0, 1) at (C, V ) is bounded
by {

n − 1 if n is even and α = 0,

2 otherwise.

For Copelandα where α ∈ (0, 1), we can also show that if we just have one
more candidate, the NMVD cannot be bounded by a constant anymore if the
number of votes is even, as shown in the following example.

Example 4. Consider an election with four candidates w, a, b, c, and with 2k
votes as follows. Here, k can be any integer greater than three. In the digraph
on the right side, the weight of an arc from x to y is n(x, y).

k − 2: c � w � a � b
k − 3: b � a � c � w

2: c � w � b � a
2: a � b � c � w
1: w � b � a � c b

w

a c

k +
1 k

+
1

2k − 1

The tie-breaking order is a � b � c � w. One can check that we cannot
preclude manipulation without changing the winner by adding less than 2k − 2
votes.
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4.3 Copelandα<1 with �-Inducible Majority Graphs

A major reason why the NMVD of Copelandα, α ∈ [0, 1), is not bounded in
several theorems studied so far is that there are ties in head-to-head comparisons
among nonwinning candidates. This motivates us to study elections without such
ties. Consider an election (C, V ) whose majority graph restricted to C \ {w} is
an �-inducible tournament T , where � ≥ 2, and w is the current winner. If we
add � votes ranking w in the top and whose induced majority graph restricted
to C \ {w} is T , the comparisons between candidates are enhanced, in the sense
that changing one vote in V is unable to reverse any arc among candidates in
C \ {w} but may make some arcs be removed. However, as in Copeland0, two
tied candidates do not get any point from their comparison, changing one vote
does not increase the scores of candidates in C \ {w}. This observation leads to
the following theorem.

Theorem 13. Let E = (C, V ) be an election and w the Copeland0 winner of E.
If the majority graph of E without w is an �-inducible tournament, then the
NMVD of Copeland0 at E is at most � if � ≥ 2 or |V | is even, and is at most 2
otherwise.

Proof. Let T denote the majority graph of E restricted to C \ {w}, which is
�-inducible. Let U = {�1, . . . ,��} be a multiset of � votes over C \ {w} such
that majority graph of (C \ {w}, U) is exactly T .

We consider first the case where � ≥ 2 or |V | is even. In this case, we add
to the election � votes obtained from �1, . . . ,�� by inserting w into the top
position. After adding these votes, the majority graph of the election restricted
to C \ {w} is still T . As every added vote ranks w above other candidates, one
can check that if a candidate a is beaten by w in advance, then a is still beaten
by w after adding the above votes, even if one vote in V is changed. Hence, the
score of w in the new election remains at least the same as that in the original
election. Moreover, if there is an arc from a candidate a ∈ C \ {w} to another
candidate b ∈ C \ {w} in T , then, after adding the above votes a beats b by at
least ⌈

n + 1
2

⌉

+
⌈

� + 1
2

⌉

≥
⌈

n + �

2

⌉

+ 1.

This implies that when one vote in V is changed, a either still beats b or ties
with b. So, the change of any vote does not increase the score of a. As this holds
for every candidate a ∈ C \ {w}, we can conclude that changing one vote in V
does not prevent w from winning.

For the case where � = 1 and |V | is odd, the above argument does not hold,
because in this case if a candidate a is beaten by w in advance, then after adding
one vote, it may be that w ties a if some vote in V is changed. However, if we
add two votes obtained from �1 by inserting w in the first place, w remains as
the winner and there is no manipulator in V . 
�

Theorem 13 and Lemma 3 yield the following result.
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Corollary 4. The NMVD of Copeland0 at every election with m candidates
and an odd number of votes is at most 3 if m ≤ 8 and is at most 5 if m ≤ 11.
Moreover, the bound is tight for every m such that 4 ≤ m ≤ 8.

Similar to Theorem 13, for Copelandα, α ∈ (0, 1), we obtain the following
result.

Theorem 14. (�). Let E = (C, V ) be an election, and let w be the Copelandα

winner of E where α ∈ (0, 1). If the majority graph of E restricted to C \ {w} is
an �-inducible tournament, then the NMVD of Copelandα at E is at most 2�.

Theorem 14 and Lemma 3 yield the following result.

Corollary 5. The NMVD of Copelandα where α ∈ (0, 1) at every election
(C, V ) with an odd number of votes is at most 6 if |C| ≤ 8 and is at most 10
if |C| ≤ 11.

For elections with four candidates, we can improve the bound by one.

Theorem 15. (�). The NMVD of Copelandα where α ∈ (0, 1) at every elec-
tion (C, V ) with four candidates is at most 5 if |V | is odd.

We would like to remark that Theorems 11, 13, and 14 suggest using the
notion of dimension of digraphs to find the votes whose addition precludes elec-
tion manipulation. Unfortunately, calculating the dimension of a digraph seems
to be a time-consuming task. To the best of our knowledge, the complexity of
this problem in general still remains open so far. But for the case where there are
only a few candidates, calculating the dimension can be done in an acceptable
time. We refer to [2] for a more detailed discussion on this issue.

5 Future Research

It is interesting to study the NMVDs of many other voting rules such as the
ranked pairs, Schulze’s, Baldwin’s, etc. In addition, one can investigate the
NMVDs of voting rules at elections with a bit larger but still a constant num-
ber of candidates. Finally, it is intriguing to investigate our notion in the more
general setting where we allow multiple manipulators to form coalitions and
coordinate their actions.

Acknowledgements. The author would like to thank the anonymous reviewers of
ADT-2021 for their constructive comments.
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Abstract. We consider the task of allocating indivisible items to agents,
when each agent’s preferences are captured by means of a directed acyclic
graph. The vertices of such a graph represent items and an arc (a, b)
means that the respective agent prefers item a over item b. The dissat-
isfaction of an agent is measured by the number of non-assigned items
which are desired by the agent and for which no more preferred item is
given to the agent. The aim is to allocate the items to the agents in a
way that minimizes (i) the total dissatisfaction over all agents, or (ii) the
maximum dissatisfaction among the agents. For both problems we study
the status of computational complexity and obtain NP-hardness results
as well as polynomial algorithms with respect to different underlying
graph structures, such as trees, stars, paths, and matchings.

Keywords: Fair division · Partial order · Preference graph

1 Introduction

Consider the situation in which a set of indivisible presents should be divided
among a set of kids. The kids may be overwhelmed with the task of comparing all
available presents among each other, but they are able to state certain preferences
such as disapproval of certain presents or strict preference of a certain present
over another present. A kid will have difficulties to keep an overview of the
complicated preference structure resulting from these pairwise comparisons, but
it is well versed in complaining when it sees a present given to another kid and
it receives no present it likes better than that present.

In such a scenario, the parents want to allocate the presents to the kids in a
way that minimizes the (total or maximum) dissatisfaction. The dissatisfaction
of a kid is here measured by the number of desired presents not received and for
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which it does not get any other more preferred present. Note that, in this setting,
adding less preferred presents will not improve the happiness of a kid. This can
occur in a more general situation of preferences implied by skills or abilities,
where the effect of an object with certain skills is not improved by adding an
object with lesser skills. We introduce a model for such a setting in which the
preferences of each kid i are captured by a preference graph, i.e., a directed
acyclic graph Gi, where arc (a, b) means that a is preferred over b; presents that
are not contained in graph Gi are disapproved by kid i.

In general, we are hence concerned with the problem of fairly dividing a set
of indivisible items among a set of agents who have preferences over the items
(for surveys see, e.g., Bouveret et al. [5] and Thomson [19]). Various approaches
towards allocating indivisible items have been taken. In the model considered
by Herreiner and Puppe [15], the agents rank all possible subsets of items, and
the objective is to find an allocation that maximizes the minimum rank among
the assigned sets in the agents’ rankings. Another, common approach avoiding
the tedious task of eliciting all such preferences is to consider cardinal or ordi-
nal preferences over the single items instead of subsets of items (see, e.g., Aziz
et al. [1], Brams et al. [6], or Baumeister et al. [4]). Different desirable criteria
representing fairness ideas such as envy-freeness, equitability, or proportionality
have been in the focus of research. In addition, the social welfare—in partic-
ular, utilitarian, egalitarian, or Nash social welfare—induced by an allocation
has been analysed, often from a computational perspective (Baumeister et al.
[4], Bansal and Sviridenko [3], Chiarelli et al. [7], Darmann and Schauer [9],
Garg and McGlaughlin [11], Roos and Rothe [17]). Recently, however, the case
of dichotomous preferences over the items has received particular attention (see,
e.g., Babaioff et al. [2], Duddy [10], and Halpern et al. [14]).

In the model presented in this paper, each agent expresses preferences over
the items by means of a directed acyclic graph, where the vertex set of the graph
is a subset of the set of items. Vertices (= items) not contained in the graph of
an agent are regarded as disapproved by the agent (and we do not allocate such
an item to that agent); arc (a, b) means the agent prefers a over b. Assuming
transitivity of the preferences, arcs (a, b) and (b, c) imply that the agent also
prefers a over c, regardless of whether arc (a, c) is contained in the graph or not.
Observe that the graph of an agent hence induces a partial order over a subset
of items.

Given such an input, the goal is to allocate the items to the agents in a way
such that the dissatisfaction of the agents is minimized. We take into account
both the total dissatisfaction, i.e., summing up the dissatisfaction of each agent,
and the maximum dissatisfaction of an agent. We consider an agent to be dissat-
isfied with not receiving an item if she does not receive another more preferred
item. The dissatisfaction of an agent is then determined by the number of such
items.

We provide a computational complexity study of finding allocations mini-
mizing the maximum and total dissatisfaction with respect to different kinds of
preference graphs and also consider the case of identical preferences. In Sect. 2
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we present the formal framework of the paper including problem definitions.
We then show that the corresponding decision problems Min-Max Dissatis-

faction and Min-Sum Dissatisfaction are NP-complete when the preference
graph of each agent is an out-tree (Sect. 3), whereas an allocation minimizing the
total dissatisfaction can be found in polynomial time when each preference graph
is a directed matching (Sect. 4). However, when each preference graph is a path,
both an allocation minimizing the maximum and an allocation minimizing total
dissatisfaction can be found in polynomial time; in particular, for the task of
minimizing total dissatisfaction we provide a fixed-parameter tractability result
with respect to the number of vertices with in-degree or out-degree greater than
1 (see Sect. 5). Section 6 deals with the case of identical preferences: in particular,
we show that for two agents, both an allocation minimizing the maximum and
an allocation minimizing total dissatisfaction can be found in polynomial time;
for three agents, however, the corresponding decision problems turn out to be
NP-complete.

2 Formal Framework

An undirected graph is a pair G = (V,E) with vertex set V and edge set E ⊆
{{u, v} | u, v ∈ V, u �= v}. A directed graph is a pair G = (V,A) with vertex set
V and set of arcs A ⊆ V × V .

Consider a directed graph G = (V,A). For a = (u, v) ∈ A, vertex u is called
tail of a and vertex v is called head of a. The in-degree of a vertex u is the
number of arcs in A for which u is head and the out-degree of u is the number
of arcs in A for which u is tail. The degree of a vertex u is the number of arcs
in A for which u is either head or tail. A sequence p = (v0, v1, v2, . . . , v�) with
� ≥ 0 and (vi, vi+1) ∈ A for each i ∈ {0, . . . , � − 1} is called a walk of length �
from v0 to v�; it is a path (of length � from v0 to v�) if all its vertices are pairwise
distinct. A walk from v0 to v� is closed if v0 = v�. A cycle is a closed walk of
positive length in which all vertices are pairwise distinct, except that v0 = v�. A
directed acyclic graph is a directed graph with no cycle. An out-tree is a directed
acyclic graph G = (V,A) with a dedicated vertex r (called root) such that for
each vertex v ∈ V \ {r} there is exactly one path from r to v. An out-star is
an out-tree in which each such path is of length 1. A matching in an undirected
graph G is a set of pairwise disjoint edges. A directed matching is a directed
acyclic graph such that each vertex has degree exactly one (i.e., the edges of the
underlying undirected graph G form a matching in G).

A binary relation � ⊆ V ×V is a strict partial order over V if it is asymmetric
(for all u, v ∈ V , if u � v then v � u does not hold) and transitive (for all
u, v, w ∈ V , u � v and v � w imply u � w). Observe that a directed acyclic
graph G = (V,A) induces a strict partial order � on V by setting u � v for
each pair (u, v) ∈ V × V such that u �= v and there is a path from u to v. In
particular, u � v for every arc (u, v) ∈ A.

In what follows, we will consider a vertex set V and a set of agents K along
with directed acyclic graphs Gi = (Vi, Ai) for all i ∈ K, where Vi ⊆ V represents
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the items desired by agent i. Let pred i(v) ⊆ Vi denote the set of predecessors of
v in graph Gi, i.e., the set of all vertices u �= v such that there is a path from u
to v in Gi. Observe that pred i(v) corresponds to the set of items which agent i
prefers over v under relation �. For u, v ∈ Vi we say that item u is dominated
by item v if u = v or v ∈ pred i(u). In addition, let succi(v) ⊆ Vi denote the set
of successors of v in graph Gi, i.e., the set of all vertices u �= v such that there is
a path from v to u in Gi. Hence, succi(v) denotes the set of all items to which
agent i prefers item v.

An allocation π is a function K → 2V that assigns to the agents pairwise
disjoint sets of items, i.e., for i, j ∈ K, i �= j, we have π(i)∩π(j) = ∅. To measure
the attractiveness of an allocation we will count the number of items, which an
agent does not receive and for which she receives no other more preferred
item.

Formally, for an allocation π the dissatisfaction δπ(i) of agent i is defined
as number of items in Gi not dominated by any item in π(i). A dissatisfaction
profile is a |K|-tuple (di | i ∈ K) with di ∈ N0 for all i ∈ K such that there is
an allocation π with δπ(i) = di for each i ∈ K.

Note that the underlying undirected graphs of the directed graphs Gi are not
necessarily connected and may also contain isolated vertices. According to the
definition of δπ(i), every isolated vertex in Gi contributes one unit to δπ(i), if it
is not allocated to agent i. Vertices in V \ Vi are irrelevant for agent i. They do
not have any influence on the dissatisfaction function δπ(i).

In this paper, we focus on the following two problems aiming to minimize
the maximum and total dissatisfaction among the agents.

Min-Max Dissatisfaction:
Given: A set K of agents, a set V of items, a directed acyclic graph Gi = (Vi, Ai)
for each i ∈ K with Vi ⊆ V , and an integer d.
Question: Is there an allocation π of items to agents such that the dissatisfaction
δπ(i) is at most d for each agent i ∈ K?

Min-Sum Dissatisfaction:
Given: A set K of agents, a set V of items, a directed acyclic graph Gi = (Vi, Ai)
for each i ∈ K with Vi ⊆ V , and an integer d.
Question: Is there an allocation π of items to agents such that the total dissat-
isfaction

∑
i∈K δπ(i) is at most d?

The graphs Gi in the above problem definitions are called preference graphs.
Throughout the paper, we denote the number of agents by k = |K| and the
number of items by n = |V |.

While in this work the focus is laid on the minimization of (maximum or total)
dissatisfaction, some remarks on the associated dual problem of maximizing
satisfaction are in order. In this context, satisfaction sπ(i) of agent i with respect
to allocation π is measured by means of the number of items in Vi that are
dominated by some item in π(i). Observe that the items in V \ Vi are irrelevant
for the satisfaction of agent i.
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Observe that minimizing the total dissatisfaction is equivalent to maximizing
the total satisfaction of all agents. In order to verify this, it is sufficient to
note that δπ(i) = |Vi| − sπ(i), which implies that

∑
i∈K δπ(i) =

∑
i∈K |Vi| −∑

i∈K sπ(i) is minimized if and only if
∑

i∈K sπ(i) is maximized.
On the other hand, we point out that minimizing the maximum dissatis-

faction in general does not correspond to maximizing the minimum satisfaction
among the agents, as the following example shows.

Example 1. Let V = {a, b, c} and K = {1, 2, 3}, with each graph Gi consisting
of isolated vertices only. Graph G1 consists of all three vertices a, b, c, graphs G2

and G3 are made up of b and c respectively. An allocation with dissatisfaction
of at most 1 per agent is given only by allocations that give at least two items
to agent 1. On the other hand, the allocation π with π(1) = {a}, π(2) = {b},
π(3) = {c} is the only allocation that yields a satisfaction of 1 for each agent,
resulting in a dissatisfaction of 2 for agent 1.

In what follows, we provide NP-completeness results on the one hand and
positive results, i.e., polynomial-time solvable cases, on the other. Concerning
these positive results we point out that we are not only able to answer the
corresponding decision question but also to solve the associated optimization
problem, i.e., we can find an allocation that minimizes total resp. maximum dis-
satisfaction in polynomial time. With respect to the NP-completeness results,
note that from the definition of Min-Max Dissatisfaction and Min-Sum

Dissatisfaction it follows that any NP-hardness result implies NP-hardness
in the strong sense. Several of the hardness results presented in this paper
reduce from 3X3C, an NP-complete variant of Exact Cover by 3-Sets (see
Gonzalez [12]).

Due to the page limit, some of the proofs are omitted or shortly sketched.

3 Hardness Results for Out-Trees

We begin our computational complexity study with out-trees as preference
graphs. It turns out that in this case both Min-Max Dissatisfaction and
Min-Sum Dissatisfaction are NP-complete; for the former, NP-completeness
even holds when restricted to out-stars.

Theorem 1. Min-Max Dissatisfaction is NP-complete, even if each graph
Gi is an out-star.

Proof. Given an instance J of 3X3C with a set X of elements, |X| = 3q, and a
collection C = {C1, . . . , Cp} of 3-element subsets of X, we construct an instance
I of Min-Max Dissatisfaction as follows. Recall that we have p = 3q. Set
� = 2

3p + 1, and let the set of items V = X ∪ {1, . . . , p} ∪ {h1, . . . , h�+1}. The
set of agents K is made up of the agents D1, . . . , D�+1, agent A, and agents
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C1, . . . , Cp (the latter agents are identified with the sets of the same label in
instance J ). The graphs Gi are out-stars displayed in Fig. 1; the graph of agent
Cj has root vertex j, and contains the edges (j, hr), for r ∈ {1, . . . , � − 1} and
(j, a) for a ∈ Cj (for the figure, we assume set C1 = {x, y, z} and C2 = {x, u, v}).
We ask if there is an allocation with dissatisfaction at most � per agent.

h1

h2 h3

. . .

h�+1

(a) Graphs of agents Di

h1

1 2
. . .

p

(b) Graph of agent A

1

x y z h1 h2

. . .

h�−1

(c) Graph of agent C1

2

x u v h1 h2

. . .

h�−1

(d) Graph of agent C2

Fig. 1. Graphs of agents in the proof of Theorem 1.

We show that J is a yes-instance of 3X3C if and only if I is a yes-instance
of Min-Max Dissatisfaction. Assume first that there is an allocation with
dissatisfaction at most � per agent. Agents D1, . . . , D�+1 all have the same graph
(displayed in Fig. 1). To respect the dissatisfaction bound �, each of the agents
D1, . . . , D�+1 has to get exactly one of the items h1, . . . , h�+1. Hence, also item h1

is already allocated. Therefore, agent A has to get at least 1
3p items of {1, . . . , p}

in order to respect the bound �. Thus, for the agents C1, . . . , Cp there are only
at most 2

3p items of {1, . . . , p} left. As a consequence, in order to respect bound
�, at least 1

3p of these agents need to get all three items which make up the
respective set in instance J (e.g., agent C1 gets all three items x, y, z). As each
present can be given to one agent and the set X contains exactly p elements,
this means that the collection of sets Cj such that the agent of the same label
gets all three items of Cj forms an exact cover of X.

For the converse direction, let B be a collection of sets of C that forms an
exact cover of X. Observe that B contains exactly p

3 sets. Give hi to agent Di

for each i. For collection B, (i) give, for each Cj ∈ B its three elements (items)
to agent Cj (there are p

3 of such sets/agents), and (ii) give all items j such that
Cj ∈ B to agent A (these are p

3 such items), (iii) give item j such that Cj /∈ B
to agent Cj . Then, for each agent the dissatisfaction bound � is respected. ��

Using further reductions from 3X3C we can show that both Min-Sum Dis-

satisfaction and Min-Max Dissatisfaction are computationally hard, even
when all graphs Gi are out-trees each containing all vertices of V .
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Theorem 2. Min-Sum Dissatisfaction and Min-Max Dissatisfaction

are NP-complete, even if each graph Gi is an out-tree containing all vertices
of V .

4 Each Preference Graph is a Directed Matching

After the strikingly negative results of Sect. 3, where it was shown that even ele-
mentary graphs, such as out-stars and out-trees, imply NP-completeness of our
two problems, we now consider the basic graph structure of directed matchings.
Indeed, the pairwise comparison of two items with no connection to any other
items seems to be one of the most basic possibilities of considering any prefer-
ences at all. Also in decision science, the pairwise comparison of options consti-
tutes the elementary building block for multi-criteria decision making methods,
such as outranking methods [13].

We exhibit an interesting difference between the two objectives. While Min-

Sum Dissatisfaction is shown to be polynomially solvable if all Gi are directed
matchings, the same situation turns out to be still NP-complete for Min-Max

Dissatisfaction. Nonetheless, we obtain a positive result for the Min-Max
objective for the special case of k = 2 agents.

Theorem 3. When each graph Gi = (Vi, Ai) is a directed matching, Min-Sum

Dissatisfaction can be solved in polynomial time.

Proof. To solve Min-Sum Dissatisfaction we will compute a maximum weight
matching on an auxiliary undirected bipartite graph H. Its vertex set V (H) =
X∪Y ∪Z consists of a vertex for every vertex in Vi, i.e., X = {xi

j | i ∈ K, j ∈ Vi},
a vertex for every arc in Ai, i.e., Y = {yi

a | i ∈ K, a ∈ Ai}, and a vertex for
every item, i.e., Z = {z� | � ∈ V }. The edge set E(H) = S ∪ T contains edges
connecting every item vertex in Z with all its copies in X, i.e., S = {{xi

j , zj} |
i ∈ K, j ∈ Vi}, and edges connecting the two endpoints of a matching arc in
Ai with the corresponding vertex in Y , i.e., for each agent i ∈ K, and each arc
(a, a′) ∈ Ai, set T contains edges {yi

(a,a′), x
i
a} and {yi

(a,a′), x
i
a′}. We claim that

every matching M in H implies a feasible allocation of items to the agents by
assigning item j to agent i if e = {xi

j , zj} ∈ M . Since there can be at most one
edge in M joining a vertex zj in Z to a vertex xi

j in X, every item is allocated
at most once. To avoid that both endpoints of an arc in Ai are allocated to i,
the edges in T are assigned a very high weight. Then, every maximum weight
matching will contain one of the two edges in T incident with a vertex yi

a in
Y , which forbids that the other endpoint in X corresponds to an item allocated
to i.

The following weights are assigned to each e ∈ E(H):

w(e) =

⎧
⎪⎨

⎪⎩

1, if e = {xi
j , zj} ∈ S and j is the head of an edge in Ai ,

2, if e = {xi
j , zj} ∈ S and j is the tail of an edge in Ai ,

2 |V |, if e ∈ T.
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The weights on the edges in S correspond to the number of vertices that
each vertex from Vi dominates in Gi. Hence, a maximum weight matching will
maximize the total satisfaction and thus minimize the total dissatisfaction. It
holds that the maximum total satisfaction is equal to w(M)−2|T ||V | and hence
the minimum total dissatisfaction is equal to

∑
i∈K |Vi| + 2|T ||V | − w(M). ��

Theorem 4. Min-Max Dissatisfaction is NP-complete, even if each graph
Gi is a directed matching.

Proof Sketch. We again reduce from 3X3C. Given an instance J of 3X3C with a
set X of elements and a collection C = {C1, . . . , Cp} of 3-element subsets of X,
let � = 4p

3 . We may assume without loss of generality that p ≥ 6 and thus � ≥ 8.
We construct an instance I of the Min-Max Dissatisfaction by introducing
the items V = X ∪{hj | 1 ≤ j ≤ �+1}∪{j, b0j , b1j , ej | 1 ≤ j ≤ p}∪{aj | 1 ≤ j ≤
�+1}, and the set K of agents made up of agents Dj for 1 ≤ j ≤ �+1, agent F ,
and the agents Bj , Cj for 1 ≤ j ≤ p; their graphs are displayed in Fig. 2 where
w.l.o.g. we assume set Cj = {x, y, z}. We ask whether there is an allocation with
dissatisfaction of at most � per agent. Observe that � is even since p is a multiple
of 3. Using this construction it can be shown that C contains an exact cover of
X if and only if I admits an allocation π with maxi∈K δπ(i) ≤ �. ��
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h3

h4

. . .

h�−1

h�

h�+1

aj

(a) Graph of agent Dj

1
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. . .

p

hp

(b) Graph of agent F

j
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b1j
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. . .
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. . .

h2

h3

h4

h5

h�−4
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(d) Graph of agent Cj

Fig. 2. Graphs of agents in the proof of Theorem 4.

Given the negative result of the above theorem we give a complementing
positive result for Min-Max Dissatisfaction below. Namely, if we restrict the
number of agents to two, i.e., k = 2, we have a positive counterpart to Theorem 4.

Theorem 5. When k = 2 and both preference graphs are directed matchings,
Min-Max Dissatisfaction can be solved in polynomial time.
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Proof Sketch. First note that since G1 and G2 are directed matchings, the under-
lying undirected graph of G = G1 ∪ G2 (including possible multi-edges) is a
collection of (agent 1)-(agent 2) alternating cycles (including cycles with two
vertices) and paths (including single-edge paths).

We can obtain the set of all possible dissatisfaction profiles of the two agents
for one path and then also for one cycle using a dynamic programming approach.
After that, these sets of dissatisfaction profiles for all the paths and cycles can
be combined to obtain all dissatisfaction profiles with respect to all items. ��

5 Further Polynomially Solvable Special Cases

Recall that in Sect. 3 it was shown that both Min-Max Dissatisfaction and
Min-Sum Dissatisfaction are computationally hard, even on special variants
of out-trees. In the following we show that Min-Sum Dissatisfaction becomes
polynomially solvable if the arborization of the graphs is restricted, namely by
having only a constant number of junction vertices (vertices with in- or out-
degree greater than 1). The corresponding Theorem 6 also implies a polyno-
mial algorithm for the case where all Gi are directed matchings, but we already
described a simpler approach in Theorem 3.

From Theorem 4 we know that Min-Max Dissatisfaction remains NP-
hard even for the special case where all Gi are directed matchings, and thus do
not contain any junction vertices at all. However, for a different setting without
junction vertices where all Gi are paths, Min-Max Dissatisfaction is solvable
in polynomial time (see Theorem 7).

Let us now turn to Min-Sum Dissatisfaction and the above-mentioned
restriction of the preference graphs. Formally, we denote by Ji ⊆ V (Gi) for each
i ∈ K the set of junction vertices in Gi, i.e., vertices in Gi with in- or out-degree
greater than 1, and by γ =

∑
i∈K |Ji|, the total number of junction vertices

(counted with multiplicities). Also, we call a vertex with in-degree 0 and out-
degree 1 a simple source and a vertex with in-degree 1 and out-degree 0 a simple
sink. Note that γ constant implies that all Gi, except constantly many, consist
only of collections of paths. For background on fixed-parameter tractability, we
refer to [8].

Theorem 6. Min-Sum Dissatisfaction is fixed-parameter tractable with
respect to γ.

Proof Sketch. We introduce an algorithm to solve the maximization problem for
the total satisfaction, which implies the solution of Min-Sum Dissatisfaction.
Note that there exists an optimal allocation π which fulfills the minimality con-
dition, meaning it is minimal with respect to the property that for each agent i
no item allocated to agent i is dominated by any other item allocated to i. Hence,
we restrict our search and feasibility test to allocations fulfilling this condition.
The main observation used in the algorithm is that for an allocation π fulfilling
the minimality condition, for each vertex v ∈ Ji exactly one of the following four
cases occurs.
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(1) π allocates v to agent i.
(2) π allocates some item in pred i(v) to i.
(3) π allocates some item in succi(v) to i.
(4) π does not allocate any item in pred i(v) ∪ succi(v) ∪ {v} to agent i.

In our algorithm, we enumerate all 4γ possible assignments of cases (1)–(4) for all
vertices in each Ji. Note that if v ∈ V is a junction vertex in multiple agent graphs
Gi we enumerate all possible assignments for each of the agents independently.
This is possible in time 4γ , since in the definition of γ such junction vertices are
counted with multiplicity with respect to the graphs Gi. Since feasible allocations
π fulfilling the minimality condition may not exist for all of the 4γ assignments,
we derive a method to test efficiently whether this is the case. The most involved
setting concerns internal vertices on paths connecting junction vertices with
guesses (2) and (3). Here, it is not directly clear on which of of these paths it is
mandatory to assign items to agent i and on which it is just optional. We resolve
this by additional guesses that can be bounded by a function depending only
on γ.

Using these methods we test for each assignment whether it is feasible and
if so we determine an optimal allocation of the remaining items subject to the
conditions of cases (1)–(4), by reducing this subproblem to an instance of the
minimum-cost circulation problem, which is solvable in strongly polynomial time
(see, e.g., [18, Chapter 12]). Among all those allocations we take the one maxi-
mizing the total satisfaction. ��

For Min-Max Dissatisfaction we now consider the following case without
junction vertices, namely the case where each Gi is a single path. Observe that
Theorem 6 implies that Min-Sum Dissatisfaction is solvable in polynomial
time in that setting.

Theorem 7. When each graph Gi is a path, Min-Max Dissatisfaction can
be solved in polynomial time.

Proof. We reduce the problem to at most n matching problems by applying a
threshold approach. The idea is to consider, in turn for increasing values of t,
the first t vertices of every path Gi and try to assign one of these items to each
agent. If this is possible, the dissatisfaction level is at most t − 1; otherwise, we
continue with t + 1. Observe that if an agent has fewer than t vertices on her
path, her dissatisfaction level is less than t anyways, and we can ignore that
agent in future iterations.

Hence, starting with t = 1, for each possible value of t = 1, 2, . . . , n, for which
at least one path contains at least t vertices, we construct a bipartite undirected
graph Ht = (At∪Bt, Et), where agent i ∈ At if Gi contains at least t vertices and
item j ∈ Bt if j is among the first t vertices on at least one of the paths Gi for
which i ∈ At holds; there is an edge between i ∈ At and j ∈ Bt if the respective
vertex j is among the first t vertices of Gi. Compute a maximum cardinality
matching in Ht. If the size of the matching is |At|, there is an allocation with
dissatisfaction of at most t− 1: assign item j to agent i whenever the edge {i, j}
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is contained in the maximum cardinality matching; the remaining items (if there
are any) are assigned arbitrarily.

If the size of the matching is less than |At|, we check whether there is at
least one path containing t+1 vertices. If this is not the case, the maximum dis-
satisfaction corresponds to t and we can assign the items arbitrarily; otherwise,
we increment t (i.e., set t := t + 1) and continue with the next graph Ht. On
the other hand, given an allocation with dissatisfaction of at most t per agent,
the matching induced by pairing each agent to the most-preferred among the
received items results in a maximum cardinality matching in Ht. ��

6 Same Preferences for All Agents

Finally, we consider the situation in which all agents share the same preferences.
In that scenario we refer to the single directed acyclic graph G representing the
agents’ preferences as the common graph. Our first result in this section states
that for two agents with identical preferences both Min-Max Dissatisfaction

and Min-Sum Dissatisfaction can be solved in polynomial time.

Theorem 8. When k = 2 and G1 = G2, Min-Max Dissatisfaction and
Min-Sum Dissatisfaction can be solved in polynomial time.

Proof. Let us denote by G = (V,A) the common directed acyclic graph rep-
resenting the preferences of the two agents. Let S be the set of sources of G,
that is, vertices of G with in-degree zero (these are the vertices corresponding to
items that are not dominated by any other item). Let G′ be the graph G−S and
let S′ be the set of sources of G′. Furthermore, let S1 be any subset of S with
cardinality

⌊
|S|
2

⌋
and S2 = S\S1. We denote by S′

1 the vertices in S′ that are not
dominated by any vertex in S1, and, similarly, by S′

2 the vertices in S′ that are
not dominated by any vertex in S2. More formally, S′

1 = S′ \ {succ1(v) : v ∈ S1}
and S′

2 = S′ \ {succ1(v) : v ∈ S2}. We claim that the sets S1, S2, S′
1, and S′

2

are pairwise disjoint. The disjointness of any pair follows immediately from the
definitions, except for S′

1 and S′
2. Suppose for a contradiction that there exists a

vertex u ∈ S′
1 ∩ S′

2. Then u belongs to S′ and, hence, is a source in G − S. Since
u is not a source in G, it must have a predecessor v in G. Furthermore, since
u is a source in G − S, vertex v must belong to S; in particular, we must have
v ∈ Si for some i ∈ {1, 2}. However, this implies that u �∈ S′

i, a contradiction.
Since the sets S1 ∪ S′

1 and S2 ∪ S′
2 are disjoint, setting π(1) = S1 ∪ S′

1

and π(2) = S2 ∪ S′
2 defines a valid allocation of items to the two agents. The

undominated items for agent 1 are exactly the items in S2, and, similarly, the
undominated items for agent 2 are exactly the items in S1. Clearly, π can be
computed in polynomial time and the corresponding dissatisfaction of the two
agents is δπ(1) = |S2| =

⌈
|S|
2

⌉
and δπ(2) = |S1| =

⌊
|S|
2

⌋
. To complete the proof,

we show that π in fact optimally solves both Min-Max Dissatisfaction and
Min-Sum Dissatisfaction problems for the given input instance G1 = G2 = G.
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First, consider the Min-Sum Dissatisfaction problem. Assignment π has
a total dissatisfaction of |S|. Let π∗ be an allocation that minimizes the total
dissatisfaction. Notice that for every v ∈ S, either v �∈ π∗(1) or v �∈ π∗(2). We
conclude that each item v ∈ S contributes to the dissatisfaction at least once
in the sum δπ∗(1) + δπ∗(2), and hence that δπ∗(1) + δπ∗(2) ≥ |S|. Thus, π is an
optimal solution for the Min-Sum Dissatisfaction problem.

Now consider the Min-Max Dissatisfaction problem. Under assignment
π, dissatisfaction of each agent is at most

⌈
|S|
2

⌉
. Let π∗ be an allocation that

minimizes the maximum dissatisfaction. We may assume without loss of gener-
ality that δπ∗(1) ≥ δπ∗(2). Since the minimum total dissatisfaction equals |S|,
we have δπ∗(1) + δπ∗(2) ≥ |S|, and therefore max{δπ∗(1), δπ∗(2)} = δπ∗(1) ≥⌈

|S|
2

⌉
= max{δπ(1), δπ(2)} . We conclude that π is an optimal solution for the

Min-Max Dissatisfaction problem. ��
The result of Theorem 8 is best possible regarding the number of agents,

unless P = NP. Indeed, we show next that Min-Max Dissatisfaction and
Min-Sum Dissatisfaction are NP-complete for three agents with identical
preferences, even if the common directed acyclic graph has no directed path of
length two. In the proof of the below theorem, we will make use of the following
concepts for undirected graphs. Let G be an undirected graph. We say that G is
cubic if every vertex of G is incident with exactly three edges. A matching M in
G is said to be perfect if every vertex of G is an endpoint of an edge in M . Note
that every matching M in G satisfies |M | ≤ |V (G)|/2, with equality if and only
if M is a perfect matching. The line graph of G is the graph L(G) with vertex
set E(G), with e, f ∈ E(G) adjacent if and only if e and f are distinct edges in
G that share an endpoint.

Theorem 9. Min-Max Dissatisfaction and Min-Sum Dissatisfaction

are NP-complete, even when k = 3 and G1 = G2 = G3.

Proof. We reduce from the following variant of 3-Edge-Coloring problem:
given an undirected cubic graph H, is there a partition {M1,M2,M3} of E(H)
into three matchings? As shown by Holyer [16], this problem is NP-complete.
Take any undirected cubic graph H. Note that if H is 3-edge-colorable and
{M1,M2,M3} is a partition of E(H) into three matchings, then 3|V (H)| =
2|E(H)| = 2(|M1| + |M2| + |M3|) ≤ 3|V (H)| since |Mi| ≤ |V (H)|/2 for all
i ∈ {1, 2, 3}; hence, equalities must hold and each Mi is a perfect matching in
H. Let G be the line graph of H. We now describe an instance I1 of the Min-Max

Dissatisfaction problem and an instance I2 of the Min-Max Dissatisfac-

tion problem. In both instances, the set of agents is K = {1, 2, 3}, the directed
acyclic graph of each agent i ∈ K is the same, namely the graph Gi given by
V (Gi) = V (G) ∪ E(G) and E(Gi) = {(v, e) | v ∈ V (G), e ∈ E(G), v ∈ e}, and
the set of items is V (G1)(= V (G2) = V (G3)). See Fig. 3 for an example.

The only difference in the two instances is in the corresponding upper bounds
b1 and b2 on the maximum and total dissatisfaction, respectively. We set b1 =
|V (H)| in instance I1 and b2 = 3|V (H)| in instance I2. Note that b2 = 3b1 and
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b2 = 2|V (G)|. We complete the proof by showing that the following statements
are equivalent.

1. H is 3-edge-colorable.
2. There exists an allocation π of items to agents such that dissatisfaction δπ(i)

of each agent i ∈ K is at most b1.
3. There exists an allocation π of items to agents with total dissatisfaction at

most b2.

Suppose first that H is 3-edge-colorable, and let {M1,M2,M3} be a partition of
E(H) into three perfect matchings. Recall that 3|V (H)| = 2|E(H)| and hence
each matching Mi has cardinality |V (H)|

2 = |E(H)|
3 = |V (G)|

3 . Thus, {M1,M2,M3}
is a partition of the vertices of G into three equally sized independent sets. We
construct an allocation π of items to agents in K as follows. For each 1 ≤ i < j ≤
3, let Eij denote the set of edges of G with one endpoint in Mi and the other one
in Mj . Then {E12, E13, E23} is a partition of E(G). Since also {M1,M2,M3} is
a partition of V (G), setting π(1) = M1 ∪E23, π(2) = M2 ∪E13, π(3) = M3 ∪E12

yields an allocation of items to agents in K. See Fig. 3 for an example.

v1

v2

v3
v4

v5

v6

H

v3 v2

v5 v6

v4

v1

G = L(H)

v1 v2 v3 v4 v5 v6

v1v2
v1v3

v1v5
v1v6

v2v3
v2v4

v2v6
v3v4

v3v5
v4v5

v4v6
v5v6

G1 = G2 = G3

Fig. 3. Transforming a cubic graph H (with edges labeled as v1, . . . , v6) into G1 =
G2 = G3 and mapping a 3-edge coloring of H into an allocation of items to agents. Let
Mi = {vi, vi+3} for all i ∈ K. Then, edges of G that belong to E12, E13, and E23 are
colored light grey, grey, and black, respectively.

The dissatisfaction of agent 1 is equal to δπ(1) = |M2|+ |M3| = |V (H)| = b1.
By symmetry, we also have δπ(2) = δπ(3) = b1. Thus, the dissatisfaction of each
agent is at most b1.

Since b2 = 3b1, any allocation π such that the dissatisfaction of each agent
is at most b1 has total dissatisfaction at most b2.

Finally, suppose that there exists an allocation π of items to agents with
total dissatisfaction at most b2 = 2|V (G)|. For i ∈ K, let Vi = π(i) ∩ V (G) and
Ei = {e ∈ E(G) | e ⊆ Vi}. For each 1 ≤ i < j ≤ 3, let Eij denote the set of edges
of G with one endpoint in Vi and the other one in Vj . Note that each v ∈ V (G)
contributes to the total dissatisfaction at least twice, since it is not going to be
in at least two of the sets π(1), π(2), π(3) and hence not dominated by them.
We infer that the total dissatisfaction is at least 2|V (G)|. Since we assumed that
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the total dissatisfaction is at most 2|V |, equality must hold. This implies that
each v ∈ V (G) contributes to the total dissatisfaction exactly twice, and hence
{V1, V2, V3} is a partition of V (G). Furthermore, {E1, E2, E3, E12, E13, E23} is
a partition of E. Furthermore, for {i, j, k} = {1, 2, 3}, each e ∈ Ei contributes
at least one unit to the total dissatisfaction, since either e �∈ π(j) or e �∈ π(k).
Hence we can estimate the total dissatisfaction as

∑
i∈K δπ(i) ≥ (|V2| + |V3|) +

(|V1|+ |V3|)+ (|V1|+ |V2|)+ (|E1|+ |E2|+ |E3|) = 2|V (G)|+(|E1|+ |E2|+ |E3|).
Since we already showed that the total dissatisfaction is equal to 2|V (G)| we
infer that E1 = E2 = E3 = ∅. Hence V1, V2, V3 are independent sets and they
form a 3-coloring of G, or, equivalently, a 3-edge-coloring of H. ��

7 Conclusion

We have considered a model in which agents’ preferences over indivisible items
are captured by means of directed acyclic graphs (preference graphs). In that
respect, we have analysed the task of allocating the items in a way that mini-
mizes total and maximum dissatisfaction, where the latter is measured by the
number of desired items an agent does not receive and for which she does not get
a more preferred item. Complementing our surprisingly strong hardness results
we have presented several positive results, i.e., polynomial-time solvable cases;
however, some interesting questions are still left open. For instance, can we gener-
alize the positive result for Min-Max Dissatisfaction for directed matchings
(Theorem 5) to more than two agents? More generally, which further graph
structures admit positive results for our two objectives? And which additional
parameters allow for fixed-parameter tractability (in particular, for Min-Max

Dissatisfaction)?

Acknowledgements. The authors wish to thank Matjaž Krnc for valuable discus-
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Abstract. Among the fairness criteria for allocating indivisible
resources to a group of agents, some are based on minimum utility levels.
These levels can come from a specific allocation method, such as max-
imin fair-share criterion which is based on the cut-and-choose protocol.
We propose to analyze criteria whose minimum utility levels are inspired
by picking sequences, a well-established protocol for allocating indivisible
resources. We study these criteria and investigate their connections with
known fairness criteria, enriching the understanding of fair allocation of
indivisible goods.

Keywords: Fair division · Resource allocation · Computational social
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1 Introduction

Fair division of indivisible goods is a fundamental and challenging question in
collective decision making that has been widely investigated [6,10,22]. Many
criteria have been proposed in the literature in order to evaluate the fairness of
an allocation when agents express preferences over bundles of goods via additive
utilities. A very natural criterion is envy-freeness (EF) [18,30], a comparison-
based criterion which asks that no agent prefers the bundle assigned to another
agent over her own assigned bundle of goods. This criterion notably requires that
agents are aware of the other agents’ allocation. Alternatively, many criteria
simply impose, for an allocation to be considered fair, that each agent gets a
utility for her assigned bundle that is greater than or equal to a predefined
minimum utility level, called a fair guarantee [5]. As defined by Bogomolnaia
et al. [5], a fair guarantee for an agent is a utility level defined only according to
the utility function of the agent and the number of agents n. One can cite the
proportionality (Prop) fair guarantee [28] where each agent must get at least a
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utility equal to her value for the whole set of goods divided by n. In addition,
a fair guarantee can be defined according to a given allocation procedure like,
e.g., the maximin share (MMS) [13] or the min-max-fair-share (mFS) [9] which
are computed thanks to the cut-and-choose protocol. In this article, we define
several fairness criteria whose fair guarantee can be computed thanks to picking
sequences.

In the well-established allocation protocol of picking sequences (PS) [7,12,20],
all goods are initially available and, given a sequence of agents (a.k.a. policy),
each agent picks at her turn an object among the remaining ones. Understanding
which allocations emerge from such a mechanism has been done, for example,
by Brams et al. [11], and Aziz et al. [4]. Moreover, picking sequences have been
widely studied in a strategic perspective where agents may choose not to pick
their best object [2,8,19,29]. Non strategic agents are said to be sincere.

One of the main assets of picking sequences is their simplicity: everyone can
quickly understand how they work and they are easy to implement. Thus, they
are good candidates for sharing resources. If the final allocation is not built
with a picking sequence, then an agent may advocate for it and claim that her
utility must be as good as the one resulting from a picking sequence that she
has in mind. However, the number of possible policies is huge and, on top of
this, every agent can have her own policy in mind. This offers a number of
combinations which is undoubtedly too large. For a positive integer p bounded
by the number of agents, we propose a simple criterion named PSp in which the
fair guarantee of every agent is her utility for a subset of objects built as follows.
Rank the objects from best to worst under the agent’s preference, and keep the
items whose ranks are multiples of p. An agent would be endowed such a set
in a sincere picking sequence if her positions in the policy were multiples of p,
and if the other agents had the same preference. Indeed, without knowing the
others’ preferences, an agent may suppose that, in the worst case, everyone has
the same object ranking as hers. In PSp, the parameter p makes it possible to
move gradually between a very optimistic scenario where all the agents choose
first (p = 1), and a more pessimistic one where they all choose last (p = n).
PS criteria only rely on a very simple sequential allocation protocol, which is
commonly known (think about composition of sports teams at school). Moreover,
agents only need to know their assigned bundle, the number of agents and their
own preferences over goods. Therefore, these criteria are easy to understand and
can be naturally expressed as requirements by an agent.

The fact that the agent appears recursively in the policy is inspired by round
robin, a well-known method for allocating resources [3,26]. Round robin falls into
the class of recursively balanced (RB) policies [4], where each sequence of agents
can be divided into rounds during which all the agents pick an object exactly once
(all rounds are identical in round robin). At any step of the sequence, the agents
have chosen almost the same number of objects. Without any prior knowledge on
the agents’ utility functions, letting the agents pick the same number of times,
leading then to an even-shares division, constitutes a natural first argument for
equity [10]. Moreover, it is known from Aziz et al. [3] that picking sequences with
RB policies generate allocations that are envy-free up to one good (EF1) [13,23],
a well-accepted fairness criterion which relaxes envy-freeness.
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The round robin share criterion introduced by Conitzer et al. [17] in the
context of public decision making corresponds to PSn. The round robin share
provides a one half approximation to Prop1, a relaxed version of proportionality.
Conitzer et al. [17] focus on mechanisms that satisfy this criterion among others,
whereas we focus on the properties of the PS criteria.

Contribution and Organization. Section 2 contains a formal definition of the
model, a review of classical fairness concepts, some common relaxations up to
some goods, and a map explaining how all these notions relate. We notably com-
plement the state of the art on the relations between relaxations of envy-freeness
and proportionality. The PS criteria are introduced in Sect. 3. Analogously to
many relaxed criteria based on the satisfaction of the fairness requirement up to
the addition of some goods in the agent’s bundle (like, e.g., EF1 for envy-freeness
or Prop1 for proportionality), we also study relaxations of the PS criteria up to
some goods. For a given allocation of goods, the satisfaction of a PS criterion
can be checked in polynomial time. We identify in Sect. 4 the PS criteria for
which a satisfying allocation always exists, and when it is not the case, we set-
tle the complexity of deciding the existence of a satisfying allocation in a given
instance. Contrary to many classical criteria, we identify two non-trivial PS
criteria, namely PSn and PS11 (the relaxation up to one good of PS1), for which
a satisfying allocation always exists. Afterwards, we provide a complete picture
of the implications that relate the PS criteria and the classical fairness concepts
(Sect. 5), as well as their relaxations up to some goods. All these results are sum-
marized in Fig. 1. Finally, we complement our study with experiments which give
an intuition on how well fairness criteria can be compatible with efficiency. Due
to space limitation, some proofs are omitted.

PSn

PS1

MMS

Prop

mFS

EF

CEEI

EFX

EF1
PropX

Prop1

PS1X

PS11

Guarantee
of existence

Fig. 1. Summary of the relations among fairness criteria and their existence guarantee
(critX stands for the relaxation of the criterion crit up to any good). An arrow from
criterion A to criterion B means that A implies B (A is stronger than B). If there is
no path from A to B then A is not stronger than B.
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2 Fair Division of Indivisible Goods

2.1 The Setting

We are given a set N = {1, . . . , n} of n ≥ 2 agents and a set M = {x1, . . . , xm}
of m indivisible resources (or objects) which are goods. The agents have cardinal
preferences over the bundles of objects, expressed via utility function ui : 2M →
R

+ for each agent i. We assume that the utilities are additive, i.e., for each
bundle of objects O and each agent i, ui(O) =

∑
xj∈O ui({xj}). For the sake

of simplicity, we denote ui({x}) by ui(x). We represent the preferences by an
(n × m)-matrix where the value in row i and column j corresponds to ui(xj).
Preferences are strict (on the objects) whenever ui(x) �= ui(y) for every agent i
and pair of objects x and y. We denote by ok

i the kth most preferred object of
agent i, for 1 ≤ k ≤ m (an arbitrary order over the objects is used in case of ties).
We suppose, w.l.o.g., that the number of objects m is a multiple of the number
of agents n (dummy objects with utility 0 can be added if it is not initially the
case), and q denotes the quotient m/n.

An allocation σ is a mapping σ : N → 2M such that σ(i) ∩ σ(j) = ∅ for all
agents i and j, and

⋃
i∈N σ(i) = M , where σ(i) is the bundle assigned to agent i.

A denotes the set of all allocations. The n-vector u(σ) = (u1(σ(1)), . . . , un(σ(n)))
describes the utilities that the agents obtain from allocation σ.

In this article, [t] := {1, . . . , t} for all positive integers t.

2.2 Classical Fairness Criteria

For the sake of self-containedness, we recall some classical fairness criteria.

– Maximin share guarantee (MMS) [13]: Allocation σ is MMS iff ui(σ(i)) ≥
mmsi for every agent i, where mmsi = maxσ′∈A minj∈N ui(σ′(j)).

– Proportionality (Prop) [28]: Allocation σ is Prop iff ui(σ(i)) ≥ 1
n

∑
x∈M ui(x),

for every agent i.
– Min-max-fair-share guarantee (mFS) [9]: Allocation σ is mFS iff ui(σ(i)) ≥

mfsi:= minσ′∈A maxj∈N ui(σ′(j)), for every agent i.
– Envy-freeness (EF) [18, 30]: Allocation σ is EF iff ui(σ(i)) ≥ ui(σ(j)) for all

agents i and j.
– Competitive Equilibrium with Equal Incomes (CEEI) (see, e.g., Moulin [24]):

Allocation σ is CEEI iff there exists a price vector pr ∈ [0, 1]m such that
σ(i) ∈ arg maxO⊆M{ui(O) :

∑
o∈O pro ≤ 1} for every agent i.

An implication A ⇒ B between criteria means that if an allocation satisfies
A for a given instance, then the same allocation also satisfies B for the same
instance. When such an implication holds, we say that criterion A is stronger, or
more demanding, than criterion B. All previous fairness criteria can be connected
w.r.t. such implications to form the following “scale of fairness” [9].

CEEI ⇒ EF ⇒ mFS ⇒ Prop ⇒ MMS (1)
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An allocation satisfying MMS is guaranteed to exist for two agents [9]. How-
ever, starting from 3 agents, there may not exist an MMS allocation [21,27].

Common relaxations of envy-freeness and proportionality are based on sat-
isfying the criterion up to a fixed number c of goods, for c a positive integer.
Allocation σ is proportional up to c goods (Propc) [16] iff for every agent i, there
exists Xi ⊆ M \σ(i) such that |Xi| ≤ c and ui(σ(i))+ui(Xi) ≥ ui(M)/n. Allo-
cation σ is envy-free up to c goods (EFc) iff for all agents i and j, there exists
Xi ⊆ σ(j) such that |Xi| ≤ c and ui(σ(i)) + ui(Xi) ≥ ui(σ(j)). By definition,
Prop ⇒ Propc (resp., EF ⇒ EFc) holds for all c, and Propc ⇒ Propc′ (resp.,
EFc ⇒ EFc′) whenever c ≤ c′.

In addition, we show that EFc ⇒ Propc holds for all c.

Proposition 1. EFc ⇒ Propc.

It follows that EFc ⇒ Propc′ whenever c ≤ c′. The existence of an allocation
satisfying EF1 [13,23] or Prop1 [17] i.e., c = 1, is guaranteed for every instance.
Relaxations up to one good have been strengthened to any good. Allocation
σ is proportional up to any good (PropX) [25] iff for every agent i, ui(σ(i)) +
ui(x) ≥ ui(M)/n holds for all x ∈ M \ σ(i). By definition we have Prop ⇒
PropX ⇒ Prop1. Allocation σ is envy-free up to any good (EFX) [15,23] iff
ui(σ(i)) + ui(x) ≥ ui(σ(j)) for every pair of agents i and j and any object
x ∈ σ(j). It holds that EF ⇒ EFX ⇒ EF1.

Though EFc implies Propc, we show that EFX does not imply PropX when
n > 2. Up to our best knowledge, this fact has not been explicitly stated before.

Proposition 2. If n = 2 then EFX ⇒ PropX, but EFX �⇒ PropX when n > 2.

Proof. Suppose there are two agents. Take an instance and an EFX allocation σ.
Take the viewpoint of an agent, say agent 1. We have u1(σ(1))+u1(x) ≥ u1(σ(2))
for all x ∈ σ(2). Add u1(σ(1))+u1(x) ≥ u1(σ(2)) to u1(σ(1))+u1(x) ≥ u1(σ(1))
in order to get that 2(u1(σ(1))+u1(x)) ≥ u1(σ(1))+u1(σ(2)). By definition, we
also have u1(σ(1)) + u1(σ(2)) = u(M). Therefore σ satisfies PropX.

Suppose there are 3 agents and 5 objects {x1, . . . , x5} valued (1, 1, 1,
0.25, 0.05) by agent 1. The utility of agents 2 and 3 is 1 for all objects. Agents
1, 2 and 3 get {x1}, {x2, x3}, and {x4, x5}, respectively. This allocation is EFX,
but not PropX because 1.05 = u1(x1)+u1(x5) �≥ u1(M)/3 = 1.1. We can extend
this instance to any number of agents n > 3. ��

3 Picking Sequence (PS) Fairness Criteria

We present new fairness criteria inspired by some picking sequences. A policy
π : {1, . . . , m} → N is a sequence of agents of size m, denoted by π = 〈π(1), . . . ,
π(m)〉. A picking sequence is a sequential protocol asking agent π(t) to pick an
object within the set of remaining objects at stage t. A policy π is recursively
balanced (RB) [4] if π can be decomposed into q = m

n rounds, and each agent
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chooses an object exactly once at each round. Round robin is a special RB policy
where all rounds are identical [3].

The PS fairness criteria use fair guarantees [5]. For every p ∈ [n], PSp imposes
that the utility of an agent i for her share is at least psp(i) where

psp(i) :=
∑q

k=1
ui(o

(k−1)n+p
i ).

For example, agent i would get utility psp(i) in a sincere1 picking sequence
if her turns in π were all the multiples of p, and if the other agents had identical
preferences. Without knowing the preferences of the others, agent i considers the
worst case where all the other agents have the same induced ordinal preferences
as hers. In such a case, at each turn k, agent i can only get her ((k − 1)n + p)th

most preferred available object, i.e., o
(k−1)n+p
i .

Let psp be the n-vector (psp(1), . . . , psp(n)). An allocation satisfies a PS
criterion if it fulfills the PS fair guarantees for every agent and some common
position p. It is important to note that allocations satisfying a PS criterion do
not need to be generated by a picking sequence.

