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UNSURE 2021 Preface

The Third Workshop on Uncertainty for Safe Utilization of Machine Learning in
Medical Imaging (UNSURE 2020), was prepared as a satellite event of the 24th
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI 2021).

With an ever-increasing diversity in machine learning techniques for medical
imaging applications, the need to quantify and acknowledge the limitations of a given
technique has been a growing topic of interest in the MICCAI community over the last
few years. Since its inception, the purpose of this workshop has been to develop
awareness and encourage research in the field of uncertainty modeling to enable safe
implementation of machine learning tools in the clinical world.

The proceedings of UNSURE 2021 include 13 high-quality papers that were
selected from 18 submissions following a double-blind review process. Each sub-
mission of 8 to 10 pages was reviewed by three members of the Program Committee,
formed by 29 experts in the field of deep learning, Bayesian modeling, and Gaussian
processes.

The accepted papers cover the fields of uncertainty quantification and modeling, as
well as their application to clinical pipelines, notably focusing on uncertainty in
out-of-distribution and domain shift problems as well as questions around annotation
uncertainty. Two keynote presentations, from experts Ender Konukoglu, ETH Zurich,
Switzerland, and Roland Wiest, University Hospital Bern, Switzerland, further con-
tributed to placing this workshop at the interface between methodological advances and
clinical applicability.

We hope this workshop highlighted both theoretical and practical challenges in
communicating uncertainties, and further encourages research to (a) improve safety in
the application of machine learning tools and (b) assist in the translation of such tools
to clinical practice.

We would like to thank all the authors for submitting their manuscripts to UNSURE
2021 as well as the Program Committee members for the quality of their feedback and
dedication to the review process.

August 2021 Carole H. Sudre
Christian F. Baumgartner

Adrian Dalca
Ryutaro Tanno

Koen Van Leemput
William M. Wells
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PIPPI 2021 Preface

The application of sophisticated analysis tools to fetal, infant, and paediatric imaging
data is of interest to a substantial proportion of the MICCAI community. The main
objective of this workshop is to bring together researchers in the MICCAI community
to discuss the challenges of image analysis techniques as applied to the fetal and infant
setting. Advanced medical image analysis allows the detailed scientific study of
conditions such as prematurity and the study of both normal singleton and twin
development in addition to less common conditions unique to childhood. This
workshop brings together methods and experience from researchers and authors
working on these younger cohorts and provides a forum for the open discussion of
advanced image analysis approaches focused on the analysis of growth and
development in the fetal, infant, and paediatric period.

The papers in this volume constitute the proceedings of the 6th International
Workshop on Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2021), held in
conjunction with MICCAI 2021, the 24th International Conference on Medical Image
Computing and Computer-Assisted Intervention. The conference was planned to take
place in Strasbourg, France, but changed to an online event due to the COVID-19
pandemic. The 14 contributions from the PIPPI 2021 workshop were carefully
reviewed and selected from 20 submissions. We would like to thank everyone involved
in this year’s workshop and we hope that we can meet again in person at the next PIPPI
event.

August 2021 Roxane Licandro
Andrew Melbourne

Jana Hutter
Esra Abaci Turk

Jordina Torrents Barrena
Christopher Macgowan
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Modal Uncertainty Estimation
for Medical Imaging Based Diagnosis

Di Qiu(B) and Lok Ming Lui

The Chinese University of Hong Kong, Shatin, Hong Kong
lmlui@math.cuhk.edu.hk

Abstract. Medical image based diagnosis is constantly faced with
uncertainties. In an ambiguous scenario, different experts will reach dif-
ferent conclusions from their initial assumptions. It is thus important
for machine learning models to be capable of proposing different plau-
sible predictions, along with meaningful uncertainty measures. In this
work we propose such a novel learning-based framework, named modal
uncertainty estimation (MUE), to learn such one-to-many relationship
with faithful uncertainty estimation in the medical image understanding
tasks. Technically, MUE is based on conditional generative models, but
it crucially uses a set of discrete latent variables, each representing a
latent mode hypothesis that explains one type of input-output relation-
ship. We justify the use of discrete latent variables by the multi-modal
posterior collapse problem in the common conditional generative mod-
els. Consequently, MUE can estimate the uncertainty effectively. MUE
demonstrates significantly more accurate uncertainty estimation for one-
to-many relationship than the current state-of-the-art, and is more infor-
mative for practical use. We validate these points on both real and syn-
thetic tasks.

1 Introduction

Making medical diagnosis solely from medical imaging can be a difficult task.
Taking for example the medical image segmentation task in LIDC-IDRI [2,3,7],
it is often likely for radiologists to reach different conclusions for the same CT
Lung scan. The difference can probably be attributed to the different hypotheses
they have about the patient. In such an ambiguous scenario, it is of great interest
to know which one(s) out of the many possible segmentations would be more rea-
sonable than the others? Abstractly, this problem can be formulated as follows.
Suppose the observed image is x, we want to estimate the conditional distri-
bution of the segmentation p(y|x), based on the training sample pairs (x,y).

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-87735-4 1) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2021
C. H. Sudre et al. (Eds.): UNSURE 2021/PIPPI 2021, LNCS 12959, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-87735-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87735-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-87735-4_1
https://doi.org/10.1007/978-3-030-87735-4_1
https://doi.org/10.1007/978-3-030-87735-4_1


4 D. Qiu and L. M. Lui

Fig. 1. Visualization of our results on the highly ambiguous samples from LIDC-IDRI
dataset. The first row shows the input samples and their segmentations, and the next
two rows show the top-8 predictions from our method. The uncertainty estimation for
each segmentation proposal is annotated on the upper-left corner. (a) three graders
think the image doesn’t contain lesion while one grader does. Our model successfully
captures the ambiguity level. (b) our model not only captures the given four graders,
but also proposed different solutions based on the training dataset. The segmentation
proposals together with the uncertainty estimation will signal further examination and
help better diagnosis of the patient.

Table 1. A quick comparison of the conceptual difference between cVAE and MUE.

Latent parameterization cVAE: Gaussian MUE: discrete

Latent probability
reflects true uncertainty
p(y|x)?

No Yes

How is p(y|x)
approximated?

Conditional Gaussian
prior and decoder
transform

Mode classifier

It is extremely challenging to model the distribution p(y|x) explicitly and
precisely. The space of images is very high dimensional with very complex struc-
tures, and it is difficult to adapt faithfully to every variation of the segmenta-
tion shape. However, for medical diagnosis it may be just as useful to faithfully
capture the uncertainty associated to the possibly different modalities of the
distribution p(y|x), i.e. the typical y’s together with how much probability is
concentrated around them. To this end, we introduce our modal uncertainty
estimation (MUE) framework, which is able to both (1) predict the modal sam-
ples in the distribution, and (2) accurately evaluate their associated quantitative
uncertainties.

Technically, MUE models the generation of y given x through an intermediate
latent variable c ∈ R

d, d is a number of the dimension of the latent variable, as in
conditional Variational Auto-Encoder (cVAE) [14,25]. But crucially, we require
that the probability distribution of c faithfully reflects the uncertainty level of
the generated y. We identify the reason why the method based on Gaussian
parametrization [15,25] of c, the de facto choice for cVAE, fails for our purpose.
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We henceforth propose to use discrete latent representation, which is the key to
accurate uncertainty estimation. We summarize the key differences in Table 1.

There are several benefits to use a discrete latent space for c in our set-
ting. First, the model can focus on generating the modal samples, rather than
the complete set of samples. Second, there is no longer noise injection during
training, so given the same x, the model is forced to use c to explain the varia-
tions in y, thus making it impossible for the model to ignore the latent variable
unless the relationship between x and y is unambiguous. Third, the density value
learned on the latent space is more interpretable, since the learned conditional
prior distribution can better approximate the conditional posterior in the cVAE
framework.

The main contributions of this work are: (1) We solve the MUE problem by
using cVAE and justify the use of a discrete latent space from the perspective of
multi-modal posterior collapse problem. (2) Our uncertainty estimation improves
significantly over the existing state-of-art. (3) In contrast to models using noise
inputs that require sampling at the testing stage, our model can directly produce
results ordered by their latent mode hypothesis probabilities, and is thus more
informative and convenient for practical use.

2 Related Work

Since the main objectives of many recent works on conditional generative models
[9,11,28,29] are the visual quality and diversity of the outputs, they are not eval-
uated in terms of the quality of the approximation of the output distribution. In
the field of medical imaging, the use of such models has not seen equal popularity.
This could be attributed to a higher standard for faithful estimation of the distri-
bution. In this direction, recently [15] has proposed Probabilistic U-Net, which
has shown superior performance over various other methods [10,12,16,23,29].
However, as we will show, the Gaussian latent parameterization still bars Prob-
abilistic U-Net from accurate conditional posterior approximation, due to the
multi-modal posterior collapse problem [1,20]. This implies that the latent prior
density will have no interpretation, and thus the density value cannot be used to
rank its prediction.

The use of discrete latent variables [18] in neural network is a relatively new
topic and has been less explored in medical imaging, while its use appears more
natural in natural language processing. In [27], they designed the learned discrete
representation for dialogue generation. There, the latent code is required to be
“context free”, where context is the input. This is in contrast to our assumption
that the latent code should depend on the input.

3 Method

3.1 Architectures

Let (x,y) be the input-label pair. In medical imaging diagnosis tasks, the regres-
sion of the label from the input will be carried out by a U-Net [22], which consists
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(a) Training architecture.

(b) Inference architecture.

Fig. 2. The architecture design of MUE, please refer to Sect. 3.1 for detail descriptions.

of an encoder Eθ and a decoder Dθ. We call Eθ the prior encoder. The novelty
of our framework lies in the three additional ingredients: a latent code classifier
that is contained inside the prior encoder Eθ, an auxiliary encoder Eφ called
posterior encoder, and a discrete latent code book C as a matrix of size |C| × d,
where |C| is the total number of codes and d is the dimension of the code. The
code book will serve as the total set of additional information or memory to
explain the one-to-many mapping. The architectures at the training time and
inference time are slightly different. During training time we will sample a (x,y)
to be the input of the posterior encoder, which will generate a latent code e of
dimension d. We don’t require that there must be multiple y corresponding to
a single x, as we can learn the uncertainty from different y for similar x in the
dataset[4]. Before injecting e into the decoder, we will replace it by the closest
neighbor in �2 distance in the code book C. In the optimization step, the code c
will be updated using exponential moving average of e. The code is then repli-
cated in spatial dimension and concatenated to the feature in one of the decoder
layers.

To encourage the posterior encoder’s outputs to approximate values in C
as close as possible, we use an �2-penalization of the form β‖e − sg[c]‖2 with
parameter β > 0, and sg is the stop-gradient operation. The technique is the
same with the VQ-VAE approach of [18,21] for training neural networks with
discrete latent space. At the same time, the prior encoder Eθ takes only x as the
input, and its latent code classifier will classify which codes in the code book C
are in correspondence with x. For simplicity we used a soft-max classifier, though
more complicated classification procedures can be incorporated [8]. Thus our loss
function to be minimized for a single input pair (x,y) is
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L(θ, φ) = CE(Eθ(x), idc) + Recon(Dθ(c,x),y) + β‖Eφ(x,y) − sg[c]‖2 (1)

where CE denotes the cross entropy loss, Eθ(x) is the probability vector of
dimension |C| and idc is corresponding code index for the input-label pair (x,y).
Recon denotes the label reconstruction loss between prediction ŷ and y.

At inference time, we use the learned latent code classifier to output a con-
ditional distribution given x on C, where each of the code will give rise to a
potentially different but sensible label prediction with the associated probabil-
ity. The training and inference architectures are visualized in Fig. 2.

3.2 Variational Inference Interpretation

In the framework of cVAE, a latent variable c is generated from some prior
distribution pθ(c|x) parametrized by a neural network. Then the label y is gen-
erated from some conditional distribution pθ(y|c,x). The major distinction of
our approach is that we assume c takes value in a finite set C. Our goal is to
learn the optimal parameters θ∗ and the code book C, so that possibly multiple
latent codes corresponding to x can be identified, and label predictions ŷ can be
faithfully generated. The latter means the marginal likelihood pθ(y|x) should be
maximized.

The variational inference approach as in [14] starts by introducing a posterior
encoding model qφ(c|x,y) with parameters φ, which is used only during train-
ing. Since the label information is given, we will assume the posterior encoding
model is deterministic, meaning there is no “modal uncertainty” for the poste-
rior encoding model. So the posterior distribution will be a delta distribution for
each input-label pair (x,y). The variational lower bound [6] states that

log pθ(y|x) ≥ Eqφ(c|x,y)

[
log

pθ(c,y|x)
qφ(c|x,y)

]

= −Eqφ(c|x,y)

[
log

qφ(c|y,x)
pθ(c|x)

]
+ Eqφ(c|x,y) [log pθ(y|c,x)]

(2)

We further take a lower bound of Eq. (2) by observing that the entropy term
is positive and is constant if qφ(c|x,y) is deterministic. This yields a sum of a
negative cross entropy and a conditional likelihood

log pθ(y|x) ≥ Eqφ(c|x,y) [log pθ(c|x)] + Eqφ(c|x,y) [log pθ(y|c,x)] (3)

Now we should maximize the lower bound (3). Since c takes value in the
finite code book C, the probability distribution pθ(c|x) can be estimated using
multi-class classification, and the cross entropy term can be estimated efficiently
using stochastic approximation.
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c

(a)

c

(b)

c

(c)

posterior mixture
prior

Fig. 3. Comparison between Gaussian latent representations and discrete latent rep-
resentations in a multi-modal situation. Gaussian latents are structurally limited in
such a setting. (a) The ideal situation when there is no posterior collapse as multiple
modes appear, but the prior distribution is a poor approximation of the posterior.
(b) Posterior collapse happens, and no multi-modal information is conveyed from the
learned prior. (c) Discrete latent representation can ameliorate the posterior collapse
problem while the prior can approximate the posterior more accurately when both are
restricted to be discrete.

3.3 Why Discrete Latent Space

In the following we will show that Gaussian parametrization put a dilemma
between model training and sample generation for VAE, as a form of what
is known as the posterior collapse problem in the literature [1,20]. This issue
is particularly easy to understand in our setting, where we assume there are
multiple y’s for a given x.

Let us recall that one key ingredient of the VAE framework is to minimize
the KL-divergence between the latent prior distribution p(c|x) and the latent
variational approximation pφ(c|x,y) of the posterior. Here φ denotes the model
parameters of the “recognition model” in VAE. It does not matter if the prior
is fixed p(c|x) = p(c) [14] or learned p(c|x) = pθ(c|x) [25], as long as both
prior and variational posterior are parameterized by Gaussians. Now suppose
for a particular x, there are two modes y1,y2 for the corresponding predictions.
Since the minimization is performed on the entire training set, p(c|x) is forced
to approximate a posterior mixture p(c|x,y(·)) of two Gaussians from mode y1

and y2. In the situation when the minimization is successful, meaning the KL
divergence is small, the mixture of the variational posteriors must be close to
a Gaussian, i.e. posterior collapsed as in Fig. 3(b), and hence the multi-modal
information is lost. Putting it in contrapositive, if multi-modal information is
to be conveyed by the variational posterior, then the minimization will not be
successful, meaning higher KL divergence. The situation is schematically illus-
trated in Fig. 3 in one dimension. Note that in both cases the density values of
the prior cannot reflect the uncertainty level of the outputs. We will quantitative
demonstrate this phenomenon in Sect. 4.2.

4 Experiments

In both experiments below we compare with the state-of-the-art method Prob-
abilistic U-Net [15] with the same model complexity. For all experiments, we fix
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Fig. 4. Evaluation results on LIDC segmentation task. (a) The small dots represent test
data instances’ D2

GED values and the triangles mark the mean values. Our performance
is competitive with the state-of-the-art in this empirical metric. (b, c) Comparison with
[15], which cannot directly output uncertainty level.

the �2 penalization weight β = 0.25, number of initial candidate codes |C| = 512,
with dimension 128, and use the Adam optimizer [13] with its default setting. We
found a small β as we chose here leads to more codes being used initially, which
may be beneficial for the model to explore the latent space before convergence.
The learned code c is replicated in the spatial dimension and concatenated to
the last layer of the decoder. We release our Pytorch 1.4 [19] implementation to
promote future research1.

4.1 Results on LIDC-IDRI Benchmark

We use the LIDC-IDRI dataset provided by [2,3,7], which contains 1018 lung CT
scans from 1010 patients. Each scan has lesion segmentations by 4 (out of a total
of 12) expert graders. The identities of the graders for each scan are unknown
from the dataset. The graders are often in disagreement about whether the scan
contains lesion tissue. We use the same train/test split as in [15].

Some testing results predicted by our model to have high uncertainty are
illustrated in Fig. 1. The first row is the input and its four grader’s segmentations,
and the last two rows are our top-8 predictions, where the probability associated
to each latent code is annotated on the upper-left corner. We can see that MUE
can capture the uncertainty that is contained in the segmentation labels with
notable probability scores, as well as other type of segmentations that seem
plausible without further information.

We follow the practice of [15] to adopt the generalized energy distance empiri-
cal metric D2

GED [5,24,26], treating the four graders’ segmentations as the unbi-
ased samples from the ground truth distribution. Note that this assumption
may not be correct, but will nevertheless gives a comparison between our model
and Probabilistic U-Net. The lower the value of D2

GED, the closer the predicted
samples and the ground truth samples. We report the results on the entire test-
ing dataset in Fig. 4(a). For our model, the mean D2

GED of all testing data is
0.3354, the standard deviation is 0.2947. Our performance is thus competitive
1 https://github.com/sylqiu/modal uncertainty.

https://github.com/sylqiu/modal_uncertainty
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(a) Ours (b) Prob. U-Net [15]

Fig. 5. Quantitative comparison on the MNIST guessing task. The small dots represent
the predictions for 1000 testing samples. MUE in (a) successfully produces accurate
uncertainty estimate for each mode. While Probabilistic U-Net’s sample density pro-
vides no useful information about the uncertainty level, as shown in the left axis. We
also count the frequencies for each category and plot it on the right axis. However, the
approximation is far less accurate than ours.

with that of Probabilistic U-Net, whose mean is 0.3470 and the standard devi-
ation is 0.3139. Moreover, our model can give faithful uncertainty estimation
directly for each input scan, unlike Probabilistic U-Net, as shown in Fig. 4(b)
and 4(c).

4.2 Quantitative Analysis on Synthetic Task

MNIST guess game. To test the ability for multi-modal prediction quantita-
tively, we design a simple guessing game using the MNIST dataset [17] as fol-
lows. We are shown a collection of images and only one of them is held by
the opponent. The image being held is not fixed and follows certain probability
distribution.

The task is to develop a generative model to understand the mechanism of
which image is being held based on the previously seen examples. In details,
the input x will be an image that consists of four random digits, and belongs
to one of the four categories: (A) (1, 2, 3, 4); (B) (3, 4, 5, 6); (C) (5, 6, 7, 8); (D)
(7, 8, 9, 0). The number represents the label of the image sampled. The output
y will be an image of the same size but only one of the input digit is present.
Specifically, for (A) the probability distribution is (0.25, 0.25, 0.25, 0.25); for (B)
(0.1, 0.4, 0.1, 0.4); for (C) (0.3, 0.5, 0.1, 0.1); for (D) (0.1, 0.1, 0.1, 0.7). Note that
the distribution of the output, conditioned on each category’s input, consists of
four modes, and is designed to be different for each category. We require the
model to be trained solely based on the observed random training pairs (x,y),
and thus no other information like digit categories should be used. The model
would therefore need to learn to discriminate each category and assign the correct
outputs with corresponding probabilities.

Thus for instance, an input image of Category (A) will be the combination
of four random samples from Digit 1 to 4 in that order, and the output can be
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the same digit 1 in the input with probability 0.25, or it can be the same digit
2 with probability 0.25, and so forth. Training images from MNIST are used
to form the training set, and testing images from MNIST are used to form the
testing set.

MUE performs much better quantitatively, as shown in Fig. 5 with the results
on 1000 random testing samples. We classify both models’ outputs into the
ground truth modes and aggregate the corresponding probabilities. We can see
in Fig. 5(a) that MUE successfully discovered the distributional properties of the
one-to-many mappings, and provides accurate uncertainty estimate. In contrast,
due to the Gaussian latent parametrization, neither the individual density of
each input nor their averages can provide useful information, as shown by the
left axis of Fig. 5(b). By the right axis of Fig. 5(b) we also count the mode
frequencies for each category for Probabilistic U-Net. However, even calculated
on the entire testing dataset, the distribution approximation is still far from
accurate compared to ours. Note that MUE can directly output the uncertainty
estimate for each input accurately. This clearly demonstrates MUE’s superiority
and practical value.

5 Discussion and Conclusion

We have proposed MUE, a novel framework for quantitatively identifying the
ambiguities for medical image understanding. Crucially we have used a set of
learned discrete latent variables to explain the one-to-many input-output rela-
tionship, with faithful probability measures that reflects the ambiguity. We have
extensively validated our method’s performance and usefulness on both real and
synthetic tasks, and demonstrate superior performance over the state-of-the-art
methods.
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Abstract. Operating system (OS) updates introduce numerical pertur-
bations that impact the reproducibility of computational pipelines. In
neuroimaging, this has important practical implications on the validity
of computational results, particularly when obtained in systems such
as high-performance computing clusters where the experimenter does
not control software updates. We present a framework to reproduce the
variability induced by OS updates in controlled conditions. We hypoth-
esize that OS updates impact computational pipelines mainly through
numerical perturbations originating in mathematical libraries, which we
simulate using Monte-Carlo arithmetic in a framework called “fuzzy lib-
math” (FL). We applied this methodology to pre-processing pipelines of
the Human Connectome Project, a flagship open-data project in neu-
roimaging. We found that FL-perturbed pipelines accurately reproduce
the variability induced by OS updates and that this similarity is only
mildly dependent on simulation parameters. Importantly, we also found
between-subject differences were preserved in both cases, though the
between-run variability was of comparable magnitude for both FL and
OS perturbations. We found the numerical precision in the HCP pre-
processed images to be relatively low, with less than 8 significant bits
among the 24 available, which motivates further investigation of the
numerical stability of components in the tested pipeline. Overall, our
results establish that FL accurately simulates results variability due to
OS updates, and is a practical framework to quantify numerical uncer-
tainty in neuroimaging.

Keywords: Computational reproducibility · Neuroimaging pipelines ·
Monte-Carlo arithmetic

1 Introduction

Numerical round-off and cancellation errors are ubiquitous in floating-point com-
putations. In neuroimaging, they contribute to results uncertainty along with
other sources of variability, including population selection, scanning devices,
c© Springer Nature Switzerland AG 2021
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sequence parameters, acquisition noise, and methodological flexibility [2,3].
Numerical errors manifest particularly through variations in elementary math-
ematical libraries resulting from operating system (OS) updates. Indeed, due
to implementation differences, mathematical functions available in different OS
versions provide slightly different results. The impact of such epsilonesque dif-
ferences on image analysis depends on the conditioning of the problem and the
pipeline’s numerical implementation. In neuroimaging, established image pro-
cessing pipelines have been shown to be substantially impacted: for instance,
differences in cortical thicknesses measured by the same Freesurfer version in
different execution platforms were shown to reach statistical significance in some
brain regions [9], and Dice coefficients as low as 0.6 were observed between FSL
or Freesurfer segmentations obtained in different platforms [8,18]. Such obser-
vations threaten the validity of neuroimaging results by revealing systematic
instabilities.

Despite its possible implications on results validity, the effect of OS updates
remains seldom studied due to (1) the lack of closed-form expressions of condi-
tion numbers for complex pipelines and non-differentiable non-linear analyses,
(2) the technical challenge associated with experimental studies involving multi-
ple OS distributions and versions, (3) the uncontrolled nature of OS updates. As
a result, the effect of OS updates on neuroimaging analyses is generally neglected
or handled through the use of software containers (Docker or Singularity), static
executable builds, or similar approaches. While such techniques improve experi-
ment portability, they only mask numerical instabilities and do not tackle them.
Numerical perturbations are bound to reappear due to security updates [14],
obsoleting software [17], or parallelization. Therefore, the mechanisms through
which numerical instabilities propagate need to be investigated and eventually
addressed.

This paper presents “fuzzy libmath” (FL), a framework to simulate OS
updates in controlled conditions, allowing software developers to evaluate the
robustness of their tools with respect to likely-to-occur numerical perturbations.
As we hypothesize that numerical perturbations resulting from OS updates
primarily come from implementation differences in elementary mathematical
libraries, we leverage Monte-Carlo arithmetic (MCA) [16] to introduce controlled
amounts of noise in these libraries. FL enables MCA in mathematical functions
used by existing pipelines without the need to modify or recompile them. To
demonstrate the approach, we study the effect of common OS updates on the
numerical precision of structural MRI pre-processing pipelines of the Human
Connectome Project [19], a major neuroimaging initiative.

2 Simulating OS Updates with Monte-Carlo Arithmetic

MCA models floating-point roundoff and cancellations errors through ran-
dom perturbations, allowing for the estimation of error distributions from
independent random result samples. MCA simulates computations at a given
virtual precision using the following perturbation:
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inexact(x) = x + 2ex−tξ (1)

where ex is the exponent in the floating-point representation of x, t is the virtual
precision and ξ is a random uniform variable of (− 1

2 , 1
2 ).

MCA allows for three perturbation modes: Random Rounding (RR) intro-
duces the perturbation in function outputs, simulating roundoff errors; Precision
Bounding (PB) introduces the perturbation in function operands, allowing for
the detection of catastrophic cancellations; and, Full MCA combines RR and
PB, resulting in the following perturbation:

mca mode(x ◦ y) = inexactRR(inexactPB(x) ◦ inexactPB(y)) (2)

To simulate OS updates, we introduce random perturbations in the GNU
mathematical library, the main mathematical library in GNU/Linux systems.
Instrumenting mathematical libraries with MCA raises a number of issues as
many functions assume deterministic arithmetic. For instance, applying ran-
dom perturbations around a discontinuity or within piecewise approximations
results in large variations and a total loss of significance that are not relevant in
our context. Therefore, we have applied MCA to proxy mathematical functions
wrapping those in the original library, such that only the outputs of the original
functions were perturbed but not their inputs or the implementations them-
selves. This technique allows us to control the magnitude of the perturbation as
perceived by the application.

We instrumented the GNU mathematical library with MCA using Verifi-
carlo [5], a tool that (1) uses the Clang compiler to generate an LLVM (http://
llvm.org) Intermediate Representation (IR) of the source code, (2) replaces
floating-point operations in the IR by a call to the Verificarlo API, and (3) com-
piles the modified IR to an executable using LLVM. The perturbation applied
by the Verificarlo API can be configured at runtime, for instance to change the
virtual precision applied to single- and double-precision floating-point values.

The resulting MCA-instrumented mathematical library, “fuzzy libmath”
(FL), is loaded in the pipeline using LD PRELOAD, a Linux mechanism to force-
load a shared library into an executable. As a result, functions defined in fuzzy
libmath transparently overload the original ones without the need to modify or
recompile the analysis pipeline. Fuzzy libmath functions call the original func-
tions through dlsym, a function that returns the memory address of a symbol.
To trigger MCA instrumentation, a floating-point zero is added to the output of
the original function and the result of this sum is perturbed and returned.

Finally, we measure results precision as the number of significant bits among
result samples, as defined in [16]:

s = − log2

∣
∣
∣
∣

σ

μ

∣
∣
∣
∣

(3)

where σ and μ are the observed cross-sample standard deviation and average.

http://llvm.org
http://llvm.org
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Fig. 1. PreFreeSurfer pipeline steps.

3 HCP Pipelines and Dataset

We apply the methodology described above to the minimal structural pre-
processing pipeline associated with the Human Connectome Project (HCP)
dataset [7], entitled “PreFreeSurfer”. This pipeline consists of many indepen-
dent components, including: spatial distortion correction, brain extraction, cross-
modal registration, and alignment to standard space. Each high-level component
of this pipeline (Fig. 1) consists of several function calls using FSL, the FMRIB
Software Library [12]. The pipeline requires T1w and T2w images for each sub-
ject. A full description of the pipeline is available at [7].

It should be noted that the PreFreeSurfer pipeline uses both single and dou-
ble precision functions from the GNU mathematical library. Among the pre-
processing steps in the pipeline, it has been shown that linear and non-linear
registrations implemented in FSL FLIRT [11,13] and FNIRT [1] are the most
sensitive to numerical instabilities [18].

We selected 20 unprocessed subjects from the HCP data release S500 avail-
able in the ConnectomDB repository. We selected these subjects from differ-
ent subject types to cover execution paths sufficiently. For each, the available
data consisted of 1 or 2 T1w and T2w images each, with spatial dimensions
of 256 × 320 × 320 and voxel resolution of 0.7 mm. Acquisition protocols and
parameters are detailed in [19]. Two distinct experimental configurations were
tested:

Operating Systems (OS): subjects were processed on three different Linux
operating systems inside Docker images: CentOS7 (glibc v.2.17), CentOS8
(glibc v.2.28), and Ubuntu20 (glibc v.2.31).

Fuzzy libmath (FL): the dataset was processed on an Ubuntu20 system using
fuzzy libmath. The virtual precision (t) for the perturbations was swept from
53 bits (the full mantissa for double-precision data) down to 1 bit by steps
of 2. For t ≥ 24 bits, only double-precision was altered and single-precision
was set to 24 bits, and for t < 24 bits, both double- and single-precision
simultaneously were changed. Three FL-perturbed samples were generated
for each subject and virtual precision, to match the number of OS samples.

https://db.humanconnectome.org
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After conducting both experiments, we selected the virtual precision that
most closely simulated the variability observed across OSes via the root-mean-
square error (RMSE) between the number of significant bits per voxel in all
subjects and conditions. This precision is referred to as the global nearest virtual
precision and was used to compare results obtained in both the FL and OS
versions.

4 Results

The fuzzy libmath source code, Docker image specifications, and analysis code
to reproduce the results are available at https://github.com/big-data-lab-team/
MCA-libmath-paper. All experiments were conducted on the Béluga HPC com-
puting cluster made available by Compute Canada through Calcul Québec.
Béluga is a general-purpose cluster with 872 available nodes. All nodes con-
tain 2× Intel Gold 6148 Skylake @ 2.4 GHz (40 cores/node) CPU, and node
memory can range between 92 to 752 GB. The average processing time of the
pipeline without FL instrumentation was 69 min (average of 3 executions). The
FL perturbation increased it to 93 min.

We ensured that the pipeline does not use pseudo-random numbers by pro-
cessing each subject twice on the same operating system. To validate that FL was
correctly instrumented with Verificarlo, we used Veritracer [4], a tool for tracing
the numerical quality of variables over time. For one subject, the traces showed
that the number of significant bits in the function outputs varied over time,
confirming the instrumentation with MCA. Throughout the pipeline execution,
Veritracer reported approximately 4 billion calls to FL, with the following ratio
of calls: 47.12% log, 40.96% exp, 6.92% expf, 3.39% logf, 1.55% sincosf, and
0.06% of cumulated calls to atan2f, pow, sqrt, exp2f, powf, log10f, log10,
cos, and asin. We also checked that long double types were not used.

4.1 Fuzzy Libmath Accurately Simulates the Effect of OS Updates

Fuzzy libmath accurately reproduced the effect of OS updates, both globally
(Fig. 2a) and locally (Fig. 2b). The distributions of significant bits in the atlas

(a) Distribution of significant bits (b) Significance map (subject average)

Fig. 2. Comparison of OS and FL effects on the precision of PreFreeSurfer results for
n= 20 subjects. FL samples were obtained at the global nearest virtual precision of
t = 37 bits.

https://github.com/big-data-lab-team/MCA-libmath-paper
https://github.com/big-data-lab-team/MCA-libmath-paper
https://www.computecanada.ca
https://www.calculquebec.ca
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registered T1w images were nearly identical (p > 0.05, KS test) on the aver-
age and individual subject distributions for 15/20 subjects, after correcting for
multiple comparisons. Locally, the spatial distribution of significant digits also
appeared to be preserved. Losses in significance were observed mainly at the
brain-skull interface and between brain lobes, indicating spatial dependency of
numerical properties.

The average number of significant bits in either the FL or OS conditions were
7.76 out of 24 available, which corresponds to 2.32 significant (base 10) digits.
This relatively low precision motivates future investigations of the stability of
pipeline components, in particular for image registration.

4.2 Fuzzy Libmath Preserves Between-Subjects Image Similarity

Numerically-perturbed samples remained primarily clustered by individual sub-
jects (Fig. 3), indicating that neither FL nor OS perturbations were impact-
ful enough to blur the differences between subjects. Notably, the similarity
between subjects was also preserved by the numerical perturbation, leading to
the same subject ordering in the dendrograms. However, the average RMSE
within samples of a given subject was approximately 13× lower than the aver-
age RMSE between different subjects. The fact that between-subject variabilities
were nearly on the same order of magnitude as OS and FL variability demon-
strates the potential severity of these instabilities.

Fig. 3. RMSE-based hierarchical clustering of OS (left) and FL (right) samples. Colors
identify different subjects, showing that similarities between subjects are preserved by
the numerical perturbations. Horizontal gray lines represent average RMSEs between
(top line) and within (bottom line) subject clusters. (Color figure online)

4.3 Results Are Stable Across Virtual Precision

The FL results presented previously were obtained at the global nearest virtual
precision of t = 37 bits, determined as the precision which minimized the RMSE
between FL and OS average maps of significant bits. We varied the virtual
precision in steps of 2 between t = 1 and t = 53 bits (Fig. 4). On average, no



20 A. Salari et al.

Fig. 4. Comparison of RMSE values computed between OS and FL results for different
virtual precisions.

noticeable RMSE change was observed between the FL and OS variability for
precisions ranging from t = 21 to t = 53 bits, which shows that FL can robustly
approximate OS updates.

The observed plateau suggests the existence of an “intrinsic precision” for the
pipeline, above which no improvement in results precision is expected. For the
tested pipeline, this intrinsic precision was observed at t = 21 bits, which indi-
cates that the pipeline could be implemented exclusively with single-precision
floating-point representations (24 bits of mantissa) without loss of results pre-
cision. This would substantially decrease the pipeline memory footprint and
computational time, as approximately 88% of operations used in this pipeline
made use of double-precision data. In addition, the presence of such a plateau
suggests that numerical perturbations introduced by OS updates might be in the
range of machine error (t = 53 bits), although it is also possible that the extent
of the plateau results from the numerical conditioning of the tested pipeline. It is
possible in contrast that the absence of such a plateau would suggest an unsta-
ble pipeline that would benefit either from correction or larger datatypes. The
ability to capture stability across a range of precisions importantly demonstrates
a key advantage of using FL to simulate OS variability.

The relationship between RMSE of individual subjects was generally consis-
tent with the average line, with the notable exception of subject 18. The observed
discrepancies between this subject and potential others might be leveraged for
quality control checks and, as a result, inform tool development.

The pipeline failed to complete for at least one subject below the virtual pre-
cision of t = 13 bits, also referred to as the tolerance of the pipeline. Specifically,
51% of pipeline executions crashed among all subjects for precisions ranging
from 1–11 bits, and there was no relationship between tolerance-level and pre-
cision. The error raised was in the Readout Distortion Correction portion of
the pipeline, and appears to stem from the FSL FAST tissue segmentation. The
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specific source of the error within this component is presently unknown, but is
an open question for further exploration.

