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Abstract. Automated image analysis of skin lesions has potential to
improve diagnostic decision making. A clinically useful system should
be selective, rejecting images it is ill-equipped to classify, for exam-
ple because they are of lesion types not represented well in training
data. Furthermore, lesion classifiers should support cost-sensitive deci-
sion making. We investigate methods for selective, cost-sensitive clas-
sification of lesions as benign or malignant using test images of lesion
types represented and not represented in training data. We propose EC-
SelectiveNet, a modification to SelectiveNet that discards the selection
head at test time, making decisions based on expected costs instead.
Experiments show that training for full coverage is beneficial even when
operating at lower coverage, and that EC-SelectiveNet outperforms stan-
dard cross-entropy training, whether or not temperature scaling or Monte
Carlo dropout averaging are used, in both symmetric and asymmetric
cost settings.

1 Introduction

Automated image analysis of skin lesions has great potential to improve diag-
nostic decision making and efficiency of clinical workflows in dermatology and
primary care. Lesion classifiers that produce class probability distributions could
be used to estimate the expected costs of clinical decisions such as whether or
not to refer a patient, and thus inform effective decision making. Costs associ-
ated with mis-classification are usually asymmetric: deciding that a skin lesion
is benign when it is really malignant is more costly than deciding it is malignant
when it is benign. Optimal decision making requires predicted class probabili-
ties to be well-calibrated. In addition, a clinically useful system should ascertain
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whether it has been sufficiently well trained to deal with the image under inspec-
tion. This is important for robustness and clinical usability. Classifiers should
be selective, rejecting images they are ill-equipped to deal with; in particular,
not all lesion types will be represented well in training data. Here we investi-
gate methods for selective, cost-sensitive skin lesion classification. We focus on
binary classification of malignant versus benign lesions using an experimental
setup with test data from disease types represented in the training data as well
as types not represented in the training data. Images were sourced from the ISIC
2019 data set [3,4,23].

We use empirical coverage and selective cost to evaluate performance and
stress that selection and classification decisions must take into account asymme-
try of mis-classification costs in the diagnostic setting (Sect. 3). We propose a
modification to SelectiveNet [9] which we call EC-SelectiveNet (Sect. 4). Selec-
tiveNet learns representations targeting expected image rejection rates by using
two additional heads, a selection head and an auxiliary head, in addition to the
usual predictive head; EC-SelectiveNet discards these additional heads at test
time and makes selection decisions based on expected costs instead.

We provide empirical evidence that training selective networks for full cover-
age works well on skin lesion images, even when the desired coverage is lowered,
somewhat counter to expectation (Sect. 5). We show that EC-SelectiveNet out-
performs corresponding cross-entropy trained networks in both asymmetric and
symmetric cost settings, whether or not temperature scaling [10] or Monte Carlo
dropout averaging [8] are used (Sect. 5).

2 Background

AI systems for telediagnosis with performance comparable to human dermatolo-
gists have been demonstrated in some settings [1,7,11–13,16], providing evidence
that deep learning can, if appropriately designed and integrated, assist diagnostic
decision making effectively. However, deep learning models often overfit, result-
ing in over-confident predictions, and can struggle to decide which lesion images
they are equipped to classify reliably [17]. Nevertheless, it has been noted that
simply thresholding the maximum softmax response can be effective for rejecting
images and reducing mis-classifications [14].

MC-Dropout [8] can be used to quantify uncertainty. It has been used in med-
ical image analysis [18] including estimation of lesion segmentation quality [6]
and provision of selection scores for active learning [2]. It uses dropout [15] at
inference time, performing M forward passes of the model f on an image, x. Each
pass is treated as a sample in a Bayesian approximation of a Gaussian process.
Predictions are averaged to give an expected prediction ŷ = 1

M

∑M
m=1 fm(x).

Measures of uncertainty such as sample variance can also be calculated.
Temperature scaling can be used to improve calibration of class probabilities

predicted by a network [10]. This can be important when making cost-sensitive
decisions. Mozafari et al. [19] used temperature scaling with skin lesions and
indicated potential hazards when working with noisy validation data. Nixon et
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al. [20] investigated calibration metrics and used temperature scaling. Tempera-
ture scaling [10] applies a scaling factor T to the output logits: ŷi = exp(

zi
T )

∑
j exp(

zj
T )

.