Definition 1 (PSp allocation). An allocation σ ∈ A is PSp if for every agent
i ∈ N , ui(σ(i)) ≥ psp(i).

By definition, PSp ⇒ PSp′ holds for every 1 ≤ p ≤ p′ ≤ n. In this article, we
pay particular attention to positions p = 1 and p = n, which correspond to an
optimistic and pessimistic view, respectively.

The PS fair guarantees are computable in polynomial time, by definition.
Therefore, checking whether a given allocation satisfies a PS criterion is com-
putationally easy. Whereas this polynomial-time verification also holds for pro-
portionality and envy-freeness, this is not the case for CEEI, nor for MMS and
mFS [9], although the two latter notions are also based on fair guarantees. Note
that, contrary to envy-based criteria, the verification of satisfaction of a PS
criterion does not even need to have access to other agents’ allocation.

Like EF and Prop, PSp can be relaxed up to some goods. Allocation σ satisfies
PSp up to c goods (PSpc) iff for every agent i, there exists Xi ⊆ M \ σ(i) such
that |Xi| ≤ c and ui(σ(i)) + ui(Xi) ≥ psp(i). By definition we have PSpc ⇒
PSp′c ⇒ PSp′c′ whenever p ≤ p′ and c ≤ c′. However, a PSp allocation may not
satisfy PSp−11, as stated below.

Proposition 3. PS2 does not imply PS11.

Proof. Consider an instance where n = 2 and m = 6. The utilities are:
24 16 12 6 5 2
10 5 4 3 2 1

Allocation σ (circles) is PS2 since ps2 = (24, 9) and u(σ) = (24, 15). However,
it is not PS11 because u1(σ(1)) + maxx/∈σ(1) u1(x) = 24 + 16 < 41 = ps1(1). ��
1 Agents always pick their favorite object.
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Allocation σ satisfies PSp up to any good (PSpX) iff for every agent i,
ui(σ(i)) + ui(x) ≥ psp(i) holds for all x ∈ M \ σ(i). It holds that PSp ⇒
PSpX ⇒ PSp1. However, no relaxation up to any good implies a PS criterion
with no relaxation, as stated below.

Proposition 4. PS1X does not imply PSn.

4 Allocations Satisfying PS Criteria

Observe first that a PSp allocation may not exist if p < n: Consider an instance
where n = m with agents having the same induced preference order and no
object with zero utility. Every agent should receive one object but no agent
wants the common least preferred object. However, when p = n, the existence is
guaranteed for every number of goods m because every allocation resulting from
a picking sequence with an RB policy is PSn.

Proposition 5. Every allocation resulting from a sincere picking sequence with
an RB policy is PSn.

Proof. Consider an allocation σ resulting from a sincere picking sequence with
an RB policy π, and take an arbitrary agent i. For each round k of π, let pi(k)
denote the position occupied by agent i in π during round k, while xk is the object
picked by agent i in round k. By definition, we have ui(σ(i)) =

∑
1≤k≤q ui(xk).

Since agent i is sincere and pi(k) − 1 objects have been taken before agent i

picks at round k, it follows that ui(xk) ≥ ui(o
pi(k)
i ) for every round k. Thus,

ui(σ(i)) ≥ ∑
1≤k≤q ui(o

pi(k)
i ). By definition of an RB sequence, (k − 1)n + 1 ≤

pi(k) ≤ kn holds. Therefore, we get that ui(σ(i)) ≥ ∑
1≤k≤q ui(okn

i ) = psn(i). ��
The converse of Proposition 5 is not true. That is, not every PSn allocation

can result from a picking sequence with an RB policy, as shown in the next
example. This notably shows that allocations satisfying the PS criteria do not
necessarily emerge from a picking sequence (in particular, agents do not neces-
sarily get the same number of objects).

Example 1. Consider an instance where n = 2 and m = 4. The utilities are:
20 3 2 1
5 4 3 2

The encircled allocation σ is PSn since psn = (4, 6) and u(σ) = (20, 9).
However, this allocation cannot result from a picking sequence with an RB policy
since the two agents do not have the same number of objects.

Nevertheless, checking the existence of a PSp allocation is hard for every
constant p < n, even when m = 2n.

Theorem 1. Determining whether a PSp allocation exists is NP-complete, even
when m = 2n and p < n is a constant.
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Moreover, checking the existence of a PS1 allocation is hard even when n = 2,
showing that even checking the existence of a PSn−1 allocation is hard.

Theorem 2. Determining whether a PS1 allocation exists is NP-complete, even
when n = 2.

However, an allocation satisfying the relaxation up to one good of PS1 always
exists.

Proposition 6. Every allocation resulting from a sincere picking sequence with
an RB policy is PS11.

Proof. Consider the allocation σ built with the sincere picking sequence that uses
an RB policy. Take an agent i. Her objects are {o

f(1)
i , o

f(2)
i , . . . , o

f(q)
i } for some

increasing function f : [q] → [m] where f(j) is the rank in the preference order of
i of the object picked by i during round j. Let r be the smallest index such that
or

i /∈ σ(i). Agent i has in her share every object oj
i with j < r. Thus, o

f(j)
i = oj

i for
all j < r. We deduce that

∑
j<r ui(o

f(j)
i ) =

∑
j<r ui(o

j
i ) ≥ ∑

j<r ui(o
1+(j−1)n
i )

(2). The policy being RB, we also have ui(o
f(j)
i ) ≥ ui(o

jn
i ) ≥ ui(o

1+jn
i ) for all

j ∈ [q − 1], from which we deduce that
∑q−1

j=r ui(o
f(j)
i ) ≥ ∑q−1

j=r ui(o
1+jn
i ) =

∑q
j=r+1 ui(o

1+(j−1)n
i ) (3). Combine (2) and (3) with ui(or

i ) ≥ ui(o
1+(r−1)n
i ) to

get that ui(σ(i)) + ui(or
i ) ≥ ∑q

k=1 ui(o
1+(k−1)n
i ) = ps1(i). In other words, σ is

PS11 for agent i. ��
Propositions 5 and 6, together with Proposition 1 from Aziz et al. [3], imply

that a sincere picking sequence with an RB policy produces an allocation that
simultaneously satisfies EF1, Prop1, PS11 and PSn.

By Proposition 6, a PSp1 allocation exists for every p ∈ [n]. It is not the case
for PSpX, even when p = n−1 for any number n of agents: Consider an instance
where m = 2n with the following preferences for every agent i: ui(xj) = 1 for
every j ∈ [n − 1], ui(xj) = 1/n for every n ≤ j ≤ 2n − 1 and ui(x2n) = 0. We
have psn−1(i) = 1+1/n for every agent i. To satisfy PSn−1X, each agent i must
be in one of the following situations: ui(σ(i)) ≥ 1 + 1/n, or σ(i) = {xk, x2n} for
some k ∈ [n − 1], or σ(i) = {xj : n ≤ j ≤ 2n}. Making n disjoint bundles under
such conditions is impossible.

Since a PS11 allocation always exists, there is no need to consider relaxations
of PSp up to c goods for p > 1 and c > 1. Combined with the fact that the
existence of PSpX allocations is not guaranteed even for p = n− 1, we can focus
on stronger relaxations and only consider, as relaxed criteria, PS11 and PS1X.

5 Relations Between Fairness Criteria

We compare in this section the PS criteria with the classical fairness criteria
of the literature given in Sect. 2.2. We will show that the ordered scale of fair-
ness (1), completed with known relaxations of envy-freeness and proportionality,
can be connected with the PS criteria as shown in Fig. 1.
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Surprisingly, the strongest requirement CEEI in the fairness scale (1) does
not even imply PSn−1 or PS11, which are among the least demanding PS criteria.

Proposition 7. CEEI �⇒ PSn−1 for any number of agents n and CEEI �⇒ PS11.

Proof. Consider an instance where m = 2n, and two integers α and β such that
βn > α > β(n − 1) and β > 1. The utilities are such that ui(xi) = α and
ui(xj) = 0 for every index j �= i and every agent i ∈ [n − 2], and un−1(xn−1) =
un−1(x2n) = α and un−1(x) = 0 for every object x ∈ M \ {xn−1, x2n}. The
utility function of agent n is such that un(xj) = α for every index j ∈ [n − 1],
un(xj) = β for every index j ∈ {n, . . . , 2n − 1}, and un(x2n) = 0. Let us denote
by σ the allocation assigning object xi to every agent i ∈ [n − 2], the bundle of
objects {xn−1, x2n} to agent n−1 and the bundle {xn, xn+1, . . . , x2n−1} to agent
n. Observe that allocation σ is CEEI w.r.t. price vector pr given by pri = 1 for
every i ∈ [n − 2], prn−1 = n

n+1 , pri = 1
n for every i ∈ {n, n + 1, . . . , 2n − 1}

and pr2n = 1
n+1 . However, allocation σ is not PSn−1 because un(σ(n)) = βn <

α + β = un(on−1
n ) + un(o2n−1

n ) = psn−1(n), and thus is not PSp for any position
p ∈ [n − 1]. For PS11, it suffices to remark that the encircled allocation in the
proof of Proposition 3 is CEEI w.r.t. price vector pr = (1, 0.75, 0.6, 0.2, 0.2, 0.25)
but not PS11. ��

It follows that none of the criteria of the scale of fairness implies PSp when
p < n, meaning that PSp is not always “weaker” than any criterion of the scale
of fairness. However, all criteria of the scale of fairness imply the PSn criterion.

Proposition 8. MMS ⇒ PSn.

Proof. We prove that mmsi ≥ psn(i) for every agent i. Take an allocation where
the �th bundle (1 ≤ � ≤ n) gathers all the (� + kn)th most preferred objects
of agent i for 0 ≤ k < q. The nth bundle, whose value is psn(i), is the least
preferred. Thus, mmsi ≥ psn(i) because mmsi is agent i’s maximum value for
the worst bundle for every possible allocation. ��

Conversely, for p > 1, the PS criteria are not stronger than any classical
criterion either. Indeed, PS2 does not imply MMS, the least demanding criterion
in the fairness scale (1), or Prop1, thus no PS criterion with p > 1 does.

Proposition 9. 1. PS2 �⇒ MMS for any n,
2. PS2 �⇒ Prop1, even under strict preferences on the objects,
3. PS2 �⇒ Propc for large enough m and any c.

Sketch of Proof. We only present case 2. here. Consider an instance where n = 3
and m = 6. The utilities are:

24 16 15 14 8 7
1 2 3 4 5 6
2 4 6 8 10 12
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The encircled allocation σ is PS2 since ps2 = (24, 7, 14). However, σ is not
Prop1 because u1(σ(1)) + maxx/∈σ(1) u1(x) = 24 + 16 < 42 = u1(M)/2. ��

However, PS1 implies the mFS criterion.

Proposition 10. PS1 ⇒ mFS.

Proof. For every agent i, ps1(i) = maxσ∈A′ maxj∈N ui(σ(j)) where A′ ⊆
A is the set of allocations giving to each agent exactly one object within
{okn+1

i , okn+2
i , . . . , okn+n

i } for each 0 ≤ k < m/n. Thus, ps1(i) ≥ minσ∈A′

maxj∈N ui(σ(j)) ≥ minσ∈A maxj∈N ui(σ(j)) = mfsi. ��
Nevertheless, PS1 is not stronger than EF since it does not even imply EF1.

Proposition 11. PS1 �⇒ EF1, even under strict preferences on the objects.

Proof. Consider an instance where n = 4 and m = 12. The utilities are:
20 19 18 17 8 7 6 5 4 3 2 1
15 12 11 10 6 3 9 5 13 8 7 2
1 6 9 8 12 18 20 19 5 10 14 3
2 5 6 15 11 12 9 8 4 20 18 19

Allocation σ (circles), with u(σ)=(32, 33, 57, 57), is PS1 since ps1= (32, 31, 38,
38). But agent 1 envies agent 2, even if any object is removed from σ(2). ��

The fact that PS1 �⇒ EF1 may look surprising since fair guarantees of PS
criteria can be interpreted via RB sequences, which generate EF1 allocations.
However, satisfying a PS criterion does not impose to be the outcome of an RB
sequence but focuses on the fulfillment of associated minimum utility levels, that
are personal to each agent and do not need the inter-comparison between agents.

In their relaxed versions, PS1 and Prop remain connected.

Proposition 12. PS1c ⇒ Propc.

Proof. Take an instance, an agent i, and a PS1c allocation σ. Recall that, w.l.o.g.,
m = qn. There exists Xi ⊆ M \ σ(i) such that |Xi| ≤ c and ui(σ(i)) + ui(Xi) ≥
ui({o1i , o

1+n
i , . . . , o

1+(q−1)n
i }). Since ui({o1i , o

1+n
i , . . . , o

1+(q−1)n
i }) ≥ ui(M)/n, we

get that ui(σ(i)) + ui(Xi) ≥ ui(M)/n. Thus, σ satisfies Propc. ��
From Proposition 9, PSn cannot imply Propc when the number of objects m

is large enough. However, PSn implies Propc when m is at most (1 + c)n.

Proposition 13. If m ≤ (1 + c)n, then PSn ⇒ Propc.

Conversely, no “up to” relaxation of envy-freeness implies a PS criterion.

Proposition 14. EFX does not imply any PS criterion.
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Proof. By Proposition 7, we have that EFX �⇒ PS11. To prove that EFX �⇒
PSn, consider an instance where n = 2 and m = 4. The utilities are:

12 8 12 8

14 1 13 0

Allocation σ (circles) is EFX: agent 2 is not envious and agent 1 is not envious
if one good is removed from σ(2). However, σ is not PSn since psn = (20, 13). ��

Proposition 2 states that EFX �⇒ PropX though EFc ⇒ Propc. We know
that PS11 ⇒ Prop1 and it turns out that PS1X ⇒ PropX.

Proposition 15. PS1X ⇒ PropX.

Proof. Take an instance, an agent i, and a PS1X allocation σ. Recall that,
w.l.o.g., m = qn. We have ui(σ(i))+ui(x) ≥ ui({o1i , o

1+n
i , . . . , o

1+(q−1)n
i }) for all

x ∈ M \ σ(i). Since ui({o1i , o
1+n
i , . . . , o

1+(q−1)n
i }) ≥ ui(M)/n, ui(σ(i)) + ui(x) ≥

ui(M)/n holds for all x ∈ M \ σ(i). Hence, σ satisfies PropX. ��
EFX ⇒ PS1X cannot hold because EFX �⇒ PropX and PS1X ⇒ PropX.

Moreover, PS1X ⇒ EFX cannot hold because it would contradict Proposition 11.
Note that PSn gives a 1

n -approximation for MMS, like EF1 [1]. The approx-
imation ratio of a PSp allocation can be generalized to n−p+1

n for all p ∈ [n].

Proposition 16. ∀(p, i) ∈ [n] × N , psp(i) ≥ n−p+1
n mmsi.

6 Efficiency of Fair Allocations

It is long known that there is a tension between the two goals of computing
efficient and fair allocations [14,26]. In this section we propose an empirical
analysis of how the PS criteria go together with efficiency, and a comparison
with the classical fairness criteria.

An allocation is Pareto-efficient if there is no other allocation σ′ that Pareto-
dominates it, i.e., such that ui(σ′(i)) ≥ ui(σ(i)) for each agent i, and the inequal-
ity is strict for at least one agent. The social welfare (SW) is another efficiency
measure. The utilitarian SW of allocation σ is equal to

∑
i∈N ui(σ(i)), the egal-

itarian SW to mini∈N ui(σ(i)), and the Nash SW to
∏

i∈N ui(σ(i)).
It is easy to see that a Pareto-efficient allocation may not satisfy a PS crite-

rion, and vice versa. Similarly, maximizing the social welfare and achieving PS
fairness may be disconnected, as illustrated in the next example.

Example 2. Consider the instance given in the proof of Proposition 14. The
allocation σ (circles), which is the unique allocation maximizing the utilitarian,
egalitarian and Nash SW, is not even PSn since u1(σ(1)) = 16 < 20 = psn(1). It
is surprising since an allocation maximizing the Nash SW is known to be EF1
and to provide a good approximation to MMS [15]. Alternatively, the unique PS1

allocation (frames) is different and thus does not maximize any social welfare.
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We study how often “fair” allocations are efficient. We run 1,000 instances
with n = 3 agents where m ranges from 6 to 9 (adding dummy objects can make
m a multiple of n). The valuations of the agents over the objects are integers
between 0 and 100 generated following a uniform distribution and then normal-
ized. All the nm possible allocations are considered. We compare in Table 1 the
percentage of allocations satisfying classical and PS fairness criteria, and the
proportion of these allocations that are Pareto-efficient. Moreover, we compare
in Fig. 2 the average of the utilitarian and egalitarian SW among the allocations
satisfying a given fairness criterion (the behavior for Nash SW is similar).

In practice, the set of PS1X allocations is almost the same as the set of PS1

allocations, where PS1 is very demanding, even though less than CEEI. A signif-
icant proportion of allocations are PSn (≈20%). This is less than the proportion
of PS11 allocations (≈40%), and even significantly less than the proportion of
Prop1 allocations (≈70%). Among these 3 criteria which can be satisfied for any
instance, our experiments show that PSn is the most selective one.

Table 1. Percentage of allocations satisfying fairness criteria and percentage of these
allocations that are Pareto-efficient for n = 3

% fair allocations % Pareto-eff. alloc./fair alloc.

m 6 7 8 9 6 7 8 9

MMS 9.73 6.69 5.35 4.53 20.54 13.50 8.37 4.80

Prop 3.64 3.67 3.67 3.51 30.85 18.29 10.38 5.56

mFS 2.20 2.60 2.94 3.06 38.00 21.77 11.73 6.05

EF 0.83 0.86 0.82 0.77 51.15 32.44 20.22 11.67

CEEI 0.39 0.25 0.13 0.07 86.31 80.34 80.21 82.28

Prop1 79.28 72.99 68.50 64.49 7.94 4.43 2.33 1.19

PropX 4.87 4.5 4.37 4.13 23.02 14.72 8.58 4.71

EF1 18.65 17.04 15.42 14.21 13.65 7.90 4.30 2.22

EFX 2.85 2.33 1.88 1.66 29.03 18.85 12.25 7.11

PS3 30.69 18.43 17.46 18.94 11.77 8.03 4.31 2.12

PS2 4.01 4.27 5.42 3.73 28.38 16.76 8.25 5.61

PS1 0.15 0.43 0.22 0.26 83.67 50.26 44.63 26.02

PS11 46.76 49.53 36.48 34.60 9.16 5.13 2.97 1.51

PS1X 0.16 0.50 0.26 0.30 82.36 41.72 33.52 22.14

We observe that the proportion of efficient allocations among fair allocations
seems to be dependent on the number of fair allocations. In particular, the
proportion of PS1 allocations that are Pareto-efficient is superior to the same
quantity for EF allocations, and the utilitarian SW for PS1 is also better in
average than the SW for EF. EF1 and PSn, which are both always satisfiable,
seem to be equivalent regarding efficiency.
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Fig. 2. Average of the utilitarian and egalitarian social welfares within the set of fair
allocations for n = 3 and m ∈ {6, 7, 8, 9}

7 Conclusion

We have introduced some criteria whose fair guarantees are inspired by picking
sequences where every agent supposes that her turns are the multiples of p. By
the simplicity of the picking sequence protocol and the definition of the PS fair
guarantee, PS criteria can be easily expressed by an agent as a fairness require-
ment. Moreover, even without knowing how the rest of goods is allocated, it is
easy for an agent to check whether she can be satisfied with her own assigned
bundle according to a PS criterion. The two extreme criteria (PS1 and PSn) are
well connected with the ordered scale of fairness. More precisely, PS1 implies
mFS, MMS implies PSn, whereas PS11 and PS1X imply Prop1 and PropX,
respectively. In light of the fact that EFX �⇒ PropX, the connection of relaxed
PS1 with relaxed proportionality is interesting and highlights that PS criteria
and proportionality are conceptually close. We have proved that allocations sat-
isfying PSn and PS11 can always be found whereas, as shown by our extensive
comparative study of PS criteria with classical fairness criteria, these two cri-
teria are far from being trivial. This positive result regarding the possibility of
satisfaction is appealing since only a few known fairness criteria (EF1 and Prop1
among those studied here) are always satisfiable. The whole picture of existence
and interactions between fairness criteria is depicted in Figure 1. By this pic-
ture combined with our experiments which explore the compatibility of the PS
criteria with efficiency, our work contributes to the understanding of how the
fairness criteria for allocating indivisible goods interact.

The fact that EFX �⇒ PropX when n > 2 (Proposition 2) calls for the
following less restrictive notion of envy-freeness: Allocation σ is broadly EFc
(bEFc) iff for every pair of agents i and j, there exists Xi ⊆ M \ σ(i) such
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that |Xi| ≤ c and ui(σ(i)) + ui(Xi) ≥ ui(σ(j)). Allocation σ is broadly EFX
(bEFX) iff for every pair of agents i and j, ui(σ(i)) + ui(x) ≥ ui(σ(j)) holds for
any x ∈ M \ σ(i). Then, EFc ⇒ bEFc ⇒ Propc, bEFX ⇒ EFX, and bEFX ⇒
PropX hold. Obviously, EFX and bEFX coincide when n = 2.

Several research directions can be derived from this work. Alternative defi-
nitions of fair guarantees can be explored like what some agent i would get in
a picking sequence with a balanced alternation policy 〈1, . . . , n | n, . . . , 1 | . . .〉.
Another possibility would be to consider a probability distribution over the possi-
ble positions taken by the agent in round robin. By using a uniform distribution,
we fall back to the definition of proportionality. One can also suppose that p in
PSp is not the same for all agents.

We have focused on a particular type of relaxation of a fairness criterion
F , namely when F can be satisfied up to some good(s). Other relaxations can
be studied. For example, F can be satisfied for any given subset of t privileged
agents. Another type of relaxation consists of satisfying F up to a multiplicative
factor. We know that PSn can always be satisfied (Proposition 5) but when
p < n, no positive α guarantees the existence of an allocation σ such that
ui(σ(i)) ≥ αpsp(i) for all i ∈ N .
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Abstract. The efficient and fair distribution of indivisible resources
among agents is a common problem in the field of Multi-Agent-Systems.
We consider a graph-based version of this problem called Reachable

Assignment, introduced by Gourvès, Lesca, and Wilczynski [IJCAI,
2017]. The input for this problem consists of a set of agents, a set of
objects, the agent’s preferences over the objects, a graph with the agents
as vertices and edges encoding which agents can trade resources with
each other, and an initial and a target distribution of the objects, where
each agent owns exactly one object in each distribution. The question
is then whether the target distribution is reachable via a sequence of
rational trades. A trade is rational when the two participating agents
are neighbors in the graph and both obtain an object they prefer over
the object they previously held. We show that Reachable Assignment

is solvable in O(n3) time when the input graph is a cycle with n vertices.

Keywords: Multi-Agent Systems · Resource allocation ·
Polynomial-time algorithm · Reduction to 2-SAT

1 Introduction

The efficient distribution of resources among agents is a frequent problem in
Multi-Agent-Systems [6] with e. g. medical applications [1]. These resources are
often modeled as objects and sometimes they can be divided among agents
and sometimes they are indivisible. One famous problem in this field is called
Housing Market: Each of the n participating agents initially owns one house
(an indivisible object) and the agents can trade their houses in trading cycles
with other agents [15,17]. Versions of this problem were considered with different
optimization criteria like Pareto-Optimality [2,14,18] or envy-freeness [5,7,9].
Gourvès et al. [11] studied two similar problems where agents are only able to
perform (pairwise) trades with agents they trust. This is modeled by a social
network of the participating agents where an edge between two agents means
that they trust each other. The first version is called Reachable Assignment:
Can one reach a given target assignment by a sequence of rational swaps? A
swap is rational if both participating agents obtain an object they prefer over
their current object and the agents share an edge in the social network. The
second version is called Reachable Object and the question is whether there
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1

3 2

1: x2 � x1

2: x3 � x2

3: x1 � x2 � x3

Fig. 1. Example for Reachable Assignment on a triangle with preference lists on
the right-hand side. We use the notation “1: x2 � x1 ”to denote that agent 1 prefers
object x2 the most and object x1 the second most. Moreover, agent 1 initially holds
object x1 and since we only consider rational swaps and hence agent x1 will never hold
an object it prefers less than object x1, we do not list these objects for agent 1. In
the target assignment, each agent shall hold its most preferred object. First, agents 2
and 3 can swap their currently held objects. Afterwards, agent 1 can trade object x1

to agent 3 and receive object x2 in return.

is a sequence of rational swaps such that a given agent obtains a given target
object. Figure 1 displays an example of Reachable Assignment.

Gourvès et al. [11] showed that Reachable Assignment and Reachable

Object are both NP-hard on general graphs. They further proved that Reach-

able Assignment is decidable in polynomial time if G is a tree. Huang and Xiao
[13] showed that if the underlying graph is a path, then Reachable Object

can be solved in polynomial time. Moreover, they studied a version of Reach-

able Object that allows weak preference lists, i.e. an agent can be indifferent
between different objects and show that this problem is NP-hard even if the input
graph is a path. Contributing to the Reachable Object problem, Saffidine
and Wilczynski [16] proposed an alternative version of Reachable Object,
called Guaranteed Level Of Satisfaction, where an agent is guaranteed
to obtain an object at least as good as a given target object. They showed that
Guaranteed Level Of Satisfaction is co-NP-hard. Finally, Reachable

Object is polynomial-time solvable if the input graph is a cycle and NP-hard
if the input graph is a clique, that is, all agents can trade with each other [3].

In our work, we focus on Reachable Assignment for the special cases
where the input graph is a cycle and provide an O(n3)-time algorithm. The algo-
rithm is shown in three steps. In the first step, we will show that once an object
is swapped into either clockwise or counter-clockwise direction, it is impossible
to swap it back into the opposite direction. Moreover, assigning a direction to
each object is equivalent to providing a sequence of rational swaps. We will also
show how to verify in polynomial time whether such an assignment corresponds
to a solution. In this case, we will say that the assignment of directions yields the
target assignment. In a second step, we show a characterization of assignments of
directions that yield the target assignment. We call these direction assignments
valid. In the third and final step, we will iterate over all edges in the input graph
and construct for each iteration a 2-SAT formula that is satisfiable if and only
if there exists a valid assignment of directions that corresponds to a solution in
which the first swap is done over the iterated edge. Besides a novel character-
ization of instances that have a solution, our main technical contribution is a
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non-trivial reduction to 2-SAT. The approach of reducing a problem to 2-SAT for
showing polynomial running times was used before [3,4,12,13], but our reduc-
tion is not based on any of the earlier ones and we believe that the potential of
reducing to 2-SAT is still relatively unexplored. Due to space constraints, some
formal proofs are omitted. Affected results are marked with a (�).

2 Preliminaries and Preprocessing

We use standard graph-theoretical notation similar to Diestel [10].
Let G := (V,E) be a graph and let W ⊆ V be a set of vertices. We use G[W ]
to denote the induced subgraph of W in G, that is, the graph G′ := (W,E′)
where {v, w} ∈ E′ if and only if {v, w} ∈ E and v, w ∈ W . If graphs H and K
are two subgraphs of a graph G, then we denote with H ∪ K the induced graph
G[V (H)∪V (K)] and with H ∩K we denote the induced graph G[V (H)∩V (K)].

For two integers a and b we denote by [a, b] the set of integers {a, a+1, ..., b}.
If G is a cycle, then we always assume that the agents are numbered from 0
to n−1, where n = |V |, such that agent i shares an edge with agents i+1 mod n
and with agent i − 1 mod n. We denote this cycle by Cn. We also say that
agent i+1 mod n is the clockwise neighbor of agent i and that agent i−1 mod n
is the counter-clockwise neighbor of agent i. We denote by μa,b the sequence of
clockwise neighbors starting from a and ending in b, that is,

μa,b =

{
(a, a + 1, ..., n − 1, 0, 1, ..., b) if b < a

(a, a + 1, ..., b) otherwise
(1)

We now formally define Reachable Assignment. Let N be a set of n agents
and let X be a set of n indivisible objects. Each agent i ∈ N has a preference
list �i over a non-empty subset Xi of the set of objects X. Each preference list
is a strict ordering on Xi. The set of all preference lists is called a preference
profile �. A bijection σ : N → X is called an allocation or assignment. Akin to
the problem Housing Market [2], each agent is initially assigned exactly one
object. We denote this initial assignment by σ0 and for the sake of simplicity,
we will interchangeably use σ(i) = o and (i, o) ∈ σ for an agent i, an object o,
and an assignment σ. Let G = (N,E) be a graph where the set of vertices is
the set N of agents. We will use the term agents interchangeably with vertices
of G. A trade between agents i and j is only possible if their corresponding
vertices share an edge in G and if both i and j receive an object that they
prefer over the objects they hold in the current assignment σ. We can express
this formally by σ(i) �j σ(j) and σ(j) �i σ(i) and we call such a trade a ratio-
nal swap. A sequence of rational swaps is a sequence of assignments (σs, ..., σt)
where σi is the result of performing one rational swap in assignment σi−1 for
all i ∈ {s + 1, s + 2, ..., t}. We call an assignment σ reachable from σ0 if there
exists a sequence of rational swaps (σ0, ..., σ). Gourvès et al. [11] introduced the
problem Reachable Assignment as follows.
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Reachable Assignment

Input: A set N of agents, a set X of objects, a preference profile �, a
graph G, an initial assignment σ0, and a target assignment σ.

Question: Is σ reachable from σ0?

Recall that assignments are bijections. This allows us for any assignment σ,
any object y and the agent i with σ(i) = y to denote i by σ−1(y).

We end this section with a simple data reduction rule for Reachable

Assignment. Whenever an agent prefers an object q over the object p it is
assigned in the target assignment σ, then we can simply remove q from its pref-
erence lists. This is due to the fact that once the agent possesses q, then it cannot
receive p anymore. We will assume that every instance has already been prepro-
cessed by the following data reduction rule, which is equivalent to assuming
that σ assigns each agent its most preferred object.

Reduction Rule 1. Let I be an instance of Reachable Assignment with
preference profile � and target assignment σ. If for any agent i with object p :=
σ(i) there exists an object q such that q �i p, then remove q from �i.

3 A Polynomial-Time Algorithm for
REACHABLE ASSIGNMENT on Cycles

In this section we develop a polynomial-time algorithm for Reachable Assign-

ment on cycles. To the best of our knowledge, this is the first polynomial-time
algorithm for Reachable Assignment beyond the initial algorithm for trees by
Gourvès et al. [11]. Our algorithm generalizes several ideas used in the algorithm
for trees. Note however, that a solution might need to swap objects over all edges
in the cycle and hence we cannot simply remove one of the edges and directly
use the algorithm by Gourvès et al. for trees. Moreover, there are up to n/2
swaps over a single edge in a sequence of swaps and we therefore cannot iter-
ate over all O(nn/2) possible swaps over one edge in polynomial-time. Thus,
our approach for solving Reachable Assignment on cycles is new and uses
a novel characterization of solutions. We divide the approach into three parts
that are covered in the following three subsections. In Subsect. 3.1, we formally
define what we mean by swapping an object in a certain direction and provide
a polynomial-time algorithm to verify whether a given assignment of directions
to all objects corresponds to a solution. In this case, we will say that the assign-
ment of directions yields σ. In Subsect. 3.2, we define a property we call validity
and show that this characterizes the assignments of directions yielding σ. Finally
in Subsect. 3.3, we reduce the problem of deciding whether there exists a valid
assignment of directions to 2-SAT.

3.1 Swapping Directions in a Cycle

In this subsection we will formally introduce assignments of directions.
We will refer to them as selections and always denote them by γ.
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Fig. 2. Given a selection γ and two objects p and q with γ(q) �= γ(p) = 1, the two
marked paths in are the respective paths of p (red) and q (blue) for γ. Since they do
not intersect in the left figure, the set ξγ(p, q) of shared paths of p and q for γ is empty.
In the center figure ξγ(p, q) contains a single intersection between σ−1(q) and σ−1(p)
(the purple path) and in the right figure it contains the two intersections in the top
and in the bottom. The two objects are opposite in the left and the right figure, but
not in the center. (Color figure online)

Let I := (N,X, �, G, σ0, σ) be an instance of Reachable Assignment. Let p
be an object, let j = σ−1(p), and let i = σ−1

0 (p). Since the underlying graph
is a cycle, there are exactly two paths between agents i and j for object p.
By definition of rational swaps, once p has been swapped, say from agent i to
agent i + 1 mod n then p is not able to return to agent i since agent i just
received an object that it prefers over p and will therefore not accept p again.
Hence, if p is swapped again, then it is given to agent i + 2 mod n and the
argument can be repeated for agent i + 1 mod n. As there are only two paths
between agents i and j, there are also only two directions, namely clockwise
and counter-clockwise. We will henceforth encode these directions into a binary
number saying that the direction of p is 1 if p is swapped in clockwise direction
and 0 otherwise. A selection γ of I is a function that assigns each object p ∈ X
a direction γ(p) ∈ {0, 1}.

We say that an object p is closer to � in direction d than another object q,
if starting from � and going in direction d, one finds object p before one finds
object q. Therein, � can be an edge, an agent, or a third object.

We will see that for a pair of objects (with assigned directions) there is
a unique edge over which they can be swapped. To show this, we need the
following definition of a path of an object. These paths consist of all agents that
will hold the respective object in any successful sequence of swaps that respects
the selection.

Definition 1. Let γ be a selection for instance I and let p and q be two objects
such that γ(p) �= γ(q). Let i := σ−1

0 (p), let j = σ−1(p), let I := μi,j, and let J :=
μj,i. The path ofp for γ is

Pγ(p) :=

{
Cn[I] if γ(p) = 1
Cn[J ] otherwise.
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The set ξγ(p, q) of shared paths of p and q for γ is the set of all connected paths
in Pγ(p)∩Pγ(q).1 Finally, p and q are opposite if there exists a selection γ′ such
that |ξγ′(p, q)| ≥ 2 and γ′(p) �= γ′(q).

Examples for paths and shared paths are given in Fig. 2. With these definitions
at hand, we are now able to determine unique edges where two objects p and q
can be swapped with respect to all selections γ with γ(q) �= γ(p) = 1.

Lemma 1. Let γ be a selection for an instance I and let p and q be two objects
with γ(p) �= γ(q). If for some path P ∈ ξγ(p, q) there is not exactly one edge e =
{u, v} in P such that the preference lists of u and v allow p and q to be swapped
between agents u and v, then γ does not yield target assignment σ.

Proof. Note that p and q have to be swapped somewhere on each path in ξγ(p, q)
as otherwise at least one of the objects cannot reach its target agent. For each
path P ∈ ξγ(p, q) there has to be at least one edge on P where p and q can
be swapped or γ does not yield the target assignment σ. Assume towards a
contradiction that there are at least two edges e and f on some path P ∈ ξγ(p, q)
where p and q can be swapped according to the corresponding preference lists
and γ yields σ. Suppose p and q are swapped over e in a sequence of rational
swaps that yields σ (the case for f is analogous). Then one of p or q must have
already passed the other edge f , say p (again, the case for q is analogous). Since p
and q could be swapped over f , it holds for the two agents a and b incident to f
that (p �a q) and (q �b p). Since p already passed f , agent a already held p.
Hence, agent a will not accept object q in the future and hence q can not reach
its destination as a is on the path of q. This contradicts the assumption that γ
yields σ. 
�

We next show that two objects p and q are swapped exactly once on each
path in ξγ(p, q) in any sequence of rational swaps and that |ξγ(p, q)| ≤ 2. Figure 2
depicts examples with |ξγ(p, q)| ∈ {0, 1, 2}.

Lemma 2. Let γ be a selection and let p and q be two objects with γ(q) �=
γ(p). There are at most two edges on Pγ(p) ∪ Pγ(q) such that p and q can only
be swapped over these edges or for every selection γ′ where γ′(p) = γ(p) and
γ′(q) = γ(q), γ′ does not yield a target assignment σ. Each of these edges is on
a different path in ξγ(p, q).

Proof. Let γ be any selection such that γ(q) �= γ(p). Note that p and q cannot
be swapped over any edge that is not on a path in ξγ(p, q) and that by Lemma 1
they have to be swapped over a specific edge for each path in ξγ(p, q). Hence the
number of edges where p and q can be swapped over in any sequence of rational
swaps that yield σ and that respects γ is equal to |ξγ(p, q)|.

Now assume that |ξγ(p, q)| ≥ 3. Then, p and q are swapped at least thrice.
For p and q to perform a first swap, both of them must have passed at least
one agent each. Observe that if p and q are swapped for a second time, then
1 If {σ−1

0 (p), σ−1(p)} ∈ E ∩ Pγ(q), then ξγ(p, q) contains two disjoint paths, one
with σ−1

0 (p) as endpoint and one with σ−1(p).
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each agent has held p or q between the first and the second swap of p and q.
Hence, after the second swap, they must have passed at least n + 2 agents
combined. Repeating this argument once again, we get that they must have
passed passed 2n + 2 agents after the third swap. This means that at least one
of the agents has passed more than n agents, a contradiction to the fact that an
agent does not accept an object once the agent traded that object away. Thus,
two objects can only be swapped twice and we can use Lemma 1 to find at most
two unique edges. 
�

Observe that ξγ(p, q) only depends on γ(p) and γ(q) and hence for each selec-
tion γ′ with γ′(p) = γ(p) �= γ′(q) = γ(q) holds ξγ(p, q) = ξγ′(p, q) and the edges
specified in Lemma 1 are the same for γ and γ′. We will denote the set of edges
specified in Lemma 1 by Eγ(p, q). If γ(p) = γ(q), then we define Eγ(p, q) := ∅.
Note that Lemma 2 also implies that if γ yields σ, then |Eγ(p, q)| = |ξγ(p, q)| ≤ 2.

We next show that the order in which objects are swapped is irrelevant once
a selection is fixed. We use the following definition to describe an algorithm that
checks in polynomial time whether a selection yields σ.

Definition 2. Let I := (N,X, �, Cn, σ0, σ) be an instance of Reachable

Assignment and let γ be selection of I. Let p and q be two objects with γ(q) �=
γ(p) = 1. Let i be the agent currently holding p. If q is held by agent i + 1 mod n,
then p and q are facing each other and if also σ(i) �= p and σ(i + 1) �= q, then p
and q are in swap position.

Using the notion of swap positions, we are finally able to describe a
polynomial-time algorithm that decides whether a given selection yields σ.
We refer to our algorithm as Greedy Swap and it is a generalization of the
polynomial-time algorithm for Reachable Assignment on trees by Gourvès
et al. [11]. Greedy Swap arbitrarily swaps any pair of objects that is in swap
position until no such pair is left. If σ is reached in the end, then it returns true
and otherwise it returns false.

Proposition 1. Let I := (N,X, �, Cn, σ0, σ) be an instance of Reachable

Assignment and let γ be a selection of I. Greedy Swap returns true if and
only if γ yields σ.

Proof. Observe that Greedy Swap only performs rational swaps and only returns
true if σ is reached. Hence, if it returns true, then γ yields σ.

Now suppose that a selection γ yields assignment σ, but Greedy Swap returns
false. Then either σ0 �= σ and every object is assigned the same direction, or
there are two objects p and q, which are in swap position at some edge e, but
the corresponding preference lists do not allow a swap. In the former case γ
clearly does not yield σ. In the latter case, consider the initial positions of p
and q and the corresponding shared paths ξγ(p, q). Since p and q are in swap
position at the point where Greedy Swap returns false, it holds that γ(p) �= γ(q)
and there is a shared path P ∈ |ξγ(p, q)| such that e is on P .

If p and q face each other at edge e for the first time, then let m be the number
of objects that are closer to q than p and that are assigned direction γ(p). If p
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and q face each other at edge e for the second time, then let m be the number
of objects that are assigned direction γ(p). We will now show that q has to be
swapped with exactly m − 1 objects2 before q and p can be swapped (for the
first or between the first and the second swap, respectively). We will only show
the case for p and q being swapped over e for the first time as the other case is
analogous when considering the instance after the first swap of p and q has just
happened. Starting from the agent that initially holds q we can then calculate
the edge e′ where q and p face each other in every sequence of rational swaps that
results in reaching the target assignment σ. Suppose q can be swapped with more
than m − 1 objects before facing p at edge e′. Then q must either be swapped
with at least one object q′ that is not closer to q than p or it must be swapped
with the same object q′ twice before being swapped with p for the first time.
This, however, means that q will face q′ after p, a contradiction. Now suppose
that q can be swapped with less than m − 1 objects before facing p. Then there
is an object r that is closer to q than p and that is assigned direction γ(p) and
which is not swapped with q before q and p are swapped. However, then q will
not be able to face p as at least r is between them, a contradiction.

Now that we have shown that q will swap exactly m objects before facing p,
we can also determine the edge f where, given γ, they must necessarily face each
other, in every sequence of rational swaps where objects are swapped according to
the directions assigned to them by γ. Now since we assumed that σ is reachable
with selection γ, there must be a sequence of rational swaps where q and p
must be swapped at edge f . But since p and q met, by assumption, at edge e,
either e = f , which is a contradiction because at e the preference lists of the
incident agents do not allow a swap between p and q, or p and q cannot have
met at edge e if all swaps were performed according to the directions assigned
by selection γ, a contradiction to the definition of Greedy Swaps. 
�

1 2 3 4e f g

h

1: x3 � x2 � x1

2: x1 � x3 � x4 � x2

3: x4 � x1 � x3

4: x2 � x3 � x4

Fig. 3. Example for Reachable Assignment on a C4 with edges e, f, g, h. The candi-
date lists of x1 are C(x1, e) := {x2, x3}, C(x1, h) := ∅, C(x1, g) := ∅, and C(x1, f) :=
{x4}. Note that since σ−1(x1) = 2, the candidate list C(x1, e) is defined such that x1

is swapped in counter-clockwise direction while the candidate list of x1 for all other
edges is defined for clockwise direction.

2 Note that p is one of the m objects.
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3.2 Validity of Selections

We will next define a set of properties that a selection needs to fulfill in order
for Greedy Swap to return true and then show that these properties are both
necessary and sufficient. The idea is to have one property that guarantees that
for each object and for each edge on its path there exists exactly one object
that should be swapped with that object over this edge and a second property
to guarantee that for each two objects p and q there are exactly |ξγ(p, q)| edges
where p and q should be swapped. Before we can formally state these properties,
we define some notation.

For two objects p and q, let Z(p, q) be the set of edges e such that p and q can
be swapped over e := {i, j} in the direction from their initial to their final agent.
Let H := X × E(Cn) be the set of all object-edge-pairs and d : H → {0, 1} be
a function that assign to each object-edge-pair (p, e) ∈ H the direction c such
that e lies on the path of p from its initial agent to its destination in direction c.
Using the notion of object-edge-pairs, we define candidate lists. These will be
used to eliminate possible choices for selections.

Definition 3. Let (p, e) ∈ H be an object-edge-pair and let γ be a selection. The
candidate list C(p, e) of p at edge e and the size fγ(p, e) of C(p, e) with respect
to γ are

C(p, e) := {q ∈ X | e ∈ Z(p, q)} and

fγ(p, e) :=

{
|{q ∈ C(p, e) | γ(p) �= γ(q)}| if d(p, e) = γ(p)
1 otherwise.

Figure 3 presents an example of candidate lists. Note that the size of C(p, e) with
respect to γ is set to one if d(p, e) �= γ(p). This is due to the fact that we will later
search for a selection γ∗ such that fγ∗(p, e) = 1 for all objects p and all edges e
with d(p, e) = γ∗(p). This definition then avoids a case distinction. The following
observation follows from Lemma 2 and the observation that Eγ(p, q) = Eγ′(p, q)
for all γ′ with γ(p) = γ′(p) and γ(q) = γ′(q) with a simple counting argument.

Observation 1. For each p ∈ X, it holds that
∑

e∈E |C(p, e)| ≤ 4|X|.
We can finally define the first property called exact from the set of properties

that characterizes the selections for which Greedy Swap returns true and which,
by Proposition 1, correspond to a solution for Reachable Assignment.

Definition 4. Let I := (N,X, �, Cn, σ0, σ) be an instance of Reachable

Assignment. A selection γ is unambiguous if for all (p, e) ∈ H it holds
that fγ(p, e) ≤ 1; γ is complete if for all (p, e) ∈ H it holds that fγ(p, e) ≥ 1,
and exact for all (p, e) ∈ H if fγ(p, e) = 1.

Where exactness guarantees that for each object and for each edge on its
path for γ there exists a possible swapping partner for this edge, the second
property will guarantee that no pair of objects blocks one another in a selection.
We start with the case in which an object blocks another object that is swapped
in the same direction.
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Definition 5. Let γ be a selection and let p and q be two objects with γ(p) =
γ(q). Then q shields p in direction γ(p) if Pγ(p)∩Pγ(q) �= ∅, the object q is closer
to σ−1(p) than to p in direction γ(p), and there exists an agent i on Pγ(p)∩Pγ(q)
with q �i p.

In Fig. 3 the object x1 shields x4 in clockwise direction. Note that if q shields p
in direction c, then p and q cannot be both swapped in direction c as the agent i
obtains q first and then will not accept p afterwards. However, by definition, i
is on the path of p and hence has to obtain p or the target assignment σ cannot
be reached.

We continue with the case where an object blocks another object that is
swapped in the opposite direction. Based on Lemma 1, we define compatibility
of two objects.

Definition 6. Let γ be a selection and let p and q be two objects with γ(p) �=
γ(q). Then, p and q are compatible in selection γ if for each P ∈ ξγ(p, q) there
exists exactly one edge on P that is also contained in Eγ(p, q).

Based on Definitions 5 and 6 we formalize the second of the properties that
characterize valid selections as follows.

Definition 7. A selection γ is harmonic if for every object p there is no object q
moving in direction γ(p) that shields p in that direction, and every object r
with γ(r) = 1 − γ(p) is compatible with p. A selection is valid, if it is both exact
and harmonic.

We end this subsection with the statement that valid selections are exactly
the selections that correspond to a solution of Reachable Assignment.

Proposition 2 (�). Let I := (N,X, �, Cn, σ0, σ) be an instance of Reach-

able Assignment and let γ be a selection for I. Greedy Swap returns true on
input γ if and only if γ is valid.

3.3 Reduction to 2-SAT

In this subsection we will construct a 2-SAT formula φ such that a selection
is valid if and only if it corresponds to a satisfying truth assignment of φ. We
will use a variable for each object and say that setting this variable to true
corresponds to swapping this object in clockwise direction. We will use objects
interchangeably with their respective variables. The formula φ will be the con-
junction of two subformulas ψh and ψe. The first subformula ψh corresponds to
harmonic selections and is constructed as follows.

Construction 2. Let I := (N,X, �, Cn, σ0, σ) be an instance of Reachable

Assignment. For every pair p, q of objects for which there exists a direction c
such that q shields p in direction c, we add the clause p → ¬q3 if c = 1,
3 In this paper, we represent 2-SAT clauses by implications, equalities, and inequalities.

Note that p → q ≡ (¬p∨q), p = q ≡ (p∨q)∧(¬p∨¬q), and p �= q ≡ (p∨¬q)∧(¬p∨q).
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and ¬p → q otherwise. Further, for every pair p, q of objects for which there
exists a direction c such that p and q are not compatible for any selection γ
where c = γ(p) �= γ(q), we add the clause p → q if c = 1, and ¬p → ¬q
otherwise. We use ψh to denote the constructed formula.

Each satisfying truth assignment of ψh corresponds to a harmonic selection.

Lemma 3. Let I := (N,X, �, Cn, σ0, σ) be an instance of Reachable

Assignment. A selection γ is harmonic if and only if it corresponds to a satis-
fying truth assignment of ψh.

Proof. We will prove both directions of the statement by contradiction. For the
first direction suppose that γ is a harmonic selection but it does not correspond
to a satisfying truth assignment of ψh. Then there must exist a clause c in ψh

such that c is not satisfied by the truth assignment corresponding to γ. We
distinguish between two cases. In the first case, c is a clause for q shielding p
in direction cp for every selection γ′ where γ′(p) = cp = γ′(q) but it holds
that γ(p) = cp = γ(q). But then, by definition, γ is not harmonic, a contradiction.
In the second case, c is a clause for two non-compatible objects p and q for every
selection γ where γ(p) = cp = 1 − γ(q) but it holds that γ(p) = cp = 1 − γ(q), a
contradiction to γ being harmonic.

We will now show the other direction of the statement. Suppose that γ
corresponds to a satisfying truth assignment of ψh but it γ is not harmonic.
We again distinguish between two cases. In the first case there exist two
objects p, q and a direction cp ∈ {0, 1} such that q shields p in direction cp for γ
where γ(p) = cp = γ(q). But since γ corresponds to a satisfying truth assignment
of ψh, due to the clauses for shielding objects, if γ(p) = cp, then γ(q) = 1 − cp

and thus, p does not shield q, a contradiction.
In the second case there exist two objects p and q and a direction cp ∈

{0, 1} such that p and q are not compatible in direction cp for each selection γ′

where γ′(p) = cp and γ′(q) = 1 − cp. Since γ corresponds to a satisfying truth
assignment of ψh, due to the clause for compatibility, if γ(p) = cp, then γ(q) = cp

and thus, p and q are compatible, a contradiction. 
�
A formula for exact selections requires much more work. To this end, we first

introduce a variant of Reachable Assignment.

First Swap Reachable Assignment

Input: An instance I := (N,X, �, Cn, σ0, σ) of Reachable Assign-

ment and an edge e ∈ E(Cn)
Question: Is σ reachable if the first swap is performed over edge e?

Observe that I is a yes-instance of Reachable Assignment if and only if there
is an edge e in Cn such that (I, e) is a yes-instance of First Swap Reachable

Assignment. We will later iterate over all edges and check for each whether it
yields a solution. Suppose that some instance (I, ei) of First Swap Reachable

Assignment is a yes-instance. Let ei = {i, i + 1 mod n} and j = i + 1 mod n.
Then, the object σ0(i) is swapped into clockwise direction and the object σ0(j) is
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swapped into counter-clockwise direction. Thus, in every selection γ that yields
the target assignment σ as a solution to (I, ei), it must hold that γ(σ0(i)) = 1
and γ(σ0(j)) = 0. We refer to the pair of objects x := σ0(i) and y := σ0(j) as the
guess of that instance and denote it Φ := (x, y), where x refers to the object that
is swapped into clockwise direction and y refers to the object that is swapped
into counter-clockwise direction. For each selection γ where γ(x) = 1 = 1−γ(y),
we say that γ respects the guess Φ := (x, y). We also denote the unique path
of x in clockwise direction from its initial agent to its destination with Px and
the unique path of y in counter-clockwise direction from its initial agent to its
destination with Py. If we can prove that for a guess Φ and the corresponding
instance of First Swap Reachable Assignment there exists no valid selection
that respects Φ, then we say that the guess Φ is wrong. We will now define a
property of objects which cannot be swapped in one direction given a certain
guess Φ.

Definition 8. Let I := ((N,X, �, Cn, σ0, σ), e) be an instance of First Swap

Reachable Assignment with guess Φ := (x, y) and let p be an object such
that there exists a direction d such that there is no selection γ with γ(p) = d that
respects Φ and that is valid. Then p is decided in direction 1 − d.

We find that an object p /∈ {x, y} is decided by means of six rules listed below.
An object p is decided if at least one of the rules applies and the correctness of
these rules is omitted due to space constraints. Note that we also always obtain
the direction in which an object is decided. Therein, q is an object in {x, y} and
e is some edge.

1. The objects p and q are opposite.
2. The object p occurs in none of q’s candidate lists.
3. The object p occurs in a candidate list C(q, e) of q together with another

object r that is decided in direction 1 − d(p, e).
4. The agent σ(p) is neither on Px nor on Py.
5. The object p starts between two decided and opposite objects.
6. The object p occurs in a candidate list C(q, e) of q where every q′ ∈ C(q, e),

such that q′ �= p, is decided.

We mention that there are a couple of additional technical conditions for the
penultimate rule and that there may be decided objects that are not found by
either of the six rules. For the sake of simplicity, we say that an object is decided
only if it fulfills at least one of the rules above. All other objects are said to
be undecided. After performing these rules exhaustively, there are at most two
undecided objects in each candidate list of the two guessed objects.

Proposition 3 (�). Let Φ := (x, y) be a guess. Let further (p, e) ∈ H, such
that p ∈ Φ. The number of undecided objects in C(p, e) is either zero or two or Φ
is wrong.

The last ingredient for the construction of a 2-SAT formula for exact selection
is given in the next lemma. From this we will generalize our notion of decided
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objects, which will also cover objects that are decided, relative to the direction
of other objects. The lemma is quite similar to Lemma 1, but where Lemma 1
states that there is a unique edge where two objects can be swapped, the following
lemma states that there is a unique edge where the two objects face each other
(Defintion 2).

Lemma 4 (�). Let I := ((N,X, �, Cn, σ0, σ), e′) be an instance of First Swap

Reachable Assignment. Let Φ := (x, y) be the guess of I, let (p, e) ∈ H be an
object-edge-pair and let q ∈ C(p, e) where q is an undecided object. Let P be the
shared path of p and q such that e ∈ E(P ). After an O(n3)-time preprocessing,
we can compute in constant time an edge f on P such that for every valid
selection γ that respects Φ and for which γ(q) �= γ(p) = d(p, e) it holds that p
and q face each other at edge f in the execution of Greedy Swap on input γ.

We use Lemma 4 to define successful tuples. Intuitively, a tuple is successful
if the edge where two objects face each other according to Lemma 4 is the edge
over which they can be swapped according to Lemma 1.

Definition 9. Let (p, e) ∈ H be an object-edge-pair and let q ∈ C(p, e) such
that q is undecided. Let P be their shared path with e ∈ E(P ). Let f be the edge
according to Lemma 4 where p and q face each other in every valid selection γ
that respects Φ and for which it holds that γ(q) �= γ(p) = d(p, e). If q is closer
to p in direction d(p, e) than guessed object Φd(p,e), then let c := 1 and c := 0
otherwise. Then, S(p, e, q) denotes the tuple (f, c) and it is successful if e = f
and unsuccessful otherwise.

We will now introduce conditionally decided objects and construct the 2-
SAT formula afterwards. Let C(p, e) be a candidate list and let q ∈ C(p, e) be
an object such that there exists a direction d such that there is no selection γ
with γ(p) = d(p, e) and γ(q) = d that respects Φ and that is valid. Then q is
p-decided in direction 1 − d.

Observe that the class of decided objects is a sub-class of p-decided objects.
Analogously to decided objects, we present rules to find conditionally decided
objects and say that objects are conditionally undecided if none of the rules
apply for them. Let C(p, e) be a candidate list, let q ∈ C(p, e) be an object,
and let d be the direction such that e is on the path of p in direction d. Then q
is p-decided in direction 1 − d if one of the following rules apply:

1. The object q shields p in direction d(p, e).
2. The tuple S(p, e, q) is unsuccessful.
3. There exists an object q′ with q �= q′ ∈ C(p, e), such that q′ is decided in

direction 1 − d(p, e).

The proof of correctness is again omitted.
We now construct a 2-SAT formula for exact selections using decided, con-

ditionally decided and undecided objects.
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Construction 3. Let I := ((N,X, �, Cn, σ0, σ), e′) be an instance of First

Swap Reachable Assignment, let Φ := (x, y) be the guess of I, and
let C(p, e) ∈ H be a candidate list.