5 Conclusion and Discussion

We demonstrated fuzzy libmath as an accurate method to simulate variability
in neuroimaging results due to OS updates. Alongside this evaluation, fuzzy
libmath can be used by pipeline developers or consumers to evaluate the numer-
ical uncertainty of tools and results. Such evaluations may also help decrease
pipeline memory usage and computational time through the controlled use of
reduced numerical precision. Fuzzy libmath does not require any modification of
the pipeline as it operates on the level of shared libraries. The accuracy of the
simulations were shown to be robust across a wide range of virtual precisions,
which reinforces the applicability of the method.

The proposed technique is directly applicable to MATLAB code executed
with GNU Octave, to Python programs executed on Linux, and to C pro-
grams that depend on GNU libmath. Numerical noise can be introduced in
other libraries, such as OpenBLAS or NumPy, using our https://github.com/
verificarlo/fuzzy environment.

A commonly used approach to address instabilities resulting from OS version
updates in practice is to sweep the issue under the rug of software containers
or static linking. While such solutions are undoubtedly helpful to improve code
portability or strict re-executability, a more honest position is to consider com-
putational results as realizations of random variables depending on numerical
error. The presented technique enables estimating result distributions, a first
step toward making analyses reproducible across heterogeneous execution envi-
ronments. While this work did not investigate the precise cause of numerical
instabilities by tracing the system function calls, this is a topic for future work.

The tested OS versions span a timeframe of 7 years (2012–2020) and focused
on GNU/Linux, a widely-used platform in neuroimaging [10]. Given that our
experiments focused on numerical perturbations applied to mathematical func-
tions, which are implemented similarly across OSes, our findings are likely to
generalize to OS/X or MS Windows, although future work would be needed to
confirm that. The tested pipeline is the official solution of the HCP project to
pre-process data, and is considered the state-of-the-art. This pipeline assembles
software components from the FSL toolbox consistent with common practice in
neuroimaging, such as in fMRIPrep [6] or the FSL feat workflow [12], to which
fuzzy libmath can be directly applied. Efforts are on-going to use fuzzy libmath
in fMRIPrep software tests, to guarantee that bug fixes do not perturb results
beyond numerical uncertainty.

The fact that the induced numerical variability preserves image similarity
between subjects is reassuring and, in fact, exciting. OS updates provide a con-
venient, practical target to define a virtual precision leading to a detectable
but still reasonable numerical perturbation. However, it is also of importance
that OS- and FL-induced variability were on a similar order of magnitude as

https://github.com/verificarlo/fuzzy
https://github.com/verificarlo/fuzzy
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subject-level effects. This suggests that the preservation of relative between-
subject differences may not hold in all pipelines, and such a comparison could
be used to evaluate the robustness of a pipeline to OS instabilities. The fact
that the results observed across OS versions and FL perturbations arise from
equally-valid numerical operations also suggests that the observed variability
may contain meaningful signal. In particular, signal measured from these per-
turbations might be leveraged to enhance biomarkers, as suggested in [15] where
augmenting a diffusion MRI dataset with numerically-perturbed samples was
shown to improve age classification.
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Leveraging Uncertainty Estimates
to Improve Segmentation Performance

in Cardiac MR
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Abstract. In medical image segmentation, several studies have used
Bayesian neural networks to segment and quantify the uncertainty of the
images. These studies show that there might be an increased epistemic
uncertainty in areas where there are semantically and visually challeng-
ing pixels. The uncertain areas of the image can be of a great interest
as they can possibly indicate the regions of incorrect segmentation. To
leverage the uncertainty information, we propose a segmentation model
that incorporates the uncertainty into its learning process. Firstly, we
generate the uncertainty estimate (sample variance) using Monte-Carlo
dropout during training. Then we incorporate it into the loss function
to improve the segmentation accuracy and probability calibration. The
proposed method is validated on the publicly available EMIDEC MIC-
CAI 2020 dataset that mainly focuses on segmentation of healthy and
infarcted myocardium. Our method achieves the state of the art results
outperforming the top ranked methods of the challenge. The experimen-
tal results show that adding the uncertainty information to the loss func-
tion improves the segmentation results by enhancing the geometrical and
clinical segmentation metrics of both the scar and myocardium. These
improvements are particularly significant at the visually challenging and
difficult images which have higher epistemic uncertainty. The proposed
system also produces more calibrated probabilities.

Keywords: Cardiac MRI Segmentation · Myocardial scar ·
Uncertainty · Bayesian deep learning

1 Introduction

Cardiac magnetic resonance (CMR) is a set of magnetic resonance imaging
(MRI) used to provide anatomical and functional information of the heart. Late
Gadolinium Enhancement (LGE), sometimes called delayed-enhancement MRI,
is one type of CMR which is gold standard for the quantification of myocardial
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infarction. Myocardial infarction, also called heart attack, is the interruption
of coronary blood supply to certain myocardial area which leads to irreversible
death of myocardial tissue [11]. No-reflow phenomenon is an incident that usually
appears in a proportion of patients with acute myocardial infarction following
re-perfusion therapy of an occluded coronary artery [1].

Recently, deep learning based semi-automatic and fully-automatic methods
have been proposed to segment myocardial scar (infarction) from LGE images.
Zabihollahy et al. [23] used manual segmentation for myocardium and 2D Fully
Convolutional Network to segment scar from the myocardium. Zhang [24], Ma
[15] and Girum et al. [8] used a two stage cascaded segmentation framework to
automatically segment myocardial scar and tested their method on EMIDEC
dataset. In the first stage, Zhang [24] used a 2D nnUNet [9] to get a coarse
segmentation. In the second stage, a 3D nnUNet is utilized to further refine the
segmentation result. Ma [15] used a 2D nnUNet[9] to first segment the whole
heart as region of interest (ROI) and then utilized a second 2D nnUNet to
segment the myocardial infarction from the ROI. Arega et al. [2] also used a
cascaded framework of three networks to automatically segment scar from multi-
sequence CMR. The main problem with these cascaded methods is that they can
be time consuming and computationally expensive.

Bayesian deep learning have been used in segmentation task to provide a
prediction as well as quantify the uncertainty associated with each prediction.
Recently, several studies have employed Monte Carlo Dropout to estimate uncer-
tainty for medical image segmentation [16–18,20,21]. Monte Carlo (MC) dropout
is an uncertainty estimation method proposed by Gal and Ghahramani [7]. It is
done by training a network with dropout and taking the Monte Carlo samples of
the prediction using dropout at test time. Nair et al. [17] explored MC dropout
based uncertainty estimates for multiple sclerosis lesion detection and segmenta-
tion. They improved the segmentation results by filtering and excluding the most
uncertain voxels. Similarly, Sander et al. [21] applied MC Dropout based method
for cardiac MRI segmentation and showed that the uncertainty maps are close to
the reported segmentation errors and they improved the segmentation results by
correcting the uncertain pixels. These previous studies [10,16,17,20,21] mostly
focused on the correlations between predictive uncertainty and the segmentation
accuracy and how the uncertainty metrics can be used to improve the segmen-
tation by filtering the most uncertain predictions. However, these methods did
not leverage the uncertainty information during training to enhance the seg-
mentation result. In the area of computer vision, Kendall et al. [13] utilized
homoscedastic aleatoric uncertainty to weight the losses of multi-task problems.

In this paper, we proposed a segmentation model that generates uncertainty
estimates during training using MC-dropout. Then it leverages these uncertainty
estimates to improve the segmentation results by incorporating them to the loss
function. Uncertainty information can possibly indicate the regions of incorrect
segmentation [21,22]. We hypothesized that by incorporating this information as
part of the learning process, it can help the network to improve the segmentation
results by correcting the segmentation errors that have high epistemic uncer-
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tainty. The proposed method was evaluated on the publicly available EMIDEC
MICCAI 2020 dataset [14]. It achieved the state of the art results outperforming
the top ranked methods of the challenge. The experimental results showed that
the uncertainty information was indeed beneficial in enhancing the segmentation
performance. We also observed that the improvements were more significant at
the semantically and visually challenging images which have higher epistemic
uncertainty. Assessing the probability calibration, we showed that the proposed
method produced more calibrated probabilities than the baseline method.

2 Materials and Methods

2.1 Dataset

The Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement
Cardiac MRI challenge (EMIDEC)1 is a MICCAI 2020 challenge that focuses
on cardiac MRI segmentation. More specifically, it involves the segmentation of
healthy myocardium, infarction (scar) and no-reflow regions. The dataset con-
sists of LGE images of 100 patients for training. From these cases, 67 are patho-
logical cases and the remaining 33 are normal cases. The testing set includes 50
patients in which 33 are pathological and 17 are normal cases. Each case has 5
to 10 short-axis slices covering the left ventricle from base to apex with the fol-
lowing characteristics: slice thickness of 8 mm, distance between slices of 10 mm
and spatial resolution ranging from 1.25 × 1.25 mm2 to 2 × 2 mm2 [14]. As a
pre-processing step, we normalized the intensity of every patient image to have
zero-mean and unit-variance and we resampled all the volumes to have a voxel
spacing of 1.458 mm× 1.458 mm×10.0 mm.

2.2 Methods

Various Bayesian deep learning methods are used to estimate uncertainties in
images. Among the most widely used Bayesian deep learning methods in med-
ical images is Monte-Carlo dropout (MC-dropout). In MC-dropout, a network
with dropout is trained, then during testing the network is sampled N times
in order to get N segmentation samples. From these N segmentation samples,
the uncertainty measure (sample variance) is computed. In our method, we used
MC-dropout during training in order to get the uncertainty estimates. During
training, the model is sampled N times and the mean of these samples is used
as the final segmentation as can be seen from Fig. 1. The uncertainty metric is
computed from the N Monte-Carlo dropout samples. It can be calculated per
pixel or per structure [18]. In this work, we used the pixel-wise uncertainty and
image-level uncertainty. Pixel-wise uncertainty is computed per pixel. Sample
variance is one of the pixel-wise uncertainty measures. It is calculated as the
variance of the N Monte-Carlo prediction samples of a pixel. Each pixel i has

1 http://emidec.com/.

http://emidec.com/
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N sigmoid predictions (yi,1...yi,N ). From these predictions, the mean μi is com-
puted (Eq. 1). In Eq. 2, σ2

i is the sample variance of each pixel i of the image
[17]. In order to compute the image-level uncertainty, the per-pixel uncertainty
is averaged over all pixels of the image as shown in Eq. 4. In this equation, I is
the total number of pixels of the image.

μi =
1
N

∑

n

(yi,n) (1)

σ2
i =

1
N

∑

n

(yi,n − μi)2 (2)

As stated by [21] and [22], uncertainty information indicates potential mis-
segmentations and the most uncertain part of the segmentation results cover
regions of incorrect segmentations. In order to leverage this uncertainty infor-
mation, we proposed to include it as part of the loss function so that the network
will learn to correct the possible mis-segmentations. Hence, the total loss is com-
puted as a sum of the segmentation loss and uncertainty loss as can be seen from
Fig. 1. The segmentation loss is the weighted average of cross-entropy (CE) loss
and Dice loss (Eq. 3). For the uncertainty loss, we first computed the image level
uncertainty (Eq. 4). Then, it is added to the segmentation loss with a hyper-
parameter value alpha (α) that controls the contribution of the uncertainty loss
to the total loss (Eq. 5).

Fig. 1. The proposed method

LSeg = λDiceLDice + λCELCE (3)

LUncertainty =
1
I

∑

i

(σ2
i ) (4)

LTotal = LSeg + α × LUncertainty (5)
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For the segmentation network, we used a 3D UNet [9] architecture with
dropout placed at the middle layers of the network (Fig. 1) as suggested by the
literatures [4,6,12,18]. The dropout rate was set at 0.1. The UNet’s encoder
and decoder consists of 8 convolutional layers where each convolution is followed
by batch normalization and Leaky ReLU (negative slope of 0.01) activation
function.

2.3 Training

The weights of the segmentation network are optimized using Stochastic gradient
descent (SGD) with nesterov momentum (μ = 0.99) with an initial learning rate
of 0.01. The mini-batch size was 5 and the model was trained for 1000 epochs on
a five-fold cross validation scheme. For the segmentation loss, we set a weighting
factor of 1.0 for Dice loss and 1.0 for CE loss as they provided the best results.
In order to generate the segmentation uncertainty (sample variance), we used 5
Monte Carlo samples (the N value in Eq. 1). The weighting factor (α) for the
uncertainty loss (in Eq. 5) is empirically selected to be 3.0 after experimenting
with different weighting factors. The training was done on NVIDIA Tesla V100
GPUs using Pytorch deep learning framework based on nnU-Net implementation
[9].

3 Results and Discussion

To evaluate the segmentation results, we used geometrical metrics such as Dice
coefficient (DSC) and Hausdorff distance (HD). In addition, we computed clinical
metrics which are commonly used in cardiac clinical practice. These include the
average volume error (VD) of the left ventricular myocardium (in cm3), the
volume (in cm3) and percentage (PD) of infarction and no-reflow [14].

To measure probability calibration of the models, we used Brier score (BS).
Brier score measures how close the predicted segmentation probabilities are to
their corresponding ground truth probabilities (one-hot encoding of each classes)
by computing the mean square error of the two probabilities [18]. To compare
image level uncertainties among the segmentation results, we utilized Dice agree-
ment within MC samples (DiceWithinSamples) [18,20]. It is the average Dice
score of the mean predicted segmentation (Smean) and the individual N MC
prediction samples as shown in Eq. 6. Note that DiceWithinSamples is inversely
related to uncertainty.

DiceWithinSamples =
1
N

∑

n

Dice(Smean, Sn) (6)

3.1 Ablation Study

To evaluate the effect of adding uncertainty information to the segmentation loss,
we compared the model that uses only segmentation loss which is called baseline
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with the model that uses combined loss of segmentation loss and uncertainty
loss which is referred as proposed. Both networks have the same architecture
and the comparison is done on the test dataset. For the ablation study, most of
the comparisons are done on the main two classes that are healthy myocardium
and infarction. The comparison on all the three classes can be found in the
supplementary material.

As can be seen from the Table 1, the addition of uncertainty information
into the segmentation loss enhanced the segmentation accuracy. It increased the
DSC of scar (infarction) by 3% and that of myocardium by around 0.2%. It also
improved the HD and the average volume error of both scar and myocardium.
The segmentation enhancement is more significant on scar than on myocardium.
This can be explained by the fact that scar has more irregular shape, smaller area
and visually challenging pixels which may result in higher uncertainty compared
to myocardium (Fig. 2 (b)). The relatively high standard deviation in the metrics
of the infarction can be caused due to the availability of normal cases with no
pathology (17 cases) in the test dataset. This can result in fluctuation of the
metrics of infarction. For example, the Dice of infarction will be 0 if few false
positive pixels are present during the segmentation of the normal cases.

The apical and basal slices of the left ventricle are more difficult to segment
than mid-ventricular images even for human experts [3,19]. Particularly at the
apical slices, the MRI resolution is very low that it is even difficult to resolve
size of small structures (first row in Fig. 3). Assessing the segmentation perfor-
mance and uncertainties at different slice positions of the left ventricle, it can
be observed that the apical slices have the highest epistemic uncertainty (lowest
DiceWithinSamples) among the slices (Fig. 2 (b)). Similarly, in the comparison
of segmentation performance, most of the improvements due to the addition
of uncertainty information (proposed method) are predominantly on the api-
cal slices (Fig. 2 (a)). The DSC increased by 2% for scar and by almost 1%
for myocardium in the apical slices. While the segmentation performance of the
proposed method at the mid and basal slices are similar or slightly better than
the baseline method. This tells us that the addition of uncertainty information
to the loss function is more advantageous to the semantically and visually chal-
lenging images which generate higher epistemic uncertainty. This confirms our
initial assumption about the proposed method.

Table 1. Comparison of myocardium and scar (infarction) segmentation performance
of the baseline method and the proposed method in terms of geometrical and clinical
metrics obtained on the test set (50 cases). The values mentioned are mean (standard
deviation). The best results are in bold. VD is the volume error. For DSC, the higher
the value the better whereas for HD, Brier score (BS) and VD the lower is the better.

Method Myocardium Infarction

DSC (%) HD (mm) BS (10−2) DSC (%) VD (cm3) BS (10−2)

Baseline 88.0 (2.63) 12.1(7.79) 4.03 (2.45) 65.0 (29.7) 3.04 (5.0) 1.19 (1.81)

Proposed 88.2 (2.55) 11.8 (7.26) 3.86 (2.8) 67.6 (28.8) 2.99 (4.55) 1.18 (1.83)
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Fig. 2. Dice score (A) and certainty (B) comparison of the baseline and proposed
method at different slice locations. Myo baseline and Scar baseline refer to myocardium
and scar Dice score or certainty of the baseline method respectively. Similarly,
Myo proposed and Scar proposed refer to myocardium and scar Dice score or certainty
of the proposed method.

Figure 3 shows examples of the segmentation results of baseline and proposed
method at apical, mid-ventricular and basal slices. At the apical slice, one can
see that the segmentation result of the baseline method has a lot of errors. In
the generated uncertainties (sample variance), the incorrectly segmented regions
have higher uncertainty. The proposed method, which utilizes the sample vari-
ance as part of the loss, minimized the segmentation errors of the baseline.
Similarly, our proposed method produced more robust segmentation results at
the mid and basal slices. From the results, we can say that the uncertainty cap-
tures relevant information that can be leveraged to improve the segmentation
result.

Regarding the probability calibration, the proposed method produced more
calibrated probabilities than the baseline method on both myocardium and scar

Fig. 3. Qualitative results comparison of the proposed method with the baseline on
a typical cardiac MRI. The generated uncertainty is sample variance. The error map
is computed from the pixel-wise CE. Scar (green) and myocardium (yellow). (Color
figure online)
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as it yielded lower Brier score. This suggests that using MC-dropout during
training and the addition of uncertainty information to the loss can improve not
only the segmentation accuracy but also the calibration of the probabilities.

3.2 Comparison with State of the Art

Table 2 shows the comparison of the proposed method with state of the art
methods on EMIDEC challenge. One can observe that the proposed method
outperformed the state of the art methods on most of the geometrical and clinical
metrics. Our proposed method yielded much better results in all metrics than
Feng et al. [5], which used a dilated 2D Unet. Zhang [24] and Ma [15] employed
nnU-Net based segmentation pipeline which is similar to the proposed method’s
pipeline. However, the proposed method, which utilizes a novel loss function that
took into account the uncertainty generated during training, outperformed these
two top ranked methods. In the segmentation of infarction, the proposed method
reduced the average volume error from 3.12 cm3 to 2.99 cm3 and the percentage
from 2.38% to 2.29% compared to Zhang’s [24] method. In terms of the Dice
score of infarction, Zhang’s [24] method achieved better results. This can be due
to the usage of a cascaded 2D-3D framework where the 2D nnU-Net segments the
heart region as ROI and the 3D nnU-Net segments the pathological area from
the pre-segmented region. However, Zhang’s method is more computationally
expensive.

Table 2. Comparison of segmentation performance with state of the art methods on
EMIDEC challenge’s test set (50 cases). Bold results are the best.

Authors Myocardium Infarction NoReflow

DSC (%) VD (cm3) HD (mm) DSC (%) VD (cm3) PD(%) DSC (%) VD (cm3) PD (%)

Zhang 87.86 9.26 13.01 71.24 3.12 2.38 78.51 0.635 0.38

Ma 86.28 10.2 14.31 62.24 4.87 3.50 77.76 0.830 0.49

Feng et al. 83.56 15.2 33.77 54.68 3.97 2.89 72.22 0.883 0.53

Proposed 88.22 9.23 11.78 67.64 2.99 2.29 81.00 0.601 0.37

4 Conclusion

In this paper, we proposed a segmentation model that generates uncertainty
estimates during training using MC-dropout method and utilizes the uncertainty
information to enhance the segmentation results by incorporating it into the loss
function. The proposed method was evaluated on the publicly available EMIDEC
dataset. It achieved state of the art results outperforming the top ranked meth-
ods. Assessing the segmentation performance of the proposed method at dif-
ferent slice positions, we observed that the Dice scores of the more challeng-
ing apical slices increased much more than the other slice positions. Further-
more, the improvements in the more difficult scar segmentation was higher than
that of myocardium segmentation. In the quantitative and qualitative results,



32 T. W. Arega et al.

we demonstrated that the uncertainty information was indeed advantageous in
enhancing the segmentation performance and the improvements were more sig-
nificant at the semantically and visually challenging images which have higher
epistemic uncertainty. In addition, the proposed method produced more cali-
brated segmentation probabilities.

The main limitation of our method is that it takes more time to train than the
baseline method as it uses MC-dropout during training to generate the uncer-
tainty estimates. However, once it is trained, the inference time is exactly the
same as the baseline method. Future work will focus on utilizing the uncertainty
estimates generated by other Bayesian methods such as variational inference to
improve the segmentation performance. We will also extend the evaluation onto
other challenging public datasets.
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facilities.

References

1. Abbas, A., Matthews, G.H., Brown, I.W., Shambrook, J., Peebles, C., Harden,
S.: Cardiac MR assessment of microvascular obstruction. Br. J. Radiol. 88(1047),
20140470 (2015)

2. Arega, T.W., Bricq, S.: Automatic myocardial scar segmentation from multi-
sequence cardiac MRI using fully convolutional densenet with inception and
squeeze-excitation module. In: Zhuang, X., Li, L. (eds.) MyoPS 2020. LNCS, vol.
12554, pp. 102–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
65651-5 10

3. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-
structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med.
Imaging 37, 2514–2525 (2018)

4. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural network. In: International Conference on Machine Learning, pp. 1613–1622.
PMLR (2015)

5. Feng, X., Kramer, C.M., Salerno, M., Meyer, C.H.: Automatic scar segmentation
from DE-MRI using 2D dilated UNet with rotation-based augmentation. In: Puyol
Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 400–405. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-68107-4 42

6. Fortunato, M., Blundell, C., Vinyals, O.: Bayesian recurrent neural networks. arXiv
preprint arXiv:1704.02798 (2017)

7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: International Conference on Machine Learn-
ing, pp. 1050–1059. PMLR (2016)

8. Girum, K.B., Skandarani, Y., Hussain, R., Grayeli, A.B., Créhange, G., Lalande,
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Abstract. In this paper we propose a novel method which leverages
the uncertainty measures provided by Bayesian deep networks through
curriculum learning so that the uncertainty estimates are fed back to
the system to resample the training data more densely in areas where
uncertainty is high. We show in the concrete setting of a semantic seg-
mentation task (iPS cell colony segmentation) that the proposed system
is able to increase significantly the reliability of the model.

Keywords: Bayesian deep learning · Uncertainty · Curriculum
learning

1 Introduction

Although in recent years deep neural networks have achieved state-of-the-art
performance on many medical image analysis tasks, even surpassing human-level
performance in certain cases [6,9], their extensive adoption in clinical settings
has been hampered by their false over-confidence when confronted with out-
of-distribution (OOD) test samples (samples that lie far away from the data
which they have been trained with). This is due to the fact that the probability
vector obtained from the softmax output is erroneously interpreted as model
confidence [8]. It may be amusing if a deep net trained with cats and dogs
images classifies a human as a dog with 98% probability, but similar mistake
due to encountering test samples lying outside the data distribution of a cancer
detection system can lead to life-threatening situations, thus the reluctance of
some medical professionals to adopt such systems wholeheartedly.

In order to address this problem different risk-aware Bayesian networks have
been proposed [8,13,14], which rather than point estimates, as in popular deep
learning models, are able to output uncertainty estimates, which can provide
information about the reliability of the trained models, thus allowing the users

c© Springer Nature Switzerland AG 2021
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Fig. 1. Overview of the proposed system.

to take necessary actions to ensure safety when the model is under-confident or
falsely over-confident.

In this paper, we endeavor to take this work one step further, i.e. not merely to
provide uncertainty measures, but to leverage those through curriculum learning
[2], so that the uncertainty estimates are fed back to the system to resample the
training data more densely in areas where the uncertainty is high. We show, in
the setting of a concrete semantic segmentation task, that the reliability of the
model can be significantly increased without decreasing segmentation accuracy,
which can potentially lead to wider acceptance of deep learning models in clinical
settings where safety is first priority.

2 Methods

Figure 1 provides an overview of the proposed method which consists of two
stages. During stage 1 a large image which needs to be segmented (the class of
each pixel needs to be determined) is input into the system. We assume large
bio-medical images with predominantly local texture information (one example
would be colonies of cells), where local texture statistics are more important
for the correct segmentation and distant areas might not be correlated at all.
We extract sub-images of size d × d pixels from the large image, and these are
sent to a Bayesian U-Net for learning the segmentation end-to-end, using ground
truth segmentation map images provided by experts. In the lack of additional
information the sub-images can be extracted from the large image in a sliding
window manner, scanning the large image left-to-right and top-to-bottom using
a predefined step s.

To obtain the model’s uncertainty of its prediction, we apply Monte Carlo
(MC) Dropout [5,8,13] to a U-Net [15]. An approximate predictive posterior dis-
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tribution can be obtained by Monte Carlo sampling over the network parameters
by keeping the dropout mechanism [16] at test time and performing the predic-
tion multiple times during the forward pass (dropout approximately integrates
over the model’s weights [8]). The predictive mean for a test sample x∗ is

μpred ≈ 1
T

T∑

t=1

p (y∗ | x∗, ŵt) (1)

where T is the number of MC sampling iterations, ŵt represents the network
weights with dropout applied to the units at the t-th MC iteration, and y∗ is
class vector. For each test sample x∗, which is a pixel in an input sub-image,
the prediction is chosen to be the class with largest predictive mean (averaged
for overlapping areas across sub-images). In this way a Prediction Map for the
whole image is calculated, as shown in Fig. 1.

To quantify the model uncertainty we adopt predictive entropy H as proposed
in [7]:

H (y∗ | x∗,D) = −
∑

c

p (y∗ = c | x∗,D) log p (y∗ = c | x∗,D) (2)

where c ranges over the classes. Since the range of the uncertainty values can
vary across different datasets D or models, similarly to [13] we adopt the nor-
malized entropy Hnorm ∈ [0, 1], computed as Hnorm = H−Hmin

Hmax−Hmin
. In this way,

an Uncertainty Map is calculated for the whole image, which can be thresholded
using a threshold HT to obtain the Thresholded Uncertainty Map (see Fig. 1)
where each pixel’s prediction is considered certain if the corresponding value in
the map is larger than HT and uncertain otherwise.

In stage 2 of the proposed method, we utilize Curriculum Learning [2] to
leverage the information in the Uncertainty Map about the uncertainty of the
model to improve its reliability (methods for evaluating the reliability of a
model are explained in Sect. 3). The main idea is that areas where segmen-
tation results are uncertain need to be sampled more densely than
areas where the model is certain . The uncertainty H(S) of sub-images S
is calculated as the average entropy obtained from the uncertainty values in the
Uncertainty Map pmf s p(i) for each pixel (indexed by i) corresponding to the
sub-image. Using H(S) as a measure of the current sub-image’s uncertainty, the
position of the next location where to resample a new sub-image is given by

f(H(S)) = d exp{−(H(S))2/2σ2}. (3)

where d is the size of the sub-image and σ the width of the Gaussian. This
process is illustrated in Fig. 1, starting at the upper left corner of the input
image, uncertainty for the current sub-image is calculated and the step size in
pixels to move in the horizontal direction is calculated by Eq. 3. The whole image
is resampled this way to re-train the model and this process (stage 2) can be
repeated several times until no further improvement in reliability is obtained.
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Additionally, we propose a second method (Method 2, single-staged), which
does not use curriculum learning, i.e. consists of a single training stage. This
method, rather than resampling the training set, directly uses the values in the
Uncertainty Map to improve model reliability. This method initially trains the
Bayesian U-Net for 5 epochs using cross-entropy loss (several other losses have
also been tried as shown in the experiments), after which generates an Uncer-
tainty Map similarly to the curriculum learning based method, and continues
the training for 5 more epochs augmenting the training loss with a term which
tries directly to minimize the uncertainty values of the Uncertainty Map - for
this reason we call it Uncertainty Loss. Note that the term that minimizes the
uncertainty is added to the cross-entropy term after the cross-entropy loss has
been minimized for several epochs, so that this does not encourage overconfident
false predictions.

3 Experiments

In this section we evaluate the performance of the proposed methods on a dataset
which consists of 59 images showing colonies of undifferentiated and differenti-
ated iPS cells obtained through phase-contrast microscopy. The task we have
to solve is to segment the input images into three categories: Good (undiffer-
entiated), Bad (differentiated) and Background (BGD, the culture medium).
Several representative images together with ground-truth provided by experts
can be seen in Fig. 2. All images in this dataset are of size 1600 × 1200 pixels.

Network Architecture and Hyperparameters: We used a Bayesian version
of U-Net [12,13,15], the architecture of which can be seen in Fig. 1, with 50%
dropout applied to all layers of both the encoder and decoder parts.

The learning rate was set to 1e − 4 for the Stage 1 learning, and to 1e − 6
for the curriculum learning (beyond stage 2). For the optimization procedure
we used ADAM [10] (β1 = 0.9, β2 = 0.999), batch size was 12, training for 10
epochs per learning stage, while keeping the model weights corresponding to
minimal loss on the validation sets. All models were implemented using Python
3.6.10, TensorFlow 2.3.0 [1] and Keras 2.3.1 [4]. Computation was performed
using NVIDIA GeForce GTX1080 Ti. Code is available from https://github.
com/sora763/Uncertainty. The size of the sub-images was fixed to d = 160 (i.e.
160 × 160 pixels). The width of the Gaussian in Eq. 3 was empirically set to
σ = 0.4 for all experimental results. The values of the other system parameters
used in Sect. 2 were set to T = 10, s = 10, HT = 0.5 throughout the experiments.

Evaluation Procedure and Criteria: Evaluation was done through 5-fold
cross validation by splitting the data into training, validation and test sets in
proportions 3:3:1. Each method was evaluated by using the metrics described
below, which are adopted from [12]. In a Bayesian setting there are four differ-
ent possible cases for an inference: it can be (a) incorrect and uncertain (True
Positive, TP); (b) correct and uncertain (False Positive, FP); (c) correct and
certain (True Negative, TN); (d) incorrect and certain (False Negative, FN).

https://github.com/sora763/Uncertainty
https://github.com/sora763/Uncertainty
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Table 1. Experimental results comparing reliability (NPV, TPR and UA) and segmen-
tation accuracy (IoU) for baseline (first row) and curriculum learning based methods
using different loss functions (second to fifth rows).

Stage Loss NPV TPR UA IoU

1 CE 0.867 ± 0.026 0.313 ± 0.021 0.859 ± 0.027 0.783 ± 0.039

4 CE 0.917 ± 0.021 0.352 ± 0.009 0.899 ± 0.022 0.796 ± 0.039

2 Dice 0.955 ±0.010 0.431 ±0.011 0.921 ± 0.015 0.794 ± 0.043

2 SS 0.894 ± 0.020 0.326 ± 0.015 0.883 ± 0.021 0.797 ± 0.037

2 CE+Dice 0.904 ± 0.019 0.340 ± 0.010 0.890 ± 0.020 0.797 ± 0.042

Correctness can be obtained by comparing the Prediction Map with the Ground
Truth, while certain/uncertain values can be obtained from the Thresholded
Uncertainty Map described in Sect. 2.

1. Negative Predictive Value (NPV)
The model should predict correctly if it is certain about its prediction. This
can be evaluated by the following conditional probability and corresponds to
the NPV measure in a binary test:

P (correct | certain) = P (correct,certain)
P (certain) =

TN
TN + FN

(4)

2. True Positive Rate (TPR)
The model should be uncertain if the prediction is incorrect. This can be
evaluated by the following conditional probability and corresponds to the
TPR measure in a binary test:

P (uncertain | incorrect) = P (uncertain,incorrect)
P (incorrect) =

TP
TP + FN

(5)

3. Uncertainty Accuracy (UA)
Finally, the overall accuracy of the uncertainty estimation can be measured
as the ratio of the desired cases (TP and TN) over all possible cases:

UA =
TP + TN

TP + TN + FP + FN
(6)

For all metrics described above, higher values indicate a model that performs
better. Additionally, overall segmentation performance was evaluated using the
mean Intersection-over-Union (IoU, or Jaccard index), as is common for segmen-
tation tasks. For each score the average and standard deviation obtained from
5-fold cross-validation are reported.

Experimental Results for the Curriculum Learning: Table 1 shows the
results obtained by the proposed method based on resampling with curriculum
learning, compared with the single-stage baseline (first row) using the same U-
Net trained with cross-entropy (CE) loss without uncertainty modelling through
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Table 2. Experimental results comparing reliability (NPV, TPR and UA) and segmen-
tation accuracy (IoU) for three baseline single-stage learning methods using different
loss functions (first 3 rows) and the proposed single-stage method (Uncertainty Loss).

Stage Loss NPV TPR UA IoU

1 CE 0.867 ± 0.026 0.313 ± 0.021 0.859 ± 0.027 0.783 ± 0.039

1 SS 0.913 ± 0.023 0.356 ± 0.013 0.896 ± 0.025 0.791 ± 0.039

1 CE+Dice 0.913 ± 0.016 0.358 ± 0.021 0.895 ± 0.019 0.792 ± 0.042

1 Uncertainty Loss 0.935 ±0.018 0.382 ± 0.025 0.910 ±0.018 0.798 ± 0.041

curriculum learning. The second row in the table reports results obtained with
curriculum learning using cross-entropy loss over 4 learning stages (first same
as the baseline and next 3 stages using curriculum learning). Third row corre-
sponds to results using Dice loss [11] for the second stage (curriculum learning),
fourth row corresponds to results using the Sensitivity-Specificity (SS) loss [3] for
the second stage (curriculum learning), and the last row corresponds to results
using both cross-entropy and Dice loss for the second stage (curriculum learning).
Regarding the system reliability evaluation, the results show that a big improve-
ment is achieved when using the proposed curriculum learning method: in the
case when Dice loss is used which achieves best performance, TPR improved by
12%, NPV by 9% and UA by 6%. It was found that when using Dice loss, SS
loss or CE+Dice loss for the curriculum learning necessitates only a single stage
of curriculum learning (no significant improvement observed after that), while if
the original CE loss is used 3 stages of curriculum learning were needed for best
results (note that using Dice loss instead of CE during the first stage resulted in
much inferior results). Additionally, segmentation performance (as measured by
IoU) also improved by about 1% on average for all curriculum learning method
compared with the baseline.

Figure 2 shows segmentation results and uncertainty maps for several images
from the iPS dataset. The first two columns show instances where both segmenta-
tion accuracy and reliability was improved significantly by curriculum learning
in comparison with the baseline method, while the last column shows a case
without much improvement.

Experimental Results for the Single-Stage Learning: Table 2 shows the
results obtained by the second proposed method (shown in the last row of the
table), compared with three different single-stage baseline methods (first 3 rows)
using the same U-Net trained with cross-entropy (CE) loss without uncertainty
modelling (row 1 in the table), Sensitivity-Specificity (SS) loss without uncer-
tainty modelling (row 2), and using both cross-entropy and Dice loss without
uncertainty modelling (row 3 in the table). The results indicate that the proposed
method outperforms all three baseline methods both in terms of reliability and
segmentation accuracy. However, regarding reliability performance, this method
did not perform as well as the curriculum learning based method.

