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Abstract. We present a new deep learning method, FML, that auto-
matically computes linear measurements in a fetal brain MRI volume.
The method is based on landmark detection and estimates their loca-
tion reliability. It consists of four steps: 1) fetal brain region of interest
detection with a two-stage anisotropic U-Net; 2) reference slice selec-
tion with a convolutional neural network (CNN); 3) linear measurement
computation based on landmarks detection using a novel CNN, FMLNet;
4) measurement reliability estimation using a Gaussian Mixture Model.
The advantages of our method are that it does not rely on heuristics
to identify the landmarks, that it does not require fetal brain struc-
tures segmentation, and that it is robust since it incorporates reliability
estimation. We demonstrate our method on three key fetal biometric
measurements from fetal brain MRI volumes: Cerebral Biparietal Diam-
eter (CBD), Bone Biparietal Diameter (BBD), and Trans Cerebellum
Diameter (TCD). Experimental results on training (N = 164) and test
(N = 46) datasets of fetal MRI volumes yield a 95% confidence interval
agreement of 3.70 mm, 2.20 mm and 2.40 mm for CBD, BBD and TCD,
in comparison to measurements performed by an expert fetal radiol-
ogist. All results were below the interobserver variability, and surpass
previously published results. Our method is generic, as it can be directly
applied to other linear measurements in volumetric scans and can be
used in a clinical setup.
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1 Introduction

Magnetic resonance imaging (MRI) is increasingly used to assess fetal brain
development. Clinical assessment of fetal brain development based on MRI is
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mainly subjective and is complemented with a few biometric linear measure-
ments [17]. Three key biometric linear measurements currently performed on
fetal brain MRI are the Cerebral Biparietal Diameter (CBD), the Bone Bipari-
etal Diameter (BBD), and the Trans Cerebellum Diameter (TCD) [18]. These
measurements are used to assess fetal development according to the gestational
age. They are manually acquired on individual MR reference slices by a fetal radi-
ologist following guidelines that indicate how to establish the scanning imaging
plane, how to select the reference slice in the MR volume for each measurement,
and how to identify the two endpoint landmarks of the linear measurement [9].

Various methods have been developed for computing biometric linear mea-
surements in 2D ultrasound images, e.g., the biparietal diameter [13], the fetal
head circumference [12], and the fetus femur length [13]. Recently, Avisdris et
al. [3] describe an automatic method for computing fetal brain linear measure-
ments in MRI scans. The method mimics the radiologist manual annotation
workflow, relies on a fetal brain segmentation and is based on measurement spe-
cific geometric heuristics for identifying the anatomical landmarks of each linear
measurement. While it yields acceptable measurements, its reliance on accurate
fetal brain segmentation and ad hoc heuristics may not always be robust.

Methods for the automatic computation of linear measurements of a structure
in volumetric scans have been proposed in the past. For example, Yan et al.
[21] describe a deep learning method for the computation of the length and
width of a lesion following the RECIST guidelines. The method uses the Mask-
RCNN network [10] to detect and segment each lesion from which the linear
measurements are computed. The training segmentation masks are obtained
from the ground truth measurements by fitting an ellipse bounded by the long
and short axes measurement endpoints. This method is specific to lesions and
RECIST measurements and is not applicable to fetal brain measurements.

Automatic landmark detection in images is a common task in a variety of
computer vision applications, e.g., face alignment [20], pose estimation and in
medical image analysis [16,22]. Two popular CNN-based methods consist of
computing the spatial coordinates of each landmark by direct regression [22] or
by heat map regression [16,20]. In the latter, the network computes a heat map
defined by a Gaussian function centered at the landmark coordinates whose co-
variance describes the landmark location uncertainty. HRNet [20], a heat map
regression network, achieves state of the art results in face landmark detection,
human pose estimation, object classification and semantic segmentation.

Uncertainty estimation is an essential aspect of a variety of related tasks,
e.g., classification, regression and segmentation with deep neural networks in
computer vision [8] and medical image analysis [4]. Wang et al. [19] describes
a test time augmentation (TTA) based uncertainty estimation method. TTA
consists of generating similar new cases, computing the voxel predictions for
each, and then obtaining the final voxel prediction on the original image by
taking the mean or median value or voxel uncertainty by computing the entropy.
This approach is not directly applicable to landmark detection. Payer et al.
[15] describes a Gaussian-based uncertainty estimation method for landmark
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localization in hand X-ray images and in lateral cephalograms datasets. The
method fits a Gaussian for each landmark from its predicted heat map. Their
results show that the predicted uncertainties correlate with the landmark spatial
error and the interobserver variability.

