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Abstract. The performance of deep neural networks typically increases
with the number of training images. However, not all images have the
same importance towards improved performance and robustness. In fetal
brain MRI, abnormalities exacerbate the variability of the developing
brain anatomy compared to non-pathological cases. A small number of
abnormal cases, as is typically available in clinical datasets used for train-
ing, are unlikely to fairly represent the rich variability of abnormal devel-
oping brains. This leads machine learning systems trained by maximizing
the average performance to be biased toward non-pathological cases. This
problem was recently referred to as hidden stratification. To be suited
for clinical use, automatic segmentation methods need to reliably achieve
high-quality segmentation outcomes also for pathological cases. In this
paper, we show that the state-of-the-art deep learning pipeline nnU-Net
has difficulties to generalize to unseen abnormal cases. To mitigate this
problem, we propose to train a deep neural network to minimize a per-
centile of the distribution of per-volume loss over the dataset. We show
that this can be achieved by using Distributionally Robust Optimization
(DRO). DRO automatically reweights the training samples with lower
performance, encouraging nnU-Net to perform more consistently on all
cases. We validated our approach using a dataset of 368 fetal brain T2w
MRIs, including 124 MRIs of open spina bifida cases and 51 MRIs of
cases with other severe abnormalities of brain development.
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Fig. 1. Illustration of the anatomical variability in fetal brain across gestational ages
and diagnostics. 1: Control (22 weeks); 2: Control (26 weeks); 3: Control (29 weeks);
4: Spina bifida (19 weeks); 5: Spina bifida (26 weeks); 6: Spina bifida (32 weeks); 7:
Dandy-walker malformation with corpus callosum abnormality (23 weeks); 8: Dandy-
walker malformation with ventriculomegaly and periventricular nodular heterotopia
(27 weeks); 9: Aqueductal stenosis (34 weeks).

1 Introduction

The segmentation of fetal brain tissues in MRI is essential for the study of
abnormal fetal brain developments [2]. Fetal brain structures segmentation
could also support the evaluation and prediction of surgery outcome for open
spina bifida [1,4,16,21,22]. Accurate and automatic methods for fetal brain
segmentation are necessary as manual segmentation is very time-consuming
and suffers from high inter- and intra-rater variability. Recently, deep neural
network-based methods for fetal brain T2w MRI segmentation have been pro-
posed [7,8,15,18,19]. On average, deep learning currently achieves state-of-the-
art segmentation performance. However, those studies do not evaluate specifi-
cally the generalization and robustness properties when applied to fetuses with
a pathological central nervous system.

Datasets used to train deep neural networks typically contain some under-
represented subsets of cases. These cases are not specifically dealt with by the
training algorithms currently used for deep neural networks. This problem has
been referred to as hidden stratification [17]. Hidden stratification has been
shown to lead to deep learning models with good average performance but poor
performance on some clinically relevant subsets of the population [17]. While
uncovering the issue, the study of [17], which is limited to classification, does
not study the cause or propose a method to mitigate this problem. Cases with
abnormal fetal brain development are likely to suffer from hidden stratification
effects for two reasons: 1) The presence of abnormalities exacerbates the anatom-
ical variability of the fetal brain between 18 weeks and 38 weeks of gestation, as
illustrated in Fig. 1; and 2) The prevalence of those diseases is typically below
1/1000 births [1].
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In this work, we study the problem of hidden stratification in fetal brain
MRI segmentation using deep learning. We claim that the methodology currently
used to train deep neural networks, that is maximizing the average performance
across the training volumes, is at the root of the hidden stratification problem.
Instead of the average empirical risk, training safe and robust deep learning
models requires an asymmetric measure of risk that gives higher weights to the
cases for which the algorithm fails (hard examples). Percentiles, also known as
value-at-risk, is such a measure of risk that has even been adopted in industry
regulations [13]. Given a per-volume fetal brain MRI segmentation metric such
as the Dice score and an algorithm, the percentile at 5% is the value of the
score below which 5% of the cases fall, i.e. perform worse than the percentile.
The percentile relates to hidden stratification effects as it informs us of how
badly worst-case examples are performing. Our contributions are four-fold. 1)
We empirically show that the state-of-the-art deep learning pipeline nnU-Net [14]
trained by maximizing the average segmentation performance leads to clinically
significant failures for fetal brain MRI segmentation. 2) We propose to use per-
centiles of the Dice score on clinically relevant subpopulations as a measure of
hidden stratification effects. 3) We propose to train a deep learning network to
minimize a percentile of the per-volume loss function. 4) We propose a relaxation
of this optimization problem based on distributionally robust optimization that
can be solved efficiently in practice. We evaluate the proposed methodology for
the automatic segmentation of white matter, ventricles, and cerebellum based on
fetal brain 3D T2w MRI. We used a total of 368 fetal brain 3D MRIs including
anatomically normal fetuses, fetuses with open spina bifida, and fetuses with
other central nervous system pathologies for gestational ages ranging from 19
weeks to 39 weeks. Our empirical results suggests that the proposed training
method based on distributionally robust optimization leads to better percentiles
values for abnormal fetuses. In addition, qualitative results shows that distribu-
tionally robust optimization allows to reduce the number of clinically relevant
failures of nnU-Net.