Figure 3 shows segmentation results and uncertainty maps for the same
images shown in Fig. 2, this time comparing the proposed single-stage Method 2
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Fig. 2. Segmentation results and uncertainty maps for several images from the iPS
dataset. In the segmentation results (2nd to 4th rows from the top) red corresponds to
Good colonies, green to Bad colonies and blue to the culture medium. In the uncertainty
maps (5th and 6th rows) high uncertainty level is represented by high intensity values.
First two columns show instances where both segmentation accuracy and reliability was
improved significantly by curriculum learning (4th and 6th rows) in comparison with
the baseline method (3rd and 5th rows), while the last column shows a case without
much improvement. The last row is a heat map where reduction in uncertainty between
first and second stage of learning is shown in red and increase in blue. (Best viewed in
color)
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Fig. 3. Comparison of segmentation results and uncertainty maps for a baseline method
using cross-entropy without uncertainty modelling (3rd row and 5th row) and proposed
single-stage Method 2 (4th row and 6th row). The last row is a heat map where reduc-
tion in uncertainty between baseline method and Method 2 is shown in red and increase
in blue. (Best viewed in color).
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with the baseline using cross-entropy without uncertainty modeling. Here again
can be seen that modeling uncertainty leads to significant improvement in both
segmentation accuracy and decrease in uncertainty compared with the baseline.

4 Conclusion

Experimental results have shown that the proposed method was able to increase
significantly the reliability of the segmentation model in the concrete setting of
iPS cell colony segmentation. Further work includes application to alternative
datasets and evaluation whether a hybrid model between both proposed method
could lead to even further increase in reliability.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/. software available from tensorflow.org

2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, ICML
2009, pp. 41–48. ACM, New York (2009)

3. Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep con-
volutional encoder networks for multiple sclerosis lesion segmentation. In: Navab,
N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol.
9351, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-
4 1

4. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
5. DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting seg-

mentation quality (2018)
6. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep

neural networks. Nature 542(7639), 115–118 (2017). https://doi.org/10.1038/
nature21056. https://app.dimensions.ai/details/publication/pub.1074217286

7. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)
8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing

model uncertainty in deep learning. In: Proceedings of Machine Learning Research,
vol. 48, pp. 1050–1059. PMLR, New York (2016). http://proceedings.mlr.press/
v48/gal16.html

9. Gulshan, V., et al.: Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22),
2402–2410 (2016). https://doi.org/10.1001/jama.2016.17216

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). http://
arxiv.org/abs/1412.6980. cite arxiv:1412.6980 Comment: Published as a conference
paper at the 3rd International Conference for Learning Representations, San Diego
(2015)

11. Milletari, F., Navab, N., Ahmadi, S.: V-net: fully convolutional neural networks
for volumetric medical image segmentation. CoRR abs/1606.04797 (2016). http://
arxiv.org/abs/1606.04797

12. Mobiny, A., Nguyen, H.V., Moulik, S., Garg, N., Wu, C.C.: Dropconnect is effective
in modeling uncertainty of Bayesian deep networks. CoRR abs/1906.04569 (2019).
http://arxiv.org/abs/1906.04569

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-319-24574-4_1
https://doi.org/10.1007/978-3-319-24574-4_1
https://github.com/fchollet/keras
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://app.dimensions.ai/details/publication/pub.1074217286
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.1001/jama.2016.17216
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1606.04797
http://arxiv.org/abs/1606.04797
http://arxiv.org/abs/1906.04569


Improving the Reliability of Semantic Segmentation 43

13. Mobiny, A., Singh, A., Van Nguyen, H.: Risk-aware machine learning classifier for
skin lesion diagnosis. J. Clin. Med. 8(8), 1241 (2019)

14. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, Heidelberg (1996).
https://doi.org/10.1007/978-1-4612-0745-0

15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28 http://lmb.informatik.uni-freibur
g.de/Publications/2015/RFB15a

16. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.1007/978-3-319-24574-4_28
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a


Unpaired MR Image Homogenisation
by Disentangled Representations and Its

Uncertainty

Hongwei Li1,2, Sunita Gopal2, Anjany Sekuboyina1,2, Jianguo Zhang3(B),
Chen Niu4, Carolin Pirkl2, Jan Kirschke5, Benedikt Wiestler5,

and Bjoern Menze1,2

1 Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
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Abstract. Inter-scanner and inter-protocol differences in MRI datasets
are known to induce significant quantification variability. Hence data
homogenisation is crucial for a reliable combination of data or observa-
tions from different sources. Existing homogenisation methods rely on
pairs of images to learn a mapping from a source domain to a reference
domain. In real-world, we only have access to unpaired data from the
source and reference domains. In this paper, we successfully address this
scenario by proposing an unsupervised image-to-image translation frame-
work which models the complex mapping by disentangling the image
space into a common content space and a scanner-specific one. We per-
form image quality enhancement among two MR scanners, enriching
the structural information and reducing noise level. We evaluate our
method on both healthy controls and multiple sclerosis (MS) cohorts
and have seen both visual and quantitative improvement over state-of-
the-art GAN-based methods while retaining regions of diagnostic impor-
tance such as lesions. In addition, for the first time, we quantify the
uncertainty in the unsupervised homogenisation pipeline to enhance the
interpretability. Codes are available: https://github.com/hongweilibran/
Multi-modal-medical-image-synthesis.

1 Introduction

Currently Magnetic Resonance Imaging (MRI) is ubiquitous in neuro-radiology
with the use of high-field scanners from different manufacturers. However, inter-
scanner and inter-protocol differences in MRI datasets are known to impede
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successful generalisation of image algorithms across scanners and centers [4].
Scanner-related variations, as well as differences in acquisition protocol param-
eters introduce sources of variability when quantifying pathology in brains [10]
and tissue measurements (e.g. diffusion MRI) [16]. In the current era of b̈ig
datä, reliable combination of data acquired on multiple sources (e.g. now and
in the past) will increase the statistical power and sensitivity of multi-centre
studies. Unfortunately, contrasts, resolutions, artefacts, and noise level of histor-
ical datasets differ from ones acquired in modern diagnostic protocols, limiting
their use in machine learning algorithms for analysing information from state-
of-the-art acquisition protocols. Data homogenisation enables the transfer of
rich information content from state-of-the-art acquisitions to acquisitions with
reduced quality of data. In the context of MR imaging, homogenisation aims
to bring low-resolution images to a reference image quality which is achieved
by high performance scanners. This typically involves two tasks: i) resolution
alignment (i.e. super-resolution) and ii) image style transfer. However, in most
of the cases, images from different scanners or centers are not paired; thus solv-
ing the two tasks above remains challenging. Furthermore, the reliability of the
homogenisation process is critical in clinical use and is to be explored.

Related Work. In recent years, deep learning methods have been introduced
as a mapping function from one image domain to another to solve various
image quality transfer tasks [11,12,15] and achieve superior results over tra-
ditional methods [1,2,13] in super resolution tasks. Existing deep-learning based
homogenisation methods rely on pairs of images with different qualities to train
a network in a fully supervised manner. In order to obtain paired data, down-
sampling and data simulation [8] are popularly employed to generate synthetic
low-quality images. However, those strategies often fails to introduce real-world
characteristics from the source domain and therefore struggle to generalise when
given real-world input. As a consequence, the models trained on simulated data
become less effective when applied to practical scenarios. Especially in homogeni-
sation tasks, the image contrast, noise and voxel size are difficult to be simu-
lated using traditional strategies. Generative adversarial network (GANs) and
their extensions [3,5,20] have been proposed to learn the data distribution from
either paired or unpaired datasets scenarios. In particular, unpaired image-to-
image translation has recently been explored in medical imaging [7,19]. Further
disentangled representation as a learning strategy to model the factors of vari-
ation in data, is explored in natural image translation tasks [6,18] by learning
a many-to-many mapping. It shows a promising venue to tackle homogenisation
tasks in which voxel size, contrast and image noise should be considered together.

Contributions. Our goal is to homogenise unpaired scans from different
MR scanners. 1) We identify that using disentangled representations for data
homogenisation with GANs allow us to tackle complex underlying distributions
among two domains. 2) We provide both qualitative and quantitative results
from the homogenisation task, showing the superiority of our method over state-
of-the-art unsupervised GAN-based methods. 3) We draw uncertainty measures
from the translation that makes the proposed method reliable for clinical use.
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Fig. 1. Method overview. Images from individual scanners are encoded into a shared-
content feature space that captures anatomical information and a scanner-specific fea-
ture space. To disentangle the features, the encoders and generator are trained in a
cross-cycle reconstruction fashion. Multiple encoders and generators are optimised in
an end-to-end fashion.

2 Methodology

The homogenisation process includes two tasks: i) unpaired super-resolution and
ii) unpaired image style transfer. Without loss of generality, we simplify this task
to tackle unpaired images from two MR scanners.

2.1 Problem Definition

The general goal is to map one image domain to a reference domain. Let S
denote a source image space and R a referenced image space. Considering the
complexity of real-world datasets, we assume a many-to-many mapping function
exists from the source space to referenced space:: Φ : S → R. We designate an
image from an old scanner to be from S and that from a new scanner to be from
R. Note that these images exhibit different visual appearances but with shared
structure, e.g. the anatomical structure of brain. We hypothesise that both image
domains share a content space which preserves anatomical structure and each
individual domain contains an attribute space related to scanner characteristics.
Inspired by disentangled representations [14], we decompose the image space
into a shared content space C that is domain-invariant and a scanner-specific
attribute space A. Therefore, a shared domain-invariant space that preserves the
anatomical information and a scanner-specific attribute space can be found to
recover the underlying mapping between different scanners. Furthermore, based
on the disentangling representation, for the first time, we explore the uncertainty
quantification of the unsupervised domain translation by sampling the attribute
space, which is difficult in previous pipelines such as CycleGAN and UNIT [18,
20].
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2.2 Data Homogenisation Framework

Our data homogenisation framework via disentangled representations consists of
two modules: Disentangled Representation Learning Module (DR-Module) and
Uncertainty Quantification Module (IUQ-Module).

DR-Module. The first module embeds input images from all domains onto
a shared content space C, and scanner-specific attribute spaces, SS and SR.
As illustrated in Fig. 1, our framework consists of content encoders {Ec

S , Ec
R},

attribute encoders {Ea
S , Ea

R}, generators {GS , GR}, and domain discrimina-
tors {DS , DR} for both domains, and a content discriminators {Dc}. A con-
tent discriminator Dc is trained to distinguish the extracted content representa-
tions between two domains. Similar to Lee’s work [6], we train the encoder and
generator for self reconstruction, where the reconstruction loss is minimised to
encourage the encoders and generators to be invertible. The GAN component
for cross-domain translation is trained to encourage the disentanglement of the
latent space, decomposing it into content and attributes subspaces. Specifically,
the generators are trying to fool the discriminators by successful cross-domain
generation with swapped attribute space. The training loss are as follows:

Content Adversarial Loss: To obtain a shared content space C, we enforce the
content representation to be mapped onto the same space by introducing a con-
tent discriminator Dc which aims to distinguish the domain labels of the encoded
content features.

Lc
adv(E

c
S , Ec

R,Dc) = Exi∼S [log Dc(Ec
S(x))] + Eyi∼R[log (1 − Dc(Ec

R(y)))] (1)

Cross-Domain Reconstruction Loss: To enhance the disentangled representation
learning process, we used a cross-cycle consistency proposed in [6].

Lc−rec(GS , GR, Ec
S , Ea

S , Ec
R, Ea

R) = Ex,y[||x − GS(Ec
R(v), Ea

S(u))||1]+
Exi∼R[x − ||GR(Ec

R(x), Ea
R(x))||1]

(2)

where u = GS(Ec
R(y), Ea

S(x)), v = GR(Ec
S(y), Ea

S(x))

Self-reconstruction Loss: We encourage a cycle-consistency to reconstruct the
images from individual domains.

Ls−rec = Ex∼S [||x − GS(Ec
S(x), Ea

S(x))||1] + Ey∼R[||y − GR(Ec
R(y), Ea

R(y))||1]
(3)

Domain Adversarial Loss: We impose domain adversarial loss Ld
adv where two

discriminators DS and DR attempt to discriminate between real images and
generated images in each domain, while SS and GR attempt to generate realistic
images.
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The full objective function of our framework is:

Ltotal = min
G,EC ,Ea

max
DS ,DG,DC

λadv(Lc
adv + Ld

adv) + λrec(Lc−rec + Ls−rec) (4)

where λadv and λrec control the importance of the adversarial training and recon-
struction.

IUQ-Module. Based on the disentangled content and attributes, during the
inference stage, a source image is mapped to shared content space by using
encoder ES and one image from the reference domain is used to compute the
attribute vector by encoder ER. Finally we use GR to generate the image by using
the above shared space feature and scanner-specific attribute vector. Attribute
vector is image-specific, i.e., different images in the reference space result in
slightly different attribute representations. This induces a distribution over the
translation of one content representation from the source space. Therefore, we
randomly sample the attribute space from R and generate various images per one
image from S, and compute the mean as the final translation and the variance
as the translation uncertainty.

Implementations. The voxel size matching between two scanners is performed
by bicubic interpolation. Common-space encoders consist of convolutional layers
and residual layers followed by batch normalisation, while attribute encoders con-
sist of convolutional layers, a global average pooling layer, and a fully-connected
layer. Generators take the attribute vector (of length 8) and common-space fea-
ture (feature map of 256× 68 × 68) as inputs. For training, we use the Adam
optimizer with a batch size of 5 and a learning rate of 0.0001. In all experi-
ments, we set the hyper-parameters as follows: λadv = 1, λrec = 10. We train
and save the best-performing model based on the total loss. Discriminators are
convolutional neural networks for binary classification. Experiments are run on
two Nvidia Titan Xp GPUs. The training time is eight hours for the DR-Module.
The inference stage takes 5 mins for 200 samples per source image.

2.3 Visual Rating and Evaluation Protocol

Quantitative analysis of images generated from unsupervised image to image
translation cannot be done metrics such as PSNR and MAE [17] due to lack of
paired images. Additionally in MR images, these algorithms will not be able to
tell us useful information such as the preservation of clinically relevant struc-
tures. In order to get an qualitative assessment of the images generated from
our approach, we design a visual rating system which compares our images with
those generated with state of the art methods such as CycleGAN and UNIT.
In each trial, neuro-radiologists were presented with three sets of images, where
each set consists of an original FLAIR image from an old scanner on the left
and the synthetic image generated by CycleGAN, UNIT or our approach. The
rater does not know which method is used and the order of the sets is shuffled
to prevent any bias. The rater is asked to rate on the following criterion on
both healthy subjects and MS patients: a) good resolution and low noise level
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for healthy subjects, b) good pathological information for MS patients, and c)
good structural information for both groups. The experts were asked to rate on
a five star scale where ‘one‘ represents ‘poor‘ and ‘five‘ represents ‘excellent‘.
Five neuroradiologists with a mean of 7+ years of experience rated the image
quality.

Table 1. Data characteristics of the MRI datasets including two scanners and two
groups of subjects.

Scanner Name Voxel Size (m3) Volume Size Healthy Controls MS Patients

3T Achiva 0.98 × 0.98 × 1.00 132 × 256 × 83 40 30

3T Ingenia 0.71 × 0.71 × 0.71 132 × 256 × 83 40 40

Fig. 2. Qualitative results on healthy-control group. Comparing with other unsuper-
vised methods, ours visually enhances the brain structure and reduces noise. Note that
the reference scan only indicates the image style and not its content.

3 Experiments

Datasets and Evaluation Metric. We evaluate the proposed method on two
MR scanners as shown in Table 1. Specifically we homogenise the scans from the
‘old’ scanner Philips Achieva to the new scanner Philips Ingenia. All the scans
are acquired with a multiple sclerosis (MS) patients study protocol and separated
into healthy controls group and MS patients group. For pre-processing, scans are
skull-stripped and subjected to bias-field correction. For each group, 80% scans
are used for training, 20% for testing. The axial slices from Philips Achieva
are upsampled using bicubic interpolation consider the voxel size difference and
cropped to 270 × 270.

Intuitively, after data homogenisation, the brain structure from two domains
are expected to be similar. To quantitatively compare our method with state-of-
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the-art on unpaired data, we introduce Maximum Structure Similarity (m-SSIM)
as an extension of the traditional structure similarity (SSIM) metric to handle
unpaired similarity measurement. Given two sets of unpaired data X and Y, we
take the maximum SSIM for all possible combinations of the elements:

m–SSIM = max{SSIM(x, y)|x ∈ X , y ∈ Y} (5)

Table 2. Comparison with state-of-the-art unsupervised methods using m-SSIM.

Methods UNIT [9] CycleGAN [20] Ours

Healthy control 0.761 0.784 0.854

MS patients 0.755 0.768 0.823

Fig. 3. The rating results by five neuro-radiologists. Our method generates good-
quality images and significantly outperforms other unsupervised methods.

Qualitative and Quantitative Results. We firstly evaluate our method on
healthy-control group and compare with state-of-the-art methods CycleGAN
and UNIT. As shown in Fig. 2, visually our method enhances the brain structure
and reduce image noise comparing with other unsupervised approaches. We also
observe that CycleGAN and UNIT struggle to remove the image noise and UNIT
changes the brain structure. Table 2 shows the quantitative comparison of three
methods using m-SSIM. For each homogenised slice, we calculate the m-SSIM by
comparing it to the whole test set. The results of all testing slices are averaged.
The proposed method outperforms CycleGAN and UNIT by a large margin.

Visual Evaluations by Neuroradiologists. The results on test set for the
different metrics (i.e. resolution, noise level and structure preservation) for both
healthy subjects and MS patients are presented in the boxplots in Fig. 3. For
healthy controls group, we observed that CycleGAN produced a wider range in
image quality compared with UNIT. We conduct Wilcoxon rank-sum tests on
the paired rating scores of our method and other methods from 5 raters on 15
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Fig. 4. Results on uncertainty quantification by sampling the attribute spaces.
Headmaps represent the normalised standard deviation of the 200 predictions of each
pixel. We found that in overall the healthy controls group show less uncertainty com-
paring to MS patients group and uncertain regions (e.g. boundary) are non-crucial for
healthy controls.

observations (scores of 5 raters are averaged). Results show that the pair of rating
scores on our approach with other two methods are all significantly different
on both of the two metrics. This demonstrates that our method significantly
outperforms CycleGAN and UNIT on healthy controls and MS patient group.

Uncertainty Quantification Results. By randomly sampling N images from
the reference space, we obtain a distribution of the attribute space. In prac-
tice, we set N = 200 considering the computation complexity. The heatmaps in
Fig. 4 depict the uncertainty obtained for both healthy-control and MS patients
groups. Overall, we observed less uncertainty in the healthy-control group com-
pared to the MS patients group. On the healthy-control group, we observed that
the uncertain regions are non-crucial, e.g. the boundary. On the MS patients
group, we found that the pathological regions (MS lesions) present higher uncer-
tainty than other structures. This is in accordance with our expectations, as
MS lesions represent outliers from the intensity profiles of the learned spatial
anatomical representations and show a larger variability than anatomical vari-
ants. In a clinical setting, the uncertainty map informs the doctor accordingly,
thus making our translation interpretable.

4 Conclusion and Discussion

This work presents a novel GAN-based approach for data homogenisation on
FLAIR MRI sequence, with multi-rater experiments, and statistical tests. For
the first time, we quantify the uncertainty in the unsupervised domain trans-
lation task. This approach potentially allows us to homogenise datasets from
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different scanners and with different protocols. As a promising approach, we will
investigate its effect on improving the statistical power and sensitivity studies in
multi-center research. The uncertainty maps allows us to interpret the outcome
and helps in identifying outliers scans and MS lesions in scans.
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Abstract. We introduce an uncertainty-aware deep learning deformable
image registration solution for magnetic resonance imaging multi-channel
data. In our proposed framework, the contributions of structural and
microstructural data to the displacement field are weighted with spa-
tially varying certainty maps. We produce certainty maps by employing
a conditional variational autoencoder image registration network, which
enables us to generate uncertainty maps in the deformation field itself.
Our approach is quantitatively evaluated on pairwise registrations of 36
neonates to a standard structural and/or microstructural template, and
compared with models trained on either single modality, or both modal-
ities together. Our results show that by incorporating uncertainty while
fusing the two modalities, we achieve superior alignment in cortical gray
matter and white matter regions, while also achieving a good alignment
of the white matter tracts. In addition, for each of our trained models, we
show examples of average uncertainty maps calculated for 10 neonates
scanned at 40 weeks post-menstrual age.

Keywords: Multi-channel registration · Uncertainty · Certainty maps

1 Introduction

Tracking changes in the developing brain depends on precise inter-subject image
registration. However, most applications in this field rely on a single modality [3,
15], such as structural or diffusion data, to learn spatial correspondences between
images, without taking into account the complementary information provided by
using both. In general, T2-weighted (T2w) magnetic resonance imaging (MRI)
c© Springer Nature Switzerland AG 2021
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scans have high contrast between different brain tissues and can delineate the
cortical gray matter (cGM) region well, while diffusion weighted imaging (DWI)
data primarily provides information on white matter (WM) structures.

Multi-channel registration which includes both structural and diffusion data
has been shown to improve alignment [1,7] of images. However, one of the main
challenges of this approach is the low contrast or homogeneous intensity which
characterises different anatomical regions on both structural (e.g., deep gray
matter) and microstructural MRI (e.g., cortex). Classic approaches for fusing
these channels are based on simple averaging [1], or on calculating certainty
maps based on normalised gradients correlated to structural content [7].

In order to establish accurate correspondences between MR images acquired
during the neonatal period, we propose an uncertainty-aware deep learning image
registration framework that allows local certainty-based fusion of T2w neonatal
scans with DWI-derived fractional anisotropy (FA) maps. More specifically, we
employ a conditional variational autoencoder (CVAE) image registration net-
work [11] and use it to calculate uncertainty maps in the generated dense dis-
placement fields. We predict the displacement fields and their uncertainty for
each individual modality, empirically calculate certainty maps and use them in
a combined model which we call T2w+FA+uncert.

Throughout this work we use 2-D MRI mid-brain axial slices acquired as
part of the developing Human Connectome Project1 (dHCP), and T2w and FA
36 weeks gestational age templates [17] for the fixed slices. We showcase the
capabilities of our proposed framework on images of infants born and scanned
at different gestational ages, and we compare the results against three different
models, trained on T2w-only, on FA-only and on T2w+FA scans. Our results
show that in terms of Dice scores and average Hausdorff distances, our proposed
model performs better in WM and cGM regions when compared to the T2w+FA
model, and better than the T2w-only model in terms of aligning white matter
structures (i.e., internal capsule).

2 Method

Data Acquisition. The structural (T2w) imaging data used in this study was
acquired with a Philips Achieva 3T scanner and a 32-channels neonatal head
coil [8], using a turbo spin echo (TSE) sequence (TR = 12 s, echo time TE = 156
ms, and SENSE factors of 2.11 for the axial plane and 2.58 for the sagittal
plane). Images were acquired with an in-plane resolution of 0.8 × 0.8 mm, slice
thickness of 1.6 mm and overlap of 0.8 mm. All data was motion corrected [5] and
super-resolution reconstructed to a 0.5 mm isotropic resolution [12]. The DWI
scans were acquired using a monopolar spin echo echo-planar imaging (SE-EPI)
Stejksal-Tanner sequence [9]. A multiband factor of 4 and a total of 64 interleaved
overlapping slices (1.5 mm in-plane resolution, 3 mm thickness, 1.5 mm overlap)
were used to acquire a single volume, with parameters TR = 3800 ms, TE = 90
ms. This data underwent denoising, outlier removal, motion correction, and it
1 http://www.developingconnectome.org/.

http://www.developingconnectome.org/
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was subsequently super-resolved to a 1.5 mm isotropic voxel resolution [4]. All
resulting images were checked for abnormalities by a paediatric neuroradiologist,
and infants with major congenital malformations were excluded.

Image Selection. For this study, we use a total of 363 T2w and FA maps of
neonates born between 23–42 weeks gestational age (GA) and scanned at term-
equivalent age (37–45 weeks GA). The age distribution in our dataset is found
in Fig. 1.

Fig. 1. Distribution of gestational ages at birth (GA) and post-menstrual ages at scan
(PMA) in our imaging dataset.

Image Preprocessing. In order to use both the T2w and FA axial slices in
our registration networks, we first resampled both types of modalities into a
template space of 1 mm isotropic resolution. We then affinely pre-registered
both to a common 36 weeks gestational age atlas space [17] using the MIRTK
software toolbox [14] and obtained the FA maps using the MRtrix3 toolbox [16].
Finally, we performed skull-stripping using the available dHCP brain masks [4],
and we cropped the resulting images to a 128×128 size. Out of the 363 subjects
in our dataset, we used 290 for training, 37 for validation and 36 for test, divided
such that the GA at birth and post-menstrual age (PMA) at scan were kept as
similar to the original distributions as possible. The validation set was used to
inform us about our models’ performance during training. All of our results are
reported on the test set.

Network Architecture. In this study, we employ a CVAE [10] to model the
registration probabilistically as proposed by [11]. Figure 2 shows the architecture
at both train and inference time. In short, a pair of 2D MRI axial slices (M
and F) are passed through the network to learn a velocity field v, while the
exponentiation layers (with 4 scaling-and-squaring [2] steps) transform it into a
topology-preserving deformation field φ. A Spatial Transformer layer [6] is then
used to warp (linearly resample) the moving images M and obtain the moved
image M(φ).
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Fig. 2. We use a convolutional neural network based on the architecture proposed by
[11]. During inference, we use the trained network to generate n dense displacement
fields φi and create a mean displacement field φ, and its associated uncertainty map
σφ.

The encoder branch is made up of four 2D convolutional layers of 16, 32, 32,
and 4 filters, respectively, with a kernel size of 32, followed by Leaky ReLU (α =
0.2) activations [18]. The bottleneck (μ, σ, z) is fully-connected, and we kept the
latent code size (16) the same as in the original paper [11]. The decoder branch
is composed of three 2D deconvolutional layers of 32 filters and a kernel size
of 32 each, followed by Leaky ReLU (α = 0.2) activations. The deconvolutional
layers’ feature maps are concatenated with the original-sized or downsampled
versions of the moving input image. Two more convolutional layers (with 16 and
2 filters, respectively) are added, followed by a Gaussian smoothing layer (kernel
size 21) which outputs the velocity field v.

Training. For this study, we train three separate models on different combi-
nations of input data. The first model is trained on pairs of structural data
(T2w-only), the second model on microstructural data (FA-only), while the third
model uses both modalities as input to the network (T2w+FA). While training
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the latter, the input changes to a 4-channel tensor (moving and fixed T2w and
FA), and the conditioning to a 2-channel tensor (concatenated T2w and FA slices
of the same neonate) as shown in Fig. 2.

For each input pair, the encoder qω (with trainable network parameters ω)
outputs the mean μ ∈ R

d and diagonal covariance σ ∈ R
d, from which we sample

the latent vector z = μ + ε · σ, with ε ∼ N (0, I). The decoder network pγ (with
trainable network parameters γ) uses the z-sample to generate a displacement
field φ which, together with the moving image M, produces the warped image
M(φ). During training, the optimizer aims to minimize: 1) the Kullback-Leibler
(KL) divergence LKLD in order to reduce the gap between the prior p(z) (multi-
variate unit Gaussian distribution p(z) ∼ N (0, I)) and the encoded distribution
qω(z| F, M), and 2) the reconstruction loss Lrec between the fixed image F and
warped image M(φ). The loss function results in:

L = KL[qω(z|F,M) || p(z)]
︸ ︷︷ ︸

LKLD

+λ NCC(F(φ− 1
2 ),M(φ

1
2 ))

︸ ︷︷ ︸

Lrec

(1)

where λ is a hyperparameter set to 5000 as proposed in [11], and NCC is the
symmetric normalised cross correlation (NCC) dissimilarity measure defined as:

NCC(F(φ− 1
2 ),M(φ

1
2 )) = −

∑

x∈Ω(F(φ− 1
2 ) − F ) · (M(φ

1
2 ) − M)

√

∑

x∈Ω(F(φ− 1
2 ) − F )2 · ∑

x∈Ω(M(φ
1
2 ) − M)2

where F is the mean voxel value in the warped fixed image F(φ− 1
2 ) and M is

the mean voxel value in the warped moving image M(φ
1
2 ).

We train our models for 2500 epochs each, using the Adam optimizer with its
default parameters (β1=.9 and β2=.999), a constant learning rate of 5·10−4, and
a L2 weight decay factor of 10−5. All networks were implemented in PyTorch.

Uncertainty-Aware Image Registration. To investigate uncertainty-aware
image registration, we use our trained models to generate uncertainty maps. We
achieve this at inference time by using the trained decoders to generate multiple
displacement fields φi, as shown in Figs. 2 and 3. More specifically, for each
subject in our test dataset, we first use the trained encoders to yield the μ and
σ outputs. Then, we generate n latent vector z = μ + ε · σ samples and pass
them through the trained decoder networks to generate n dense displacement
fields φi. Throughout this work we set n = 50. From these, we obtain a mean
displacement field φ and a standard deviation displacement field σφ for each
model.

For the uncertainty-aware image registration task, we combine the T2w-only
and the FA-only models into a single model, which we call T2w+FA+uncert.
This is achieved in a three-step process. First, we use the trained T2w-only
and FA-only models to generate n dense displacement fields φi, and create the
modality-specific mean displacement fields φT2w and φFA, and uncertainty maps
σφT2w and σφFA

. Second, we calculate certainty maps (αφT2w , αφFA
) using the
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following equations:

αφT2w =
1/σφT2w

1/σφT2w + 1/σφFA

; αφFA
=

1/σφFA

1/σφT2w + 1/σφFA

(2)

Finally, the T2w+FA+uncert model’s displacement field is constructed by locally
weighting the contributions from each modality with the 2D certainty maps:
φ

T2w+FA+uncert
= αφT2w � φT2w + αφFA

� φFA, where � represents element-wise
multiplication. A visual explanation of these steps can be seen in Fig. 3.

Fig. 3. The construction of certainty maps: 1) Create modality-specific mean displace-
ment fields φT2w and φFA, and uncertainty maps σφT2w and σφFA . 2) Create modality
specific certainty maps αφT2w and αφFA using Eq. 2. 3) Create the φT2w+FA+uncert

displacement field by locally weighting the contributions from each modality with the
2D certainty maps.

3 Results

To validate whether our proposed model (T2w+FA+uncert) can outperform the
other three models (T2w-only, FA-only, T2w+FA), we carry out a quantitative
evaluation on our test dataset. Each subject and template had the following tis-
sue label segmentations obtained using the Draw-EM pipeline [13]: cerebrospinal
fluid (CSF), cGM, WM, ventricles, deep gray matter (dGM), and a WM struc-
ture called the internal capsule (IC). These labels were propagated from each
subject into the template space using the predicted deformation fields. The
resulting Dice scores and average Hausdorff distances calculated between the
warped labels and the template labels are summarised in Fig. 4, where the ini-
tial pre-alignment is shown in pink, the T2w-only results are shown in green, the
FA-only results in light blue, the T2w+FA model in magenta, and our proposed
model’s results in purple (T2w+FA+uncert). The yellow diamond points to the
best performing model for each tissue type and metric.
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In terms of Dice scores, our proposed model performs similarly well to the
T2w-only model in the cGM, WM, ventricles and the dGM structures, and out-
performs the T2w+FA model in the cGM, and WM labels. At the same time, the
T2w+FA+uncert obtains the lowest average Hausdorff distances in the cGM and
WM regions, again outperforming the T2w+FA model. The IC is best aligned
using the FA-only model, where the T2w-only performs worse, while the models
which incorporate FA maps perform comparably well.

Fig. 4. The results on our test dataset for all four methods, together with the initial
affine alignment. The yellow diamond highlights the model which performed best for its
respective tissue type and metric. (N.S. means “not-significant”) (Color figure online)

Next, we used data from 10 neonatal subjects scanned around 40 weeks PMA
to produce average uncertainty maps for our three trained models. For each sub-
ject j ∈ [1, 10] and model m ∈ {T2w-only, FA-only, T2w+FA}, we obtained an
uncertainty map σj

φm
, and averaged them across the subjects. Figure 5 shows

these average uncertainty maps (in the template space), overlaid on top of
the fixed images which were used for training. By combining the uncertainty
maps from the trained T2w-only and FA-only models, we can obtain modality-
dependent certainty maps (see Eq. 2) which are shown on the last row.

The T2w-only model (first row in Fig. 5) yields high uncertainty in dGM
regions (cyan arrow) where there is little contrast, as well as in difficult brain
areas, such as the cGM folds. Similarly, the FA-only model (first row in Fig. 5)
shows high uncertainty in low contrast cortical areas (yellow arrow) and low
uncertainty in the high contrast WM structures such as the IC region (cyan
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Fig. 5. Average uncertainty maps for the T2w- and FA-only (on the first row) and the
T2w+FA models (on the second row). The cyan arrows point to the same region of
dGM, while the yellow arrows point to the same region of cGM for all models and
modalities, respectively. The last row shows the modality-dependent certainty maps
obtained from the T2w-only and FA-only models. (Color figure online)

arrow). When using both modalities (second row in Fig. 5), the uncertainty
becomes low in the dGM regions, as the model is being helped by the extra
FA channel, but becomes higher in the cGM regions (yellow arrows) when com-
pared to the T2w-only model. This could be caused by the high uncertainty
in the low contrast cortical regions of the FA channel. The average certainty
maps are shown on the last row, where we can see that in our proposed model
the combined displacement field will depend more on the FA-only model in the
WM tracts regions as seen in the αφFA

certainty map (cyan arrow), and on the
T2w-only model for the cortical regions (yellow arrows).

