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Abstract. Preterm birth (PTB) (<37 weeks’ gestational age (GA)) is
associated with increased risk of short- and long-term sequelae. Accurate
predictive tools allow to improve the outcomes of those born preterm by
offering early obstetric interventions to mothers at high-risk of PTB.

Methods: This study combines a wide range of structural and func-
tional MRI parameters, from the fetal head, lung, placenta with clini-
cally available Ultrasound and outcome data. A preprocessing pipeline
adapted to the special requirements of the often incomplete and highly
GA dependant data and a supervised machine learning model based on
these derived markers derived is proposed. Data from 58 preterm and
217 term-born neonates were analysed.

Results: The best SVR model achieved an R2 value of 0.67 and cor-
rectly predicted 92% of true preterm cases using a combination of two
maternal and four fetal features.

Conclusion: The significance of this study is uncovering the potential
of markers derived from multi-modal imaging data in the prediction of
PTB using large-scale fetal studies. This study paves the way for future
studies focusing on at-risk women to further enhance the data set and
thus predictive power.
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1 Introduction

Preterm birth (PTB), affecting 8% of all deliveries in the UK, poses a signifi-
cant challenge to healthcare services due to the complex and multifaceted nature
of the condition. The burden is prevalent not only in the perinatal period but
throughout life, with those born preterm having higher risk of neurodevelop-
mental delay and motor impairment compared to their term-born counterparts
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(Luu et al. 2017). Developing better diagnostic and predictive tools can help
patients receive early, targeted support leading to improved outcomes (WHO
2020). However, current predictive capabilities are limited (Suff et al. 2019).

Most commonly, a history of previous PTB and cervical length (McIntosh et
al. 2016) are used in a clinical setting. Recently, (Watson et al. 2019b) combined
risk factors such as previous preterm births and multiple pregnancy (≥2 fetuses),
with clinical investigations such as fetal fibronectin values and cervical length
measurements were employed to predict whether a woman is high risk for preterm
birth (Watson et al. 2019b). For women with symptoms of threatened preterm
labour, the model combining risk factors and fetal fibronectin predicted 77%–
96% of the cases correctly depending on the GA.

However, most screening tools for preterm birth are limited to ultrasound
(US) derived cervical length and biochemical markers and fail to match the
complex etiology of PTB by not including placental or other fetal parameters.
While US and Doppler US (DUS) are the mainstream screening techniques dur-
ing pregnancy, they are operator-dependent methods that have limited utility in
some clinical populations e.g. mother’s with increased body mass index (BMI).
Fetal magnetic resonance imaging (MRI) is increasingly used both for research
and clinical use especially in high risk populations (mother’s with increased
BMI). It also provides both structural and functional information in an operator-
dependent manner, covering the entire uterus even in late gestation. Studies
using fetal MRI to investigate preterm birth have found decreased thymus vol-
umes (Story et al. 2020b), smaller lungs (Story et al. 2020a) and a reduction in
cortical and extra-axial cerebrospinal fluid volumes (Story et al. 2021) in fetuses
who subsequently deliver preterm compared to those who deliver at term.

Previous in utero functional MRI studies have employed both diffusion MRI
(Slator et al. 2021), which provides information about tissue microstructure
and T2∗ relaxometry, which provides an indirect measure of tissue oxygena-
tion via the blood-oxygen-level-dependent (BOLD) effect (Sorensen et al. 2020).
Decreased placental T2∗ has been correlated with low birth weight (Sorensen
et al. 2020), pre-eclampsia (Ho et al. 2020) and fetal growth restriction. How-
ever, there is a paucity of literature using in utero functional MRI to investigate
preterm birth. To our knowledge no previous MRI studies have combined mul-
tiple functional and structural measures to predict preterm birth.

Data-driven methods are therefore ideally suited for the data set obtained.
Identification of the features which hold the highest predictive power can pro-
vide valuable clinical insight and lead to improved targeting, monitoring and
outcomes for high-risk women and their babies. This study aims to leverage the
data available from large scale fetal MRI studies, together with available clinical
background and US information, to build supervised machine learning models
capable of predicting whether a fetus will be born preterm.

2 Methods

The steps in Fig. 1, from data collection to model evaluation will be detailed in
the following.
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2.1 Data

The data sets analysed here are combined from multiple ongoing large-scale
fetal research studies with similar protocols. These studies are: the Cardiac and
Placental Imaging Project (CARP), the Placental Imaging Project (PIP) and
the infection study for patients with prolonged preterm rupture of membranes
(PPROM). Data was collected from a combined total of 275 patients, and can
be divided into the following five categories:

Fig. 1. Illustration of the workflow for the study. All six stages from data collection to
model evaluation are graphically depicted.