If the number of p-decided objects in direction 1−d(p, e) is not one and there
exists no p-undecided object in C(p, e), then we add the clause4

(p �= d(p, e)). (2)

For every decided object q in direction d we add the clause

q = d. (3)

Further, for every p-decided object q in direction d that is not also a decided
object, we add the clause

(p = d(p, e)) → (q = d). (4)

Lastly, if p ∈ {x, y} and there exists an undecided object q ∈ C(p, e), then we
distinguish between two cases. If there exists exactly one other object q′ ∈ C(p, e)
that is undecided, then we add the clause

q �= q′. (5)

Otherwise we add the the clause
⊥, (6)

i.e. the clause that always evaluates to false, making the formula unsatisfiable.
The constructed formula is φ = ψh ∧ ψe.

The following proposition states that a selection is valid if and only if it
corresponds to a satisfying truth assignment for φ.

Proposition 4 (�). Let I := ((N,X, �, Cn, σ0, σ), e′) be an instance of First

Swap Reachable Assignment. Let Φ := (x, y) be the guess of I and let γ
be a selection that respects Φ. Then γ is valid if and only if it corresponds to a
satisfying truth assignment of φ.

The main theorem follows from this and Observation 1.

Theorem 4. Reachable Assignment on cycles is decidable in O(n3) time.

Proof. Let I := (N,X, �, Cn, σ0, σ) be an instance of Reachable Assign-

ment. Given the instance, we compute the 2-SAT formula ψh according to Con-
struction 2. We first precompute in overall O(n3) time for each pair of objects
whether they are opposite and for each possible assignment of directions for these
two objects whether one object shields the other object and whether they are
4 We use the notation q �= d(p, e) for some object q to avoid case distinctions.

Since d(p, e) is precomputed, this clause is equivalent to ¬q if d(p, e) = 1 and q
otherwise.
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compatible. Constructing ψh then takes O(n2) time as it requires to check for
each pair p, q of objects whether they are compatible and whether one shields the
other in any direction. Afterwards we divide I into n instances (I, e) of First

Swap Reachable Assignment. This further determines the guess Φ := (x, y).
We then compute the set of all decided objects in O(n2) time. Moreover, we
iterate over all objects p and compute for each possible direction d of p the set
of all p-decided objects in O(n) time. We then create a 2-SAT formula according
to Construction 3 to check for an exact selection for the given instance of First
Swap Reachable Assignment.

Since correctness follows from Proposition 4, we focus on the running time
here. For constructing φ, we add clauses for each object-edge-pair and due to
Observation 1, there are O(n2) such clauses. The time for computing each clause
is constant and solving φ takes linear time in the number of clauses, that is, O(n2)
time. Thus the procedure takes overall O(n2) time per instance of First Swap

Reachable Assignment and O(n3) time in total. 
�

4 Conclusion

In this work, we have investigated a version of Housing Market called Reach-

able Assignment. This problem was first proposed by Gourvès et al. [11] and
we presented an O(n3)-time algorithm for cycles.

The key to solving Reachable Assignment on trees and on cycles was
to exploit the number of unique paths an object can be swapped along. Find-
ing graph classes in which this number is bounded and solving Reachable

Assignment for these graph classes is a natural next step for further research.
Moreover, since cycles are paths with one additional edge, it seems promising to
investigate graphs with constant feedback edge number or graphs of treewidth
two next. Afterwards, one may study the parameterized complexity of Reach-

able Assignment with respect to the parameters feedback edge number or
treewidth. Other possibilities for parameters are related to the agent’s pref-
erences as studied by Bentert et al. [3] for Reachable Object. One might
also consider generalized settings such as allowing ties in the preference lists
as studied by Huang and Xiao [13]. They showed that Reachable Object is
polynomial-time solvable on paths, but it is NP-hard on paths when ties in the
preference lists are allowed.

Finally, we mention that Cechlárová and Schlotter [8] studied the parame-
terized complexity of a version of Housing Market that allows for approxima-
tion. Finding meaningful versions of Reachable Assignment that allow for
approximation is another alley for future research.
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4. Bentert, M., Maĺık, J., Weller, M.: Tree containment with soft polytomies. In:
Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT ’18), LIPIcs, vol. 101, pp. 9:1–9:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018)

5. Beynier, A., et al.: Local envy-freeness in house allocation problems. Auton.
Agents Multi-Agent Syst. 33(5), 591–627 (2019). https://doi.org/10.1007/s10458-
019-09417-x

6. Brandt, F., Wilczynski, A.: On the convergence of swap dynamics to pareto-optimal
matchings. In: Caragiannis, I., Mirrokni, V., Nikolova, E. (eds.) WINE 2019. LNCS,
vol. 11920, pp. 100–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35389-6 8

7. Bredereck, R., Kaczmarczyk, A., Niedermeier, R.: Envy-free allocations respect-
ing social networks. In: Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS ’18), pp. 283–291. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems (ACM) (2018)
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Abstract. In fair resource allocation, envy freeness (EF) is one of the
most interesting fairness criteria as it ensures no agent prefers the bun-
dle of another agent. However, when considering indivisible goods, an EF
allocation may not exist. In this paper, we investigate a new relaxation
of EF consisting in minimizing the Ordered Weighted Average (OWA)
of the envy vector. The idea is to choose the allocation that is fair in the
sense of the distribution of the envy among agents. The OWA aggregator
is a well-known tool to express fairness in multiagent optimization. In
this paper, we focus on fair OWA operators where the weights of the
OWA are decreasing. When an EF allocation exists, minimizing OWA
envy will return this allocation. However, when no EF allocation exists,
one may wonder how fair min OWA envy allocations are.

After defining the model, we show how to formulate the computation
of such a min OWA envy allocation as a Mixed Integer Program. Then,
we investigate the link between the min OWA allocation and other well-
known fairness measures such as max min share and EF up to one good
or to any good. Finally, we run some experiments comparing the per-
formances of our approach with MNW (Max Nash Welfare) on several
criteria such as the percentage of EF up to one good and any good.

Keywords: Social choice · Multiagent resource allocation · Fair
allocation · Fair division of indivisible goods

1 Introduction

In this paper, we investigate fair division of indivisible goods. In this context,
several approaches have been proposed to model fairness. Amongst these models,
one prominent solution concept is to look for envy-free allocations [12]. In such
allocations, no agent would swap her bundle with the bundle of any other agent.

Envy-freeness is an attractive criterion: the fact that each agent is better off
with her own share than with any other share is a guarantee of social stabil-
ity. Besides, it does not rely on any interpersonal comparability. Unfortunately,
envy-freeness is also a demanding notion as soon as we require all goods to be
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allocated, and it is well-known that in many situations, no such allocation exists
(consider for instance the situation where the number of items to allocate is
strictly less than the number of agents at stake). Hence several relaxations of
envy-freeness have been studied in recent years. Two orthogonal approaches have
been considered. A first possibility is to “forget” some items when comparing the
agents’ shares. This leads to the definition of envy-freeness up to one good [17]
and envy-freeness up to any good [7]. Recently, Amanatidis et al. [3] explored
how different relaxations of envy-freeness relate to each other. Another possible
approach is to relax the Boolean notion of envy and to introduce a quantity of
envy that we seek to minimize. This is the path followed by Lipton et al. [17]
or Endriss et al. [9] for instance. Several approximation algorithms dedicated to
minimize these measures were subsequently designed – see e.g. Nguyen et al. [18].
Of course such approaches always rely on a specific choice to measure the degree
of envy, in particular regarding the aggregation of agents’ envies, which can be
disputed: is it more appropriate to minimize the maximum envy experienced by
some agent in the society, or to minimize the sum of agents’ envies?

In this paper, we elaborate on this idea of minimizing the degree of envy but
seek to offer a broader perspective. More precisely, we explore the possibility
of finding allocations where envy is “fairly balanced” amongst agents. For that
purpose, we start from the notion of individual degree of envy and use a fair
Ordered Weighted Average operator (by “fair”, we mean an OWA where weights
are non-increasing.) to aggregate these individual envies into a collective one,
that we try to minimize. This family of operators contains both the egalitarian
and utilitarian operators mentioned previously. But doing so also sometimes
allows us to draw results valid for the whole family of fair operators. Along
our way, we shall for instance see that no algorithm fairly minimizing envy can
be guaranteed to return an envy-free allocation up to any good, even though
such allocation does exist. More generally, we provide several insights regarding
the behaviour of such fair minimizing operators, comparing their outcomes with
alternative approaches, either analytically or experimentally. Technically, this is
made possible through to the use of linearization techniques which alleviate the
burden of computing these outcomes.

The remainder of this paper is as follows. After giving some preliminary
definitions in Sect. 2, we formally introduce our fairness minOWA envy criterion
(Sect. 3) and we show that OWA minimization problems can be formulated as
linear programs. We then investigate the link between minimizing the OWA
of the envy vector and other fairness notions (Sect. 4). We thus study fairness
guarantees of the minOWA solutions. Finally, we present some experimental
results investigating the fairness of min OWA solutions (Sect. 5).

2 Model and Definitions

We will consider a classic multiagent resource allocation setting, where a finite
set of objects O = {o1, . . . , om} has to be allocated to a finite set of agents
N = {a1, . . . , an}. In this setting, an allocation is a vector π = 〈π1, . . . , πn〉 of
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bundles of objects, such that ∀ai, aj ∈ N with i �= j : πi ∩ πj = ∅ (preemption:
a given object cannot be allocated to more than one agent) and

⋃
ai∈N πi = O

(no free-disposal: all the objects are allocated). πi ⊆ O is called agent ai’s share.
The set of all the possible allocations will be denoted P(I).

A crucial aspect of fair division problem is how the agents express their prefer-
ences over bundles. Here, we assume that these preferences are numerically addi-
tive: each agent ai has a utility function ui : 2O → R measuring her satisfaction
ui(πi) when she obtains share πi, which is defined as ui(πi)

def=
∑

ok∈πi
w(ai, ok),

where w(ai, ok) is the weight given by agent ai to object ok. This assumption,
as restrictive as it may seem, is made by a lot of authors [4,17, for instance] and
is considered a good compromise between expressivity and conciseness.

Definition 1. An instance of the additive multiagent resource allocation prob-
lem (add-MARA instance for short) I = 〈N ,O, w〉 is a tuple with N and O as
defined above and w : N × O → R is a mapping with w(ai, ok) being the weight
given by ai to object ok. We will denote by P(I) the set of allocations for I.

In the following, we denote by I the set of all add-MARA instances. Fur-
thermore, different domain restrictions will be of interest: we denote by Ip the
set of add-MARA instances involving only two agents (pairwise instances), and
by Ib the set of add-MARA instances where agents have binary utilities.

Unless stated otherwise, we will only consider MARA instances with com-
mensurable preferences, such that: ∃K ∈ N s.t ∀i ∈ �1, n�,

∑m
j=1 w(ai, oj) = K.

2.1 Envy-Free Allocations

A prominent fairness notion in multiagent resource allocation is envy-freeness.
Envy-freeness (EF) can be defined as follows:

Definition 2. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. π is envy-free if and only if ∀ai, aj ∈ N , ui(πi) ≥ ui(πj).

In other words, every agent ai weakly prefers her own share to the share of
any other agent aj . In the context of fair division of indivisible goods, this notion
is very demanding and there exists a lot of add-MARA instances for which no
envy-free allocation exists. To relax envy-freeness, a possibility is to introduce a
notion of degree of envy based on pairwise envy [17].

Definition 3. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. The pairwise envy between ai and aj is defined as:

pe(ai, aj ,π) def= max{0, ui(πj) − ui(πi)}.

In other words, the pairwise envy between ai and aj is 0 if ai does not envy
aj , and otherwise is equal to the difference between ai’s utility for agent aj ’s
bundle and her actual utility in π. It can be interpreted as how much ai envies
aj ’s bundle.

From that notion of pairwise envy, we can derive a notion of global envy of an
agent, that we define as the maximal pairwise envy that this agent experiences:



292 P. Shams et al.

Definition 4. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. ai’s envy: e(ai,π) def= maxaj∈N pe(ai, aj ,π). The vector e(π) =
〈e(a1,π), ..., e(an,π)〉 will be called envy vector of allocation π.

Here, the max operator is rather a standard choice in the context where one seeks
for allocations with bounded envy [17]. Note that an allocation π is envy-free if
and only if e(π) = 〈0, ..., 0〉.

2.2 Weaker Notions of Envy-Freeness

Besides minimizing a degree of envy, different relaxations of the envy-freness
notions have also been proposed to cope with situations where there is no envy-
free solution. Envy-freness up to one good (EF1) [6,17] is one of the most studied
relaxations. An allocation is said to be envy-free up to one good if, for each
envious agent ai, the envy of ai towards an agent aj can be eliminated by
removing an item from the bundle of aj .

Definition 5. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. π is envy-free up to one good if and only if ∀ai, aj ∈ N , either
ui(πi) ≥ ui(πj) or ∃ok ∈ πj such that ui(πi) ≥ ui(πj\{ok}).

It has been proved that an EF1 allocation always exists and, in the additive
case, can be obtained using a round-robin protocol [7].

Caragiannis et al. [7] proposed another relaxation of the notion of envy-
freeness which is stronger than EF1. An allocation is said to be envy-free up to
any good (EFX) if for all envious agents ai, the envy of ai towards aj can be
eliminated by removing any item from aj ’s bundle.

Definition 6. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. π is envy-free up to any (strictly positively valuated) good if and
only if ∀ai, aj ∈ N , either ui(πi) ≥ ui(πj) or ∀ok ∈ πj for which w(ai, ok) > 0,
ui(πi) ≥ ui(πj\{ok}).

An even more demanding notion called EFX0 [15,21] differs on the fact that
an agent can forget any object even the ones valued to 0:

Definition 7. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. π is envy-free up to any good if and only if ∀ai, aj ∈ N , either
ui(πi) ≥ ui(πj) or ∀ok ∈ πj, ui(πi) ≥ ui(πj\{ok}).

Clearly, we have EF =⇒ EFX0 =⇒ EFX =⇒ EF1. While an EF1
allocation can be computed in polynomial time, the guarantee of existence of an
EFX allocation remains an open issue in the general settings [7]. The existence
guarantee of an EFX solutions has been proved for few agents (at most 3 agents)
and specific utility functions. For instance it has been proved that an EFX0

allocation always exists for instances with identical valuations and for instances
involving two agents with general and possibly distinct valuations [21], as well
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as for three agents with additive valuations [8]. When the objects have only two
possible valuations, Amanatidis et al. [2] proved that any allocation maximizing
the Nash Social Welfare is EFX0. This result provides a polynomial algorithm
for computing EFX0 allocations in the two-agent setting.

Other notions of fairness have been introduced in the literature. Bouveret
et al. [5] for instance exhibited some connections between widely used notions
among which the max-min share (MMS, also known as I cut you chose). An
allocation is MMS if every agent gets at least her max-min share. As shown by
Bouveret et al. [5], MMS is less demanding than EF and every EF allocation
also satisfies MMS.

Example 1. Let us consider the add-MARA instance with 3 agents and 4 objects:

o1 o2 o3 o4
a1 2∗ 6 1 1
a2 2 5∗ 2 1
a3 1 5 2∗ 2∗

Note that there is no EF allocation in this instance. The squared allocation
π and the starred allocation π′ are both EF1 and EFX. Both allocations satisfy
MMS. Allocation π leads to the envy vector e(π) = 〈0, 3, 2〉 while allocation π′

leads to the envy vector e(π′) = 〈4, 0, 1〉. Both allocations have the same global
envy when considering the sum of the individual envies. However, the envy in
π′ is mainly supported by a1. To promote fairness, it is natural to prefer the
allocations where the envy is balanced among the agents. In this example, π
should be considered as more fair than π′.

Recently, the Nash social welfare (which maximizes the product of utilities)
was celebrated as a particularly good trade-off between efficiency and fairness [7]
because it guarantees to return an EF1 and Pareto-optimal allocation, among
others. Finally, some authors have proposed to explore inequality indices in mul-
tiagent fair division settings [1,11,23]. However, this differs from our proposal
since in these approaches inequality is (more classically) evaluated at the level
of utilities, while we apply it to envies, as we detail in the next section.

3 MinOWA Envy

Our approach elaborates on minimizing the degree of envy of the agents while
balancing the envy among the agents as suggested by Lipton et al. [17]. The
general idea would be to look for allocations that minimize this vector of envy
in some sense: the lower this vector is, the less envious the agents are. This
corresponds to a multiobjective optimization problem where each component of
the envy vector is a different objective to minimize.
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3.1 Fair OWA

There are different ways to tackle this minimization problem, each approach
conveying a different definition of minimization. Our approach, guided by the
egalitarian notion of fairness [22], is to ensure that, while being as low as possible,
the envy is also distributed as equally as possible amongst agents. To this end,
we use a prominent aggregation operator that can convey fairness requirements:
order weighted averages.

Ordered Weighted Averages (OWA) have been introduced by Yager [25] with
the idea to build a family of aggregators that can weight the importance of objec-
tives (or agents) according to their relative utilities, instead of their identities. In
this way, we can explicitly choose to favour the poorest (or richest) agents, or to
concentrate the importance of the criterion on the middle-class agents. Formally,
the OWA operator is defined as follows:

Definition 8. Let α = 〈α1, . . . , αn〉 be a vector of weights. In the context of
minimization, the ordered weighted average parameterized by α is the function
owaα : x �→ ∑n

i=1 αi × x↓
i , where x↓ denotes a permutation of x such that

x↓
1 ≥ x↓

2 ≥ ... ≥ x↓
n.

Amongst all OWA, only those giving more weight to the unhappiest agents
can be considered fair in the egalitarian sense. This property can be formalized
as follows. Let x be a vector such that xj ≥ xi (ai is better off than aj) and
let ε be such that 0 ≤ ε ≤ 2(xj − xi). Then, for any non-increasing vector α:
owaα (x) ≤ owaα (〈x1, . . . , xi + ε, . . . , xj − ε, . . . , xn〉).

In other words, such an OWA favours any transfer of wealth from a happier
agent to an unhappier agent. Such a transfer is called a Pigou-Dalton transfer,
and the OWA with non-increasing weight vectors α are called fair OWA. More-
over, we have considered wlog in this paper that the weight vector sums to 1
so we will make no difference between weights 〈1, 1, 1〉 and 〈13 , 1

3 , 1
3 〉. Note that

fair OWA is also referred to as Generalized Gini Index [24] in the literature. In
matching problems [16] and multiagent allocation problems [14], fair OWA has
been applied to the utility vector so as to maximize a global utility function
while reducing inequalities. However, we can note that maximizing the OWA of
the utility vector does not necessarily return an EF allocation even when such
an allocation exists:

Example 2. Consider this add-MARA instance with 3 agents and 4 objects:

o1 o2 o3 o4

a1 1 2∗ 3 4∗

a2 2 2 5∗ 1
a3 4∗ 0 4 2

The squared allocation is the allocation that maximizes the value of the OWA
of the utility vector with weight 〈1, 0, 0〉. We can easily notice that this allocation
is not envy free as a1 envies a2. Moreover, the star allocation is obviously an EF
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one. Note that in the context of maximization, a fair OWA is also defined with
non-increasing weights but by sorting the components by decreasing value.

Since our motivation is to return an EF allocation when there is one and
otherwise minimize the envy while equally distributing it between the agents,
we propose to minimize the fair OWAs of the envy vector.

Definition 9. Let I = 〈N ,O, w〉 be an add-MARA instance and α be a non-
increasing vector. An allocation π̂ is an α-minOWA Envy allocation if:

π̂ ∈ arg min
π∈P(I)

(owaα (e(π))).

It is important to note that a major advantage of this solution is that it always
exists as it is the result of an optimization process. Moreover, this optimization
problem can be modeled as an Integer Linear Program, which will give a way
to compute optimal allocations. Keep also in mind that there can be several
allocations with the same OWA envy value.

Let us now see some helpful properties of fair OWA. Note that we will con-
sider here that we are in a minimization context.

Definition 10. By denoting v↓
k the kth biggest component of a given vector v,

the Lorenz vector L of v is defined as L(v) = 〈v↓
1 , v

↓
1 + v↓

2 , ...,
∑n

i=1 v↓
i 〉.

Definition 11. Let x and y be two vectors of the same size and xi (respectively
yi) be the ith component of x (respectively y). We say that x Pareto dominates y
iff for every component xi ≤ yi and there is one component xj for which xj < yj

and x strongly Pareto dominates y iff for every component xi < yi.

Definition 12. We say x (strongly) Lorenz dominates y iff L(x) (strongly)
Pareto dominates L(y).

Theorem 1. Perny and Spanjaard 2003
If x Lorenz dominates y then for any non-increasing weight α: owaα (x) ≤
owaα (y). Similarly if x strongly Lorenz dominates y then for any non-increasing
weight α: owaα (x) < owaα (y).

This helpful property is shown in [20]. As (strong) Pareto dominance implies
(strong) Lorenz dominance, the same theorem holds with (strong) Pareto dom-
inance.

By using a linearization introduced by Ogryczak [19] we can model our prob-
lem of minimizing the OWA of the envy vector as a linear program. Moreover
we consider decreasing OWA weights (fair OWA) so α1 ≥ α2.... ≥ αn and we
denote by α′ = 〈α1 − α2, α2 − α3, ..., αn〉. We introduce a set of n × m Boolean
variables zj

i : zj
i is 1 iff oj is allocated to ai while rk and bk

i are the dual variables
(of the LP computing the Lorenz components) and ei the envy of ai.

min owa(e(π)) = min
∑n

k=1 α′
k(krk +

∑n
i=1 bk

i )
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rk + bk
i ≥ ei ∀i, k ∈ �1, n�

ei ≥ ∑m
j=1 w(ai, oj)(z

j
h − zj

i ) ∀i, h ∈ �1, n�
∑n

i=1 zj
i = 1 ∀j ∈ �1,m�

zj
i ∈ {0, 1} ∀j ∈ �1,m� ∀i ∈ �1, n�

bk
i ≥ 0, ei ≥ 0 ∀i, k ∈ �1, n�

4 Link with Other Fairness Measures

We focus here on the possible links between the min OWA allocation and other
fairness measures. We recall that if an envy-free allocation exists, it will be
returned by the min OWA optimization. For any instance I, we denote by
PROP(I) the set of allocations satisfying PROP ∈ {EF1, EFX,EFX0,MMS}.
We also denote by α-min OWA(I) the set of all min OWA optimal allocation
for the specific weight vector α, and by ∀-min OWA(I) the set of α-min OWA,
for all (fair) weight vectors α.

4.1 Warm-Up: n = 2

In the special case where the allocation problem involves only two agents, we
highlight strong connections between min OWA allocations and other fairness
measures (MMS, EF1 and EFX).

Proposition 1. ∀I ∈ Ip : ∀-min OWA(I) ⊆ MMS(I) ⊆ EFX(I)

Proof. For add-MARA instances where an envy-free allocation exists, our proof
is straightforward as min OWA returns the EF allocation. It is thus also MMS,
EF1 and EFX.

We now focus on add-MARA instances for which there is no EF allocation.
In the presence of only 2 agents any min OWA allocation π is such that only
one of the two agents is envious. Indeed, if no agent is envious then it means
the add-MARA instance has an envy-free allocation (which is a contradiction).
Similarly, if both agents are envious it means there is an envy-free allocation
(which is again a contradiction) as the agents would just have to exchange their
bundles to obtain that allocation. Consequently, the sorted envy vector will be
of the form (e, 0). Suppose for the sake of contradiction that such an allocation
is not MMS. The agent that is envy-free (let us say w.l.o.g it is a2) obviously has
her max-min share. So, under the assumption that the allocation is not MMS,
a1 does not have her max-min share. It means that there is an allocation π′ such
that min(u1(π′

1), u1(π′
2)) > u1(π1) and a2 is still not envious (if a2 is envious

in π′, just swap her share with a1’s). Obviously, a1’s pairwise envy for a2 has
decreased in π′ compared to that of π, and a2’s envy is still 0. This contradicts
the fact that π is the optimal min-OWA envy allocation. Finally, it is known [7]
in the two-agents setting that MMS implies EFX, which completes the proof.

However, even though an MMS allocation is EFX, this does not hold for EFX0

even for 2 agents as we can see in Example 3.
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Example 3. Consider this add-MARA instance with 2 agents and 3 objects:

o1 o2 o3
a1 1 0 2
a2 0 1 2

It is easy to see that the squared allocation is MMS as the max-min share of
each agent is 1. Moreover, we can see that this allocation is EFX (a1 can forget
o3) whereas it is not EFX0 (because a1 has to forget o2 which does not make
here becoming envy-free).

However, we show that we can very easily build an EFX0 allocation from an
arbitrary min OWA envy one.

Proposition 2. For any instance I ∈ Ip and for any weight vector �α: α-
minOWA(I) ∩EFX0(I) �= ∅. Furthermore, it can be obtained from an arbitrary
α-min-OWA envy optimal allocation in linear time.

Proof. Let us call π an arbitrary min OWA allocation. If π is envy-free then it is
obviously EFX0 and the proof concludes. Note that envy-freeness is checked in
O(1) as we just have to check the values of both variables e1 and e2. Otherwise,
it means that one and exactly one agent is envious, by using a same argument
as in the proof of Proposition 1. W.l.o.g. we consider a1 is the envious agent. We
start from π and transfer to a1 all the objects that she values with utility zero.
The resulting allocation is called π′. We show that π′ is EFX0. a1 still envies a2

in π′ but is EFX by Proposition 1. By transferring all zero-valued objects to her
share, she becomes EFX0 in π′. Now consider a2. If a2 envies a1 in π′ then by
swapping their bundles, we can obtain an envy-free allocation. This contradicts
the fact that π is min-OWA envy optimal. Hence, a2 still does not envy a1 in
π′, and thus is also EFX0 obviously. Since in π′ a2 is still envy-free and the
pairwise envy from a1 to a2 has not changed, π′ is still min-OWA envy optimal.
The complexity is linear in the number of objects since we have to implement
the transfer of zero-valued objects to a1’s bundle.

On Example 3, this means that a1 should receive o2. This adjustment is
inefficient: by construction, it returns an allocation which is Pareto-dominated
by the original min OWA envy optimal allocation. Intuitively, it can be seen as
the price to pay to get EFX0: by assigning those items that the agent does not
value to her, the mechanism offers the strongest possible fairness guarantees.

4.2 General Case: n ≥ 3

We now turn to more general settings involving at least 3 agents. Since an
EF1 allocation is guaranteed to exist, we more specifically focus on the relation
between min OWA and EF1. Unfortunately, we notice that in the general case
these two sets can be disjoint, i.e. there are instances for which no allocation is
both EF1 and min-OWA, for any weight vector:
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Proposition 3. ∃I ∈ I : EF1(I) ∩ ∀-min OWA(I) = ∅
Proof. Let us consider the add-MARA instance with 4 agents and 5 objects:

o1 o2 o3
a1 1 0 2
a2 0 1 2

In order to prove the proposition we will show that the squared allocation is
the only min OWA envy allocation (for any given weight vector) and that it
is (obviously) not EF1. First note that as a1 and a2 have similar preferences
the allocation derived from the squared allocation where we swap the bundles
of these agents will be the same in terms of Lorenz envy vector. The squared
allocation has a vector of envy e = 〈0, 14, 14, 0〉 and L(e) = 〈14, 28, 28, 28〉.
First consider the allocations in which a4 does not possess o5. We have e1 =
〈e1, e2, e3, 30〉 and L(e1) = 〈30, L2, L3, L4〉 with L2, L3, L4 being greater than or
equal to 30. e1 is thus strongly Lorenz dominated by e. Let us now consider the
other possible allocations (in which a4 possesses o5): if a3 has o1 instead of a1

then e2 = 〈20, 14, 1, 0〉 and L(e2) = 〈20, 34, 35, 35〉. e2 is thus strongly Lorenz
dominated by e. Finally, we focus on allocations in which a3 has one to three
items from the set of objects {o1, o2, o3}. If a3 has one of these items we have
e3 = 〈0, 16, 13, 0〉 and L(e3) = 〈16, 29, 29, 29〉. If a3 has two of these items we
have e4 = 〈0, 18, 12, 0〉 and L(e4) = 〈18, 30, 30, 30〉. Finally if a3 has all these
items we have e5 = 〈0, 20, 11, 0〉 and L(e5) = 〈20, 31, 31, 31〉. All e3 e4 and e5

are strongly Lorenz dominated by e. As we know that minimizing fair OWA of a
vector is consistent with the Lorenz dominance (see Theorem 1), it means that
if a solution strongly Lorenz dominates another, then its fair OWA value will
be strictly lower (in a minimization problem such as ours) for any non-creasing
weight. We can then conclude that the squared allocation is indeed the only min
OWA envy one and it is not EF1.

However, a significant number of experiments actually suggest that for almost
any instance, some EF1 allocation is also min-OWA, either for the weight vector
〈1, 0, . . . 0〉, or for the weight vector 〈1, 1, . . . 1〉. Moreover, we have a positive
result in the restricted domain where agents have binary utilities.

Proposition 4. ∀I ∈ Ib : EFX0(I) ∩ ∀-min OWA(I) �= ∅
Proof. First note that if the instance is EF then the min OWA envy alloca-
tion will be EF and thus EF1 and the proof concludes. Hence we will consider
instances that are not EF. As we consider binary utilities, we know thanks to
[8] that an EFX0 allocation always exists. We can easily notice that any such
allocation is such that the envy of each agent is at most 1. Hence, as with the
weight vector 〈1, 0, . . . 0〉 the OWA envy value of an EFX0 allocation is 1 (as we
supposed no EF allocation exists), it is the minimum OWA envy value possible.
It can thus be returned by minimizing the OWA envy value.
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5 Experimental Results

We drew some experiments to compare the performances of the allocations
obtained by min OWA envy with the Maximization of Nash Welfare. More pre-
cisely we implemented the linearization described in [7] that returns an allocation
approximating MNW but closely enough to keep interesting properties such as
EF1 and Pareto Optimality. As we have seen through this paper the range of
possibilities offered by the fact that OWA is parameterized is interesting. We
will see how three different weights α1 = 〈1, 0 . . . 0〉, α2 = 〈 12 , 1

4 , . . . 1
2n 〉 and

α3 = 〈1, 1, . . . 1〉 compare to each other. α1 and α3 correspond to respectively
minimize the max envy and the sum of the envies. α2 is somewhere in the middle
of those two extrema with a strictly decreasing weight vector.

All the tests presented in this section have been run on an Intel(R) Core(TM)
i7-2600K CPU with 16 GB of RAM and using the Gurobi solver to solve Mixed
Integer Programs1. We have tested our methods on two types of instances: Splid-
dit instances [13] and synthetic instances under uniformly distributed commen-
surable preferences (that is, for each agent ai and object oj , utilities are drawn
i.i.d. following the uniform distribution on some interval [x, y] and such that the
utilities of each agent sums to 5 m).

We evaluate the performances of the OWA envy minimization outcome for
both types of instances through the following criterion: EF, EFX0, EFX, EF1
and Pareto dominance. Tables 1 and 2 present the percentage of min OWA envy
outcomes that satisfy each criterion. We also study how the vector of weights of
the OWA influences the characteristics of the outcomes. The computation time
(in seconds) of each approach is also mentioned. We recall the strong connections
between the 4 first fairness notions as EF =⇒ EFX0 =⇒ EFX =⇒ EF1.
As it can be checked in Tables 1 and 2, the percentage of EF allocations should
always be lower than or equal to the number of EFX0 ones which should be
lower than or equal to the number of EFX allocations and so on.

5.1 Spliddit Instances

Our first set of experiments has been performed on real-world data from the fair
division website Spliddit [13]. There is a total of 3535 instances from 2 agents
to 15 agents and up to 93 items. Note that 1849 of these instances involve 3
agents and 6 objects. By running the MIPs minimizing the OWA envy with the
three different weights’ vectors described above with a timeout of 1 min (after
this duration the best current solution, if it exists, is returned) we were able to
solve all the instances to optimal. The results of these experiments are presented
in Table 1. The first three columns respectively correspond to the results of
minimization of the OWA envy with respectively α1, α2 and α3, while the
fourth column presents the results of the optimization of MNW.

Minimizing the OWA envy provably returns an EF allocation if there exists
one. Hence, among the Spliddit instances 65.4% are envy-free. Note that only

1 The code is available at https://gitlab.com/MrPyrom/balancing-envy.

https://gitlab.com/MrPyrom/balancing-envy
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Table 1. Performances for minimizing the OWA envy (with weights α1, α2, α3) or
maximizing the Nash Welfare on Spliddit instances

α1 α2 α3 MNW

%EF 65.4 65.4 65.4 57.2

%EFX0 90.0 93.0 92.7 90.9

%EFX 98.5 99.4 99.0 94.9

%EF1 99.4 99.8 99.3 100

%Pareto 77.1 78.7 79.2 100

%EF+PO 45.7 45.6 46.0 57.2

Time(s) 3.5*10−3 5.7*10−7 6.9*10−7 1.1*10−6

57.2% of the allocations returned by MNW are EF which means that for around
8.2% of the Spliddit instances, an EF allocation exists but MNW failed to return
it. Moreover, without any surprise as Pareto optimality (PO) of the MNW allo-
cations is guaranteed, minimizing OWA envy returns fewer PO allocations than
MNW. However, around slightly less than 80% of the min OWA envy allocations
are PO. It is also guaranteed that MNW returns an EF1 solution. However, we
can observe, for every weight, that more than 99% of the allocations returned
by min OWA envy are EF1. This balances the negative result in Proposition 3.
Moreover, it can be very interestingly observed that the percentage of EFX0 is
greater for α2 and α3 than for MNW. The same holds for the percentage of
EFX but for the 3 weights’ vectors and by a more noticeable margin of around
5%. However, MNW performs slightly better than min OWA when we consider
EF alongside with PO. Finally, we can see that all the optimization programs
run very quickly in average with a slightly longer time for α1.

5.2 Synthetic Instances

For each couple (|N |,|O|) from (3, 4) to (10, 12), we generated 100 synthetic add-
MARA instances with uniformly distributed preferences. We then ran the four
optimization methods described above on the generated instances. We considered
such couples of values in order to produce settings where few EF allocations
exist as suggested in [10]. Although it is interesting to consider EF instances
to compare with MNW, minimizing OWA envy is even more relevant when no
EF allocation exists. Due to lack of space, Table 2 presents the results for only
4 couples (n,m) but similar trends can be observed for the other couples of
values. As witnessed for the Spliddit instances, MNW often fails to return an
EF allocation even when there exists one. As shown in Table 2, the number of EF
allocations missed by MNW can be quite important as shown by the gap between
the percentage of EF allocations returned by min OWA envy and the percentage
for MNW. This is exemplified in Table 2 for 2 agents and 5 agents where the gap
is respectively of 16% and 31%. Even more significantly, it turns out that min
OWA outperforms MNW when we consider EF together with PO. Once again
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and in an even stronger way than for the Spliddit instances, these results heavily
balance the result of Proposition 3: in practice the allocations returned by the
min OWA envy were always EF1. Concerning EFX0 and EFX we also obtained
very positive results. Indeed, min OWA envy returns around 10% more EFX0

and EFX instances than MNW. Note that we confirm Proposition 1 as we have
100% of EFX allocations when n = 2. Note that we did not adjust the allocation
returned by the min OWA optimization to break ties as discussed in the proof
of Proposition 2. Thus, we get 97% of EFX0 but this percentage could be even
higher. However, these positive results about EF, EFX0 and EFX come with a
price on efficiency as we can see that PO is not guaranteed and the percentage
gets lower as the number of agents increases but is still above 60% for α2 and
α3. This highlights the inherent compromise and tension between efficiency and
fairness. Besides, as it was the case for the Spliddit instances we can see that the
computation is overall quite fast. We can notice that the MNW computation
never surpasses 0.02 s whereas for 10 agents, min OWA envy optimization is
slightly faster than a second for α1 and α3 and around 2 s for α2. Finally, we
can see that the three different weights considered here lead to quite similar
performances. We can globally notice more encouraging results for α3 except
for EFX. However, keep in mind that the advantage of using a parameterized
function is its rich expressiveness so we could see our method as a combination
of the results of the 3 weights.

Table 2. Performances for minimizing the OWA envy (with weights α1, α2, α3) or
maximizing the Nash Welfare on synthetics instances (as a function of the number of
agents and objects (n, m) (ε ≤ 10−3)).

(2,3) (5,7) (8,10) (10,12)

α1 α2 α3 MNW α1 α2 α3 MNW α1 α2 α3 MNW α1 α2 α3 MNW

%EF 74 74 74 58 48 48 48 17 10 10 10 1 1 1 1 0

%EFX0 97 97 97 88 96 96 96 88 88 86 88 78 72 82 83 80

%EFX 100 100 100 92 97 97 98 91 98 96 93 85 87 95 92 84

%EF1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

%Pareto 100 100 100 100 73 76 72 100 64 66 67 100 51 62 64 100

%EF+PO 74 74 74 58 33 34 32 17 5 6 5 1 1 1 1 0

Time(s) ε ε ε ε 0.02 0.02 0.02 0.01 0.1 0.4 0.1 0.04 0.5 2.5 0.7 0.07

6 Conclusion

In this paper, we introduced a new fairness concept following the idea of min-
imizing envy. More particularly, we used an OWA to express fairness in the
distribution of envy between agents. This generalizes several approaches using
various definitions of degree of envies, which can be captured by adequate weight
vector. In practice, we put a special focus on the egalitarian variant (minimizing
the highest envy), the utilitarian variant (minimizing the sum of envies), and
the compromise consisting of using the fair vector of decreasing weights. After



302 P. Shams et al.

implementing a MIP to compute min OWA allocations, we unveil several con-
nections between the min OWA allocation and other famous fairness measures.
In particular, we compare our approach with the alternative relaxations consist-
ing of seeking “envy-freeness up to some/any good”. Some of our conclusions
show that these approaches correspond to very different perspectives: we show
in particular that no algorithm minimizing a fair OWA can ever guarantee to
return an EF1 (and thus nor EFX) allocation. This is however balanced by the
fact that it never occured in our experiments. Indeed, even in the very few cases
for which the min OWA allocation was not EF1 we easily found a weight for
which it was the case. This raises the question of choosing the appropriate weight
vector for example by elicitating it. We left that question open for now. Indeed,
we also ran some experiments to test the performances of our method and com-
pared it with other allocation protocols. The results are extremely encouraging.
Our min OWA approaches do very well (in particular regarding the likelihood
to return an EFX allocation, which may be somewhat paradoxical given our
previous remarks) in terms of fairness, both on real Spliddit instances and ran-
domly generated ones. In comparison, Nash social welfare –despite its guarantee
to return an EF1 allocation– is dominated on that respect, as well as on the
likelihood to return an EF and Pareto optimal allocation.
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Abstract. Various practical optimization problems can be formalized
as the search of an optimal independent set in a matroid. When the set
function to be optimized is additive, this problem can be exactly solved
using a greedy algorithm. However, in some situations, the set function
is not exactly known and must be elicited before or during the optimiza-
tion process. Moreover, the set function is not always additive due to
possible interactions between the elements of the set. Here we consider
the problem of maximizing a submodular set function under a matroid
constraint. We propose two interactive approaches aiming at interweav-
ing the elicitation of the submodular set function with the construction
of an optimal independent subset subject to a matroid constraint. The
first one is based on a greedy algorithm and the other is based on local
search. These algorithms are tested on practical problems involving a
matroid structure and a submodular function to be maximized.

Keywords: Submodular function · Matroid · Preference elicitation ·
Greedy search · Local search

1 Introduction

In many problems studied in combinatorial optimization, admissible solutions
are defined as subsets of a ground set satisfying a structural property. A set
function representing the utility or the cost of any subset is generally used to
model preferences and the selection problem consists in determining an admis-
sible subset having the maximal utility or the minimal cost. In particular, the
optimization of a set function under a matroid constraint has received much
attention since the seminal work of Edmonds [5]. This problem has multiple
applications in various contexts such as recruitment, committee election, com-
binatorial auctions, scheduling, resource allocation, facility location and sensor
placement, just to give a few examples. Various algorithms are now available to
solve this problem either to optimality or approximately, for specific classes of
set functions, see e.g., [4,10–12,14,15,17].

When the set function is additive (i.e., the value of any set is defined as the
sum of the values of its elements), it is well known, after Edmonds [5], that the
problem can be efficiently solved by a greedy algorithm. However, preferences
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are not always representable by additive functions due to possible interactions
among elements. In decision theory, the additivity of utilities is often relaxed
and submodular utility functions are frequently used to guarantee a principle
of diminishing returns [1,9,17]. This principle states that adding an element
to a smaller set has more value than adding it to a larger set, formally the
set function w should satisfy the following property: w(X ∪ {i}) − w(X) ≥
w(Y ∪{i})−w(Y ) whenever X ⊆ Y and i /∈ Y . This is known to be equivalent to
submodularity of function w defined by: w(X ∪ Y ) + w(X ∩ Y ) ≤ w(X) + w(Y )
for all X,Y . Various set functions naturally considered in practical problems
appear to be both submodular and monotonic with respect to set inclusion. Let
us mention, for example, the budgeted-additive set function defined by w(X) =
min{∑i∈X wi, B}, but also the coverage measure defined by w(X) = |⋃i∈X Ei|
(where Ei is the list of elements covered by i) and satisfaction measures of the
form w(X) =

∑
i∈I pi maxj∈X{uij} used in the facility location problem (where

I denotes a set of clients and uij the utility of location j for client i).
Although the problem of minimization of submodular functions is known

to be polynomially solvable [14], the maximization of a submodular function is
hard in general because it includes max-cut as special case. Approximate greedy
and local search algorithms have been proposed for the maximization problem
and some interesting worst case bounds on the quality of the approximations
returned are known, see, e.g., [4,12,15,17]. In this paper we stay on this prob-
lem of finding a global maximum of a general submodular and monotonic set
function under a matroid constraint, but in a different perspective. We propose
an active learning approach aiming to iteratively collect preference information
over sets to progressively infer new preference statements over other sets until
an optimal subset can be determined. More precisely, our approach interleaves
preference queries with some optimization steps of a combinatorial algorithm
aiming to construct an optimal set. In particular, we propose an interactive
greedy algorithm and an interactive local search algorithm combining preference
elicitation and search to determine an optimal (or near-optimal) subset. The
approach proposed in the paper extends to non-additive submodular functions
a recent approach proposed in [2] for additive set functions.

The paper is organized as follows: in Sect. 2 we recall some background on
matroids and regret-based incremental preference elicitation. Then in Sect. 3 we
propose a near-admissible interactive greedy search algorithm for submodular
optimization. In Sect. 4 we introduce an interactive local search algorithm based
on improving sequences of element swaps for the same problem. In Sect. 5, both
algorithms are tested on optimization problems involving different submodular
set functions and different matroid constraints. We analyse and compare their
performance and obtain various possible tradeoffs between the number of pref-
erence queries and the quality of the final solution returned.

2 Background

In this work, we consider the problem of finding a maximum weight independent
set in a matroid. A matroid M is a pair (E, I) where E is a set of size n
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(called the ground set) and I ⊆ 2E is a non-empty collection of sets (called the
independent sets) such that, for all X,Y ∈ 2E , the following properties hold:

(A1): (Y ∈ I and X ⊆ Y ) ⇒ X ∈ I.
(A2): (X ∈ I and Y ∈ I and |Y | > |X|) ⇒ ∃e ∈ Y \ X s.t. X ∪ {e} ∈ I.

Axiom A1 is sometimes called the hereditary property (or the downward-closed
property) whereas A2 is known as the augmentation property (or the independent
set exchange property). Axiom A2 implies that all maximal independent sets
(w.r.t set inclusion) have the same cardinality. A maximal independent set is
called a basis of the matroid, and the set of all bases will be denoted by B in
the sequel. The cardinality of a basis is called the rank of the matroid and it
will be denoted by r(M) in the sequel. In this paper, a special focus will be
given to the uniform matroid, which is defined by I = {X ⊆ E : |X| ≤ k}
for a given positive integer k ≤ n. In the numerical tests, we will also consider
the partition matroid which is defined by a collection D = {D1, . . . , Dq} of q
disjoints subsets of E, a positive integer di ≤ |Di| for all i ∈ {1, . . . , q} and
I = {X ⊆ ∪q

i=1Di : ∀i ∈ {1, . . . , q}, |X ∩ Di| ≤ di}.
The problem of finding a maximum weight independent set in a matroid

can be defined as follows: given a matroid M = (E, I), we want to compute
maxX∈I w(X) where w is a positive set function defined on 2E measuring the
weight (or utility) of any subset of E. Here we assume that w(∅) = 0, w is
submodular (i.e., w(X ∪ Y ) + w(X ∩ Y ) ≥ w(X) + w(Y ) for all X,Y ⊆ E)
and w is monotonic with respect to set inclusion (i.e., w(X) ≤ w(Y ) for all
X ⊂ Y ⊆ E). Note that the latter assumption implies that we can focus on the
bases of the matroid when searching for an optimal independent subset.

In this paper, we assume that w is a set function representing the subjective
preferences of a Decision Maker (DM): for any two sets X,Y ∈ 2E , X is preferred
to Y if and only if w(X) ≥ w(Y ). Hence finding a maximum weight basis amounts
to determining an optimal basis according to the DM’s preferences. Moreover, we
assume that w is initially not known. Instead, we are given a (possibly empty) set
P of pairs (X,Y ) ∈ I ×I such that X is known to be preferred to Y by the DM.
Such preference data can be obtained by asking comparison queries to the DM
(i.e., by asking the DM to compare two subsets and state which one is preferred).
Let W be the uncertainty set implicitly defined as the set of all functions w
that are compatible with P, i.e., such that w(X) ≥ w(Y ) for all (X,Y ) ∈ P.
The problem is now to determine the most promising basis under preference
imprecision. To this end, we consider the minimax regret decision criterion which
is commonly used to make robust recommendations under preference imprecision
in various decision contexts. The minimax regret (MMR) can be defined using
pairwise max regrets (PMR) and max regrets (MR) as follows:

Definition 1. For any collection of sets S ⊆ 2E and for any two sets X,Y ∈ S:
PMR(X,Y,W ) = maxw∈W {w(Y ) − w(X)}
MR(X,S,W ) = maxY ∈S PMR(X,Y,W )
MMR(S,W ) = minX∈S MR(X,S,W )
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Thus PMR(X,Y,W ) is the worst-case loss when choosing X instead of Y .
MR(X,S,W ) is the worst-case loss incurred when selecting X instead of any
other set Y ∈ S. The set arg minX∈S MR(X,S,W ) is the set of all optimal sets
according to the minimax regret decision criterion. By definition, recommending
any of these optimal sets allows to minimize the worst-case loss. Moreover, if
MMR(S,W ) = 0, then we know that these sets are necessarily optimal accord-
ing to the DM’s preferences.

Note that, depending on the available preference statements, the MMR value
(representing the worst-case loss) might still be at an unacceptable level for the
DM. As the MMR value can only decrease when adding new preference state-
ments in P, the minimax regret decision criterion can be used within an incre-
mental elicitation process that progressively asks preference queries to the DM
until the MMR value drops below a given tolerance threshold δ ≥ 0 (represent-
ing the maximum allowable gap to optimality) [3]. At that time, recommending
any optimal basis for the minimax regret criterion ensures that the loss incurred
by not choosing the preferred basis is bounded above by that threshold. This
approach is sometimes referred to as regret-based incremental elicitation in the
literature. Note that if we set δ = 0, then the returned basis is necessarily opti-
mal according to the DM’s preferences. However, using δ > 0 allows to reduce
the number of generated preference queries in practice.

For matroid optimization problems, computing the MMR value at every step
of the elicitation procedure may induce prohibitive computation times as it may
require to compute the pairwise max regrets for all pairs of distinct bases in B.
Therefore, we propose instead to combine search and regret-based incremental
elicitation to reduce both computation times and number of queries. More pre-
cisely, preference queries are generated during the search so as to progressively
reduce the set W until being able to determine a (near-)optimal basis.

3 An Interactive Greedy Algorithm

For problems where w is exactly observable, good approximate solutions can be
constructed using the following simple greedy algorithm: starting from X = ∅,
the idea is to select an element e ∈ E\X that maximizes the marginal contribu-
tion to X, i.e.,

Δ(e|X) = w(X ∪ {e}) − w(X) (1)

without loosing the independence property. The algorithm stops when no more
element can be added to X (set X is a basis at the end of the procedure). For
monotonic submodular set functions, this greedy algorithm has an approxima-
tion ratio of (1 − 1

e ) ≈ 0.63 for the uniform matroid and an approximation ratio
of 1

2 in the general case [6,12]. For problems where the set function w is impre-
cisely known, we propose an interactive version of the greedy algorithm that
generates preference queries only when it is necessary to discriminate between
some elements. More precisely, queries are generated only when the available
preference data is not sufficient to identify an element that could be added to
set X so as to ensure that the returned basis is a good approximate solution with
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provable guarantees. We implement this idea by computing minimax regrets on
sets S = {X ∪{e} : e ∈ E\X s.t. X ∪{e} ∈ I}, asking preference queries at step
i until MMR(S,W ) drops below a given threshold δi ≥ 0, where δi is a fraction
of the tolerance threshold δ such that

∑r(M)
i=1 δi = δ (see Algorithm 1).

Algorithm 1: Interactive Greedy Algorithm

1 X ← ∅;
2 Ec ← E;
3 for i = 1 . . . r(M) do
4 S ← {X ∪ {e} : e ∈ Ec};
5 while MMR(S, W ) > δi do
6 Ask the DM to compare two elements of S;
7 Update W according to the DM’s answer;

8 end
9 Select e ∈ Ec such that MR(X ∪ {e}, S, W ) ≤ δi and move e from Ec to X;

10 Remove from Ec all elements e such that X ∪ {e} �∈ I;

11 end
12 return X;

Note that Algorithm 1 generates no more than a polynomial number of
queries. At every step, the number of queries is indeed bounded above by
|E|2 as comparison queries are generated until MMR(S,W ) ≤ δi, where
S ⊆ {X ∪ {e} : e ∈ E} (in the worst-case scenario, the DM is asked to com-
pare all the elements of S). Hence the number of steps of the while loop is also
polynomial. Note however that the implementation of Algorithm 1 may differ
significantly from one application context to another. In particular, checking
whether X ∪ {e} ∈ I can be more or less complex depending on the matroid
under consideration. For example, when considering the uniform and partition
matroids, the independence tests (line 10) can be performed in polynomial time.
A second source of complexity is the computation of MMR values, which can be
more or less simple depending on the assumptions made on w. An interesting
option is to focus on parametric functions that are linear in their parameters
(e.g., a linear combination of spline functions, or a linear multiattribute utility,
or an ordered weighted average of criterion values). In that case, regret optimiza-
tion can be performed in polynomial time using linear programming. Moreover,
defining w by a parametric function enables to reduce the number of queries in
practice, since any preference statement of type w(X) ≥ w(X ′) translates into
a constraint on the parameter space, reducing possible preferences over other
subsets.

We now provide theoretical guarantees on the quality of the returned solution.
Before considering the general case, let us focus on the uniform matroid.
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Proposition 1. Let Wf be the final set W when Algorithm 1 stops. For the
uniform matroid, Algorithm 1 is guaranteed to return a basis X such that:

∀w ∈ Wf , w(X) ≥ (
1 − 1

e

)
w(X∗) − δ, where X∗ ∈ arg max

Y ∈I
w(Y ).

Proof. Let w ∈ Wf and let X∗ ∈ arg maxY ∈I w(Y ). We want to prove that
w(X) ≥ (

1 − 1
e

)
w(X∗) − δ holds. Let ei, i ∈ {1, . . . , r(M)}, be the ith element

inserted in X during the execution of Algorithm 1. Let Xi be the set X at the
end of the ith iteration step (i.e., Xi = {e1, . . . , ei}). Let Wi (resp. Si) denote
the uncertainty set W (resp. the set S) at the end of the ith iteration step. Let
e∗
i , i ∈ {1, . . . , r(M)}, denote the ith element of X∗ in an arbitrary order.

For any step i ∈ {1, . . . , r(M)}, we have MR(Xi−1 ∪ {ei},Si,Wi) ≤ δi due
to line 9. Since w ∈ Wf ⊆ Wi, we know that w(Xi−1 ∪ {e}) − w(Xi−1 ∪ {ei}) ≤
δi for all e ∈ Ec, where Ec = E\Xi−1 for the uniform matroid (see lines 2
and 10). Then, from Eq. (1), we can derive Δ(e|Xi−1) − Δ(ei|Xi−1) ≤ δi for
all e ∈ E\Xi−1. Note that the last inequality also holds for all e ∈ Xi−1 as
Δ(e|Xi−1) = 0. Hence, for any step i ∈ {1, . . . , r(M)}, we have:

Δ(e|Xi−1) − Δ(ei|Xi−1) ≤ δi, ∀e ∈ E (2)

Then we obtain:

w(X∗) ≤ w(Xi−1 ∪ X∗) (since w is monotonic)

= w(Xi−1) +
r(M)∑

j=1

(
w(Xi−1 ∪ {e∗

1, . . . , e
∗
j}) − w(Xi−1 ∪ {e∗

1, . . . , e
∗
j−1})

)

= w(Xi−1) +
r(M)∑

j=1

Δ(e∗
j |Xi−1 ∪ {e∗

1, e
∗
2, . . . , e

∗
j−1}) (by Equation (1))

≤ w(Xi−1) +
r(M)∑

j=1

Δ(e∗
j |Xi−1) (since w is submodular)

≤ w(Xi−1) +
r(M)∑

j=1

(Δ(ei|Xi−1) + δi) (by Equation (2))

= w(Xi−1) + r(M) × (
Δ(ei|Xi−1) + δi

)

From the last inequality, we can derive:

1
r(M)

(
w(X∗) − w(Xi−1)

) − δi ≤ Δ(ei|Xi−1)

which can be rewritten as follows:

1
r(M)

(
w(X∗) − w(Xi−1)

) − δi ≤ w(X∗) − w(Xi−1) − (
w(X∗) − w(Xi)

)
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since Xi = Xi−1∪{ei}. Therefore we have Πi−1
r(M) −δi ≤ Πi−1−Πi or equivalently:

Πi ≤ (
1 − 1

r(M)
)
Πi−1 + δi

where Πi is simply defined by Πi = w(X∗) − w(Xi) for all i ∈ {0, . . . , r(M)}.
By recursively applying this inequality, we obtain:

Πr(M) ≤
(

1 − 1
r(M)

)r(M)

× Π0 +
r(M)∑

i=1

δi

(

1 − 1
r(M)

)r(M)−i

Then, since Π0 = w(X∗) and Πr(M) = w(X∗) − w(X), we obtain:

w(X∗) − w(X) ≤
(

1 − 1
r(M)

)r(M)

× w(X∗) +
r(M)∑

i=1

δi

(

1 − 1
r(M)

)r(M)−i

or equivalently:

w(X) ≥
(

1 − (
1 − 1

r(M)
)r(M)

)

w(X∗) −
r(M)∑

i=1

δi

(

1 − 1
r(M)

)r(M)−i

Finally, using 1−x ≤ e−x for all x ∈ R, and 1− 1
x ≤ 1 for all x ∈ R

∗
+, we obtain:

w(X) ≥ (
1 − 1

e

)
w(X∗) −

r(M)∑

i=1

δi =
(
1 − 1

e

)
w(X∗) − δ

�
Note that Proposition 1 cannot be extended to the case of general matroid,

as inequalities of type Δ(ei|Xi−1) + δi ≥ Δ(e∗
j |Xi−1) may not hold anymore

(Ec �= E\Xi in the general case). We now establish a more general result.