4 Discussion and Future Work

This paper presents a novel solution for multi-channel registration, which com-
bines FA and T2w data driven displacement fields based on their respective
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uncertainty maps. The quantitative evaluation performed on 36 neonatal sub-
jects from the dHCP project showed that the proposed certainty based fusion of
structural and microstructural channels improves overall alignment when com-
pared to models trained on either single-channel or multi-channel data. The main
limitations of this work are: the use of a single latent code size and smoothing
kernel, the use of 2-D axial slices only, and no comparison with other probabilistic
registration frameworks (e.g., [6]). Future work will focus on further improving
the registration accuracy in the cortical regions, on adapting our work to 3-D
datasets, and on exploring the aforementioned limitations.
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11. Krebs, J., Mansi, T., Mailhé, B., Ayache, N., Delingette, H.: Unsupervised proba-
bilistic deformation modeling for robust diffeomorphic registration. In: Stoyanov,
D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 101–109. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00889-5 12

12. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schn-
abel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete
outlier removal. Med. Image Anal. 16, 1550–1564 (2012)

13. Makropoulos, A., Gousias, I.S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J.V.,
Edwards, A.D., Counsell, S.J., Rueckert, D.: Automatic whole brain MRI seg-
mentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33(9),
1818–1831 (2014)

14. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.:
Nonrigid registration using free-form deformations: application to breast MR
images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

15. Schuh, A., et al.: Unbiased construction of a temporally consistent morphological
atlas of neonatal brain development. bioRxiv (2018)

16. Tournier, J.D., et al.: MRtrix3: a fast, flexible and open software framework for
medical image processing and visualisation. NeuroImage 202, 116137 (2019)

17. Uus, A., et al.: Multi-channel 4D parametrized atlas of macro- and microstructural
neonatal brain development. Front. Neurosci. 15, 721 (2021). https://doi.org/10.
3389/fnins.2021.661704

18. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network (2015). https://arxiv.org/abs/1505.00853

https://arxiv.org/abs/1406.5298
https://doi.org/10.1007/978-3-030-00889-5_12
https://doi.org/10.3389/fnins.2021.661704
https://doi.org/10.3389/fnins.2021.661704
https://arxiv.org/abs/1505.00853


Monte Carlo Concrete DropPath
for Epistemic Uncertainty Estimation

in Brain Tumor Segmentation

Natalia Khanzhina(B) , Maxim Kashirin, and Andrey Filchenkov

Machine Learning Lab, ITMO University,
49 Kronverksky Pr, 197101 St. Petersburg, Russia
{nehanzhina,mikashirin,afilchenkov}@itmo.ru

Abstract. Well-calibrated uncertainty is crucial for medical imaging
tasks. However, Monte Carlo (MC) Dropout - one of the most common
methods for epistemic uncertainty estimation in deep neural networks
(DNN), has been found ineffective for multi-path DNN, such as NASNet,
and has been recently bypassed by DropPath and ScheduledDropPath.

In this work, we propose two novel model calibration frameworks for
uncertainty estimation: MC ScheduledDropPath and MC Concrete Drop-
Path. Particularly, MC ScheduledDropPath drops out paths in DNN cells
during test-time, which has proven to improve the model calibration. At
the same time, the MC Concrete DropPath method applies concrete
relaxation for DropPath probability optimization, which was found to
even better regularize and calibrate DNNs at scale. We further investi-
gate both methods on the problem of brain tumour segmentation and
demonstrate a significant Dice score improvement and better calibration
ability as compared to state-of-the-art baselines.

Keywords: Brain tumor segmentation · Medical imaging · Image
segmentation · Deep learning · Bayesian deep learning · Uncertainty
estimation · Epistemic uncertainty · Model calibration

1 Introduction

A brain tumor, or intracranial tumor, which is an abnormal mass of tissue with
uncontrollably growing and multiplying cells, is one of the widespread death
causes. Survival rates vary and depend on several factors, including the type
of brain tumor; the classification includes more than 150 types. Over the past
20 years, the number of diagnoses related to brain tumors has increased signif-
icantly [1,15,27]. The type, size and location of a brain tumor determines the
treatment.

The most common method for diagnosing and analyzing brain tumors is Mag-
netic Resonance Imaging (MRI). Radiologists make diagnosis by laborious view-
ing numerous brain scans for each patient. This visual method is fraught with
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possible omissions of tumors nidi. This leads to erroneous diagnoses and, conse-
quently, incorrect treatment, which can cause irreparable damage to the patient’s
health. Thus, routine work on the analysis of brain MRI requires automation,
both at the stage of tumor localization and classification [3,22]. The classifica-
tion problem raises due to the different grades of tumors. However, despite the
importance of the classification task, the primary and higher priority is the task
of localizing brain tumors in MRI, often solved by segmentation. The segmenta-
tion here is more convenient than detection (which is the object bounding box
prediction) as brain tumors have an arbitrary shape and relatively large volume
compared with lung nodules.

Currently, the task of brain tumor segmentation in MRI is most effec-
tively solved with deep neural networks (NN), namely, convolutional NNs
(CNN) [36,37,37]. However, training NNs requires a huge amount of data [25].
At the same time, labeling images with tumors for the segmentation is extremely
time-consuming, and there are relatively few datasets for certain diseases [24].
Moreover, NNs tend to overfit, especially with a small amount of data [30]. Over-
fitting leads to high models confidence on new data and can result in undesirable
errors in the diagnosis of brain tumors.

To overcome this problem, methods to assess model confidence or uncertainty
in its predictions are needed. The uncertainty assessment can free radiologists
from the laborious work of detecting tumors in the cases where the model is con-
fident, and allow to focus only on those areas of the image where the uncertainty
is high.

Researchers distinguish several types of uncertainty. Uncertainty caused by
a small amount of training data or its unrepresentativeness is called epistemic,
or model uncertainty [16]. Epistemic uncertainty estimation applied to the task
of brain tumor segmentation in MRI has been studied by the research commu-
nity [6,14,20,28]. Recent works in this area are grounded on Monte Carlo-based
approximate Variational Inference, referred to as Monte-Carlo Dropout (MC
Dropout, MCDO) [7].

Dropout was originally proposed for the regularization of fully-connected
NNs, however, it is known to be poorly applicable to CNNs. For CNNs other
techniques such as DropBlock [9], DropLayer [13], and DropFilter [34] are devel-
oped and they surpass Dropout in terms of accuracy and regularization power.
These techniques are also called Structured Dropouts [40]. Following the same
direction, Larsson et al. proposed the DropPath technique, which drops out the
whole paths in convolutional multi-path cells (sometimes it also referred to as
DropLayer, although they are not the same) [17]. The technique was advanced
by Zoph et al. to train the state-of-the-art NASNet model [41]. They suggested
disabling paths in cells with a probability that increases linearly during train-
ing. This technique, which was called ScheduledDropPath, showed its efficiency
compared to Dropout and DropPath for the ImageNet classification task.

Although the DropBlock, DropLayer, and DropFilter techniques have been
adapted to estimate epistemic uncertainty based on Monte Carlo (MC) sam-
pling [40], no similar work has been done for DropPath and ScheduledDropPath.
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To close this gap, we propose two new methods for estimating epistemic uncer-
tainty. They incorporate the DropPath and ScheduledDropPath to the approx-
imate Variational Inference based on the test-time MC sampling. Moreover, we
put forward the DropPath technique by optimizing its probability as follows.
For each network cell, the probability of dropping out the path is calculated
based on a continuous relaxation. This is provided by replacing the Bernoulli
distribution over the dropping out probability with the Concrete distribution,
which was introduced by Gal et al. [8] for the case of Dropout.

The paper research questions are the following:

RQ1. Can MC DropPath-based methods with an irregular probability p effec-
tively calibrate the model and improve the accuracy of tumor segmenta-
tion?

RQ2. Can the continuous relaxation be effectively applied to the dropping out
probability optimization in DropPath?

RQ3. Is DropPath probability continuous relaxation better than the traditional
DropPath scheduling in NASNet applied to brain tumor segmentation?

Thus, the contributions of this work are the following:

1. A new technique Concrete DropPath for NNs regularization;
2. A new method Monte Carlo Concrete DropPath, MC Concrete DropPath, for

estimating epistemic uncertainty;
3. A new method Monte Carlo ScheduledDropPath, MC ScheduledDropPath, for

estimating epistemic uncertainty;
4. A comparative study of new methods performance on the brain tumors MRI

segmentation task.

In this paper, we investigate the research questions on the task of segment-
ing brain tumors based on BraTS dataset. Besides novel uncertainty estimation
methods, we also introduce several uncommon for this task techniques: Ima-
geNet pre-training, double model head for the whole tumor and its border, and
the NASNet-based segmentation model. We experimentally studied various seg-
mentation U-Net-like baselines, based on several backbones (DenseNet, Xcep-
tion, NASNet) and compared our new methods with other uncertainty estima-
tion methods on the NASNet [41] as the best backbone. The proposed methods
showed promising performance on our problem both in terms of accuracy and
calibration metrics. Moreover, they can be applied to other computer vision
tasks, as well as to other CNN architectures with multi-path cells. The source
code is available at https://github.com/Vole1/MC-CDP-BraTS2018.

2 Background

The MC sampling based on several Dropout techniques was already used for
epistemic uncertainty estimation in deep NNs. Thus, in this paper we examine
our proposed uncertainty estimation MC DropPath-based methods compared
to other MC Dropout techniques, namely MC DropFilter [34] and regular MC
Dropout [10]. Following [40], we call them Structured Dropouts. We do not study
MC DropBlock [9] as it is known to be less effective for the model calibration [40].

https://github.com/Vole1/MC-CDP-BraTS2018
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2.1 Monte Carlo Dropout

We assume we are given a dataset Dtrain = (X,Y ) = {(Xi, Yi)}M
i=1.

The approximating distribution qθ(ω) for NN f(ω,X) with Dropout applied
before every layer l equals to

∏
l qM l(Wl) with Ml the mean weights matrix.

The approximating distribution for the layer l is qM l(W ) = MK
l · zK with

zK ∼ Bern(1 − p) the dropping out probability vector, where p is the Dropout
rate. This technique is called MC Dropout. Monte Carlo sampling from qθ(ω)
for the model f(ω,X) aims to approximate the predictive distribution p(Y |X):

p(Y = C|X, Dtrain) =
∫

p(Y = C|X, θ)p(θ|Dtrain)dθ ≈ 1
N

K∑

k=1

p(Y |X, θ(n)).

Therefore, using Dropout for the model sampling with different dropout
masks during inference is a way to obtain a Bayesian NN from any DNN.

2.2 ScheduledDropPath

ScheduledDropPath is originally proposed by NASNet authors [41]. NASNet is a
very deep NN, which is state-of-the-art for the task of image classification. NAS-
Net contains two types of cells: normal and reduction. Each cell is a multi-path
module, which structure was found using the neural architecture search (NAS).
The authors claim that the Dropout regularization decreased the model per-
formance. Thus, they adopted FractalNet regularization technique called Drop-
Path [17]. DropPath can be considered as an extension of DropFilter idea to the
level of paths in multi-path NNs. However, the original DropPath did not work
well. Therefore, they modified DropPath to drop paths out with linear schedule
during training and called the new technique ScheduledDropPath.

2.3 Concrete Dropout

The continuous relaxation was successfully applied for Dropout [8]. Dropout
probability p is usually fixed (often equal to 0.5) as a model hyperparameter
and does not change during training as its grid-searching is computationally
expensive. Gal et al. [8] proposed to assume Dropout probability p as a param-
eter to optimize. To make it differentiable, they changed the discrete Bernoulli
distribution of p probability to the continuous relaxation using the Concrete
distribution [19]. As here the Bernoulli distribution is one-dimensional, the Con-
crete distribution is reduced to the sigmoid distribution:

z̃ = sigmoid
(

1
t

· (log p − log (1 − p) + log u − log (1 − u))
)

(1)

with z̃ a random variable relaxation, u ∼ U(0, 1), t a temperature.
Sigmoid pushes random variable z̃ to the boundaries 0 and 1. The resulting

function 1 is differentiable with respect to p, thus, allowing to backpropagate its
value.
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3 Monte Carlo Concrete DropPath

In this study, we propose the way to turn an arbitrary multi-path NN into a
Bayesian NN to estimate epistemic uncertainty. This can be achieved using test-
time MC sampling of NN with ScheduledDropPath. However, our experiments
revealed that simple MC ScheduledDropPath does not perform significantly bet-
ter than other calibration techniques. Thus, we also introduce a new DropPath
technique based on the Concrete distribution [19]. This new regularization tech-
nique is called Concrete DropPath and the corresponding uncertainty estimation
method is MC Concrete DropPath.

We tested both of our methods on NASNet, although they can be trivially
extended to any multi-path NN, such as FractalNet [17], Inception-ResNet-
v2 [33], ResNeXt [38] etc.

The Bayesian multi-path NN objective is the following:

L̂MC(θ) = − 1
M

∑

i∈S

log p (yi|fω(xi)) +
1
N

KL(qθ(ω)||p(ω)), (2)

where log p(yi|fω(xi)) is the model likelihood, S is a random sample of M data
points and KL(qθ(ω)||p(ω)) is the Kullback-Leibler (KL) divergence between
prior distribution p(ω) and approximate posterior distribution qθ(ω) with param-
eters represented by Concrete DropPath or ScheduledDropPath.

While the model likelihood is a usual loss function, which is combined binary
cross-entropy and Dice losses in our case, KL divergence is the sum of KL diver-
gences for every NN cell parameters distribution. For a cell c KL is defined as:

KL(qM c(W )||p(W )) ∝ (1 − pc)
2s2

||Mc||2 − KH(pc), (3)

where H(pc) is entropy of probability pc, Mc is the mean cell weights matrix,
qM c(W ) = MK

c · DK with DK ∼ Bern(1 − pc) the path dropping out proba-
bility vector, K is the number of paths in cell c, s2 is the variance of the prior
distribution.

In MC ScheduledDropPath, the second term KH(p) is omitted because p is
fixed. But for MC Concrete DropPath, we optimize p, replacing the Bernoulli
distribution with the Concrete distribution for every cell c as in Sect. 2.3.

Finally, to estimate epistemic uncertainty, we sample from the approximating
distribution qθ(ω) N times during testing in a MC manner forming the prediction
vector Y = {ŷ1, . . . , ŷN}. Then Y can be used for the predictive mean evaluation
and epistemic uncertainty estimation based on Mutual Information, for example.

4 Experiments

4.1 Dataset

We evaluated the models on BraTS 2018 dataset [4,22]. It contains 44,175 multi-
modal scans of patients with brain tumors. Each scan consists of 4 modes, namely
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T1-weighted (T1), post-contrast T1-weighted (T1c), T2-weighted (T2), T2 Fluid
Attenuated Inversion Recovery (FLAIR). Labels include the whole tumor (WT),
active tumor, and tumor core tissue. Here, we only consider the WT segmenta-
tion task as the most common.

4.2 Models

The segmentation model used in this study is U-Net-like NN with two heads: one
for the tumor prediction and the auxiliary head for the tumor border prediction.
Seferbekov et al. [29] showed that such an approach penalizes the model more for
errors on tumor border and leads to a more accurate segmentation result. Our
experiments demonstrated that accounting the auxiliary head in metrics evalu-
ation does not improve the segmentation WT score. Thus, the auxiliary head is
only used for model training, which required the tumor label preprocessing to
make two targets per each sample: with WT and WT border.

To test our proposed method, we have chosen the baseline backbone for U-
Net over the following: Xception [5]; DenseNet [11]; NASNet [41]. The first two
baselines recently showed high performance compared to popular architectures
for the brain tumor segmentation task [39]. We tested them compared to NASNet
to ensure that NASNet is effective for the segmentation task.

As NASNet was the best baseline (see Table 1), we examined the follow-
ing uncertainty estimation methods based on it: NASNet MC Dropout (NAS-
Net MCDO), NASNet MC Concrete Dropout (NASNet MCCDO), NASNet
MC DropFilter (NASNet MCDF), NASNet MC ScheduledDropPath (NASNet
MCSDP, with the proposed method), NASNet MC Concrete DropPath (NASNet
MCCDP, with the proposed method), deep ensemble of four NASNets trained
with ScheduledDropPath. For MC Dropout, MC DropFilter, MC Scheduled-
DropPath models we used dropping out probability p=0.3 as it provides the
best results according to our experiments.

ImageNet Pre-training. We pre-trained all the models on ImageNet dataset,
which is a common practice in computer vision problems. ImageNet is the 3-
channel images dataset. However, the dataset used in our experiments includes
4 MRI modes. Therefore, the forth channel for the models was formed using
the transfer learning, which required modifications of the NN on the framework
level to train it. To our knowledge, there is no standard interface for such mod-
ifications. We performed the forth channel initialization with the first channel
weights. As ImageNet pre-training is uncommon for medical domain, in this
study we tested some of the models (NASNet MCDO and NASNet MCCDP)
with and without pre-training to prove its effectiveness.

4.3 Experimental Setup

We implemented all the models in the Tensorflow 2 framework. For the exper-
iments, we used single GeForce GTX 1080 Ti GPU per each model’s training
and evaluation. Training of the single model took 3 days.
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For segmentation accuracy evaluation Dice coefficient is traditionally
used [42]. Based on it, the training was performed using Dice loss, which is
calculated as (1−Dice) and combined with binary cross-entropy. For the model
calibration we used three metrics, namely Negative Log Likelihood (NLL) [18],
in the form of binary cross-entropy (BCE), Brier score (BS) [26], Expected Cal-
ibration Error (ECE) [2,23,40], and Mean Entropy score (MES) [2]. Also we
compared the two best models by the area under curve (AUC) of Dice score,
Filtered True Positive (FTP) AUC, and Filtered True Negative (FTN) AUC
metrics calculated with different uncertainty thresholds according to the BraTS
2019 uncertainty task evaluation protocol and [21].

The initial Concrete DropPath probability p value was 0.0001, which was
optimized during training. We trained all the models with Adam optimizer with
learning rate (lr) equal to 0.0001, lr decay and weight decay equal to 0.0001. The
train/test/validation split was 75/15/10, respectively. All the reported results
were obtained on the validation set. For MC techniques, the number of samples
per image N was equal to 20, according to the experimental results in [35]. For
the uncertainty estimation visualization we used Mutual Information (MI).

5 Results and Discussion

Table 1 presents the evaluation results of different baselines and the proposed MC
Concrete DropPath and MC ScheduledDropPath methods compared to other
MC models and the deep ensemble. The Table shows that the best segmentation
backbone is NASNet, as it achieved the highest Dice score. Thus, the uncer-
tainty estimation methods were applied to NASNet-based U-Net, their results
are presented in the second and third parts of the Table.

The MC Concrete DropPath (MCCDP) model outperformed all other models
by Dice coefficient. The proposed method (with and without pre-training) along
with MCCDO had the best calibration by MES , which is significantly lower (by
2–3 times) than MES of other models. Moreover, our MCCDP method provided
one of the best ECE scores, reducing its value almost twice compared to the deep
ensemble. The BS calibration metric is on the same level with the deep ensemble.
To summarize, MC Concrete DropPath superiors other methods by aggregate
accuracy and calibration metrics. This can be considered as the positive answer
to the RQ1. The MC ScheduledDropPath (MCSDP) with regular cell-wise p
value achieved relatively good calibration metrics and improved the Dice score
compared to the baseline NASNet. This confirms the answer to the RQ1. At
the same time, MC Concrete DropPath provided much better calibration and
segmentation scores than MC ScheduledDropPath, answering RQ3. This proves
the effectiveness of the Concrete relaxation for DropPath, answering RQ2.

Despite the deep ensemble achieved close segmentation accuracy and slightly
lower Brier score, our method MC Concrete DropPath is less memory and time
consuming and twice better calibrates the model according to ECE and MES.
Moreover, MC Concrete DropPath achieved better Dice AUC, FTP AUC and
FTN AUC, which confirms its effectiveness (see Fig. [31]).
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Table 1. Results of the proposed methods and other uncertainty estimation methods
on different baselines on BraTS 2018. WT DC is Whole tumor Dice coefficient. The
first part presents baselines comparison, the second part presents existing uncertainty
estimation methods, the third part presents the results of the proposed methods. All
the results obtained using 5-fold cross-validation.

Model WT DC, % NLL BS ECE MES

Xception 84.71 0.0292 – – –

DenseNet 85.06 0.0269 – – –

NASNet 85.42 0.0248 – – –

NASNet MCDO (no pre-train) 78.13 0.0246 0.0035 0.0096 0.0007

NASNet MCDO 84.44 0.0156 0.0023 0.0101 0.0005

NASNet MCCDO 86.06 0.0198 0.0020 0.0067 0.0002

NASNet MCDF 86.32 0.0115 0.0020 0.0121 0.0006

Deep ensemble of NASNets 86.48 0.0148 0.0018 0.0131 0.0004

NASNet MCSDP (our) 86.28 0.0155 0.0020 0.0097 0.0005

NASNet MCCDP (no pre-train) 81.32 0.0273 0.0030 0.0069 0.0002

NASNet MCCDP (our) 86.74 0.0173 0.0019 0.0071 0.0002

The Concrete DropPath probabilities p obtained for different NASNet cells
are approximately equal to 0.1 (some pc are higher, some – lower), which means
that although the model is quite deep, the dataset is rather large enough and
does not require stronger model regularization.

Finally, the results confirm that ImageNet pre-training improves the brain
tumor segmentation task solving significanly, by 5–6% of Dice coefficient. Thus,
ImageNet pre-training is feasible for computer vision medical domain tasks.

The visualized uncertainties can be found in [32]. The Figure shows that
MCCDP technique provides better model calibration, than the deep ensemble:
the tumor borders, presented by MCCDP epistemic uncertainty, are more precise
and less bright (MI is lower, which is better). Such uncertainty visualization
can help doctors to recognize cases when an additional tumor investigation is
required.

6 Conclusion

In the paper, we have studied the brain MRI tumor segmentation task and pre-
sented two novel methods: MC Concrete DropPath and MC ScheduledDropPath
addressing the problem of estimating epistemic uncertainty. We compared our
methods with other MC Structured Dropouts and the deep ensemble.

As the baselines we implemented three U-Net models with different back-
bones, namely Xception, DenseNet, NASNet and evaluated them on BraTS 2018
dataset. Then, we tested our methods and other MC Structured Dropouts based
on U-Net with NASNet, as it was the best backbone.
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The results show that MC Concrete DropPath majorizes other methods by
both accuracy and calibration metrics. Moreover, our method can be useful for
a wide variety of applications, not limited to medical imaging tasks.

In the future, we plan to study the proposed methods on other multi-path
NN architectures, such as Inception-ResNet-v2 [33] and ResNeXt [38]. Concrete
DropPath can be effective not only for uncertainty estimation, but also as the
regularization technique. Also we plan to incorporate our methods to the state-
of-the-art BraTS approach nnU-net [12] and to extend them to a multi-class
segmentation problems.
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Abstract. Quantifying uncertainty in medical image segmentation
applications is essential, as it is often connected to vital decision-making.
Compelling attempts have been made in quantifying the uncertainty in
image segmentation architectures, e.g. to learn a density segmentation
model conditioned on the input image. Typical work in this field restricts
these learnt densities to be strictly Gaussian. In this paper, we propose
to use a more flexible approach by introducing Normalizing Flows (NFs),
which enables the learnt densities to be more complex and facilitate more
accurate modeling for uncertainty. We prove this hypothesis by adopting
the Probabilistic U-Net and augmenting the posterior density with an
NF, allowing it to be more expressive. Our qualitative as well as quan-
titative (GED and IoU) evaluations on the multi-annotated and single-
annotated LIDC-IDRI and Kvasir-SEG segmentation datasets, respec-
tively, show a clear improvement. This is mostly apparent in the quantifi-
cation of aleatoric uncertainty and the increased predictive performance
of up to 14%. This result strongly indicates that a more flexible density
model should be seriously considered in architectures that attempt to
capture segmentation ambiguity through density modeling. The benefit
of this improved modeling will increase human confidence in annotation
and segmentation, and enable eager adoption of the technology in prac-
tice.

Keywords: Segmentation · Uncertainty · Computer vision · Imaging

1 Introduction

As a result of the considerable advances in machine learning research over the
past decade, computer-aided diagnostics (CAD) using deep learning has rapidly
been gaining attention. The outcome from these deep learning-based CAD sys-
tems has to be highly accurate, since it is often connected to critical designs
resulting in a potentially large impact on patient care. As such, conclusions
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drawn from these CAD systems should be interpreted with care and by experts.
A convolutional neural network (CNN)-based approach has been adopted in a
large number of CAD applications and especially in semantic segmentation. This
approach segments the objects of interest by assigning class probabilities to all
pixels of the image. In the medical domain and especially in the context of lesion
segmentation, the exact edges or borders of these lesions are not always easily
defined and delineated by radiologists and endoscopists. In the case of multiple
annotators, clinicians can also disagree on the boundaries of the localized lesions
based on their understanding of the surrounding anatomy. However, the exact
edges or borders of these areas of interests often play a critical role in the diag-
nostic process. For example, when determining whether to perform surgery on
a patient or the surgical planning thereof, the invasion of a tumour into local
anatomical structures derived from a CT scan, is crucial. Thus, multiple forms
of uncertainties come into play with semantic segmentation-based approach for
CAD. As such, accurately quantifying these uncertainties have become an essen-
tial addition in CAD. Specialized doctors provide ground-truth segmentation for
models to be trained, based on their knowledge and experience. When this is
done by multiple individuals per image, often discrepancies in the annotations
arise, resulting in ambiguities in the ground-truth labels.

Recent work [5] suggests two types of uncertainties exist in deep neural net-
works. First, epistemic uncertainty, which refers to the lack of knowledge and can
be minimized with information gain. In the case of multi/single-annotated data,
these are the preferences, experiences, knowledge (or lack thereof) and other
biases of the multiple/single annotators. This epistemic uncertainty from the
annotator(s) manifests into aleatoric uncertainty when providing annotations.
Aleatoric uncertainty is the variability in the outcome of an experiment, due to
the inherent ambiguity that exists in the data, captured through the multiple
ground truths. By using a probabilistic segmentation model, we attempt to learn
this as a distribution of possible annotations. It is important to enable expres-
siveness of the probability distributions to sufficiently capture the variability.
In multi-annotator settings, the adoption of rich and multi-modal distributions
may be more appropriate. We aim to show that by using invertible bijections,
also known as Normalizing Flows (NFs), we can obtain more expressive distribu-
tions to adequately deal with the disagreement in the ground-truth information.
Ultimately, this improves the ability to quantify the aleatoric uncertainty for
segmentation problems.

In this work, we use the Probabilistic U-Net (PU-Net) [10] as the base model
and subsequently improve on it by adding a planar and radial flow to render a
more expressive learned posterior distribution. For quantitative evaluation, we
use the Generalized Energy Distance (GED), as is done in previous work (see
related work). We hypothesize that this commonly used metric is prone to some
biases, such that it rewards sample diversity rather than predictive accuracy.
Therefore, we also evaluate on the average and Hungarian-matched IoU for the
single- and multi-annotated data, respectively, as is also done by Kohl et al. [9].
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To qualitatively evaluate the ability to model the inter-variability of the anno-
tations, we present the mean and standard deviation of the segmentation sam-
ples reconstructed from the model. In this paper, we make use of the multi- and
single-annotated LIDC-IDRI (LIDC) and Kvasir-SEG datasets, thereby handling
limited dataset size and giving insights on the effects of the complex posterior
on hard-to-fit datasets.

2 Related Work

Kohl et al. [10] introduced the PU-Net for image segmentation, a model that
combines the cVAE [15] and a U-Net [13]. Here, the uncertainty is captured by
a down-sampled axis-aligned Gaussian prior that is updated through the KL
divergence of the posterior. These distributions contain several low-dimensional
representations of the segmentation, which can be reconstructed by sampling.
We use this model as our baseline model.

The concept of using NFs has been presented in earlier literature. For an
extensive introduction to NFs we suggest the paper from Kobyzev et al. [8]. The
planar and radial NFs have been used for approximating flexible and complex
posterior distributions [12].

Selvan et al. [14] used an NF on the posterior of a cVAE-like segmentation
model and showed that this increases sample diversity. The increased sample
diversity resulted in a better score on the GED metric and a slight decrease in
DICE score. The authors reported significant gains in performance. However,
we argue that this claim requires more evidence to confirm this positive effect,
such as training with K-fold cross-validation and evaluating using other metrics.
Also, insight into the reasons for their improvements are not provided and critical
details of the experiments are missing, such as the number of samples used for
the GED evaluation. We aim to provide a more complete argumentation and
show clear steps towards improving the quantification of aleatoric uncertainty.

3 Methods

3.1 Model Architecture

We use a PU-Net extended with an NF, as is shown in Fig. 1. A key element
of the architecture is the posterior network Q, which attempts to encapsulate
the distribution of possible segmentations, conditioned on the input image X

and ground truth S in the base distribution. The flexibility of the posterior is
enhanced through the use of an NF, which warps it into a more complex dis-
tribution. During training, the decoder is sampled by the posterior and is con-
structing, based on the encoded input image, a segmentation via the proposed
reconstruction network. The prior P is updated with the evidence lower bound
(ELBO [7]), which is based on two components: first, the KL divergence between
the distributions Q and P and second, the reconstruction loss between the pre-
dicted and ground-truth segmentation. The use of NFs is motivated by the fact
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that a Gaussian distribution is too limited to fully model the input-conditional
latent distribution of annotations. An NF can introduce complexity to Q, e.g.
multi-modality, in order to more accurately describe the characteristics of this
relationship.

We proceed by extending the PU-Net objective (see AppendixA) and explain
the associated parameters in detail. We make use of the NF-likelihood objective
(see Appendix B) with transformation f : R �→ R to define our posterior as

log q(z|s,x) = log q0(z0|s,x) −
K∑

i=1

log
(∣∣∣∣det

dfi

dzi−1

∣∣∣∣

)
. (1)

to obtain the objective

L = −Eqφ(z0|s,x)[ log p(s|z,x) ]

+ KL ( qφ(z0|s,x)||pψ(z|x) ) − Eqφ(z0|s,x)

[
K∑

i=1

log
(∣∣∣∣det

dfi

dzi−1

∣∣∣∣

)]
.

(2)

The input-dependent context vector c, is used to obtain the posterior flow param-
eters. During training, the posterior flow is used to capture the data distribu-
tion with the posterior network Q(μ,σ, c|X,S), followed by sampling thereof
to reconstruct the segmentation predictions Y. At the same time, a prior net-
work P (μ,σ|X) only conditioned on the input image is also trained through
constraining its KL divergence with the posterior distribution. The first term in
Eq. (2) entails the reconstruction loss, in our case the cross-entropy function as
mentioned earlier. At test time, the prior network produces latent samples to
construct the segmentation predictions.

Fig. 1. Diagram of the PU-Net with a flow posterior.
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3.2 Data and Baseline Experiments

We perform extensive experimental validation using the vanilla Probabilistic U-
Net with 2-/4-step planar and radial flow variants on processed versions of the
LIDC-IDRI (LIDC) [1] and the Kvasir-SEG [4] datasets. The preprocessed LIDC
dataset [14] transforms the 1,018 thoracic CT scans with four annotators into
15,096 128 × 128-pixel patches according to the method of [2,10]. Each image
has 4 annotations. The Kvasir-SEG dataset contains 1,000 polyp images of the
gastrointestinal tract from the original Kvasir dataset [11]. We resize the images
to be 128 × 128 pixels as well and convert the images to gray-scale. Example
images of the datasets can be found in AppendixC. As for the NFs, we used the
planar flow conform related work [3,14] and also experiment with the radial flow.
These flows are usually chosen because they are computationally the cheapest
transformations that possess the ability to expand and contract the distributions
along a direction (planar) or around a specific point (radial).

3.3 Performance Evaluation

For evaluation, we deploy the Generalized Energy Distance (GED) (also known
as the Maximum Mean Discrepancy), which is defined as

D2
GED(Ppr, Pout) = 2E [d(S,Y)] − E [d(S,S′)] − E [d(Y,Y′)] , (3)

where Y, Y′ and S, S′ are independent samples from the predicted distribution
and ground truth distributions Ppr and Pgt, respectively. Here, d is a distance
metric, in our case, one minus the Intersection over Union (1-IoU). When the
predictions poorly match the ground truth, the GED is prone to simply reward
diversity in samples instead of accurate predictions because the influence of the
E [d(Y,Y′)] term becomes dominant. Therefore, we also evaluate the Hungarian-
matched IoU, using the average IoU of all matched pairs for the LIDC dataset.
We duplicate the ground-truth set, hence matching it with the sample size. Since
the Kvasir-SEG dataset only has a single annotation per sample, we simply
take the average IoU from all samples. Furthermore, when the model correctly
predicts the absence of a lesion (i.e. no segmentation), the denominator of the
metric is zero and thus the IoU becomes undefined. In previous work, the mean
excluding undefined elements was taken over all the samples. However, since this
is a correct prediction, we award this with full score (IoU= 1) and compare this
approach with the method of excluding undefined elements for the GED.

To qualitatively depict the model performance, we calculate the mean and
standard deviation with Monte-Carlo simulations (i.e. sampling reconstructions
from the prior). All evaluations in this paper are based on 16 samples to strike a
right balance between sufficient samples and a justifiable approximation, while
maintaining minimal computational time.

3.4 Training Details

The training procedure entails tenfold cross-validation using a learning rate of
10−4 with early stopping on the validation loss based on a patience of 20 epochs.
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The batch size is chosen to be 96 and 32 for the LIDC and the Kvasir-SEG
dataset, respectively. The dimensionality of the latent space is set to L = 6. We
split the dataset as 90-10 (train/validation and test) and evaluate the test set
on the proposed metrics. All experiments are done on an 11-GB RTX 2080TI
GPU.

4 Results and Discussion

4.1 Quantitative Evaluation

We refer to the models by their posterior, either unaugmented (vanilla) or with
their n-step Normalizing Flow (NF). The results of our experiments are pre-
sented in Table 1. In line with literature, it shown that the GED improves with
the addition of an NF. This hypothesis is tested using both a planar and radial
NF and observe that both have a similar effect. Furthermore, both the average
and Hungarian-matched IoU improve with the NF. We find that the 2-step radial
(2-radial) NF is slightly better than other models for the LIDC dataset, while
for the Kvasir-SEG dataset the planar models tend to perform better. The orig-
inal PU-Net introduced the variability capturing of annotations into a Gaussian
model. However, this distribution is not expressive enough to efficiently capture
this variability. The increase in GED and average IoU performance from our
experiments confirm our hypothesis that applying NF to the posterior distri-
bution of the PU-Net improves the accuracy of the probabilistic segmentation.
This improvement occurs because the posterior becomes more complex and can
thus provide more meaningful updates to our prior distribution.

Including/excluding correct empty predictions did not result in a significant
difference in the metric value when comparing the vanilla models with the pos-
terior NF models. Our results show that the choice in NF has minimal impact
on the performance and suggest practitioners to experiment with both NFs.
Another publication in literature [14] has experimented with more complex pos-
teriors such as GLOW [6], where no increase in performance was obtained. In our
research, we have found that even a 4-step planar or radial NF (which are much
simpler in nature) can already be too complex for our datasets. A possible expla-
nation is that the variance in annotations captured in the posterior distribution
only requires a complexity that manifests from two NF steps. This degree of
complexity is then most efficient for the updates of the prior distribution. More
NF steps would then possibly introduce unnecessary model complexity as well
parameters for training, thereby reducing the efficiency of the updates. Another
explanation could be that an increase in complexity of the posterior distribution
does in fact model the annotation variability in a better way. Nevertheless, not
all information can be captured by the prior, as it is still a Gaussian. In this
case, a 2-step posterior is close enough to a Gaussian for meaningful updates
yet complex enough to be preferred over a Gaussian distribution. We consider
that for similar problems, it is better to adopt simple NFs with a few steps only.
However, we can imagine the need for a more complex NF for other scenarios,
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Table 1. Test set evaluations on the GED and IoU based on 16 samples. Further
distinction in the GED is made on whether the correct empty predictions are included.
The IoU is evaluated with the Hungarian-matching algorithm and averaged with the
LIDC and Kvasir-SEG dataset, respectively.