2 Minimization of a Percentile Loss Using
Distributionally Robust Optimization

In this section, we study how a deep neural network can be trained to mini-
mize percentiles of the loss function using a distributionally robust optimiza-
tion (DRO) approach [10].

Standard deep learning training consists in optimizing the parameters θ of a
deep neural network f(·;θ) by minimizing the average per-example loss L

min
θ

1
n

n∑

i=1

L (f(xi;θ),yi) (1)

Within this empirical risk minimization framework, f(·;θ) is typically a Con-
volutional Neural Network (CNN), L is a smooth per-volume loss function, and
{(xi,yi)}n

i=1 is the training dataset.
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In our case, xi are the input 3D fetal brain T2w MRI volumes and yi are
the ground-truth manual segmentations. This approach is the one used to train
state-of-the-art deep learning methods for segmentation using stochastic gra-
dient descent [14]. Due to the scarcity and the higher anatomical variability of
abnormal cases illustrated in Fig. 1, we cannot assume that the set of all possible
fetal brain anatomies is sampled uniformly in the training dataset. However, in
(1), all brain volumes are given the same weight equal to 1

n .
Instead of the average per-volume loss, for robust and safe segmentation,

we argue that it might be more interesting to minimize the percentile lα at
α (e.g. 5%) of the per-volume loss function. Formally, this corresponds to the
minimization problem

min
θ, lα

lα such that P (L (f(x;θ), y) ≥ lα) ≤ α (2)

where P is the empirical distribution defined by the training dataset. In other
words, if α = 0.05, the optimal l∗α(θ) of (2) for a given value set of parameters
θ is the value of the loss such that the per-volume loss function is worse than
l∗α(θ) 5% of the time. As a result, training the deep neural network using (2)
corresponds to minimizing the percentile of the per-volume loss function l∗α(θ).

Unfortunately, the minimization problem (2) cannot be solved directly using
stochastic gradient descent to train a deep neural network. We now propose a
tractable upper bound for l∗α(θ) and show that it can be solved in practice using
distributionally robust optimization [10].

The Chernoff bound [3] applied to the per-volume loss function and the
empirical training data distribution states that for all lα and β > 0

P (L (f(x;θ), y) ≥ lα) ≤ exp (−βlα)
n

n∑

i=1

exp (β L (f(xi;θ),yi)) (3)

To link this inequality to the minimization problem (2), we set β such that

α =
exp

(
−βl̂α(θ)

)

n

n∑

i=1

exp (β L (f(xi;θ),yi)) (4)

⇐⇒ l̂α(θ) =
1
β

log

(
1

αn

n∑

i=1

exp (β L (f(xi;θ),yi))

)
(5)

l̂α(θ) is therefore an upper bound for l∗α(θ), independently to the value of θ. We
propose to relax the minimization problem (2) by

min
θ

1
β

log

(
n∑

i=1

exp (β L (f(xi;θ),yi))

)
(6)

where β > 0 is a hyperparameter, and where the term 1
β log

(
1

αn

)
was dropped

as being independent of θ. While in (6), α does not appear in the optimization
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Table 1. Training and testing dataset details. Other Abn: other brain structural
abnormalities. There is no overlap of subjects between training and testing.

Train/Test Origin Condition Volumes Gestational age (in weeks)

Training Atlas [12] Control 18 [21, 38]

Training FeTA [18] Control 5 [22, 28]

Training UHL and MUV Control 116 [20, 35]

Training UHL and MUV Spina Bifida 28 [22, 34]

Training UHL and MUV Other Abn 10 [23, 35]

Testing FeTA [18] Control 28 [20, 34]

Testing FeTA [18] Spina Bifida 31 [22, 31]

Testing FeTA [18] Other Abn 16 [20, 34]

Testing UHL and MUV Control 26 [26, 37]

Testing UHL and MUV Spina Bifida 65 [19, 33]

Testing UHL and MUV Other Abn 25 [21, 40]

problem directly anymore, β essentially acts as a substitute for α. The higher
the value of β, the higher weights the per-volume losses with a high value will
have in (6).