Proposition 2. Let Wf be the final set W when Algorithm 1 stops. Algorithm 1
is guaranteed to return a basis X such that:

∀w ∈ Wf , w(X) ≥ 1
2
(
w(X∗) − δ

)
, where X∗ ∈ arg max

Y ∈I
w(Y ).

Proof. Let w ∈ Wf and let X∗ ∈ arg maxY ∈I w(Y ). We want to prove that
w(X) ≥ 1

2 (w(X∗) − δ) holds. Let ei, i ∈ {1, . . . , r(M)}, be the ith element
inserted in X during the execution of Algorithm 1. Let Xi be the set X at the
end of the ith iteration step (i.e., Xi = {e1, . . . , ei}). Let Wi (resp. Si) denote
the uncertainty set W (resp. the set S) at the end of the ith iteration step.

Due to a well-known multiple exchange theorem [7], there exists a one-to-one
correspondence σ : X → X∗ such that Bi = (X\{ei}) ∪ {σ(ei)} is a basis of
the matroid for every element ei ∈ X. Then we can derive Xi−1 ∪ {σ(ei)} ∈ I
from Xi−1 ∪ {σ(ei)} ⊆ Bi (using Axiom A1), and therefore we necessarily have
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Xi−1 ∪ {σ(ei)} ∈ Si at step i. Since MR(Xi−1 ∪ {ei},Si,Wi) ≤ δi (line 9), we
obtain w(Xi−1 ∪ {σ(ei)}) − w(Xi−1 ∪ {ei}) ≤ δi, which can be rewritten:

Δ(σ(ei)|Xi−1) − Δ(ei|Xi−1) ≤ δi (3)

Then we obtain:

w(X∗) ≤ w(X ∪ X∗) (since wis monotonic)

= w(X)+
r(M)∑

i=1

(
w(X ∪ {σ(e1), . . . , σ(ei)}) − w(X ∪ {σ(e1), . . . , σ(ei−1)})

)

= w(X) +
r(M)∑

i=1

Δ(σ(ei)|X ∪ {σ(e1), . . . , σ(ei−1)}) (by Equation (1))

≤ w(X) +
r(M)∑

i=1

Δ(σ(ei)|Xi−1) (since w is submodular and Xi−1 ⊆ X)

≤ w(X) +
r(M)∑

i=1

(Δ(ei|Xi−1) + δi) (by Equation (3))

= 2w(X) +
r(M)∑

i=1

δi (by Equation (1))

= 2w(X) + δ (which establishes the result) �

Example 1. We now present an execution of our algorithm. Consider an
instance of the maximum coverage problem over a uniform matroid with a set
V = {v1, . . . , vq}, q = 10, and a family of n = 8 subsets E = {S1, . . . , Sn}
defined by (Table 1):

Table 1. Subsets used in Example 1.

S1 S2 S3 S4 S5 S6 S7 S8

v3 v1 v6 v2 v7 v6 v2 v1

v4 v3 v10 v8 v9 v7 v8 v3

v5 v10 v5

A feasible solution is a collection of subsets X ⊆ E such that |X| ≤ k (here
we set k = 2), and the goal is to identify a feasible solution X maximizing w(X)
for a given set function w defined on 2E . Here we assume that w is defined by:

w(X) =
∑

v∈⋃
S∈X S

u(v) (4)
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where u(v) ≥ 0 is the utility of element v ∈ V . In that case, it can be proved
that w is monotone and submodular [8]. We further assume that all elements
v ∈ V are evaluated with respect to 3 criteria (denoted by u1, u2, and u3), and
their evaluations are given in Table 2. Then, the utility of any element v ∈ V is:

u(v) =
3∑

i=1

λiui(v) (5)

where λ = (λ1, λ2, λ3) ∈ R+ represents the value system of the DM.

Table 2. Performance vectors attached to elements in Example 1.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

u1 4 2 2 3 7 6 8 7 7 1

u2 5 7 1 2 3 1 5 1 9 1

u3 4 5 3 7 2 5 3 8 4 4

In this example, we assume that the DM’s preferences can be represented
by the set function w∗ defined by the hidden parameter λ∗ = (0.2, 0.5, 0.3).
Here we start the execution with no preference data, and therefore we have to
consider all weighting vectors λ in the set Λ = {λ ∈ [0, 1]3 :

∑3
i=1 λi = 1},

which implicitly defines the uncertainty set W using Eqs. (4–5). In Fig. 1, Λ is
represented by triangle ABC in the space (λ1, λ2), λ3 being implicitly defined
by λ3 = 1−λ1 −λ2. Now, let us execute Algorithm 1 with δ = 0. Note that only
two iteration steps are needed as the rank of the uniform matroid is equal to k.

First Iteration Step: We have X = ∅ and Ec = E, and therefore S = E.
Since MMR(S,W ) = 6 > 0, the DM is asked to compare two elements of
S, say S5 and S7. Since we have w∗({S5}) = 12.1 ≥ 9.7 = w∗({S7}), the
answer is: “subset S5 is better than subset S7”. Then W is updated by imposing
the constraint w({S5}) ≥ w({S7}) which amounts to restricting Λ by imposing
λ2 ≥ 1

2 − λ1. Now Λ is represented by the polyhedron BCDE in Fig. 2. Since
MMR(S,W ) = 2.5, the DM is asked to compare two subsets, say S5 and S6.
Since we have w∗({S5}) = 12.1 ≥ w∗({S6}) = 10.1, the DM answers: “subset
S5 is better than subset S6”. Then, W is updated by imposing the constraint
w({S5}) ≥ w({S6}), which amounts to further restricting Λ by imposing λ2 ≥
5
12 − 5

12λ1. Now Λ is represented by the polyhedron BCFE in Fig. 3. We have
MMR(S,W ) = MR({S5},S,W ) = 0, and therefore S5 is added to X.

Second Iteration Step: We have X = {S5} and Ec = E\{S5}, and therefore
S = {{S5} ∪ {S} : S ∈ Ec}. Since MMR(S,W ) = 1.5, we ask the DM to
compare two elements of S, say {S5, S8} and {S5, S7}. The DM prefers the
former option as w∗({S5, S8}) = 21.9 ≥ w({S5, S7}) = 21.8. The uncertainty
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set W is therefore updated by imposing w({S5, S8}) ≥ w({S5, S7}), i.e., λ2 ≥
1 − 8

3λ1. Now Λ is represented by the triangle BGC in Fig. 4. Since we have
MMR(S,W ) = MR({S5, S8},S,W ) = 0, then subset S8 is added to X.

As |X| = k = 2, the algorithm stops and returns X = {S5, S8} which is
the optimal solution for this instance. This shows that we are able to make good
recommendations without knowing λ∗ precisely (here only 3 queries are needed).

λ1

λ2

•A

0

•B
1

•
C

1

• λ∗

Fig. 1. Initial set Λ.

λ1

λ2

0

•B
1

•
C

1

• λ∗

•
D

•E

Fig. 2. Λ after 1 query.

λ1

λ2

0

•B
1

•
C

1

• λ∗
•
F

•E

Fig. 3. Λ after 2 queries.

λ1

λ2

0

•B
1

•
C

1

• λ∗
•
G

Fig. 4. Λ after 3 queries.

4 An Interactive Local Search

In this section, we consider another efficient way of constructing a good approx-
imate solution to matroid optimization problems with monotonic submodular
functions. More precisely, we focus on the following simple local search app-
roach: starting from an arbitrary basis X, the idea is to replace one element
e ∈ X by an element e′ ∈ E\X such that X ∪ {e′}\{e} belongs to I and is
better than X. This simple exchange principle can be iterated until reaching a
local optimum. When w is exactly observable, the local search algorithm has an
approximation ratio of 1/2, even in the special case of the uniform matroid [6].
When w is not known, the local search algorithm can be combined with a prefer-
ence elicitation method which collects preference data only when it is necessary
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to identify improving swaps. To implement this idea, we propose Algorithm 2
where NX is the neighborhood of basis X (i.e., the set of bases that differ from X
by exactly one element). The procedure ComputeInitialBasis called in line 1
can be any heuristic providing a good starting solution (see the numerical tests).

Algorithm 2: The Interactive Local Search Algorithm

1 X ← ComputeInitialBasis(M);
2 improve ← true;
3 while improve do
4 NX ← {X ′ ∈ B : |{X \ X ′} ∪ {X ′ \ X}| = 2};
5 S ← NX ∪ {X};
6 while MMR(S, W ) > δ/r(M) do
7 Ask the DM to compare two elements of S;
8 Update W according to the DM’s answer;

9 end
10 if MR(X, S, W ) ≤ δ/r(M) then
11 improve ← false
12 else
13 X ←RandomSelect(arg min

X′∈NX

MR(X ′, S, W ))

14 end

15 end
16 return X;

The following proposition shows that the basis returned by Algorithm 2 is a
good approximate solution.

Proposition 3. Let Wf be the final set W when Algorithm 2 stops. Algorithm 2
is guaranteed to return a basis X such that:

∀w ∈ Wf , w(X) ≥ 1
2
(
w(X∗) − δ

)
, where X∗ ∈ arg max

Y ∈I
w(Y ).

Proof. Let w ∈ Wf and let X∗ ∈ arg maxY ∈I w(Y ). We want to prove that
w(X) ≥ 1

2 (w(X∗) − δ) holds. Let ei, i ∈ {1, . . . , r(M)}, denote the ith element
of X in an arbitrary order. Let Xi be the set defined by Xi = {e1, . . . , ei}.
Due to the multiple exchange theorem, there exists a one-to-one correspondence
σ : X → X∗ such that Bi = (X\{ei}) ∪ {σ(ei)} is a basis of the matroid for
every element ei ∈ X. Note that Bi ∈ NX (the neighborhood of X) for all
i ∈ {1, . . . , r(M)} since Bi differs from X by exactly one element. Moreover, we
have MR(X,NX ,W ) ≤ δ/r(M) at the end of the execution (due to line 10).
Therefore, w(Bi) − w(X) ≤ δ/r(M) holds by definition of max regrets, which
can be rewritten:

Δ(σ(ei)|X\{ei}) − Δ(ei|X\{ei}) ≤ δ

r(M)
(6)
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using Eq. (1). Then, we obtain:

w(X∗) ≤ w(X) +
∑

e∈X∗
Δ(e|X) (by submodularity, see [12] for a proof)

= w(X) +
r(M)∑

i=1

Δ(σ(ei)|X)

≤ w(X) +
r(M)∑

i=1

Δ(σ(ei)|X \ {ei}) (by submodularity)

≤ w(X) +
r(M)∑

i=1

(
Δ(ei|X \ {ei}) +

δ

r(M)
)

(by Equation (6))

≤ w(X) +
r(M)∑

i=1

(
Δ(ei|Xi−1) +

δ

r(M)
)

(since Xi−1 ⊆ X\{ei})

= 2w(X) + δ (which establishes the result)

�
Contrary to the greedy algorithm, we cannot prove that the local search

algorithm generates a polynomial number of queries and ends after a polyno-
mial number of iterations. More precisely, when δ �= 0, some cycles of type
(X1, . . . , Xt) with Xi+1 ∈ NXi

and X1 = Xt can even occur. Fortunately, when
a cycle is detected, it can be easily broken by iteratively dividing δ by two (while
still guaranteeing the near-optimality of the returned basis). Despite these poor
theoretical properties, we will see in the experimental section that the local
search algorithm achieves good results in practice.

5 Experimental Results

In this section, we report the results obtained by our algorithms on two prob-
lems: the maximum coverage problem and the collective selection of items. Two
matroid constraints have been considered for each problem: the uniform matroid
and the partition matroid. The algorithms are evaluated through three perfor-
mance indicators: number of queries, computation times (given in seconds) and
empirical error, expressed as a percentage from the optimal solution. For the local
search algorithm, we also report the number of iteration steps (NbI) performed
by the algorithm. In our tests, two tolerance thresholds have been used: δ = 0
and δ = 20% of the initial maximum regret (to reduce the number of preference
queries). Results are averaged over 30 runs. All the results have been obtained
with a program written in C++ and tested on an Intel Core i7-9700, 3.00 GHz
with 15,5 GB of RAM. Pairwise max regret optimizations were performed by
CPLEX (https://www.ibm.com/analytics/cplex-optimizer).

To generate preference queries during the execution of our algorithms, we
use the well-known query selection strategy called the Current Solution Strat-

https://www.ibm.com/analytics/cplex-optimizer
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egy (CSS) [3] which consists in asking the DM to compare a solution X mini-
mizing the max regret to one of its best challengers arbitrary chosen in the set
arg maxY PMR(X,Y,W ).

5.1 The Maximum Coverage Problem

Here we consider instances of the maximum coverage problem with a set V =
{v1, . . . , vq} of q = 100 elements, and a family E of n = 80 subsets of V . The
family of subsets are generated as suggested in [13]. The utility of an element v ∈
V is defined by a weighted sum uλ(v) =

∑p
i=1 λiui(v) where ui is the evaluation

of v on criterion i ∈ {1, . . . , p}. Utilities are randomly generated within [1, 10]
and three values of p are considered: p = 4, 6, and 8. The DM’s preferences are
then represented by a submodular monotone set function w defined by:

w(X) =
∑

v∈⋃
S∈X S

uλ(v)

for any X ⊆ E. Here we assume that λ is initially unknown. Answers to
queries are simulated using a hidden vector λ randomly generated before run-
ning the algorithms. For the uniform matroid, we focus on subsets of size at
most k = 16, i.e., I = {X ⊂ E : |X| ≤ 16}. For the partition matroid, set
E is randomly partitioned into q = 4 sets D = {D1, . . . , Dq}, and at most
di = 4 elements can be selected for all i ∈ {1, . . . , q}, i.e., I = {X ⊆ E :
∀i ∈ {1, . . . , 4}, |X ∩ Di| ≤ 4}. The results are given in Table 3 and Table 4
respectively. For our local search algorithm, we consider two implementations

Table 3. Results obtained for the maximum coverage problem with uniform matroid.

Greedy Local search (random start) Local search (greedy start)

δ p Time(s) Queries Error(%) Time(s) Queries Error(%) NbI Time(s) Queries Error(%) NbI

0 4 4.4 19.4 1.1 0.2 17.2 0.9 12.6 0.2 12.1 0.5 2.9

6 6.9 36.2 1.3 0.8 32.4 1.0 12.6 0.3 17.1 0.4 2.5

8 9.9 48.3 1.1 1.4 42.9 0.8 12.5 0.5 28.5 0.3 3.0

0.2 4 2.8 7.2 1.3 0.1 7.6 6.1 7.7 0.1 9.5 0.5 2.9

6 3.9 13.7 1.5 0.3 13.1 4.6 8.9 0.3 13.7 0.4 2.4

8 5.0 17.3 1.3 0.6 19.5 4.0 9.4 0.4 21.8 0.3 2.9

Table 4. Results obtained for the maximum coverage problem with partition matroid.

Greedy Local search (random start) Local search (greedy start)

δ p Time(s) Queries Error(%) Time(s) Queries Error(%) NbI Time(s) Queries Error(%) NbI

0 4 3.8 20.5 4.2 0.2 16.2 4.1 11.1 0.1 9.0 2.2 2.8

6 5.4 33.4 3.5 0.6 25.5 4.5 10.7 0.2 13.4 1.8 2.7

8 6.8 44.3 4.1 0.9 35.9 4.3 10.6 0.3 17.7 2.2 3.0

0.2 4 2.4 7.4 4.3 0.1 7.5 6.8 7.7 0.1 7.2 2.3 2.7

6 3.1 12.4 3.9 0.2 10.6 7.2 7.6 0.2 10.3 1.9 2.7

8 4.1 17.8 4.5 0.4 15.9 5.9 8.8 0.3 14.6 2.2 3.0
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of the procedure ComputeInitialBasis: we generate a basis at random (ran-
dom start), or we use the standard greedy algorithm with the uniform weighting
vector λ = (1/p, . . . , 1/p) (greedy start).

For δ = 0, we observe that the interactive greedy algorithm is outperformed
by the interactive local search procedures: the interactive greedy algorithm is
about 10 times slower on average and asks more preference queries. Moreover,
we observe that the local search performs better when considering the greedy
start heuristic instead of the random start heuristic. We also observe that using
δ = 0.2 allows to significantly reduce the number of queries, without increasing
the error too much (except for the local search with a random starting point).
Finally, we observe that our algorithms perform better on the uniform matroid
than on the partition matroid which is a little more complex.

5.2 The Collective Subset Selection Problem

In the collective subset selection problem, we are given a set A of m agents, and
a set E = {e1, . . . , en} of n items. Every agent a ∈ A gives a score sa(e) ≥ 0
to each item e ∈ E, and the utility that agent a derives from a set X ⊆ E
is defined by an ordered weighted average (OWA) [18]. More precisely, for any
X = {x1, . . . , x�} ⊆ E of size � ≤ n, the utility of agent a is defined by:

uλ
a(X) =

�∑

i=1

λisa(x(i))

where (·) is a permutation of {1, . . . , �} sorting the elements of X is non-
increasing order (i.e., sa(x(1)) ≥ . . . ≥ sa(x(�))), and λ = (λ1, . . . , λn) ∈ [0, 1]n

is a non-increasing normalized vector. Here the set function w is simply defined
by:

w(X) =
∑

a∈A

uλ
a(X)

Note that function w is a submodular as functions uλ
a , a ∈ A, are submodular

whenever vector λ is non-increasing (see Skowron et al. [16]). Here also we assume
that λ is initially unknown, and answers to queries are simulated using a hidden
weighting vector. We consider instances with m = 50 agents and n = 50 items,
and scores are randomly generated within in [1, 100]. For the uniform matroid,
two values of k have been tested: k = 5, and k = 10. For the partition matroid,
E is randomly partitioned into 4 sets, and at most d/4 items can be selected
in each set; we consider two values of d (d = 8 and d = 16). The results are
given in Table 5 and Table 6 respectively. For this problem, we observe that our
interactive greedy algorithm outperforms our interactive local search procedure.
With δ = 0.2, the greedy algorithm is very efficient: the error is less than 0.2%
and the number of queries does not exceed 7.
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Table 5. Collective selection of items problem under uniform matroid constraint.

Greedy Local search (random start) Local search (greedy start)

δ d Time(s) Queries Error(%) Time(s) Queries Error(%) NbI Time(s) Queries Error(%) NbI

0 5 0.9 8.2 0.2 3.1 14.4 0.1 5.8 1.6 11.4 0.0 3.1

10 2.7 25.1 0.1 34.4 45.6 0.0 9.3 31.2 35.5 0.0 4.3

0.2 5 0.6 3.0 0.2 0.8 6.8 0.5 5.0 1.1 6.9 0.1 2.9

10 1.2 4.3 0.1 12.8 16.6 0.6 7.5 17.7 18.5 0.0 4.1

Table 6. Collective selection of items problem under partition matroid constraint.

Greedy Local search (random start) Local search (greedy start)

δ d Time(s) Queries Error(%) Time(s) Queries Error(%) NbI Time(s) Queries Error(%) NbI

0 8 1.3 14.0 0.2 2.2 24.0 0.0 8.1 1.5 17.7 0.0 3.8

16 3.1 38.9 0.1 21.5 56.9 0.0 12.0 0.4 34.0 0.0 4.1

0.2 8 0.8 4.2 0.2 1.8 18.5 0.1 8.1 1.2 13.4 0.1 3.7

16 1.4 6.3 0.1 16.0 43.4 0.2 11.4 6.9 25.7 0.0 4.0

6 Conclusion

We have proposed two interactive algorithms (greedy and local search) combin-
ing the elicitation of a submodular utility function and the determination of the
optimal independent subset in a weighted matroid. Both algorithms admit per-
formance guarantees on the quality of the returned basis. The tradeoff between
the quality of solutions and the number of preference queries used in the pro-
cess can be controlled by the parameter δ used to define admissible max regrets.
Our approach has been tested on two specific problems, but many others could
be solved with similar performances due to the generality of matroids. Note
also that a counterpart of this interactive approach could be proposed for the
optimization of supermodular functions.
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Abstract. This paper proposes and studies the notion of interaction
between two criteria in a 2-maxitive Sugeno integral model. Within the
framework of binary alternatives, we give a necessary and sufficient con-
dition for preferential information on binary alternatives to be repre-
sentable by a 2-maxitive Sugeno integral model. Using this condition, we
show that it is always possible to choose a numerical representation, for
which all the interaction indices are strictly positive. Outside the frame-
work of binary alternatives, by introducing binary variables, we propose
a MILP allowing to test whether an ordinal preference information is
representable by a 2-maxitive Sugeno integral model and whether the
interpretation of the interaction indices is ambiguous or not. We illus-
trate our results with examples.

Keywords: Binary alternatives · Sugeno integral model · Interaction
indices · 2-maxitive capacity

1 Introduction

The Sugeno integral was introduced in [19] and it is an aggregation function in
the ordinal approach to decision making. There are numerous applications of
the Sugeno integral in decision making [6,10], and the problem of identification
of fuzzy measures, based on which fuzzy integrals are defined, has attracted
substantial attention [1,7,9].

In the context of a 2-additive Choquet integral model, the interaction index
between two criteria coincides with the Möbius mass of this pair [16]. By anal-
ogy, in the context of a 2-maxitive Sugeno integral, in this paper we propose a
definition of the interaction index between two criteria.

In [16], we find necessary and sufficient conditions for a preferential informa-
tion on a set of binary alternatives to be represented by a 2-additive Choquet
integral model. We give a similar result with the 2-maxitive Sugeno integral
model.

In [15], it is proven that in the framework of binary alternatives, if the pref-
erential information contains no indifference, and if it is representable by a 2-
additive Choquet integral model, then it is always possible to represent these
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preferences by a strict positive interaction. We obtain a similar result with the
2-maxitive Sugeno integral.

Outside the framework of binary alternatives, in [16] we find a simple LP
allowing us to test whether ordinal preference information is representable by a
2-additive Choquet integral model and whether the interpretation of interaction
indices is or not ambiguous. Outside the framework of binary alternatives, using
the linearization of the min and max functions, we propose a MILP allowing to
test whether an ordinal preference information is representable by a 2-maxitive
Sugeno integral model and whether the interpretation of the interaction indices
is or not ambivalent.

This paper is organized as follows. After having recalled in Sect. 2 some basic
elements on the model of the Sugeno integral in MCDM, in Sect. 3, we use a
classic example to argue that the usual interpretation of interaction indices is not
always convincing. In Sect. 4, we give our main results. Outside the framework of
binary alternatives, by introduicing binary variables, we propose a MILP model
allowing to test whether an ordinal preference information is representable by
a 2-maxitive Sugeno integral model and whether the interaction is necessary
or not. We illustrate our results with an example in Sect. 6, and we end by a
conclusion.

2 Notations and Definitions

2.1 The Framework

Let N = {1, 2, . . . , n} be a set of n criteria and Li the evaluation scale for the
criterion i ∈ N . We denote by 0i (resp. 1i) the smallest (resp. biggest) element
of Li. An alternative is a vector x = (x1, · · · , xn) ∈ L1 × L2 × · · · × Ln where xi

is the ordinal evaluation of the alternative with respect to the criterion i ∈ N .
The criteria are recoded numerically using, for all i ∈ N, a function ui from Li

into R.

2.2 Sugeno Integral

The Sugeno integral [5,6,19] is an aggregation function known in MCDM. It is
based on the notion of capacity [3,18] defined as a function μ from the powerset
2N into L such that:

• μ(∅) = 0,
• μ(N) = 1,
• ∀S, T ∈ 2N ,

[
S ⊆ T =⇒ μ(S) ≤ μ(T )

]
(monotonicity).

For an alternative x = (x1, · · · , xn) ∈ L1 × L2 × · · · × Ln, the expression of
the Sugeno integral w.r.t. a capacity μ is given by:

Sμ

(
u(x)

)
=

n∨

i=1

(
uσ(i)(xσ(i)) ∧ μ(Nσ(i))

)
(1)

where u(x) = (u1(x1), · · · , un(xn)), σ is a permutation on N such that:
Nσ(i) = {σ(i), · · · , σ(n)} and uσ(1)(xσ(1)) ≤ uσ(2)(xσ(2)) ≤ · · · ≤ uσ(n)(xσ(n)).
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Remark 1. The Sugeno integral is equivalent to the following expression (see
[14])

Sμ

(
u(x)

)
=

∨

A⊆N

(
( ∧

i∈A

ui(xi)
) ∧ μ(A)

)
. (2)

The ordinal Möbius transform [12] mμ of μ is defined by:

mμ(S) =

⎧
⎪⎪⎨

⎪⎪⎩

μ(S) if μ(S) >
∨

T�S

μ(T )

0 otherwise

(3)

The definition of a capacity generally requires 2n − 2 coefficients which are
the values of μ for all subsets of N . When n is large, this determination becomes
difficult. This is why the concept of k-maxitive capacity, where k is an inte-
ger between 1 and n, has been introduced in order to reduce the number of
parameters of μ to be determined.

Definition 1. A capacity μ is said to be k-maxitive [2,17] if we have

μ(S) =
∨

T⊆S
|T |≤k

μ(T ) for all S ⊆ N. (4)

Remark 2.

• k-maxitive capacities are thus completely determined by their values on the
sets with at most k elements.

• A Sugeno integral defined with respect to a k-maxitive capacity is also said
to be k-maxitive.

• It is not difficult to see from (4) that for a k-maxitive Sugeno integral Sμ,
mμ(S) = 0 for all S ⊆ N such that |S| > k, and thus Sμ can be expressed as
a supremum of terms with at most k variables.

The following proposition gives a simplified expression of the k-maxitive Sugeno
integral

Proposition 1. If a capacity μ is k−maxitive, then we have:

Sμ

(
u(x)

)
=

∨

A⊆N
|A|≤k

(
( ∧

i∈A

ui(xi)
) ∧ μ(A)

)
(5)

Proof. Let us assume that a capacity μ is k-maxitive. We then have
μ(A) =

∨

B⊆A
|B|≤k

μ(B) for |A| ≥ k + 1.

Since
∧

i∈A

ui(xi) ≥
∧

i∈B

ui(xi) when A ⊆ B, so
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∨

A⊆N
|A|≤k

(
( ∧

i∈A

ui(xi)
) ∧ μ(A)

)
≥

∨

A⊆N
|A|≥k+1

(
( ∧

i∈A

ui(xi)
) ∧ μ(A)

)
.

Thus we have:

Sμ

(
x
)

=
∨

A⊆N

(
( ∧

i∈A

ui(xi)
) ∧ μ(A)

)

=
[ ∨

A⊆
|A|≤k

(
( ∧

i∈A

ui(xi)
) ∧ μ(A)

)]∨ [ ∨

A⊆N
|A|≥k+1

(
( ∧

i∈A

ui(xi)
) ∧ μ(A)

)]

=
∨

A⊆N
|A|≤k

(
( ∧

i∈A

ui(xi)
) ∧ μ(A)

)


�
Remark 3. For k = 1, the Sugeno integral simplifies in the form of a prioritized
maximum [4]:

Sμ

(
u(x)

)
=

∨

i∈N

(
ui(xi) ∧ μi

)
(6)

Remark 4. For k = 2, the 2-maxitive Sugeno integral is given by:

Sμ

(
u(x)

)
=

[ ∨

i∈N

(
ui(xi) ∧ μi

)] ∨[ ∨

i,j∈N

(
ui(xi) ∧ uj(xj) ∧ μij

)]
(7)

In the context of a 2-additive Choquet integral, the interaction index between
two criteria coincides with their Möbius transform [16]. By analogy, in the frame-
work of a 2-maxitive Sugeno integral, we propose below a definition of the inter-
action index between two criteria. Indeed, we propose that Iμ

ij = mμ
ij for all

i, j ∈ N .

Definition 2. The interaction index w.r.t. a 2-maxitive capacity μ is defined
by:

Iμ
ij =

⎧
⎨

⎩

μij if μij > μi ∨ μj

0 otherwise
(8)

Remark 5. Given a capacity μ, it is usual to interpret the interaction as follows:

– If Iμ
ij > 0, then we say that criterion i and j are complementary( or in positive

synergy) w.r.t μ.
– If Iμ

ij = 0, then we say that criterion i and j are independent w.r.t μ.

Our definition for the 2-maxitive case implies that negative interactions are not
taken into account.

3 A Motivating Example

We consider the following example inspired by [11]. Four students are evalu-
ated on three subjects Mathematics (M), Statistics (S) and Language skills (L).
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All marks are taken from the same scale, from 0 to 1. The evaluations of these
students are given by the Table 1.

Table 1. Evaluations students

1:Mathematics(M) 2:Language(L) 3: Statistics(S)

a 0.3 0.25 0.6

b 0.3 0.6 0.25

c 0.7 0.25 0.6

d 0.7 0.6 0.25

To select the best students, the Dean of the faculty expresses his/her prefer-
ences where the notation xP y means x is strictly preferred to y. For a student
bad in Mathematics, Language is more important that Statistics, so that

aP b, (9)

for a student good in Mathematics, Statistics is more important that Language,
so that

dP c. (10)

It is not possible to model the two preferences aP b and dP c by an 1-maxitive
Sugeno integral model. Indeed we have:

Sμ(a) = (uM (0.3) ∧ μ1) ∨ (uL(0.25) ∧ μ2) ∨ (uS(0.6) ∧ μ3)
Sμ(b) = (uM (0.3) ∧ μ1) ∨ (uL(0.6) ∧ μ2) ∨ (uS(0.25) ∧ μ3)
Sμ(c) = (uM (0.7) ∧ μ1) ∨ (uL(0.25) ∧ μ2) ∨ (uS(0.6) ∧ μ3)
Sμ(d) = (uM (0.7) ∧ μ1) ∨ (uL(0.6) ∧ μ2) ∨ (uS(0.25) ∧ μ3)

We then have: (uM (0.7) ∧ μ1) ∨ Sμ(a) = (uM (0.3) ∧ μ1) ∨ Sμ(c) and
(uM (0.7) ∧ μ1) ∨ Sμ(b) = (uM (0.3) ∧ μ1) ∨ Sμ(d).

Therefore we have: aP b =⇒ Sμ(a) > Sμ(b),
=⇒ (uM (0.7) ∧ μ1) ∨ Sμ(a) ≥ (uM (0.7) ∧ μ1) ∨ Sμ(b),
=⇒ (uM (0.3) ∧ μ1) ∨ Sμ(c) ≥ (uM (0.3) ∧ μ1) ∨ Sμ(d),
=⇒ Sμ(c) ≥ Sμ(d),
=⇒ not(dP c). Contradiction with preference dP c.

Let us assume that the scale of evaluation [0, 1] corresponds to the utility func-
tion associated to each subject, i.e., uM (0.3) = 0.3, uM (0.7) = 0.7, uL(0.25) =
0.25, uL(0.6) = 0.6, uS(0.25) = 0.25 and uS(0.6) = 0.6. In this case, the prefer-
ences aP b and dP c, are now representable by a 2-maxitive integral w.r.t. any
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capacity given in Table 2 below. We chose eight capacities compatible with these
preferences (Cap. for short in Table 2) in order to illustrate the fact that the sign
of an interaction index is strongly dependent upon to the chosen capacity.

In this illustration, the interpretation of the interaction between two criteria
is not easy. For instance, w.r.t. the 2-maxitive capacity, the interaction between
Mathematics and Statistics, Iμ

MS , could be strictly positive (Cap. 2, Cap. 7, Cap.
8) or null (Cap. 1, Cap. 3, Cap. 4, Cap. 5, Cap. 6). Thus, from the preferences
given by the DM, it is not obvious whether the subjects Mathematics and Statis-
tics are complementary or independent. This conclusion is still valid concerning
the interaction Iμ

LS between Language and Statistics. Indeed, this interaction
can be strictly positive (see Cap. 2, Cap. 3, Cap. 4, Cap. 6 and Cap. 7), or null
(see Cap. 1 and Cap. 5).

Table 2. A set of eight 2-maxitive capacities compatible with the preferences a P b
and d P c.

Cap. 1 Cap. 2 Cap. 3 Cap. 4 Cap. 5 Cap. 6 Cap. 7 Cap. 8

μM 0 0 0.3 0.5 0.3 0 0 0

μL 0 0 0 0 0 0 0 0

μS 0.5 0.4 0.5 0.5 0.5 0.5 0.49 0.49

μML 1 1 0.6 0.6 1 0.6 0.6 1

μMS 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

μLS 0.5 0.5 1 1 0.5 1 1 0.49

Sµ(a) 0.5 0.4 0.5 0.5 0.5 0.5 0.49 0.49

Sµ(b) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Sµ(c) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Sµ(d) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Iµ
ML 1 1 0.6 0.6 1 0.6 0.6 1

Iµ
MS 0 0.5 0 0 0 0 0.5 0.5

Iµ
LS 0 0.5 1 1 0 1 1 0

Depending on the numerical representation μ, the interaction index can be
null or strictly positive, this led to the definition of the notion of necessary and
possible interaction, as introduced in [13,15] for the Choquet integral model.

4 Necessary and Possible Interaction

In the sequel, we will suppose that the DM is able to compare a number of
alternatives in terms of strict preference (P ) or indifference (I). The idea is to
ask to the DM its preferences by comparing some elements of X. We then obtain
the binary relations P and I defined as follows.

Definition 3. An ordinal preference information {P, I} on X is given by:



Necessary and Possible Interaction in 2-Maxitive Sugeno Integral Model 329

P = {(x, y) ∈ X × X: DM strictly prefers x to y},
I = {(x, y) ∈ X × X : DM is indifferent between x and y}.
We say that {P, I} is representable by a 2-maxitive Sugeno integral model,

if there exists a 2-maxitive capacity μ such that: for all x, y ∈ X,

(x, y) ∈ P =⇒ Sμ(u(x)) > Sμ(u(y))
(x, y) ∈ I =⇒ Sμ(u(x)) = Sμ(u(y)).

The set of all 2-maxitive capacities used to represent the preference informa-
tion at hand will be denoted S2-max(P, I). When there is no ambiguity on the
underlying preference information, we will simply write S2-max.

The following definition of necessary and possible interactions will be central
in the rest of this text.

Definition 4. Let i, j ∈ N be two distinct criteria, We say that:

1. there exists a possible complementarity (resp. independence) between i and j
if there exists a capacity μ ∈ S2-max such that Iμ

ij > 0 (resp. Iμ
ij = 0);

2. there exists a necessary complementarity (resp. independence) between i and
j if Iμ

ij > 0 (resp. Iμ
ij = 0) for all capacity μ ∈ S2-max.

Remark 6. Let i, j ∈ N be two distinct criteria.

• If there exists a necessary complementarity (resp. independence) between
i and j, then there exists a possible complementary (resp. independence)
between i and j.

• If there is no necessary complementarity (resp. independence) between i and
j, then there exists a possible independence (resp. synergy) between i and j.

5 Necessary and Possible Interaction with Binary
Alternatives

5.1 Framework

We assume that the DM is able to identify on each criterion i ∈ N two reference
levels 1i and 0i:

• the level 0i in Li is considered as a neutral level and we set ui(0i) = 0;
• the level 1i in Li is considered as a good level and we set ui(1i) = 1.

For a subset S ⊆ N we define the alternative aS = (1S ; 0−S) such that ai = 1i

if i ∈ S and ai = 0i otherwise. Our work is based on the set B that we can find
in [16] and is defined as follows.

Definition 5. The set of binary alternatives is defined by
B = {0N , (1i, 0N−i), (1ij , 0N−ij) : i, j ∈ N, i = j}
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where

• 0N = (1∅, 0N ) =: a0 is an alternative considered neutral on all criteria.
• (1i, 0N−i) =: ai is an alternative considered satisfactory on criterion i and

neutral on the other criteria.
• (1ij , 0N−ij) =: aij is an alternative considered satisfactory on criteria i and

j and neutral on the other criteria.

Remark 7. For any 2-maxitive capacity μ, we have:

Sμ(u(a0)) = 0; Sμ(u(ai)) = μi; Sμ(u(aij)) = μij .

We add to this ordinal information a relation M modeling the relation of
monotonicity between binary alternatives, and allowing us to ensure the satis-
faction of the monotonicity conditions μi ≥ 0 and μij ≥ μi for a capacity μ. For
(x, y) ∈ {(ai, a0) : i ∈ N} ∪ {(aij , ai) : i, j ∈ N, i = j}, xMy if not (x(P ∪ I)y).

5.2 Results

The following proposition gives a necessary and sufficient condition for an ordinal
preference information on B containing no indifference to be representable by a
2-maxitive integral model.

Proposition 2. Let {P, I} be an ordinal preference information on B such that
I = ∅. Then {P, I} is representable by a 2-maxitive Sugeno integral if and only
if the binary relation P ∪ M contains no strict cycle.

Proof. Necessity. Suppose that the ordinal preference information {P, I} on
B is representable by a Sugeno integral. So there exists a capacity μ ∈ S2-max

such that {P, I} is representable by Sμ.
If P ∪M contains a strict cycle, then there exists x0, x1, . . . , xr on B such that

x0 (P ∪ M)x1 (P ∪ M) . . . (P ∪ M)xr (P ∪ M)x0 and there exists two elements
xi, xi+1 ∈ {x0, x1, . . . , xr} such that xi P xi+1. Since {P, I} is representable by
Sμ, therefore Sμ(u(x0)) ≥ . . . ≥ Sμ(u(xi)) > Sμ(u(xi+1)) ≥ . . . ≥ Sμ(u(x0)),
then Sμ(u(x0)) > Sμ(u(x0)), contradiction.

Sufficiency. Assume that (P ∪ M) contains no strict cycle. The proof of suffi-
ciency consists to extend the relation P to a total order on B. This latter can
be viewed as a partition of B elaborated by computing a topological sorting on
(P ∪ M) detailed in Section 5.2. of [16].

Then there exists {B0,B1, . . . ,Bm} a partition of B, builds by using a suitable
topological sorting on (P ∪ M) [8].

We construct a partition {B0,B1, . . . ,Bm} as follows:

B0 = {x ∈ B : ∀y ∈ B,not[x(P ∪ M)y]},
B1 = {x ∈ B \ B0 : ∀y ∈ B \ B0,not[x(P ∪ M)y]},
Bi = {x ∈ B \ (B0 ∪ . . . ∪ Bi−1) : ∀y ∈ B \ (B0 ∪ . . . ∪ Bi−1),not[x(P ∪ M)y]}, for
all i = 1, 2, . . . ,m.
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Let us define the mapping φ : B −→ P(N), f : P(N) −→ R, μ : 2N −→ [0, 1]
as follows: φ(aS) = S for all S ⊆ N, f(φ(x)) = � for all � ∈ {0, 1, . . . ,m},
∀x ∈ B�,

μ∅ = 0, μi =
fi

α
, μij =

fij

α
, μ(S) =

∨

i,j∈S

μij , ∀i, j ∈ N, ∀S ⊆ N , where fi =

f(φ(ai)), fij = f(φ(aij)) and α =
∨

i,j∈N

μij

The capacity μ, defined like this is 2-maxitive by construction and the ordinal
information {P, I} is then representable by a 2-maxitive Sugeno integral model
Sμ. 
�
Given the ordinal preference information {P, I} on B, under the previous con-
ditions, the following proposition shows that, it is always possible to choose in
S2-max(P, I), a capacity allowing all the interaction indices strictly positive. This
result shows that positive synergy interaction is always possible for all pairs of
criteria in a 2-maxitive Sugeno integral model if the ordinal information does
not contain indifference. This condition is the same as that obtained in the case
of the 2-additive Choquet integral [15].

Proposition 3. Let {P, I} be an ordinal preference information on B such that
I = ∅. Suppose that this information can be represented by the 2-maxitive Sugeno
integral model. Then there exists a possible positive synergy between all pairs of
criteria.

Proof. The partition {B0, . . . ,Bm} of B and the capacity μ are built as in the
proof of Proposition 2: φ(aS) = S for all S ⊆ N,

Let be i, j ∈ N , there exist p, q, s ∈ {1, . . . , m} such that aij ∈ Bp, ai ∈
Bq, aj ∈ Bs with p > q > 0 and p > s > 0

The capacity μ, defined like this is 2-maxitive by construction and in Propo-
sition 2 we have proved that Sμ represent {P, I}.

Moreover we have fij = p, fi = q, fj = s with p > q and p > s, therefore
p > q ∨ s, i.e., μij > μi ∨ μj , then Iμ

ij = μij > 0. Hence, we proved that, if
I = ∅ then there exists a capacity μ such that i, j ∈ N , Iμ

ij > 0, i.e., there exists
a possible positive synergy between pair of criteria {i, j}. Hence, there is no
necessary independence between criteria i and j. 
�
The following example illustrates the two previous results in this section.

Example 1. N = {1, 2, 3}, P = {(a23, a1), (a12, a23)}.
The ordinal preference information {P, I} contains no indifference and the

binary relation (P ∪ M) contains no strict cycle, so {P, I} is representable by
a 2-maxitive Sugeno integral model. A suitable topological sorting on (P ∪ M)
is given by: B0 = {a0}; B1 = {a1, a2, a3}; B2 = {a13, a23}; B3 = {a12}. The
preference information {P, I} is representable by the capacity μ given by Table 3.
We can see that Iμ

ij > 0, ∀i, j ∈ N .:
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Table 3. A capacity μ and the corresponding interaction indices.

S ∅ {1} {2} {3} {1, 3} {2, 3} {1, 2} {1, 2, 3}
μ(S) 0 1/3 1/3 1/3 2/3 2/3 1 1

IS
µ(S) − − − − 2/3 2/3 1 −

6 A MILP Testing Necessary Interactions

In this section, we relax the hypothesis that we only ask a preference information
on binary alternatives since considering only binary alternatives is restrictive.
Given two criteria i and j, we elaborate a MILP to test in two steps if a preference
information on the set of alternatives is representable by a 2-maxitive Sugeno
integral model. Then, in the third step, we test the existence of a necessary null
or positive interaction between i and j. In the next subsection, we show how to
linearize the min and max functions so as to obtain a MILP.

6.1 Linearization of min and max Functions

Given n real numbers x1, x2, · · · , xn, we have:

• m = min(x1, x2, · · · , xn) ⇐⇒ m ≤ xi; m ≥ xi − Aδi; δi ∈ {0, 1} ∀i =
1, 2, · · · , n; δ1 + δ2 + · · · + δn = n − 1 and A is a “big” positive constant
arbitrarily chosen.

• M = max(x1, x2, · · · , xn) ⇐⇒ M ≥ xi; M ≤ xi + Bδi; δi ∈ {0, 1}
∀i = 1, 2, · · · , n; δ1 + δ2 + · · · + δn = n − 1 and B is a “big” positive constant
arbitrarily chosen.
This transformation of the min and max functions into linear constraints
allows us to transform the following program into a MILP.

6.2 Algorithm

Step 1. The following MILP (MIPL1) models each preference of {P, I} by
introducing two nonnegative slack variables α+

xy and α−
xy in the corresponding

constraints (Eqs. (11) and (12)). Equation (13) (resp. (14) ) ensures the normal-
ization (resp. monotonicity) of capacity μ. Equation (15) reflects 2-maxitivity
condition. The objective function Z1 minimizes all the nonnegative variables
introduced in (11) and (12).
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Minimize Z1 =
∑

(x,y)∈P∪I

(α+
xy + α−

xy) (MILP1)

Subject to
Sμ(u(x)) − Sμ(u(y)) + α+

xy − α−
xy ≥ ε ∀x, y ∈ X such that x P y (11)

Sμ(u(x)) − Sμ(u(y)) + α+
xy − α−

xy = 0 ∀x, y ∈ X such that x I y (12)

α+
xy ≥ 0, α−

xy ≥ 0 ∀x, y ∈ X such that x(P ∪ I)y
ε ≥ 0
μ(N) = 1 (13)
μi ≥ 0, μij ≥ μi, μij ≥ μj , for all i, j ∈ N. (14)

μ(S) =
∨

i,j∈S

μij∀S ⊆ N, |S| ≥ 3 (15)

The MILP (MIPL1) is always feasible due to the introduction of the non-
negative variables α+

xy and α−
xy. There are two possible cases:

1. If the optimal solution of (MIPL1) is Z∗
1 = 0, then we can conclude that,

depending on the sign of the variable ε, the preference information {P, I}
may be representable by a 2-maxitive Sugeno integral model. The next step
of the procedure, Step 2 hereafter, will confirm or not this possibility.

2. If the optimal solution of (MIPL1) is Z∗
1 > 0, then there is no 2-maxitive

Sugeno integral model compatible with {P, I}.

Step 2. Here, the MILP (MIPL2) ensures the existence of a 2-maxitive
Sugeno integral model compatible with {P, I}, when the optimal solution of
(MIPL1) is Z∗

1 = 0. Compared to the previous MILP, in this formulation, we
only removed the nonnegative variables α+

xy and α−
xy (or put them equal to zero)

and change the objective function by maximizing the value of the variable ε, in
order to satisfy the strict preference relation.

Maximize Z2 = ε (MILP2)
Subject to
Sμ(u(x)) − Sμ(u(y)) ≥ ε ∀x, y ∈ X such that x P y (16)
Sμ(u(x)) − Sμ(u(y)) = 0 ∀x, y ∈ X such that x I y (17)
ε ≥ 0
μ(N) = 1 (18)
μi ≥ 0, μij ≥ μi, μij ≥ μj for all i, j ∈ N. (19)

μ(S) =
∨

i,j∈S

μij ∀S � N, |S| ≥ 3 (20)

Notice that (MIPL2) is solved only if Z∗
1 = 0. Hence, the linear program

(MIPL2) is always feasible and it does not have an unbounded solution (it is
not restrictive to suppose that Sμ(u(x)) ∈ [0, 1]; ∀x ∈ X). Hence, we have one
of the following two cases:
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1. If (MIPL2) is feasible with optimal solution Z∗
2 = 0, then there is no 2-

maxitive Sugeno integral model compatible with {P, I}.
2. If the optimal solution of is (MIPL2) is Z∗

2 > 0, then ordinal information
{P, I} is representable by a 2-maxitive Sugeno integral model.

Step 3. At this step, we suppose that the preference information {P, I} is
representable by a 2-maxitive Sugeno integral model, i.e., Z∗

2 > 0. In order
to know if the interaction between i and j is necessarily null (resp. positive)
w.r.t. the provided preference information. At (MILP2), we add the contraint
Iμ
ij > 0 (resp. Iμ

ij = 0) and we obtain the MILP denoted by MIPLij
NN (resp.

MIPLij
NP ). After a resolution of the MILP, we have one of the following three

possible conclusions:

1. If MIPLij
NN (resp. MIPLij

NP ) is not feasible, then there is a necessary
positive (resp. null) interaction between i and j. Indeed, as the program
(MIPL2) is feasible with an optimal solution, the contradiction about the
representation of {P, I} only comes from the introduction of the constraint
Iμ
ij > 0 (resp. Iμ

ij = 0).
2. If MIPLij

NN (resp. MIPLij
NP ) is feasible and the optimal solution Z∗

3 = 0,
then the contraint Sμ(u(x)) − Sμ(u(y)) ≥ ε ∀x, y ∈ X such that x P y
is satisfied with ε = 0, i.e., it is not possible to model strict preference by
adding the constraint Iμ

ij > 0 (resp. Iμ
ij = 0) in MIPLij

NN (resp. MIPLij
NP ).

Therefore, we can conclude that there is a necessary positive (resp. null)
interaction between i and j.

3. If MIPLij
NN (resp. MIPLij

NP ) is feasible and the optimal solution Z∗
3 > 0,

then there is no necessary null (resp. positive) interaction between i and j.

6.3 Example

We consider the preferences given by the DM in the classic example given by
Table 1. We proved in Sect. 3 that these preferences are representable by a 2-
maxitive Sugeno integral. The following MIPLNN

MS corresponding to the test of
the existence of a necessary null interaction between the Mathematics (1) and
Statistics (3):

Maximize Z3 = ε

Inputs of example
a1 = 0.3; a2 = 0.25; a3 = 0.6; b1 = 0.3; b2 = 0.6; b3 = 0.25; c1 = 0.7;
c2 = 0.25; c3 = 0.6; d1 = 0.7; d2 = 0.6; d3 = 0.25;
Sμ(a) ≥ Sμ(b) + ε; Sμ(d) ≥ Sμ(c) + ε; ε ≥ 0.1

Constraints related of linearization of Sμ(x) = max(αx1, αx2,
αx3, αx12, αx13, αx23) with the introduction of binary variables
δx
1 , δx

2 , δx
3 , δx

12, δ
x
13, δ

x
23, where x ∈ {a, b, c, d}.

Sμ(x) ≥ αx1; Sμ(x) ≥ αx2; Sμ(x) ≥ αx3; Sμ(x) ≥ αx12;Sμ(x) ≥ αx13;
Sμ(x) ≥ αx23; Sμ(x) ≤ αx1 + 500δx

1 ; Sμ(x) ≤ αx2 + 500δx
2 ;
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Sμ(x) ≤ αx3 + 500δx
3 ; Sμ(x) ≤ αx12 + 500δx

12; Sμ(x) ≤ αx13 + 500δx
13; Sμ(x) ≤

αx23 + 500δx
23; δx

1 + δx
2 + δx

3 + δx
12 + δx

13 + δx
23 = 5; δx

1 , δx
2 , δx

3 , δx
12, δ

x
13, δ

x
23 ∈ {0, 1}.

Constraints related of linearization of αxi = min(xi, μi) with the
introduction of binary variables δx

i1, δ
x
i2, where x ∈ {a, b, c, d} and i ∈

{1, 2, 3} .
αxi ≤ xi; αxi ≤ μi; αxi ≥ xi − 500δx

i1; αxi ≥ μi − 500δx
i2; δx

i1 + δx
i2 = 1;

δx
i1, δ

x
i2 ∈ {0, 1}.

Constraints related of linearization of αxij = min(xi, xj , μij) with the
introduction of binary variables δx

ij1, δ
x
ij2, δ

x
ij3, where x ∈ {a, b, c, d} and

i, j ∈ {1, 2, 3}, i = j.
αxij ≤ xi; αxij ≤ xj ; αxij ≤ μij ; αxij ≥ xi − 500δx

ij1;αxij ≥ xj − 500δx
ij2;

αxij ≥ μij − 500δx
ij3; δx

ij1 + δx
ij2 + δx

ij3 = 2; δx
ij1, δ

x
ij2, δ

x
ij3 ∈ {0, 1}.

2-maxitivity constraints
μ12 ≥ μ1;μ12 ≥ μ2;μ13 ≥ μ1;μ13 ≥ μ3;μ23 ≥ μ2;μ23 ≥ μ3; μ123 =
max(μ12, μ13, μ23).

Contraint of normalization μ123 = 1.

Constraints related of linearization of μ123 = max(μ12, μ13, μ23) with
the introduction of binary variables δ1, δ2, δ3.
μ123 ≥ μ12; μ123 ≥ μ13; μ123 ≥ μ23;μ123 ≤ μ12 + 500δ1; μ123 ≤ μ13 +
500δ2;μ123 ≤ μ23 + 500δ3; δ1 + δ2 + δ3 = 2; δ1, δ2, δ3 ∈ {0, 1}.

Constraints related of linearization of Iμ
13 > 0

μ13 ≥ μ1 + ε; μ13 ≥ μ3 + ε; ε ≥ 0.1.
The results obtained by solving MIPLMS

NN are given in Table 4. We can con-
clude that the interaction between Mathematics and Statistics is not necessarily
null, because the optimal solution of the program MIPLMS

NN is Z∗
3 = 0.1 > 0.

Besides, we have Sμ(a) = 0.4, Sμ(b) = 0.3, Sμ(c) = 0.5 and Sμ(d) = 0.6.

Table 4. Results of MIPLMS
NN testing necessary null interaction between Mathematics

and Statistics

Z3 = ε 1 2 3 {1, 2} {1, 3} {2, 3} {1, 2, 3}
Optimal solution Z∗

3 0.1 – – – – – –

Capacity μ − 0 0 0.4 0.6 0.5 1 1

Interaction index Iµ
ij – – – – 0.6 0.5 1 –

7 Conclusion

This article proposes and studies the notion of interaction between two criteria
in a 2-maxitive Sugeno integral model. We make a restriction in the case where
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the DM gives preference information on a set of finite number of alternatives.
The 2-maxitive capacity that is elicited in such a setting is not unique. The inter-
pretation of the interaction effects between two criteria requires some caution.
Indeed, we have give some examples in which the sign of the interaction index
depends upon the arbitrary choice of a capacity within the set of all 2-maxitive
capacities compatible with the preference information. Only necessary interac-
tions are robust since their sign and, hence, interpretation, does not vary within
the set of all representing capacities.

Within the framework of binary alternatives, our first result gives a neces-
sary and sufficient condition for an ordinal preference information containing
no indifference to be representable by a 2-maxitive Sugeno integral model. This
result is similar to that obtained in our paper on the general Choquet integral
model (see Proposition 1 on [13]).

Under the conditions of our first result, in the framework of binary alterna-
tives, if the ordinal preference information contains no indifference, our second
result shows that it is always possible to represent it by a 2-maxitive Sugeno
integral model which all interaction indices between two criteria are strictly pos-
itive. This result is similar to that obtained in paper on the general Choquet
integral model (see Proposition 2 on [13]).

Outside the framework of binary alternatives, using the linearization of the
min and max functions, we propose a MILP allowing to test whether the inter-
pretation of the interaction indices is ambivalent or not.

The subject of this paper offer several avenues for future research.
In fact, this paper proposes an interaction index for the 2-maxitive Sugeno

integral, it would be interesting to propose others for the k-maxitive Sugeno
integral, with k ≥ 3.

The notion of interaction would deserve further study. In particular, it would
be interesting to have a definition that would not depend on a particular aggre-
gation technique or on a particular index.

It would finally be interesting to study the case of bipolar scales. We are
already investigating some of these research avenues.
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Abstract. Any community in which membership is voluntary may even-
tually break apart, or fork. For example, forks may occur in political par-
ties, business partnerships, social groups, and cryptocurrencies. Forking
may be the product of informal social processes or the organized action
of an aggrieved minority or an oppressive majority. The aim of this paper
is to provide a social choice framework in which agents can report prefer-
ences not only over a set of alternatives, but also over the possible forks
that may occur in the face of disagreement. We study the resulting social
choice setting, concentrating on stability issues, preference elicitation and
strategy-proofness.

Keywords: Forking · Blockchain · Group activity selection

1 Introduction

Collective decisions can produce conflict when no outcome is acceptable to all
agents involved. Tensions may arise while options are being considered and dis-
cussed, but they may also appear or worsen once a decision has been made, par-
ticularly if preference strengths have not been accounted for or if some agents
are disenfranchised entirely.

In many situations there is an implicit recourse for the frustrated and the
downtrodden—they can leave. An agent, or a set of agents, may leave a com-
munity if they are sufficiently dissatisfied with the outcome of a decision, or a
bundle of decisions. When group cohesiveness is valued, it is sensible for deci-
sion makers to consider how each potential decision might effect camaraderie.
This is commonly done informally through discussion when group sizes are small
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enough to deliberate, and through polling when communities are large. Here we
propose a formal mechanism to take such considerations into account.