Dataset Posterior GED IoU

Excl. Incl. Avg. Hungarian

LIDC Vanilla 0.33 ± 0.02 0.39 ± 0.02 — 0.57 ± 0.02

2-planar 0.29 ± 0.02 0.35 ± 0.03 — 0.57 ± 0.01

2-radial 0.29 ± 0.01 0.34 ± 0.01 — 0.58 ± 0.01

4-planar 0.30 ± 0.02 0.35 ± 0.04 — 0.57 ± 0.02

4-radial 0.29 ± 0.02 0.34 ± 0.03 — 0.57 ± 0.01

Kvasir-SEG Vanilla 0.68 ± 0.18 0.69 ± 0.17 0.62 ± 0.07 —

2-planar 0.62 ± 0.05 0.63 ± 0.05 0.71 ± 0.01 —

2-radial 0.63 ± 0.03 0.64 ± 0.03 0.66 ± 0.06 —

4-planar 0.63 ± 0.06 0.67 ± 0.05 0.71 ± 0.04 —

4-radial 0.65 ± 0.04 0.67 ± 0.05 0.65 ± 0.07 —

where the varying nature in the ground truth follows different characteristics,
e.g. encompassing non-linearities.

We have also compared the vanilla, 2-planar and 2-radial models by depict-
ing their GEDs based on sample size (AppendixD). As expected, the GEDs
decrease as the number of samples increase. It is also evident that the variability
in metric evaluations is less for models with an NF posterior. The NF posteri-
ors consistently outperform the vanilla PU-Net for the LIDC and Kvasir-SEG
datasets.

4.2 Qualitative Evaluation

The mean and standard deviation based on 16 segmentation reconstructions
from the validation set is shown in Figs. 2 and 3. Ideally, it is expected to obtain
minimal uncertainty at the center of the segmentation, because annotations agree
on the center area most of the time for our datasets. This also implies that the
mean of the center should be high because of the agreement of the annotators.
For both datasets, the means of our sampled segmentations match well with
the ground truths and have high values in the center areas corresponding to
good predictions. Furthermore, the PU-Net without an NF shows uncertainty
at both edges and segmentation centers. In contrast, for all NF posterior PU-
Net models, the uncertainty is mostly on the edges alone. A high uncertainty
around the edges is also expected, since at those areas the annotators almost
always disagree. From this, we can conclude that NF posterior models are better
at quantifying the aleatoric uncertainty of the data. Even though there is no
significant quantitative performance difference between the NF models, there is
a well distinguishable difference in the visual analysis. In almost all cases, it can
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Fig. 2. Reconstructions of the LIDC test set.

Fig. 3. Reconstructions of the Kvasir-SEG test set.

be observed that the planar is better than the radial NF posterior in learning
the agreement between the segmentation centers. We also investigated the prior
distribution to determine if it captures the ambiguity that exist in the input
image. In AppendixE, we show the prior distribution variance for different test
set input images. We qualitatively observe that with increasing variance, the
subjective assessment of the annotation difficulty increases. This suggests the
possibility of obtaining an indication of the uncertainty in a test input image
without sampling and evaluating the segmentation reconstructions.

The prior distribution is an area that needs to be further explored, since
this is still assumed Gaussian. We hypothesize that augmenting the prior with
an NF could result in further improvements. Future work will also include an
investigation into the correlation between the prior and segmentation variance.
A limiting factor of the proposed model is the use of only a single distribution.
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We consider that when using flexible distributions at multiple scales, the overall
model will further improve.

5 Conclusion

Quantifying uncertainty in image segmentation is very important for decision-
making in the medical domain. In this paper, we propose to use the broader con-
cept of Normalizing Flows (NFs) for modeling both single- and multi-annotation
data. This concept allows more complex modeling of aleatoric uncertainty. We
consider modeling of the posterior distribution by Gaussians too restrictive to
model variability. By augmenting the model posterior with a planar or radial
NF, we attain up to 14% improvement in GED and 13% in IoU, resulting in a
better quantification of the aleatoric uncertainty. We propose that density mod-
eling with NFs is something that should be experimented with throughout other
ambiguous settings in the medical domain, since we are confident this will result
in valuable information for further research. A significant improvement has been
found through only augmenting the posterior distribution with NFs, whereas
little-to-none investigations have been made into the effect of additionally aug-
menting the prior distribution and is suggested for future work. Moreover, we
suggest augmenting other architectures that aim to capture uncertainty and
variability through a learnt probability distribution with Normalizing Flows.

Appendices

A Probabilistic U-Net Objective

The loss function of the PU-Net is based on the standard ELBO and is defined
as

L = −Eqφ(z|s,x)[ log p(s|z,x) ] + KL ( qφ(z|s,x)||pψ(z|x) ) , (4)

where the latent sample z from the posterior distribution is conditioned on the
input image x, and ground-truth segmentation s.

B Planar and Radial Flows

Normalizing Flows are trained by maximizing the likelihood objective

log p(x) = log p0 (z0) −
K∑

i=1

log
(∣∣∣∣det

dfi

dzi−1
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)
. (5)
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In the PU-Net, the objective becomes

log q(z|s,x) = log q0(z0|s,x) −
K∑

i=1

log
(∣∣∣∣det

dfi

dzi−1

∣∣∣∣

)
, (6)

where the i -th latent sample zi from the Normalizing Flow is conditioned on the
input image x, and ground-truth segmentation s.

The planar flow expands and contracts distributions along a specific directions
by applying the transformation

f(x) = x + uh(wTx + b), (7)

while the radial flow warps distributions around a specific point with the trans-
formation

f(x) = x +
β

α |x − x0| (x − x0). (8)

C Dataset Images

Here example images from the datasets used in this work can be seen. Figure 4
depicts four examples from the LIDC dataset. On the left in the figure the 2D CT
image containing the lesion, followed by the four labels made by four independent
annotators is shown. In Fig. 5, eight examples from the Kvasir-SEG dataset is
depicted. An endoscopic image with its ground truth label can be seen.

Fig. 4. Example images from the LIDC dataset.
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Fig. 5. Example images from the Kvasir-SEG dataset.

D Sample Size Dependent GED

The GED evaluation is dependent on the number of reconstructions sampled
from the prior distribution. Figure 6 depicts this relationship for the vanilla, 2-
planar and 2-radial posterior models. The uncertainty in the values originate
from the changing results when training with ten-fold cross validation. One can
observe that with increasing sample size, the GED as well as the associated
uncertainty decrease. This is also the case when the posterior is augmented with
a 2-planar or 2-radial flow. Particularly, the uncertainty in the GED evaluation
significantly decreases.
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(a) LIDC test set

(b) Kvasir-SEG test set

Fig. 6. The GED based on sample size evaluated on the vanilla, 2-planar and 2-radial
models.

E Prior Distribution Variance

We investigated whether the prior distribution captures the degree of ambiguity
in the input images. For every input image X, we obtain a latent L-dimensional
mean and standard deviation vector of the prior distribution P (μ,σ|X). The
mean of the latent prior variance vector μLV , is obtained from the input images in
an attempt to quantify this uncertainty. Figure 7 shows this for several different
input images of the test set. As can be seen, the mean variance over the latent
prior increases along with a subjective assessment of the annotation difficulty.
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Fig. 7. Depicted in the CT image is the mean of the prior distribution variance of the
2-planar model. We show the input CT image, its average segmentation prediction (16
samples) and ground truth from four annotators.
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Abstract. In the recent years, researchers proposed a number of successful meth-
ods to perform out-of-distribution (OOD) detection in deep neural networks
(DNNs). So far the scope of the highly accurate methods has been limited to
image level classification tasks. However, attempts for generally applicable meth-
ods beyond classification did not attain similar performance. In this paper, we
address this limitation by proposing a simple yet effective task-agnostic OOD
detection method. We estimate the probability density functions (pdfs) of inter-
mediate features of a pre-trained DNN by performing kernel density estimation
(KDE) on the training dataset. As direct application of KDE to feature maps
is hindered by their high dimensionality, we use a set of lower-dimensional
marginalized KDE models instead of a single high-dimensional one. At test time,
we evaluate the pdfs on a test sample and produce a confidence score that indi-
cates the sample is OOD. The use of KDE eliminates the need for making sim-
plifying assumptions about the underlying feature pdfs and makes the proposed
method task-agnostic. We perform experiments on classification task using com-
puter vision benchmark datasets. Additionally, we perform experiments on med-
ical image segmentation task using brain MRI datasets. The results demonstrate
that the proposed method consistently achieves high OOD detection performance
in both classification and segmentation tasks and improves state-of-the-art in
almost all cases. Our code is available at https://github.com/eerdil/task agnostic
ood. Longer version of the paper and supplementary materials can be found as
preprint in [8].

Keywords: Out-of-distribution detection · Kernel density estimation

1 Introduction

Deep neural networks (DNNs) can perform predictions on test images with very high
accuracy when the training and testing data come from the same distribution. How-
ever, the prediction accuracy decreases rapidly when the test image is sampled from a
different distribution than the training one [16,33]. Furthermore, in such cases, DNNs
can make erroneous predictions with very high confidence [11]. This creates a major
obstacle when deploying DNNs for real applications, especially for the ones with a
low tolerance for error, such as autonomous driving and medical diagnosis. Therefore,
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Fig. 1. A visual example demonstrating the importance of OOD detection on a segmentation task.
A network trained on HCP T1w images works well on a HCP T1w test image (first row) while
it produces a poor segmentation on the HCP T2w image of the same patient (second row).

it is crucial to improve the robustness of DNN-based methods and prevent them from
making big mistakes [1].

Recently, to improve the robustness of DNNs, substantial advances have been made
for OOD detection in DNNs trained for image level classification tasks [12,15,22,24].
Although, OOD detection is equally crucial for non-classification tasks (e.g. segmen-
tation), so far, attempts for developing more generic OOD detection methods did
not attain similar performance [25]. For instance, a UNet [27] architecture trained
on HCP T1w images achieves average Dice score of 0.853 on the test set of the
same dataset while it achieves 0.588 on ABIDE Caltech T1w and 0.107 on HCP T2w
datasets [16] where the upper bound (training and testing on the same dataset) is 0.896
for ABIDE Caltech T1w and 0.867 for HCP T2w. In Fig. 1, we show visual results
of test images from HCP T1w and HCP T2w datasets on a UNet model trained on
HCP T1w dataset. The example demonstrates that a DNN trained on T1w brain images
(in-distribution (InD)) produces poor segmentation results for T2w images (OOD) of
the same patient. Such results can be catastrophic in an automated image analysis
pipeline and detecting OOD samples is a way to prevent such mistakes.

1.1 Related Work

One of the earlier methods proposed by Hendrycks et al. [12] uses maximum predicted
class probability as a confidence score that the sample is OOD. ODIN [23] extended
the baseline by applying an adversarial perturbation to the input image (referred to as
input pre-processing) and temperature scaling before softmax to increase the differ-
ence between the prediction probabilities of InD and OOD samples. Hsu et al. [15]
further extended ODIN, referred to as Generalized ODIN (G-ODIN), by introducing an
additional output that indicates whether the input sample belongs to InD or OOD. The
penultimate layer of a DNN is decomposed into two branches to model the conditional
distribution of this indicator variable and its joint distribution with the class label. The
conditional probability of the indicator variable is used as the confidence score while the



Task-Agnostic Out-of-Distribution Detection Using Kernel Density Estimation 93

ratio of the joint probability and the conditional probability serve as the final class pre-
diction for an image after applying input processing. Yu et al. [36] propose a DNN with
two classification heads, where one aims to minimize classification loss and the other
aims to maximize the discrepancy between the two classifiers. The method, named as
MCD, uses a subset of OOD samples along with the InD samples in the discrepancy
loss. At test time, the samples with higher discrepancy are labeled as OOD. Liu et al.
[24] proposed an energy-based method (EBM) which interprets softmax probabilities
as energy scores and use for OOD detection. Lee et al. [22] proposed a method named
as Mahalanobis, which models the class conditional pdfs of the features at intermediate
layers of a DNN with Gaussian densities for InD samples. The parameters of each class
conditional Gaussian are estimated by computing the empirical mean and co-variance
using InD training samples belonging to that class. At test time, ODIN-style input pre-
processing is applied before evaluating the estimated densities to obtain a confidence
score, which is expected to be higher for InD samples and lower for OOD samples.
More related work can be found in [6,13,21,32].

Despite their successful performance, most of the aforementioned methods are
designed for OOD detection for classification tasks and their extension to non-
classification tasks usually is not trivial. Task-agnostic networks that do not share
the same drawback have also been proposed. Hendryks et al. [14] proposed a self-
supervised learning (SSL) based OOD detection method. The method trains an auxil-
iary rotation network, which predicts angle of rotation in discrete categories, on the InD
dataset and computes a confidence score for a test image as the maximum of the softmax
activation, expecting higher activations for InD samples compared to OOD samples.
Kim et al. [18] proposed a method, referred to as RaPP, that is based on the observa-
tion that in an autoencoder the internal feature representations of an input image and
its reconstructed version are very similar for InD samples and the similarity decreases
for OOD samples that are not used for the training of the autoencoder. RaPP defines a
confidence score based on this observation for OOD detection. Venkatakrishnan et al.
[31] combine the ideas in SSL and RaPP, and propose a method (Multitask SSL) by
jointly training a network for both rotation prediction and reconstruction tasks for OOD
detecion in brain images. As both SSL [14], RaPP [18], and Multitask SSL [31] operate
on auxiliary networks that are detached from the main network, they are task-agnostic
and therefore can be applied to both classification and non-classification tasks.

1.2 Contribution

In this paper, we propose a simple yet effective task-agnostic OOD detection method.
In the proposed method, we estimate feature pdfs of each channel in a DNN using KDE
and InD training images. We evaluate the pdfs using a new test sample and obtain a
confidence score for each channel. We combine all the scores into a final confidence
score using a logistic regression model, which we train using channel-wise confidence
scores of training images as InD samples and their adversarially perturbed versions as
OOD samples.

We take our motivation fromMahalanobis [22] for developing the proposed method
but extend it in multiple ways crucial for building a task-agnostic method that achieves
improved detection accuracy. (1) Mahalanobis estimates class conditional densities
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while the distribution approximation in the proposed method is not conditioned on the
class, making it task-agnostic. (2) Direct use of Mahalanobis in the task-agnostic set-
ting is feasible using unconditioned Gaussian distributions to approximate layer-wise
feature distributions of InD samples. However, the Gaussian assumption may be too
restrictive to model unconditioned feature densities and lead to lower accuracy when the
assumption does not hold. Using a nonparametric density estimation method KDEs, we
extend the flexibility of the density approximation in the proposed method. (3) Layer-
wise approximation is prone to the curse-of-dimensionality. Even though Mahalanobis
takes channel-wise mean to reduce the dimension of a channel from C × H × W to
C × 1 before density estimation, the resulting vector can still be high dimensional in
modern architectures. We approximate 1D channel-wise distributions in the proposed
method, which are simpler to estimate. This approach ignores dependencies between
channels of a layer in the density estimation part but takes them into account in the
logistic regression model that combines channel-wise scores.

The use of KDEs for OOD detection is not new. The first use dates back to 1994
when Bishop [2] applied KDE in the input space. In that work, the input was only 12-
dimensional and application of KDE was feasible. In modern architectures, the input
dimensions are often much larger thereby, making the direct application of Bishop’s
method infeasible. The application of a modified version of the method in high dimen-
sional spaces is still possible by applying KDE over the distances between the test
image and the training images [4,17]. Bishop’s method as well as its modified version
differs from the proposed method. In our method, we use multiple channel-wise KDEs
and aggregate results.

Using KDE and estimating channel-wise pdfs are conceptually simple extensions
that are very effective and yield substantial gains. We performed extensive comparisons
on DNNs trained for classification and segmentation tasks. In the classification experi-
ments, we use the common benchmark that contains 2 different classification networks
trained on CIFAR-10 and CIFAR-100 datasets [20] and 6 other OOD datasets. We com-
pare the proposed method with 6 methods in the literature most of which are either very
recent or common baselines used in the literature. In the segmentation experiments,
we use datasets for brain MRI segmentation and compare with 5 methods. In total, we
compare with 10 different OOD detection methods to correctly position the proposed
method within the current literature.

2 Method

Let us denote a set of training images with Xtr = {x1, x2, . . . xM} ∼ Pin and corre-
sponding labels with ytr = {y1, y2, . . . , yM}, where Pin denotes the InD. Let us also
denote a DNN with f , trained using (Xtr, ytr). f is more likely to perform good pre-
dictions on a test image xtest if xtest ∼ Pin and incorrect predictions if xtest ∼ Pout,
where Pout �= Pin. In this section, we present the proposed task-agnostic KDE-based
approach that identifies test images sampled from Pout.

The main output of the proposed method is a confidence score that indicates how
likely a given sample belongs to OOD for the given DNN f . In this section, we describe
how we compute this score. Let us assume that f consists of L layers and the feature
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map in a layer l for a given image x is denoted as fl(x) and it has dimensions Cl ×Hl ×
Wl, where Cl, Hl, and Wl are the number of channels, height, and width of the feature
map, respectively. We take the channel-wise mean of the feature map and reduce the
dimensionality to Cl × 1, as also done in [22]. We denote the resulting Cl-dimensional
feature vector by f ′

l (x). We then estimate the marginal feature pdfs for each channel c
using KDE:

plc(x) ≈ p̂lc(x) =
1
M

M∑

i=1

K(f ′
lc(x) − f ′

lc(xi);σlc) (1)

where plc is the true marginal pdf of the features f ′
lc in channel c of layer l, p̂lc is the

estimate of the pdf, and K(u, v;σlc) = e−(u−v)2/σ2
lc is a 1D squared exponential kernel

with σlc being the kernel size. We estimate σlc using Silverman’s rule of thumb [29].
When using KDE, we use samples xi ∈ Xtr and thus model InD channel-wise pdfs
with p̂lc. For a given sample x, p̂lc(x) is the confidence score of channel c in layer l.

The advantage of estimating channel-wise pdfs over estimating layer-wise pdfs, as
was done in [22], is performing density estimation in 1D space instead of Cl−D space.
Typically, Cl can be very large in modern networks, and density estimation becomes
less accurate in high-dimensions [28], channel-wise estimation avoids this.

In order to evaluate plc in Eq. (1) for a new sample, ideally we need to store all the
InD training images in Xtr. In real-world applications where M is very large, storing
the entire Xtr may not be feasible and the summation over M images in Eq. (1) can
take very long. Improving the computational and memory efficiency of KDE-based
methods are possible by defining an unbiased estimator [9], which simply uses a random
subset of Xtr such that X̂tr = {xu1 , xu2 , . . . , xuN

} ⊂ Xtr where {u1, u2, . . . , uN} ⊂
{1, 2, . . . ,M} is a random subset of indices generated by sampling from a Uniform
density, U(1,M), without replacement and N << M . Using the random subset, we
replace Eq. (1) with the computationally more efficient unbiased estimator

plc(x) ≈ p̂lc(x) =
1
N

N∑

i=1

K(f ′
lc(x) − f ′

lc(xui
);σlc). (2)

In our experiments, we set N = 5000. In [8], we demonstrate results with different
choices of N .

Estimating marginal pdfs using Eq. (2) does not model dependencies between
channels. In the proposed method, we take into account such dependencies and
compute the final confidence score using a logistic regression classifier Mx =∑L

l=1

∑Cl

c=1 αlcp̂lc(x) where αlc are the weights that are learned as described next.
The role of the logistic regression model is to distinguish between InD and OOD

samples given the channel-wise confidence scores. Training for the weights αlc requires
having access to both InD and OOD images. Although the InD images, Xtr, are already
available, it is difficult to capture all possible images in Pout. Lee et al. [22] propose
using adversarial examples obtained by FGSM [10] as samples from Pout for hyperpa-
rameter tuning. We use adversarial examples as OOD samples to train logistic regres-
sion in the proposed method. After obtaining OOD samples Xadv

tr by applying adver-
sarial perturbation to the images in Xtr using FGSM, the logistic regression classifier
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is trained by using the confidence scores p̂lc of Xtr and Xadv
tr as inputs, and the out-

put labels are provided as positive for InD images (Xtr) and negative for the OOD
(Xadv

tr ) ones. Note that FGSM can work with any type of label that is for the task,
e.g., image-level label for classification, ground truth mask for segmentation and so
on. Therefore, using FGSM does not affect the task-agnostic nature of the proposed
method. We present further details on the FGSM method in [8].

3 Experiments and Results

3.1 Experimental Details

In the classification experiments, we use two InD datasets: CIFAR-10 and CIFAR-100
[20]1. We tested OOD detection performance of these models on four computer vision
datasets (SVHN [26], TinyImageNet (TIN) [5], LSUN [35], iSUN [34]2) as well as two
datasets obtained by random Gaussian and Uniform noise, respectively.

In the segmentation experiments, we use images from 2 publicly available datasets
for brain segmentation: Human Connectome Project (HCP) [30] and Autism Brain
Imaging Data Exchange (ABIDE) [7]. HCP dataset contains both T1w and T2w images
for each subject, while ABIDE dataset consists of T1w image from different imaging
sites. HCP T1w and HCP T2w datasets contain images from 47 patients and we split 21
for training, 5 for validation, and 21 for testing. There are T1w images from 37 patients
in both ABIDE Caltech T1w and ABIDE Stanford T1w datasets and we split 11, 5, 21
images for train, validation and test.

Using HCP and ABIDE datasets, we design 2 different experiments to evaluate
OOD detection performance on segmentation task. In the first experiment, we train a
UNet [27] architecture on ABIDE Caltech T1w images and use ABIDE Stanford T1w,
HCP T1w, and HCP T2w images as OOD. In the second experiment, we train the
UNet on HCP T1w images and use ABIDE Caltech T1w, ABIDE Stanford T1w, and
HCP T2w as OOD. We choose UNet as the network architecture since it is the most
common choice for medical image segmentation [3,19,27].

We use two quantitative measurements to evaluate the performance of OOD dete-
cion methods: FPR at 95% TPR and the Area Under the Receiver Operating Character-
istic curve (AUROC). In all evaluations, we take the InD as the positive class and OOD
as the negative class. The proposed method is implemented in PyTorch and we run all
experiments on a Nvidia GeForce Titan X GPU with 12 GB memory.

3.2 Results and Analysis

Results in Classification Tasks. We compare the proposed method with the Base-
line method proposed by Hendryks et al. [12], ODIN [23], Mahalanobis [22], MCD
[36], G-ODIN [15], and EBM [24] which are primarily designed for OOD detection
in classification tasks. We took the results of G-ODIN from the corresponding experi-
mental setting in the original paper (see Table 6 in [15]) since the code is not available.

1 Pretrained models: https://github.com/pokaxpoka/deep Mahalanobis detector.
2 TIN, LSUN, and iSUN are available at https://github.com/facebookresearch/odin.

https://github.com/pokaxpoka/deep_Mahalanobis_detector
https://github.com/facebookresearch/odin
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Table 1. Quantitative results on CIFAR-10 InD dataset.

OOD FPR at 95% TPR AUROC

Baseline/ODIN/Mahalanobis/MCD/G-ODIN/EBM/Proposed

SVHN 25.77/16.65/8.37/60.61/10.50/6.86/6.49 89.88/95.42/98.12/72.86/97.80/98.19/98.48

TIN 28.37/11.24/18.89/40.44/18.60/35.88/8.41 90.53/96.78/96.73/89.75/96.10/86.21/98.31

LSUN 28.31/10.30/19.61/34.46/9.10/21.62/3.80 91.09/97.06/96.77/91.15/98.00/92.50/99.01

iSUN 28.02/12.37/22.46/37.72/11.20/22.52/7.31 91.01/96.03/96.34/89.89/97.60/92.03/98.55

Gaussian 6.44/2.69/0.0/4.21/0.0/0.13/0.0 97.11/98.45/100.0/97.14/100.0/99.96/100.0

Uniform 9.24/4.16/0.0/13.17/0.0/ 0.0/0.0 96.04/97.78/100.0/92.69/100.0/100.0/100.0

Table 2. Quantitative results on CIFAR-100 InD dataset.

OOD FPR at 95% TPR AUROC

Baseline/ODIN/Mahalanobis/MCD/G-ODIN/EBM/Proposed

SVHN 55.73/24.76/15.53/73.33/44.90/45.49/17.46 79.34/92.13/97.01/64.92/93.20/88.93/95.44

TIN 58.97/33.74/24.33/56.95/23.50/70.04/7.64 77.01/88.32/95.04/85.53/95.90/75.11/98.38

LSUN 64.71/37.09/28.68/58.40/23.20/67.99/3.73 75.58/87.70/94.66/84.97/96.10/76.45/99.13

iSUN 63.26/38.21/29.46/64.32/24.70/70.11/6.07 75.68/86.73/94.02/83.46/95.70/76.57/98.75

Gaussian 58.43/39.41/0.0/10.78/0.0/0.0/0.0 55.85/72.04/100.0/94.02/100.0/100.0/100.0

Uniform 32.04/18.49/0.0/15.99/0.0/0.0/0.0 85.13/89.81/100.0/92.34/100.0/100.0/100.0

ODIN, Mahalanobis, MCD, and EBM use a validation set from target OOD samples to
tune hyperparameters and/or to build OOD detector. In our experiments, we use Xadv

instead of target OOD when running these methods for a fair comparison since target
OOD is usually not available in a real application. More details on how we run these
methods can be found in Sect. 3.2 in [8].

We present the OOD detection results when CIFAR-10 and CIFAR-100 datasets
are InD in Tables 1 and 2, respectively. The results in CIFAR-10 experiments demon-
strate that the proposed methods achieves better OOD detection performance than the
existing methods on all OOD datasets. In the experiments on CIFAR-100 dataset, our
method produces the best OOD detection results on all datasets except SVHN where it
achieves the second best results. The results on the classification tasks suggest that the
the proposed method improves the state-of-the-art OOD detection methods in almost
all cases.

Results in Segmentation Tasks. We present the OOD detection results when InD
datasets are ABIDE Caltech T1w and HCP T1w dataset in Tables 3 and 4, respectively.
The results demonstrate that the proposed method improves the existing methods in all
cases. Since Bishop [2] works on high-dimensional input space, it cannot achieve accu-
rate density estimation and produces poor OOD detection results as expected. Here, the
results of the self-supervised methods: SSL, RaPP, and Multitask SSL, were lower than
we expect, and we investigated further to interpret the results better. These methods
exhibit diminished performance because the self-supervised networks generalize sur-
prisingly well to OOD images. For example, the network trained on HCP T1w images
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Table 3. Quantitative results on ABIDE Caltech T1w InD dataset.

OOD FPR at 95% TPR AUROC

Baseline/Bishop/SSL/ RaPP/Multitask SSL/Proposed

ABIDE Stanford T1w 78.90/76.21/49.60/69.57/66.48/44.25 48.26/81.71/63.45/52.44/54.30/89.27

HCP T1w 88.06/79.72/63.51/87.20/76.58/42.93 39.30/75.83/55.13/40.11/45.35/93.96

HCP T2w 80.37/41.77/81.28/57.85/70.39/40.27 42.19/92.93/43.82/52.78/47.88/94.62

Table 4. Quantitative results on HCP T1w InD dataset.

OOD FPR at 95% TPR AUROC

Baseline/Bishop/SSL/ RaPP/Multitask SSL /Proposed

ABIDE Stanford T1w 59.25/100.0/62.96/67.01/45.06/44.78 71.34/39.02/84.43/67.07/83.78/90.42

ABIDE Caltech T1w 83.26/100.0/58.94/99.68/63.88/11.71 68.41/17.21/87.22/59.38/79.56/96.77

HCP T2w 47.55/94.98/76.89/47.94/61.62/18.77 72.88/62.12/57.79/70.56/73.39/95.60

for the SSL rotation task predicts the rotation angles with ≈ 75% accuracy for both InD
and OOD datasets. This holds for the case when we use ABIDE Caltech T1w as InD.
Analogously, the autoencoder trained for RaPP successfully reconstructs OOD images
and results diminished OOD detection accuracy. Note that the OOD detection accuracy
are lower in segmentation experiments compared to classification ones for the proposed
methods. We argue that this difference is due to having very large number of common
pixels in InD and OOD images from background for the dataset in the segmentation
experiments.

Table 5. Comparison between different combinations of density estimation methods (Gaussian
and KDE) with feature spaces (layer-wise and channel-wise) in terms of FPR at 95% TPR in
CIFAR-100 dataset.

Layer-wise Channel-wise

Gaussian (Mahalanobis) KDE Gaussian KDE (Proposed)

SVHN 15.53 24.09 12.00 17.46

TIN 24.33 34.08 13.90 7.64

LSUN 28.68 28.47 5.10 3.73

iSUN 29.46 33.49 7.50 6.07

3.3 Channel-Wise vs Layer-Wise and KDE vs Parametric Estimation

In the proposed method, we perform channel-wise KDE. Compared to the closest work
Mahalanobis [22], this introduces two changes in the density estimation, one in fea-
ture selection (layer-wise vs channel features) and the other in estimation methodology
(KDE vs Gaussian). In this section, we quantify the contribution of each change. To this
end, we perform OOD detection with all possible combinations. The results in Table 5
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demonstrate that performing channel-wise density estimation leads to a large improve-
ment on OOD detection accuracy compared to layer-wise density estimation. We argue
that this improvement is due to achieving more accurate density estimation in 1D space
with the channel-wise features. Dependencies between channels are taken into account
in the logistic regression model. We also observe that performing KDE on the channel-
wise features yields further improvements over using Gaussian in most cases. This is
expected since KDE is more flexible and can lead to more accurate density estimations.
We present further experiments to compare channel-wise vs layer-wise KDE in [8].

4 Conclusion

In this paper, we presented a task-agnostic OOD detection method that estimates feature
densities for each channel of a DNN using KDE. Features of a test image are evaluated
at the corresponding KDEs to obtain a confidence score per channel, which is expected
to be higher for InD images than OOD ones. These scores are combined into a final
score using logistic regression classifier, that is pre-trained using InD training images
and their adversarially perturbed versions. Being task-agnostic, the proposed method
can be applied to both classification and non-classification DNNs. We performed exten-
sive experiments on both classification and segmentation networks and compare them
with the state-of-the-art methods. The results demonstrate that the proposed method
that uses channel-wise KDE improves state-of-the-art in majority of the cases. Possible
research direction include performing experiments on 3D models and extending this
work for pixel-wise OOD detection.
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Abstract. Neural network architectures behave in unpredictable ways
when testing on inputs which do not resemble their training data. It is
valuable to detect any out-of-distribution (OOD) inputs to make any
overseers aware of the limitations of the model’s output. To address
this need, a large number of methods for detecting OOD inputs have
been proposed and tested on small datasets such as CIFAR10, SVHN,
or LSUN. The purpose of this study is to determine the effectiveness of
different methods for OOD detection on the domain of medical images.
We investigate three common OOD detection methods (Maximum Soft-
max Probability, Confidence Branch, and Outlier Exposure) and report
their effectiveness on widely used medical image datasets. We find that
OOD detection metrics are volatile and can have large changes in per-
formance in a short amount of training steps. Moreover, we also observe
that OOD detection is sensitive to the choice of hyperparameters. Our
code is reproducible at this link (https://github.com/oliverzhang42/
ood medical images).

Keywords: Out of distribution detection · Medical image processing ·
Deep learning

1 Introduction

Deep learning models [16] can provide high performance in a variety of appli-
cations, so long as the data seen at test time is similar to the training data.
However, when there is a distribution mismatch, deep neural network classifiers
tend to give high confidence predictions on anomalous test examples [23]. In
the field of medical imaging, identifying such distributional shifts is an essen-
tial building block for safely deploying machine learning models for the medical
community.

Several previous works seek to address these problems by giving deep neural
network classifiers the ability to assign anomaly scores to inputs [1,4,9,10,19,
21]. So far, most investigations have been carried out on toy datasets such as
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CIFAR-10 and CIFAR-100 [15], TinyImageNet [27], LSUN [28], MNIST [18],
Gaussian Noise, and Uniform Noise as out-of-distribution data. Yet we argue
that OOD detection performance on these smaller, simpler datasets does not
necessarily reflect OOD detection performance on medical images. Importantly,
medical imaging data differs from the aforementioned datasets in four ways.
In contrast to natural image analysis, medical analysis must often deal with
orientation invariance, high variance in feature scale (in x-ray images), and local
specific features. Furthermore, medical images usually require larger image sizes
for useful predictions (e.g., 224 pixels by 224 pixels rather than 32 pixels by 32
pixels).

In this work, we analyze the performance of several common OOD detection
methods on medical images. First, we analyze the performance of three pop-
ular methods on large-scale (i.e., 224 by 224) medical datasets. We show that
both Confidence Branch and Outlier Exposure outperforms the baseline Maxi-
mum Softmax Prediction. Outlier Exposure and Confidence Branch each have
datasets where they outperform the other. Second, we show that each method’s
OOD detection performance is sensitive to hyperparameter tuning. Third, we
demonstrate that the OOD detection metrics are moderately volatile and that
volatility depends on both the dataset and the OOD detection method. Finally,
we point out the need for a larger investigation of OOD volatility which covers
more algorithms than our own.

2 Related Works

2.1 OOD Detection on Medical Images

In recent years, there has been limited work on applying existing OOD methods
to medical images. Most papers [1,4,9,10,19,21] on OOD detection propose their
own methods and test them on toy datasets such as CIFAR-10, CIFAR-100,
TinyImageNet, LSUN, iSUN, MNIST, Gaussian Noise, and Uniform Noise. Of
the other papers which consider medical images, most also seek to propose their
own methods, some on specific domains (skin lesions [20], brain tumors [26], or
breast cancer lymphoma [22]) and others more generally [6]. As a result, their
papers only analyze their own methods rather than evaluating common methods’
performance or training dynamics on common datasets.

An exception to this rule is Cao et al. [3], which reports the results of
Classifier-only methods (such as Gaussian mixture, KNN classifier, and ODIN)
and Auxiliary Models (which use autoencoders) on some medical datasets. This
paper can be viewed as a broad comparison of many different approaches to
OOD detection. Our paper, in contrast, analyzes a few approaches in greater
depth and provides insight into the training dynamics (i.e., the volatility) of
OOD detection methods. Moreover, this paper covers two methods not present
in their comparison: Confidence Branch and Outlier Exposure.
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2.2 OOD Methods Analysis

Additionally, our work relates to some analysis done elsewhere. Roady et al. [25]
analyze the effectiveness of open-set methods on large-scale datasets, specifically
ImageNet. We, like them, increase the difficulty and size of the task. However, the
way in which our tasks become more difficult are different. ImageNet is difficult
because it requires understanding many different classes and modalities. Medical
images, on the other hand, requires making precise and accurate predictions
when the signal is difficult to reconstruct.

The second work by Henriksson et al. [11] analyzes the training dynamics of
OOD metrics on CIFAR10, TinyImageNet, FakeData, and SVHN. They identify
the same volatility that we do, and we expand on their analysis in two ways.
First, we provide metrics to quantify the volatility of OOD detection, and second,
we show that this volatility exists on additional datasets and methods.

3 Materials and Methods

3.1 OOD Detection Methods

We chose to investigate three OOD detection methods on medical images–
Maximum Softmax Probability, Confidence Branch, and Outlier Exposure. Max-
imum Softmax Probability, is a baseline method which involves taking the max-
imum from the final softmax classification layer as the model’s confidence [9].
Confidence Branch, leverages an auxiliary neural network branch to output its
confidence level [4]. In particular, the model is penalized but is given a hint if
it outputs low confidence. Outlier Exposure, involves exposing a classifier to an
auxiliary OOD dataset and training the classifier to be uncertain on this dataset
[10]. During testing time, a separate OOD dataset is used to test whether our
classifier can generalize to unknown anomalies as well.