We give a proof in the supplementary material1 that (6) is equivalent to
solving the distributionally robust optimization problem

min
θ

max
q∈Δn

(
n∑

i=1

qi L (f(xi;θ),yi) − 1
β

DKL

(
q

∥∥∥∥
1
n
1
))

(7)

where a new unknown probabilities vector parameter q is introduced, 1
n1 denotes

the uniform probability vector
(
1
n , . . . , 1

n

)
, DKL is the Kullback-Leibler diver-

gence, Δn is the unit n-simplex, and β > 0 is a hyperparameter. DKL measures
the dissimilarity between q and the uniform probability vector 1

n1 that corre-
sponds to assign the same weight 1

n to each sample. Therefore, β controls how
much the samples with a relatively high loss value (hard examples) are weighted.

Recently, hardness weighted sampling [10] was introduced as a principled
hard example mining method to solve (7). Here, we proved that it can be used
to minimize the proposed relaxed minimization (6) of the percentile loss problem.

3 Anatomically Abnormal Fetal Brain T2w MRI Dataset

In this section, we give details about the fetal brain 3D MRI data, the labelling
protocol, and the pre-processing used in our experiments.

1 Please see the arxiv version for the supplementary material http://arxiv.org/abs/
2108.04175.

http://arxiv.org/abs/2108.04175
http://arxiv.org/abs/2108.04175
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Public Fetal Brain Datasets. We used the 18 control fetal brain 3D MRI
volumes of the spatio-temporal fetal brain atlas2 [12] for gestational ages ranging
from 21 weeks to 38 weeks. We also used 80 volumes from the publicly available
FeTA MICCAI challenge dataset3 [18]. For the 40 MIAL 3D MRIs, corrections
of the segmentations were performed by authors MA, LF, and PD to reduce
the variability against the published segmentation guidelines that was released
with the FeTA dataset [18]. Those corrections were performed as part of our
previous work [8] and are publicly available4. Brain masks for the FeTA data
were obtained via affine registration using two fetal brain atlases5 [11,12].

Image Acquisition and Preprocessing for the Private Dataset. All
images in the private dataset were part of routine clinical care and were acquired
at UHL and MUV due to congenital malformations seen on ultrasound.

In total, 93 cases with open spina bifida, 35 cases with other central nervous
system pathologies, and 142 cases with other malformations, though with nor-
mal brain, and referred as controls, were included. The gestational age at MRI
ranged from 19 weeks to 40 weeks. We have started to make fetal brain T2w 3D
MRIs publicly available6. For each study, at least three orthogonal T2-weighted
HASTE series of the fetal brain were collected on a 1.5T scanner using an echo
time of 133 ms, a repetition time of 1000 ms, with no slice overlap nor gap, pixel
size 0.39 mm to 1.48 mm, and slice thickness 2.50 mm to 4.40 mm. A radiologist
attended all the acquisitions for quality control.

The reconstructed fetal brain 3D MRIs were obtained using NiftyMIC [6]
a state-of-the-art super resolution and reconstruction algorithm. The volumes
were all reconstructed to a resolution of 0.8 mm isotropic and registered to a
fetal brain atlas [12]. Our pre-processing improves the resolution, and removes
motion between neighboring slices and motion artefacts present in the original
2D slices [6]. We used volumetric brain masks to mask the tissues outside the
fetal brain. Those brain masks were obtained using the automatic segmentation
method described in [6,20].

Labelling Protocol. The labelling protocol used for white matter, ventricles
and cerebellum is the same as in [18]. The three tissue types were segmented
for our private dataset by a trained obstetrician and medical students under the
supervision of a paediatric radiologist specialized in fetal brain anatomy, who
quality controlled and corrected all manual segmentations.