2 Method

We present a new deep learning method, called FML (Fetal Measurement by
Landmarks), to automatically compute landmark-based linear measurements in
a fetal brain MRI volume and to estimate their reliability. We demonstrate FML
on 3 key fetal biometric measurements: CBD, BBD, TCD.

The method consists of four steps: 1) fetal brain region of interest (ROI)
detection with a two-stage anisotropic U-Net; 2) reference slice selection with
a 2D CNN; 3) linear measurement computation based on landmarks detec-
tion using a novel CNN, FMLNet; 4) measurement reliability estimation with a
Bayesian score using a Gaussian Mixture Model (GMM).

2.1 Fetal Brain ROI Detection

The first step computes the fetal brain ROI in the fetal MRI volume with the
method described in [6]. The ROI is a 3D axis-aligned bounding box that contains
the fetal brain. The method uses a custom anisotropic 3D U-Net network trained
with a Dice loss on a ×4 downsized fetal MRI volume. It outputs a coarse fetal
brain segmentation from which a tight fitting ROI is computed.

2.2 Reference Slice Selection

The second step computes for each measurement, the reference slice of the fetal
MRI volume on which the linear measurements will be performed from input
fetal MRI volume with the method described in [3]. The method uses a slice-
based 2D CNN that predicts for each slice in the ROI its probability to be a
reference slice. It then selects the one with the highest probability. One CNN is
trained for each measurement reference slice to detect the slice that was manually
selected by the radiologist.

2.3 Linear Measurement Computation

The third step computes for each measurement the two anatomical landmarks
of the measurement endpoints on the selected reference slice. The landmarks are
computed using FMLNet, a variant of the HRNet network [20].

HRNet is a CNN type network whose key characteristic is that it maintains
a high resolution representation of the input throughout network layers. This is
achieved by connecting the high-to-low resolution convolution streams in parallel
and by repeatedly spreading the intermediate results of each layer across the
other layers at different resolutions.

We describe next the FMLNet architecture and its training and inference
pipelines.
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Fig. 1. Diagram of the FMLNet architecture. FMLNet is CNN network that consists
of four streams (rows) at subsequently lower resolutions: full, 1/2, 1/4, 1/8 (each in a
different color). Each stream consists four convolutional blocks (dotted boxes); in each
block, boxes represent feature maps and arrows correspond to layers. After each block,
the feature maps are combined across streams (red and green arrows). At the end of
the blocks (two upper right 4-box clusters), the features maps of all four resolutions are
concatenated and combined (pink box). The outputs are the two landmark Gaussian
heat maps, one for each measurement endpoint (top rightmost box with red ovals).
(Color figure online)

FMLNet Architecture: Figure 1 shows the architecture of FMLNet. It is a
CNN that combines the representations from four high-to-low resolution parallel
streams into a single stream. The representations are then input to a two-layer
convolution classifier. The first layer combines the feature maps of all four res-
olutions; the second layer computes a Gaussian heat map for each of the two
landmark endpoint. One network is trained for each measurement with the Mean
Squared Error (MSE) loss between the Gaussian maps created from the ground
truth measurement landmarks and the predicted heat maps. At inference time,
the two measurement landmark locations are defined by the coordinates of the
pixel with the maximal value on each heat map.

FMLNet Training: Three FMLNet networks are trained, one for each of the
linear measurements, CBD, BBD and TCD. The input is the reference slice
image; the outputs are the two measurement endpoint locations on the image.

Two training time augmentations are used: 1) rotations around the image
center at angles randomly sampled in the [−180, 180]o range; 2) image scaling
at scales randomly sampled in the [−5,+5]% range. In addition, landmark class
(left/right) reassignment (LCR) is performed on the resulting landmarks.

Landmark class reassignment is necessary because rotations may cause the
left/right labeling of the two measurement landmarks to be inconsistent with
the image coordinates, i.e. the left and right points may be switched, which
will hamper the network training. This inconsistency is corrected by performing
landmark class reassignment (Fig. 2). During each training epoch, the left/right
assignment for each rotated image is verified with respect to the image coordinate
system and if needed, is corrected by switching the left/right labels.