We chose these methods because they are widely used, and in future work we
hope to expand our analysis to other methods, temperature scaling methods [21],
deep ensembles [17], Monte-Carlo dropout [5], and many of the domain-specific
algorithms [20,22,26].

3.2 Medical Image Datasets

We use four datasets in our experiments. First, Diabetic Retinopathy (DR) pro-
vides a set of around 89,000 high-resolution retina images [2]. A clinician has
rated the presence of diabetic retinopathy in each image on a scale of 0 to 4.
Second, Musculoskeletal Radiographs (MURA) is a dataset of around 40,000
bone X-rays [24]. Algorithms are tasked with detecting medical abnormalities
in musculoskeletal X-rays, including seven body parts: elbow, finger, forearm,
hand, humerus, shoulder and wrist. The task is binary only asking whether the
provided X-ray is normal or abnormal. Third, MIMIC Chest X-Ray (MIMIC-
CXR) is a large publicly available dataset of chest radiographs in DICOM format
[13]. The dataset contains 377,110 images corresponding to 227,835 radiographic
studies performed. We make this task binary: findings or no findings. Fourth,
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RNSA BoneAge provides hands x-rays of children, both male and female [7].
The target is to correctly identify the age of a child from the x-ray in months.
Around 12,000 samples are available for 228 possible answers. Usually seen as a
regression problem, we only use it as out-of-domain. To visualize the data, we
include a figure in the appendix which displays example images from each data.

3.3 Evaluation Metrics

To be consistent with the previous works [4,9,10,21], we use the following out-of-
distribution metrics to evaluate our trained detectors. We follow previous work
[9] and use in-domain images as positives.

FPR95: the false positive rate of OOD examples when true positive rate of
in-distribution examples is at 95%.

Detection Error: the misclassification probability when TPR is 95%, given by
0.5× (1−TPR) + 0.5× FPR, where positive and negative examples have equal
probability of appearing in the test set.

AUROC: the Area Under the Receiver Operating Characteristic curve, which is
a threshold-independent metric. The ROC curve depicts the relationship between
TPR and FPR. The AUROC can be interpreted as the probability that a positive
example is assigned a higher detection score than a negative example.

4 Experiments

To understand the performance of the OOD detection methods on real-world
datasets, we trained each method on each of the Diabetic Retinopathy, MIMIC-
CXR, and MURA datasets [2,13,24]. The BoneAge dataset was used exclusively
for OOD detection [7]. For each training dataset, we balanced the labels such
that each class contained the same number of training examples. In total, we keep
5,000, 28,000 and 50,000 training/validation samples for the Diabetic Retinopa-
thy, MURA and MIMIC-CXR dataset. When acting as out-of-distribution, each
dataset has 5000 samples.

4.1 Common Details

In each run, our network consists of a default ResNet50 [8] as a convolutional
base, one dropout layer after the global average pooling with p = 0.5, and one
final feedforward layer with softmax. We train the network from scratch using an
Adam optimizer [14] on a cross-entropy loss with learning rate plateau scheduler
and data augmentation. For further details, see the appendix.
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4.2 Confidence Branch

For the Confidence Branch models, we used a hint rate of 0.5. Moreover, we did
not use the budget hyperparameter but rather had a fixed lambda throughout
training. To determine what would be a fitting lambda, we did hyperparameter
tuning on lambda, with options 0.05, 0.1, and 0.5. In total, we ran 45 models
with five models for each dataset hyperparameter pair. We found that λ = 0.1
worked best for the Diabetic Retinopathy dataset, while λ = 0.5 worked best for
MIMIC-CXR and MURA. Check Sect. 5.2 for more details.

4.3 Outlier Exposure

For the Outlier Exposure models, we also performed some hyperparameter tun-
ing. We tried out lambda equals 0.05, 0.1, and 0.5 and found that lambda equals
0.5 worked the best. Further details can be found in Sect. 5.2. In each of our
Outlier Exposure experiments, the model was given images from the BoneAge
dataset as examples of out-samples. For that reason, OOD detection performance
on DR, MIMIC-CXR, and MURA are more representative of its real-world per-
formance. Finally, for Outlier Exposure, we found that the method worked only
when batch normalization [12] was not actively tracking running statistics.

5 Results

Table 1 displays the results averaged across five runs. We compare between the
baseline model, confidence branch, and outlier exposure.

Table 1. OOD detection averaged over five runs

In-distribution
dataset

Out-distribution dataset In-domain accuracy FPR at 95% TPR ↓ Detection error ↓ AUROC ↑

Baseline/Confidence Branch/Outlier Exposure

DR (5 classes) MIMIC-CXR 0.45/0.38/0.41 0.95/0.08/0.34 0.12/0.03/0.07 0.61/0.99/0.93

MURA 0.98/0.12/0.21 0.12/0.03/0.05 0.44/0.96/0.96

BoneAge 0.97/0.08/0.10 0.16/0.02/0.04 0.35/0.97/0.98

MIMIC-CXR
(2 classes)

DR 0.77/0.77/0.73 0.83/0.82/0.22 0.73/0.73/0.20 0.83/0.73/0.96

MURA 0.91/0.58/0.08 0.48/0.31/0.06 0.72/0.77/0.98

BoneAge 0.91/0.68/0.04 0.54/0.41/0.04 0.70/0.75/0.99

MURA
(2 classes)

MIMIC-CXR 0.68/0.67/0.61 0.98/0.93/0.95 0.50/0.48/0.50 0.33/0.65/0.55

DR 1.00/0.27/0.96 0.88/0.25/0.85 0.08/0.85/0.54

BoneAge 0.94/1.00/0.29 0.56/0.57/0.19 0.57/0.35/0.95

5.1 Performance

Accuracy. In every case, the baseline model was more accurate compared
to Confidence Branch or Outlier Exposure. Outlier exposure was consistently
four to seven percentage points behind the baseline. On the other hand, Con-
fidence Branch’s performance varied from dataset to dataset. On MIMIC-CXR
and MURA, it only lagged behind the baseline model at most one percentage
point, whereas on Diabetic Retinopathy, it performed worse by seven percentage
points.
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OOD Detection. Conversely, both the Confidence Branch and Outlier Expo-
sure models consistently outperformed the baseline model in OOD detection,
often by very large margins. Confidence Branch and Outlier Exposure therefore
make a sacrifice in accuracy to gain much better OOD detection. When com-
pared to each other, Confidence Branch and Outlier Exposure each do better on
different in-distribution datasets. In these experiments, Confidence Branch out-
performs Outlier Exposure on Diabetic Retinopathy and MURA, while Outlier
Exposure outperforms Confidence Branch on MIMIC-CXR. Neither can outper-
form the other; instead, both are competitive options worth testing.

5.2 Effects of Hyper Parameters

In our analysis, we analyze the performance of both Confidence Branch and
Outlier Exposure when their newly introduced hyperparameter, λ was equal to
0.05, 0.1, and 0.5. All other hyperparameters remain constant.

Accuracy. We found that tuning each algorithm’s newly introduced hyperpa-
rameter made a small difference on the average accuracy across the five runs.
Given an algorithm and a dataset, tuning the hyperparameter only provided
gains of 1–2 percentage points in accuracy.

OOD Detection. Instead, we found that tuning the new hyperparameters
made a much bigger impact on the OOD detection. For the Confidence Branch
models, λ = 0.5 outperformed the second-best option by 0.15 on the MIMIC-
CXR dataset and 0.32 on the MURA dataset. On the retina dataset, λ = 0.1
was much more stable, outperforming λ = 0.05 by 0.2 and λ = 0.5 by 0.76. For
Outlier Exposure, λ = 0.5 was optimal for MIMIC-CXR and DR, outperforming
the second-best option by 0.34 and 0.46. Outlier Exposure did not solve MURA,
with all runs having FPR95 above 0.9. Figure 1 helps visualize these results.

(a) Confidence Branch (b) Outlier Exposure

Fig. 1. Out of distribution detection changes significantly as lambda varies.
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5.3 Volatility

We observe that OOD detection metrics can be volatile, especially with Con-
fidence Branch. For instance, Fig. 2 shows a run using Confidence Branch and
λ = 0.1 trained on the retina dataset. We can see that FPR95 ranges from 1.0
to 0.0 to 1.0 within the span of five epochs (epochs 12–16). Likewise, these pat-
terns are inverted with AuROC: when the FPR at 95 TPR rises, the AuROC
falls and vice versa. These graphs demonstrate that the OOD detection metrics
are volatile. One epoch change an exemplary OOD detector to a poor one.

(a) FPR95 (b) AuROC

Fig. 2. OOD detection metrics can be volatile.

Volatility Across Methods and Datasets. We try to quantify this volatility.
In particular, for each method and in-distribution dataset pair, we calculate the
proportion of training epochs which change FPR95 by 25% (Table 2).

Table 2. Proportion of epochs which change FPR95 by 25%

Retina Mimic-CXR MURA Average

Out. exposure 8.7 15.8 4.0 9.5

Conf. branch 26.9 20.7 9.3 19.0

From the table we can see that between 4% and 26.9% of training epochs have
significant shifts in FPR95. Moreover, volatility was different based on choice of
method and dataset. For instance, Confidence Branch was much more volatile
compared to Outlier Exposure, with 9.5% more epochs having such shifts.

Analysis of Volatility. Intuitively, we expect OOD metrics to be moderately
volatile, as the model’s OOD performance does not factor directly into its train-
ing. We hypothesize that a lack of consistent optimization pressure on OOD
performance leads to volatility.
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Our hypothesis may explain why Outlier Exposure has less volatile OOD
detection than Confidence Branch. Outlier Exposure attempts to incorporate
OOD performance directly into its loss function by providing an example class
of OOD images. The consistent optimization pressure may help stabilize OOD
performance. In constrast, Confidence Branch only trains on in-domain exam-
ples, with the hope that the model will recognize its uncertainty on OOD images.
With Confidence Branch, uncertainty on OOD images is therefore a byproduct
of the training process and is not directly accounted for in the loss function. This
may account for the volatility in Confidence Branch’s OOD performance.

Further Study. The volatility of the OOD detection methods warrants further
study. We only found one other paper discussing this volatility [11]. We hypoth-
esize that the volatility of OOD detection depends both on the complexity of
the dataset as well as the OOD detection technique. In future work, we hope to
expand this analysis to cover more datasets and more OOD detection methods.

6 Conclusion

In this paper, we have applied three common out-of-distribution detection tech-
niques to medical images. We show that both Confidence Branch and Outlier
Exposure outperform the Maximum Softmax Probability baseline model in OOD
detection, but suffer small losses in accuracy. We also show that hyperparameters
have a large effect on the OOD detection performance of both Confidence Branch
and Outlier Exposure. Finally, we demonstrate that OOD detection performance
can be volatile. In future work, we hope to continue to study the application of
OOD detection to medical images, especially the volatility which arises from
training on medical images.
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Abstract. Automated image analysis of skin lesions has potential to
improve diagnostic decision making. A clinically useful system should
be selective, rejecting images it is ill-equipped to classify, for exam-
ple because they are of lesion types not represented well in training
data. Furthermore, lesion classifiers should support cost-sensitive deci-
sion making. We investigate methods for selective, cost-sensitive clas-
sification of lesions as benign or malignant using test images of lesion
types represented and not represented in training data. We propose EC-
SelectiveNet, a modification to SelectiveNet that discards the selection
head at test time, making decisions based on expected costs instead.
Experiments show that training for full coverage is beneficial even when
operating at lower coverage, and that EC-SelectiveNet outperforms stan-
dard cross-entropy training, whether or not temperature scaling or Monte
Carlo dropout averaging are used, in both symmetric and asymmetric
cost settings.

1 Introduction

Automated image analysis of skin lesions has great potential to improve diag-
nostic decision making and efficiency of clinical workflows in dermatology and
primary care. Lesion classifiers that produce class probability distributions could
be used to estimate the expected costs of clinical decisions such as whether or
not to refer a patient, and thus inform effective decision making. Costs associ-
ated with mis-classification are usually asymmetric: deciding that a skin lesion
is benign when it is really malignant is more costly than deciding it is malignant
when it is benign. Optimal decision making requires predicted class probabili-
ties to be well-calibrated. In addition, a clinically useful system should ascertain
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whether it has been sufficiently well trained to deal with the image under inspec-
tion. This is important for robustness and clinical usability. Classifiers should
be selective, rejecting images they are ill-equipped to deal with; in particular,
not all lesion types will be represented well in training data. Here we investi-
gate methods for selective, cost-sensitive skin lesion classification. We focus on
binary classification of malignant versus benign lesions using an experimental
setup with test data from disease types represented in the training data as well
as types not represented in the training data. Images were sourced from the ISIC
2019 data set [3,4,23].

We use empirical coverage and selective cost to evaluate performance and
stress that selection and classification decisions must take into account asymme-
try of mis-classification costs in the diagnostic setting (Sect. 3). We propose a
modification to SelectiveNet [9] which we call EC-SelectiveNet (Sect. 4). Selec-
tiveNet learns representations targeting expected image rejection rates by using
two additional heads, a selection head and an auxiliary head, in addition to the
usual predictive head; EC-SelectiveNet discards these additional heads at test
time and makes selection decisions based on expected costs instead.

We provide empirical evidence that training selective networks for full cover-
age works well on skin lesion images, even when the desired coverage is lowered,
somewhat counter to expectation (Sect. 5). We show that EC-SelectiveNet out-
performs corresponding cross-entropy trained networks in both asymmetric and
symmetric cost settings, whether or not temperature scaling [10] or Monte Carlo
dropout averaging [8] are used (Sect. 5).

2 Background

AI systems for telediagnosis with performance comparable to human dermatolo-
gists have been demonstrated in some settings [1,7,11–13,16], providing evidence
that deep learning can, if appropriately designed and integrated, assist diagnostic
decision making effectively. However, deep learning models often overfit, result-
ing in over-confident predictions, and can struggle to decide which lesion images
they are equipped to classify reliably [17]. Nevertheless, it has been noted that
simply thresholding the maximum softmax response can be effective for rejecting
images and reducing mis-classifications [14].

MC-Dropout [8] can be used to quantify uncertainty. It has been used in med-
ical image analysis [18] including estimation of lesion segmentation quality [6]
and provision of selection scores for active learning [2]. It uses dropout [15] at
inference time, performing M forward passes of the model f on an image, x. Each
pass is treated as a sample in a Bayesian approximation of a Gaussian process.
Predictions are averaged to give an expected prediction ŷ = 1

M

∑M
m=1 fm(x).

Measures of uncertainty such as sample variance can also be calculated.
Temperature scaling can be used to improve calibration of class probabilities

predicted by a network [10]. This can be important when making cost-sensitive
decisions. Mozafari et al. [19] used temperature scaling with skin lesions and
indicated potential hazards when working with noisy validation data. Nixon et
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al. [20] investigated calibration metrics and used temperature scaling. Tempera-
ture scaling [10] applies a scaling factor T to the output logits: ŷi = exp(

zi
T )

∑
j exp(

zj
T )

.

The value of T is calculated by minimizing calibration error on a validation set.
SelectiveNet [9] jointly learns a classifier and selection function so that the

deep representation can be learned with the expectation that some proportion
of images should be rejected. We describe this in Sect. 4.

3 Robust Selective Classification

Selective classification is performed using a selection function and a prediction
function. The selection function, σ(x), indicates whether or not an image x
should be rejected, in which case σ(x) = 0, or selected, in which case σ(x) =
1. Given a data set, S, of N images, the empirical coverage, φ(σ|S), is the
proportion of images selected for classification, i.e., φ(σ|S) = 1

N

∑N
i=1 σ(xi). A

classification decision is made for each selected image based on the classifier’s
prediction function; each such decision incurs a cost. The empirical selective cost,
is this cost averaged over the selected images.

In general, mis-classification costs can be specified as a matrix C, where Cjk

is the cost of assigning class k when the true class is j. These costs depend on the
deployment setting and specifically on factors such as health economics, quality
of life considerations, and available treatments. Many reported experiments on
classification of dermatology images implicitly use C = 1 − I where 1 is a
matrix of ones and I is the identity matrix. This is unrealistic, as costs are in
fact far from symmetric. Indeed, many medical classification tasks have highly
asymmetric costs.

In this paper, we consider binary classification with class labels malignant
(class 1) and benign (class 0). In a setting where mis-classifying a malignant
lesion as benign is an order of magnitude more costly than mis-classifying a
benign lesion as malignant, we have C1,0 = 10.0, C0,1 = 1.0, C1,1 = 0.0, C0,0 =
0.0. These values for the asymmetric costs were deemed reasonable through
discussion with dermatolgists. The values used should however vary depending
on the clinical setting, and further work should be done to investigate this in
consultation with general practitioners, patient representative groups and health
economists. Here we run experiments under different settings with the cost of
mis-classifying a benign lesion as malignant, C1,0, set to 1 (symmetric costs), 10,
and 50 (highly asymmetric costs).

We use cost-coverage curves, showing the trade-off between cost incurred
and coverage achieved, to characterize the performance of selective classifiers. A
strongly performing selective classifier will have low cost and high coverage. As
well as benign and malignant lesions from disease types present during training,
we also test using images of benign and malignant lesions of disease types not
represented in the training data. A robust system should either reject such data
or maintain low selective cost on it.



Robust Selective Classification of Skin Lesions with Asymmetric Costs 115

4 SelectiveNet and EC-SelectiveNet

Deep representations can be learned specifically for a situation in which some
proportion of data are expected to be rejected. SelectiveNet [9] trains a network
end-to-end for a specific target coverage. This is enabled by adding two extra
heads to the encoder, in addition to the standard predictive head p: a selective
head g that outputs a selection score, and an auxiliary head a that outputs
predictions used within the loss function. At test time, select/reject decisions
are based on the output of the selective head. Here we propose the Expected-
Costs SelectiveNet (EC-SelectiveNet) which modifies the network at test time.
Specifically, the additional heads are discarded after training and select/reject
decisions are based instead on expected costs computed using predicted class
probabilities.

4.1 SelectiveNet

The SelectiveNet loss function (Eq. 1), is a combination of two functions (Lp,g

and La) weighted with a hyper-parameter α to control the relative importance
of coverage optimization [9]:

L = αLp,g + (1 − α)La (1)

The first term uses predictive and selective heads (Eq. 2) and combines cross-
entropy loss, l, with coverage. It uses hyper-parameter t as the target coverage for
the model and λ to control the importance of this target coverage. The auxiliary
head uses a standard cross-entropy loss for La, and is used to encourage the
model to learn robust features from the training data.

Lp,g =
1

Nφ(g)

N∑

i=1

l(p(xi), yi)g(xi) + λ max(t − φ(g|S), 0)2 (2)

4.2 Selective Classification Based on Expected Costs

Given any trained classifier that outputs a (calibrated) posterior distribution
P (c|x) over classes given an image x, the expected costs of classification and
rejection decisions can be used to decide whether to select and how to classify
the image. Specifically, in the case of two classes, c = 0 (benign) and c = 1
(malignant), the expected cost of deciding benign is R0 = C10P (c = 1|x) and
the expected cost of deciding malignant is R1 = C01P (c = 0|x). We should
decide that x is in class 1 if R1 < R0, otherwise x is in class 0. Suppose that by
rejecting an image we incur a cost θ. An optimal decision rule is then to reject
x if min(R0, R1) > θ and otherwise to decide the class with the lower expected
cost. Note that a cost coverage plot can be generated by varying θ.
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4.3 EC-SelectiveNet

Although SelectiveNet directly outputs a selection score, we propose to base
selection instead on expected costs computed from the predictive head. We refer
to this method as EC-SelectiveNet. The selective head is used during training to
guide representation learning but, unlike [9], we discard the selective head along
with the auxiliary head at test time.

Optionally, we apply temperature scaling to improve calibration to assist
reliable estimation of expected costs. Temperature scaling was applied to the
logit outputs of the predictive head p.

5 Experiments

Dataset and Implementation Setup. We used data from the ISIC Chal-
lenge 2019 [3,4,23] which consists in total of 25,331 images covering 8 classes:
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign
keratosis, dermatofibroma, vascular lesion, and squamous cell carcinoma. We
compiled two datasets which we refer to as Sin and Sunknown.

Sin: These data were the melanoma, melanocytic nevus and basal cell carci-
noma (BCC) images from the ISIC 2019 data. They were assigned to two classes
for the purposes of our experiments: malignant (melanoma, BCC) and benign
(melanocytic nevus). Sin was split into training, validation, and test sets con-
sisting of 12432, 3316, and 4972 images respectively.

Sunknown: These data consisted of 4,360 ISIC 2019 images from classes that
were not present in Sin, namely benign keratosis, dermatofibroma, actinic ker-
atosis, and squamous cell carcinoma. They were assigned to malignant or benign.
Sunknown was not used for training but for testing selective classification perfor-
mance on images from disease types not represented in the training data.

We refer to the union of the Sin and Sunknown test sets as Scombined. Figure 1
shows example images.

(a) Sin (b) Sunknown

Fig. 1. Example images from the test data sets Sin and Sunknown.

All code used for experiments can be downloaded from the project Github
repository1 along with reproduction instructions, trained models and expanded

1 GitHub Repository: https://github.com/UoD-CVIP/Selective Dermatology.

https://github.com/UoD-CVIP/Selective_Dermatology
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testing metrics. For all experiments we use an EfficientNet [22] encoder with
compound coefficient 7, pre-trained on ImageNet [5]. Models were trained using
stochastic gradient descent. Cross-entropy loss was used with a two-output soft-
max. SelectiveNet hyperparameters were α = 0.5 and λ = 32 as recommended
in [9]. MC-Dropout used a dropout rate of 50% and M = 100 samples. Learning
rates were adjusted using a cyclical scheduler [21] that cycled between 10−4 and
0.1. Batch size was 8 to enable each batch to fit on our Nvidia RTX 2080TI
GPU. Each model was trained for a total of 25 epochs with the weights from
the model with the lowest validation loss used for testing.

SelectiveNet: Effect of Target Coverage. We examined the effect of the
SelectiveNet target-coverage parameter, t, when SelectiveNet’s selection head is
used to make selection decisions. Figure 2 shows cost-coverage curves for values
of t ranging from 0.7 to 1.0. These are plotted for Sin, Sunknown, and Scombined.

We expected to find, in accordance with the intended purpose of this param-
eter, that lower values of t would be effective at lower coverage. On the contrary,
training with t = 1.0 incurred the lowest test cost on Sin for coverage values as
low as 0.2. Costs incurred on Sunknown are higher as expected, and curves show
no clear ordering; the t = 1.0 curve, however, does show a clear reduction in cost
as coverage is reduced.

Does SelectiveNet Training Help? The extent to which the target coverage
t is enforced is controlled by the weighting parameter λ. Even when set to target
full coverage (t = 1.0), the model can trade off coverage for cost in extreme cases
during training. For this reason, results obtained by SelectiveNet with t = 1.0 will
differ from those obtained by training a network without selective and auxiliary
heads. We trained such a network using cross-entropy loss, retaining only the
softmax predictive head. It made selection decisions at test time based on the
maximum softmax output. The resulting cost-coverage curve is plotted in Fig. 2
(labelled ‘softmax’). SelectiveNet trained with a target coverage of 1.0 performed
better than a standard CNN with softmax for any coverage above 0.4.

MC-Dropout, Temperature Scaling, and EC-SelectiveNet. We investi-
gated the effect of MC-Dropout on selective classification, using the mean and
variance of the Monte Carlo iterations as selection scores, respectively. Figure 3
compares the resulting cost-coverage curves with those obtained using a net-
work with no dropout at test time (‘softmax response’). On Sin, using the MC-
Dropout average had negligible effect whereas MC variance performed a little
worse than simply using the maximum softmax response. In contrast, gains in
cost were obtained by MC variance on Sunknown for which model uncertainty
should be high.

Figure 4 plots curves for a softmax network using temperature scaling
(trained with cross-entropy loss). Although temperature scaling improved cali-
bration it had negligible effect on cost-coverage curves. Figure 4 also shows curves
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Fig. 2. Cost-coverage curves for SelectiveNets trained with different target coverages.
From left to right: Sin, Sunknown and Scombined.

Fig. 3. Cost-coverage curves using MC-Dropout on Sin, Sunknown, and Scombined

obtained using EC-SelectiveNet in which the selection head is dropped at test
time. EC-SelectiveNet showed a clear benefit on both Sin and Sunknown com-
pared to training a softmax network without the additional heads.

Fig. 4. Cost-coverage curves. From left to right: Sin, Sunknown and Scombined.
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Asymmetric Costs. We investigated the effect of asymmetric mis-classification
costs. Figure 5 compares SelectiveNet with EC-SelectiveNet (t = 1.0). They
performed similarly when costs were symmetric with SelectiveNet achieving a
small cost reduction (approximately 0.015) at middling coverage. However, in the
more realistic asymmetric settings, EC-SelectiveNet achieved cost reductions of
approximately 0.1 at all coverages below about 0.8.

Fig. 5. Cost-coverage curves for SelectiveNet and EC-SelectiveNet. From left to right:
C1,0 = 1 (symmetric costs), 10, and 50 (highly asymmetric costs)

Figure 6 plots the effect of temperature scaling. Both the softmax response
and temperature scaling selection methods are based on the expected costs. The
effect of temperature scaling was negligible with symmetric costs. In the asym-
metric settings it had a small effect on selective classification. This effect was
similar whether using EC-SelectiveNet (t = 1.0) or standard network training
with cross-entropy loss. In both cases, temperature scaling increased costs at
high coverage and reduced costs at low coverage. Figure 6 also makes clear the
relative advantage of EC-SelectiveNet.

Fig. 6. Cost-coverage curves for cross-entropy training and EC-SelectiveNet combined
with temperature scaling. From left to right: C1,0 = 1 (symmetric costs), 10, and 50
(highly asymmetric costs)
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6 Conclusion

This study set out to better understand selective classification of skin lesions
using asymmetric costs. In a primary care setting, for example, the cost of mis-
classifying a life-threatening melanoma is clearly greater than that of misclas-
sifying a benign lesion. We also investigated selective classification with lesion
types not adequately represented during training. Generally, EC-SelectiveNet
was effective for robust selective classification when trained with a target cover-
age at (or close to) 1.0. EC-SelectiveNet produced similar or better cost-coverage
curves than SelectiveNet.

MC-Dropout averaging made little difference but we note that variance gave
encouraging results on Sunknown. Temperature scaling to calibrate output prob-
abilities worsened costs at higher coverage. Future work should investigate use
of asymmetric cost matrices in multi-class settings, as well as how so-called out-
of-distribution detection methods can help in the context of selective skin lesion
classification as investigated here.
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Abstract. Image classification models deployed in the real world may
receive inputs outside the intended data distribution. For critical appli-
cations such as clinical decision making, it is important that a model
can detect such out-of-distribution (OOD) inputs and express its uncer-
tainty. In this work, we assess the capability of various state-of-the-art
approaches for confidence-based OOD detection through a comparative
study and in-depth analysis. First, we leverage a computer vision bench-
mark to reproduce and compare multiple OOD detection methods. We
then evaluate their capabilities on the challenging task of disease classi-
fication using chest X-rays. Our study shows that high performance in a
computer vision task does not directly translate to accuracy in a medical
imaging task. We analyse factors that affect performance of the methods
between the two tasks. Our results provide useful insights for developing
the next generation of OOD detection methods.

1 Introduction

Supervised image classification has produced highly accurate models, which can
be utilized for challenging fields such as medical imaging. For the deployment
of such models in critical applications, their raw classification accuracy does not
suffice for their thorough evaluation. Specifically, a major flaw of modern clas-
sification models is their overconfidence, even for inputs beyond their capacity.
For instance, a model trained to diagnose pneumonia in chest X-rays may have
only been trained and tested on X-rays of healthy controls and patients with
pneumonia. However, in practice the model may be presented with virtually
infinite variations of patient pathologies. In such cases, overly confident models
may give a false sense of their competence. Ideally, a classifier should know its
capabilities and signal to the user if an input lies out of distribution.

In this work, we first explore confidence- and distance-based approaches for
out-of-distribution (OOD) detection on a standard computer vision (CV) task

c© Springer Nature Switzerland AG 2021
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and afterwards evaluate the best OOD detection methods on a medical bench-
mark dataset. Moreover, we provide a set of useful insights for leveraging OOD
approaches from computer vision to challenging medical datasets.

Related Work: OOD detection methods can be divided in two categories. The
first consists of methods that build a dedicated model for OOD detec-
tion [25]. Some works accomplish this via estimating density p(x) of ‘normal’
in-distribution (ID) data and then classify samples with low p(x) as OOD [10].
However, learning p(x) accurately can be challenging. An alternative is to learn
a decision boundary between ID and OOD samples. Methods [27] attempt this
in an unsupervised fashion using only ‘normal’ data. Nonetheless, supervised
alternatives have also been introduced for CV and medical imaging [6,24,29],
exposing the OOD classifier to OOD data during training. Such OOD data
can originate from another database or be synthesized. However, collecting or
synthesising samples that capture the heterogeneity of OOD data is challeng-
ing. Another approach for creating OOD detection neural networks (NNs) is
reconstruction-based models [8,21]. A model, such as an auto-encoder, is trained
with a reconstruction loss using ID data. Then, it is assumed that the recon-
struction of unseen OOD samples will fail, thus enabling their detection. This
approach is especially popular in medical imaging research [1,22,23,26,32], likely
because it produces a per-pixel OOD score, allowing its use for unsupervised seg-
mentation. It has shown promise for localisation of salient abnormalities but does
not reach the performance of supervised models in more challenging tasks.

The second category of OOD detection methods, which this study focuses
on, enhances a task-specific model to detect when an input is OOD. These
approaches are commonly based on confidence of model predictions. They
are compact, integrated straight into an existing model, and operate in the task-
specific feature or output space. Their biggest theoretical advantage in compari-
son to training a dedicated OOD detector is that if the main model is unaffected
by a change in the data, the OOD detector also remains unaffected. A subset
of confidence-based methods has a probabilistic motivation, exploring the use
of the predictive uncertainty of a model, such as Maximum Class Probability
(MCP) [5], MCDropout [2] or ensembling [12]. Others derive confidence-scores
based on distance in feature space [31], or learn spaces that better separate sam-
ples via confidence maximization [14] or contrastive losses [28,31]. In medical
imaging, related work is mostly focused on improving uncertainty estimates by
DNNs [17,30], or analysing quality of uncertainty estimates in ID settings [9,19].
In contrast, investigation of OOD detection based on model confidence is limited.
A recent study compared MCDropout and ensembling [16] for medical imaging,
finding the latter more beneficial. The potential of other OOD detection methods
for medical imaging is yet to be assessed adequately, despite their importance
for the field.

Contributions: This study assesses confidence-based methods for OOD detec-
tion. To this end, we re-implement and compare approaches, shown in Fig. 1, in a
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common test-bed to accomplish a fair and cohesive comparison.1 We first evalu-
ate those approaches on a CV benchmark to gain insights for their performance.
Then, we benchmark all approaches on real-world chest X-rays [7]. We find that
the performance of certain methods varies drastically between OOD detection
tasks, which raises concerns about their reliability for real-world use, and we
identify ODIN as consistently high performing in our tasks. Finally, we conduct
an empirical analysis to identify the factors that influence the performance of
these methods, providing useful insights towards building the next generation of
OOD detection methods.

2 Out-of-Distribution Detection Methods

Fig. 1. Overview of the OOD detection methods studied: maximum class probability
(baseline), Mahalanobis distance, ODIN and DUQ.

We study the following methods for OOD detection in image classification:

Maximum Class Probability (MCP) [5]: Any softmax-based model pro-
duces an estimate of confidence in its predictions via its class posteriors. Specif-
ically, the probability maxy p(y|x) of the most likely class is interpreted as an
ID score and, conversely, low probability indicates possible OOD input. Even
though modern NNs have been shown to often produce over-confident softmax
outputs [3], this method is a useful baseline for OOD detection.

Mahalanobis Distance [13]: Lee et al. propose the Mahalanobis distance as
OOD metric in combination with NNs. The method can be integrated to any
pre-trained classifier. It assumes that the class-conditional distributions of acti-
vations z(x; θ) ∈ RZ in the last hidden layer of the pre-trained model follow mul-
tivariate Gaussian distributions. After training model parameters θ, the model
is applied to all training data to compute for each class c, the mean μ̂c ∈ RZ

of activations z over all training samples x of class c, and the covariance matrix
Σ̂ of the class-conditional distributions of z. To perform OOD detection, the

1 The framework is available online: https://github.com/christophbrgr/ood detect
ion framework.

https://github.com/christophbrgr/ood_detection_framework
https://github.com/christophbrgr/ood_detection_framework
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method computes the Mahalanobis distance between a test sample x and the
closest class-conditional distribution as follows:

M(x) = maxc − (z(x; θ) − μ̂c)T Σ̂−1(z(x; θ) − μ̂c) (1)

The threshold to decide whether an input is OOD or ID is then set as a certain
distance from the closest distribution.

Out-of-Distribution Detector for Neural Networks (ODIN) [14]: This
method is also applicable to pre-trained classifiers which output class-posteriors
using a softmax. Assume f(x; θ) ∈ RC are the logits for C classes. We write
S(x, τ) = softmax(f(x; θ), τ) ∈ RC for the softmax output calculated for tem-
perature τ (τtr =1 for training), and S(x, τ)c is the value for class c. The method
is based on the assumption that we can find perturbations of the input that
increase the model’s confidence more drastically for ID samples than for OOD
samples. The perturbed version of input x is given by:

x̃ = x − εsign(−∇x log maxcS(x; θ, τtr)c) (2)

Here, a gradient is computed that maximizes the softmax probability of the
most likely class. The model is then applied on the perturbed sample x̃ and
outputs softmax probabilities S(x̃; τ ′) ∈ RC . From this, the MCP ID score is
derived as maxc S(x; τ ′)c. Since the perturbation forces over-confident predic-
tions, it negatively affects calibration. To counteract this, ODIN proposes using
a different softmax temperature τ ′ when predicting the perturbed samples, to re-
calibrate its predictions. τ ′ is a hyperparameter that requires tuning. We assess
the effect of the perturbation and τ in an ablation study.

Deep Ensembles [12]: This method trains multiple models from scratch, while
initialisation and order of training data is varied. During inference, predicted
posteriors of all models are averaged to compute the ensemble’s posteriors. This
in turn is used to compute MCP of the ensemble as an ID score. While deep
ensembles have been shown to perform well for OOD detection, they come with
high computational cost as training and inference times scale linearly with num-
ber of ensemble members. In our experiments, we also investigate an ensemble
that uses a consensus Mahalanobis distance as OOD score instead of MCP.

Monte Carlo Dropout (MCDP) [2]: MCDP trains a model with dropout.
At test time, multiple predictions are made per input with varying dropout
masks. The predictions are averaged and MCP is used as ID score. The method
interprets these predictions as samples from the model’s posterior, where their
average is a better predictive uncertainty estimate, improving OOD detection.