1. Structural MRI data: automatic and manual segmentation of MRI scans
to obtain imaging features e.g. volumes of different brain regions or bi-parietal
diameter of the fetal head. (in red in Fig. 2B)

2. Functional MRI data: functional imaging features derived from the MRI
data e.g. mean placental T2∗ (in red, italic and bold in Fig. 2B).

3. Ultrasonographic data: measurements such as the expected fetal weight
(in blue in Fig. 2B)

4. Medical history and demographic data: e.g. maternal age, previous
preterm deliveries and smoking status from patient records.

5. Pregnancy outcome data: gestational age at birth, birth weight, placental
histopathology.

Structural and Functional MRI Data. After informed consent, all women where
scanned in supine position on either a 3T Philips Achieva scanner or a 1.5 T
Philips Ingenia scanner (Hughes et al. 2021) under constant monitoring of vital



Predicting Preterm Birth Using Multimodal Fetal Imaging 287

signs including blood pressure, oxygen saturation and heart rate, with frequent
verbal interaction. After survey and calibration scans, T2-weighted Turbo Spin
Echo images (1.25 × 1.25 × 2 mm3 resolution) were acquired in 3–5 orientations,
covering the uterus and fetal head in sagittal and coronal planes. A 30 s coronal
Multi-Echo Gradient Echo scan (T2ME), covering the entire uterus (3×3×3 mm3

resolution), was acquired. Furthermore, diffusion, perfusion, angiographic and
other sequences were acquired, however, the present work here focuses on the
T2 weighted and T2* scans.

The T2 weighted scans were employed to obtain 3D reconstructions of the
brain and lung using slice-to-volume techniques (Uus et al. 2020). The T2ME
data was fitted to the mono-exponential decay model, resulting in quantitative
T2∗ maps. These were either manually segmented (placenta, brain) or further
processed by a 3D model (lungs) and then segmented.

Fig. 2. Overview over the (A) time course considered and (B) attributes considered
for this study.

Ultrasonographic Data and Medical History. A growth ultrasound was taken
within one week of the MRI. In addition, the data from the screening and
anomaly scan were available for this study. The following measurements were
obtained: pulsatility indices of the uterine, umbilical and middle cerebral arter-
ies and morphological measurements including abdominal circumference, femur
length, expected fetal weight, head circumference and bi-parietal diameter.

Maternal age, body-mass index, parity, previous preterm birth, smoking sta-
tus, medication status and diagnosis with gestational diabetes mellitus, fetal
growth restriction or pre-eclampsia were recorded. At the time of delivery the
birth weight, birth weight centile, head circumference and APGAR score at one
and five minutes were included. Where available, histopathological information
was recorded, most notably the placental weight, the presence of chorioamnioni-
tis and maternal and fetal villi malperfusion.
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2.2 Preprocessing

The main concerns for this specific dataset are the following: 1) a large proportion
of missing values; 2) age-dependent features 3) imbalance in the dataset between
preterm and term babies; 4) the relatively small size of the dataset. As the size
of the dataset cannot be changed, it is important to preserve all present data
points. The imbalance of the data will be dealt with during model training. The
following describes the preprocessing performed for 1) and 2).

Z-scores were calculated (DeVore 2017) for all time-dependent variables using
the control group as basis for the transformation. Z-score transformation was
performed before imputation to ensure that only measured and no imputed
values are included when finding the mean and standard deviation regression
lines. This aims to limit any systematic error that could be introduced through
Z-score transformation. k-nearest neighbour was then performed on all numerical
features with missing values. Each missing value was thereby replaced with a
weighted average value from the k-closest neighbours for that feature. Weighting
by the Euclidean distance was required due to the imbalance in the dataset.

2.3 Model Optimisation and Implementation

Class imbalance (greater number of babies born at term compared to preterm)
was addressed through weighted sampling, where weights were defined as the
inverse of the class frequency. Two classification schemes were used: 1) term
vs. preterm birth (binary categories), and 2) extremely preterm, very preterm,
moderate-to-late preterm and term birth (four birth categories).

This study focuses on predicting GA as a continuous variable using a regres-
sion model. The results can then be categorised, allowing for comparison against
a small number of existing studies with similar aims (Story et al. 2020a, Story
et al. 2020b). Support vector regression (SVR) was chosen as it is captures non-
linearity, is capable of dealing with many features and the flexibility to define
error margins, which is essential when dealing with low signal-to-noise data such
as fetal MRI. A split of 80/20 was used for stratified train/test. Feature selec-
tion and exploration was performed by computing the correlation between each
feature and GA at birth and then converting into an F statistic. Features with
the 19 highest F statistics, and parity (categorical), were selected. Next, Feature
x feature interactions were explored between the top 20 features (19 continu-
ous + 1 categorical). Features with >60% missing were excluded from further
processing.