Note that these augmentations are different than the ones used in the original
HRNet. Unlike faces, which are almost always vertical, the fetal brain can be
in any orientation, so the full range of rotations (beyond flipping) should be
accounted for. The network is trained for 200 epochs on a batch size of 16
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Fig. 2. Illustration of the landmark class reassignment: (a) reference slice image with
ground-truth left (blue) and right (green) landmarks; (b) image after rotation with
inconsistent landmark labeling (left/right switched); (c) reassignment of labels. (Color
figure online)

images with the ADAM optimizer [14] with an initial learning rate of 10−4 and
a dropping factor of 0.2 in epochs 10, 40, 90, and 150.

FMLNet Inference: the inference pipeline consists of three steps (Fig. 3): 1)
test time augmentation (TTA) of the reference slice image; 2) landmarks location
prediction with FMLNet; and 3) robust landmarks fusion (RLF).

1. Test time augmentation: new reference slice images are generated with
a set of reversible spatial transformations T = {ti} applied to the original
image I. Rotation transformations are applied at a equally spaced angles in
the [0, 360]o range (in our case, a = 12). The result is a set of transformed
images I ′ = {I ′

i = ti(I)}.
2. Landmarks prediction with FMLNet: two measurement landmarks,
L′
i = {l

′(k)
i |k ∈ K}, K = {left, right} are computed for each image I ′

i with the
trained FMLNet. The resulting landmark predictions, L′

i, are then mapped
back to their original location on the reference slice image by applying the
reverse spatial transformation t−1

i to the corresponding image I ′
i. The result

is a set of landmarks L = {l
(k)
i |i ∈ [1..a], k ∈ K} in the original image

coordinates.
3. Robust landmarks fusion: the final landmark predictions, l(right), l(left),
are computed from the landmarks prediction set L with the Density Based
Spatial Clustering of Applications with Noise (DBSCAN) [7] algorithm. First,
DBSCAN clusters together a minimum of q points that are within a pre-
defined distance of d between them (in our case, q = 4 and d = 2 pixels).
Next, outlier points outside clusters are discarded, and two point clusters
corresponding to the left and right measurement landmark endpoints are
computed with the K-means algorithm [2]. Finally, the left and right landmark
coordinates are obtained by computing the centroid of the points in each
cluster.
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Fig. 3. FMLNet inference pipeline. The input is the reference slice of the measurement;
the outputs are the measurement endpoints and the measurement value (blue line).
The pipeline consists of: 1) test time augmentation of the reference slice image (TTA,
illustrated with three augmentations); 2) landmarks prediction with FMLNet, and; 3)
robust landmarks fusion. The dots on the images corresponds to the left (blue), right
(green), unassigned (yellow) and outlier (red cross) landmark predictions. (Color figure
online)

2.4 Measurement Reliability Estimation

The fourth step estimates the reliability of the landmarks predictions using the
set of landmark predictions L generated in the landmark prediction step of the
FMLNet inference. It models the landmarks location distribution, irrespective
of their landmark class (left/right), with a bi-modal Gaussian Mixture Model
(GMM). The GMM Bayesian likelihood is computed to obtain an estimate of
the prediction reliability. When likelihood value is low, the landmark locations
are spatially dispersed, so their distribution is not bi-modal (two clusters). In
this case, the measurement is labeled as unreliable and should be performed
manually by an expert radiologist.

Formally, the GMM is defined as X ∼ ∑
k∈K πkN(μk, Σk), where for each of

the two landmark clusters k (left/right), πk is the cluster probability, N(μk, Σk)
is a multivariate Gaussian distribution, μk ∈ IR2 is the cluster mean location
and Σk ∈ IR2×2 is the cluster location covariance.

We estimate the GMM parameters, Φ = (πk, μk, Σk), from the set of land-
mark predictions L by Expectation-Maximization (EM) [5]. The mean values
of each cluster location are initialized with the final landmark locations, e.g.,
μk = l(k), and are as described in the robust landmark fusion inference step. To
estimate the reliability of the predicted landmark points in L, we compute the
GMM log-likelihood score:
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LLscore(Φ|L) =
∑

l∈L

∑

k∈K

log(πkN(l|μk, Σk))

where l is a point in L (the labels left/right are ignored), and N(l|μk, Σk) is the
Gaussian probability of cluster k for l.

3 Experimental Results

To evaluate our method, we conducted three studies on fetal MRI dataset.

Dataset and Annotations: The dataset consists of fetal brain MRI volumes
acquired with the FRFSE protocol at the Sourasky Medical Center (Tel Aviv,
Israel) as part of routine fetal assessment. The dataset includes 210 MRI vol-
umes of 154 singleton pregnancies (cases) with mean gestational age of 32 weeks
(std = 2.8, range 22–38). Of these, 113 volumes (87 cases) were diagnosed as nor-
mal, and 107 volumes (67 cases) as abnormal. To allow direct comparison, we
use the same train/test splits of 164/46 volumes (121/33 disjoint cases) as in [3].
CBD, BBD and TCD measurements for all volumes were manually performed
by a senior pediatric neuro-radiologist.