Deterministic Uncertainty Quantification (DUQ) [31]: This method
trains a feature extractor without a softmax layer. Instead, it learns a centroid
per class and attracts samples towards the centroids of their class, similar to con-
trastive losses [4]. It uses a Radial Basis Function (RBF) kernel to compute the
distance between the input’s embedding and the class centroids. The distance
to the closest centroid defines classification, and is also used as the OOD score.
Because RBF networks are prone to feature collapse, DUQ introduces a gradient
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penalty to regularize learnt embedding and alleviate the issue. Nonetheless, we
still faced difficulties with DUQ convergence despite considerable attempts.

3 Benchmarking on CIFAR10 Vs SVHN

We first show results on a common computer-vision (CV) benchmark to gain
insights about methods’ performance, and validate our implementations by repli-
cating results of original works before applying them to a biomedical benchmark.

Table 1. Out-of-distribution detection performance of WideResNet 28 × 10 trained
on CIFAR10 with SVHN as OOD set. We report averages over 3 seeds.

Method AUROC AUCPR ID acc.

MCP (baseline) 0.939 0.919 0.952

MCDP 0.945 0.919 0.956

Deep ensemble 0.960 0.951 0.954

Mahalanobis 0.984 0.960 0.952

Mahalanobis Ens. 0.987 0.967 0.954

ODIN 0.964 0.939 0.952

ODIN (pert. only) 0.968 0.948 0.952

ODIN (temp. only) 0.951 0.920 0.952

DUQ 0.833 – 0.890

3.1 Experimental Setup

Dataset: We use the training and test splits of CIFAR10 [11] as ID and
SVHN [20] as OOD test set (ntest ID = 10000, ntest OOD = 26032). A random
subset of 10% CIFAR training data is used as validation set, to tune method
hyperparameters, such as temperature τ for ODIN.

Model: We use a WideResNet (WRN) [33] with depth 28 and widen factor 10
(WRN 28 × 10), trained with SGD using momentum 0.9, weight decay 0.0005,
batch normalization and dropout of 0.3 for 200 epochs with early stopping. The
Deep Ensemble uses 5 models and MCDP uses 10 samples.

Evaluation Metrics: We use the following metrics to assess the performance of
a method in separating ID from OOD inputs: (1) area under the receiver operat-
ing characteristic (AUROC), (2) area under the precision-recall curve (AUCPR),
(3) accuracy (Acc) on ID test set.

3.2 Results

In Table 1, we compare OOD detection performance for all studied methods.
MCDP marginally improves over the baseline, with higher gains by Deep Ensem-
bles. Interestingly, ODIN achieves comparable AUROC with Deep Ensembles



Confidence-Based Out-of-Distribution Detection 127

and ODIN’s input perturbation is the component responsible for the performance
(see ODIN (pert. only)). The results of only applying temperature scaling and
no input perturbation are listed under ODIN (temp. only). The highest AUROC
over all methods is achieved by Mahalanobis distance both as a single model and
an ensemble. Moreover, none of the OOD detection methods compromised the
accuracy on the classification task. We reproduced the results of original imple-
mentation of DUQ with ResNet50. However, we faced unstable training of DUQ
on our WRN and did not obtain satisfactory performance despite our efforts.

Table 2. Performance of different methods for separation of out-of-distribution (OOD)
from in-distribution (ID) samples for CheXpert in two settings. Setting 1: Classifier
trained to separate Cardiomegaly from Pneumothorax (ID) is given samples with Frac-
tures (OOD). Setting 2: Classifier trained to separate Lung Opacity from Pleural
Effusion (ID) is given samples with Fracture or Pneumonia (OOD). We report aver-
age over 3 seeds per experiment. Best in bold.

Method Setting 1 Setting 2

OOD ID OOD ID

AUROC AUCPR Acc AUROC AUCPR Acc

MCP (baseline) 0.678 0.695 0.888 0.458 0.586 0.758

MCDP 0.696 0.703 0.880 0.519 0.637 0.756

Deep ensemble 0.704 0.705 0.895 0.445 0.582 0.769

Mahalanobis 0.580 0.580 0.888 0.526 0.601 0.758

Mahalanobis Ens. 0.596 0.586 0.895 0.537 0.613 0.758

ODIN 0.841 0.819 0.888 0.862 0.856 0.758

ODIN (pert. only) 0.841 0.819 0.888 0.865 0.856 0.757

ODIN (temp. only) 0.678 0.695 0.888 0.444 0.575 0.757

4 Benchmarking on the X-Ray Lung Pathology Dataset

4.1 Experimental Setup

Dataset: To simulate a realistic OOD detection task in a clinical setting, we use
subsets of the CheXpert X-ray lung pathology dataset [7] as ID and OOD data,
in two different settings. Since CheXpert images are multi-labeled, we only used
samples where ID and OOD classes were mutually exclusive. Setting 1: We
train a classifier to distinguish Cardiomegaly from Pneumothorax (ID), and use
images with Fracture as OOD (ntest ID = 4300, ntest OOD = 7200). Setting 2:
We train a classifier to separate Lung Opacity and Pleural Effusion (ID), and use
Fracture and Pneumonia as OOD classes (ntest ID = 6000, ntest OOD = 8100).

Model: We use WRN with depth 100 and a widen factor 2 (WRN 100x2). The
Deep Ensemble uses 3 models and MCDP uses 10 samples. All other parameters
remain the same as for the CIFAR10 vs SVHN benchmark.

Evaluation: We analyse performance based on the same metrics as in Sect. 3.
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Fig. 2. T-SNE of embeddings for CIFAR10 vs SVHN and for CheXpert Setting 1. The
OOD cluster is less separated for the latter, challenging benchmark. ODIN perturba-
tions improve separation, which may explain its performance.

4.2 Results

Results for the two ID/OOD settings in CheXpert are shown in Table 2. The
baseline performance indicates that the ID and OOD inputs are harder to sep-
arate for Setting 2, and much harder than the CIFAR vs SVHN task. MCDP
improves OOD detection in both Settings. Interestingly, Deep Ensembles, often
considered the most reliable method for OOD detection, do not improve Setting
2, although the Mahalanobis Ensemble does. Moreover, ODIN shows best per-
formance in both settings with a considerable margin, even when only using the
adversarial-inspired component of the method without softmax tempering (see
ODIN (pert. only) in Fig. 2). Mahalanobis distance, which was the best method
on the CIFAR10 vs SVHN task, performs worse than the Baseline on Setting 1
and only yields modest improvements in Setting 2. Reliability of OOD methods is
crucial. Thus, the next section further analyses ODIN and Mahalanobis, to gain
insights in the consistent performance of ODIN and the difference between the
CV benchmark and CheXpert Setting 1 that may be causing the inconsistency
of Mahalanobis distance.

4.3 Further Analysis

Mahalanobis: Our first hypothesis to explain the poor performance of Maha-
lanobis on the medical OOD detection task in comparison to the CV task was
that the Mahalanobis distance may be ineffective in higher dimensional spaces.
In the CIFAR10 vs SVHN task, the Mahalanobis distance is calculated in a hid-
den layer with [640, 8, 8] (40960 total) activations, whereas the WRN 100x2 for
CheXpert has a corresponding layer with shape [128, 56, 56] (401408 total) acti-
vations. To test this hypothesis, we reduce the number of dimensions on which
we compute the distributions by applying strided max pooling before comput-
ing the Mahalanobis distance and report the results in Fig. 3a. We find that this
dimensionality reduction is not effective and conclude that this is not the major
cause of Mahalanobis ineffectiveness in CheXpert.

To further investigate, we visualize with T-SNE [15] the last layer activations
when trained models process perturbed samples for the CIFAR10 vs SVHN task
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Pooling Layer shape AUROC

None [128,56,56] 0.6018
4x4, stride=2 [128,56,56] 0.5634
2x2, stride=4 [128,14,14] 0.5608
8x8, stride=1 [128,14,14] 0.5508
1x1, stride=4 [128,14,14] 0.545

(a) Results with dimensionality reduction (b) Calibration curves

Fig. 3. (a) Results on CheXpert Setting 1 from experiments with dimensionality reduc-
tion in last hidden layer. Lower dimensionality did not improve OOD detection via
Mahalanobis distance. (b) Calibration of baseline and ODIN for varying temperature
τ and associated Expected Calibration Error (ECE, as a summary statistic for model
calibration [18]), for CheXpert Setting 1. The baseline (green) is reasonably calibrated.
Adding noise to the inputs with ODIN leads to highly overconfident model (purple, all
samples very high confidence). For CheXpert, τ =1000 as used for CIFAR10 leads to
under-confident model, whereas τ =5 restores good calibration. Interestingly, all ODIN
settings achieve the same AUROC for OOD irrespective of τ value and calibration.
(Color figure online)

and the CheXpert Setting 1. Figure 2 shows that activations for CIFAR10 classes
are clearly separated and the OOD set is distinguishable from the ID clusters. For
CheXpert, the baseline model achieves less clear separation of the two ID classes
and the OOD class overlaps substantially with the ID classes. This suggests that
fitting a Gaussian distribution to the ID embeddings is challenging, causing the
Mahalanobis distance to not yield significant OOD detection benefits.

ODIN: We investigate how the perturbation that ODIN adds to inputs benefits
OOD detection. For this, we also show T-SNE plots for both CIFAR10 and CheX-
pert Setting 1 in Fig. 2. The added perturbation results in a better separation
of ID classes in both datasets, with the effect more pronounced for CheXpert.
While there is still overlap between the Fracture OOD class and the Pneumoth-
orax ID class, the clusters are more pronounced which ultimately leads to better
OOD detection. Finally, we investigate the effect of temperature variation in
ODIN. Following [14], temperature 1000 was used for CIFAR10 and CheXpert.
By comparing baseline, ODIN (temp. only) and (pert. only) on Tables 1 and 2,
we find that OOD detection is primarily improved by perturbation, not temper-
ature scaling, especially on CheXpert. We note, however, that the perturbations
lead to a completely over-confident model using training temperature 1, with
all predictions having very high confidence (Fig. 3b). AUROC and AUCPR are
calculated via ordering the OOD score (i.e. confidence) of predictions, so even
slight differences between ID and OOD samples suffice to separate false and true
detections. If only those metrics were taken into account, temperature scaling
might have been considered redundant. However, to deploy an OOD system, a
threshold on the confidence/OOD score needs to be chosen. Spreading the confi-
dence estimates via temperature scaling (τ = 5 in Fig. 3b) enables more reliable
choice and deployment of a confidence threshold in practical settings.
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5 Conclusion

This work presented an analysis of various state-of-the-art methods for
confidence-based OOD detection on a computer vision and a medical imaging
task. Our comprehensive evaluation showed that the performance of methods
in a computer vision task does not directly translate to high performance on a
medical imaging task, emphasized by the analysis of the Mahalanobis method.
Therefore, care must be given when a method is chosen. We also identified ODIN
as a consistently beneficial OOD detection method for both tasks. Our analy-
sis showed that its effect can be attributed to its input perturbation, which
enhances separation of ID and OOD samples. This insight could lead to further
advances that exploit this property. Future work should further evaluate OOD
detection methods across other datasets and tasks to better understand which
factors affect their performance and reliability towards real-world deployment.
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Abstract. Automated medical diagnosis systems need to be able to rec-
ognize when new diseases emerge, that are not represented in the train-
ing data (ID). Even though current out-of-distribution (OOD) detection
algorithms can successfully distinguish completely different data sets,
they fail to reliably identify samples from novel classes that are simi-
lar to the training data. We develop a new ensemble-based procedure
that promotes model diversity and exploits regularization to limit dis-
agreement to only OOD samples, using a batch containing an unknown
mixture of ID and OOD data. We show that our procedure significantly
outperforms state-of-the-art methods, including those that have access,
during training, to known OOD data. We run extensive comparisons of
our approach on a variety of novel-class detection scenarios, on standard
image data sets as well as on new disease detection on medical image data
sets (Our code is publicly available at https://github.com/ericpts/reto).

Keywords: Novelty detection · Novel disease detection · Ensemble
diversity · Regularization

1 Introduction

Modern machine learning (ML) systems are gaining popularity in many real-
world applications, such as aiding medical diagnosis [2]. Despite achieving great
test performance, many approaches have trouble dealing with out-of-distribution
(OOD) data, i.e. test inputs that are unlike the data seen during training. For
example, ML models often make incorrect predictions with high confidence when
new unseen classes emerge over time (e.g. undiscovered bacteria [38], new dis-
eases [18]), or when data suffers from distribution shift (e.g. corruptions [29],
environmental changes [22]). If the OOD data consists of novel classes, then
we must identify the OOD samples and bring them to the attention of human
experts. This scenario is the focus of this paper and we use the terms OOD and
novelty detection interchangeably.
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Fig. 1. Comparison of OOD detection methods ordered by the amount of information
about the OOD distribution that they require. Left: On the easy settings usually
reported in the literature, many methods achieve near-perfect detection. Right: On
novel-class settings where ID and OOD data are difficult to distinguish, the baselines
reach a much lower TNR@95 compared to our method.

Novelty detection aims to identify test samples that have a low probabil-
ity under the marginal ID distribution PX , i.e. x should be flagged as OOD if
PX(x) ≤ α for some small constant α. If we could learn a model that estimates
precisely the level sets of PX , we would have perfect OOD detection. Unfortu-
nately, when the input space is high-dimensional (e.g. high resolution medical
images) and we only have access to limited data, this problem is intractable. In
reality, however, we only need to detect outliers that actually appear in a test
set, which makes the problem more amenable to statistical methods.

Apart from a labeled ID training set, state-of-the-art (SOTA) OOD detection
methods often use some OOD data for training or calibration. We separate
existing approaches into four different levels of access to OOD data: 1) no OOD
data [23,39]; 2) an unlabeled set with an unknown mixture of ID and OOD
data where OOD samples are not marked (Unknown OOD) [28,35,40,47]; 3)
known OOD data, but from a different distribution than the test OOD (Different
OOD) [17,30]; or 4) known OOD data from the same distribution as test OOD
(Oracle OOD) [25,27].

Notably, prior work on OOD detection reports remarkably good detection
performance: when 95% of the true OOD samples are correctly identified (i.e.
the true positive rate is 95%), the ratio of ID samples correctly identified as
ID (i.e. the true negative rate) is often larger than 80% (this metric is known
as the TNR@95). However, these numbers are largely obtained when the in-
distribution (ID) and the OOD data sets are vastly different (e.g. SVHN vs
CIFAR10), while in real-world applications it is unlikely that the novel data
is so easy to distinguish from ID samples (e.g. chest X-rays of a new disease
may look quite similar to another pathology). When evaluating state-of-the-art
(SOTA) methods on novel-class settings on standard image data sets (e.g. SVHN,
CIFAR10), the TNR@95 for the best baseline drops below 40% (see Fig. 1 Right).

In this work, we adopt the Unknown OOD setting and introduce a principled
method to obtain diverse ensembles by leveraging the unlabeled set and using
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early stopping regularization. We call our method Ensembles with Regular-
ized Disagreement (ERD) and motivate it using a theoretical result on the
dynamics of gradient descent training under label noise. Our method improves
the state-of-the-art for novel-class detection, surpassing even approaches that
assume oracle knowledge of OOD samples, as illustrated in Fig. 1. Moreover,
we show that our algorithm consistently outperforms all baselines on a recently
proposed medical image OOD detection benchmark.

2 Problem Setting

In this section we motivate the Unknown OOD setting that we adopt for our
method and stress its practical relevance.

Problem statement. We consider a labeled data set S = {(xi, yi)}ni=1 ∼ P ,
where xi ∈ X are the covariates and yi ∈ Y are discrete labels. We assume that
the labels are obtained as a deterministic function of the covariates, which we
denote y∗ : X → Y. In this paper we focus on detecting samples from novel
classes, unseen at training time. We define XID := {x : PX(x) > α} as ID points
and XOOD = {x : PX(x) ≤ α} as the set of OOD points, where PX is the
marginal ID distribution.

The Unknown OOD settings has been proposed in prior work on OOD detec-
tion [28,40,47] and assumes that, apart from the ID training data with class
labels, we also have access to a batch of unlabeled data U drawn from the same
distribution Ptest as the test data. This distribution consists of a mixture of ID
and OOD data, with OOD proportion π ∈ [0, 1], that is Ptest[x ∈ XOOD] = π.
The goal is to use the set U to learn to distinguish between ID and OOD data
drawn from Ptest, without explicit knowledge of π nor which samples in U are
OOD.

The Unknown OOD setting is relevant for many practical applications that
would benefit from more effective novel-class detection. Consider, for instance, a
medical center that uses an automated system for real-time diagnosis. In addi-
tion, the hospital may wish to run a novelty detection algorithm offline every
week to check for possible new pathologies. A procedure based on the unknown
OOD setting can use all the X-rays from the week as an unlabeled set U . If U
contains X-rays exhibiting a new disease, the algorithm can be used to flag such
novel classes both in the already collected unlabeled set and for future patients
suffering from the same new disease. Furthermore, the flagged samples can be
examined and labeled by experts.

3 Proposed Method

In this section we introduce our proposed algorithm, ERD, and provide a princi-
pled justification for the key ingredients that lead to the improved performance
of our method.
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Algorithm 1. Fine-tuning the ERD ens-
emble
Input: Train set S, Validation set V , Unlabeled
set U , Weights W pretrained on S, Ensemble size

K

Output: ERD ensemble {fyi}Ki=1
Sample K different labels {y1, ..., yK} from Y
for all c ∈ {y1, ..., yK} do

fc ← Initialize(W )
(U, c) ← {(x, c) : x ∈ U}
fc ← EarlyStoppedFinetuning (fc, S ∪ (U, c); V )

end for
return {fyi}Ki=1

Algorithm 2. OOD detection with
ERD
Input: Ensemble {fyi}Ki=1, Test set T ,
Threshold t0, Disagreement metric ρ
Output: O, i.e. the OOD data in T
O ← ∅
for all x ∈ U do
if (Avg ◦ ρ)(fy1 , ..., fyK )(x) > t0 then

O ← O ∪ {x}
end if

end for
return O

3.1 The Complete ERD Procedure

Recall that we have access to both a labeled training set S and an unlabeled set
U that contains both ID and unknown OOD samples. Moreover, we initialize
the models of the ensemble using weights pretrained on S.

In Algorithm 1 we show how to obtain an ERD ensemble. We begin by
assigning an arbitrary label c ∈ Y, to all the unlabeled samples in U , resulting
in the c-labeled set (U, c) := {(x, c) : x ∈ U}. We then fine-tune a classifier fc on
the union S ∪ (U, c) of the correctly-labeled training set S and the unlabeled set
(U, c). We perform early stopping by picking a model at an intermediate epoch,
before the accuracy on a holdout ID validation set V starts to decrease. We
repeat this procedure to create an ensemble of several classifiers fc, for different
choices of c ∈ Y. Finally, during test time in Algorithm2, we use this ensemble
to flag as OOD all the points for which an aggregate disagreement measure
surpasses a threshold value t0, as we elaborate later in this section.

3.2 Role of Regularization

Recall that, in our approach, each member of the ensemble tries to fit a different
label c to the entire unlabeled set U in addition to the correct labels of the ID
training set S. We train the models to fit S ∪ (U, c), where we use the notation
(U, c) = (UID, c)∪(UOOD, c) = {(x, c) : x ∈ UID}∪{(x, c) : x ∈ UOOD}. Moreover,
we can partition the set (UID, c) into the subset of samples whose ground truth
label differs from c and are thus incorrectly labeled with c, and the subset whose
correct label is indeed c:

(U¬c
ID , c) := {(x, c) : x ∈ UID with y∗(x) �= c}

(U c
ID, c) := {(x, c) : x ∈ UID with y∗(x) = c}

We now explain why and how we can regularize the model complexity such
that the classifier fits S and all of (U, c), except for (U¬c

ID , c). The key intuition
why regularization helps is that it is more difficult to fit the labels c on (U¬c

ID , c)
than on (UOOD, c), since (U¬c

ID , c) lies closer in covariate space to points in the
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correctly labeled training set S. Hence, we can exactly fit (UOOD, c) but not the
entire (UID, c) if we adequately limit the function complexity (e.g. by choosing
a small model class, or through regularization), as illustrated in Fig. 2 Left.
Moreover, since regularized predictors are smooth, it follows that the model
generalizes well on ID data and also predicts the label c on holdout OOD samples
similar to the ones in the UOOD. On the other hand, if the models are too
complex (e.g. deep neural networks [49]), then they can even fit the wrong labels
on (UID, c) (see Fig. 2 Right), causing the models in the ensemble to disagree on
the entire unlabeled set U .

Fig. 2. Restricting model complexity is necessary to prevent from flagging the whole
U as OOD. Left: Linear classifiers disagree on points in UOOD, but agree to predict
the correct label on samples from UID. Right: The models are too complex so they fit
the arbitrary label on the entire U .

We use early stopping regularization, motivated by recent empirical and theo-
retical works that have found that early stopped neural networks are less vulner-
able to label noise in the training data [26,46]. In Proposition 1 from Appendix
B we argue that there exists an optimal stopping time for gradient descent
at which all points in (U, c) are fit, except for the wrongly labeled samples in
(UID, c). To find the best stopping time in practice, we use a validation set of
labeled ID points to select an intermediate checkpoint before convergence. As
a model starts to fit (U¬c

ID , c), i.e. the wrongly labeled ID samples in UID, it
also predicts the label c on some validation ID points, leading to a decrease in
validation accuracy, as shown in Fig. 3.

Fig. 3. Accuracy measured while fine-tuning a model pretrained on S (epoch 0 indicates
values obtained with the initial weights). The samples in (UOOD, c) are fit first, while
the model reaches high accuracy on (UID, c) much later. We fine-tune for at least one
epoch and then early stop when the validation accuracy starts decreasing after 7 epochs
(vertical line). The model is trained on SVHN[0:4] as ID and SVHN[5:9] as OOD.
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3.3 Ensemble Disagreement Score

We now motivate a novel ensemble aggregation technique tailored to exploit
ensemble diversity that we use to detect OOD samples with ERD. Note that we
can cast the OOD detection problem as a hypothesis test with null hypothesis
H0 : x ∈ XID. Our procedure tests the null hypothesis by using an ensemble-
based score: The null hypothesis is rejected and we report x as OOD (positive)
if the score is larger than a threshold t0 (see Algorithm 2).

Previous works [23,34] first average the softmax predictions of the models
in the ensemble f̄(x) := 1

K

∑K
i=1 fi(x) ∈ [0, 1]|Y| and then use the entropy of

f̄(x) as a metric, i.e. (H ◦ Avg)(f1(x), ..., fK(x)) := −∑|Y|
i=1(f̄(x))i log(f̄(x))i

where (f̄(x))i denotes the ith element of f̄(x). We argue that averaging model
outputs first, discards information about the diversity of the ensemble. Instead,
we propose the average pairwise disagreement between the outputs of K models
in an ensemble:

(Avg ◦ ρ)({fi(x)}Ki=1) :=
2

K(K − 1)

∑

i�=j

ρ (fi(x), fj(x)) ,

where ρ is a measure of disagreement between the softmax outputs of two pre-
dictors, for example the total variation distance ρTV(fi(x), fj(x)) = 1

2‖fi(x) −
fj(x)‖1 used in our experiments.

Fig. 4. Cartoon illustration showing a diverse ensemble of linear binary classifiers (solid
purple). We compare OOD detection performance for two aggregation scores: (H◦Avg)
(Left) and (Avg ◦ ρ) with ρ(f1(x), f2(x)) = 1sgn(f1(x)) �=sgn(f2(x)) (Right). The two
metrics achieve similar TPRs, but (H ◦ Avg) leads to more false positives than our
score, (Avg ◦ ρ), since the former can only flag as OOD a band around the averaged
model (solid black) and hence cannot take advantage of the ensemble’s diversity.

In the sketch in Fig. 4 we show that the score we propose, (Avg◦ρ), achieves
a higher TNR compared to (H ◦ Avg), for a fixed TPR – a common way of
evaluating statistical tests. Notice that the detection region for (H ◦ Avg) is
always limited to a band around the average model. In order for the (H◦Avg) to
have large TPR, this band needs to be wide, leading to many false positives. This
example demonstrates how averaging softmax outputs relinquishes the benefits
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of a diverse ensemble that our disagreement score can exploit. In Appendix C
we provide quantitative experimental evidence that reveals that, indeed, our
disagreement score is crucial for good OOD detection performance with diverse
ensembles, such as the one obtained with Algorithm1.

4 Experimental Results

4.1 Standard Image Data Sets

ID vs OOD Settings. We report results on two broad types of OOD detection
scenarios: (1) Easy OOD data: ID and OOD samples come from strikingly differ-
ent data sets (e.g. CIFAR10 vs SVHN). These are the settings usually considered
in the literature and on which most baselines perform well; and (2) Hard OOD
data: The OOD data consists of “novel” classes that resemble the ID samples:
e.g. the first 5 classes of CIFAR10 are ID, the last 5 classes are OOD. The sim-
ilarities between the ID and the OOD classes make these settings significantly
more challenging (see Appendix E for more details).

Table 1. AUROC and TNR@95 for different OOD detection scenarios (the numbers in
squared brackets indicate the ID or OOD classes). We highlight the best ERD variant
and the best baseline among prior work. The asterisk marks methods proposed in this
paper. nnPU (†) assumes oracle knowledge of the OOD ratio in the unlabeled set.

ID data OOD data Other settings Unknown OOD

Vanilla
Ensembles

Gram DPN OE Mahal. nnPU† MCD Bin. Classif. * ERD *

AUROC ↑/TNR@95 ↑
SVHN CIFAR10 0.97/0.88 0.97/0.86 1.00 /1.00 1.00/1.00 0.99/0.98 1.00/1.00 0.97/0.85 1.00/1.00 1.00/0.99

CIFAR10 SVHN 0.92/0.78 1.00/0.98 0.95/0.85 0.97/0.89 0.99/0.96 1.00/1.00 1.00/0.98 1.00/1.00 1.00/1.00

CIFAR100 SVHN 0.84/0.48 0.99/0.97 0.77/0.44 0.82/0.50 0.98/0.90 1.00/1.00 0.97/0.73 1.00/1.00 1.00/1.00

FMNIST
[0,2,3,7,8]

FMNIST
[1,4,5,6,9]

0.64/0.07 –/– 0.77/0.15 0.66/0.12 0.77/0.20 0.95/0.71 0.78/0.30 0.95/0.66 0.94/0.67

SVHN
[0:4]

SVHN
[5:9]

0.92/0.69 0.81/0.31 0.87/0.19 0.85/0.52 0.92/0.71 0.96/0.73 0.91/0.51 0.81/0.40 0.95/0.74

CIFAR10
[0:4]

CIFAR10
[5:9]

0.80/0.39 0.67/0.15 0.82/0.32 0.82/0.41 0.79/0.27 0.61/0.11 0.69/0.25 0.85/0.43 0.93/0.70

CIFAR100
[0:49]

CIFAR100
[50:99]

0.78/0.35 0.71/0.16 0.70/0.26 0.74/0.31 0.72/0.20 0.53/0.06 0.70/0.26 0.66/0.13 0.82/0.44

Average 0.84/0.52 0.86/0.57 0.84/0.46 0.84/0.54 0.88/0.60 0.86/0.66 0.86/0.55 0.89/0.66 0.95/0.79

Baselines. We compare ERD against previous methods that are applicable to
the unknown OOD setting and also include well-known baselines that require
different kinds of access to OOD data for training, as indicated in Table 4. In
addition, we propose a novel simple approach that uses an unlabeled set: an
early stopped binary classifier (Bin. Classif.) trained to distinguish between S
and U . We include a detailed description of all the baselines together with precise
hyperparameter choices in Appendix D.

Our method – ERD. For our method we train ensembles of 5 MLP models for
FashionMNIST and ResNet20 [14] models for the other settings. The networks
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are initialized with weights pretrained on the ID training set. For each model
in the ensemble we perform post-hoc early stopping: we train for 10 epochs
and select the iteration with the lowest validation loss. In the appendix we also
present results for a variant of ERD trained from random initializations.

Evaluation Metrics. We use two standard metrics common in the OOD detec-
tion literature: the area under the ROC curve (AUROC; larger values are better)
and the TNR at a TPR of 95% (TNR@95; larger values are better).

Summary of Results. Table 1 summarizes the main empirical results. On the
easy scenarios (top part of the table) most methods achieve near-perfect OOD
detection with AUROC close to 1. However, on the novelty detection scenarios
(bottom part), ERD has a clear edge over the other approaches and improves
the average TNR@95 by 20% relative to the best baseline. Furthermore, on the
novel-class setting on CIFAR10, the TPR@95 gains of our method compared
to the best prior work go as high as 70%. A similar trend can be observed for
AUROC as well. The substantial gap between ERD and other approaches, both
in average AUROC and average TNR@95, indicates that our method lends itself
well to practical situations when accurate OOD detection is critical.

Table 2. AUROC for some representative baselines from [5] on a medical OOD detec-
tion benchmark. We highlight the best ERD variant and the best baseline among
prior work. See Appendix G for details about the baselines and the data sets.

Data set Use case Mahal. kNN-8 VAE-BCE AE-MSE ERD ERD++

PADChest 1, 2 (easy OOD) 0.94 0.97 0.95 0.99 1.00 1.00

NIHCC 1, 2 (easy OOD) 0.98 0.99 0.99 0.98 0.97 0.99

DRD 1, 2 (easy OOD) 0.82 0.96 0.97 0.99 0.98 1.00

PADChest 3 (hard OOD) 0.53 0.46 0.52 0.55 0.77 0.72

NIHCC 3 (hard OOD) 0.52 0.52 0.50 0.52 0.46 0.50

DRD 3 (hard OOD) 0.70 0.60 0.67 0.64 0.91 1.00

Average AUROC 0.80 0.82 0.83 0.85 0.89 0.91

4.2 Medical Image OOD Detection Benchmark

Data Sets and Baselines. We use the benchmark proposed in [5] which com-
prises different kinds of medical image data from both healthy and unhealthy
patients. For our comparison, we consider three modalities for the ID data: lat-
eral (PADChest) and frontal (NIHCC) chest X-rays and retinal images (DRD).
The authors annotate the training data with binary labels indicating whether
the patient is healthy or unhealthy, thus discarding information about the con-
dition. For each ID data set, the benchmark examines three categories of OOD
detection problems:

– Use case 1: The OOD data set contains images from a completely different
domain (e.g. X-rays as ID, and samples from CIFAR10 as OOD).
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– Use case 2: The OOD data contains images captured incorrectly, e.g. lateral
chest X-rays as ID and frontal X-rays as OOD.

– Use case 3: The OOD data set contains images that come from novel diseases,
not present in the training set.

While the first two categories of outliers can be detected accurately by most
methods, the third scenario turns out to be more challenging, due to how similar
the ID and OOD samples are. We use the baselines considered in [5] and compare
them to the performance of both ERD and ERD++. The latter is a variant of
our method fine-tuned for more epochs and initialized from weights pretrained
on ImageNet (see Appendix D for more details). Since the training labels are
binary (healthy/unhealthy), we train ensembles of two models and note that the
performance of our method could be improved if one provides finer-grained anno-
tations (e.g. by assigning different labels to the various diseases in the training
set, instead of collecting them all in the “unhealthy” class).

Summary of Results. Our method improves the average AUROC from 0.85
to 0.91, compared to the best performing baseline, with the gap being even
more significant on novel disease scenarios, as indicated in Table 2. Appendix G
contains more detailed results for then medical settings.

4.3 Limitations of Related OOD Detection Methods

We now discuss some shortcomings of existing OOD detection approaches closely
related to ours and indicate how our method attempts to address them. Firstly,
vanilla ensembles use only the stochasticity of the training process and the ran-
dom initialization to obtain diverse models, but this often leads to similar clas-
sifiers, that predict the same incorrect label on OOD data [15]. Secondly, in the
absence of proper regularization, optimizing the MCD objective leads to models
that agree to a similar extent on both ID and OOD data so that one cannot
distinguish them from one another (as indicated by low AUROC scores). Fur-
thermore, nnPU does not exploit all the signal in the training set and discards
the labels of the ID data, which leads to poor performance on hard OOD data.

ERD successfully diversifies an ensemble on OOD data by using the unlabeled
set and without requiring additional information about the test distribution (e.g.
unlike nnPU which requires the true OOD ratio). We identify the key reasons
behind the good performance of our approach to be as follows: 1) utilizing the
labels of the ID training data and the complexity of deep neural networks to
diversify model outputs on OOD data; 2) choosing an appropriate disagreement
score that draws on ensemble diversity; 3) employing early stopping regulariza-
tion to prevent diversity on ID inputs.

5 Conclusions

Reliable OOD detection is essential in order to deploy classification systems in
critical applications in the medical domain. We propose a procedure that results
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in an ensemble with selective disagreement only on OOD data, by successfully
leveraging unlabeled data to fine-tune the models in the ensemble. It outperforms
state-of-the-art methods that also have access to a mixture of ID and unknown
OOD samples, and even surpasses approaches that use known OOD data for
training.
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Abstract. Diseases related to the placenta, such as preeclampsia (PE)
and fetal growth restriction (FGR), are major causes of mortality and
morbidity. Diagnostic criteria of such diseases are defined by biomark-
ers, such as proteinuria, that appear in advanced gestational age. As
placentally-mediated disease is often clinically unrecognized until later
stages, accurate early diagnosis is required to allow earlier intervention,
which is particularly challenging in low-resource areas without subspe-
cialty clinicians. Proposed attempts at early diagnosis involve a com-
bination of subjective and objective ultrasound placental assessments
which have limited accuracy and high interobserver variability. Machine
learning, particularly with convolutional neural networks, have shown
potential in analyzing complex textural features in ultrasound imaging
that may be predictive of disease. We propose a model utilizing a two-
stage convolutional neural network pipeline to classify the presence of
placental disease. The pipeline involves a segmentation stage to extract
the placenta followed by a classification stage. We evaluated the pipeline
on retrospectively collected placenta ultrasound scans and diagnostic
outcomes of 321 patients taken by 18 sonographers and 3 ultrasound
machines. Compared to existing clinical algorithms and neural networks,
our classifier achieved significantly higher accuracy of 0.81 ± 0.02 (p <
0.05). Class activation maps were generated to identify potential abnor-
mal regions of interest in placenta tissue. This study provides support
that automated image analysis of ultrasound texture may assist physi-
cians in early identification of placental disease, with potential benefits
to low-resource environments.
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1 Introduction

1.1 Background and Motivation

The placenta is essential for fetal development and maternal health, providing
nutrients, waste exchange, and transfer of antibodies to the fetus. Preeclamp-
sia (PE) and fetal growth restriction (FGR) are two clinical manifestations of
placental insufficiency with much overlap in placental pathology. Both diseases
hold a significant risk to the fetus and the mother. PE occurs in 3–10% of all
pregnancies and is a leading cause of maternal mortality [1]. Placentally medi-
ated FGR occurs up to 5% of all pregnancies and can result in fetal demise or
several neonatal complications [2]. Hence, there is a motivation to identify the
placental abnormalities early to study and prevent adverse outcomes.

A challenge is that clinical features of placental pathology, such as protein-
uria, are not observable until an advanced gestational age [3]. While screening
for risk factors such as diabetes or family history are strongly associated with
PE, up to 70% of patients with PE do not have these risk factors [4]. Hence, the
lack of early and accurate screening results in difficulty for effective interventions
as placental insufficiency may have progressed before the disease is identified [5].
While there have been developments in multi-modality first trimester screening
to improve risk assessment [6], overall patient access is limited. The specialized
services for such screening is available only in tertiary care centers, which incur
additional travel costs and barriers to care for patients in rural and low-resource
settings.