3 Results

3.1 Preprocessing

Results from before (Fig. 3) and after (Fig. 4) Z-score transformation, demon-
strated exemplarily for placental mean T2∗, illustrate the change from a negative
linear relationship to close to constant evolution over GA.
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Fig. 3. Placental T2∗ mean values and
the line of best fit over GA (term
(blue), extremely preterm (orange),
very preterm (green) and late preterm
birth (pink)). (Color figure online)

Fig. 4. Placental T2∗ mean value
after z-score transformation (term
(blue), extremely preterm (orange),
very preterm (green) and late preterm
birth (pink)). (Color figure online)

Feature selection was performed in three steps, with the mean placental
T2∗ performing best. The predicted GA at birth for all cases in the test
dataset using the best model was further divided into four birth categories
(<28+0, 28+0 − 33+6, 34+0 − 36+6 and ≥37+0 weeks’ GA) and binary birth cat-
egories (preterm vs. term) to show the confusion matrices in Fig. 5 and Fig. 6
respectively. Figure 5 indicates that the only fetus in the test set born extremely
preterm was correctly predicted by the model. For the very preterm group, one
fetus was correctly predicted by the model while two instances were predicted
to be born late preterm rather than very preterm. For the late preterm group,
seven out of eight children were correctly predicted by the model. 65.5% of the
instances were correctly predicted by the model to be term babies while 12.7%
who were also term-born were incorrectly predicted to be late preterm. Similarly,
when the prediction results were divided into term and preterm, the number of
correctly diagnosed term instances was 36 or 65.5% while there were 11 or 20% of
correctly diagnosed preterm instances. The number of false positives or instances
which were predicted to be preterm but were actually born at term was seven
or 12.7%. Only one instance or 1.8% was predicted to be term while they were
actually born preterm.

Figure 7 illustrates the R2 values using the best model for all possible combi-
nations of two features among the best 19 continuous features and the categorical
parity feature. The mean placental T2* score (R2 ∈ [0.34,0.6]) followed by the
pulsatility index of the uterine artery and the body volume with R2 values ∈
[0.1–0.5]. A number of features, which did not individually result in high R2

scores display high R2 scores when combined with other features. An example
of this would be the mean brain T2* value, which alone yields a R2 value of
0.018 but paired with the placental mean T2* score the R2 increases to 0.4. The
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Fig. 5. Confusion matrix for the best
SVR model, obtained using sampling
weights with four birth categories. All
fields add up to 100%.

Fig. 6. Confusion matrix for the best
SVR model with sampling weights with
binary categories. All fields add up to
100%.

Fig. 7. Heatmap matrix for 20 features with each element corresponding to the R2

value for the test set with the best model for any given pair of features. The diagonal
of the matrix gives the R2 for the best model based on the individual features.

most extreme case is the parity which raises its R2 value from −0.031 to 0.54 if
combined with the mean placental T2* score.

From the top 19 continuous features with the highest R2 scores and the
parity feature, any feature with a missing value percentage of more than 60%
was removed. The top 10 features were then the following: Mean placental T2*
score, CPR score, head circumference, abdominal circumference, femur length,
pulsatility index uterine artery, bi-parietal diameter from the growth ultrasound
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Fig. 8. Results of the SVR model with the highest R2 score (C = 100, ε = 0.1, γ =
0.1, kernel = sigmoid). Predicted GA from the best SVR model is plotted vs true GA
at birth for the test dataset. The features used were the placenta T2* mean, the head
and abdominal circumference, the femur length and the pulsatility index of the right
uterine artery from the growth ultrasound and the number of previous preterm births.

and the parity. For the top 10 features, models were trained and tested with all
combinations of features, with the number of features ranging from 1 to 10. The
best five models all used the same following parameters: C = 100, degree = 2,
γ = 0.1 and kernel = sigmoid. The best model uses six features and results in a
R2 of 0.665 and a mean absolute error of 1.6 weeks. Figure 8 shows the predicted
GA at birth for the test set using the best model compared to the true GA. The
R2 value for the best model was 0.665, the mean absolute error was 1.6 weeks
and the root mean squared error was 2.0 weeks.

4 Discussion and Conclusion

The present study exploits a comprehensive dataset containing clinical, US and
multimodal fetal MRI data to predict the GA, and thus ultimately preterm birth.
The results reflect that, in order to accurately predict preterm birth, acquiring
datasets that capture the multifactorial nature of preterm birth are essential. As
preterm birth is still poorly understood, acquiring detailed datasets provides an
opportunity to better investigate the aetiology and pathophysiology of preterm
birth. This study is however merely a first attempt to combine such large and
diverse derived parameters.