Studies: We conducted three studies. Study 1 evaluates the accuracy of the
FMLNet method and the contribution of its various components. Study 2 ana-
lyzes the impact of selected reference slices. Study 3 evaluates the measurement
reliability estimation.

In all studies, we use the following metrics: L1 difference, bias and agreement.
For two sets of n measurements, M1 = {m1

i }, M2 = {m2
i }, m1

i and m2
i (1 ≤ i ≤

n) are two values of the measurement, e.g., ground-truth and computed. The dif-
ference between two linear measurement sets M1,M2 is defined as L1(M1,M2) =
1/n

∑n
i=1 |di|, where the difference between each measurement is di = m1

i − m2
i .

For repeatability estimation, we use the Bland-Altman method [1] to estimate
the bias and agreement between two observers. Agreement is defined by the 95%
confidence interval CI95(M1,M2) = 1.96×√

1/n
∑n

i=1 (L1(M1,M2) − di)2. The
measurements bias is defined as Bias(M1,M2) = 1/n

∑n
i=1 di. These three met-

rics represent different aspects of algorithm performance.

Study 1: Accuracy Analysis and Ablation Study. We evaluate the accuracy of
the FMLNet method and the contribution of its three main components: test
time augmentation (TTA), robust landmark fusion (RLF) and landmark class
reassignment (LCR). We compare its performance to that of HRNet, to the
geometric method [3] and to the interobserver variability on the test dataset
and its ground-truth values.

Table 1 shows the results. The original HRNet (row 2) performs poorly, as
it yields high measurement agreement CI95 and difference L1 values. Removing
each one of algorithmic components from FMLNet - TTA (row 3), RLF (row
4) or LCR (row 5), yields better results than standalone HRNet, but still not
acceptable. FMLNet with all its components (row 6) yields the best results,
which are always reliable (46 out of 46 for CBD, BBD, TCD). Using a two-sided
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Table 1. Study 1 and 2 results for the CBD, BBD, TCD fetal brain measurements.
For each, the number of MR volumes N , Bias, agreement CI95, and difference L1 with
respect to the manual annotation are listed. Row 1 lists the variability of manual mea-
surements of two radiologists. Rows 2–5 list the results of the ablation study including
HRNet (standalone), FMLNet without test time augmentation (-TTA), without robust
landmark fusion (-RLF) and without landmark class reassignment (-LCR). Row 6–8
list FMLNet results, while row 6 is for all test set and 7, 8 is for normal and abnormal
cases, respectively. Row 9 list the results of FMLNet on ground truth reference slice
(FMLNet+). Rows 10–11 list geometric method results on the predicted reference slice,
and on ground truth reference slice (Geometric+). Bold face results indicates the best
results for each metric.

Measurement CBD BBD TCD

Metrics N
Bias CI95 L1

N
Bias CI95 L1

N
Bias CI95 L1

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

Interobserver 45 0.03 4.12 1.60 45 −0.09 3.18 1.27 45 0.26 2.39 0.97

HRNet 46 −10.40 54.36 13.37 46 −8.42 45.82 9.51 46 −3.96 28.97 6.21

FMLNet

-TTA 46 −0.70 20.06 3.38 46 −1.17 23.90 3.20 46 −3.59 24.83 5.83

-RLF 46 −1.45 8.58 3.11 46 −0.90 6.28 2.00 46 0.72 4.60 1.78

-LCR 39 0.72 5.35 1.85 44 −2.48 22.14 3.43 45 2.28 9.45 2.49

FMLNet 46 0.57 3.70 1.60 46 0.21 2.20 0.90 46 0.88 2.40 1.16

*Normal 25 0.27 3.62 1.56 25 −0.05 2.00 0.85 25 0.69 1.94 0.97

*Abnormal 21 0.92 3.52 1.66 21 0.52 2.35 1.05 21 1.12 2.79 1.39

FMLNet+ 46 0.20 2.32 0.96 45 0.00 2.08 0.89 46 0.70 2.15 1.06

Geometric 40 0.00 3.63 1.28 40 −0.80 3.58 1.28 37 −0.51 2.45 0.89

Geometric+ 46 −0.02 3.99 1.47 46 −0.50 3.07 1.17 46 −0.56 2.58 1.09

t-test, no statistically significant difference was found in the performance between
Normal (row 7) and Abnormal cases (row 8) in all measurements (p > 0.05).