In typical voting scenarios, agents express preferences over alternatives and
a single alternative is elected, which must then be universally accepted as the
outcome by all agents in the community. In our setting, agents do not have to
accept a particular alternative, and can fork instead. Consequently, the set of
possible outcomes for every decision is not just the set of alternatives; rather,
an outcome is a partition of the agents into one or more coalitions, with each
coalition selecting an alternative that appeals to its members.

By designing voting rules that account for forking preferences, we empower
aggrieved minorities to leverage the threat of leaving in order to pressure the
majority into concessions. Importantly, we enable minorities to coordinate with
minimal overhead, by eliciting additional information during the voting process.
In our model, voters individually indicate conditions under which they prefer
to leave, and the mechanism then identifies a group that can benefit from fork-
ing, thereby eliminating the need for campaigning or coordination among the
disgruntled minority.

The value of stability is inherent in digital and analogue communities alike.
In most current blockchain protocols (i.e., proof-of-work and proof-of-stake) a
fork can only be initiated by a majority or a powerful minority. When a fork
does occur, enacted by only a subset of the agents, all agents must determine
what “side” of the fork they want to be on.1 In this sense, the forks we study are
also relevant to version control systems such as Git, where anyone can initiate a
fork. In our setting this is an edge case where a voter is willing to split from the
group by themselves and others may follow, but we also allow groups of voters
to fork together when none of them may be willing to do so on their own.

Since forks can be tumultuous, we wish to design democratic systems that
enable communities to efficiently find states that are stable, in the sense that
no further forks will occur. To this end, we put forward a formal model that
approaches this challenge from the perspective of computational social choice.

Related Work. Our paper is positioned at the interface of the research on
blockchain technology and computational social choice.

Blockchain. A blockchain is a replicated data structure designed to guarantee
the integrity of data (e.g., monetary transactions in cryptocurrency applications
such as Bitcoin [11]) and computations on them, combined with consensus proto-
cols, which allow peers to agree on their content (e.g., who has been paid) and to
ensure that no double spending of currency has occurred (see [12,17] for recent
overviews). By now, blockchain is an established technology, and cryptocurrency
applications are attracting considerable attention [13,14].

1 In blockchain forks, currency owners may be able to run both protocols, but min-
ers must choose how to allocate their computing resources, and programmers must
choose how to allocate their personal time.
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When the community of a specific blockchain protocol—such as the Bitcoin
protocol—is not satisfied with it, it may break into several subcommunities.
The community typically consists of developers, who build the software, miners,
who operate the protocol, and users, e.g., account holders. When some of the
developers of the current protocol decide to modify it, they create an alternative
branch that obeys their new protocol, and if it attracts a sufficient number of
miners and users, the result is a so-called hard fork. Several such hard forks have
been documented, including among the most influential cryptocurrencies. Bit-
coin (cf. [18]), despite its relatively short history, has already undergone seven
hard forks. At the moment, a key feature of these hard forks is that they happen
through an informal social process, and, crucially, in ways that are completely
exogenous to the protocol underpinning the blockchain. In blockchain terminol-
ogy, they are said to happen ‘off-chain’. This points to a lack of governance in
most current blockchain systems, for better or worse.

Against this backdrop there have been attempts at incorporating protocol
amendment procedures within blockchain protocols themselves (so-called ‘on-
chain’ governance, cf. [1]); more generally, the issue of governance is attract-
ing increasing attention [2,15]. We are not aware, however, of research that
approaches forking as a social choice problem, and aims for an algorithmic solu-
tion. We lay the foundations for this approach here.

Computational Social Choice. Social choice theory studies preference aggre-
gation methods for various settings [3]. Our social choice setting is closely related
to assignment problems, as the result of a fork is that each agent is “assigned”
to a community. In this context, we mention works on judgement aggrega-
tion [10], [3, ch. 17] (which, formally, can capture assignments as well) and on
partition aggregation [4]. To the best of our knowledge, the specific social choice
setting we consider is novel. In a broader context, we mention work on stabil-
ity in coalition formation games [5], [3, ch. 15] as well as the recent paper on
deliberative majorities [9], which studies coalition formation in a general voting
setting. Our model is also related to the group activity selection problem with
(increasing) ordinal preferences (o-GASP) [6] (see also [7,8]), where our notion
of stability corresponds to core stability in o-GASP. However, due to our focus
on strategy-proofness, and the fact that our setting does not admit a no-choice
option (void activity in o-GASP), most of the existing results for o-GASP are not
directly relevant to our study, so we chose not to use the o-GASP formalism.

Version Control. Forking is not limited to the cryptocurrency setting; in par-
ticular, forking is relevant to projects of open-source code, in which a commu-
nity jointly writes a piece of code and may experience different opinions regard-
ing the code that is being written. Indeed, there is some work on using social
choice mechanisms (and, in particular liquid democracy) for revision control sys-
tems [16]. Others have been studying the phenomena of forking in open source
projects; see, e.g., the work of Zhou et al. [19].
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Outline and Contributions. We describe a formal model of social choice for
community forking, in which agents report their preferences over alternatives
relative to possible forks. Throughout the paper, we focus on the setting where
the number of available alternatives is two; towards the end of the paper, we dis-
cuss the challenges in extending our approach to three or more alternatives. The
paper is structured as follows. Section 2 describes the formal model. Section 3
examines whether stable solutions always exist and whether they can be found
efficiently in terms of computation and elicitation. In Sect. 4, we consider strate-
gic agent behavior. In Sect. 5 we discuss the extension of our framework to more
than two alternatives. We conclude in Sect. 6. The main contributions of our
paper are as follows:

– We devise a polynomial time algorithm (Algorithm 1) for our setting that
finds a stable assignment for a very broad and natural domain restriction.

– We propose a modification of Algorithm 1 (Algorithm 2) that allows for effi-
cient iterative preference elicitation.

– We prove an impossibility result (Theorem 3), showing that there is no algo-
rithm that is strategyproof for profiles with more than one stable assignment.

– We establish that Algorithm 1 is strategyproof for profiles that admit a unique
stable solution; the impossibility result mentioned above then implies that it
is optimal in that sense.

2 Formal Model

Setting. We have a set of agents V = {v1, . . . , vn}. This community will vote
on a set of two alternatives {A,B} (say, cryptocurrency protocols or locations).
However, unlike in most voting scenarios, the agents are not all bound to accept
the same winning alternative. Agents have the ability to fork, or forge a new
community centered around the “losing” alternative. Ultimately, either all of the
agents will remain in a single community or they will split into two communities
that have accepted opposite alternatives.

Agent Preferences. Agents care about what alternative their community
adopts and how many people are in their community, but not the identities
of the other agents in their community. We can represent agent preferences as
total orders over the possible tuples (S, j), where S ∈ {A,B} is the alternative
to which they are assigned and j ∈ [1, n] is the number of agents in their commu-
nity (including themselves and j − 1 other agents). We denote the set of all such
tuples by S The preference relation (A, j) �i (B, k) means that agent vi would
prefer to be in a community of size j that accepts alternative A rather than a
community of size k that accepts alternative B. Agent preferences are monotonic
in the size of their community, so given a fixed alternative, they would always
prefer to be in a larger community. Formally, for each agent vi ∈ V we have
(S, j) �i (S, k) for all 1 ≤ k < j ≤ n and S ∈ {A,B}. We denote the set of
all monotonic total orders over S by T . For S ∈ {A,B}, let V ∗

S denote the set
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of agents who prefer (S, n) to (S′, n). We will overload notation and use vi to
represent both an agent vi ∈ V and their preference ordering vi ∈ T . In a similar
fashion, V is the set of agents and also the preference profile, or collection of the
voters’ total orders, V ∈ T n. We refer to the pair (V, {A,B}), with V ∈ T n, as
a forking problem.

Example 1. Suppose we have n = 3 agents, V = {v1, v2, v3}. Consider the pref-
erences of a single agent vi. By monotonicity, (A, 3) �i (A, 2) �i (A, 1) and
(B, 3) �i (B, 2) �i (B, 1) must hold for all agents vi ∈ V . However, these two
orders may be interleaved differently for different agents.

Assignments. We refer to the community that accepts alternative A (resp., B)
as community A (resp., B). An assignment f : V → {A,B} assigns agents to
one of the two communities, and we denote by f(vi) ∈ {A,B} the community
into which agent vi is placed. The set F is the set of all 2n possible assignments,
or partitions, of the agents. Voters’ preferences over S induce preferences over
assignments in F : a voter vi prefers an assignment f to an assignment g if
(f(vi), |f−1(f(vi)|) �i (g(vi), |g−1(g(vi)|). Given a forking problem (V, {A,B})
a voting rule R : T n → F selects an assignment R(V ) = f ∈ F . We let a =
|f−1(A)| be the size of community A, and similarly for b = |f−1(B)|.

3 Stability

Our primary goal is to construct stable assignments. An assignment is stable if
no subset of agents has an incentive to move simultaneously to a new community.

Definition 1 (k-Stability). An assignment f : V → {A,B} is stable if there
is no assignment f ′ : V → {A,B} such that each voter vi with f ′(vi) �= f(vi)
prefers f ′ over f .

A voting rule R is stable if it returns a stable assignment whenever one exists.

Example 2. Consider two agents, V = {v1, v2}, where v1 : (A, 2) �1 (A, 1) �1

(B, 2) �1 (B, 1) and v2 : (B, 2) �2 (B, 1) �2 (A, 2) �2 (A, 1). Each agent would
prefer to be alone at their preferred alternative to being together with the other
agent at their less preferred alternative. Thus, the only stable assignment f has
f(v1) = A and f(v2) = B.

3.1 Finding Stable Solutions

When preferences are monotonic, there must be at least one stable assignment,
and it can be computed in polynomial time.

Theorem 1. There is a polynomial time assignment rule (Algorithm 1) that
finds a stable assignment for any monotonic profile.
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Algorithm 1. General Stable Assignment Rule
VA = V , VB = ∅, a ← |VA|, b ← |VB |
while true do

k ← max{j : 0 ≤ j ≤ a, |{vi ∈ V : (B, b + j) �i (A, a)}| ≥ j}
if k = 0 then

return {VA, VB}
else

Let X = {vi ∈ V : (B, b + k) �i (A, a)}
VB ← VB ∪ X, VA ← VA \ X
a ← |VA|, b ← |VB |

Algorithm 2.General Stable Assignment Rule with Iterative Elicitation
VA = V , VB = ∅, a ← |VA|, b ← |VB |
while true do

Ask each agent vi in VA for the smallest value j ∈ [0, a] such that (B, b+j) �i (A, a)
k ← min{j : j ∈ [0, a], |{vi ∈ V : (B, b + j) �i (A, a)}| ≥ j}
if k = 0 then

return {VA, VB}
else

Let X = {vi ∈ V : (B, b + k) �i (A, a)}
VB ← VB ∪ X, VA ← VA \ X
a ← |VA|, b ← |VB |

Proof. Consider Algorithm 1. Let a = |VA| and b = |VB |. Initially, we place all
agents in VA, so a = n and b = 0. If this assignment is not stable, then there
exists a subset X of some k > 0 agents that all prefer (B, k) to (A,n). We move
all these agents to VB . Monotonicity implies that moving additional agents from
VA to VB will never cause agents in VB to want to move back to VA; thus, as long
as we are not in a stable state, there must be a subset of agents at VA who would
prefer to move together to VB . As long as such a set of agents exists, we continue
to move them over together. This procedure halts in at most n steps, and when
it halts, the result must be stable, as there is no subset of agents who will move
together. A naive implementation of the algorithm loops at most n times, and each
computation of the set X of agents to move takes O(n2) time. ��

3.2 Elicitation

Algorithm 1 does not use all of the information in agents’ preferences. An itera-
tive version of the algorithm can ask only for the information it needs. Instead of
assuming that the total orders of all agents are given explicitly in the input, we
place all of the agents at A and at each iteration we ask the a remaining agents
at A for the minimum value j such that if j agents could be moved to B, they
would now prefer the new community (B, b + j) over their current community
(A, a). Once an agent has been moved to B there is no need to ask them for any
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more information. In Algorithm 2 we repeatedly query agents about the con-
ditions under which they are willing to leave their current community. Agents
indicate their preferences with a single integer that says how many agents would
have to move with them for them to prefer leaving over the status quo.

Ideally, we would like to only have to query each agent a small number of
times. If agents’ preferences are structured, it becomes possible to compute stable
assignments with little information. To capture this intuition, we introduce the
concept of non-critically-interleaving preferences.

Definition 2 (Non-critically-interleaving). A preference is non-critically-
interleaving if it is monotonic and (A, j) � (B,n) � (B,n − j) � (A, j − 1) or
(B, j) � (A,n) � (A,n − j) � (B, j − 1) for some j ∈ [1, n]. A profile is non-
critically-interleaving if it contains only non-critically-interleaving preferences.

When preferences are non-critically-interleaving, we only need to ask each
agent whether they prefer (A,n) or (B,n), and the minimum value of j such
that they would rather be at their preferred alternative in a coalition of size
j than at the other alternative in a coalition of size n. From this information
the relevant part of the preference order of each agent can be inferred, and so
Algorithm 2 will compute a stable assignment.

3.3 Uniqueness

While at least one stable assignment must exist for all monotonic profiles (The-
orem 1), it is not necessarily unique.

Example 3. Let V = {v1, v2, v3, v4} be a set of four agents with preferences that
contain the following prefixes, respectively:

– v1 : (B, 4) �1 (B, 3) �1 (A, 4) �1 (B, 2) �1 (A, 3) �1 · · ·
– v2 : (B, 4) �2 (B, 3) �2 (B, 2) �2 (A, 4) �2 (B, 1) �2 · · ·
– v3 : (A, 4) �3 (A, 3) �3 (A, 2) �3 (B, 4) �3 (A, 1) �3 · · ·
– v4 : (A, 4) �4 (A, 3) �4 (B, 4) �4 (A, 2) �4 (B, 3) �4 · · ·

Regardless of how the remainder of the preference profile is filled, as long as
monotonicity is maintained, there are at least three stable assignments: (1) all
agents at A; (2) all agents at B; or (3) v1 and v2 at B and v3 and v4 at A.

We would like to identify conditions under which a profile admits a unique
stable assignment. One extreme case is when preferences are non-interleaving.

Definition 3 (Non-interleaving). A preference order is non-interleaving if it
is monotonic and either (A, 1) � (B,n) or (B, 1) � (A,n). A profile is non-
interleaving if it contains only non-interleaving preference orders.

The profile in Example 2 is an instance of a non-interleaving profile. If an
agent’s preference is non-interleaving, then their choice of community is inde-
pendent of the other agents: they would rather be alone at their preferred alter-
native than with everyone else at the other alternative. Thus, their preference is
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described by a single bit of information: it suffices to know whether they are in
V ∗
A or in V ∗

B . Non-interleaving preferences can be viewed as a degenerate case of
non-critically-interleaving preferences when j = 1.

Observation 1. When preferences are non-interleaving, there is a unique stable
assignment.

Proof. The only stable assignment assigns to all agents in V ∗
A to A and all agents

in V ∗
B to B. Otherwise, an agent assigned to the opposite community will wish

to move, even if on their own. ��

Non-interleaving preferences can be generalized to domains of preferences
that guarantee unique stable assignments. Informally, we say that an agent is
k-loyal to an alternative S if they prefer to be at S with k other agents to being
at the other alternative in a coalition of size n.

Definition 4 (k-Loyalty). An agent vi ∈ V is k-loyal to alternative S, k ∈ [n],
if vi ∈ V ∗

S and (S, k) �i (S′, n) for S′ �= S.

When all agents are sufficiently loyal to their preferred alternatives, there is
a unique stable assignment.

Proposition 1. Suppose there exist some k1, k2 such that k1 ≤ |V ∗
A|, k2 ≤ |V ∗

B |,
every agent in V ∗

A is k1-loyal, and every agent in V ∗
B is k2-loyal. Then there is

a unique stable assignment.

Proof. By construction, any stable assignment must have all agents in V ∗
A

assigned to A, because otherwise those assigned to B would prefer to move
together to A, forming a coalition of size |V ∗

A| ≥ k1 at A. Symmetrically, any
stable assignment must have all agents in V ∗

B assigned to B, as otherwise those
assigned to A would prefer to move together to B, forming a coalition of size at
least |V ∗

B | ≥ k2 at B. ��

Proposition 1 holds because all agents must necessarily be assigned to
their preferred alternative. We now examine a sub-domain of non-critically-
interleaving preferences in which there is always a unique stable assignment,
but not all agents are necessarily assigned to their preferred alternative.

Proposition 2. Suppose agents’ preferences are non-critically-interleaving. Let

V ′
A = arg max

U⊆V
|{vi ∈ U : (A, |U |) � (B,n)}| ,

V ′
B = arg max

U⊆V
|{vi ∈ U : (B, |U |) � (A,n)}| .

If none of the agents in V ∗
A \ V ′

A are (n − |V ′
B |)-loyal and none of the agents in

V ∗
B \ V ′

B are (n − |V ′
A|)-loyal, then there is a unique stable assignment.
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Proof. Note first that, by monotonicity, the set arg max in the definition of V ′
A

and V ′
B is a singleton, so V ′

A and V ′
B are well-defined. As with Proposition 1,

for any assignment to be stable it must assign all agents in V ′
A to A and those

in V ′
B to B. For the remaining agents, they must necessarily be assigned to

the opposite alternative, because there cannot be enough agents at their most
preferred alternative for them to stay there. ��

The maximal class of profiles for which there is a unique stable solution is
still more general than those we describe above. We can use Algorithm 1 to
characterize the set of profiles that admit a unique stable assignment. Let RA

be the assignment rule given by Algorithm 1, and let RB be the complementary
assignment rule that starts with all agents at B and iteratively moves them to
A in the same manner.

Theorem 2. Algorithm 1 (RA) and the reverse assignment rule (RB) return the
same assignment if and only if the profile admits a unique stable assignment.

Proof. If the stable assignment is unique, then both RA and RB must return this
assignment. We now show that if RA and RB return the same stable assignment,
then it must be the unique stable assignment. Let V 1

A and V 1
B be the communi-

ties in the stable assignment f1 = RA(V ). Let V 2
A and V 2

B be the communities
according to a different stable assignment f2. By monotonicity and the proper-
ties of Algorithm 1 we have V 1

A � V 2
A. Consider the set of agents V 2

A \ V 1
A, and

in particular, the agent(s) in this set that were the first to be moved to B by
RA. At the beginning of the iteration in which they were moved, the number of
agents at A had to be at least |V 2

A| (before moving). This contradicts the claim
that f2 is stable, as there are agents in V 2

A preferring to move together to B. ��

3.4 Cohesiveness

Not all stable assignments may be equally attractive. In real life, forking comes at
a cost, such as the need to replicate infrastructure and to carve out or abandon
intellectual property or goodwill, as well as the social and emotional cost of
separation. The cost of forking within our framework is implicit in the preferences
of the agents. In line with the monotonicity of preferences, it is natural that the
community may want to avoid forks when possible. When it is desirable to avoid
forking, we prefer stable assignments that place all agents at the same alternative
over those that fork. We call these non-forking assignments. A profile is said to
be cohesive if it admits at least one non-forking stable assignment; otherwise,
we say that a profile is forking. The profile in Example 3 is cohesive, although
it also permits a forked stable assignment.

The assignment in Example 2 is stable, but the input profile is forking,
because no stable assignment exists with all agents in one community. For a
profile to be cohesive there must be at least one alternative (w.l.o.g, A) such
that for all j ≤ n, there are fewer than j agents who prefer (B, j) over (A,n).
The following example shows a cohesive profile with no stable forked assign-
ments.
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Example 4. Let V = {v1, v2}, where (A, 2) �1 (B, 2) �1 (A, 1) �1 (B, 1) and
(B, 2) �2 (A, 2) �2 (B, 1) �2 (A, 1). Each agent would prefer to be together
with the other agent at their less preferred alternative rather than alone at their
preferred alternative. This profile is cohesive, and only admits stable assignments
that are non-forking.

4 Strategyproofness

So far we have considered the existence and the possibility of efficiently comput-
ing stable assignments when agents report their preferences truthfully. Another
important question is whether there exist strategyproof stable assignment rules,
i.e., rules that output stable assignments and do not incentivize the agents to
misreport their true preferences.

Definition 5 (Strategyproofness). A rule R is strategyproof over domain
D ⊆ T n if for all profiles V ∈ D and assignments f = R(V ), there is no agent
vi ∈ V that can unilaterally change her preference order to v′

i, creating a new
profile V ′ such that she prefers f ′(vi) over f(vi), where f ′ = R(V ′).

Similarly, a rule is k-strategyproof in our setting if no subset of agents of
size k can simultaneously report false preferences to yield an assignment they
all prefer. Naturally, k-strategyproofness implies (k − 1)-strategyproofness.

Definition 6 (k-Strategyproofness). A rule R is k-strategyproof over
domain D ⊆ T n if for all profiles V ∈ D and assignments f = R(V ), there
is no subset of agents U ⊆ V of size |U | ≤ k that can simultaneously change
their preferences, creating a new profile V ′ such that each agent vi ∈ U prefers
f ′(vi) over f(vi), where f ′ = R(V ′).

For the domain of all monotonic profiles, no strategyproof stable rules exist.
This can be seen from Example 4. In this example there are two stable assign-
ments, one creating (A, 2) and the other creating (B, 2). Suppose the agents
are both assigned to B. If v1 were to change their reported preferences to
(A, 2) �1 (A, 1) �1 (B, 2) �1 (B, 1), then (A, 2) would become the only sta-
ble assignment for the new profile, which v1 clearly prefers over (B, 2). This
profile is symmetric, so if the agents were to be assigned to (A, 2) (by some
tie-breaking mechanism) then v2 has the opportunity to be strategic. In fact,
no strategyproof stable assignment rule can exist for any domain containing a
profile that admits two or more stable assignments.

Theorem 3. No assignment rule can be strategyproof over a domain that
includes a profile that admits more than one stable assignment.

Proof. Suppose profile V permits at least two stable assignments, and our
assignment rule R picks one of them, f1 = R(V ). Let f2 be the closest sta-
ble assignment to f1, in the sense that there is no other assignment f3 such
that |f−1

3 (A)| is between |f−1
1 (A)| and |f−1

2 (A)|, and consequently no |f−1
3 (B)|
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between |f−1
1 (B)| and |f−1

2 (B)| (indeed, f−1(A) + f−1(B) = n for any f). For
brevity, let V 1

A = f−1
1 (A), V 2

A = f−1
2 (A), V 1

B = f−1
1 (B), V 2

B = f−1
2 (B). Assume

that |V 1
A| > |V 2

A| and |V 2
B | > |V 1

B |; later we will see that this assumption is
without loss of generality.

From monotonicity, we know that V 2
A ⊂ V 1

A and V 1
B ⊂ V 2

B . Consider an
agent vi ∈ V 1

A with (B, |V 2
B |) �i (A, |V 1

A|) �i (B, |V 1
B | + 1). At least one such

agent must exist because otherwise f2 could not be stable, as all the agents in
V 1
A ∩ V 2

B would prefer to move together to A rather than stay in (B, |V 2
B |). If vi

commits to B by falsely reporting that they prefer (B, 1) to (A,n), then they
must be assigned to B (as otherwise the assignment would not be stable). By
construction, however, no intermediate stable state can exist between f1 and f2,
so agents will prefer to move from V 1

A to B until it is of size |V 2
B |, which is what

vi preferred. By symmetry, if our rule R had picked assignment f2 instead of f1
then we would have the same result; thus, our assumption that |V 1

A| > |V 2
A| and

|V 2
B | > |V 1

B | is indeed without loss of generality. ��

The above theorem means that the domain consisting of those profiles that
admit a unique stable assignment is the maximal domain for which a stable
assignment rule can be strategyproof. Next, we show that, whenever a profile
admits a unique stable assignment, Algorithm 1 is strategyproof.

Lemma 1. Algorithm 1 is strategyproof over the domain of all profiles that
admit a unique stable assignment.

Proof. Consider a run of Algorithm 1 in which it assigns some agent vi to B
and outputs the assignment f . First, observe that vi cannot misreport their
preferences so that they would end up in a larger community at B that they
prefer. If the agents assigned to A do not move at any iteration, then vi moving
at an earlier to later iteration has no effect on them. And, due to monotonicity,
vi staying at A would not further entice anyone to move to B.

Second, we want to show that agent vi cannot manipulate the outcome so
that it will be assigned to a larger community at A that it prefers. Suppose that
at the beginning of the iteration when vi is moved from A to B, the size of the
community at A is a. The agents who were moved from A to B at an iteration
before the iteration at which vi is moved will be assigned to B regardless of what
vi reports. In general, agents moved to B together at one iteration must end up
at B regardless of the preferences of those moved to B at later iterations and
those who stay at A. As a consequence, vi can never induce an assignment with a
community at A of size greater than a. Since vi was moved at the iteration when
the size of A was a, it must be to a community B that they prefer over (A, a).
Therefore no agent vi ∈ B can deviate profitably from their true preferences.

It remains to show that no agent assigned to A can benefit from strategic
behavior. By symmetry, if there is a unique stable assignment, then if Algo-
rithm 1 starts with all agents at A and moves them in batches to B, or starts at
B and moves them in batches to A, then it must return the same assignment. We
can therefore use the same argument as above for agents assigned to A according
to the algorithm that initializes A and B in the opposite way. ��



352 B. Abramowitz et al.

The result extends to n-strategyproofness, or group-strategyproofness, since,
if we consider any coalition of agents assigned to B by Algorithm 1, and look
at only those who were moved first (in the same iteration as one another, but
before everyone else in the coalition who was moved), then they have no incentive
to misreport their preferences for the same reason as the agent in the proof of
Lemma 1. By combining this with Theorem 3, we arrive at our main result.

Theorem 4. Algorithm 1 is group-strategyproof over the domain of all profiles
that admit a unique stable assignment.

Just how common are profiles that admit strategyproof stable assignment
rules? One specific domain restriction that implies group-strategyproofness of
Algorithm 1 is the domain of non-interleaving profiles (recall that, for this
domain restriction, placing all agents at their preferred alternative is stable).
Non-interleaving preferences are indeed very extreme, in that agents ignore each
other completely. However, if we relax this extreme constraint on preferences
even the slightest bit, we can lose strategyproofness.

Definition 7 (Minimally-interleaving). A preference order is minimally-
interleaving if it is monotonic and (A, 2) � (B,n) � (A, 1) � (B,n − 1) or
(B, 2) � (A,n) � (B, 1) � (A,n − 1). A profile is a minimally-interleaving if it
contains only non-interleaving and minimally-interleaving preferences.

Minimally-interleaving preferences can be interpreted as just barely extend-
ing non-interleaving preferences to allow that agents may be willing to go with
their less preferred alternative if they would otherwise be alone with their more
preferred alternative. Note that the minimally-interleaving domain is still a
severely restricted domain. In particular, it allows each agent to specify only
one of four possible orders. However, it turns out that if we allow just minimal
interleaving, then there is no assignment rule that is both stable and strate-
gyproof.

Observation 2. There is no assignment rule that is both stable and strate-
gyproof for all minimally-interleaving preference profiles.

Proof. Let R be a stable assignment rule and consider the profile from Exam-
ple 4: v1 : (A, 2) �1 (B, 2) �1 (A, 1) �1 (B, 1); v2 : (B, 2) �2 (A, 2) �2 (B, 1) �2

(A, 1). Note that, indeed, this profile is minimally-interleaving. Observe that the
only stable assignments are the two that place both agents in the same commu-
nity. Since there are two stable assignments, Theorem 3 implies that R cannot be
strategyproof for this profile. For illustrative purposes, consider the case in which
v1 votes strategically by reporting v′

1 : (A, 2) �1 (A, 1) �1 (B, 2) �1 (B, 1). The
only stable assignment places both agents at A, creating (A, 2), which v1 prefers
to (B, 2). So if R placed both agents at (B, 2), it cannot be strategyproof. ��

We say that a profile is k-interleaving if it may contain preference orders in
which (S′, n) � . . . � (S, n) � (S′, k), but not in which (S′, n) � . . . � (S, n) �
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(S′, k+1), where S′ �= S. Hence, non-interleaving preferences are equivalent to 0-
interleaving; minimally-interleaving preferences are the same as 1-interleaving;
and n-interleaving is the domain of all monotonic preferences. Naturally, the
set of all k-interleaving preferences encompasses all (k − 1)-interleaving prefer-
ences, so no strategyproof stable assignment rule can exist for k ≥ 1. While
non-interleaving is a sufficient condition for strategyproofness, the next example
demonstrates that it is not a necessary condition.

Example 5. Consider two agents, V = {v1, v2}, where v1 : (A, 2) �1 (A, 1) �1

(B, 2) �1 (B, 1) and v2 : (B, 2) �2 (A, 2) �2 (B, 1) �2 (A, 1). Any stable
assignment must have v1 at A, independent of the preferences of v2. Agent v2
would prefer to be at A with v1 to being alone at B, so the only stable assignment
has both agents at A, and neither agent has an incentive to be strategic.

Notice that our interleaving conditions apply to the preference order of each
agent individually. Example 5 suggests that we should instead consider restric-
tions on the profile as a whole. While we know that the necessary and sufficient
conditions for stable strategyproof assignment rules to exist is that there be a
unique stable assignment, characterizing the profiles for which this occurs is an
interesting challenge.

5 Forking with More Than Two Alternatives

So far, we focused on the case of two alternatives. We conclude the paper with
two observations about the general case: (1) stable assignments are no longer
guaranteed to exist; (2) deciding whether an assignment is stable is NP-complete.

Proposition 3. There exist monotonic profiles with no stable assignment.

Proof. Consider the problem with three agents V = {v1, v2, v3}, three alterna-
tives {A,B,C}, and a following profile:

– v1 : · · · �1 (B, 2) �1 (A, 2) �1 (A, 1) �1 (B, 1) �1 (C, 3) �1 · · ·
– v2 : · · · �2 (C, 2) �2 (B, 2) �2 (B, 1) �2 (C, 1) �2 (A, 3) �2 · · ·
– v3 : · · · �3 (A, 2) �3 (C, 2) �3 (C, 1) �3 (A, 1) �3 (B, 3) �3 · · ·

Assume for contradiction that this profile admits a stable assignment f . As v2
prefers (B, 1) to (A, 3), the assignment f cannot assign v2 to A. By considering
v1 and v3, we conclude that |f−1(s)| < 3 for every S ∈ {A,B,C}. Suppose
f(v1) = A, f(v3) = A. Then we have f(v2) = B because (B, 1) �2 (C, 1). But
in this case, v1 would prefer to move to B since (B, 2) �1 (A, 2). By the same
reasoning |f−1(S)| �= 2 for each S ∈ {A,B,C}. The only remaining option is to
have one voter at each alternative. Let v be the voter at A. If v = v1, then v1
prefers to move to B and if v = v3 then v3 would prefer to move to C. Finally,
if v = v2 then v1 prefers to join v2 at A. ��
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From a complexity-theoretic perspective, it is then natural to ask if there
are efficient algorithms for (a) checking whether a given assignment is stable,
and (b) deciding if a given profile admits a stable assignment. It turns out that,
while the answer to the first question is ‘yes’, the answer to the second question
is likely to be ‘no’.

Proposition 4. We can decide in polynomial time whether a given assignment
for a forking problem is stable.

Proof. Note first that if an assignment f is not stable, then this can be witnessed
by a deviation in which all deviating agents move to the same alternative (say,
A). Indeed, the agents who deviate from f by moving to A would find this move
beneficial even if other agents did not move (in particular, due to monotonicity,
they benefit from other agents not moving away from A). Thus, to decide if
a given assignment f is stable, it suffices to consider deviations that can be
described by a pair (S, nS), where S is an alternative and nS > f−1(S). For each
such pair, we need to check if there are nS − f−1(S) agents who are currently
not assigned to S, but prefer (S, nS) to their current circumstances. ��

Proposition 5. Deciding whether a forking problem admits a stable assignment
is NP-complete.

Proof (Sketch). By Proposition 4, our problem is in NP. For hardness we adapt
the reduction argument of Darmann [6, Theorem 3], establishing NP-hardness
for the core stability problem in o-GASP with increasing preferences. That con-
struction makes use of so-called void activities, which are available in o-GASP,
but not in forking problems. In the profile constructed for [6, Theorem 3], the
occurrence of void activities in each agent’s preference needs to be replaced by
(S∗, 1), where S∗ denotes the top alternative in the agent’s preference. ��

Our hardness reduction produces an instance where the number of alternatives
is linear in the number of voters. The complexity of finding a stable assignment
for a fixed number of alternatives (e.g., m = 3) remains open.

6 Conclusions and Future Work

In the real world, communities sometimes fracture, or fork. This can generally
be seen as a consequence of the decisions the community has made. If agents
associate freely, with the ever-present option of leaving, then we can account
for this possibility within collective decision making procedures. This enables
minorities to threaten a fork in protest against the tyranny of the majority
while giving the majority an opportunity to concede to prevent a fork. Such a
forking process also facilitates the emergence of new communities, as it may be
easier to sprout a community from an existing one rather than to build one from
scratch.

We have shown that, while it may not be difficult to find stable partitions of
a set of agents, constructing strategyproof rules is only possible in restricted
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domains. While the necessary and sufficient conditions for strategyproofness
remain an interesting open question, we have identified a range of circumstances
that are sufficient for strategyproofness. Lastly, we have shown that efficient
preference elicitation is possible and desirable.

The social choice setting we considered is, to the best of our knowledge, novel
and our work has only made the first steps towards its analysis. Several directions
for future research present themselves: (1) first, as mentioned above, settling the
question about the domain restrictions that are necessary and sufficient for the
existence of stable and strategy-proof assignment rules is a priority; (2) second,
natural generalizations of the setting we propose will be worth investigating—
e.g., settings with several alternatives (similarly to how, e.g., large miners can
be present in several forks), or settings in which the identities of the agents
matter (as agents may wish to fork with other specific agents); (3) third, studying
mechanisms for the converse problem, in which several communities could merge
into a new one; and (4) fourth, enabling a majority to remove troublesome or
faulty agents (e.g. Sybils) by forcing a fork.
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Abstract. A hedonic diversity game (HDG) is a coalition formation
problem, where the set of agents is partitioned into two types of agents
(say red and blue agents), and each agent has preferences over the rel-
ative number (fraction) of agents of her own type in her coalition. In a
dichotomous hedonic diversity game (DHDG) each agent partitions the
set of possible fractions into a set of approved and a set of disapproved
fractions. The solution concepts for these games considered in the liter-
ature so far are concerned with stability notions such as core and Nash
stability. We add to the existing literature by providing NP-completeness
results for the decision problems whether a DHDG admits (i) a Nash
stable outcome and (ii) a strictly core stable outcome respectively, in
restricted settings with only two (and three, respectively) approved frac-
tions per agent. In addition, applying approval and Borda scores from
voting theory we aim at outcomes that maximize social welfare (i.e., the
sum of scores) in (dichotomous) hedonic diversity games. In that context
we provide an NP-completeness result for HDGs under the use of Borda
scores. For DHDGs with approval scores, we draw the sharp separation
line between polynomially solvable and NP-complete cases with respect
to the number of approved fractions per agent.

Keywords: Coalition formation · Stable outcomes · Approval and
Borda scores · Computational complexity

1 Introduction

A hedonic diversity game (HDG) is a coalition formation problem, where the set
of agents is partitioned into two types (say red and blue agents), and each agent
has preferences over the relative number (fraction) of agents of her own type in
her coalition. An outcome of a HDG is a partition of the agents into disjoint
coalitions, i.e., subsets of agents. As a particular example, consider the situation
in which two institutes of the same university merge into one large institute.
While, for their next project, some researchers want to collaborate intensively
with the members of the formerly other institute (who they do not know very
well yet)—and hence prefer a high fraction of researchers of the formerly other
institute in their coalition—some (more shy) researchers might prefer to work
alone or together with the colleagues of their original institute, and hence prefer a
c© Springer Nature Switzerland AG 2021
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low fraction. Applications of similar flavor are interdisciplinary collaboration and
group formation among exchange and local students (see Bredereck et al. [11]).
Other examples of a HDG include Bakers and Millers games (Aziz et al. [1] and
Bredereck et al. [11]), where each red agent (baker) would like to be in a coalition
with an as large as possible fraction of blue agents (millers) and vice versa.

A number of solution concepts have been considered for hedonic diversity
games that are concerned with stability against individual or group deviations,
including the notions of Nash stable, individually stable, and core stable out-
comes (see Bredereck et al. [11] and Boehmer and Elkind [7]). The particular
special case of a dichotomous hedonic diversity game (DHDG) arises when the
agents’ preferences are dichotomous, i.e., each agent i partitions the set of frac-
tions of possible coalitions containing i into a set of approved fractions and a
set of disapproved fractions respectively. In this setting it is known that decid-
ing whether a Nash stable outcome exists is NP-complete even when each agent
approves of at most 4 fractions, while in any HDG an individually stable outcome
always exists and can be found in polynomial time (Boehmer and Elkind [7]). To
the best of our knowledge, however, the complexity of deciding whether a HDG,
and, in particular, a DHDG, admits a strictly core stable outcome has not been
considered yet.

In this work, we add to the existing literature by showing that deciding
whether a DHDG admits a Nash stable outcome remains NP-complete even if
each agent approves of at most 2 fractions and one type of agents does not
approve of coalitions that contain only agents of the same type. In addition, we
show that deciding whether a DHDG admits a strictly core stable outcome is
NP-complete, even when each agent approves of at most three fractions and one
type of agents does not approve of coalitions that contain only agents of the
same type.

Finally, we expand the set of solution concepts considered in the literature
by considering the concept of social welfare. Using scores from voting theory—
in particular, approval and Borda scores—the goal would be an outcome that
maximizes social welfare (i.e., the sum of scores). In that respect, we prove that
in a DHDG in which each agent approves of exactly one fraction (or at most one
fraction) an outcome that maximizes social welfare (i.e., total approval score)
can be found in polynomial time. In contrast, the problem of deciding whether a
DHDG admits an outcome with total approval score exceeding some given integer
is NP-complete, even when each agent approves of at most two fractions. Leaving
the setting of a DHDG, we show that in a hedonic diversity game in which each
agents’ preferences are strict orders over the possible fractions, the problem of
deciding whether there is an outcome with total Borda score exceeding some
given integer is NP-complete.

Related Work

Hedonic diversity games were introduced by Bredereck et al. [11]. The main
solution concepts considered in Bredereck et al. [11]—Nash stability, individ-
ual stability, and core stability—stem from game theory and are, in particular,
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adopted from the hedonic game literature. They remark that, even when all
agents have single-peaked preferences, a Nash stable outcome does not always
exist. On the positive side, they prove that in that case of single-peaked pref-
erences an individually stable outcome always exists and provide a polynomial
time algorithm that computes such an outcome. In addition, it is shown that
deciding whether a HDG admits a non-empty core is NP-complete, and that even
with single-peaked preferences the core might be empty. Boehmer and Elkind [7]
focus on Nash stability and individual stability in hedonic diversity games. They
prove that in fact any HDG admits an individually stable outcome and provide a
polynomial time algorithm for computing such an outcome. On the other hand,
they prove NP-completeness for the decision problem whether a HDG admits a
Nash stable outcome, and show that this holds even in the setting of a DHDG
when each agent approves of four fractions only. As mentioned above, we improve
upon that result by showing that hardness also holds in DHDGs with each agent
approving of only two fractions and one type of agents approving only of coali-
tions containing at least one agent of the other type. In addition, it is known
that every DHDG admits a core stable outcome (this follows from a more general
result for dichotomous hedonic games (Peters [18])), and such an outcome can
be found in polynomial time (Boehmer [6]). However, in this work we prove that
deciding whether a DHDG admits a strictly core stable outcome is NP-complete
even in a restricted setting.

In hedonic games, originally introduced by Drèze and Greenberg [14], a given
set of agents needs to be partitioned into coalitions (subgroups of agents), where
each agent has preferences over the members of her coalition; see Aziz and Savani
[2] for a survey. The computational complexity of stable coalition formation
has been well-studied, e.g., by Bogomolnaia and Jackson [8], Ballester [3], and
Peters [18]. In particular, HDGs have a certain vicinity to anonymous hedonic
games (see, e.g., Bogomolnaia and Jackson [8]) and fractional hedonic games
(see, e.g., Aziz et al. [1]).

In anonymous hedonic games, the agents do not care about the identity of
the other agents in their coalition, but have preferences over the size of the
coalitions only. Stable outcomes—for stability concepts such as Nash, individ-
ual, and (strict) core stability—in hedonic games, and in particular anonymous
hedonic games, have been well-studied from a computational viewpoint (see, e.g.,
Ballester [3] and Bogomolnaia and Jackson [8]). In fractional hedonic games, each
agent associates a numerical value with each other agent, and, for agent i, the
value of her coalition is the average value of the other agents’ values in i’s coali-
tion. The computational complexity involved in finding Nash, individually, or
(strictly) core stable outcomes (or deciding whether such an outcome exists) in
fractional hedonic games has been studied, for instance, by Bilò et al. [5], Brandl
et al. [10], and Aziz et al. [1]. In contrast to these kinds of games, in HDGs we
are concerned with two types of agents who have preferences over the fraction of
agents of her own type. Bakers and Millers games, however, can be formulated
as fractional hedonic games; it is known that the strict core (and thus the core)
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of a Bakers and Millers game is always non-empty, and a finest partition in the
strict core can be found in linear time (Aziz et al. [1]).

Finally, we point out that scores from voting theory (see Brams and Fish-
burn [9] for a survey) such as approval and Borda scores have also been applied
outside of their classical framework to evaluate outcomes, for instance, in fair
division problems (see, e.g., Baumeister et al. [4] and Darmann and Schauer [13]),
in combinatorial optimization problems like the traveling salesperson prob-
lem (Klamler and Pferschy [17]), or in the group activity selection problem
(Darmann [12]).

This paper is structured as follows. In Sect. 2 we present the preliminar-
ies, i.e., we formally introduce the model of a hedonic diversity game and the
solution concepts considered in this work. Sections 3 and 4 are concerned with
dichotomous hedonic diversity games: in Sect. 3 we present our computational
complexity results for Nash stability and strict core stability; in Sect. 4 we focus
on outcomes maximizing the total number of approvals, and draw the sharp sepa-
ration line between polynomially solvable and NP-complete cases with respect to
the number of approved fractions per agent. In Sect. 5 we turn to hedonic diver-
sity games with strict preferences and prove that it is NP-complete to decide
whether such a hedonic diversity game admits an outcome with total Borda
score exceeding some given threshold.

2 Preliminaries

A hedonic diversity game G = (R,B, (�i)i∈R∪B) consists of two disjoint sets
R,B of agents—the agents in R are called red agents, the agents in B are called
blue agents—and we set N = R ∪ B. Each agent i ∈ N specifies a weak order
�i (with indifference part ∼i and strict preference part �i) over the set Θ of all
fractions of red agents in some subset of N containing agent i. Hence, for a red
agent we have Θ = { r

r+b | r ∈ {1, . . . |R|}, b ∈ {1, . . . , |B|}} ∪ {1}, and for a blue
agent we have Θ = { r

r+b | r ∈ {1, . . . |R|}, b ∈ {1, . . . , |B|}} ∪ {0}; observe that
the cardinality of Θ is the same for a red and a blue agent.

A subset C ⊆ N is called coalition, and Ci denotes the set of all coalitions
containing agent i ∈ N . We interpret �i as the preferences of agent i over all
possible fractions of red agents in some coalition containing her. For coalition
C, we denote the fraction of red agents in C by θR(C). A coalition is mixed if
it contains both blue and red agents, otherwise it is pure. A purely red (blue)
coalition consists of red (blue) agents only. An outcome π is a partition of R∪B
into disjoint coalitions. For outcome π, let π(i) denote the coalition containing
agent i; conversely, we write C ∈ π if π(i) = C holds for some agent i. Abusing
notation, for C,D ∈ Ci we have C �i D iff θR(C) �i θR(D) holds; we say that
agent i strictly prefers coalition C over coalition D, C �i D, iff θR(C) �i θR(D)
holds.

In a dichotomous hedonic diversity game (DHDG) G = (R,B, (Ai)i∈R∪B),
each agent i specifies a set Ai of approved fractions in Θ; agent i is indifferent
between all fractions in Ai (i.e., for θ, θ̄ ∈ Ai we have θ ∼i θ̄), strictly prefers
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any θ ∈ Ai to any θ̄ /∈ Ai, and is indifferent between all fractions not contained
in Ai.

Solution Concepts
We will consider two kinds of solution concepts: On the one hand, we take into
account the game-theoretic notions of stability against individual and group
deviations, where we focus on Nash stability and strict core stability; on the
other hand, we apply approval scores and Borda scores from voting theory to
our setting in order to determine outcomes that maximize (utilitarian) social
welfare, i.e., the total sum of scores.

Stability Notions. Nash stable outcomes require that no agent can make her-
self better off by forming a singleton coalition or by deviating towards some other
coalition. Formally, an outcome π of a hedonic diversity game is Nash stable, if
there is no agent i with S ∪ {i} �i π(i) for some S ∈ π ∪ {∅}. In a DHDG, an
outcome π is hence Nash stable if there is no agent i with θR(π(i)) /∈ Ai but
θR(S ∪ {i}) ∈ Ai for some S ∈ π ∪ {∅}.

Strictly core stable outcomes require that there is no group of agents S such
that, by forming a deviating coalition, at least one member of S is better off
while no member of S changes for the worse. This can be formalized as follows.
A coalition S ⊆ N weakly blocks an outcome π of N if for every agent i ∈ S we
have S �i π(i), and for some i ∈ S we have S �i π(i). An outcome π is said
to be strictly core stable (or in the strict core) if there is no weakly blocking
coalition for π.

Social Welfare. The score of outcome π for agent i, scπ(i), is a non-negative
integer assigned to π(i). Under given scores, the social welfare of outcome π,
SW (π), is the sum of the scores over all agents: SW (π) =

∑
i∈N scπ(i). We

consider the following two kinds of scores.
In a DHDG, the approval score of outcome π for agent i is 1 if θR(π(i)) ∈ Ai

and 0 otherwise. In a DHDG, using approval scores the social welfare SW (π)
(or total approval score) of outcome π is hence the number of agents i ∈ N for
which θR(π(i)) ∈ Ai holds.

Given a hedonic diversity game G = (R,B, (�i)i∈R∪B) with strict preferences
�i over the set Θ, the Borda score of outcome π for agent i is given by scπ(i) =
|{θ ∈ Θ | θR(π(i)) �i θ}|.

3 DHDG: Nash Stability and the Strict Core

In this section, we provide NP-completeness results in restricted settings with a
small number of approvals per agent for the decision problems whether a DHDG
admits a Nash stable outcome and a strictly core stable outcome respectively.
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3.1 Nash Stability: NP-completeness for 2 Approvals per Agent

Our first result states that deciding whether a DHDG admits a Nash stable
outcome is computationally intractable, even when restricted to instances with
at most two approvals per agent and one type of agents approving of mixed
coalitions only.

Theorem 1. The problem of deciding whether a dichotomous hedonic diversity
game G = (R,B, (Ai)i∈R∪B) admits a Nash stable outcome is NP-complete, even
when (i) each agent approves of at most two fractions and (ii) none of the red
agents approves of a purely red coalition.

Proof. We provide a reduction from Exact Cover by 3-Sets (X3C). An
instance of X3C is a pair (X,Y), where X = {1, . . . , 3q} and Y = {Y1, . . . , Yp}
is a collection of 3-element subsets (3-sets) of X; it is a “yes”-instance iff X can
be covered by exactly q sets from Y. We assume that every element of X appears
in exactly three sets in Y; X3C is known to be NP-complete even under this
restriction [15]. Observe that the restriction implies p = 3q, which allows us to
omit q. Given such a restricted instance of X3C, we construct an instance G =
(R,B, (Ai)i∈R∪B) of a dichotomous hedonic diversity game as follows. We set
R = {r̂i,j | i ∈ {1, . . . , 3p} \ {2p}, 1 ≤ j ≤ 3p + 1} ∪ {rk,t | 1 ≤ k ≤ p, 1 ≤ t ≤ 3}
and B = {bk,t | 1 ≤ k ≤ p, 1 ≤ t ≤ 3}. For xk ∈ X let Yk1 , Yk2 , Yk3 denote the
three sets of Y that contain xk. We identify xk ∈ X with the agents bk,t and
rk,t, and set Ykt

with the fraction 4+3kt

7+3kt
.

The agents’ approved fractions are as follows. For each k,

– blue agent bk,t’s set of approved fractions is {0, 4+3kt

7+3kt
}, t ∈ {1, 2, 3},

– red agent rk,1’s set of approved fractions is { 5+3k2
8+3k2

, 5+3k3
8+3k3

},
– red agent rk,2’s set of approved fractions is { 5+3k1

8+3k1
, 5+3k3
8+3k3

}, and
– red agent rk,3’s set of approved fractions is { 5+3k1

8+3k1
, 5+3k2
8+3k2

}.

Finally,

– each red agent r̂i,j approves of 1
i+1 exclusively.

Observe that

– each fraction θ = 4+3ki

7+3ki
—induced by the 3-set Yki

—is approved by exactly
three blue agents, since for each element xk ∈ Yki

exactly one blue agent
approves of θ;

– each fraction θ̃ = 5+3ki

8+3ki
is approved by exactly six red agents, because for

each element xk ∈ Yki
exactly two red agents approve of θ̃.

We show that (X,Y) admits an exact cover by 3-sets from Y iff G has a Nash
stable outcome.

Assume (X,Y) admits an exact cover, say Z ⊂ Y, by 3-sets from Y. We
derive the following partition of the agents in G:
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– For each set Yk ∈ Z form a coalition made up of the three blue agents
approving of 4+3k

7+3k together with the six red agents approving of 5+3k
8+3k plus

exactly (4 + 3k) − 6 arbitrarily chosen red agents r̂i,j . The remaining 2p
blue agents form the purely blue coalition S. The remaining red agents form
singleton coalitions each.

Observe that each blue agent approves of its coalition’s fraction, hence no such
agent has an incentive to deviate. No red agent approves of 1 or 1

2p+1 , hence
no red agent wants to deviate towards a purely red coalition or towards S. In
addition, for any choice of k, � ∈ N we have (4+3k)+1

(7+3k)+1 
= 1
� because otherwise

� = 8+3k
5+3k = 1 + 3

5+3k in contradiction with �, k ∈ N. Therefore, no red agent r̂i,j

has an incentive to deviate towards a mixed coalition. Finally, for any coalition
of fraction 4+3k

7+3k , by construction the coalition contains all the six agents rk,t

approving of 5+3k
8+3k . Therefore, none of the agents rk,t has an incentive to deviate

towards a mixed coalition either. Thus, the partition is Nash stable.
On the other hand, let π be a Nash stable outcome. Let C be a mixed coalition

in π. Coalition C must contain exactly the three blue agents approving of its
fraction: C cannot contain a blue agent not approving of its fraction since she
would otherwise wish to form a singleton coalition instead. Also, each mixed
coalition requires at least three blue agents, and in case C contains more than
three blue agents at least one of them wishes to form a singleton coalition instead
because for each fraction θ = 4+3k

7+3k there are exactly three blue agents approving
of θ.

Now, we show that π cannot contain a purely blue coalition of size s 
= 2p,
s ≥ 1. Assume the opposite and let S be such a purely blue coalition of size
s 
= 2p, s ≥ 1. Observe that there are exactly (3p + 1) red agents r̂s,j approving
of 1

s+1 for any choice of s 
= 2p. Each agent r̂s,j hence prefers S ∪ {r̂s,j} over its
current coalition—and hence has an incentive to deviate—unless she is already
in a coalition of fraction 1

s+1 . However, it is impossible that each such agent r̂s,j

is in a coalition of fraction 1
s+1 since this would require (3p + 1) · s > 3p blue

agents. Thus, π cannot contain a purely blue coalition of size s 
= 2p.
Hence, there must be at least p blue agents which are engaged in some mixed

coalitions. Since each blue agent needs to approve of the fraction of the mixed
coalition C she is part of, C must be of fraction θ = 4+3k

7+3k for some k. Also, recall
that fraction θ = 4+3k

7+3k is induced by set Yk = {xu, xv, xw} in Y. Coalition C is
thus made up of

1. exactly the three blue agents approving of θ, i.e., three agents
bu,hu

, bv,hv
, bw,hw

for some choices of hu, hv, hw ∈ {1, 2, 3}, and
2. exactly 4+3k red agents including all the six red agents who approve of 5+3k

8+3k
—say ru,tu

, ru,t̄u
rv,tv

, rv,t̄v
rw,tw

, rw,t̄w
for some choices of tu, t̄u, tv, t̄v, tw, t̄w—

since otherwise π is not Nash stable.

Note that any two mixed coalitions must have different fractions since each
mixed coalition must have exactly three blue agents, all of which approving of
its fraction, and by construction for each fraction there are exactly three such
agents.
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In addition, observe that due to Point 2. above, for each u at most one
of bu,1, bu,2, bu,3 can be contained in a mixed coalition: the fact that ru,tu

and
ru,t̄u

are contained in mixed coalition C with θ = 4+3k
7+3k implies that ru,t̃u

with
t̃u /∈ {tu, t̄u} who approves of 5+3�

8+3� , � 
= k, cannot be contained in a mixed
coalition D 
= C with fraction 4+3�

7+3� because (i) one of {ru,tu
, ru,t̄u

} approves of
5+3�
8+3� , and (ii) D would need to contain all the six red agents approving of 5+3�

8+3� .
Since at least p blue agents need to be engaged in some mixed coalition it

follows that for each u exactly one of bu,1, bu,2, bu,3 is contained in some mixed
coalition. Due to 1. that coalition C has to contain also the two other blue agents
approving of its fraction. As a consequence, the collection Z of sets Yk for which
π contains a coalition of size 4+3k

7+3k forms an exact cover by 3-sets in instance
(X,Y). �

3.2 Strict Core Stability: NP-completeness for 3 Approvals
per Agent

We now turn to strictly core stable outcomes and show that the decision problem
whether a DHDG admits such an outcome is computationally hard even in a
restricted setting with only three approvals per agent.

Theorem 2. The problem of deciding whether a dichotomous hedonic diver-
sity game G = (R,B, (Ai)i∈R∪B) admits a strictly core stable outcome is NP-
complete, even when (i) each agent approves of at most three fractions and (ii)
none of the blue agents approves of a purely blue coalition.

Proof. We provide a reduction from the restricted NP-complete version of
Exact Cover by 3-Sets (X3C) used in the proof of Theorem 1. Given such
an instance (X,Y) of X3C, where X = {1, . . . , 3q} and Y = {Y1, . . . , Yp} is
a collection of 3-element subsets of X such that every element of X appears
in exactly three sets in Y, we construct an instance G = (R,B, (Ai)i∈R∪B)
of a dichotomous hedonic diversity game. Recall that we have p = 3q. We
set R = {rk | 1 ≤ k ≤ p} ∪ {r̂k,j | 1 ≤ k ≤ p, 1 ≤ j ≤ 3k − 2} and
B = {bk | 1 ≤ k ≤ p}. For xk ∈ X let Yk1 , Yk2 , Yk3 denote the three sets of
Y that contain xk. We identify xk ∈ X with the agents bk and rk, and we
associate set Yi ∈ Y with the fraction 1+3i

4+3i . The agents’ approvals are as follows:

– for each k, agent bk’s and agent rk’s set of approved fractions is { 1+3kt

4+3kt
| 1 ≤

t ≤ 3}, and
– for each k and j, agent r̂k,j ’s set of approved fractions is {1, 1+3k

4+3k}.