Separation of the Data into Training and Testing. A summary of the
number of fetal brain 3D MRIs used at training and testing for each central

2 http://crl.med.harvard.edu/research/fetal brain atlas/.
3 DOI: 10.7303/syn25649159.
4 DOI: 10.5281/zenodo.5148611.
5 DOI: 10.7303/syn25887675.
6 https://www.cir.meduniwien.ac.at/research/fetal/.

http://crl.med.harvard.edu/research/fetal_brain_atlas/
https://doi.org/10.7303/syn25649159
https://doi.org/10.5281/zenodo.5148611
https://doi.org/10.7303/syn25887675
https://www.cir.meduniwien.ac.at/research/fetal/
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Fig. 2. Qualitative results. a) Fetus with aqueductal stenosis (34 weeks). b) Fetus
with open spina bifida (27 weeks). For those two cases, nnU-Net [14] misses completly
the cerebellum and achieves poor segmentation for the white matter and the ventricles.
Our nnU-Net-DRO achieves satisfactory segmentation for the cerebellum for the two
cases, and for all tissue types for the aqueductal stenosis case.

nervous system condition can be found in Table 1. The training dataset contains
a total of 177 cases with a majority of 139 controls and only 38 abnormal cases
which is typical in clinical datasets. Five controls from the FeTA dataset were
added in the training dataset because we found in preliminary experiments that
nnU-Net [14] fails on most of the FeTA data at testing when it is trained using
only data from UHL and MUV and the fetal brain atlas [12]. The testing dataset
contains 193 volumes with a majority of abnormal cases which is necessary to
cover the anatomical variability of abnormal cases in our evaluation.

4 Experiments

Common Deep Learning Pipeline. We used nnU-Net [14], a generic deep
learning pipeline for medical image segmentation, that has been shown to outper-
form other deep learning pipelines on 23 public datasets without the need to tune
the loss function or the deep neural network architecture. Specifically, we used
nnU-Net version 2 in 3D-full-resolution mode which is the recommended mode
for isotropic 3D MRI data. nnU-Net automatically splits the training data into
5 folds 80% training/20% validation used to train 5 networks for each method.
The predicted class probability maps of the 5 models are averaged at inference
to improve robustness [14]. We used NVIDIA Tesla V100 GPUs with 16 GB of
memory. Training each network took from 4 to 6 days.

Specificities of Each Method. The baseline consists in using nnU-Net [14]
without any modification. Our method, nnU-Net-DRO, also uses nnU-Net. The
only difference is that we changed the sampling strategy to use the hardness
weighted sampler for DRO [10]. We used the default hyper-parameter values for
the hardness weighted sampler, i.e. β = 100 with importance sampling and clip-
ping values wmin = 0.1 and wmax = 10 as described in [10]. No other values were
tested. Our implementation of the nnU-Net-DRO training procedure is publicly
available at https://github.com/LucasFidon/HardnessWeightedSampler. It pro-
vides an implementation of the hardness weighted sampler described in [10].

https://github.com/LucasFidon/HardnessWeightedSampler
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Table 2. Evaluation of distribution robustness with respect to the pathology
(193 3D MRIs). WM: White matter, Vent: Ventricles, Cer: Cerebellum. pX : Xth

percentile of the Dice score distribution in percentage. Best values are in bold.

Method CNS ROI Dice Score (%)

Mean Std p50 p25 p10 p5

(baseline) nnU-Net Controls (54 cases) WM 93.9 2.9 94.1 91.5 90.6 89.3

Vent 87.8 6.8 89.7 82.1 78.1 76.8

Cer 94.5 3.2 94.6 92.4 90.7 89.8

Spina Bifida (98 cases) WM 89.9 7.9 92.5 89.1 79.9 73.4

Vent 90.6 10.6 93.0 88.6 84.8 80.7

Cer 78.2 28.7 89.8 84.2 13.9 0.0

Other Abn. (41 cases) WM 90.3 9.8 92.7 89.7 82.7 70.1

Vent 87.1 7.3 87.1 82.5 77.7 75.2

Cer 89.7 14.7 92.8 89.4 85.1 81.6

(ours) nnU-Net-DRO Controls (54 cases) WM 93.8 3.0 93.9 91.2 90.1 89.2

Vent 87.9 6.7 89.9 82.6 78.3 76.7

Cer 94.4 3.1 94.6 92.6 90.7 89.5

Spina Bifida (98 cases) WM 90.3 7.5 92.9 89.2 81.5 73.7

Vent 90.9 10.3 93.2 89.2 85.1 81.7

Cer 79.7 27.6 89.7 84.1 40.4 0.0

Other Abn. (41 cases) WM 90.3 9.5 92.5 89.6 82.5 72.0

Vent 87.5 7.1 87.5 82.7 80.4 76.7

Cer 90.6 10.5 92.8 89.8 85.5 82.9

Evaluation Method. We evaluate the quality of the automatic fetal brain
MRI segmentations using the Dice score [5,9]. We are particularly interested in
measuring the statistical risk of the results as a way to evaluate the robustness
of the different methods. To this end, in addition to the mean and standard
deviation, we also report the percentiles of the Dice score at 50%, 25%, 10%,
and 5%. In Table 2, we report those quantities for the Dice scores of the three
tissue types white matter, ventricular system, and cerebellum.