The value of T is calculated by minimizing calibration error on a validation set.
SelectiveNet [9] jointly learns a classifier and selection function so that the

deep representation can be learned with the expectation that some proportion
of images should be rejected. We describe this in Sect. 4.

3 Robust Selective Classification

Selective classification is performed using a selection function and a prediction
function. The selection function, σ(x), indicates whether or not an image x
should be rejected, in which case σ(x) = 0, or selected, in which case σ(x) =
1. Given a data set, S, of N images, the empirical coverage, φ(σ|S), is the
proportion of images selected for classification, i.e., φ(σ|S) = 1

N

∑N
i=1 σ(xi). A

classification decision is made for each selected image based on the classifier’s
prediction function; each such decision incurs a cost. The empirical selective cost,
is this cost averaged over the selected images.

In general, mis-classification costs can be specified as a matrix C, where Cjk

is the cost of assigning class k when the true class is j. These costs depend on the
deployment setting and specifically on factors such as health economics, quality
of life considerations, and available treatments. Many reported experiments on
classification of dermatology images implicitly use C = 1 − I where 1 is a
matrix of ones and I is the identity matrix. This is unrealistic, as costs are in
fact far from symmetric. Indeed, many medical classification tasks have highly
asymmetric costs.

In this paper, we consider binary classification with class labels malignant
(class 1) and benign (class 0). In a setting where mis-classifying a malignant
lesion as benign is an order of magnitude more costly than mis-classifying a
benign lesion as malignant, we have C1,0 = 10.0, C0,1 = 1.0, C1,1 = 0.0, C0,0 =
0.0. These values for the asymmetric costs were deemed reasonable through
discussion with dermatolgists. The values used should however vary depending
on the clinical setting, and further work should be done to investigate this in
consultation with general practitioners, patient representative groups and health
economists. Here we run experiments under different settings with the cost of
mis-classifying a benign lesion as malignant, C1,0, set to 1 (symmetric costs), 10,
and 50 (highly asymmetric costs).

We use cost-coverage curves, showing the trade-off between cost incurred
and coverage achieved, to characterize the performance of selective classifiers. A
strongly performing selective classifier will have low cost and high coverage. As
well as benign and malignant lesions from disease types present during training,
we also test using images of benign and malignant lesions of disease types not
represented in the training data. A robust system should either reject such data
or maintain low selective cost on it.
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4 SelectiveNet and EC-SelectiveNet

Deep representations can be learned specifically for a situation in which some
proportion of data are expected to be rejected. SelectiveNet [9] trains a network
end-to-end for a specific target coverage. This is enabled by adding two extra
heads to the encoder, in addition to the standard predictive head p: a selective
head g that outputs a selection score, and an auxiliary head a that outputs
predictions used within the loss function. At test time, select/reject decisions
are based on the output of the selective head. Here we propose the Expected-
Costs SelectiveNet (EC-SelectiveNet) which modifies the network at test time.
Specifically, the additional heads are discarded after training and select/reject
decisions are based instead on expected costs computed using predicted class
probabilities.

4.1 SelectiveNet

The SelectiveNet loss function (Eq. 1), is a combination of two functions (Lp,g

and La) weighted with a hyper-parameter α to control the relative importance
of coverage optimization [9]:

L = αLp,g + (1 − α)La (1)

The first term uses predictive and selective heads (Eq. 2) and combines cross-
entropy loss, l, with coverage. It uses hyper-parameter t as the target coverage for
the model and λ to control the importance of this target coverage. The auxiliary
head uses a standard cross-entropy loss for La, and is used to encourage the
model to learn robust features from the training data.