Observe that by construction each fraction 1+3i
4+3i , 1 ≤ i ≤ p, is approved by

exactly three blue agents. We now show that (X,Y) admits an exact cover by
3-sets from Y iff G admits a non-empty strict core.

Assume that in instance (X,Y) there is an exact cover Z by 3-sets. We
construct partition π of N as follows. For each set Yi ∈ Z let coalition Ci =
{bk, rk | xk ∈ Yi} ∪ {r̂i,j | 1 ≤ j ≤ 3i − 2}, and let each r̂k,j with Yk /∈ Z form
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a singleton coalition. Each of the agents in a singleton coalition approves of its
fraction. Observe that Ci contains exactly three blue agents and (3 + 3i − 2)
red agents. The fraction of coalition Ci is hence 1+3i

4+3i which, due to xk ∈ Yi,
is approved by all of its agents. Note that by the fact that Z is an exact cover
each of the agents rk, bk is in exactly one mixed coalition. Therefore, each agent
is engaged in some coalition and approves of its fraction. Thus, partition π is
strictly core stable.

On the other hand, assume that there is a strictly core stable outcome π. For
the sake of contradiction, assume that at least one blue agent bk is in a coalition
with a fraction she disapproves of. Let Yi ∈ Y denote one of the three sets that
contain element xk. As above, form the coalition Ci = {b�, r� | x� ∈ Yi} ∪ {r̂i,j |
1 ≤ j ≤ 3i−2} with fraction 1+3i

4+3i which is approved by all members of Ci. Since
bk ∈ Ci holds we can conclude that Ci weakly blocks π, in contradiction with the
assumption that π is strictly core stable. Therewith, each blue agent must be in
a coalition with a fraction θ she approves of. Note that by construction (for each
blue agent, the denominator of each approved fraction exceeds the nominator
by three), this requires that all the three agents approving of θ must be in the
same coalition. Thus, the set Z = {Yk ∈ Y | ∃S ∈ π with θR(S) = 1+3k

4+3k} forms
an exact cover by 3-sets in (X,Y). �

4 Maximizing Social Welfare: A Dichotomy for DHDG

Apart from stability notions, from a social choice perspective an outcome that
maximizes social welfare is of interest. In this section, we consider DHDGs and
use approval scores to measure the social welfare induced by an outcome. We first
show that an outcome that maximizes social welfare, i.e., total approval score,
can be found in polynomial time when each agent approves of exactly (or at most)
one fraction. However, we then prove that the corresponding decision problem
turns NP-complete already as soon as agents may approve of two fractions.
Therewith we draw the sharp separation line between polynomially solvable and
NP-complete cases with respect to the number of approved fractions per agent.

We introduce some additional notation. For set N ′ ⊆ N of agents and fraction
θ, let Rθ(N ′) and Bθ(N ′) denote the set of red and blue agents in N ′ approving
of θ respectively. Let #r(N ′) and #b(N ′) denote the number of red and blue
agents in set N ′ respectively.

Theorem 3. In a dichotomous hedonic diversity game G = (R,B, (Ai)i∈R∪B)
with approval scores in which each agent approves of exactly one fraction, an
outcome that maximizes social welfare can be found in polynomial time.

Proof. We will reduce a dichotomous hedonic diversity game with a single
approval per agent to a two-constraint knapsack problem1. An instance of the
two-constraint knapsack problem consists of a set J of items, where each item

1 Also known as two-dimensional knapsack problem (the latter notion, however, often
refers to the geometric variant of that problem).
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j ∈ J is associated with a profit pj , a weight wj and a volume vj ; the goal
is to select a subset J∗ ⊆ J of items of maximum total profit p∗ =

∑
j∈J∗ pj

such that the total weight does not exceed a given weight bound W and the
total volume does not exceed a given volume bound V (i.e.,

∑
j∈J∗ wj ≤ W and∑

j∈J∗ vj ≤ V ). By dynamic programming, the maximum profit in an instance
of the two-constraint knapsack problem can be determined in O(nWV ) time,
determining both the optimal profit and the profit maximizing set of items can
be done in O(n2WV ) time (see Ch. 9.3.2 of [16]).

Given a dichotomous hedonic diversity game G = (R,B, (Ai)i∈R∪B) with
exactly one approval per agent, we construct an instance I of the two-constraint
knapsack problem. W.l.o.g., we assume that the fractions in G cannot be reduced
anymore, i.e., the nominator and denominator of each fraction θ in G are
coprime.

For each fraction θ = rθ

rθ+bθ
(with 0 = 0

1 and 1 = 1
1+0 ) approved of by at

least one agent we first partition the set of agents approving of θ into sets Sθ,i

and introduce the items for instance I on basis of these sets.
In order to construct the sets, the idea is that while there are red or blue

agents approving of θ, add them to Sθ,1 as long as it contains less than rθ red
agents (bθ blue agents); then continue with Sθ,2, etc. We proceed as follows:

– let qθ = max{c, d | |Rθ(N)| = rθ · c + e, |Bθ(N)| = bθ · d + f for some e <
rθ, f < bθ};

– for each fraction θ construct the sets Sθ,i, 1 ≤ i ≤ q0, containing agents of
Rθ(N) and Bθ(N) exclusively, such that

• each such set contains at most rθ red agents and bθ blue agents, and
• for red agent r ∈ Rθ(N) we have r ∈ Sθ,i+1 iff Sθ,i contains rθ agents (for

blue agent b of Bθ(N) we have b ∈ Sθ,i+1 iff Sθ,i contains bθ agents).

We say that set Sθ,i is full, if it contains exactly rθ red agents and bθ blue agents.
Observe that each agent of N is contained in exactly one of the sets Sθ,i

(hence we have at most n such sets), and each agent in set Sθ,i approves of θ.
In order to construct instance I of the two-constraint knapsack problem, for

each set Sθ,i we introduce an item θ(i) with profit pθ(i) = |Sθ,i|, weight rθ and
volume bθ, and set W = |R|, V = |B|.

We show that there is solution of I with profit ≥ p∗ iff there is an outcome
π for G with SW ≥ p∗.

“⇒”: A solution (= set of items) J∗ of total profit � in I induces an outcome
of social welfare ≥ � in G as follows. Consider the set S∗ = {Sθ,i | θ(i) ∈ J∗},
i.e., S∗ is the set of sets Sθ,i corresponding to the items in J∗. We construct
outcome π of our DHDG in two steps.

First, for all sets Sθ,i ∈ S∗ which are full, define the coalition Cθ,i = Sθ,i.
Next, for a non-full set Sθ,i ∈ S∗, the set contains |R ∩ Sθ,i| < rθ red agents or
|B∩Sθ,i| < bθ blue agents; however, the weight and volume of the corresponding
item θ(i) are rθ and bθ, respectively. Hence, for each non-full set Sθ,i ∈ S∗

the weight contribution of θ(i) exceeds the number of red agents in Sθ,i by
rθ − |R ∩ Sθ,i| and the volume contribution of θ(i) exceeds the number of blue
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agents in Sθ,i by bθ − |B ∩ Sθ,i|. Together with the choice of W = |R| (and
V = |B| respectively) it follows that there must be at least

∑

Sθ,i∈S∗: |Sθ,i|<rθ+bθ

rθ − |R ∩ Sθ,i|

red agents and at least
∑

Sθ,i∈S∗: |Sθ,i|<rθ+bθ

bθ − |B ∩ Sθ,i|

blue agents in N that are not contained in some set of S∗. Therefore, for all sets
Sθ,i ∈ S∗ which are not full we are able to construct a coalition Cθ,i of fraction
θ by “filling up” Sθ,i with such red and blue agents—i.e., create Cθ,i by adding
to Sθ,i red and blue agents of N \ ⋃

Sθ,i∈S∗ Sθ,i until it contains exactly rθ red
and bθ blue agents.

Now let π be the outcome made up of the coalitions Cθ,i for Sθ,i ∈ S∗ plus
coalition D containing all remaining agents. Observe that, for each Cθ,i ∈ π,
|Sθ,i| denotes the number of agents in Cθ,i that approve of its fraction θ. In
addition, recall that by definition pθ(i) = |Sθ,i|. Thus, for outcome π we have
SW (π) ≥ ∑

Sθ,i∈S∗ |Sθ,i| =
∑

θ(i)∈J∗ pθ(i) = �.
“⇐”: Assume there is an outcome π of SW (π) = � ≥ p∗. W.l.o.g. we assume

that each coalition in π cannot be split into smaller coalitions of the same frac-
tion, i.e., for each coalition C and C̃ ⊂ C it holds that θR(C) 
= θR(C̃).

Let S be the set of coalitions C ∈ π in which all agents approve its fraction
θR(C), and let S ′ be the set of coalitions C ′ for which at least one agent disap-
proves of θR(C ′). Let N ′ be the set of agents engaged in some coalition C ′ ∈ S ′,
and let N ′

a ⊆ N ′ be the set of agents of N ′ who approve of its coalition fraction,
and N ′

d ⊆ N ′ be the set of agents of N ′ who disapprove of its coalition fraction.
From π we construct a new partition π′ as follows:

– for the agents N ′
a build, for all θ′ such that θ′ = θR(C ′) for at least one set

C ′ ∈ S ′, the sets Sθ′,i as described in the construction of instance I;
– fill up the sets C ′ = Sθ′,i with agents in Nd′ as follows (i.e., add exactly

(rθ′ − |Rθ′(N ′) ∩ Sθ′,i|) red and (bθ′ − |Bθ′(N ′) ∩ Sθ′,i|) blue agents from N ′
d

to Sθ′,i):
• as long as there is a set C ′ = Sθ′,i with #r(C ′) < rθ′ (resp. #b(C ′) < bθ′),

and a red (resp. blue) agent from Nd′ who approves of θ′, add that agent
to the set Sθ′,j with the smallest index j among such sets;

• after that, as long as there is a set C ′ = Sθ′,i with #r(C ′) < rθ′ (resp.
#b(C ′) < bθ′), add an arbitrary red (resp. blue) agent from Nd′ to C ′;

– the remaining agents of N ′
d form a single coalition D.

Observe that compared with π, for each θ′ = θR(C ′) such that C ′ ∈ S′ the
number of sets Sθ′,i does not exceed the number of coalitions of fraction θ′ in π.
Hence, the number of agents from Nd′ added to the sets Sθ′,i in order to achieve
the required fraction θ′ is in fact sufficient since π is a feasible partition.
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As a consequence, for each θ such there is coalition C in partition π with
θR(C) = θ, there are at most as many coalitions of fraction θ in π′ as in π.
Also, observe that an agent who approves of her coalition’s fraction in π also
approves of her coalition’s fraction in π′. Thus, the number of agents engaged
in some coalitions in π′ \ D who approve of their coalition’s fraction is at least
�. However, by construction of π′, there is a one-to-one correspondence between
the set of coalitions of π′ \ D and a subset J ′ of items in I. Therewith, for
each coalition S ∈ π′, S 
= D, there must be an item in instance I with the
profit corresponding to the number of agents approving of θR(S). Also, by the
choice of the items’ weights and volume, J ′ is a feasible solution for instance I.
Therewith, I admits solution J ′ with profit ≥ �.

Finally, observe that the optimal profit in two-constraint knapsack problem
can be determined in O(nWV ) = O(n3) time, together with backtracking of the
solution this can be done in O(n4) time. �

On the negative side, as soon as agents approve of up to two fractions the
problem of deciding whether a DHDG with approval scores admits an outcome
with social welfare exceeding some given integer becomes computationally diffi-
cult.

Theorem 4. Given integer �, the problem of deciding whether a dichotomous
hedonic diversity game G = (R,B, (Ai)i∈R∪B) with approval scores admits an
outcome with SW ≥ � is NP-complete, even when (i) each agent approves of at
most two fractions and (ii) each blue agent approves of only one fraction.

Proof. Again we reduce from the NP-complete variant of Exact Cover by
3-Sets (X3C) restricted to instances (X,Y) with X = {1, . . . , 3q} and Y =
{Y1, . . . , Yp} such that every element of X appears in exactly three sets in Y.
Let I be such a restricted instance of X3C, and recall that p = 3q holds. We
construct an instance G = (R,B, (Ai)i∈R∪B) of a dichotomous hedonic diversity
game as follows. We set R = {r̂i | i ∈ {1, . . . , p

3 (p2 + p − 6)}} ∪ {rk,t | 1 ≤ k ≤
p, 1 ≤ t ≤ 3}, and B = {bk,t | 1 ≤ k ≤ p, 1 ≤ t ≤ 3}. For xk ∈ X the three sets
containing xk are denoted by Yk1 , Yk2 , Yk3 . The agents’ approvals are given by:

– blue agent bk,t’s approved fraction is p2+kt

p2+kt+3 , t ∈ {1, 2, 3},

– red agent rk,1’s set of approved fractions is { p2+k2
p2+k2+3 , p2+k3

p2+k3+3},

– red agent rk,2’s set of approved fractions is { p2+k1
p2+k1+3 , p2+k3

p2+k3+3},

– red agent rk,3’s set of approved fractions is{ p2+k1
p2+k1+3 , p2+k2

p2+k2+3}, and
– each red agent r̂i approves of 1

1+3p exclusively.

Observe that each fraction θ = p2+kt

p2+kt+3—induced by set Ykt
—is approved by

exactly three blue and six red agents. We now argue that (X,Y) admits an
exact cover by 3-sets from Y iff G admits an outcome π with SW (π) ≥ 3p.

Assume there is an exact cover Z. Recall that Z contains exactly p
3 sets of

Y. Observe that for any xk ∈ X exactly one of Yk1 , Yk2,Yk3 is in Z. To construct
partition π in G,
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– for each set Ykt
∈ Z, form a coalition C made up of the three blue and six

red agents approving of θ = p2+kt

p2+kt+3 together with (p2 + kt − 6) arbitrarily
chosen agents of r̂i;

– the remaining agents form singleton coalitions each.

Due to the fact that Z is an exact cover by 3-sets partition π is well-defined.
Since we are concerned with exactly p

3 mixed coalitions, the number of agents
of r̂i engaged in a mixed coalition is at most p

3 (p2 + p − 6), and hence partition
π is feasible. Each mixed coalition contains 9 agents who approve of its fraction,
which yields a total social welfare of SW (π) = 3p.

On the other hand, assume there is an outcome π with SW (π) ≥ 3p in
G. No agent approves of being in a pure coalition, so only mixed coalitions
can contribute a positive value to the social welfare of π. In order to do so, a
mixed coalition C must be either of fraction 1

1+3p or of fraction p2+j
p2+j+3 for some

1 ≤ j ≤ p. In the former case C contains all blue agents and hence must be the
only mixed coalition, implying SW (π) ≤ 1 in contradiction with our assumption.
In the latter case, C requires at least (p2 + j) red agents. Given that G contains
exactly p

3 (p2 + p − 6) + 3p = p
3 (p2 + p + 3) red agents, at most p

3 such coalitions
can exist, because otherwise at least (p

3 + 1)(p2 + 1) = p
3 (p2 + 3p + 1) + 1 red

agents would be required. Due to the fact that any fraction p2+j
p2+j+3 is approved

by exactly 9 agents, this means that we must have exactly p
3 such coalitions and

each of them must contain all the 9 agents approving of its fraction. For each k
this means that for at most one—and by the fact that we have p

3 such coalitions
this means for exactly one—t ∈ {1, 2, 3} there is a coalition of fraction p2+kt

p2+kt+3
in π; hence, for each k exactly one of bk,1, bk,2, bk,3 is engaged in such a coalition,
and that coalition contains all the three blue agents approving of its fraction.
Therewith, the collection of sets Z = {Ykt

| ∃C ∈ π : θR(C) = p2+kt

p2+kt+3} forms
an exact cover by 3-sets in I. �

5 Maximizing Social Welfare in HDG Under Borda
Scores

We now leave the setting of DHDGs and consider the case in which each agents’
preferences are given by means of a strict order over the possible coalition frac-
tions. It turns out that in such a scenario under the use of Borda scores maxi-
mizing social welfare is computationally hard.

Theorem 5. Given integer �, the problem of deciding whether a hedonic diver-
sity game G = (R,B, (�i)i∈R∪B), with strict order �i over Θ for i ∈ N , under
Borda scores admits an outcome with SW ≥ � is NP-complete.

Proof. We reduce from the NP-complete variant of Exact Cover by 3-Sets
(X3C) restricted to instances (X,Y) with X = {1, . . . , 3q} and Y = {Y1, . . . , Yp}
such that every element of X appears in exactly three sets in Y. Let I be such a
restricted instance of X3C (recall that p = 3q holds). From I we derive instance



370 A. Darmann

G = (R,B, (�i)i∈R∪B) of a hedonic diversity game as described below. The set of
agents is made up of the sets R = {ri | i ∈ {1, . . . , p5}} and B = {bk | 1 ≤ k ≤ p}.
Again, for xk ∈ X we denote the three sets containing xk by Yk1 , Yk2 , Yk3 . Agent
bk ∈ B represents element xk ∈ X, and we associate fraction j+3

j+6 with set
Yj ∈ Y. The agents’ rankings—up to the respective position where fraction

1
|R|+|B| is ranked—are given in Table 1. Let T = |Θ| − 1, i.e., T is the maximum
possible Borda score for a single agent.

Table 1. Rankings of agents bk and ri up to fraction 1
|R|+|B| (used in the proof of

Theorem 5)

Borda score agent bk’s ranking

T k1+3
k1+6

T − 1 k2+3
k2+6

T − 2 k3+3
k3+6

T − 3 |R|
|R|+|B|

T − 4 |R|−1
|R|−1+|B|

T − 5 |R|−2
|R|−2+|B|

...
...

T − 2− |R| 1
1+|B|

Borda score agent ri’s ranking

T 4
7

T − 1 5
8

...
...

T − p+ 1 p+3
p+6

T − p 1

T − p− 1 |R|
|R|+|B|

T − p− 2 |R|−1
|R|−1+|B|

T − p− 3 |R|−2
|R|−2+|B|

...
...

T − p− |R| 1
1+|B|

We claim that I is a “yes”-instance of X3C iff G admits an outcome π with
total Borda score SW (π) ≥ � = (T − 2)p + (T − p)p5.

“⇒”: Let Z be an exact cover by 3-sets in instance I. Consider partition π
which

– for each Yj ∈ Z forms a coalition Cj made up of the three blue agents who
have j+3

j+6 among their top 3 ranked fractions together with (j +3) arbitrarily
chosen red agents,

– and assigns the remaining agents (who, by the fact that Z is an exact cover
by 3-sets, must all be red agents) to the single coalition D.

By the fact that Z is an exact cover by 3-sets each blue agent is in a coalition
with a fraction she ranks first, second, or third. Each red agent is in a coalition
of fraction 1 or j+3

j+6 for some 1 ≤ j ≤ p. Thus, we have SW (π) ≥ (T − 2)p +
(T − p)p5 = �.

“⇐”: Let π be an outcome with SW (π) ≥ �. Note that any outcome in which
all blue agents are engaged in the same coalition yields a total Borda score of
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at most (T − 3)p + (T − p − 1)p5 < �. Hence, any outcome meeting the desired
bound splits the set of blue agents into at least two coalitions.

Assume there is a blue agent bk who is not in a coalition with fraction ranked
among her top 3 fractions. Since the blue agents are not in a single coalition,
the maximum possible Borda score for that agent is scπ(i) = T − 2 − |R| − 1 =
T − 3 − p5. For the remaining p − 1 blue agents the maximum Borda score is T .
Next, observe that any coalition’s fraction among the first p ranked fractions of
agents ri corresponds to k+3

k+6 for some 1 ≤ k ≤ p, and hence the number of blue
agents required in such a coalition is a multiple of 3. Since there are only p blue
agents in total, there are less than p

3 (p + 3) red agents involved in coalitions of
fraction k+3

k+6 for some k. Thus the largest possible total Borda score contributed
by all red agents is p

3 (p + 3)T + (p5 − p
3 (p + 3))(T − p). Thus,

SW (π) ≤ T − 3 − p5 + T (p − 1) + p
3 (p + 3)T + (p5 − p

3 (p + 3))(T − p)
= T (p + p

3 (p + 3) + p5 − p
3 (p + 3)) − p6 + p3

3 + p2 − 3 − p5

= T (p5 + p) − p6 − p5 + p3

3 + p2 − 3
< T (p5 + p) − p6 − 2p
= �

in contradiction with our assumption.
As a consequence, each blue agent’s coalition must have a fraction ranked

among her top 3 fractions. Since each such fraction is among the top 3 fractions
of exactly three blue agents, each respective coalition requires exactly 3 blue
agents (because such a coalition requires a multiple of 3 agents). Therewith, the
collection of sets Z = {Yj | ∃C ∈ π : θR(C) = j+3

j+6} forms an exact cover by
3-sets in I. �

6 Conclusion

We have provided several computational complexity results for hedonic diversity
games with respect to two kinds of solution concepts: stability notions that stem
from game theory on the one hand, and the concept of (maximum) social welfare
that origins from social choice theory on the other. Concerning the latter, we
have taken into account two prominent types of scores from voting theory, namely
approval scores and Borda scores. Some interesting questions, however, are still
open. In particular, what is the computational complexity involved in deciding
whether a dichotomous hedonic diversity game admits a Nash stable outcome
in the case of exactly one approval per agent? How hard is it to decide whether
a dichotomous hedonic diversity game admits a strictly core stable outcome
when each agent approves of exactly one or at most two fractions? And more
generally, which (additional) plausible domain restrictions allow for a polynomial
time computation of outcomes that are stable or maximize social welfare?

Acknowledgments. The author would like to thank Edith Elkind for useful discus-
sion and is grateful for the valuable comments provided by the reviewers.
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Abstract. In the real world, people/entities usually find matches inde-
pendently and autonomously, such as finding jobs, partners, roommates,
etc. It is possible that this search for matches starts with no initial
knowledge of the environment. We propose the use of a multi-agent rein-
forcement learning (MARL) paradigm for a spatially formulated decen-
tralized two-sided matching market with independent and autonomous
agents. Having autonomous agents acting independently makes our envi-
ronment very dynamic and uncertain. Moreover, agents lack the knowl-
edge of preferences of other agents and have to explore the environ-
ment and interact with other agents to discover their own preferences
through noisy rewards. We think such a setting better approximates the
real world and we study the usefulness of our MARL approach for it.
Along with conventional stable matching case where agents have strictly
ordered preferences, we check the applicability of our approach for sta-
ble matching with incomplete lists and ties. We investigate our results
for stability, level of instability (for unstable results), and fairness. Our
MARL approach mostly yields stable and fair outcomes.

Keywords: Stable matching · Multi-agent reinforcement learning ·
Decentralized system

1 Introduction

Matching markets are prevalent in the real world, for example, matching of stu-
dents to colleges, doctors to hospitals, employees to employers, men and women,
etc. A two-sided market consists of two disjoint sets of agents. In a two-sided
stable matching problem, each participant has preferences over the participants
on the other side. A matching is stable if it does not contain a blocking pair. A
blocking pair is formed if two agents from disjoint sets prefer each other rather
than their current partner. Although, most of the prior literature focuses on cen-
tralized algorithms where the entire set of preferences is known to some central
agency, having such a central clearinghouse is not always feasible. Therefore,
we consider a decentralized matching market with independent and autonomous
agents.

There have been several decentralized matching methods proposed in recent
years. However, many of them assume that the agents have knowledge of one
c© Springer Nature Switzerland AG 2021
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another’s preferences and can easily approach/contact each other, i.e., negligi-
ble search friction. In reality, it takes time to meet a partner and to learn the
value of said partnership. Furthermore, there is seldom a scope for knowing the
preferences of other agents. Also, it is a crucial task to locate and approach
a potential match, either by navigating physically or virtually. Several decen-
tralized matching markets, such as worker-employer markets and buyer-seller
trading markets, consist of locations at which matching agents may meet, be it
physically or online. The level of information, search cost, medium of interaction,
and commitment laws can vary across markets. Nonetheless, these are the impor-
tant features of decentralized markets. Some research works study the impact of
these features on the final outcomes for certain types of markets [5,22,23]. To
better represent these features, we propose a generalized matching problem in
which agents are placed in a grid world environment and must learn to navigate
it in order to form matches. We see this as a generalized case for matching prob-
lems. While it contains the features described above, it does not conform to the
standards set by any individual market type.

There are multiple factors involved in deciding a preferred match in real-
world situations, and having a score for each match is more expressive. Thus, we
consider weighted preferences for a stable matching problem, which is discussed
in [8,13,24]. The weighted preference is used as the utility value (or reward)
for being in the match. These scores reflect the underlying preference order.
Agents are initially unaware of others’ preferences as well as of their own. In
many matching markets, knowledge acquisition is important: in labor markets,
employers interview workers; in matching markets, men and women date; and in
real estate markets, buyers attend open houses. We have taken this into account,
so an agent gets to know a noisy version of its utility for a match only after being
part of it. Noise represents uncertainty in the value of a partnership, e.g., the
uncertain nature of human behavior in relationships.

Finding a long-term match in this scenario is quite a complex task. There-
fore, we propose multi-agent reinforcement learning (MARL) as an alternative
paradigm where agents must learn how to find a match based on their experiences
interacting with others. We equip each agent with their own reinforcement learn-
ing (RL) module. We use SARSA, a model-free, online RL algorithm. Instead
of a common reward signal, each agent has a separate intrinsic reward signal.
Therefore, we model this problem as a stochastic/Markov game [17], which is
useful in modeling multi-agent decentralized control where the reward function
is separate for each agent. Agents learn to operate in the environment with the
goal of increasing expected total reward, by getting into a long-term, stable, or
close-to-stable and fair match. We impose search cost as a small negative reward
(–1) for each step whenever an agent is not in a match.

We investigate the applicability of the MARL approach to the conventional
stable matching (SM) problem, as well as its extensions, such as stable match-
ings with incomplete lists (SMI), where agents are allowed to declare one or
more partners unacceptable [9], and stable matching with ties (SMT), where
agents have the same preference for more than one agent [9,12]. Moreover, we
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study both the cases of symmetric and asymmetric preferences of agents towards
each other. Stability is one of the main measures in our investigation. We check
whether our method yields stable results and then to which stable matching
the method will converge if there are multiple stable matchings. As we have a
dynamic decentralized system with agents having incomplete information, it is
hard to guarantee stability for every instance. For unstable outcomes, we check
instability with three measures: the degree of instability calculates the number
of blocking agents, i.e., those agents who are part of blocking pairs [27]; the
ratio of instability gives the proportion of blocking pairs out of all possible pairs
[6]; and maximum dissatisfaction, which is the maximum difference between an
agent’s current utility and their obtainable utility by being part of the blocking
pair. Overall, we found that many of our outcomes are stable, or if not, they
are close-to-stable. Also, it is easy to get stable outcomes for instances with
symmetric preferences and harder for the asymmetric ones.

It is important for the outcome to be fair to all the agents, as the goal of the
agents is to increase only their own happiness. Therefore, we use three measures
of fairness: set-equality cost, regret cost, and egalitarian cost [9]. We compare
the fairness of our results to those of bidirectional local search, a centralized
approach, and two decentralized approaches: Hoepman’s algorithm [11], and a
decentralized algorithm by Comola and Fafchamps. Note that these algorithms
solve the much easier, non-spatial problems, usually with the assumptions of
complete information on the part of agents. Nonetheless, our approach performs
competitively in terms of fairness. Lastly, similar to [5], we check the proportion
of overall median stable matchings, as well as individual median matchings in
our results, which are other important measures of fairness.

2 Related Work

Reinforcement Learning has not been used for the decentralized two-sided stable
matching problem, but researchers have applied both RL and Deep RL mech-
anisms to solve coalition formation problems. This is closest to our work as
matching problems are a special case of coalition formation problems. In [1],
Bachrach et al. proposed a framework for training agents to negotiate and form
teams using deep reinforcement learning. They have also formulated the problem
spatially. Bayesian reinforcement learning has also been used for coalition forma-
tion problems [2,18]. Unlike most of the work in MARL approaches for coalition
formation and task allocation, our agents cannot communicate with each other
(although they can observe other agents in the same cell). Nonetheless, their
utilities get affected by the actions of other agents.

Researchers have studied several decentralized matching markets, and have
proposed frameworks for modeling them and techniques for solving them, and
have also analyzed different factors that affect the results [4,5,10,20–23,29].
Most of these works focus on job markets. Echenique and Yariv, in their study
of one-to-one matching markets, proposed a decentralized approach for which
stable outcomes are prevalent, but unlike our formulation of a problem, agents
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have complete information of everyone’s preferences [5]. Unlike our work, none
of these works have formulated the problem spatially, and also, they have used
different methods than RL. Some distributed algorithms for weighted matching
include algorithms that are distributed in terms of agents acting on their own
either synchronously or asynchronously [11,15,33]. The crucial assumption in
these works is that agents already know their preferences over the members of
the opposite set and can directly contact other agents to propose matches.

Most of the decentralized methods mentioned here allow agents to make
matching offers and accept/reject such offers. While in our approach, an agent
shows interest in pairing with an agent from the other set that is present at the
same location, by selecting a relevant action. The agent’s state space represents
those agents from the opposite set that are present at the same cell location and
also which ones among them are interested in pairing. Agents get matched only
when both the agents select an action for pairing with each other. While this
may seem similar to making, accepting, or rejecting offers, it is not exactly the
same.

3 Preliminaries

Our two-sided stable matching problem consists of n agents divided equally into
two disjoint sets S1 and S2. These agents are placed randomly on the grid with
dimensions H × L. We investigate if agents can learn good matching policies in
a decentralized, spatial setting.

Definition 1. In the classical two-sided stable matching problem (SM),
each agent has a strict preference order p over the members of the other set.
Given matching M , the pair (i, j) with an agent i ∈ S1 and an agent j ∈ S2 is
a blocking pair for M , if i prefers j and j prefers i to their respective partners
in M . A matching is said to be stable if it does not contain any blocking pairs.

The preferences are expressed as weights and hence referred to as weighted
preferences. A weight/score represents the true utility value an agent may receive
by being in a particular match. These weights still correspond to a strict prefer-
ence order for each agent. An agent only gets to know the utility from a match
when it is in that particular match. Even then, it only receives a noisy utility
value for that match rather than the true, underlying utility value. It can be
formally written as: for i ∈ S1 and j ∈ S2, agent i receives the utility Uij · C for
being in a match with j, where C is the noise, sampled from a normal distribu-
tion with mean μ = 1 and standard deviation σ = 0.1 and Uij is the true utility
value that agent i can get from a match with agent j. Agents still have a strict
preference order p over the agents on the other side. Uij is picked uniformly from
range [k, l] ∈ Z, while maintaining the strict preference order.

We also consider following two extensions of the SM problem.

Definition 2. The stable matching problem with incomplete preference
lists (SMI) may have incomplete preference lists for those involved. In this
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case, the members of the opposite set who are unacceptable to an agent simply
do not appear in their preference list [9].

As we have a score based formulation, an agent has negative scores for unac-
ceptable agents of the other set.

Definition 3. Some agents may be indifferent (i.e., have the same utility)
between two or more members of the opposite set. This is called the stable
matching problem with ties (SMT) [9,12].

We consider two types of preferences among agents: symmetric and asym-
metric.

For i ∈ S1 and j ∈ S2, let pi(j) (pj(i), respectively) denote the position of
i in j’s preference list (the position of j in i’s preference list, respectively). In
symmetric preferences, pi(j) = pj(i) (in our case, Uij = Uji as well), which
is not guaranteed to be the case in asymmetric preferences. With asymmet-
ric preferences (similar to random preferences in literature), there can be many
different stable matchings in a market. However, in the case of symmetric pref-
erences, there can be only one stable matching where each agent gets their best
choice. Our environment is dynamic and uncertain, and also, due to the nar-
row difference between noisy utilities, it can be hard for agents to discriminate
between their choices efficiently. This can cause unstable outcomes, especially for
asymmetric preferences. Therefore, if a stable outcome does not emerge, then
we investigate the nature of instability with the following three measures.

Definition 4. The degree of instability (DoI) of the matching is the number
of blocking agents, i.e., the agents that belong to some blocking pair [27].

Eriksson and Häggström pointed out that, rather than only looking for the
number of blocking agents, it can also be helpful to look at the number of
blocking partners of an agent, as it gives insight into how likely the agent will
exploit instability [6]. Their notion of instability is defined as follows.

Definition 5. For any matching M under preference structure P (m) on a set
of m agents, let B

(m)
P (M) denote the number of blocking pairs. Let B̂

(m)
P (M)

denote the proportion of blocking pairs: B̂
(m)
P (M) = B

(m)
P (M) / m2 [6].

While Eriksson and Häggström call this measure the ‘instability’ of the
matching M , we call it the ratio of instability (RoI). We also use a third
measure, maximum dissatisfaction (MD). It is inspired by the notion of
α-stability in [24] which is specific to SM with weighted preferences.

Definition 6. In matching M , for every blocking agent x, let y be their current
match and v be their partner in some blocking pair, then

MD(M) = max
(x,v)

{Uxv − Uxy}.
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Increase in this number may lead to exploitation of instability by agents in
the market. Stability in the outcomes does not guarantee fairness. We consider
three measures of fairness to check the quality of matchings as given in [9].

Definition 7. The regret cost, r(M) = max
(i,j)∈M

max{pi(j), pj(i)}.

Definition 8. The egalitarian cost, c(M) =
∑

(i,j)∈M

pi(j) +
∑

(i,j)∈M

pj(i).

Definition 9. The set-equality cost, d(M) =
∑

(i,j)∈M

pi(j) − ∑

(i,j)∈M

pj(i).

Lower values for these measures indicate better quality of the matchings.
Especially, low regret cost and set-equality cost indicate fairness among agents.
It is well known that the Gale-Shapley algorithm provides a matching that is
optimal for only one side, over all possible stable matchings. Thus, one notion
of fairness is to consider the median of the set of stable matchings, so as to priv-
ilege neither set over the other. Thus, similar to [5], we check whether the final
matchings are median stable matchings (MSM), and overall, what proportion of
individual matches are median matches (MM). The well-known median property
is first discovered by Conway [9]. A median matching exists whenever there is
an odd number of stable outcomes. It is the matching that is in the middle of
the two sides’ orders of preference. Thus, the median stable matching represents
some sense of fairness as it balances the interests of both sides.

Definition 10. Let P be a preference profile with the set of stable matchings
S(P ). If K = |S(P )| is odd, the median stable matching (MSM) is a
matching M ∈ S(P ) such that for all agents a ∈ S1 ∪ S2, M(a) occupies the
K+1
2 th place in a’s preference among the agents in {M ′(a)|M ′ ∈ S(P )}. M(a)

is a’s median partner among a’s stable-matching partners [5]. While MSM is for
overall matching, median match (MM) refers to individual matches between
the agents, i.e., an individual agent being matched to its median stable match
partner.

Multi-agent Reinforcement Learning

As mentioned earlier, we propose a multi-agent reinforcement learning
(MARL) approach that enables each agent to learn independently to find a
good match for itself. A reinforcement learning agent learns by interacting with
its environment. The agent perceives the state of the environment and takes an
action, which causes the environment to transition into a new state at each time
step. The agent receives a reward reflecting the quality of each transition. The
agent’s goal is to maximize the expected cumulative reward over time [30]. In
our system, although agents learn independently and separately, their actions
affect the environment and in turn affect the learning process of other agents as
well. As agents receive separate intrinsic rewards, we modeled our problem as
a Markov game. Stochastic/Markov games [17] are used to model multi-agent
decentralized control where the reward function is separate for each agent, as
each agent works only towards maximizing its own total reward.



MARL for Decentralized Stable Matching 381

A Markov game with n players specifies how the state of an environment
changes as the result of the joint actions of n players. The game has a finite
set of states S. The observation function O : S × {1, . . . , n} → Rd specifies a d-
dimensional view of the state space for each player. We write Oi = {oi|s ∈ S, oi =
O(s, i)} to denote the observation space of player i. From each state, players
take actions from the set {A1, . . . , An} (one per player). The state changes as
a result of the joint action 〈a1, ..., an〉 ∈ 〈A1, ..., An〉, according to a stochastic
transition function T : S × A1 × ... × An → Δ(S), where Δ(S) denotes the
set of probability distributions over S. Each player receives an individual reward
defined as ri : S×A1×...×An → R for player i. In our multi-agent reinforcement
learning approach, each agent learns independently, through its own experience,
a behavior policy πi: Oi → Δ(Ai) (denoted π(ai|oi)) based on its observation
oi and reward ri. Each agent’s goal is to find policy πi which maximizes a long
term discounted reward [30].

4 Method

We propose a MARL approach for decentralized two-sided stable matching prob-
lems that are formulated spatially on a grid. For each agent, the starting location
is picked uniformly randomly from the grid cells. As agents go through episodic
training, they start in this same cell location in each episode and explore the
environment. Agents must first find each other before they can potentially form
matches. This approximates the spatial reality of meeting with individuals (at,
e.g., bars or parties) or organizations (at, e.g., job fairs).

We believe that finding a partner for oneself is an independent task, where
agents do not necessarily need to compete or even co-operate. Agents only need
to learn to find a suitable partner. Each agent independently learns a policy using
the RL algorithm, SARSA [28,30], with a multi-layer perceptron as a function
approximator to learn the set of Q-values. An agent’s learning is independent of
other agents’ learning as all the agents have separate learning modules (neural
networks). We use SARSA because it is an on-policy algorithm in which agents
improve on the current policy. Unlike off-policy algorithms like deep Q-learning
where agents’ behavior while learning can be erratic due to inconsistencies in
the policy, on-policy algorithms follow the same policy and improve on it, which
is useful when the agent’s exploratory behavior matters. In real-world matching
markets, there is a value to the path of finding a final match. SARSA is also a
model-free algorithm, so that agents directly learn policies, without having to
learn the model.

While exploring, agents cannot perceive any part of the environment other
than their cell location. If an agent encounters another agent from the opposite
set in the same cell and both the agents show interest in matching with each
other, at the same time step, then they get matched. As agents can only view
their current grid cell, agents can only match with one another if they are in the
same cell. As long as agents are matched, they receive a noisy reward as a utility
value at each time step. This noise is sampled from the normal distribution and
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the true utility value is multiplied by this noise. Note that our environment is
deterministic. We now describe the agents’ observation space, action space, and
reward function.

Observation Space: An observation Oi for an agent i at time step t, let’s
say Oi[t], consists of three one-hot vectors. The first one represents an agent’s
position on the grid, the second vector represents which members of the opposite
set are present in the current cell, and third one shows if any of those agents
are interested in forming a match. The size of Oi is R × C + 2 · m, where R and
C are the number of rows and columns in the grid and m is the total number
of members of the opposite set. The size of the first hot vector is equal to the
total number of grid cells, and the size of the second and third vector is equal
to the size of the opposite set. Thus, an agent initially starts out knowing only
the dimensions of the grid and the total number of agents in the opposite set.

Action Space: There are two types of actions available to an agent: navigating
the grid and expressing an interest in matching with an agent from the opposite
set. The action space is of size m + 4, where m is the size of the opposite set
and each member has an action associated with it for showing an interest in
matching with that member. There are 4 additional actions for navigating the
grid by moving up, down, left, and right. There is no specific action for staying
in the same grid cell because whenever an agent is interested in forming a match
with another agent, it automatically stays in the same cell. When two collocated
agents show an interest in forming a match with one another, then the match
is considered to be formed. Note that once a match is formed, the agents must
continue to express interest in each other at each time step in order to maintain
the match. If at some point, one ceases to express interest, the match is dissolved.

Reward Function: We have a noisy reward function described as: (1) −1
reward for not being in a match. (2) The immediate reward received by an
agent i for a matching of agents i and j is Rij = Uij · C, where C is the noise,
sampled from a normal distribution with mean μ = 1 and standard deviation
σ = 0.1 and Uij is the true utility value that agent i can get from a match with
agent j.

Agents have prior knowledge of the grid size and the total number of agents
in the opposite set because of the way the states are constructed. However,
they completely lack the knowledge of the weighted preferences/utility values
of other agents. Furthermore, agents only get to know their own utility for an
agent on the other side when they get into a match with it, and that utility value
is noisy. In our setup, individuals may choose to be in a match until someone
better comes along or may choose to leave a match in order to explore further
and look for someone better. Thus, a time step in which all agents are paired is
not necessarily stable, because agents may break off a partnership to explore, or
another, more appealing agent may be willing to partner with them.
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5 Experiments

In this section, we present the ways we tested our approach on stable matching
problems. Our main focus is on investigating the applicability of our MARL
approach. Along with the classical stable matching case (SM), we examine how
MARL performs on variations such as stable matching with incomplete lists
(SMI) and ties (SMT). We consider two types of preferences among agents:
symmetric and asymmetric. As mentioned earlier, agents have weighted prefer-
ences over agents on the other side. For an agent i ∈ S1, it can be seen as the
utility value Uij that it gets while in a match with agent j ∈ S2. In the case of
SM and SMT problems, these weights are generated from a uniform random dis-
tribution in the range [1, 10]; for SMI, the weights are generated from a uniform
random distribution in the range [−10, 10] (negative weights indicate how much
one agent dislikes the other). For SM and SMI problems, the instances where
agents have weights reflecting the strictly ordered preferences are chosen for the
experiments. This constraint is removed while choosing SMT instances.

As we formulate the problems on a grid, we investigate results for increasingly
complex environments. This complexity is in terms of grid size and the number of
agents. We use grid sizes 3×3, 4×4, and 5×5 in combination with 8, 10, 12, and
14 agents as follows: (1) Grid: 3×3 ; Agents: 8; (2) Grid: 4×4 ; Agents: 8, 10, 12,
14; (3) Grid: 5×5 ; Agents: 8, 10, 12, 14. We do not place more than 8 agents on a
3×3 grid to keep a reasonable density of the population. We chose grid sizes such
that agents find other agents easily accessible. This is motivated by real-world
places like bars, parties, job fairs, etc. We think that our choices of grid size and
number of agents are sufficient to get the essence of realistic situations. Starting
cell locations of agents are chosen uniformly randomly from the grid cells, and
agents are placed back to these locations at the start of each episode. We run
experiments for every possible combination of matching problem variation (SM,
SMI, and SMT), preference type (symmetric and asymmetric), grid size, and
total agents. We implement 10 different instances of each of these combinations.
Each instance is generated by assigning weights between the agents uniformly
randomly while still maintaining the preference order if needed.

Parameter Settings: Each agent independently learns a policy using SARSA
[28,30] with a multi-layer perceptron as a function approximator to learn a set of
Q-values. Each network consists of 2 hidden layers with 50 and 25 hidden units,
respectively. We trained models using the Adam optimizer [16] with learning
rate 10−4 to minimize TD-control loss. We used discount factor, γ = 0.9. We
have combined SARSA with experience replay for better results. The use of
experience replay along with SARSA has been proposed by Zhao et al. [34].
As SARSA is an on-policy algorithm, we only used data from recent (last 10)
episodes in our experience replay buffer, which increased our performance over
not using a replay buffer. The number of training episodes and steps varies
based on grid-size and the total number of agents in an instance. The number of
steps per episode varies between 300–700 and training can take between 100k to
400k episodes to converge. When there are multiple suitable matches available
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in the environment for an agent, a proper exploration strategy is needed to
find the best among them. Therefore, we used exploration rate with non-linear
decay, such that it is high in the beginning but decays later (with a minimum
exploration rate, ε = 0.05). Learning rate and discount factor are fine tuned as
the outcomes are slightly sensitive to these hyper-parameters; however, results
are robust to the changes in other hyper-parameters.

We investigate stability and fairness of the outcomes. Roth hypothesized that
the success of a centralized labor market depends on whether the matchmaking
mechanism generates a stable matching [26]. Although we have decentralized
matching market, we think that stability is still an important measure of the
success. For the SM problem, stable matchings always exist, and for the SMI and
SMT problems, at least a weakly stable matching exists [14]. In weak stability,
a blocking pair is defined as

(
i, j

)
such that M(i) �= j, j �i M(i), and i �j

M(j) [14]. Note that in SMI instances, agents can end up without a partner as
incomplete lists make some potential matches unacceptable.

As we have a dynamic and uncertain environment and agents with incom-
plete knowledge, there is a scope for the rise of instability. Economic experi-
ments on decentralized matching markets with incomplete information [19,31]
have yielded outcomes with considerable instability. We use three more mea-
sures to study instability: the degree of instability (DoI), the ratio of instability
(RoI), and maximum dissatisfaction (MD) (details in Preliminaries). Stable or
close-to-stable solutions do not guarantee fairness, specifically for asymmetric
preference cases. As agents are independent and autonomous, we need to check
the efficacy of our approach from an individual agent’s point of view. Therefore,
we use three fairness measures: set-equality cost, regret cost, and egalitarian
cost. Additionally, we check the proportion of both median stable matchings as
well as individual median matches. We compare our results with both centralized
and decentralized algorithms. The comparison baselines are detailed below.

Bidirectional Local Search Algorithm (BLS). [32] is a centralized local
search algorithm for stable matching with set-equality. It uses the Gale-Shapley
algorithm [7] to compute S1-optimal and S2-optimal stable matchings and exe-
cutes bi-directional search from those matchings until the search frontiers meet.

Hoepman’s Algorithm (HA). [11] is a variant of the sequential greedy algo-
rithm [25] which computes a weighted matching at most a factor of two away
from the maximum. It is a distributed algorithm in which agents asynchronously
message each other.

Decentralized Algorithm by Comola and Fafchamps (D-CF). [3] is
designed to compute a matching in a decentralized market with deferred accep-
tance. Deferred acceptance means an agent can be paired with several other
partners in the process of reaching their final match. This algorithm includes
a sequence of rounds in which agents take turns in making proposals to other
agents, who can accept or reject them. While Comola and Fafchamps focused
on many-to-many matching, the method can be easily adapted for one-to-one
matching.
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Note that not only BLS but also HA and D-CF are non-spatial algorithms
where agents already have knowledge of every other agent present in the system.
This gives them a significant advantage over the agents in our system, both
because the agents know whom they prefer and because they have instantaneous
contact, rather than having to wander around in a grid world. Both of the
decentralized algorithms use randomness while forming their final matching,
giving different results each time. Therefore, we run each instance 5 times and
compare to the average of those runs. We also run our MARL approach 5 times
for each instance. We discovered that if a stable outcome is found, the same one
is found consistently, but if not, then the outcomes vary.

6 Results and Discussion

We evaluate the results for stability, as well as the level of instability for unstable
outcomes. We use three measures to evaluate instability: the degree of instabil-
ity (DoI), the ratio of instability (RoI), and maximum dissatisfaction (MD). As
fairness in the outcomes is also important, we use three fairness measures: set-
equality cost, regret cost, and egalitarian cost. In addition to this, we check what
percent of the stable matchings are median stable matchings, as well as what
percent of the individual matches are median matches. Results for SM and SMT
problems with symmetric preferences and for SMI problem with both symmetric
and asymmetric preferences are straightforward, therefore, are mentioned in the
text. However, the results for SM and SMT problems with asymmetric prefer-
ences needed more analysis. We elaborate on the results of SM problem with
asymmetric preferences in Tables 1, 2, 3, as we think that this is the most rele-
vant and adverse case. Due to lack of space, we omitted the similar analysis of
the results for the SMT-asymmetric case; however, those results are very similar
to the ones presented for the SM-asymmetric case.

Table 1. For SM (asymmetric) case, MARL results on stability (%), instability mea-
sures (Avg ± Std) and median matches (%).

Grid 3 × 3 4 × 4 5 × 5

Agents 8 8 10 12 14 8 10 12 14

Stability(%) 100 92.0 82.0 68.0 56.0 80.0 74.0 54.0 46.0

DoI 0 2 ± 0.0 2 ± 0.0 3.3 ± 1.3 3.2 ± 1.7 2 ± 0.0 2.5 ± 1.1 2.8 ± 0.9 3.5 ± 1.6

RoI 0 0.04 ± 0.0 0.04 ± 0.0 0.06 ± 0.01 0.07 ± 0.02 0.04 ± 0.0 0.04 ± 0.01 0.05 ± 0.02 0.07 ± 0.03

MD 0 1.75 ± 0.9 2.89 ± 1.7 3.13 ± 1.9 3.89 ± 1.8 2.33 ± 1.5 2.77 ± 1.4 3.25 ± 1.9 4.44 ± 2.3

MM(%) 83.1 73.2 65.3 63.4 52.4 75.0 67.1 58.9 48.7

Many of our outcomes are stable or close-to-stable. For SM problem with
symmetric preferences, there is only one possible stable matching, and all the
outcomes converge to that. However, for asymmetric preferences, more than one
stable matching is possible. The instances with symmetric preferences converge
faster than the asymmetric ones. The instances of SM and SMT with asym-
metric preferences take longer to converge, with lower rates of convergence to
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stability. The results of SM and SMT are similar. Additionally, for SM asym-
metric instances, we have observed that the agents disliked by everyone in the
opposite set (low utility associated with them by everyone) find it difficult to
get a long-term match. Similarly, unsurprisingly, the most-liked agent (high util-
ity associated with them by everyone) easily settles with its ideal match. We
also noticed that the noise in utilities adversely affects convergence to stable
outcomes.

When it comes to SMI, our results are always stable. The number of agents
that are matched is the maximum possible. This is important because when
agents have incomplete lists (negative utilities for matches), it is hard to get a
match for everyone, even though it is easier for some agents to find stable partner
due to fewer choices. Here, the final outcome always has the lowest regret cost.
Importantly, between the agents in the matched pair, there can be an agent
having zero utility towards its match, while the other agent still has positive
utility for the same match. As the agent with positive utility tries to get in a
match, having noise in the reward causes the agent with zero utility to stick to
the match. Note that this does not happen when both the agents in the match
have zero utility for the match, as neither of them tries to stick with the match.

Table 2. For SM (asymmetric) case, comparison of set-equality cost and regret cost
in (Avg ± Std) format; results for 8 agents on 3 × 3 grid not included due to limited
space.

N Set-equality Cost; d(M) Regret Cost; r(M)

MARL (4 × 4) MARL (5 × 5) BLS HA D-CF MARL (4 × 4) MARL (5 × 5) BLS HA D-CF

8 3.1 ± 2.4 3.9 ± 2.5 2.9 ± 2.1 2.6 ± 1.8 3.1 ± 1.7 3.6 ± 0.8 3.5 ± 0.8 3.5 ± 0.8 3.7 ± 0.7 3.5 ± 0.8

10 2.9 ± 2.1 3.2 ± 2.8 3 ± 2.8 3.5 ± 1.6 4 ± 2.7 4.3 ± 0.8 4.1 ± 0.7 4 ± 0.8 4.6 ± 0.5 4.2 ± 0.9

12 4.6 ± 3.5 6.6 ± 3.8 5 ± 4.2 4 ± 4.2 4 ± 4.2 5.4 ± 0.8 5.3 ± 0.9 5.1 ± 0.9 5.3 ± 1.1 5.1 ± 0.9

14 7 ± 9.2 7.4 ± 7.7 7.5 ± 4.9 7.2 ± 4.4 7.5 ± 4.9 6.7 ± 0.7 5.9 ± 1.3 5.7 ± 1.1 5.6 ± 1.0 5.7 ± 1.1

From Table 1, which elaborates on the results of the SM-asymmetric case,
we can see that the curse of dimensionality in how the number of agents affects
stability. Although the grid size also affects stability, its impact is much less. Both
of these factors affect the convergence rate as well: more complex environments
take longer to converge. The environment with 8 agents on a 3 × 3 grid is the
easiest one for training agents, and 100% of the outcomes are stable, while the
one with 14 agents on a 5 × 5 grid is the hardest to train and the stability
of the final outcomes declined significantly to 46%. Nonetheless, we can also
see from the measures of instability that the outcomes are close-to-stable. Note
that in Table 1 the values associated with these measures are averaged over only
unstable outcomes. The average number of blocking agents (DoI) is low in all
cases. We also checked the proportion of blocking pairs (RoI), as the greater
this number, the more likely that blocking agents will discover and exploit the
instability at some point [6]. Our approach does well for this measure. This
follows the suggestion by Eriksson and Häggström that if agents increase the
search effort rather than picking random partners, then we can expect outcomes
to have a very small proportion of blocking pairs [6].
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Table 3. For SM (asymmetric) case, comparison of egalitarian cost in (Avg ± Std)
format.

N Egalitarian Cost; c(M)

MARL (4 × 4) MARL (5 × 5) BLS HA D-CF

8 15.3 ± 2.8 15.1 ± 2.3 15.5 ± 2.7 16.6 ± 2.8 15.5 ± 2.7

10 20.3 ± 2.7 20.4 ± 3.4 19.8 ± 2.8 25.1 ± 3.7 20.4 ± 2.9

12 31 ± 5.9 28.4 ± 4.6 27.6 ± 3.4 32.6 ± 5.1 27.8 ± 3.3

14 41.4 ± 6.1 39.4 ± 5.6 34.9 ± 3.5 41.2 ± 6.9 34.9 ± 3.5

Furthermore, we look at the maximum dissatisfaction (MD) that an agent
can have for an outcome, as great dissatisfaction may also lead to exploiting
instability. This number is also low, which assures that there is a low likelihood
of blocking agents exploiting unstable outcomes in the market. We think that the
dynamic and uncertain environment, incomplete information, noisy utilities, and
the narrow differences in the utilities between matches found for an individual
over different episodes are potential reasons behind the emergence of instability
in the outcomes. Especially in the case of asymmetric preferences, it is unlikely
that an agent’s ideal partner also best prefers that agent.

In Tables 2 and 3, we compare fairness in the outcomes with three other
algorithms. Here, we can see that MARL performs competitively, and there is
no significant difference between the fairness results. The regret cost of MARL
is slightly, but not significantly, higher for all the types of instances. Hoepman’s
algorithm (HA) and the decentralized algorithm by Comola and Fafchamps (D-
CF) are decentralized approaches. While D-CF always produces stable outcomes,
that may not be the case with HA. Our approach performed better than HA
in almost all the cases and very similarly to the D-CF algorithm. Again, our
approach performs well despite being implemented on a fundamentally more
complex formulation of the problem than the ones for HA and D-CF. Further,
when our outcomes are stable, they usually match with those found by BLS.
It shows that despite the decentralization, our MARL approach is capable of
producing outcomes as good as those found by a central agency. This is further
supported by the fact that the good proportion of individual matches are median
matches (shown in Table 1). Also, approximately half of the stable matchings are
median stable matchings. We think that the fairness is achieved because agents
are self-interested and independent, and the stability is achieved as agents learn
to find their best viable matches.

The learned policies include agents moving to a fixed location from their
starting point and getting into a match corresponding to the final outcome.
It is possible that more than one pair is formed at the same location, but it
is rare. The location where agents in a pair move to form the match is not
necessarily the mid-point of the distance between starting points of two agents,
nor is it guaranteed to be close to either starting point. Centralized algorithms
do not work on a grid; they produce matchings but not the learned policies. This
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shows that the real-world entities can benefit from using our MARL approach
to learn to efficiently navigate the environment in finding and maintaining the
good match.