Comparison of our method results with those of the previously published
geometric method [3] with reliability estimation (row 10) shows that for all
three measurements, FMLNet (row 6) performs better in terms of reliable mea-
surements on the number of MR volumes N , agreement CI95 and difference
L1. Specifically, for TCD, our method yields reliable measurements in all cases
(N = 46) with comparable agreement CI95, while the geometric method fails in
20% of the cases (9 out of 46). Using a two-sided t-test, in BBD and TCD our
method performs significantly better (p < 0.01). These results shows superiority
of our new method.

Study 2: Impact of Selected Reference Slices. Differences were detected between
the reference slices selected by the radiologist and the slice selected by the algo-
rithm on the test set of: 20/46 cases in CBD/BBD slices and 12/46 cases in
TCD slices. Table 1 shows the measurements accuracy results. When analyzing
the impact of selected reference slices on the accuracy of measurements (FML-
Net - uses the slices selected by the algorithm vs FMLNet+ uses the slices
selected by radiologist) - the main impact was on CBD measurements (almost
doubles the variability), while the TCD and BBD accuracy remains similar. A
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Fig. 4. CBD Measurement reliability estimation results. The plot graph (center) shows
the log-likelihood score LLscore (horizontal axis) with respect to the measurement
difference L1(vertical axis) for the test set cases (blue dots). Representative images of
unreliable (left) and reliable (right) measurements: (1) failure of brain ROI detection;
(2) blurry image; (3) reliable predictions with outliers; and (4) reliable predictions.
(Color figure online)

possible explanation is that the TCD and BBD are measured on smooth con-
tours (cerebellum and skull, respectively) while CBD is measured on a more
complex contour, the brain sulcation and gyri. Furthermore, when normalizing
the interobserver variability in the absolute value of measurements, the relative
error variability results in 6% for CBD and 4% for BBD and TCD. For the
geometric algorithm (Geometric vs Geometric+), no significant differences were
observed when working on slices selected by a radiologist. These results show
that improving the reference slice selection algorithm may improve the accuracy
of the automatic measurements.

Study 3: Measurement Reliability Estimation. Table 1 shows the number of cases
(column N) for each measurement for which the computed values are reliable.

We evaluate the reliability estimation by computing the difference between
the measurements computed and ground truth values, L1, and by establishing
their correlation with the LLscore, on the test set cases. Figure 4 illustrates this
correlation for the CBD measurement. For all three measurements, we observe
that LLscore correlates well with L1. We establish from the plot graphs the
threshold value of LLscore that adequately discriminates between reliable and
unreliable computed measurements – set to −5.75 for all three measurements.

4 Conclusion

We have presented a new fully automatic method to compute landmark-based
linear measurements in a fetal brain MRI volume, to estimate their reliability,
and to identify the unreliable measurements that should be obtained manually
for the case at hand. The computed reliability estimation value can be used to
rank the measurement predictions for inspection and validation by a radiologist.

We demonstrate our method on three key fetal biometric measurements from
fetal brain MRI scans, CBD, BBD, TCD, and show that it yields state-of-the-
art results for all three measurements, within the interobserver variability. These
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results also comparable to the best reported results for fetal head circumference
(HC) measurements in ultrasound images of the HC18 challenge [11] (mean L1

of 1.72 mm, CI95 of 3.16 mm).
The main novelties of our method are three-fold. First, it robustly handles

the wide span of fetal brain orientations and correctly identifies left and right
measurement landmark endpoints by test time augmentation, robust landmark
fusion, and landmark class reassignment. Second, it directly computes landmarks
by heat map regression, obviating the need for structure segmentation and its
data annotation effort [3,21]. Third, it computes landmarks location uncertainty
estimation with a new method that combines test time augmentation [19] and
landmark Gaussian-based uncertainty estimation [15] and that simultaneously
computes the estimates on multiple landmarks with a GMM instead of using a
single Gaussian for each landmark, thereby yielding a single reliability score.

The advantages of our method are that it only requires a small number
(∼150) of manual linear measurements for the training dataset, that it does not
rely on heuristics to identify the landmarks, that it does not require fetal brain
structures segmentation, and that it is robust since it incorporates reliability
estimation. Note that our method is generic, i.e., it is not tailored to specific
linear measurements, so it can be applied directly to other measurements.
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