Lp,g =
1

Nφ(g)

N∑

i=1

l(p(xi), yi)g(xi) + λ max(t − φ(g|S), 0)2 (2)

4.2 Selective Classification Based on Expected Costs

Given any trained classifier that outputs a (calibrated) posterior distribution
P (c|x) over classes given an image x, the expected costs of classification and
rejection decisions can be used to decide whether to select and how to classify
the image. Specifically, in the case of two classes, c = 0 (benign) and c = 1
(malignant), the expected cost of deciding benign is R0 = C10P (c = 1|x) and
the expected cost of deciding malignant is R1 = C01P (c = 0|x). We should
decide that x is in class 1 if R1 < R0, otherwise x is in class 0. Suppose that by
rejecting an image we incur a cost θ. An optimal decision rule is then to reject
x if min(R0, R1) > θ and otherwise to decide the class with the lower expected
cost. Note that a cost coverage plot can be generated by varying θ.
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4.3 EC-SelectiveNet

Although SelectiveNet directly outputs a selection score, we propose to base
selection instead on expected costs computed from the predictive head. We refer
to this method as EC-SelectiveNet. The selective head is used during training to
guide representation learning but, unlike [9], we discard the selective head along
with the auxiliary head at test time.

Optionally, we apply temperature scaling to improve calibration to assist
reliable estimation of expected costs. Temperature scaling was applied to the
logit outputs of the predictive head p.

5 Experiments

Dataset and Implementation Setup. We used data from the ISIC Chal-
lenge 2019 [3,4,23] which consists in total of 25,331 images covering 8 classes:
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign
keratosis, dermatofibroma, vascular lesion, and squamous cell carcinoma. We
compiled two datasets which we refer to as Sin and Sunknown.

Sin: These data were the melanoma, melanocytic nevus and basal cell carci-
noma (BCC) images from the ISIC 2019 data. They were assigned to two classes
for the purposes of our experiments: malignant (melanoma, BCC) and benign
(melanocytic nevus). Sin was split into training, validation, and test sets con-
sisting of 12432, 3316, and 4972 images respectively.

Sunknown: These data consisted of 4,360 ISIC 2019 images from classes that
were not present in Sin, namely benign keratosis, dermatofibroma, actinic ker-
atosis, and squamous cell carcinoma. They were assigned to malignant or benign.
Sunknown was not used for training but for testing selective classification perfor-
mance on images from disease types not represented in the training data.

We refer to the union of the Sin and Sunknown test sets as Scombined. Figure 1
shows example images.

(a) Sin (b) Sunknown

Fig. 1. Example images from the test data sets Sin and Sunknown.

All code used for experiments can be downloaded from the project Github
repository1 along with reproduction instructions, trained models and expanded

1 GitHub Repository: https://github.com/UoD-CVIP/Selective Dermatology.

https://github.com/UoD-CVIP/Selective_Dermatology
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testing metrics. For all experiments we use an EfficientNet [22] encoder with
compound coefficient 7, pre-trained on ImageNet [5]. Models were trained using
stochastic gradient descent. Cross-entropy loss was used with a two-output soft-
max. SelectiveNet hyperparameters were α = 0.5 and λ = 32 as recommended
in [9]. MC-Dropout used a dropout rate of 50% and M = 100 samples. Learning
rates were adjusted using a cyclical scheduler [21] that cycled between 10−4 and
0.1. Batch size was 8 to enable each batch to fit on our Nvidia RTX 2080TI
GPU. Each model was trained for a total of 25 epochs with the weights from
the model with the lowest validation loss used for testing.

SelectiveNet: Effect of Target Coverage. We examined the effect of the
SelectiveNet target-coverage parameter, t, when SelectiveNet’s selection head is
used to make selection decisions. Figure 2 shows cost-coverage curves for values
of t ranging from 0.7 to 1.0. These are plotted for Sin, Sunknown, and Scombined.

We expected to find, in accordance with the intended purpose of this param-
eter, that lower values of t would be effective at lower coverage. On the contrary,
training with t = 1.0 incurred the lowest test cost on Sin for coverage values as
low as 0.2. Costs incurred on Sunknown are higher as expected, and curves show
no clear ordering; the t = 1.0 curve, however, does show a clear reduction in cost
as coverage is reduced.