7 Conclusion and Future Work

We have shown that the MARL paradigm can be successfully used for decen-
tralized stable matching problems that are formulated spatially in a dynamic
and uncertain environment, with independent and autonomous agents having
minimum initial knowledge. Our MARL approach is also applicable for varia-
tions such as SM with incomplete lists and ties. Agents tend to be happy with
their final matches, as outcomes are stable or close-to-stable and fair for every-
one. Even with unstable outcomes, agents are less likely to exploit instability.
In future work, we plan to work on bigger instances, environments where agents
can arbitrarily enter and exit the matching market, and investigate environments
where a few agents can learn while others have a fixed policy.

References

1. Bachrach, Y., et al.: Negotiating team formation using deep reinforcement learning
(2018)

2. Chalkiadakis, G., Boutilier, C.: Bayesian reinforcement learning for coalition for-
mation under uncertainty. In: Proceeding of AAMAS 2004, pp. 1090–1097 (2004)

3. Comola, M., Fafchamps, M.: An experimental study on decentralized networked
markets. J. Econ. Behav. Organ. 145, 567–591 (2018)

4. Diamantoudi, E., Miyagawa, E., Xue, L.: Decentralized matching: the role of com-
mitment. Games Econ. Behav. 92, 1–17 (2015)

5. Echenique, F., Yariv, L.: An experimental study of decentralized matching (2012)
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Abstract. In the literature of two-sided matching, each agent is
assumed to have a complete preference. In practice, however, each agent
initially has only partial information and needs to refine it by costly
actions (interviews). For one-to-one matching with partial information,
the student-proposing Lazy Gale-Shapley policy (LGS) minimizes the
number of interviews when colleges have identical partial preferences.
This paper extends LGS to a significantly more practical many-to-one
setting, in which a college can accept multiple students up to its quota.
Our extended LGS uses a student hierarchy and its performance (in
terms of the required number of interviews) depends on the choice of
this hierarchy. We prove that when colleges’ partial preferences satisfy a
condition called compatibility, we can obtain an optimal hierarchy that
minimizes the number of interviews in polynomial-time. Furthermore, we
propose a heuristic method to obtain a reasonable hierarchy when com-
patibility fails. We experimentally confirm that compatibility is actually
much weaker than being identical, i.e., when the partial preferences of
each college are obtained by adding noise to an ideal true preference, our
requirement is much more robust against such noise. We also experimen-
tally confirm that our heuristic method obtains a reasonable hierarchy
to reduce the number of required interviews.

Keywords: Two-sided matching · Many-to-one matching ·
Gale-shapley algorithm · Partial information · Partial preferences

1 Introduction

Two-sided matching deals with finding an appropriate matching between two
types of agents (i.e., students and colleges). This topic has attracted much atten-
tion both from economics and computer science [3,10,19]. In traditional settings,
agents are assumed to have complete information in advance about all the agents
of the other type. However, such an assumption may not hold in practice. For
instance, in a school choice program, a student may initially lack sufficient infor-
mation to distinguish among several colleges. Matching with partial information
captures and formalizes such cases. An agent is initially endowed with partial
knowledge of her underlying strict preference and refines it through actions:
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costly interviews [17,23]. Recent works tackle this problem from various view-
points, e.g., combining interviews and queries to elicit preferences [6], restricting
available partial information [7], considering other variants of stability [11,22],
considering cases where each student’s quality is unknown and estimating it
by colleges’ private signals [2,5], or examining communication complexity when
partial preferences are clarified by simple queries [9,20].

The Lazy Gale-Shapley policy (LGS) [23] is an extension of the Gale-
Shapley algorithm (GS) [8] for one-to-one matching with partial information.
LGS obtains the student-optimal matching by performing interviews. When all
colleges have identical partial preferences (i.e., the Identical Equivalence Class
condition (IEC) is satisfied), LGS minimizes the number of interviews among all
the policies that obtain the student-optimal matching.

This paper extends the results obtained by Rastegari et al. [23] to many-to-
one matching, which has many real-life applications, including school choice [16]
and hospital-residency matching [13]. To the best of our knowledge, no discus-
sion exists on extending LGS to many-to-one matching. Our extended LGS is
guaranteed to obtain the student-optimal matching. It uses a student hierarchy;
its performance (in terms of the required number of interviews) depends on the
choice of this hierarchy.

Our first main contribution is to show that we can obtain an optimal hierar-
chy that minimizes the number of interviews when colleges’ partial preferences
satisfy a condition called compatibility. This condition is more generally applica-
ble than being identical. We quantitatively show that our compatibility condition
is fairly robust against preference diversity, while IEC is likely to fail immediately.
Compatibility is efficiently verified by a graph-based algorithm where students
are vertices and the colleges’ preferences are edges. Our second main contribution
is to develop a heuristic, greedy method to obtain a reasonable hierarchy when
compatibility fails. We experimentally evaluate how well our heuristic method
obtains a reasonable hierarchy to reduce the number of required interviews.

2 Model

In this section, we introduce the model of a many-to-one matching problem with
partial information. The model and properties introduced in this section are
fairly standard in two-sided matching literature (e.g., see [24] for a comprehensive
survey), except that we assume each agent initially has only partial information
on her preference. Most of the concepts and representations related to partial
information are based on [23]. More specifically, an instance of a many-to-one
matching problem with partial information is given as: (S,C, pS , pC ,�S ,�C , qC).

– S = {s1, . . . , sn} is a set of n students.
– C = {c1, . . . , cm} is a set of m colleges.
– pS = (ps)s∈S is a profile of the partial preferences of the students, where each

ps is the partial preference of student s. More specifically, ps partitions C∪{∅}
into finite equivalence classes (p1s, p

2
s, . . .). Each pk

s ⊆ C ∪ {∅},
⋃|ps|

k=1 pk
s =
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C ∪ {∅}, and for any k �= k′, pk
s and pk′

s are disjoint. ps represents a strict
preference order among equivalence classes, as described later.

– pC = (pc)c∈C is a profile of the partial preferences of the colleges, where each
pc is the partial preference of college c over S ∪{∅}. As with ps, pc partitions
C∪{∅} into finite equivalence classes (p1c , p

2
c , . . .). We say pC satisfies Identical

Equivalence Class condition (IEC), if pc is identical for all c ∈ C.
– �S= (�s)s∈S is a profile of the underlying preferences of the students, where

each �s is the underlying strict preference of student s over C ∪ {∅}, which
must be consistent with ps. We call �s consistent with ps if for any c ∈ pk

s

and c′ ∈ pk′
s such that k < k′ holds, c �s c′ holds.

– �C= (�c)c∈C is a profile of the underlying preferences of the colleges, where
each �c is the underlying strict preference of c over S ∪ {∅}, which must be
consistent with pc. Consistency is defined analogously to ps and �s.

– qC = (qc)c∈C ∈ N
m
≥0 is a profile of the colleges’ quotas.

Student s prefers college c to college c′(�= c) under ps if c ∈ pk
s and c′ ∈ pk′

s such
that k < k′. Note that c and c′ may be ∅. pc’s meaning is defined analogously.
Student s is acceptable to college c if s �c ∅ holds. College c is acceptable to
student s if c �s ∅ holds. Similarly, student s (or college c) is unacceptable to
college c (or student s) if s (or c) is not acceptable to c (or s).

Initially, s is not sure about her preference over colleges in the same equiv-
alence class. In particular, if c, ∅ ∈ pk

s , she is initially not sure whether c is
acceptable for her. Matching μ ⊆ S × (C ∪ {∅}) is an assignment of the stu-
dents to colleges such that each student is assigned to at most one college.
μ(s) ∈ C ∪{∅} denotes the college to which s is matched, and μ(c) ⊆ S denotes
the set of students assigned to c. We assume μ(s) = c if and only if s ∈ μ(c)
holds. μ(s) = ∅ denotes that s is not assigned to any college. Matching μ is
student-feasible if, for each s ∈ S, either μ(s) = ∅ or μ(s) �s ∅ holds. Matching
μ is college-feasible if, for each c ∈ C, |μ(c)| ≤ qc holds, and s �c ∅ holds for
each s ∈ μ(c). A matching is feasible if it is student and college feasible.

Stability and student-optimality are two important desiderata [24].

Definition 1 (Stability). For matching μ, pair (s, c) is a blocking pair if c �s

μ(s), and either (i) |μ(c)| < qc and s �c ∅ hold, or (ii) s′ ∈ μ(c) exists such
that s �c s′ holds. A matching is stable if it is feasible and has no blocking pair.

Definition 2 (Student-Optimality). Student s weakly prefers matching μ to
matching μ′ if μ(s) �s μ′(s) or μ(s) = μ′(s). A matching is student-optimal if
it is stable and weakly preferred by all students to any other stable matching.

The existence of the unique student-optimal matching is guaranteed since it is
obtained by GS [24]. To achieve the student-optimal matching, we need more
detailed information on the preferences of both the students and the colleges.
One way is to do interviews [23]. Here we formally define the interview process.
An interview between student s and college c is represented as (s : c). Through
it, student s learns more about college c and vice versa. If two colleges, c and
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c′, belong to the same equivalence class of s, she knows her preference between
them only after both (s : c) and (s : c′) are held.1

An information state represents part of an underlying preference revealed by
a sequence of interviews.

Definition 3 (Information State). Information state Is of student s is the
strict order of the interviewed colleges (as well as ∅). Information state Ic of
college c is analogously defined.

Information state Is (resp., Ic) refines partial preference ps, i.e., Is is con-
sistent with ps. Next we introduce a policy and its desirable characteristics.

Definition 4 (Policy). A policy is a procedure that conducts a sequence of
interviews and returns a matching for given S,C, pS , pC , and qC . A policy is
sound if it returns the student-optimal matching under any underlying prefer-
ences �S and �C , which are consistent with pS and pC .

Note that a sound policy may allow a student and a college to be matched
without any interview. In practice, this may be inappropriate. For example, a
firm might be required to examine an applicant’s qualifications before hiring her.
We theoretically and practically pursue this notion by diligence.

Definition 5 (Diligence). A policy is diligent if it is sound, and for obtained
matching μ, μ(s) = c holds only if an interview was conducted between s and c.

For diligent policies, we compare the number of interviews and define a dom-
inance relation as follows.

Definition 6 (Very Weak Dominance). Policy f very weakly dominates
another diligent policy g if f conducts no more interviews than g for any under-
lying preferences.2 A policy is very weakly dominant if it is diligent, and very
weakly dominates any other diligent policy.

3 Extension of Lazy Gale-Shapley

We formally describe our extension of LGS [23] for many-to-one matching. The
policy uses a hierarchy of students o = (o1, o2, . . .), which partitions S into finite
equivalence classes o1, o2, . . ., such that ok ⊆ S for each k,

⋃|o|
k=1 ok = S, and ok

and ok′
are disjoint (k �= k′). During LGS process, student s can be forbidden by

college c, meaning that s cannot apply to c. Each college initially forbids students
who are ranked strictly lower than ∅. Also, c is unchecked for s if (s : c) has
1 Intuitively, we can assume that a student and a college have an underlying cardinal

preference, e.g., vs(c) represents the utility of s to be assigned to c, which is normal-
ized by vs(∅) = 0. She prefers c to c′ if vs(c) > vs(c

′) holds. Through interviews,
the students/colleges learn the utility of the colleges/students.

2 For two policies that behave exactly the same, they very weakly dominate each other.
We call this definition “very weak dominance” since it is weaker than the standard
notion of weak dominance.
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not been conducted yet, c is acceptable to s, and s is not forbidden by c. As
standard GS, it keeps on determining the tentative assignment of students. The
tentative assignment is finalized when the policy terminates.

For a given hierarchy o = (o1, o2, . . .), as well as S,C, pS , pC , and qC , LGS
runs as follows.

Policy 1 (Lazy Gale-Shapley for Many-to-One Matching).

Initialization: Set μ to an empty assignment. For each s ∈ S, add ∅ to Is. For
each c ∈ C, add ∅ to Ic. Set k to 1.

Stage k (≥ 1): As long as a student remains in o1 ∪ ... ∪ ok, whose assignment
is not determined yet, do the following; otherwise, go to Stage k + 1 (when
ok+1 does not exist, return μ and terminate).
Step 1: Choose student s ∈ o1 ∪ ... ∪ ok whose assignment is not determined

yet.
Step 2: If an acceptable college in Is exists, by which s is not forbidden, go to

Step 3. Otherwise, choose the top remaining equivalence class p�
s that con-

tains an unchecked college. Conduct interview (s : c) for each unchecked
college c ∈ p�

s. Update Is and Ic accordingly. If s is unacceptable to c, let
c forbid s. If no such equivalence class remains, set μ(s) to ∅ and repeat
Stage k.

Step 3: Choose the most preferred, acceptable college c in Is from which s
is not forbidden. Set μ(s) to c, μ(c) to μ(c) ∪ {s}.

Step 4: If |μ(c)| > qc, choose student s′, who is ranked the lowest in μ(c)
based on Ic. Unassign s′ from c, and let c forbid s′.

Step 5: If |μ(c)| = qc, let s′ be the student who is ranked the lowest in μ(c)
according to Ic. For each student s′′, who is ranked strictly lower than s′

either in Ic or pc, let c forbid s′′. Repeat Stage k.

If we assume IEC is satisfied, i.e., all colleges have identical partial preferences
over students, we can use this unique preference for student hierarchy o. By
further assuming that each college c can accept at most one student, i.e., for
each college c, qc = 1 holds, Policy 1 becomes equivalent to LGS for one-to-one
matching presented in [23]. The differences are that we do not assume IEC is
(always) satisfied (thus Policy 1 can be very weakly dominant even when IEC
fails), and each college can tentatively accept at most qc students (Step 4).

The following example shows how LGS works.

Example 1. Consider four students, S = {s1, s2, s3, s4}, and three colleges, C =
{c1, c2, c3}, whose quotas are qc1 = qc2 = 1 and qc3 = 2. Assume that LGS uses
hierarchy o = ({s1, s3}, {s2}, {s4}). Partial preferences pS and pC are:

ps1 : ({c1, c3}, {∅}, {c2}), pc1 : ({s1, s3}, {s4, ∅}, {s2}),
ps2 : ({c1, c3}, {c2, ∅}), pc2 : ({s1}, {s2, ∅}, {s4}, {s3}),
ps3 : ({c1, c2, c3, ∅}), pc3 : ({s3}, {s2}, {s4, ∅}, {s1}),
ps4 : ({c2, c3}, {c1, ∅}).

Before running LGS, college c1 forbids student s2 who is ranked strictly lower
than ∅. Similarly, college c2 forbids s3 and s4, and c3 forbids s1. First, from
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o1 = {s1, s3}, one student is chosen. Assume s1 is chosen at Step 1. Then the
interviews to her most preferred unchecked colleges are conducted. In this case,
since s1 is already forbidden by c3, interview (s1 : c1) is conducted. The infor-
mation states are: Is1 : (c1, ∅), Ic1 : (s1, ∅). Student s1 is assigned to her most
preferred and not yet forbidden college in Is1 , i.e., c1. Then μ = {(s1, c1)}. Since
qc1 = |μ(c1)|, c1 forbids less preferred student s4 (Step 5).

Next student s3 ∈ o1 is chosen, who was initially forbidden by c2. Two
interviews (s3 : c1) and (s3 : c3) are conducted here. Assuming c1 �s3 ∅ �s3 c3
and s3 �c1 s1, the information states change: Is3 : (c1, ∅, c3), Ic1 : (s3, s1, ∅),
and Ic3 : (s3, ∅). Student s3 is assigned to c1. Since qc1 > |μ(c1)|, s1, who is
ranked lowest in μ(c1), is unassigned and forbidden by c1 (Step 4). Student s1 is
chosen again in Step 1. Since she has neither unchecked nor acceptable colleges,
μ(s1) is set to ∅. Thus, μ = {(s1, ∅), (s3, c1)}.

Next student s2 ∈ o2 is chosen. Since she is forbidden by c1, interview (s2 : c3)
is conducted. The information states change: Is2 : (c3, ∅) and Ic3 : (s3, s2, ∅).
Student s2 is assigned to c3. Thus, μ = {(s1, ∅), (s2, c3), (s3, c1)}. Finally, s4 ∈ o3

is chosen and interview (s4 : c3) is conducted. The information states change:
Is4 : (c3, ∅) and Ic3 : (s3, s2, s4, ∅). Student s4 is assigned to c3. As a result,
μ = {(s1, ∅), (s2, c3), (s3, c1), (s4, c3)}. Now the assignment of every student is
fixed; LGS returns μ.

We show that LGS inherits the following fundamental desiderata from one-
to-one settings.

Theorem 1. LGS is diligent, and runs in polynomial-time for many-to-one
matching.

Proof. Student s applies to the most preferred acceptable college in Is by which
she is not forbidden. Student s is forbidden by college c only when she has
no chance to be assigned. Thus, the matching obtained by LGS and GS must
be identical; LGS is sound. Also, student s is matched to college c only after
interview (s : c) has been conducted. Thus, LGS is diligent. Once student s is
forbidden from college c, she will never apply to c. Thus, Step 1 in Policy 1 is
executed at most O(nm) times. The number of interviews is at most O(nm).
Thus, LGS runs in polynomial-time. 	


4 Very Weak Dominance of LGS

In this section, we first introduce a condition on hierarchy o called prudence,
such that LGS becomes a very weakly dominant policy with o. Then we clarify a
sufficient condition on colleges’ partial preferences called compatibility such that
a prudent hierarchy exists.

Assume interview (s : c) is conducted. Afterwards, if it turns out that c can
forbid s based on the current assignment regardless of the outcome of (s : c), we
say interview (s : c) becomes irrelevant. For example, assume c prefers s to s′ in
pc, where qc = 1. When s is assigned to c, interview (s′ : c) becomes irrelevant
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since c forbids s′ even though interview (s′ : c) is not conducted. On the other
hand, if s and s′ are in the same equivalence class in pc, (s′ : c) will not be
irrelevant since c can forbid s′ only after conducting (s′ : c).

Definition 7 (Prudent Hierarchy). Given pC and qC , o is prudent if, under
LGS with o, the following conditions hold.

(i) The assignment of s ∈ ok does not change after the assignment of all the
students in o1, . . . , ok is determined. More specifically, s will not be rejected
due to student in ok′

such that k < k′ and stays with the college to the end.
(ii) The assignment of s ∈ ok never makes any interview irrelevant, which is

conducted by student s′ in o1, . . . , ok.

Condition (i) means that, when s′ ∈ ok′
(k < k′) applies to college c that

accepts s, c never rejects s due to s′. Thus, in each stage k in Policy 1, no
student in o1, . . . , ok−1 is selected (again) in Step 1. Condition (ii) means that
no interview performed by LGS becomes irrelevant. The next lemma shows that
o’s prudence is a sufficient condition for LGS with o to be very weakly dominant.

Lemma 1. If o is prudent, then LGS with o is a very weakly dominant policy.

Proof. By contradiction, assume another diligent policy g conducts strictly fewer
interviews than LGS with prudent hierarchy o. Since g is sound, obtained match-
ing μ must be identical in g and LGS. Interview (s : c) exists which is conducted
in LGS and not in g. Assume s ∈ ok. Since g is diligent, μ(s) = c′ (�= c) holds,
and (s : c′) is also conducted in LGS. Two cases are possible: (a) c �s c′ and (b)
c′ �s c.

For case (a), since μ is stable, |μ(c)| = qc and for each s′ ∈ μ(c), s′ �c s must
hold. Since o is prudent, each s′ ∈ μ(c) must be in o1, o2, . . . , ok (otherwise,
s ∈ ok is rejected due to some student s′ ∈ ok′

s.t. k < k′). Let us assume
s ∈ p�

c. Then, since for each s′ ∈ μ(c), s′ �c s holds, s′ ∈ p�′
c (�′ ≤ �) holds.

Assume S′ = p�
c ∩ μ(c) is non-empty. Then, for each s′ ∈ S′, without interview

(s : c), we cannot determine whether s′ �c s holds. Thus, we cannot guarantee
that g always obtains a stable matching. Thus, S′ must be empty. Next, assume
S′′ = ok ∩ μ(c) is non-empty. Then, when all students in S′′ are assigned to c,
interview (s : c) becomes irrelevant, even though s ∈ ok. This violates the fact
that o is prudent. Thus, S′′ must be empty. Then, for each s′ ∈ μ(c), s′ must be
in o1, o2, . . . , ok−1. Then, c must forbid s in LGS when the assignments of the
students in o1, . . . , ok−1 are determined. This contradicts our assumption that
LGS conducts interview (s : c).

For case (b), the fact that interview (s : c) is conducted while s is assigned to
c′ in LGS means that c and c′ belong to the same equivalence class in ps. Then
without interview (s : c), we cannot determine whether c′ �s c holds. Thus, g
does not always obtain a stable matching; if c �s c′ holds and s can be assigned
to c, μ is no longer stable. 	


Next we clarify the condition where a prudent hierarchy exists by introducing
the following classification of students.
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Definition 8 (Possibly/Certainly Acceptable Students). For college c ∈
C such that ∅ ∈ p�

c, we call the students in Sc =
⋃�

k=1 pk
c \ {∅} possibly accept-

able. We call the students in S \ Sc certainly unacceptable.
For college c ∈ C such that |⋃�′

k=1 pk
c \ {∅}| ≤ qc < |⋃�′+1

i=k pk
c \ {∅}| holds,3

we call the students in Ŝc = {s ∈ Sc | s ∈ pk
c , 1 ≤ k ≤ �′} certainly acceptable.

Possibly acceptable students Sc include all acceptable students {s ∈ S | s �c ∅}.
Furthermore, Sc includes all students in p�

c, where ∅ ∈ p�
c. College c might

realize that such a student is actually unacceptable after an interview. A possibly
acceptable student can be assigned to c based on the preferences/applications
of the other students, but a certainly unacceptable student has no chance to be
assigned to c (i.e., she is also unacceptable). A certainly acceptable student will
not be rejected if she applies to c (except for the case that s ∈ p�

c, and after
interview (s : c), ∅ �c s holds), regardless of the preferences/applications of the
other students.

With this classification, we introduce compatibility.

Definition 9 (Compatible Preferences). pC and qC are compatible if a
hierarchy of students o = (o1, o2, . . .) exists such that for each pair of students
s, s′, for each college c, one of the following conditions holds:

(i) the order of s and s′ is identical in o and pc. More specifically, (a) if s, s′ ∈
ok, then s, s′ are in the same equivalence class in pc, (b) if s ∈ ok and
s′ ∈ ok′

such that k < k′, c prefers s to s′ in pc, and (c) if s ∈ ok and
s′ ∈ ok′

such that k > k′, c prefers s′ to s in pc.
(ii) s, s′ ∈ Ŝc, or
(iii) either s or s′ �∈ Sc.

When pC and qC are compatible, we call o, which satisfies the above conditions,
a compatible hierarchy.

We require qC to define a compatible hierarchy since the definitions of Sc

and Ŝc depend on qc. Informally, compatible preferences require colleges to have
the same partial structure among any pair of students, except when both are
certainly acceptable ((ii) in Definition 9) or when at least one of them is certainly
unacceptable ((iii) in Definition 9). Here we relax the restrictive IEC condition,
i.e., colleges’ partial preferences must be identical, by fully exploiting the fact
that a college can accept multiple students up to its quota, and some students are
certainly unacceptable in the many-to-one matching extension. When colleges’
partial preferences are identical, we can use that partial preference as compatible
hierarchy o. Thus, our compatibility condition is a strict generalization of IEC.

The following lemma shows that compatibility is a sufficient condition where
a prudent hierarchy exists.

Lemma 2. If pC and qC are compatible and o is a compatible hierarchy, then o
is prudent.

3 We assume �′ = 0 when |p1
c \ {∅}| > qc and Ŝc = {}.
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Proof. By contradiction, assume that o is compatible but not prudent. Two cases
are possible: (a) student s ∈ ok is rejected by c by assigning student s′ ∈ ok′

to
c, s.t. k < k′, and (b) by the assignment of s ∈ ok to c, interview (s′ : c), s.t. s′

in ok′
and k′ ≤ k, becomes irrelevant.

In case (a), s′ �c s holds. Then either c prefers s′ to s in pc or both s and
s′ are in the same equivalence class. Since s is rejected by c after assigning s′, s
cannot be certainly acceptable. Thus, s ∈ Sc \ Ŝc holds. Also, s′ ∈ Sc must hold.
Thus, in either case, k′ ≤ k must hold assuming o is a compatible hierarchy.
This is a contradiction.

In case (b), college c must (at least) weakly prefer s to s′ in pc. However, if s
and s′ are in the same equivalence class, s′ cannot be forbidden by c without an
interview. Thus, c must strictly prefer s to s′ in pc. Also, since s′ is forbidden from
c, s′ cannot be certainly acceptable. Thus, s′ ∈ Sc \ Ŝc holds. Also, s ∈ Sc must
hold. Since o is a compatible hierarchy, k < k′ must hold. This is a contradiction.

	

We can check whether pC and qC are compatible and obtain a compatible

hierarchy o when they are compatible by creating compatibility graph G(pC , qC),
described below, and applying the following procedure to it.

Definition 10 (Compatibility Graph). Given pC and qC , their compatibility
graph is weighted digraph G(pC , qC) = (S,E) defined as follows:

– S is a set of vertices (identical to the set of students).
– If for any pair s ∈ Sc and s′ ∈ Sc \ Ŝc such that s �= s′ and c prefers s to s′

in pc for some c ∈ C, edge (s, s′) ∈ E with weight −1 exists.
– For any pair s, s′ ∈ Sc \ Ŝc such that s �= s′ and s and s′ are in the same

equivalence class in pc for some c (and no edge (s, s′) with weight −1 exists),
edge (s, s′) ∈ E with weight 0 exists.

As described later in Lemma 3, the fact that G(pC , qC) has no negative
cycle (i.e., a cycle that includes at least one negative edge) is a sufficient and
necessary condition that pC and qC are compatible. Therefore, we can verify the
compatibility and obtain the compatible hierarchy when no negative cycle exists
by implementing the following procedure.

Procedure 1.

1. Divide vertices in G(pC , qC) into connected components V1, V2, . . . Vp by 0
edges. We say Vk is a connected component by 0 edges if for any i, j ∈ Vk,
a path exists between i and j consisting of 0 edges (here, we ignore the edge
direction of 0 edges).

2. If any −1 edge exists within a connected component, terminate the procedure
with failure.

3. Otherwise, construct a component graph, i.e., V1, V2, . . . , Vp are vertices, and
a directed edge from Vk to V� exists if there exists −1 edge (i, j) and i ∈ Vk

and j ∈ V�.
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4. For the obtained component graph, we first identify a set of vertices V∗, each
of which has no incoming −1 edge. If no such vertex exists, then the original
compatibility graph has a negative cycle. Thus, we terminate the procedure
with failure. Otherwise, we set o1 to

⋃
Vk∈V∗ Vk. Remove each Vk ∈ V∗ and

its connecting edges from it, and repeat the same procedure to obtain o2, and
so on.

Example 2. Let us illustrate how Procedure 1 works. Consider the setting
of Example 1. Certainly/possibly acceptable students are: Ŝc1 = {}, Sc1 =
{s1, s3, s4}, Ŝc2 = {s1}, Sc2 = {s1, s2}, Ŝc3 = {s2, s3}, and Sc3 = {s2, s3, s4}. We
first divide this graph into connected components by 0 edges {s1, s3}, {s2}, {s4}.
There is no −1 edge within a connected component. The component graph has
no cycle. The vertex for {s1, s3} has no incoming edge. Thus, o1 = {s1, s3}. After
removing this vertex and connecting edges, the vertex for {s2} has no incoming
edge. Thus, o2 = {s2}. After removing this vertex and connecting edges, there
is only one vertex for s4. Thus, o3 = {s4}. Procedure 1 terminates successfully
and obtains o = ({s1, s3}, {s2}, {s4}). It is easy to verify that pC and qC are
compatible. In Example 1, this hierarchy is used; LGS is very weakly dominant.

The following lemma shows that having no negative cycle is a sufficient and
necessary condition for compatibility (thus, Procedure 1 is correct).

Lemma 3. pC and qC are compatible if and only if their compatibility graph has
no negative cycle.

Proof. For the “if” part, when the compatibility graph has no negative cycle,
Procedure 1 returns hierarchy o. We show that such o is a compatible hierarchy.
By contradiction, assume o is not a compatible hierarchy, i.e., for some c and
some pair (s, s′), the order of s and s′ in o is different from their order in pc,
either s or s′ is not in Ŝc, and both s and s′ are in Sc. W.l.o.g., assume c weakly
prefers s to s′ in pc. There are two cases: (1) s and s′ are in the same equivalence
class in pc, while they are in different equivalence classes in o, or (2) c prefers s
to s′ in pc, where s ∈ ok, s′ ∈ ok′

, and k ≥ k′.
In case (1), due to pc, there must be edges (s, s′) and (s′, s) with weight 0;

there cannot be a negative weight edge between s and s′ since we assume no
negative cycle exists. Then, s and s′ must be in the same connected component.
Thus, they must be in the same equivalence class in o. This is a contradiction.

In case (2), due to pc, edge (s, s′) with weight −1 exists in G(pC , qC). Thus,
the connected component that includes s must be chosen earlier than that
includes s′. Then, if s ∈ ok and s′ ∈ ok′

, k < k′ must hold. This is a con-
tradiction.

For the “only if” part, assume by contradiction that a negative cycle exists in
G(pC , qC). Since pC and qC are compatible, there exists a compatible hierarchy o.
Assume edge (s, s′) exists in G(pC , qC) and s ∈ ok and s′ ∈ ok′

. When its weight
is −1, college c exists such that s ∈ Sc, s′ ∈ Sc \ Ŝc, and c prefers s to s′ in pc.
Since o is a compatible hierarchy, k < k′ must hold. When its weight is 0, college
c exists such that s, s′ ∈ Sc \ Ŝc and s and s′ are in the same equivalence class
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in pc. Since o is a compatible hierarchy, k = k′ holds. Assume a negative cycle
of students s1, s2, . . . , s�, s1 exists. Let o(s) denote the index of the equivalence
class to which s belongs in o. Then o(s1) ≤ o(s2) ≤ . . . ≤ o(s�) ≤ o(s1) holds
and at least one inequality must be strict. This is a contradiction. 	


From Theorem 1 and Lemmas 1 and 2, we immediately obtain Theorem 2.
Theorem 3 shows the time complexity for checking compatibility.

Theorem 2. Assume pC and qC are compatible, and o is a compatible hierarchy.
Then LGS with o is a very weakly dominant policy for any pS.

Theorem 3. For given pC and qC , checking their compatibility (and obtaining
a compatible hierarchy when they are compatible) can be done in O(mn2).

Proof. From Lemma 3, Procedure 1 can check the compatibility of pC and qC ,
and obtain a compatible hierarchy when they are compatible. Building compat-
ibility graph G(pC , qC) requires O(mn2), i.e., for each pair of vertices/students,
we need to check the partial preference of each college. In Procedure 1, we can
identify connected components by performing depth-first search, which requires
O(|S|+|E|) time. Then, checking the existence of any −1 edge within a connected
component requires O(|E|) time. Finally, Step. 4, which is a slight modification
of a topological sort algorithm [12], requires O(|S| + |E|) time. Thus, time com-
plexity of Procedure 1 in total is O(n2). 	


5 When Compatibility Fails

We can apply LGS with any hierarchy and obtain the student-optimal matching
even when colleges’ partial preferences do not satisfy compatibility, as shown by
Theorem 1. However, the required number of interviews can vary according to
the chosen hierarchy. It is desirable to choose a hierarchy that is as close to the
colleges’ partial preferences as possible. Now, we need to define a criterion to
measure the closeness among preferences/hierarchies. One plausible criterion is
the distance metric used in Kemeny’s voting scheme [14], which is introduced
by Kemeny [14]. It is the unique voting scheme that satisfies several natural
axiomatic conditions [27]. In Kemeny’s voting scheme, we choose a preference
that minimizes the total Kendall tau distance (the number of pairwise disagree-
ments between two students) [15].

Unfortunately, using Kemeny’s voting scheme is computationally too expen-
sive; a decision version of Kemeny’s voting scheme is NP-complete [4]. Thus, we
propose the following heuristic, greedy procedure to find a reasonable hierarchy.
Its time complexity is O(n2), assuming G(pC , qC) is already built.

Procedure 2.

1. k ← 1, G ← G(pC , qC).
2. If a vertex exists that has no incoming −1 edge in G, then choose such a

vertex s (if a vertex also has some 0 edge between removed vertices, choose
such a vertex first). Otherwise, choose vertex s using a certain criterion.

3. ok ← {s}, k ← k +1, remove s and its connecting edges from G, and go to 2.



Lazy Gale-Shapley for Many-to-One Matching with Partial Information 401

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200
Su

cc
es

s r
at

e 
of

 c
om

pa
tib

le
 / 

id
en

tic
al

 p
re

fe
re

nc
es



Compatibility(C=50)
Compatibility(C=10)

IEC(C=50)
IEC(C=10)

Fig. 1. Success rate of compatibility/IEC by varying ω

Procedure 2 obtains hierarchy o, which is actually a total order (i.e., |ok| = 1
for each k). When pC and qC are compatible, there always exists a vertex that
has no incoming −1 edge. Then, the obtained hierarchy is essentially equivalent
to a compatible hierarchy, where the order among students in the same equiva-
lence class is determined arbitrarily, while the order among students in different
equivalence classes are preserved. For the criterion choosing a vertex, we adopt
the following heuristic method.

– For each −1 edge, we count its support, i.e., the number of colleges that
require it. We choose vertex s with the fewest total supports of its incoming
−1 edges.

6 Experimental Evaluation

All the experiments presented in this section were executed on a Windows com-
puter with 32 GB memory and Intel CPU Core i7-8700K with Java 14, Python
3.6, and R 3.3.0. We set n = 400, m = 10, and qc = 40 for every college c and
created 1, 000 problem instances for each parameter setting. Let σC denote the
average size of the equivalence classes in pc; we split n students into n/σC equiv-
alence classes. As σC increases, the information held initially by each college
becomes more coarse-grained. σS is defined analogously.

First, we quantitatively compared the generality of our compatibility con-
dition against IEC. We randomly generated colleges’ partial preferences pC as
follows and checked whether the compatibility condition and IEC are satisfied.
Initially, all colleges have the same underlying strict order among students. Then
for each college, we performed ω swaps of contiguous students in this order. Every
swap was randomly chosen. Then we inserted acceptability threshold ∅ in the
qc(1 + ψ)-th position in the strict student order. By splitting the order for each
college c into n/σC pieces, we obtained pc. More specifically, let us assume n/σC ,
i.e., there are � partitions. Then we randomly choose �−1 different natural num-
bers from {1, 2, . . . , n − 1} and obtain x1, x2, . . . , x�−1 (sorted in the increasing
order). Then, the first equivalence class has x1 students, the second equivalence
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Fig. 2. Reduction ratios and incompatibility scores

class has x2 − x1 students, and so on. The way of splitting is common to all col-
leges, i.e., for all c, c′, and �, |p�

c| = |p�
c′ | holds. We plotted the rate that obtained

partial preferences remain compatible or satisfying IEC (which we call success
rate) by varying σC and ω (Fig. 1), while ψ is fixed to 0.25.

As σC increases, the success rate also rises, since the partial preferences
become more coarse-grained and the chance decreases that a swap matters. By
increasing ω, the compatibility success rate gradually decreases. The compatibil-
ity condition is fairly robust compared to IEC. For example, after 30 swaps, the
IEC success rate becomes zero, although the compatibility success rate remains
over 65% when σC = 50.

Next we evaluated the ratio of interviews reduced in LGS by choosing an
appropriate hierarchy. For each student s, we first generated her underlying
strict preference �s based on the Mallows model [18,26] with spread parameter
θ. Then we decomposed it into m/σS pieces to obtain ps (the way for splitting
is analogous to the method used for creating pc). In the Mallows model, the
students’ underlying strict preferences become more similar as θ increases.

For each instance, we counted the upper-bound of the required interviews as
follows. For each student s, who is matched to college c ∈ pk

s in the student-
optimal matching, we assume (s, c′) is performed for all c′ ∈ ∪1≤�≤kp�

s, except
when s is certainly unacceptable for c′. LGS never performs interview (s, c′),
where c′ ∈ pk′

s and k′ > k. For a problem instance, if LGS performs x interviews
while the upper-bound is x̄, then the reduction ratio is given as (x̄ − x)/x̄.

To measure how the colleges’ partial preferences are incompatible, we intro-
duce the following incompatibility score. For each pair of students s and s′,
assume each college c votes for their relative order, i.e., s (or s′) must be in
a preceding equivalence class, they must be in the same equivalence class, or
abstain (c does not care since conditions (ii) or (iii) holds in Definition 9). By
assuming the majority wins, we can count the number of wasted votes (excluding
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the abstentions). We use a normalized count, i.e., the total number of wasted
votes for all pairs and for all colleges divided by n(n−1)m

2 .
We show the reduction ratio by varying ω from 0 to 500, where σC = 4,

σS = 2, ψ = 6.5, θ = 0.5 (Fig. 2 (a)), and θ = 0.8 (Fig. 2 (b)). We show a
scattered plot where the x-axis denotes the incompatibility score and the y-
axis denotes the reduction ratio. We also plotted the result where hierarchy o
is chosen at random. The reduction ratio of our heuristic method decreases as
the incompatibility score becomes large. However, the slope is rather gentle;
e.g., when the score is 0, the reduction ratio is about 0.43 for θ = 0.5, while it
remains 0.35 when the score is 0.23 in Fig. 2 (a). The reduction ratio of a random
hierarchy increases as the incompatibility score increases, since no hierarchy is
particularly good/bad when colleges’ partial preferences are almost at random.
Our heuristic method also obtains a much better hierarchy than a randomly gen-
erated one. Furthermore, the reduction ratio improves when θ is large, i.e., when
students’ preferences become more similar. This is because, as the competition
among students becomes more severe, the chance increases that a college forbids
a student without an interview. The upper-bound of the required interviews is
larger when θ = 0.8: about twice as many as the case where θ = 0.5. Thus, we
have more room for reduction.

From these results, we conclude that the hierarchy obtained by our heuristic
method is reasonable since its reduction ratio is not too far from the case where
a theoretically optimal hierarchy is available.

7 Concluding Remarks

Our extension of LGS is practically important since many-to-one matching has
many real-life applications, where agents are not likely to have complete infor-
mation in advance. Since GS plays a central role in the literature, clarifying its
theoretical properties and the experimental performance of its extension under
partial information is indispensable. Obvious future works include identifying a
necessary and sufficient condition of colleges’ preferences to guarantee the min-
imality of LGS, as well as examining other heuristic methods for obtaining a
reasonable hierarchy. Understanding to what extent the complexity results pre-
sented in [23] carry over is also important. Scrutinizing the robustness against
various manipulations would also be interesting [1,21,25].
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Abstract. We present a new model of collective decision making that
captures important crowd-funding and donor coordination scenarios. In
the setting, there is a set of projects (each with its own cost) and a
set of agents (that have their budgets as well as preferences over the
projects). An outcome is a set of projects that are funded along with
the specific contributions made by the agents. For the model, we identify
meaningful axioms that capture concerns including fairness, efficiency,
and participation incentives. We then propose desirable rules for the
model and study, which sets of axioms can be satisfied simultaneously.
An experimental study indicates the relative performance of different
rules as well as the price of enforcing fairness axioms.

Keywords: Social choice · Participatory budgeting · Fairness ·
Crowd-funding

1 Introduction

Consider a scenario in which a group of residents want to pitch in money to
buy some common items for the house but not every item is of interest or use to
everyone. Each of the items (e.g. TV, video game console, music system, etc.) has
its price. The residents each have a maximum amount they can spend towards
the common items. Residents would like to have as much money as possible
used toward items that are useful to them. It is a scenario that is encountered
regularly in shared houses or apartments.

As a second scenario, hundreds of donors want to fund charitable projects.
Each of the projects (e.g. building a well, enabling a surgery, funding a scholar-
ship, etc.) has a cost requirement. Donors have upper caps on their individual
budgets and care about the amount of money that is used towards projects of
which they approve. The question of how to coordinate the funding in a prin-
cipled and effective way is a fundamental problem in crowdfunding and donor
coordination. The model that we propose is especially suitable for coordinating
donations from alumni at various universities.

Both of the settings above are coordination problems in which agents con-
tribute money, and they have preferences over the social outcomes. A collective
outcome specifies which projects are funded and how much agents are charged.
c© Springer Nature Switzerland AG 2021
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For these problems, we consider the following question. What is a desirable and
principled way of aggregating the preferences and financial contributions of the
agents?

Contributions. We propose a formal model that we refer to as Participatory
Funding Coordination (PFC) that captures many important donor coordination
scenarios. In this model, agents have an upper budget limit. The outcome for
the problem is a set of projects that are funded and the respective monetary
contributions of the agents for the funded projects. The utility of the agents is
the amount of money used for projects that are approved by them. It reflects
the approved investment from the perspective of an individual agent. We lay the
groundwork for work on the model by formulating new axioms for the model. The
logical relations between the axioms are established and the following question
is studied: which sets of axioms are simultaneously achievable? We propose and
study rules for the problems that are inspired by welfarist concerns but satisfy
participation constraints. In addition to an axiomatic study of the rules, we also
undertake an experimental comparison of the rules. The experiment sheds light
on the impact that various fairness or participation constraints can have on the
social welfare. This impact has been referred to as the price of fairness in other
contexts. In particular, we investigate the effects of enforcing fairness properties
on instances that model real-world applications of PFC, including crowdfunding.

2 Related Work

Our model generally falls under the umbrella of a collective decision making set-
ting in which agents’ donations and preferences are aggregated to make funding
decisions. It is a concrete model within the broad agenda of achieving effective
altruism [18–20].

The model we propose is related to the discrete participatory budgeting
model [3–5,14,16,21]. In discrete participatory budgeting, agents do not make
personal donations towards the projects. They only express preferences over
which projects should be funded. We present several axioms that are only mean-
ingful for our model and not for discrete participatory budgeting. Algorithms
for discrete participatory budgeting cannot directly be applied to our setting
because they do not take into account individual rationality type requirements.

Another related setting is multi-winner voting [13]. Multi-winner voting can
be viewed as a restricted version of discrete participatory budgeting. The Par-
ticipatory Funding Coordination (PFC) setting differs from multi-winner voting
in some key respects: in our model, each project (winner) has an associated cost,
and we select projects subject to a knapsack constraint as opposed to having a
fixed number of winners.

Our PFC model relies on approval ballots in order to elicit agents’ pref-
erences. Dichotomous preferences have been considered in several important
setting including committee voting [2,17] and discrete participatory budget-
ing [4,15].
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Another related model that takes into account the contributions of agents
was studied by Brandl et al. [8]. Just like in our model, an agent’s utilities are
based on how much money is spent on projects approved by the agent. However,
their model does not have any costs and agents can spread their money over
projects in any way. Our model has significant differences from the model of
[7,8]: (1) in our setting, the projects are indivisible and have a minimum cost to
complete; and (2) agents may not be charged the full amount of their budgets.
The combination of these features leads to challenges in even defining simple
individual rationality requirements. Furthermore, it creates difficulties in find-
ing polynomial-time algorithms for some natural aggregation rules (utilitarian,
egalitarian, Nash product, etc.). Our model is more appropriate for coordinating
donations where projects have short-term deadlines and a target level of funding
which must be reached for the project to be successfully completed. We show
that the same welfarist rules that satisfy some desirable properties in the model
[7,8], fail to do so in our model. Just as the work of Brandl et al. [7,8], Buterin et
al. [9] consider donor coordination for the divisible model in which the projects
do not have costs and agents do not have budget limits. They also assume quasi-
linear utilities, whereas we model charitable donors who are not interested in
profit but want their money being used as effectively as possible towards causes
that matter to them.

The features of our PFC model enable the model to translate smoothly to a
number of natural settings. Crowdfunding, in particular, is a scenario in which
we would like to capitalise upon commonalities in donors’ charitable preferences
[11]. Furthermore, crowdfunding projects (e.g. building a well, funding a schol-
arship, etc.) often have provision points (see e.g. Agrawal et al. [1,10,12]), and
it can be critical for these targets to be met. For example, a project to raise
funds for a crowdfunding recipient to pay for a medical procedure would have
to raise a minimum amount of money to be successful, otherwise all donations
are effectively wasted.

Crowdfunding projects have been discussed in a broader context with various
economic factors and incentive issues presented [1]. Bagnoli and Lipman [6] dis-
cuss additional fairness and economic considerations for the related topic of the
division of public goods. The discrete model that we explore, where projects have
finite caps, has the potential to coordinate donors and increase the effectiveness
of a crowdfunding system.

3 Participatory Funding Coordination

A Participatory Funding Coordination (PFC) setting is a tuple (N,C,A, b, w)
where N is the set of agents/voters, C is the set of projects (also generally
referred to as candidates). The function w : C → R

+ specifies the cost w(c) of
each project c ∈ C. The function b : N → R≥0 specifies the budget bi of each
agent i ∈ C. The budget bi can be viewed as the maximum amount of money that
agent i is willing to spend. For any set of agents M ⊆ N , we will denote

∑
i∈M bi

by b(M). The approval profile A = (A1, . . . , An) specifies for each agent, her set
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of acceptable projects Ai. An outcome is a pair (S, x) where S ⊆ C is the set
of funded projects and x is a vector of payments that specify for each i ∈ N ,
the payment xi that is charged from agent i. We will restrict our attention to
feasible outcomes in which xi ≤ bi for all i ∈ N and only those projects get
financial contributions that receive their required amount. Also, note that the
projects that are funded are only those that receive the entirety of their price in
payments from the agents. For any given PFC instance, a mechanism F returns
an outcome. We will denote the set of projects selected by F as FC and the
payments by Fx. For any outcome (S, x), since xi ≤ bi, the money bi − xi can
either be kept by the agent i or it can be viewed as going into some common
pool. The main focus of our problem is to fund a maximal set of projects while
satisfying participation constraints.

We suppose that an agent’s preferences are approval-based. For any set of
funded projects S, any agent i’s utility is

ui(S) =
∑

c∈S∩Ai

w(c).

That is, an agent cares about how many dollars are usefully used on his/her
approved projects. Our preferences domain is similar to the one used by Brandl
et al. [8] who considered a continuous model in which projects do not have target
costs. In their model, agents also care about how much money is used for their
liked projects.

4 Axiom Design

In this section, we design axioms for outcomes of the PFC setting. We consider
an outcome (S, x). For any axiom Ax for outcomes, we say that a mechanism
satisfies Ax if it always returns an outcome that satisfies Ax.

We first present three axioms for our setting that are based on the principle
of participation:

– Minimal Return (MR): each agent’s utility is at least as much as the
money put in by the agent: ui(S) ≥ xi. In other words, the societal decision
is as good for each agent i as i’s best use of the money xi that she is asked to
contribute. We will use this as a minimal condition for all feasible outcomes.

– Implementability (IMP) : There exists a payment function y : N × C →
R≥0 such that

∑
c∈C y(i, c) = xi for all i ∈ N ,

∑
i∈N y(i, c) ∈ {0, w(c)} for all

c ∈ C and there exists no i ∈ N and c /∈ Ai such that y(i, c) > 0. Here y(i, c)
represents the money paid by i to project c. IMP captures the requirement
that an agent’s contribution should only be used on projects that are approved
by the agent.

– Individual Rationality (IR): the utility of an agent is at least as much as
an agent can get by funding alone: ui(S) ≥ maxS′⊆Ai,w(S′)≤bi(w(S′)). Note
that IR is easily achieved if the project costs are high enough: if for i ∈ N
and c ∈ C, w(c) > bi, then every outcome is IR.
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We note that MR is specified with respect to the amount xi charged to the
agent. It can be viewed as a participation property: an agent would only want
to participate in the market if she gets at least as much utility as the money
she spent. We will show IMP is stronger than MR. IMP can also be viewed as
a fairness property: agents are made to coordinate but they only spend their
money on the projects they like.

Remark 1. If (S, x) is an IMP outcome with associated payment function y,
then for any subset of projects S′ ⊆ S, there is an IMP outcome that funds
only the set of projects S′. In particular, the payment function y′ for one such
implementable outcome is obtained by setting (for each agent i) y′(i, c) = y(i, c)
for all c ∈ S′ and y′(i, c) = 0 for all c ∈ S \ S′.

Next, we present axioms that are based on the idea of efficiency.

– Exhaustive (EXH): An outcome (S, x) satisfies EXH if there exists no set
of agents N ′ ⊆ N and unfunded project c ∈ C \S such that c ∈ ∩i∈N ′Ai with
w(c) ≤ ∑

i∈N ′(bi − xi). In words, agents in N ′ cannot pool in their unspent
money and fund another project liked by all of them.

– Pareto optimality (PO)-X: An outcome (S, x) is Pareto optimal within
the set of outcomes satisfying property X if there exists no outcome (S′, x′)
satisfying X such that ui(S′) ≥ ui(S) for all i ∈ N and ui(S′) > ui(S) for
some i ∈ N . Note that Pareto optimality is a property of the set of funded
projects S irrespective of the payments.

• PO is Pareto optimal among the set of all outcomes.
• PO-IMP: Pareto optimal among the set of IMP outcomes.
• PO-MR: Pareto optimal among the set of MR outcomes.

– Payment constrained Pareto optimality (PO-Pay): An outcome is PO-
Pay if it is not Pareto dominated by any outcome of at most the same price.
Formally, there exists no (S′, x′) such that

∑
i∈N x′

i ≤ ∑
i∈N xi, ui(S′) ≥

ui(S) for all i ∈ N and ui(S′) > ui(S) for some i ∈ N .
– Weak Payment constrained Pareto optimality (weak PO-Pay): An

outcome is weakly PO-Pay if it is not Pareto dominated by any outcome
that charges at most the same cost from each agent. Formally, there exists no
(S′, x′) such that x′

i ≤ xi and ui(S′) ≥ ui(S) for all i ∈ N and ui(S′) > ui(S)
for some i ∈ N .

A concept that can be viewed in terms of participation, efficiency, and fairness
is the adaptation of the principle of core stability for our setting.

– Core stability (CORE): There exists no set of agents who can pool in their
budget and each gets a strictly better outcome. In other words, an outcome
(S, x) is CORE if for every subset of agents N ′ ⊆ N , for every subset of
projects C ′ ⊆ C such that w(C ′) ≤ ∑

i∈N ′ bi, the following holds for some
agent i ∈ N ′: ui(S) ≥ w(C ′ ∩ Ai).

We also describe a basic fairness axiom for outcomes and rules based on the
idea of proportionality.
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– Proportionality (PROP): Suppose a set of agents N ′ ⊆ N each have
approval set that is exactly some (common) set of projects C ′ ⊆ C such that∑

i∈N ′ bi ≥ w(C ′). In that case, all the projects in C ′ are selected.

Finally, we consider an axiom that is defined for mechanisms rather than
outcomes. We say that a mechanism satisfies strategyproofness if there exists
no instance under which some agent has an incentive to misreport her preference
relation.

We conclude this section with some remarks on computation. The following
proposition follows via a reduction from the Subset Sum problem.

Proposition 1. Even for one agent, computing an IR, PO, PO-MR, or PO-
IMP outcome is NP-hard.

Note that IMP is a property of an outcome rather than a set of projects. We
say that a set of projects S is IMP if there exists a feasible vector of charges to
agents x such that the outcome (S, x) is IMP. The property IMP can be tested
in polynomial time via reduction to network flows.

Proposition 2. For a given set of projects S, checking whether there exists a
vector of charges x such that (S, x) is implementable can be done in polynomial
time.

5 Axioms: Compatibility and Logical Relations

In this section, we study the compatibility and relations between the axioms
formulated.

Remark 2. Note that IR and MR are incomparable. Any outcome in which every
agent is not charged any money trivially satisfies MR. However, it will not satisfy
IR if any agent could afford one of their approved projects by themselves. On
the other hand, an IR outcome may not be MR. Consider a profile with one
agent and one project. Say the agent has budget greater than the cost of the
project, but does not approve of the project. Then, the outcome where the agent
is forced to fund the project is IR but not MR.

Next, we point out that PO-Pay is equivalent to weak PO-Pay.

Proposition 3. PO-Pay is equivalent to weak PO-Pay.

Proof. Suppose an outcome (S, x) is not weakly PO-Pay. Then, it is trivially not
PO-Pay. Now suppose (S, x) is not PO-Pay. Then, there exists another outcome
(S′, x′) such that

∑
i∈N x′

i ≤ ∑
i∈N xi and ui(S′) ≥ ui(S) for all i ∈ N and

ui(S′) > ui(S) for some i ∈ N . Note that S′ can be funded with total amount∑
i∈N x′

i irrespective of who paid what. So S′ is still affordable if x′
i ≤ xi for

each agent i. �	
The next proposition establishes further logical relations between the axioms.
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Proposition 4. The following logical relations hold between the properties.

1. IMP implies MR.
2. PO implies PO-Pay.
3. PO-X implies PO-Y if Y implies X.
4. PO-IMP implies EXH.
5. PO-IR implies EXH.
6. CORE implies IR.
7. The combination of PO-IMP and IMP imply PROP.

Next, we show that MR is compatible with PO-Pay.

Proposition 5. Suppose an outcome is MR and there is no other MR outcome
that Pareto dominates it. Then, it is PO-Pay.

Proof. Suppose the outcome (S, x) is MR and PO-MR. We claim that (S, x) is
PO-Pay. Suppose it is not PO-Pay. Then there exists another outcome (S′, x′)
such that

∑
i∈N x′

i ≤ ∑
i∈N xi, ui(S′) ≥ ui(S) for all i ∈ N and ui(S′) > ui(S)

for some i ∈ N . Note that S′ is affordable with total amount
∑

i∈N x′
i irrespective

of who paid what. So S′ is still affordable if x′
i ≤ xi. Therefore, we can assume

that x′
i ≤ xi for all i ∈ N . Note that since S′ Pareto dominates S and since

(S, x) is MR, ui(S′) ≥ ui(S) ≥ xi ≥ x′
i for all i ∈ N . Hence (S′, x′) also satisfies

MR. Since (S′, x′) is MR and since S′ Pareto dominates S, it contradicts the
fact that (S, x) is PO-MR. �	
Proposition 6. There always exists an outcome that satisfies IMP, IR, PO-
IMP and hence also MR and EXH.

Proof. For each i ∈ N compute Si = arg maxS′⊆Ai,w(S′)≤biw(S′), i.e. a maxi-
mum total weight set of approved projects that has weight at most bi. Then,
observe that any outcome that funds all of S =

⋃
i∈N Si is necessarily IR. Thus,

in order to construct an IMP and IR outcome, we can construct a payment func-
tion y : N × C → R≥0 that funds S. For each project c ∈ C, let nc denote the
number of agents i with c ∈ Si. Note that if c ∈ S, then nc ≥ 1. Then, for each
i ∈ N let y(i, c) = w(c)

nc
if c ∈ Si ⊆ S and y(i, c) = 0 if c /∈ Si. It is then simple to

check that each agent’s total cost is affordable to them, each project in S is fully
paid for, and each agent i only pays for projects in Si ⊆ Ai (i.e. projects that
they approve of). Therefore, we can let x = (

∑
c∈C y(1, c), . . . ,

∑
c∈C y(n, c)) and

see that the outcome (S, x) is IR and IMP.
Now, observe that if any IMP outcome (S′, x′) Pareto dominates (S, x), then

it must be also be IR because the utility of each agent is at least as high as
before. There can only be a finite number of Pareto improvements to (S, x) since
the number of possible subsets of projects to be funded is finite, and Pareto
dominance depends only on the projects funded, not the costs to the agents.
Hence, there must exist such a Pareto improvement which is IR, IMP and PO-
IMP. Finally, Proposition 4 gives that this outcome must be MR and EXH.