There are a number of important limitations. These include the number
of available datasets. While the collection is big for obstetric comprehensive
datasets, it is small for ML standards. It is not well balanced between PTB
and term-born cases and includes data from a range of different pregnancy com-
plications, all with their own disease aetiology and progression. The required
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and here developed pre-processing pipeline reflects these challenges and works
towards overcoming them. Future studies should include a higher number of
women with threatened PTB to allow to stratify these cases further. Another
limitation of this study is the choice of simple imputation method. Next steps
can include recently proposed methods such as graph-based imputation tech-
niques (You et al. 2020). The dataset contains both cases of spontaneous and
iatrogenic PTB, both with distinct aetiology. The GA at birth prediction results
thus also include this information and larger studies are required to treat these
as different entities. A further significant limitation of this study is the fact that
cervical length was not included. Tools are currently been developed to add this
into a future study. Further second order derived quantities can also be included
in a next step.

Future work will expand the achieved results into multiple directions. Further
models will be explored, direct prediction on the imaging data will be explored to
include whether further characteristics such as the heterogeneity of the placenta
further increases the ability to predict PTB and further cohorts will be recruited,
such as these with previous cervical surgeries or overt signs of inflammation.

References

DeVore, G.: Computing the Z score and centiles for cross-sectional analysis: a practical
approach. J. Ultrasound Med. 36, 459–473 (2017)

McIntosh, J., Feltovich, H., Berghella, V., Manuck, T., Society for Maternal-Fetal
Medicine (SMFM): The role of routine cervical length screening in selected high-
and low-risk women for preterm birth prevention. Am. J. Obstet. Gynecol. 215,
B2–B7 (2016)

Hughes, E.J., Price, A.N., McCabe, L., et al.: The effect of maternal position on venous
return for pregnant women during MRI. NMR Biomed. 34, e4475 (2021)

Story, L., et al.: Brain volumetry in fetuses that deliver very preterm. NeuroImage
Clin. 30, 102650 (2021)

Story, L., et al.: Foetal lung volumes in pregnant women who deliver very pretermy.
Pediatr. Res. 87, 1066–1071 (2020a)

Uus, A., et al.: Deformable slice-to-volume registration for reconstruction of quanti-
tative T2* placental and fetal MRI. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020.
LNCS, vol. 12437, pp. 222–232. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60334-2 22

Story, L., Zhang, T., Uus, A., et al.: Antenatal thymus volumes in fetuses that delivered
<32 weeks’ gestation: an MRI pilot study. Acta Obstet. Gynecol. Scand. 100, 1040–
1050 (2020b). https://doi.org/10.1111/aogs.13983

Suff, N., Story, L., Shennan, A.: The prediction of preterm delivery: what is new?
Semin. Fetal Neonatal Med. 24(1), 27–32 (2019)

Luu, T.M., Rehman Mian, M.O., Nuyt, A.M.: Long-term impact of preterm birth:
neurodevelopmental and physical health outcomes. Clin. Perinatol. 44(2), 305–314
(2017). Delivery in the Periviable Period

You, J., Ma, X., Yi, D., Ding, Y., Kochenderfer, M., Leskovec, J.: Handling missing
data with graph representation learning. In: NeurpIPS 2020 Proceedings (2020)

Slator, P.J., et al.: Data-driven multi-contrast spectral microstructure imaging with
InSpect. Med. Image Anal. 71, 102045 (2021)

https://doi.org/10.1007/978-3-030-60334-2_22
https://doi.org/10.1007/978-3-030-60334-2_22
https://doi.org/10.1111/aogs.13983


Predicting Preterm Birth Using Multimodal Fetal Imaging 293

Sørensen, A., Hutter, J., Seed, M., Grant, P.E., Gowland, P.: T2*-weighted placental
MRI: basic research tool or emerging clinical test for placental dysfunction? Ultra-
sound Obstet. Gynecol. 55, 293–302 (2020)

Ho, A.E.P., et al.: T2* placental magnetic resonance imaging in preterm preeclampsia
an observational cohort study. Hypertension 75, 1523–1531 (2020)

Watson, H., et al.: Development and validation of predictive models for QUiPP App
vol 2: tool for predicting preterm birth in asymptomatic high?risk women. USOG
55, 348–356 (2019b)

WHO: Preterm birth (2018). https://www.who.int/en/news-room/fact-sheets/detail/
preterm-birth. Accessed 24 Jan 2021

WHO: The top 10 causes of death (2020). https://www.who.int/news-room/fact-
sheets/detail/the-top-10-causes-of-death. Accessed 28 Mar 2021

https://www.who.int/en/news-room/fact-sheets/detail/preterm-birth
https://www.who.int/en/news-room/fact-sheets/detail/preterm-birth
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

	Predicting Preterm Birth Using Multimodal Fetal Imaging
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Preprocessing
	2.3 Model Optimisation and Implementation

	3 Results
	3.1 Preprocessing

	4 Discussion and Conclusion
	References