Does SelectiveNet Training Help? The extent to which the target coverage
t is enforced is controlled by the weighting parameter λ. Even when set to target
full coverage (t = 1.0), the model can trade off coverage for cost in extreme cases
during training. For this reason, results obtained by SelectiveNet with t = 1.0 will
differ from those obtained by training a network without selective and auxiliary
heads. We trained such a network using cross-entropy loss, retaining only the
softmax predictive head. It made selection decisions at test time based on the
maximum softmax output. The resulting cost-coverage curve is plotted in Fig. 2
(labelled ‘softmax’). SelectiveNet trained with a target coverage of 1.0 performed
better than a standard CNN with softmax for any coverage above 0.4.

MC-Dropout, Temperature Scaling, and EC-SelectiveNet. We investi-
gated the effect of MC-Dropout on selective classification, using the mean and
variance of the Monte Carlo iterations as selection scores, respectively. Figure 3
compares the resulting cost-coverage curves with those obtained using a net-
work with no dropout at test time (‘softmax response’). On Sin, using the MC-
Dropout average had negligible effect whereas MC variance performed a little
worse than simply using the maximum softmax response. In contrast, gains in
cost were obtained by MC variance on Sunknown for which model uncertainty
should be high.

Figure 4 plots curves for a softmax network using temperature scaling
(trained with cross-entropy loss). Although temperature scaling improved cali-
bration it had negligible effect on cost-coverage curves. Figure 4 also shows curves
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Fig. 2. Cost-coverage curves for SelectiveNets trained with different target coverages.
From left to right: Sin, Sunknown and Scombined.

Fig. 3. Cost-coverage curves using MC-Dropout on Sin, Sunknown, and Scombined

obtained using EC-SelectiveNet in which the selection head is dropped at test
time. EC-SelectiveNet showed a clear benefit on both Sin and Sunknown com-
pared to training a softmax network without the additional heads.

Fig. 4. Cost-coverage curves. From left to right: Sin, Sunknown and Scombined.
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Asymmetric Costs. We investigated the effect of asymmetric mis-classification
costs. Figure 5 compares SelectiveNet with EC-SelectiveNet (t = 1.0). They
performed similarly when costs were symmetric with SelectiveNet achieving a
small cost reduction (approximately 0.015) at middling coverage. However, in the
more realistic asymmetric settings, EC-SelectiveNet achieved cost reductions of
approximately 0.1 at all coverages below about 0.8.

Fig. 5. Cost-coverage curves for SelectiveNet and EC-SelectiveNet. From left to right:
C1,0 = 1 (symmetric costs), 10, and 50 (highly asymmetric costs)

Figure 6 plots the effect of temperature scaling. Both the softmax response
and temperature scaling selection methods are based on the expected costs. The
effect of temperature scaling was negligible with symmetric costs. In the asym-
metric settings it had a small effect on selective classification. This effect was
similar whether using EC-SelectiveNet (t = 1.0) or standard network training
with cross-entropy loss. In both cases, temperature scaling increased costs at
high coverage and reduced costs at low coverage. Figure 6 also makes clear the
relative advantage of EC-SelectiveNet.

Fig. 6. Cost-coverage curves for cross-entropy training and EC-SelectiveNet combined
with temperature scaling. From left to right: C1,0 = 1 (symmetric costs), 10, and 50
(highly asymmetric costs)
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6 Conclusion

This study set out to better understand selective classification of skin lesions
using asymmetric costs. In a primary care setting, for example, the cost of mis-
classifying a life-threatening melanoma is clearly greater than that of misclas-
sifying a benign lesion. We also investigated selective classification with lesion
types not adequately represented during training. Generally, EC-SelectiveNet
was effective for robust selective classification when trained with a target cover-
age at (or close to) 1.0. EC-SelectiveNet produced similar or better cost-coverage
curves than SelectiveNet.

MC-Dropout averaging made little difference but we note that variance gave
encouraging results on Sunknown. Temperature scaling to calibrate output prob-
abilities worsened costs at higher coverage. Future work should investigate use
of asymmetric cost matrices in multi-class settings, as well as how so-called out-
of-distribution detection methods can help in the context of selective skin lesion
classification as investigated here.
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