�	
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Note that PO-Pay and IMP are both satisfied by an empty outcome with zero
charges. PO-IMP and IMP are easily satisfied by computing a PO outcome from
the set of IMP outcomes. PO-Pay and PO-IMP are easily satisfied by computing
a PO outcome which may not necessarily satisfy IMP.

Proposition 7. There always exists an outcome that satisfies MR, IR, PO-MR
and hence also EXH.

Proof. Existence of an outcome that satisfies MR, IR, PO-MR: From the proof
of Proposition 6, we know that an IMP and IR outcome always exists. Also,
from Proposition 4, we know that every IMP outcome is MR, so there always
exists an MR and IR outcome. Now suppose the outcome satisfying MR and IR
does not satisfy PO-MR. Then there exists another outcome satisfying MR that
Pareto dominates the original outcome, which is still IR. There cannot exist an
infinite number of Pareto improvements because there are only finitely many
possible subsets of projects that can be funded. Hence we can reach a PO-MR
outcome that is also IR and MR. Proposition 4 gives that this outcome is EXH.

�	
We note that if no agent can individually fund a project, then every out-

come is IR. In crowdfunding settings in which projects have high costs, the IR
requirement is often easily satisfied.

6 Aggregation Rules

In this section, we take a direct welfarist view to formalize rules that maxi-
mize some notion of welfare. We consider three notions of welfare: utilitarian,
egalitarian, and Nash welfare; and we define the following rules.

– UTIL: define the utilitarian welfare derived from an outcome (S, x) as∑
i∈N ui(S). Then, UTIL returns an outcome that maximises the utilitar-

ian welfare.
– EGAL: given some outcome (S, x), write the sequence of agents’ utilities

from that outcome as a tuple u(S) = (ui(S))i∈N , where u(S) is sorted in
non-decreasing order. Then, EGAL returns an outcome (S, x) such that u(S)
is lexicographically maximal among the outcomes.

– NASH: maximises the Nash welfare derived from an output (S, x), i.e.∏
i∈N ui(S).

Proposition 8. UTIL, EGAL, and NASH satisfy PO and hence PO-MR, PO-
IMP, PO-Pay, and EXH.

One notes that the rules UTIL, EGAL, and NASH do not satisfy minimal
guarantees such as MR. The reason is that an agent may donate her budget to a
widely approved project even though she may not approve any of such projects.
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Given that the existing aggregation rules do not provide us with guarantees
that the outcomes they produce will satisfy our axioms, we can instead define
rules that optimize social welfare within certain subsets of feasible outcomes.
For a property X, we can define UTIL-X, EGAL-X, and NASH-X as rules that
maximise the utilitarian, egalitarian and Nash welfare respectively among only
those outcomes that satisfy property X.

Next, we analyse the properties satisfied by rules EGAL/UTIL/NASH con-
strained to the set of MR or IMP outcomes. In the continuous model introduced
by Brandl et al. [8], there is no need to consider the rule NASH-IMP, as the
NASH rule in the case where projects can be funded to an arbitrary degree
(given there is sufficient budget) already satisfies IMP.

Before we study the axiomatic properties, we note that most meaningful
axioms and rules are NP-hard to achieve or compute. The following result follows
from Proposition 1.

Proposition 9. Even for one agent, computing a UTIL, UTIL-MR, UTIL-
IMP, EGAL, EGAL-MR, EGAL-IMP, NASH, NASH-MR, NASH-IMP outcome
is NP-hard.

Similarly, the next result follows from Proposition 5.

Proposition 10. UTIL-MR, EGAL-MR, and NASH-MR satisfy PO-Pay.

From Proposition 5, it follows that UTIL-MR, EGAL-MR, and NASH-MR
satisfy PO-Pay. In contrast, we show that UTIL-IMP, EGAL-IMP, and NASH-
IMP do not satisfy PO-Pay. In order to show this, we prove that it is possible in
some instances for the set of jointly IMP and PO-IMP outcomes to be disjoint
from the set of PO-Pay outcomes.

Proposition 11. UTIL-IMP, EGAL-IMP and NASH-IMP do not satisfy PO-
Pay. In fact it is possible that no IMP and PO-IMP outcome satisfies PO-Pay.

Similarly, the following also holds.

Proposition 12. EGAL, EGAL-MR and EGAL-IMP are not strategyproof.

Table 1 shows the axioms that are satisfied by restricting the aggregation
rules to optimising within the space of MR or IMP outcomes.

7 Experiment

In addition to the axiomatic study of the welfare-based rules, we undertake a
simulation-based experiment to gauge the performance of different rules with
respect to utilitarian and egalitarian welfare. Our study shows the impact of
fairness axioms such as MR and IMP on welfare.

We generate random samples of profiles in order to simulate two potential
real-world applications of PFC.
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Table 1. Properties satisfied by UTIL-MR, EGAL-MR, NASH-MR, UTIL-IMP,
EGAL-IMP and NASH-IMP.

UTIL-MR EGAL-MR NASH-MR UTIL-IMP EGAL-IMP NASH-IMP

MR � � � � � �
IMP – – – � � �
PROP – – – � � �
IR – – – – – –

PO – – – – – –

PO-MR � � � – – –

PO-IMP � � � � � �
PO-Pay � � � – – –

EXH � � � � � �
CORE – – – – – –

SP – – – – – –

1. Share-house setting: In this example, we can imagine a group of house-mates
pooling their resources to fund communal items for their house. We operate
under the following assumptions:

– Number of agents from 3–6: this represents a reasonable number of house-
mates in a share-house.

– Number of projects from 5–12: projects may include buying items such
as tables, chairs, sofas, televisions, lights, kitchen appliances, washing
machines, dryers, etc.

– Agent budgets are from 300–600 and project costs are from 50–1000. We
base these costs on typical rent and furniture costs in Australia as well as
costs of the above items in first and second-hand retailers. We expect that
each agent brings some money to the communal budget, and would spend
around one or two weeks’ worth of rent on one-time communal expenses.

2. Crowdfunding setting: In this example, we imagine a relatively small num-
ber of expensive projects to be funded, and a large number of philanthropic
donors, and make the following assumptions.

– Number of agents from 20–50: A review of crowdfunding websites such as
Kickstarter and GoFundMe shows that the most promoted projects are
typically funded by thousands of donors, and smaller projects can attract
tens of donors. For the purposes of our simulation, we use between 20–50
donors, which is still relatively large compared to the number of available
projects.

– Number of projects from 3–8: In crowdfunding, there are far more projects
available than a donor actually sees. However, we can estimate that in a
browsing session, a donor might view the top 3–8 promoted projects.

– Agent budgets from 0–400 and project costs from 1000–10000: Projects in
real-life crowdfunding can have vastly varying costs. For our simulation,
we want for the agents with all their money combined to be able to afford
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some, but not all of the available projects in order to create instances
that are not trivially resolved by funding all or none of the projects.

The results of the experiments are shown in Figs. 1, 2, 3, 4, 5, 6, 7 and 8.
Imposing MR on a rule seems to have a significant impact on both utilitarian

and egalitarian welfare on average. Of course, since IMP implies MR, we expect
that imposing IMP as a constraint will have an even greater cost on welfare,
but from our experiment, this cost is a relatively small increase on top of the

Fig. 1. Average performance of rules with respect to utilitarian welfare in share-house
simulations as a percentage of the maximum achievable utilitarian welfare.

Fig. 2. Average performance of rules with respect to utilitarian welfare in crowdfunding
simulations as a percentage of the maximum achievable utilitarian welfare.

Fig. 3. Worst-case performance of rules with respect to utilitarian welfare in share-
house simulations as a percentage of the maximum achievable utilitarian welfare.
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Fig. 4. Worst-case performance of rules with respect to utilitarian welfare in crowd-
funding simulations as a percentage of the maximum achievable utilitarian welfare.

Fig. 5. Average performance of rules with respect to egalitarian welfare in share-house
simulations as a percentage of the maximum achievable egalitarian welfare.

Fig. 6. Average performance of rules with respect to egalitarian welfare in crowdfund-
ing simulations as a percentage of the maximum achievable egalitarian welfare.

cost of imposing MR. It is worth noting that in worst-case scenarios, it is always
possible that there are no non-trivial outcomes that satisfy the constraints, and
so there is a risk that a rule subject to a constraint could produce an outcome
that gives all agents zero utility.

When considering average performance, rules are more resilient to the impo-
sition of fairness constraints for instances that simulate crowdfunding scenarios
compared to share-house scenarios. When the number of agents is high and
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Fig. 7. Worst-case performance of rules with respect to egalitarian welfare in share-
house simulations as a percentage of the maximum achievable egalitarian welfare.

Fig. 8. Worst-case performance of rules with respect to egalitarian welfare in crowd-
funding simulations as a percentage of the maximum achievable egalitarian welfare.

the number of projects is small, and project costs are high compared to agent
budgets, it seems to be easier to achieve fairness properties.

We typically expect the NASH rule to be a compromise between UTIL and
EGAL. This manifests in the results, where the performance losses for NASH
with respect to utilitarian welfare are considerably less than those for EGAL.
NASH loses considerably less with respect to egalitarian welfare than UTIL.

8 Conclusions

We proposed a concrete model for coordinating funding for projects. A formal
approach is important to understand the fairness, participation, and efficiency
requirements a system designer may pursue. We present a detailed taxonomy
of such requirements and clarify their properties and relations. We also analyse
natural welfarist rules both axiomatically and experimentally.

In practical applications of PFC, it is important to balance welfare demands
with fairness conditions. Our experiment investigated the cost of fairness when
imposing MR or IMP on UTIL, EGAL and NASH rules over instances that
model crowdfunding and share-house scenarios. We find that imposing MR alone
significantly reduces welfare on average, but imposing IMP as well produces a
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relatively small additional cost on welfare. The costs of imposing any fairness
condition are much more pronounced on instances that model a share-house
setting than a crowdfunding setting, suggesting that for a large number of agents
and large project costs, fairness conditions are more easily met.

Our model is not just a rich setting to study collective decision making. We
feel that the approaches considered in the paper go beyond academic study and
can be incorporated in portals that aggregate funding for charitable projects.
We envisage future work on online versions of the problem. We studied a utility
model in which agents want as much money spent on their approved projects. It
will be interesting to examine utility models in which agents care about which
unapproved projects are funded or factor in the payments they have been made.
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T., Péli, G. (eds.) Pathways Between Social Science and Computational Social
Science. CSS, pp. 215–236. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-54936-7 10

6. Bagnoli, M., Lipman, B.L.: Provision of public goods: fully implementing the core
through private contributions. Rev. Econ. Stud. 56(4), 583–601 (1989)

7. Brandl, F., Brandt, F., Peters, D., Stricker, C., Suksompong, W.: Donor coordina-
tion: collective distribution of individual contributions. In: GAIW (Games, Agents
and Incentives Workshops) (2019)

8. Brandl, F., Brandt, F., Peters, D., Stricker, C., Suksompong, W.: Funding public
projects: a case for the nash product rule. Working paper (2020)

9. Buterin, V., Hitzig, Z., Weyl, E.G.: A flexible design for funding public goods.
Manage. Sci. 65(11), 5171–5187 (2019)

10. Chandra, P., Gujar, S., Narahari, Y.: Crowdfunding public projects with provi-
sion point: a prediction market approach. In: Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI), pp. 778–786 (2016)

https://doi.org/10.1007/s00355-016-1019-3
https://doi.org/10.1007/978-3-030-54936-7_10
https://doi.org/10.1007/978-3-030-54936-7_10


Participatory Funding Coordination: Model, Axioms and Rules 423

11. Corazzini, L., Cotton, C., Valbonesi, P.: Donor coordination in project funding:
evidence from a threshold public goods experiment. J. Public Econ. 128(1), 16–29
(2015)

12. Damle, S., Moti, M.H., Chandra, P., Gujar, S.: Civic crowdfunding for agents with
negative valuations and agents with asymmetric beliefs. In: Proceedings of the
28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 208–214
(2019)

13. Elkind, E., Faliszewski, P., Skowron, P., Slinko, A.: Properties of multiwinner vot-
ing rules. Soc. Choice Welfare 48(3), 599–632 (2017). https://doi.org/10.1007/
s00355-017-1026-z

14. Fain, B., Goel, A., Munagala, K.: The core of the participatory budgeting prob-
lem. In: Proceedings of the 12th International Conference on Web and Internet
Economics (WINE 2016), pp. 384–399 (2016)

15. Fluschnik, T., Skowron, P., Triphaus, M., Wilker, K.: Fair knapsack. In: Proceed-
ings of the 33rd AAAI Conference on Artificial Intelligence (AAAI) (2019)

16. Goel, A., Krishnaswamy, K., Sakshuwong, S., Aitamurto, T.: Knapsack voting
for participatory budgeting. ACM Trans. Econ. Comput. (TEAC) 7(2), 8:1–8:27
(2019). ISSN 2167–8375

17. Lackner, M., Skowron, P.: A quantitative analysis of multi-winner rules. In:
Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 407–413 (2019)

18. MacAskill, W.: Doing Good Better: How Effective Altruism Can Help You Make
a Difference. Avery (2015)

19. MacAskill, W.: Essays Philos. Effective altruism: introduction 18(1), 1–5 (2017)
20. Peters, D.: Economic Design for Effective Altruism, pp. 381–388 (2019). https://

app.dimensions.ai/details/publication/pub.1122621382
21. Talmon, N., Faliszewski, P.: A framework for approval-based budgeting methods.

In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI)
(2019)

https://doi.org/10.1007/s00355-017-1026-z
https://doi.org/10.1007/s00355-017-1026-z
https://app.dimensions.ai/details/publication/pub.1122621382
https://app.dimensions.ai/details/publication/pub.1122621382


Complexity of Manipulative Interference
in Participatory Budgeting

Dorothea Baumeister, Linus Boes(B), and Johanna Hillebrand

Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
{d.baumeister,linus.boes,johanna.hillebrand}@uni-duesseldorf.de

Abstract. A general framework for approval-based participatory bud-
geting has recently been introduced by Talmon and Faliszewski [17].
They use satisfaction functions to model the voters’ agreement with a
given outcome based on their approval ballots. We adopt two of their
satisfaction functions and focus on two types of rules. That is, rules that
maximize the overall voters’ satisfaction and greedy rules that iteratively
extend a partial budget by an item that maximizes the satisfaction in
each incremental step. An important task in participatory budgeting
is to study different forms of manipulative interference that may occur
in practice. We investigate the computational complexity of different
problems related to determining the outcome of a given rule and give a
very general formulation of manipulative interference problems. A spe-
cial focus is on problems dealing with a varying cost of the items and a
varying budget limit. The results range from polynomial-time algorithms
to completeness in different levels of the polynomial hierarchy.

Keywords: Participatory budgeting · Control · Computational
complexity

1 Introduction

Participatory budgeting is often implemented as a mean of making democratic
decisions. Thus, citizens can usually express their opinions on how a portion of
a city’s budget should be distributed in such a process, sometimes making new
suggestions on which projects could be realized as well. The first implementa-
tion of participatory budgeting can be found in Porto Alegre (Brazil) in 1989
as an attempt by the Workers Party to break with traditionally authoritarian
public policies (see Sintomer et al., [15]). Starting here the idea spread around
the world, taking different forms and magnitudes regarding size, budget, and
other factors. As described by Cabannes [5], integrating participatory budgeting
into a city’s form of government has yielded several positive effects. These range
from an increased accountability of politicians, due to the collective will being
rather visible, to directing larger parts of the city’s budget towards education,
health care, infrastructure, and childcare. The different stages of a participatory
budgeting cycle are described by Aziz and Shah [3]. These stages include the
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division into different districts, the determination of the total available budget,
the emergence of project proposals, deliberation steps, and finally the voting
stage. While Rey et al. [14] study multiple stages in one model, we will solely
focus on the last step in this paper. Here, the citizens express their preferences
regarding the projects they want the budget to be spent on. A participatory bud-
geting method then aggregates these votes in order to reach a decision about
which projects will be realized. Here we assume that each project is either fully
funded or not at all. So, in this last step we have a fixed set of projects, each
associated with a cost, and we have an overall budget limit. The total cost of
the funded projects must be within this limit. A crucial point is how the pref-
erences of the voters are expressed, as a decision between expressiveness and
compactness of the presentation has to be made. We follow a very simple app-
roach by assuming approval ballots, where every voter chooses for every project
whether she thinks that it should be funded or not. These individual votes are
independent of the budget limit, i.e., a voter may approve a set of projects which
could not be realized within the given budget limit (in contrast to, e.g., Goel
et al. [8]). Regarding the aggregation of the approval ballots, we follow the app-
roach of Talmon and Faliszewski [17]. As a first step, we define a satisfaction
function that returns for each voter and each possible committee the satisfac-
tion of said voter based on her approval ballot. Then, an (ir)resolute budgeting
method chooses a (set of) winning projects. One method is to output bundles
that maximize the sum of the voters’ satisfaction while taking into account the
budget limit. As we will see more detailed in Sect. 3, this may lead to winner
determination problems of high complexity in some cases. A different approach
commonly used in practice is a simple greedy approach. In each iteration, the set
of winning projects is extended by the project that maximizes the satisfaction
in each incremental step, again respecting the budget limit. In this case, winner
determination is more straightforward but depends on some tie-breaking mech-
anism in every step. Combinations of different satisfaction functions and bud-
geting methods have been studied by Talmon and Faliszewski [17] with respect
to their axiomatic properties, see Baumeister et al. [4] for an adaption to irres-
olute variants of these rules. Unfortunately, many of the desired axioms are not
satisfied by the proposed methods, which opens the possibility of manipulative
interference on participatory budgeting processes.

Due to the combinatorial structure in participatory budgeting (i.e., the set of
implemented items may not exceed the available funds), there are new types of
control to consider. The axioms proposed by Talmon and Faliszewski [17] focus
on the way a budgeting method should react to certain changes of the param-
eters. If, for example, an item’s costs are less than originally anticipated, this
should not lead to the item becoming unfunded. This is a reasonable assumption,
however budgeting methods using a cost-based satisfaction function do not sat-
isfy it. A budgeting method violating this axiom could be vulnerable to control
if a chair would be able to influence an item’s cost, in order to either exclude
it from the chosen budget or to ensure it being funded. Another axiom requests
that an increase of the budget limit may not lead to an item being excluded
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from the winning budget. As this axiom is not satisfied by any of the budgeting
methods in question, this leaves the possible vulnerability to control via a change
of the budget limit in order to in- or exclude an item. In order to examine these
possible vulnerabilities to control further, we initially investigate the computa-
tional complexity of determining a winner for the greedy and maximizing rule
in Sect. 3. Then we provide a general definition of manipulative interference in
Sect. 4 with a specific focus on problems where either the budget limit or the
cost of a specific item may be manipulated.

Related Work. Regarding traditional election problems this refers to different
variants of control. Here, an election chair alters the structure of the election to
make some distinguished candidate win or to prevent some distinguished candi-
date from winning. There is a huge amount of literature studying different kinds
of control problems in voting. For an overview, we refer to the book chapter
by Faliszewski and Rothe [6]. Related work on participatory budgeting close to
our assumptions (i.e., approval ballots, binary outcomes, and satisfaction func-
tions) was studied by Jain et al. [9], who considered satisfaction functions under
project interactions, and Rey et al. [13], who embedded the framework intro-
duced by Talmon and Faliszewski [17] into the framework of judgment aggrega-
tion. Aziz et al. [2] considered aggregation using an axiomatic approach instead
of predefined rules. A well studied special case of approval-based participatory
budgeting are multiwinner elections, where we assume uniform cost for each
candidate. Lackner and Skowron [12] compare a variety of rules, that also use
approval-based satisfaction functions as a measure of the voters’ agreement with
a committee.

2 Preliminaries

For a formal study of the voting step in participatory budgeting we follow the
approach of Talmon and Faliszewski [17].

Definition 1. A budgeting scenario E = (A, V, c, �) consists of a set A =
{a1, . . . , am} of m items, associated with a cost function c : A → N+, and a set
V = {v1, . . . , vn} of n voters, where each voter v ∈ V has an associated ballot
Av ⊆ A containing a set of preferred items, and a budget limit � ∈ N+.

Without giving a formal definition, let E denote the set of all possible bud-
geting scenarios without fixing any of the parameters (apart from mentioned
dependencies of parameters in the definition above). The goal in participatory
budgeting is to select a subset B of the items, called budget, such that the total
cost of B does not exceed the budget limit �. Slightly abusing notation we write
c(B) =

∑
a∈B c(a) to denote the total cost of some budget B ⊆ A. Moreover,

we call a budget feasible if c(B) ≤ � and denote the set of feasible budgets by
B(E) = {B ⊆ A | c(B) ≤ �}. Feasibility is a hard constraint, but of course the
budget should take the ballots of the voters into account. Therefore, we introduce
satisfaction functions for the voters.
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Definition 2. The satisfaction of a voter v ∈ V with a given budget B ⊆ A
is modeled by a satisfaction function s : 2A × 2A → N0. For simplicity, we
define Bv = Av ∩ B to be the set of items, which are both, approved by a voter
v and in a given budget B. In this paper we consider the following satisfaction
functions focussing on:

– quantity: s(Av, B) = |Bv|, the number of budgeted approved items, and
– cost: s(Av, B) = c(Bv), sum of the cost of the budgeted approved items.

Slightly abusing notation, we write s(V,B) =
∑

v∈V s(Av, B) to denote the
overall satisfaction of the voters in V with a budget B. The presented satisfaction
functions follow different intentions and model different application scenarios.
The intuition for satisfaction by quantity is straightforward. The satisfaction of
a voter correlates with the number of implemented projects she likes. For satis-
faction by cost, we assume satisfaction correlates with the amount of funds that
are spent on preferred projects. Now, in order to compute a set of winning bud-
gets based on the voters’ preferences, we define an irresolute budgeting method
R, which maps a budgeting scenario E to a set of feasible budgets. The rules we
study use the underlying satisfaction functions we defined previously.

Definition 3. Given a budgeting scenario E = (A, V, c, �) ∈ E and a satisfaction
function s we define:

– Max rules (m): as Rm
s (E) = arg maxB∈B(E) s(V,B) , and

– Greedy rules (g): starting with B = ∅ iteratively extend B by a ∈ A \ B,
maximizing s(V,B∪{a}), until there is no item a ∈ A\B with c(B∪{a}) ≤ �.
Finally, set Rg

s(E) = {B}.

The max rules return all budgets that maximize the sum of the voters’ sat-
isfaction according to the function s. This rule is irresolute since there may be
several budgets satisfying this requirement. In contrast, the greedy rules work
iteratively. In each step one item that maximizes the sum of the voters’ satis-
faction when added to the current budget, will be added. We assume that some
tie-breaking mechanism is used in each round, such that exactly one item is
added. This leads to a resolute rule, always returning a set containing a single
budget, also referred to as the budget returned by the rule. Together with the
two satisfaction functions defined above, we consider four different rules.

Example 1. Let E = (A, V, c, �) be a budgeting scenario with A =
{a1, a2, a3, a4}, V = {v, v′} with Av = A and Av′ = {a1}, c(ai) = i, and
� = 7. For the greedy rules we break ties in favor of the item with a higher
index. We have Rm

|Bv|(E) = {{a1, a2, a3}, {a1, a2, a4}}, as both bundles yield a
satisfaction of four, while the only bundle with a higher satisfaction is A 	∈ B(E).
Similarly, it holds that Rm

c(Bv)
(E) = {{a1, a2, a4}} with a satisfaction of eight.

For the greedy rules we list the items in the order they are added, that is
Rg

|Bv| = {{a1, a4, a2}} (where a3 is skipped in the third iteration due to fea-
sibility), and Rg

c(Bv)
= {{a4, a3}}.
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In Sect. 4, we will define different decision problems related to different kinds
of manipulative interference and study them from a computational point of view.
As an intermediate step, it is important to determine the complexity for winner-
determination problems first. Of course, computing a winning bundle for the
greedy rule is easy, as it is a rather simple algorithm, that tries to find a solution
that is close to the one from the max rule. Yet, in the following section, we
will see that depending on the satisfaction function, there is little hope for an
efficient algorithm that returns at least one budget that maximizes the sum of
the voters’ satisfaction. Our results range from polynomial-time algorithms to
completeness in the polynomial hierarchy. We refer the reader to the textbook
by Arora and Barak [1] for further details on computational complexity. In the
rest of the paper, we assume that the reader is familiar with the complexity
classes NP, coNP, Δp

2 = PNP, and Σp
2 = NPNP. Further, in this paper, for a

decision problem X, let X denote its complement, and for i, j ∈ N+ with i < j
we denote [i, j] = {i, i + 1, . . . , j}, [i, i] = {i}, [j, i] = ∅, and [i] = [1, i].

3 Winner Determination

In this section, we investigate the computational complexity for a variety of
winner-determination problems associated with the considered budgeting rules.
We assume, that for any greedy rule, a tie-breaking is fixed priorly and applied
every round, resulting in a single final budget. Assuming that the given satisfac-
tion function s and the tie-breaking rule are efficiently computable, computing
a winning budget for a greedy rule can be done in polynomial time, since in
each round the number of possible budgets that has to be considered equals the
number of actually non-funded items. Therefore, we study decision problems
related to winner determination only for maximizing rules combined with some
efficiently computable satisfaction function s. The first problem we study asks
whether there is some feasible budget where the sum of the voters’ satisfaction
exceeds some given bound. Additionally, we focus on some desired budget B∗,
and ask whether it is a winning budget.

Rs-Budget Score (Rs-SC)

Given: A budgeting scenario E = (A, V, c, �) ∈ E and some bound t ∈ N0.

Question: Is there a budget B ∈ B(E) with s(V, B) ≥ t?

Rs-Winning Budget (Rs-WB)

Given: A budgeting scenario E = (A, V, c, �) ∈ E and some desired bud-
get B∗ ⊆ A.

Question: Is B∗ ∈ Rs(E)?

Since the max rule we consider is irresolute, we also ask whether a given bun-
dle is a subset of at least one, respectively every, winning budget. Formally the
problem Rm

s -Possibly Budgeted (Rm
s -PB) has the same input as Rm

s -WB,
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but the question is whether there is some B ∈ Rm
s (E) with B∗ ⊆ B. Accord-

ingly, we ask for the problem Rm
s -Necessarily Budgeted (Rm

s -NB), whether
B∗ ⊆ B for every budget B ∈ Rm

s (E). Now, we provide general upper bounds.

Lemma 1. Consider E ∈ E, an efficiently computable satisfaction function s,
and t∗ = maxB∈B(E) s(V,B). For Rm

s -SC being a member of complexity class A,
it holds that

(i) Rm
s -WB is in coA, and

(ii) Rm
s -PB and Rm

s -NB are in PA[O(log(t∗))], and
(iii) Rm

s -SC ∈ NP.

Proof. Consider a budgeting scenario E, a set of items B∗ ⊆ A, and a satisfaction
function s. For (i) we first may verify if B∗ is feasible and compute s(V,B∗) in
polynomial time. Then to solve Rm

s -WB we may decide in coA if every feasible
budget has an overall satisfaction of less than s(V,B∗) + 1 by solving Rm

s -SC.
For (ii) we may compute the optimal score t∗ of a winning budget by sending

O(log(t∗)) queries to an A-oracle using binary search. To solve (E,B∗) ∈ Rm
s -PB

we construct another satisfaction function s′ with s′(V,B) = 2 · s(V,B) + 1 if
B∗ ⊆ B and s′(V,B) = 2 · s(V,B) otherwise. To answer (E,B∗) ∈ Rm

s -PB, we
send a final query to our A-oracle, asking whether (E, 2t∗ +1) ∈ Rs′ -SC is a yes-
instance. We can use similar techniques to solve (E,B∗) ∈ Rm

s -NB, by defining
s′, such that a bundle B with B∗ 	⊆ B is assigned the slightly increased score.
Then (E,B∗) ∈ Rm

s -NB is a yes-instance if and only if (E, 2t∗ + 1) ∈ Rs′ -SC is
a no-instance. Overall we can query an A-oracle O(log(t∗)) times.

For (iii) recall that s is efficiently computable, so verifying that there is a
budget B with s(V,B) ≥ t can be done in polynomial time. ��

From the above lemma it follows that if Rm
s -SC is efficiently computable

for some satisfaction function s, then the other winner-determination problems
are also in P. Another implication is, that Rm

s -PB and Rm
s -NB are in Δp

2 in
general, and in Θp

2 = PNP[log] for satisfaction functions, where the satisfaction
for a bundle is at most polynomial in the (binary encoded) size of the budgeting
scenario. For the rules we consider, we will see that P and Δp

2 are suitable upper
bounds for Rm

s -PB and Rm
s -NB. Yet, there are satisfaction functions,1 for which

Rs-SC is known to be NP-complete, but for E = (A, V, c, �) and B ⊆ A, the
score s(V,B) is bounded by |A| · |V |, yielding an upper bound of Θp

2 (which is
not necessarily tight).

We continue by establishing tight bounds for the winner determination prob-
lems. Talmon and Faliszewski [17] already showed, that Rm

|Bv|-SC is solvable in
polynomial time. Following Lemma 1 we can formulate the following corollary.

Corollary 1. Rm
|Bv|-WB, Rm

|Bv|-PB, and Rm
|Bv|-NB are in P.

1 For example the Chamberlin-Courant rule for approval ballots, studied by Skowron
and Faliszewski [16].
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Next, we establish lower bounds for Rm
c(Bv)

. Talmon and Faliszewski [17]
showed NP-hardness for Rm

c(Bv)
-SC by reducing from the well known problem

Subset Sum (see Garey and Johnson [7]).

Theorem 1. Rm
c(Bv)

-WB is coNP-complete, and Rm
c(Bv)

-PB and Rm
c(Bv)

-NB are
Δp

2-complete.

Proof. We start by showing coNP-hardness for Rm
c(Bv)

-WB. We will reduce from
Subset Sum, where the input is a set of integers N = {n1, . . . , nm} ⊆ N+

and a bound n ∈ N+, and the question is, whether there is no subset S ⊆ N
with

∑
i∈S i = n. We transform an arbitrary instance (N,n) to an instance of

Rm
c(Bv)

-WB. Let A = {a1, . . . , am, b}, V = {v} with Av = A, c(ai) = 2ni for each
i ∈ [1,m], and c(b) = 2n − 1, and � = 2n. Finally, we set B∗ = {b} and claim
that (E,B∗) ∈ Rm

c(Bv)
-WB if and only if (N,n) ∈ Subset Sum. In particular,

B∗ is a winning budget if there is no set of items, which adds up to a cost of 2n.
This is exactly the case if there is no S ⊆ N which sums up to n.

To show Δp
2-completeness for the remaining problems, we will use the follow-

ing Δp
2-complete problem, based on Krentel’s results [11, Thm 2.1, Thm 3.3].2

Even SubsetSum (ESS)

Given: A finite set of integers N ⊂ N+ and a distinct integer n ∈ N+.

Question: Let t =
∑

i∈S i be the largest possible value with t ≤ n over all
S ⊆ N . Is t mod 2 ≡ 0?

For an upper bound, Rm
c(Bv)

-PB and Rm
c(Bv)

-NB are in Δp
2 following Lemma 1.

Since the overall satisfaction derived from a winning budget t∗ depends on the
cost, log(t∗) is polynomial in the instance size (but not logarithmical).

To show hardness, we reduce from ESS. Consider any ESS instance I =
(N,n) with N = {n1, . . . , nm}. For simplicity and without loss of generality
assume that n ≥ ni holds for every i ∈ [m]. Further, let k = |n| denote the
length of the binary representation of n. We construct a Rm

c(Bv)
-PB instance

I ′ = (E,B∗), with A = {a1, . . . , am, b1, . . . , bk} and V = {v} with Av = A. For
our cost function c, we interpret the cost c(a) of some item a ∈ A in its binary
encoding. By construction, each cost c(a) will be consisting of two different zones,
which are k bit long (to prevent carries). The front zone will be used to verify
if the maximum achievable cost is even and the end zone will be used to still
respect our bound n. For each ai we will simply set cost ni in both zones, i.e.,
c(ai) = (2k+1 + 1) · ni. For each bi we will only use the front zone to set the
i-th bit to one, i.e., c(bi) = 2i+k. We choose � in a way that the first k bits are
set to one and the last k bits are set to the binary representation of n, that is
� = 2k+1(2k+1 − 1) + n. Finally, we set B∗ = {b1}.

To prove equivalence, note that each winning budget in I ′ has a satisfaction
of at least

∑k
i=1 c(bi) = 2k+1(2k+1 − 1) (e.g., by budgeting all bi) and at most

� (by definition). Also note, that the cost of any budget not containing any bi,
2 Also known as a Knapsack variant in related literature (see Kellerer et al. [10]).
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n is always either exceeded in both or neither zones simultaneously. Therefore,
any winning budget in I ′ has an equivalent cost in the last zone to the largest
possible value for I, while the front zone can always be filled up bitwise by values
bi. Finally, note, that by construction b1 is only part of a winning budget if and
only if the optimal value adds up to an even value, so its corresponding bit in
the front zone can be flipped to one by adding b1. By construction B∗ = {b1} is
necessarily and thus possibly budgeted if and only if I is a yes instance. ��

4 Manipulative Interference

To study problems of manipulative interference in a generic way, we consider
an alteration function f , that maps from a given budgeting scenario to a set
of possible scenarios after the alteration of specified parameters (e.g., the cost
function or the voters’ ballots). Formally, we have f : E → 2E . We assume, that
we can efficiently verify whether E′ ∈ f(E) holds. We distinguish between a
constructive and a destructive variant of manipulative interference.

Constructive-Rs-Manipulative-Interference (C-Rs-MI)

Given: A budgeting scenario E, a set of items B♥, an integer k, and an
alteration function f .

Question: Is there a budgeting scenario E′ ∈ f(E), such that there is a
winning budget B ∈ Rs(E

′) with |B♥ ∩ B| ≥ k?

For Destructive-Rs-Manipulative-Interference (D-Rs-MI) the
input remains the same, but now we ask whether there is a budgeting scenario
E′ ∈ f(E), such that there is a winning budget B ∈ Rs(E′) with |B♥ ∩ B| < k.
Both definitions are very general. In particular, we have a set B♥ of distinguished
items. A natural restriction is the focus on a single item with |B♥| = 1. In the
constructive case we ask, whether there is a winning budget that contains at
least k of the preferred items. This again gives the freedom to choose between
having at least one to having all items in the winning budget. Accordingly, in
the destructive case we ask whether there is a winning budget where less than k
of the distinguished items are included. By setting k = 1 we obtain the special
case where we ask for a winning budget containing none of the items in B♥. A
more strict variant of constructive manipulative interference would be to require
that all winning budgets contain at least k of the preferred items. Accordingly, in
the destructive variant one could require that the condition holds for all winning
budgets. In this paper, we will however focus on the above presented variants.

For a trivial upper bound, we may guess an altered budgeting scenario E′ ∈
f(E) and a budget B ∈ B(E′) with |B♥∩B| ≥ k, and verify whether B ∈ Rs(E′)
holds by querying an oracle to answer (E′, B) ∈ Rs-WB.

Lemma 2. Fix some alteration function f such that Rs-WB restricted to bud-
geting scenarios E′ with E′ ∈ f(E) is in A. Then

(i) C-Rs-MI and D-Rs-MI restricted to f are in NPA, and
(ii) Rs-WB restricted to f is in A.
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Hence, any form of manipulative interference, like manipulation, bribery, or
control in classical voting, is bound upwards by NP, for rules, where Rs-WB can
be solved efficiently, including all greedy rules. Following Lemma 1, an upper
bound for all maximizing rules is Σp

2 . For lower bounds, we investigate specific
forms of control, as a subtype of manipulative interference, to determine how vul-
nerable the rules in question are to seemingly small changes of a given budgeting
scenario. In particular, we study the impact of influencing the budget limit or
an item’s cost on the outcome. While initially putting their combinatorial bud-
geting methods forward, Talmon and Faliszewski [17] simultaneously proposed
several axioms a budgeting method should satisfy. As these axioms are not sat-
isfied by, in some cases any and in other cases several of the proposed rules, we
derive ways in which to exploit these particular weaknesses in order to exert
control over the results of the participatory budgeting process. We investigate
tight bounds for these specific forms of control, by studying the complexity of
Rs-MI under respective alteration functions f . Table 1 summarizes our results.

Changing the Budget Limit. The first type of control we consider is by
altering the budget limit, which originates from the axiom of limit monotonicity
as defined by Talmon and Faliszewski [17]. The idea is that if the budget limit is
increased, no previously budgeted item becomes unfunded. All budgeting rules
we consider violate said axiom. Thus, we define a variant of manipulative inter-
ference capturing different possibilities of taking influence on the budget limit.

Definition 4. Given L,H ∈ N+ with L ≤ H, define an alteration function
fL,H such that (A, V, c, d) ∈ fL,H(E) for every E = (A, V, c, �) and d ∈ [L,H].
The restriction of manipulative interference to such alteration functions and
k ≤ |B♥| will be denoted by Rs-Control-by-Setting-the-Budget-Limit

(Rs-CSBL).

In the constructive case C-Rs-CSBL asks whether it is possible to increase or
decrease the budget limit such that at least k of the desired items are contained
in one winning budget. In the destructive variant D-Rs-CSBL, asks whether
it is possible to obtain a winning budget containing less than k of the distin-
guished items by increasing or decreasing the budget limit. Since the rules we
consider here violate limit monotonicity, they are obviously vulnerable to this
type of control. Now, we will show that for the max rules and the quantity based
satisfaction functions both control problems are solvable in polynomial time.

Theorem 2. C-Rm
|Bv|-CSBL and D-Rm

|Bv|-CSBL are in P.

Proof. We start with the constructive variant, showing C-Rm
|Bv|-CSBL ∈ P. Let

B♥ ⊆ A be the set of items, from which we want to include at least k items, by a
successful control, in at least one winning budget. We reduce the given instance
I = (E,B♥, k, fL,H) to I ′ = (E′, B♥, k, fL,H), by modifying the set of voters.
For w = |B♥|, we clone each voter w+1 times and add one additional voter v with
Av = B♥, resulting in a set of voters V ′. This enforces, that budgets containing
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more items from B♥ yield a slightly higher satisfaction in case of ties. We set
E′ = (A, V ′, c, �). It holds that I ∈ C-Rm

|Bv|-CSBL ⇔ I ′ ∈ C-Rm
|Bv|-CSBL,

because for every d ∈ [L,H] and any two budgets B ∈ Rm
|Bv|((A, V, c, d)) and

B′ ∈ Rm
|Bv|((A, V ′, c, d)) it holds that |B ∩ B♥| ≤ |B′ ∩ B♥|. Note, that for E′

the maximum achievable satisfaction for any feasible budget in B(E′) is at most
s(V ′, A) = (w + 1) · s(V,A) + w. We use dynamic programming as described by
Talmon and Faliszewski [17], to determine the minimum cost of a budget with a
satisfaction of exactly t for each t ∈ [0, s(V ′, A)], for the budgeting scenario E′.
We may compute those values and store them in a list T . Formally, for every
t ∈ [0, s(V ′, A)], if there is no feasible budget with a satisfaction of exactly t, let
T (t) = ∞ and otherwise, let T (t) = minB′∈{B∈B(E′)|s(V ′,B)=t}c(B). Finally, we
solve C-Rm

|Bv|-CSBL by identifying if there is a value d ∈ [L,H] we can set the
budget limit to, such that there is a winning budget B with |B ∩ B♥| ≥ k. We
can search for d in a polynomial number of steps. First, we initialize to d = H
and determine the highest value t∗ with T (t∗) ≤ d. We express this value as
t∗ = (w + 1) · t1 + t2, such that t2 ∈ [0, w]. If t2 ≥ k, a control can be executed
by choosing � = d. Otherwise, we can decrease d to d = T (t∗) − 1 and repeat
until we either found d, or stop if d < L. Note, that this procedure stops after
at most s(V ′, A) < |A| · |V ′| steps.

To show, that D-Rm
|Bv|-CSBL ∈ P also holds, we can use the same algorithm.

We deviate by slightly permutating the values for the function T , such that
bundles are preferred, that include less items from B♥. In particular, for every
t1 ∈ [0, w+1] and t2 ∈ [0, w], we set T ′((w+1) ·t1+t2) = T ((w+1) ·t1+w−t2).
Again, we search for d ∈ [L,H], starting at d = H, while our condition for
identifying a yes-instance changes to t2 ≥ w − k. ��

For C-Rm
c(Bv)

-CSBL and D-Rm
c(Bv)

-CSBL tight complexity bounds are still
open. Following Lemma 2, both problems are in Σp

2 and following Theorem 1
they are Δp

2 hard. The latter follows easily, as problems of winner-determination
can be reduced to control problems without altering the parameters at all.

A very general result holds for all additive satisfaction functions, i.e., for any
function s with s(Av, B) =

∑
a∈Av

∑
b∈B s({a}, {b}) for all Av, B ⊆ A.

Theorem 3. For additive satisfaction functions s it holds that C-Rg
s-CSBL and

D-Rg
s-CSBL are in P.

Proof. Since s is additive by assumption and not dependent on the budget limit
d ∈ [L,H], the processing order of a greedy rule Rg

s is determined prior exe-
cution, using a fixed linear tie-breaking scheme � if necessary. Without loss
of generality we assume, the set of items is labeled in this ordering. That is,
for A = {a1, . . . , am} we assume that for each 1 ≤ i < j ≤ m it holds that
either s(V, {ai}) > s(V, {aj}) or s(V, {ai}) = s(V, {aj}) and ai � aj . Further,
we denote Ai = {a1, . . . , ai} and Ed = (A, V, c, d).

We use dynamic programming to compute all values for d ∈ [L,H], such
that we can include exactly j ∈ [0, |B♥|] items from B♥, only using items from
Ai for i ∈ [0,m]. We generate a (|B♥| + 1) × (m + 1) table T , where each
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column represents a processing step after investigating an item ai and each row
represents the number of items shared with B♥ in a possible (partial) solution.
More precisely, the leftmost column (i = 0) represents an initial state, column i
represents partial solutions after processing the first i items Ai, and the values
in the rightmost column (i = m) represent possible (full) solutions.

The intuition behind T (j, i) is, that the greedy rule has already executed
its first i iterations for an unknown budget limit d ∈ [L,H], such that j items
from B♥ have already been added to the (partial) budget Bi. As we might have
added in items in some iterations, we assume that some of the budget has already
been filled by the respective items cost c(Bi). For d ∈ [L,H] and every possible
resulting partial budget Bi = Rg

s(Ed) ∩ Ai containing j items from B♥, we add
d− c(Bi) ∈ T (j, i). Note that T (j, i) is empty, if there is no d ∈ [L,H] such that
Rg

s(Ed) contains exactly j items from B♥ after the first i iterations, i.e., if there
is no d ∈ [L,H] with |Rg

s(Ed)∩Ai∩B♥| = j. In particular, T (j, i) contains every
value, such that we can extend the cost c(Bi) of a partial budget Bi = Rg

s(Ed)
satisfying above conditions to retrieve the input value d. Additionally, we claim
that each T (j, i) can be represented by two discrete intervals, such that we can
encode the values for each cell efficiently (to be shown at the end of the proof).

We initialize every cell to T (j, i) = ∅ for j ∈ [0, |B♥|] and i ∈ [0,m], except
for T (0, 0) = [L,H]. Next, we populate T left-to-right and top-to-bottom, where
any cell T (j, i) is used to extend T (j, i + 1) and T (j + 1, i + 1), i.e., we only
populate to the right. By design, each cell might be populated from two different
cells; in this case we consider the union of both values. We will explain in detail
how to populate in the first iteration (i = 1) to generalize from there.

We start by investigating T (0, 0) and reduce our problem to smaller instances,
where the decision on a1 is already made and thus, we only need to consider A\A1

in following iterations. In particular, we study two main cases. In case d < c(a1)
holds, then in the first iteration we cannot add a1 to the bundle. Hence, in case
d ∈ [L, c(a1)−1], we can reduce to an instance, which considers only A\A1, i.e.,
we extend cell (0, 1) by T (0, 1) = T (0, 1)∪[L, c(a1)−1]. Otherwise, for d ≥ c(a1),
we certainly need to add a1 to the budget in this iteration. Again, we can reduce
this to an instance not considering a1, by choosing the budget limit, such that
d ≥ c(a1) holds in any case. Instead of enforcing d to have a minimum value (of
at least c(a1)), we reduce by decreasing the respective values to choose from by
c(a1). In case a1 	∈ B♥, we set T (0, 1) = T (0, 1) ∪ [0,H − c(a1)], otherwise we
also increment j, i.e., T (1, 1) = T (1, 1) ∪ [0,H − c(a1)].

More general, for some iteration, in which we investigate the cell (j, i), we
again study two seperate cases. We split T (j, i) into two disjoint sets based
on the respective items cost c(ai). That is, X = T (j, i) ∩ [0, c(ai) − 1] and
Y = T (j, i) ∩ [c(ai),H]. We extend T (j, i + 1) by X. Before extending a cell
with values from Y , we shift all values of Y by −c(ai). Formally, that is Y ′ =
{y − c(ai) | y ∈ Y }. Finally, if ai 	∈ B♥, we extend T (j, i + 1) by Y ′, otherwise
we extend T (j + 1, i + 1) by Y ′.
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After populating the table T , there is a d ∈ [L,H] with |Rg
s(Ed) ∩ B♥| = j

if and only if T (j,m) 	= ∅. Additionally, we can use backtracking on every value
d′ ∈ T (j,m), to compute a distinct value d ∈ [L,H] with |Rg

s(Ed) ∩ B♥| = j.
It is left to show, that each cell of the table can be stored efficiently. Therefore,

we show, that each cell can be represented with at most two intervals I1, I2 ⊆
[0,H] with 0 ∈ I1. Of course, this claim holds for T (0, 0) = [L,H] by assumption
and for the remaining values in the leftmost column, as they are never populated.
Next, we show that, the if the claim holds for previously populated cells, then it
also holds after populating the next cell. We start with the first row. Consider
some iteration, where we are investigating cell T (0, i). For simplicity, we imagine
the (at most) two intervals in T (0, i) to occupy respective space on the larger
interval [0,H]. We imagine this interval to be ordered left-to-right by ascending
values. In any iteration investigating T (j, i) ⊆ [0,H], we split T (j, i) at c(ai). The
left part (excluding c(ai)) is added to T (0, i+1) without any shifting operation. If
ai ∈ B♥, we use the values on the right (including c(ai)) to populate T (1, i+1),
which is not in the first row. Otherwise, we shift those values to the left by
subtracting c(ai) and add them to T (0, i + 1). If c(ai) did not intersect one of
the intervals, the claim holds. If on the other hand c(ai) did intersect an interval,
then the rightmost part is shifted to the left, such that the starting value is 0.
By assumption in T (0, i + 1) there are now two intervals starting with 0. Thus,
those two intervals collapse to a single interval. For the remaining rows first note,
that if we split and shift any interval [0, x], the two resulting intervals both have
a starting value of 0. Subsequently, the only way there is an interval I ∈ T (j, i)
with j > 0 and 0 	∈ I, is that in some previous iteration i′ a preferred item ai′

was added, whose cost c(ai′) did not intersect the right interval in T (j −1, i′). In
particular, the right interval was shifted to the left and added to T (j, i′+1). This
especially means, that T (j − 1, i′ + 1) can only hold the left interval, which is
always sticking to 0 when using the operations of splitting and shifting. Overall,
in each column there can be at most one interval I with 0 	∈ I. ��

Changing an Item’s Cost. Another type of control is the alteration of a given
item’s cost. This is based on the axiom of discount monotonicity, introduced
by Talmon and Faliszewski [17]. The intuition is that decreasing the cost of a
budgeted item does not lead to it being not funded anymore. Using a budgeting
method that satisfies this axiom means that there is no incentive to strategize
regarding an item’s price. Otherwise, one might not take an offer that would
reduce the cost of an item, fearing that it could lead to eliminating that item from
the winning bundle. This is not desirable, as it would be a waste of resources.

Definition 5. Given a♥ ∈ A and L,H ∈ N+ with L ≤ H, define an alteration
function fL,H with (A, V, c′, �) ∈ fL,H(E) for every E = (A, V, c, �) and d ∈
[L,H] such that c′(a♥) = d and c′(a) = c(a) for all a ∈ A\{a♥}. The restriction
of manipulative interference to such alteration functions, B♥ = {a♥}, and k = 1
will be denoted by Rs-Control-by-Setting-an-Item’s-Cost (Rs−CSIC).

With the above defined restrictions, C-Rs-CSIC asks whether the cost of the
desired item a♥ can be changed within the given bounds such that a winning
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budget contains a♥. In D-Rs-CSIC we ask whether we can obtain a winning bud-
get that does not contain a♥. The complexity of Rs-CSIC in both variants for
Rm

|Bv| and Rg
|Bv| follow directly from the results by Talmon and Faliszewski [17]

and Baumeister et al. [4]. As both rules satisfy discount monotonicity, the strat-
egy is to set d = L for the constructive variant and d = H for the destructive
variant. To see if the control attempt was successful, we can solve the respective
winner determination problems, which both are in P.

Corollary 2. C-Rm
|Bv|-CSIC, D-Rm

|Bv|-CSIC, C-Rg
|Bv|-CSIC, and D-Rg

|Bv|-CSIC
are in P.

We turn to the cost satisfaction function and show that for the maximizing
rule the constructive variant of setting an item’s cost is complete for Δp

2.

Theorem 4. C-Rm
c(Bv)

-CSIC is Δp
2-complete.

Proof. For a lower bound, following Theorem 1, Rm
c(Bv)

-PB is Δp
2-complete. Sub-

sequently, C-Rm
c(Bv)

-CSIC is at least Δp
2-hard, as it coincides with Rm

c(Bv)
-PB if

we choose fL,H such that L = H = c(a♥) for the item a♥ with B♥ = {a♥}.
Next, we want to show a matching upper bound. Let A′ = A \ {a♥}, E′ =

(A′, V, c, �), and Ed = (A, V, c′, �) with c′(a♥) = d and c′(a) = c(a) for all a ∈ A′.
First we compute the overall satisfaction t∗ of a winning budget for E′, which
can be done as described in the proof of Lemma 1 by querying an NP-oracle a
polynomial number of times. Knowing the optimal score for a winning budget not
containing a♥, we can query an NP-oracle to solve C-Rm

c(Bv)
-CSIC. In particular,

we ask whether there exists d ∈ [L,H], such there exists B ∈ B(Ed) with a♥ ∈ B
and s(V,B) ≥ t∗. Finding an answer to this question is in NP. The answer is yes,
if and only if there exists a d ∈ [L,H], such that there is a budget containing
a♥, that yields a satisfaction at least as high as any bundle not containing a♥. ��

Note that the above proof does not hold for the destructive control variant,
although the lower bound holds for similar reasons. Knowing t∗, does not lead to
a bounded number of obvious NP questions. Instead, we still need to determine,
whether there exists a d ∈ [L,H], such that every feasible bundle containing a♥
yields a satisfaction of at most t∗. For the greedy rule and the cost satisfaction
function we can again show polynomial-time solvability.

Theorem 5. C-Rg
c(Bv)

-CSIC and D-Rg
c(Bv)

-CSIC are in P.

Proof. Consider any budgeting scenario E and a given item a♥, which should
be included (or excluded) into the (resolute) final outcome. Further, let Ed =
(A, V, c′, �) denote the modified budgeting scenario with c′(a♥) = d and c′(a) =
c(a) for every a ∈ A\{a♥}. We assume, that there is a linear tie-breaking scheme
� over the set of items A, which is identical for every Ed.

Note that s(V,A) =
∑

v∈V

∑
a∈B c(a) is an additive function. Hence, the

order in which the greedy rule Rg
c(Bv)

determines, whether to add an item or
not, is never changing during execution. Yet, the position of a♥ in this order
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also depends on its cost c(a♥). Formally, let the position of a ∈ A in the pro-
cessing order with respect to Ed and � be denoted by pos(a,Ed,�). To solve
C-Rg

c(Bv)
-CSIC, we compute Rg

c(Bv)
(Ed) for at most |A| values d ∈ [L,H]. Ini-

tially we set d = L and compute the winning budget. If a♥ ∈ Rg
s(Ed), the input

is a yes-instance. Otherwise, we increase d to the minimum value d′, such that
pos(a♥, Ed′ ,�) < pos(a♥, Ed,�). Precisely, for the item a with pos(a,Ed,�) =
pos(a♥, Ed,�) − 1 we set d′ =

⌈∑
v∈V c(Av ∩ {a})/

∑
v∈V |Av ∩ {a♥}|

⌉
. If nec-

essary due to a tie, which is broken favoring a, d′ is additionally increased by 1.
Again, if a♥ 	∈ Rg

s(Ed′) holds, we relabel d′ to d and repeat the last step, until
we cannot increase the cost of item a♥ without exceeding our upper limit H. If
this is the case, we have successfully identified of a no-instance.

To solve D-Rg
c(Bv)

-CSIC, we use a similar technique. Now, we initialize d = H

and decrease d to the highest value, such that the decision, whether to add a♥,
is done one step later in the processing order. We hold and output yes, if for any
such d′ it holds that a♥ 	∈ Rg

c(Bv)
(Ed′), and output no, if d′ falls below L. ��

Table 1. Summary of our complexity results for respective control problems.

Rs Setting-the-Budget-Limit Setting-an-Item’s-Cost

Constructive Destructive Constructive Destructive

Rg
|Bv| in P in P in P in P

Rg
c(Bv)

in P in P in P in P

Rm
|Bv| in P in P in P in P

Rm
c(Bv)

Δp
2-h., in Σp

2 Δp
2-c. Δp

2-h., in Σp
2 Δp

2-h., in Σp
2

5 Conclusions

We extended the study of winner determination problems for the considered
budgeting methods, and introduced a general form of manipulative interference.
We focussed on two restrictions, the problems of setting the budgeting limit
and setting an item’s cost. The results are summarized in Table 1. For most
of the rules the problems are solvable in P, whereas they are Δp

2-hard for the
maximizing rule combined with the cost satisfaction function. This correlates
with the results obtained for winner determination, where the associated decision
problems are complete for coNP and Δp

2.
When studying problems of manipulative interference, polynomial-time algo-

rithms are usually undesired, as this does not offer any protection. However, this
can also be interpreted from the perspective of robustness. In reality, the budget
limit and the cost of an item may both not be perfectly accurate, meaning that
there may be some uncertainty about parts of the budget, or that the cost is
rather an estimate. Then problems of manipulative interference give insight in
how vulnerable the actual solution may be to changes in one of these parameters.
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We considered two of the axioms studied by Talmon and Faliszewski [17]. As
a task for future research, this should be extended to other axioms and other
types of control that are specific for participatory budgeting. Due to our general
formulation of manipulative interference, some of our results may still apply.
Another task would be, to close the gap between upper and lower bound for
the maximizing rule with the cost satisfaction function. The study can also be
extended to other budgeting methods. For example, a satisfaction function could
also yield dissatisfaction for rejected projects, or a voting rule could measure the
overall satisfaction by the minimum voter’s satisfaction instead of the sum.
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the NRW Ministry for Innovation, Science, and Research.
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