For each method, nnU-Net is trained 5 times using different train/validation
splits and different random initializations. The 5 same splits, computed ran-
domly, are used for the two methods. The results in Table 2 are for the ensemble
of the 5 3D U-Nets. Ensembling is known to increase the robustness of deep
learning methods for segmentation [14]. It also makes the evaluation less sensi-
tive to the random initialization and to the stochastic optimization.

Evaluation of nnU-Net and nnU-Net-DRO. Quantitative evaluation of
nnU-Net and nnU-Net-DRO for the three different central nervous system con-
ditions control, spina bifida, and other abnormalities can be found in Table 2.

For spina bifida and other brain abnormalities, the proposed nnU-Net-DRO
achieves same or higher mean Dice scores and lower standard deviations than
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nnU-Net [14] for the three tissue types. For controls, the mean Dice scores and
standard deviation of nnU-Net-DRO and nnU-Net differ by less than 0.1 per-
centage points (pp) for the three tissue types.

The comparison of the percentiles of the Dice score allows us to compare
methods at the tail of the Dice scores distribution where segmentation meth-
ods reach their worst-case performance. For spina bifida, nnU-Net-DRO achieves
higher values of percentiles than nnU-Net for the white matter (+0.6pp for p10),
for the ventricular system (+1.0pp for p5), and for the cerebellum (+26.5pp for
p10). And for other brain abnormalities, nnU-Net-DRO achieves higher values of
percentiles than nnU-Net for the white matter (+1.9pp for p5), for the ventricu-
lar system (+1.5pp for p5 and +2.7pp for p10), and for the cerebellum (+1.3pp
for p5). All the other percentile values differ by less than 0.5pp of Dice score
between the two methods. This suggests that nnU-Net-DRO achieves better
worst case performance than nnU-Net for abnormal cases.

It is worth noting that the Dice scores decrease for the white matter and
the cerebellum between controls and spina bifida and abnormal cases. It was
expected due to the higher anatomical variability in pathological cases. However,
the Dice scores for the ventricular system tend to be higher for abnormal cases
than for controls. This can be attributed to the large proportion of pathological
cases with enlarged ventricles because the Dice score values tend to be higher
for larger region of interests.

As can be seen in the qualitative results of Table 2, there are cases for
which nnU-Net predicts an empty cerebellum segmentation while nnU-Net-DRO
achieves satisfactory cerebellum segmentation. There were no cases for which
the converse was true. Robust segmentation of the cerebellum for spina bifida
is particularly relevant for the evaluation of fetal brain surgery for open spina
bifida [1,4,21]. Additional qualitative results in the supplementary material7

illustrates 5 other cases for which nnU-Net-DRO outperforms nnU-Net.

5 Conclusion

The high anatomical variability of the developing fetal brain across gestational
ages and pathologies hampers the robustness of deep neural networks trained
by maximizing the average per-volume performance. Specifically, it limits the
generalization of deep neural networks to abnormal cases for which few cases
are available during training. In this paper, we propose to mitigate this problem
by training deep neural networks to minimize a percentile of the per-volume
performance rather than the average. To allow to do this in practice, we pro-
pose to train deep neural networks with Distributionally Robust Optimization
(DRO) and we show that the DRO objective is a relaxation of the per-volume
loss percentile. We have validated the proposed training method on a multi-
centric dataset of 368 fetal brain T2w 3D MRIs with various diagnostics. nnU-
Net trained with DRO achieved improved segmentation results for pathological
7 Please see the arxiv version for the supplementary material http://arxiv.org/abs/

2108.04175.

http://arxiv.org/abs/2108.04175
http://arxiv.org/abs/2108.04175
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cases as compared to the unmodified nnU-Net, while achieving similar segmen-
tation performance for the neurotypical cases. Our results suggest that nnU-Net
trained with DRO is more robust to anatomical variabilities than the original
nnU-Net.
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