The development of a placental assessment tool at the time of routine obstet-
rical ultrasound may address the need for early screening that can be automated
for low-resource areas. Diseases such as PE and FGR are known to have a sub-
clinical phase where the placenta tissue changes before signs and symptoms are
observable [7]. Ultrasound assessment of the placenta is routinely performed and
includes the analysis of the uterine Doppler waveform or subjectively assessing
image texture to assess for PE [8]. Ultrasound contains complex features, such
as speckle patterns due to scattering interaction of acoustic waves with tissue,
that can be used to characterize placenta tissue microstructure [9]. O’Gorman
et al. (2016) [10] assessed 10 different ultrasound assessment algorithms for PE,
reporting a sensitivity range of 0.27–0.57 for all 10 algorithms and a sensitivity of
0.50–0.56 for the best performing algorithm. This variance may be due to how
ultrasound is dependent on both the acquisition technique, resulting in inter-
observer error, as well as difficulty in subjective interpretation of ultrasound.
Hence, there is a motivation to develop a higher accuracy, automatic, and quan-
tifiable tool to assess placental disease. Automation may enable deployment in
low-resource settings to be used by local healthcare providers and potentially
triage accessing expensive specialized services.

1.2 Existing Work

There are several existing methods that attempt to automatically predict placen-
tal disease. Moreira et al. [11] utilized a Bayesian network with clinical variables
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(age and parity) and patient symptoms to identify the probability of preeclamp-
sia and hypertension on 20 patients. Jhee et al. [12] compared predictions from
popular classification algorithms of a decision tree, naive Bayes, support vector
machine, random forest, and stochastic gradient boost. The input features used
included maternal medical history, physical exam finding, and laboratory val-
ues. Sufriyana et al. [13] utilized maternal medical history and ultrasound uterine
Doppler measurements as inputs to a logistic regression model to predict PE and
FGR. The challenge with utilizing clinical variables such as hypertension is that
PE is primarily a disease of poor placentation and blood flow, which progresses
to clinically observable metrics of proteinuria and hypertension. When protein
levels in the urine and blood pressure have increased near the threshold for clin-
ical diagnosis, then the disease has likely progressed significantly [4]. There lies
a gap in placental disease prediction without the reliance of late stage clinical
markers.

Convolutional neural networks (CNNs) have been applied to placental imag-
ing in the past mainly for feature detection, such as localizing lacunae [14] or
segmentation of the placenta [15], indicating the potential for a CNN to identify
complex textural features. To our knowledge, there has been no prior method
utilizing a machine learning method to characterize ultrasound placenta features
to predict placental disease, which we aim to achieve with this work.

1.3 Contributions

The main contribution of the work is the proposal and development of a pipeline
that uses 2 separate CNNs to identify the placenta in an ultrasound image and
then classify if the patient is predicted to have placental disease. We conducted
a study acquiring 13,384 frames of 2D first trimester fetal ultrasound images
from 321 patients across 5 years from different ultrasound machines, operators,
settings, and view angles. The purpose of this study is specifically so that any
model built will be tested on a diverse dataset to prevent overfitting and overes-
timation of accuracies from a single controlled use case as a proof of concept that
a generalized signal can be detected by a CNN. To our knowledge, this is the
largest study analyzing placental ultrasound for placental disease classification.

2 Methods

2.1 Dataset and Equipment

The dataset was acquired at the British Columbia Women’s Hospital and Health
Center (BCW). The dataset included ultrasound images and the patient’s diag-
nostic outcome. From 321 patients, 321 2-dimensional (2D) second trimester
placental ultrasound sweeps were obtained as per standard protocol at BCW
(13,384 frames total). Age ranged from 17 to 50 years of age and gestational
ages ranged from 59 days to 193 days (mean: 160 days). Of 321 patients, 93
(29%) were diagnosed with either PE or FGR at time of delivery and 9 (3%)
were diagnosed with either PE or IUGR before time of scan.
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Images were acquired by 18 different sonographers. The machines used dur-
ing that time period include GE Voluson E8 (Boston, USA), GE Voluson E10
(Boston, USA), and Philips IU22 (Amsterdam, Netherlands). The Keras library
was used to develop the CNN model and the model was trained with a NVIDIA
Titan V graphics processing unit (Santa Clara, USA). The retrieval and analysis
of the data was approved by the University of British Columbia Research Ethics
Board (ID: H18-01199).

2.2 Classification Pipeline

Developing a placental screening tool from ultrasound poses as a binary classifi-
cation problem. The 2 classes were either an abnormal placenta, defined as being
diagnosed with placentally-mediated diseases of PE or FGR by a physician, or
normal placenta in the absence of both conditions. We recognize there is likely
not a perfect bijection between abnormal placental texture and the presence of
PE of FGR, which is discussed in our limitations. The full system contains 3
consecutive stages: preprocessing, segmentation, then classification (Fig. 1).

...

Preprocessing Convolutional 
Layers

Connecting Acoustic 
Shadow Map Layer

Output 
Placenta Map

Placenta Segmentation Stage

Classification Stage

Segmented
Placenta

Compound Scaling 
Convoluational Layers Class Prediction

Input: 
Placenta

Ultrasound

Output: 
Normal/Abnormal 

Prediction

x7…

d = αϕ

w = βϕr = γϕ

Fig. 1. The full classification pipeline. First, the image is preprocessed by resizing
and normalizing in gray-level. The image is then segmented with an attention-based
convolutional neural network, generating a segmented placenta. The segmentation is
then classified to a placental disease label using a compound scaling convolutional
neural network. In both networks, hyperparameters were optimized using gridsearch
algorithms.
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Preprocessing. The images were extracted frame-by-frame from an ultrasound
sweep and each image first had identifying information and metadata removed.
Frames without a placenta in view were manually removed. The images were
resized to 600 × 600 and normalized by linearly scaling gray level intensities to
[0, 1]. Images were labelled as abnormal if the patient was diagnosed with PE or
FGR on retrospective chart data. The patients were randomly split with 80% of
the data used for training of any subsequent CNNs and 20% used for testing.

Segmentation Neural Network. Segmentation utilized the attention-based
CNN from on Hu et al. (2019) [15], which reported an accuracy range of
0.88 − 0.96, which is within the 95% confidence interval of expert observers.
The hyperparameters of the network include number of layers, learning rate,
epochs, and batch size and were all optimized via gridsearch. The output of the
segmentation is an image with only pixels of the placenta, which is the input to
the classification stage.

Classification Neural Network. 4 different CNN architectures were tested
(DenseNet [16], ResNet [17], ResNeXt [18], EfficientNet [19]) and the final archi-
tecture chose was EfficientNet developed by Tan et al. (2019) [19]. Placental
ultrasound likely contains highly detailed texture features, which may be pro-
cessed through a deep CNN. However, the increased complexity of the CNN may
result in overfitting. EfficentNet was designed to have 7 intermediate sub-blocks
which vary in width (w = αφ), depth (d = αφ), and resolution (r = γφ) by
a compound scaling parameter φ. The hyperparameters for this stage include
dropouts, learning rate, and batch size, all of which were optimized via grid-
search. Our final model used φ = 7, base constants α = β = γ = 2 as proposed
by Tan et al. (2019) [19], a dropout ratio of 0.20 at the top layer, a learning rate
of 0.01, and a batch size of 8.

To visualize predictive regions of an image, class activation maps (CAM) were
computed by computing the gradients of the final convolutional layer output,
multiplied by the weights of the feature map, and summing all channels. This
visualizes which kernels were activated for a particular class [20].

2.3 Validation

The classification pipeline was validated with 5 k-fold cross validation. The mean
accuracy, sensitivity, and specificity were computed across the 5 k-folds for the
test set. The gold standard used was a physician diagnosis of placental disease
recorded in the patient’s chart at the completion of the pregnancy.

To assess the performance of our system, we compared against the clinical
assessment algorithm at BCW, testing on the same set of patients and evalu-
ating with a Wilcoxon rank-sum test. The clinical assessment algorithm defines
a placenta as abnormal if any of the following are seen on a second trimester
ultrasound scan: a) bilateral uterine artery Doppler notch, b) unilateral or inde-
terminate uterinary artery notch and a pulsatility index >1.55, and c) any 2
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of placental thickness greater than 5.0 cm, placental length less than 11.0 cm,
abnormal echotexture, or greater than 2 infarcts.

An ablation analysis included repeated 5 k-fold cross validation with different
variations of input data. The first variation (“No Segmentation”) was removing
the segmentation stage to assess accuracy if the region of interest was not isolated
a priori. The second variation (“Balanced”) forced class balance by randomly
removing normal patients until normal samples equalled abnormal samples to
assess if accuracy changes due to bias in the original unbalanced dataset. The
third variation (“Sampled”) was forcing equal sampling of the ultrasound sweep
such that a patient contained no more than 20 frames of images (the minimum
observed in the dataset) to assess if accuracies changed due to certain patients
with more images created bias in training the classifier.

3 Results

The accuracies, sensitivities, and specificities of the different classifiers are dis-
played in Table 1. The results of the ablation analysis are displayed in Table 2.
The accuracy of the final model (Segmentation + EfficientNetB7) performed
significantly better than the existing clinical algorithm (p < 0.05). An example
of a CAM for normal and abnormal placentas are visualized in Fig. 2.

Table 1. Classification accuracies of different architectures when compared to the gold
standard of the diagnosis recorded in the patient chart.

Method Accuracy Sensitivity Specificity

Segmentation + ResNet 0.65 ± 0.07 0.00 ± 0.00 0.93 ± 0.15

Segmentation + ResNeXt 0.66 ± 0.05 0.72 ± 0.04 0.50 ± 0.18

Segmentation + DenseNet 0.68 ± 0.05 0.00 ± 0.00 0.96 ± 0.04

Clinical Algorithm 0.63 ± 0.06 0.34 ± 0.07 0.88 ± 0.04

Segmentation + EfficientNetB7 0.81 ± 0.02 0.88 ± 0.06 0.65 ± 0.06

Table 2. The accuracies of the classification model when different components are
manipulated. Variations included removing the segmentation stage, forcing class bal-
ance, and sampling to create an equal number of frames for each patient.

Method Accuracy Sensitivity Specificity

No Segmentation + EfficientNetB7 0.66 ± 0.06 0.80 ± 0.03 0.29 ± 0.13

Segmentation + EfficientNetB7 0.81 ± 0.02 0.88 ± 0.06 0.65 ± 0.06

Segmentation + EfficientNetB7 + Balanced 0.81 ± 0.04 0.74 ± 0.11 0.89 ± 0.07

Segmentation + EfficientNetB7 + Sampled 0.73 ± 0.11 0.92 ± 0.02 0.43 ± 0.20
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Fig. 2. The resulting class activation map of processing the segmented placenta
through the convolutional kernels. The highly activated regions indicate that the clas-
sifier identifies certain regions to be predictive of a normal or abnormal class.

4 Discussion

Our dual-stage CNN pipeline performed with greater accuracy than the existing
standard-of-care clinical algorithm at BCW. It additionally outperformed the
reported accuracies of all manual ultrasound assessment algorithms analyzed
by O’Gorman et al. (2016) [10]. Selecting the EfficientB7 architecture achieved
significantly greater accuracy than other popular CNNs (p < 0.05). When seg-
mentation was removed, the model performance decreased, indicating that a
segmentation step may be necessary for a CNN to focus on a region of interest
pertaining to placental texture. The accuracies remained similar when class bal-
ance was forced, providing support that the accuracies were not due to a biased
dataset. The biases are seen with DenseNet and ResNet which overpredicts nor-
mal classes, likely due to a larger number of normal patients. This may also
be the case for the existing clinical assessment algorithm where the high speci-
ficity and low sensitivity indicates overpredicting normal placenta, which would
report a higher accuracy than in a balanced dataset due to 71% of patients being
normal.

There are several implications and limitations of our study. We manually
selected only ultrasound frames with the placenta in view before segmentation.
We recognize that this may not be reproducible at other centres and may hinder
the ability to generalize our method. A potential solution would be to utilize
the segmentation network to extract placenta regions and filter images that
include some minimum area of placenta. However, validation for this method
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likely requires a large dataset with a variety of view angles and multiple experts
to verify that the images contain sufficient placenta for analysis.

In terms of placenta texture analysis, there are currently a few quantitative
criteria, but no assessment guidelines achieving accuracies greater than 0.63.
The accuracy achieved by our model suggests that there is a viable signal within
texture analysis of the placenta associated with placental disease such as PE or
FGR. This provides a proof-of-concept support that models using CNNs may
assist in addressing problems of early and automated risk stratification.

One limitation is that the accuracies, however, are not in the range (i.e. above
0.90) of predictive models using texture from modalities with consistent direc-
tionality such as computed tomography (CT) or magnetic resonance imaging
[21]. As fetal ultrasound is not highly restrained in its image acquisition, there
are significant variations in the positioning of the fetus, amniotic fluid and pla-
centa relative to the ultrasound transducers. These variations in image acqui-
sition could impact the algorithm’s ability to perform prediction on a diverse
dataset.

In addition, ultrasound is reflected by bone, which may obscure portions of
the placenta in an unpredictable fashion. As such, the full placenta may not be
in view for some patients, resulting difficulty of feature detection. To improve a
placental assessment model, future studies may assess ex-vivo placentas or full
3-dimensional volume reconstructions to reduce imaging variability and allow
a CNN to focus on texture. A larger dataset would also provide more training
samples for the classifier for future validation.

Another limitation is that abnormal microstructure and placental disease
(by our classification definition) is not necessarily a bijection. That is, it is
unknown to what extent does abnormal placentation and microstructure lead
to PE or FGR. However, while FGR may be constitutionally solved and a result
of maternal factors such as teratogens or genetic disease, this study focuses on
patients with placentally-mediated FGR which overlaps significantly with PE
in terms of pathology. Thus, the model provides insight to a correlative link,
but future studies are required to be validated if the current diagnostic criteria
for PE or FGR are the appropriate gold standard for placenta texture analysis.
One such direction could be to analyze the class activation map produced by a
CNN and investigate the identified regions of interest with a histological study
to see what cellular changes are associated with PE or FGR. Combination with
a larger dataset and a diverse patient population, such as patients undergoing
regular screening, are required to satisfy criteria to conclude causality between
CNN features and clinical outcomes [22].

5 Conclusion

We have developed a classifier model from a dual-stage CNN pipeline involv-
ing the segmentation of a placenta from ultrasound and predicting placenta-
mediated disease. Our model achieved higher accuracies than existing manual
assessment algorithms, though several limitations in the variability of the scans
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may reduce the ability to generalize the model. The model provides a proof-of-
concept support that machine learning has the potential to address challenges
in predicting placental disease, providing automated analysis and early identifi-
cation.
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Abstract. Accurate characterization of in utero human brain matu-
ration is critical as it involves complex interconnected structural and
functional processes that may influence health later in life. Magnetic
resonance imaging is a powerful tool complementary to the ultrasound
gold standard to monitor the development of the fetus, especially in the
case of equivocal neurological patterns. However, the number of acquisi-
tions of satisfactory quality available in this cohort of sensitive subjects
remains scarce, thus hindering the validation of advanced image pro-
cessing techniques. Numerical simulations can mitigate these limitations
by providing a controlled environment with a known ground truth. In
this work, we present a flexible numerical framework for clinical T2-
weighted Half-Fourier Acquisition Single-shot Turbo spin Echo of the
fetal brain. The realistic setup, including stochastic motion of the fetus
as well as intensity non-uniformities, provides images of the fetal brain
throughout development that are comparable to real data acquired in
clinical routine. A case study on super-resolution reconstruction of the
fetal brain from synthetic motion-corrupted 2D low-resolution series fur-
ther demonstrates the potential of such a simulator to optimize post-
processing methods for fetal brain magnetic resonance imaging.

Keywords: Fetal brain Magnetic Resonance Imaging (MRI) ·
Numerical phantom · Half-Fourier Acquisition Single-shot Turbo spin
Echo (HASTE) sequence · Super-Resolution (SR) reconstruction
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1 Introduction

Brain maturation involves complex intertwined structural and functional pro-
cesses that can be altered by various genetic and environmental factors. As such,
early brain development is critical and may impact health later in life [1–3].

Magnetic resonance imaging (MRI) may be required during pregnancy to
investigate equivocal situations as a support for diagnosis and prognosis, but also
for postnatal management planning [4]. In clinical routine, T2-weighted (T2w)
fast spin echo sequences are used to scan multiple 2D thick slices that provide
information on the whole brain volume with a good signal-to-noise ratio (SNR)
while minimizing the effects of random fetal motion during the acquisition [5].
Contrary to periodic movements that can be directly related to physiological
processes such as breathing or a heartbeat, and may therefore be compensated
during post-processing, stochastic movements of the fetus in the womb cause var-
ious artifacts in the images and impede the repeatability of measurements [6],
thus hindering retrospective motion correction. The difficulty of estimating such
unpredictable movements results in the lack of any ground truth, yet neces-
sary for the validation of new methods [7]. Post-processing approaches built on
motion estimation and correction can compensate for motion artifacts. Espe-
cially, super-resolution (SR) reconstruction techniques take advantage of the
redundancy between low-resolution (LR) series acquired in orthogonal orienta-
tions to reconstruct an isotropic high-resolution (HR) volume of the fetal brain
with reduced intensity artifacts and motion sensitivity [8–11]. The development
and validation of such advanced image processing strategies require access to
large-scale data to account for the subject variability, but the number of good
quality exploitable MR acquisitions available in this sensitive cohort remains
relatively scarce. Therefore, numerical phantoms are an interesting alternative
that offers a fully scalable and flexible environment to simulate a collection of
data in various controlled conditions. As such, they make it possible to conduct
accurate, robust and reproducible research studies [6,12], especially to evaluate
post-processing techniques with respect to a synthetic ground truth.

In this work, we present a simulation framework for T2w Half-Fourier Acqui-
sition Single-shot Turbo spin Echo (HASTE) of the fetal brain based on seg-
mented HR anatomical images from a normative spatiotemporal MRI atlas of
the fetal brain [4]. It relies on the extended phase graph (EPG) formalism [13,14]
of the signal formation, a surrogate for Bloch equations to describe the magne-
tization response to various MR pulse sequences. EPG simulations are particu-
larly relevant in the case of multiple radiofrequency pulses that are responsible
for stimulated echoes [13], as in the HASTE acquisition scheme. The proposed
pipeline is highly flexible and built on a realistic setup that accounts for inten-
sity non-uniformities and stochastic fetal motion. A case study on SR fetal brain
MRI further explores the value of such a numerical phantom to evaluate and
optimize an SR reconstruction algorithm [11,15].
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2 Methods

2.1 Numerical Implementation of HASTE Acquisitions

Fig. 1 provides an overview of the workflow implemented in MATLAB (Math-
Works, R2019a) to simulate clinical HASTE acquisitions of the fetal brain. We
have developed this numerical phantom with the idea of keeping the framework
as general as possible to enable users a large flexibility in the type of simulated
images. As such, multiple acquisition parameters can be set up with respect
to the MR contrast (effective echo time, excitation/refocusing pulse flip angles,
echo spacing, echo train length), the geometry (number of 2D slices, slice orienta-
tion, slice thickness, slice gap, slice position, phase oversampling), the resolution
(field-of-view, matrix size), the resort to any acceleration technique (acceleration
factor, number of reference lines), as well as other settings related to the gesta-
tional age (GA) of the fetus, the radiofrequency transmit field inhomogeneities,
the amplitude of random fetal motion in the three main directions, and the SNR.
The entire simulation pipeline is described in detail in the following.

Fetal Brain Model and MR Properties. Our numerical phantom is based
on segmented 0.8-mm-isotropic anatomical images (Fig. 1-i) from the normative
spatiotemporal MRI atlas of the developing brain built by Gholipour and col-
leagues from normal fetuses scanned between 19 and 39 weeks of gestation [4].
Due to the lack for ground truth relaxometry measurements in the fetal brain, all
thirty-four segmented tissues are merged into three classes: gray matter, white
matter and cerebrospinal fluid (Fig. 1-ii and Table 1). Corresponding T1 and T2
relaxation times at 1.5 T [16–20] are assigned to these anatomical structures to
obtain reference T1 and T2 maps, respectively (Fig. 1-iii).

Table 1. Classification of segmented brain tissues [4] as gray matter, white matter and
cerebrospinal fluid.

Gray matter Amygdala, Caudate, Cortical plate, Hippocampus, Putamen,
Subthalamic nuclei, Thalamus

White matter Cerebellum, Corpus callosum, Fornix, Hippocampal
commissure, Intermediate zone, Internal capsule, Midbrain,
Miscellaneous, Subplate, Ventricular zone

Cerebrospinal fluid Cerebrospinal fluid, Lateral ventricles

Intensity Non-Uniformities (INU). Non-linear slowly-varying INU fields
are based on BrainWeb estimations from real scans to simulate T2w images [21].
The available 20% INU version is resized to fit the dimensions of the atlas images
and normalized by 1.2 to provide multiplicative fields from 0.8 to 1.2 over the
brain area.
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i. Segmented HR anatomical 
images of the fetal brain [4]

ii. Tissue classification:
- gray matter
- white matter
- cerebrospinal fluid

iii. Conversion to MR contrast: 
T1 and T2 reference maps
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vi. Simulated HASTE images
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Fig. 1. Workflow for simulating HASTE images of the fetal brain (i) from segmented
HR anatomical MR images [4], illustrated for a fetus of 30 weeks of GA. (ii) Brain tis-
sues are organized into gray matter, white matter and cerebrospinal fluid. (iii) Anatom-
ical structures are converted to the corresponding MR contrast to obtain reference T1
and T2 maps of the fetal brain at 1.5 T. (iv) The T2 decay over time is computed
in every brain voxel by the EPG algorithm and subsequently used (v) to sample the
Fourier domain of the simulated HASTE images of the moving fetus. After the addition
of noise to match the SNR of real clinical acquisitions, (vi) HASTE images of the fetal
brain are eventually recovered by 2D inverse Fourier transform.

EPG Formalism. From the HASTE sequence pulse design, the T1 and T2
maps of the fetal brain and the realistic INU, the EPG algorithm [14] com-
putes the T2 decay in every voxel of the anatomical images over each echo train
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(Fig. 1-iv). The resulting 4D matrix that combines information about both the
anatomy and the magnetic relaxation properties of the fetal brain is hereafter
referred to as the T2 decay matrix.

K-Space Sampling and Image Formation. The T2 decay matrix is Fourier-
transformed in the spatial dimensions and subsequently used for k-space sam-
pling of the simulated HASTE images. For a given echo time (TE), at most
one line from the associated Fourier domain of the T2 decay matrix is used,
with the central line corresponding to the effective TE. Forty-two reference lines
are consecutively sampled around the center of k-space. Beyond, one line out of
two is actually needed to simulate an acceleration factor of two resulting from
the implementation of GRAPPA interpolation in the clinical HASTE acquisi-
tions. As a first approximation, these sampled lines are copied to substitute the
missing lines. As HASTE is a partial Fourier imaging technique, the properties
of Hermitian symmetry in the frequency domain are used to fill the remaining
unsampled part of k-space. While intra-slice motion can be neglected, inter-slice
random 3D translation and rotation of the fetal brain are implemented during k-
space sampling (Fig. 1-v). Complex Gaussian noise (mean, 0; standard deviation,
0.15) is also added to simulate thermal noise generated during the acquisition
process and qualitatively match the SNR of clinical data. The simulated images
are eventually recovered by 2D inverse Fourier transform (Fig. 1-vi).

With the aim of replicating the clinical protocol for fetal brain MRI, HASTE
acquisitions are simulated in the three orthogonal orientations. Besides, the posi-
tion of the field-of-view is shifted by ±1.6mm in the slice thickness orientation
to produce additional partially-overlapping datasets in each orientation.

Fetal Motion. The amplitude of typical fetal movements is estimated from
clinical data [22]. Three levels are defined accordingly for little, moderate and
strong motion of the fetus. They are characterized by less than 5%, 10% and
25% of corrupted slices respectively, and simulated by a uniform distribution
of [−2, 2]mm, [−3, 3]mm and [−3, 3]mm for translation in every direction and
[−2, 2]◦, [−4, 4]◦ and [−4, 4]◦ for 3D rotation respectively (Fig. 1-v).

Computational Performance. Since the addition of 3D motion during k-
space sampling is expensive in computing memory, the simulations are run on
16 CPU workers in parallel with 20 GB of RAM each. In this setup and for a fetus
of 30 weeks of GA whose brain is covered by twenty-five slices, the computation
time to convert segmented HR images of the fetal brain to MR contrast and to
run EPG simulations in every voxel of the 3D HR anatomical images is in the
order of one second, respectively less than four minutes. K-space sampling takes
less than seven minutes for one axial series with the different levels of motion.
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2.2 Clinical Protocol

Typical fetal brain acquisitions are performed on patients at 1.5 T (MAGNE-
TOM Sola, Siemens Healthcare, Erlangen, Germany) with an 18-channel body
coil and a 32-channel spine coil at our local hospital. At least three T2w series
of 2D thick slices are acquired in three orthogonal orientations using an ultra-
fast multi-slice HASTE sequence (TR/TE, 1200ms/90ms; excitation/refocusing
pulse flip angles, 90◦/180◦; echo train length, 224; echo spacing, 4.08ms; field-
of-view, 360×360mm2; voxel size, 1.13×1.13×3.00mm3; inter-slice gap, 10%).
The position of the field-of-view is slightly shifted in the slice thickness orienta-
tion to acquire additional data with some redundancy. In clinical practice, six
partially-overlapping LR HASTE series are commonly acquired for subsequent
SR reconstruction of the fetal brain.

2.3 Datasets

Six subjects in the GA range of 21 to 33 weeks were scanned at our local hospital
as part of a larger institutional research protocol with written consent approved
by the local ethics committee.

These clinical cases are used as representative examples of fetal brain HASTE
acquisitions: the corresponding sequence parameters are replicated to simulate
HASTE images of the fetal brain at various GA, and with realistic SNR. The
amplitude of fetal movements in clinical acquisitions is assessed by an engineer
expert in MR image analysis to ensure a similar level of motion in the simulated
images. The original real cases are also used to visually compare the quality and
realistic appearance of the synthetic images generated.

A 3D HR 1.1-mm-isotropic HASTE image of the fetal brain is simulated
without noise or motion to serve as a reference for the quantitative evaluation
of SR reconstructions from simulated LR 1.1-mm-in-plane HASTE images.

2.4 Qualitative Assessment

Two medical doctors specialized in neuroradiology and pediatric (neuro)
radiology respectively, provided qualitative assessment of the fetal brain HASTE
images simulated in the GA range of 21 to 33 weeks, in the three orthogonal
orientations with various levels of motion. Special attention was paid to the MR
contrast between brain tissues, to the SNR, to the delineation and sharpness of
the structures of diagnostic interest that are analyzed in clinical routine, as well
as to characteristic motion artifacts.

2.5 Application Example: Parameter Fine-Tuning for Optimal SR
Reconstruction

Implementation of SR Reconstruction. Orthogonal T2w LR HASTE series
from clinical examinations, respectively simulated images, are combined into
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a motion-free 3D image X̂ using the Total Variation (TV) SR reconstruction
algorithm [11,15] which solves:

X̂ = arg min
X

λ

2

∑

kl

‖DklBklMkl︸ ︷︷ ︸
Hkl

X − XLR
kl ‖2 + ‖X‖TV , (1)

where the first term relates to data fidelity with k being the k-th LR series XLR

and l the l-th slice, ‖X‖TV is a TV prior introduced to regularize the solution,
and λ balances the trade-off between data fidelity and regularization terms. D
and B are linear downsampling and Gaussian blurring operators given by the
acquisition characteristics. M encodes the rigid motion of slices.

Both clinical acquisitions and the corresponding simulated images are recon-
structed using the SR reconstruction pipeline available in [15].

Regularization Setting. LR HASTE images of the fetal brain are simulated
to mimic clinical MR acquisitions of three subjects of 26, 30 and 33 weeks of
GA respectively, with particular attention to ensuring that the motion level is
respected. For each subject, a SR volume of the fetal brain is reconstructed from
the various orthogonal acquisitions, either real or simulated, with different values
of λ (0.1, 0.3, 0.75, 1.5, 3) to study the potential of our simulation framework in
optimizing the quality of the SR reconstruction in a clinical setup. A quantitative
analysis is conducted on the resulting SR reconstructions to determine the value
of λ that provides the sharpest reconstruction of the fetal brain with high SNR,
namely the smallest normalized root mean squared error (NRMSE) with respect
to a synthetic ground truth.

3 Results and Discussion

3.1 Qualitative Assessment

Fig. 2 illustrates the close resemblance between simulated HASTE images of the
fetal brain and clinical MR acquisitions for two representative subjects of 26
and 30 weeks of GA respectively, in terms of MR contrast between tissues, SNR,
brain anatomy and relative proportions across development, as well as typical
out-of-plane motion patterns related to the interleaved slice acquisition scheme.
Experts in neuroradiology and in pediatric (neuro)radiology report a good con-
trast between gray and white matter, which is important to investigate cortex
continuity and identify the deep gray nuclei as well as any migration anomaly.
They also notice good SNR in the different series and report proper visualiza-
tion of the main anatomical structures: the four ventricles, the corpus callosum,
the vermis, the cerebellum, even sometimes the fornix. Besides, they are able to
monitor the evolution of normal gyration throughout gestation. However, they
point out that small structures such as the hypophyse, the chiasma, the recesses
of the third ventricle, and the vermis folds that look part of the cerebellum, are
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more difficult to observe. The cortical ribbon is clearly visible but quite pixe-
lated, which is likely to complicate the diagnosis of polymicrogyria. White matter
appears too homogeneous, which makes its multilayer aspect barely distinguish-
able, with an MR signal that is constant across GA, thus preventing physicians
from exploring the myelination process throughout brain maturation. For these
reasons, experts feel confident in performing standard biometric measurements
on the simulated images and in evaluating the volume of white matter, but not
its fine structure.

These limitations in the resemblance of the simulated HASTE images as
compared to typical clinical acquisitions may be explained by the origin of the
simulated images and the lack of T1 and T2 ground truth measurements, both in
the multiple fetal brain tissues and throughout maturation. HASTE images are
simulated from a normative spatiotemporal MRI atlas of the fetal brain [4] where
representative images at each GA correspond to an average of fetal brain scans
across several subjects, thus resulting in smoothing of subtle inter-individual
heterogeneities, especially in the multilayer aspect of the white matter. As a
first approximation because of the lack of detailed literature on the changes that
result from maturation processes in finer structures of the brain, we consider
average T1 and T2 relaxation times of the various fetal brain tissues labeled as
gray matter, white matter or cerebrospinal fluid (see Table 1) over gestation. As
a result, our simulated images may fail to capture the fine details of the fetal
brain anatomy throughout development.

Clinical data Simulations Clinical data Simulations Clinical data Simulations
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Fig. 2. Comparison between motion-corrupted clinical MR acquisitions and corre-
sponding simulated HASTE images at two GA (26 and 30 weeks). Images are shown in
the three orthogonal planes. Red arrows point out typical out-of-plane motion patterns.

3.2 Application Example: Parameter Fine-Tuning for Optimal SR
Reconstruction

In fetal MRI, the level of regularization is commonly set empirically based on
visual perception [8–10]. Thanks to its controlled environment, the presented
framework makes it possible to adjust the parameter λ for optimal SR recon-
struction with respect to a synthetic 3D isotropic HR ground truth of the fetal
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brain. Of note, in-plane motion artefacts like signal drops are not accounted for
in the simulation pipeline at this stage, as heavily corrupted slices are commonly
removed from the reconstruction.

Figure 3 explores the quality of SR fetal brain MRI depending on the weight
of TV regularization. Based on the simulations, a high level of regularization (λ =
0.1) provides a blurry SR reconstruction with poor contrast between the various
structures of the fetal brain, especially in the deep gray nuclei and the cortical
plate. In addition, the cerebrospinal fluid appears brighter than in the reference
image. A low level of regularization (λ = 3) leads to a better tissue contrast
but increases the overall amount of noise in the resulting SR reconstruction.
A fine-tuned regularization (λ = 0.75) provides a sharp reconstruction of the
fetal brain with a high SNR and a tissue contrast close to the one displayed in
the reference image. In the SR images reconstructed from clinical LR HASTE
series altered by a little-to-moderate level of motion, as in the simulations, the
structure of the corpus callosum and the delineation of the cortex are especially
well defined for appropriate TV regularization (λ = 0.75), leading to high-SNR
HR images of the fetal brain. Although the NRMSE between SR reconstructions
from simulated HASTE images and the ground truth are close to each other in
the three configurations studied, the error is minimal for λ = 0.75, which further
supports this parameter setting for optimal SR reconstruction.
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Clinical caseSimulations
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Fig. 3. Appreciation of the quality of SR reconstruction depending on the weight λ
that controls the strength of the TV regularization. The potential of our framework
to optimize the reconstruction quality through parameter fine-tuning in the presence
of motion is illustrated for a fetus of 33 weeks of GA with three values of λ. A repre-
sentative clinical case from which the synthetic HASTE images are derived is provided
for comparison. The blue box highlights that the NRMSE between SR reconstructions
from simulated data and a simulated 3D HR ground truth is minimal for λ = 0.75.
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4 Conclusions and Perspectives

In this work, we present a novel numerical framework that simulates as closely as
possible the physical principles involved in HASTE acquisitions of the fetal brain,
with great flexibility in the choice of the sequence parameters and anatomical set-
tings, resulting in highly realistic T2w images of the developing brain throughout
gestation. Thanks to its controlled environment, this numerical phantom makes
it possible to explore the optimal settings for SR fetal brain MRI according to the
image quality of the input motion-corrupted LR HASTE series. It also enables
quantitative assessment of the robustness of any SR reconstruction algorithm
depending on various parameters such as the noise level, the amplitude of fetal
motion in the womb and the number of series used for SR reconstruction [23].
Future work aims at investigating the ability of such synthetic images to general-
ize post-processing tools like fetal brain tissue segmentation to datasets acquired
on other MR systems and with other parameters using domain adaptation tech-
niques. Therefore, the developed pipeline will be extended to simulate fast spin
echo sequences from other MR vendors, both at 1.5 T and 3 T. It will then be
made publicly available to support reproducibility studies and provide a com-
mon framework for the evaluation and validation of post-processing strategies
for fetal brain MRI.
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Abstract. Motion-corrected fetal magnetic resonance imaging (MRI) is
widely employed in large-scale fetal brain studies. However, the current
processing pipelines and spatio-temporal atlases tend to omit craniofa-
cial structures, which are known to be linked to genetic syndromes. In
this work, we present the first spatio-temporal atlas of the fetal head
that includes craniofacial features and covers 21 to 36 weeks gestational
age range. Additionally, we propose a fully automated pipeline for fetal
ocular biometry based on a 3D convolutional neural network (CNN).
The extracted biometric indices are used for the growth trajectory anal-
ysis of changes in ocular metrics for 253 normal fetal subjects from the
developing human connectome project (dHCP).

Keywords: Motion-corrected fetal MRI · Craniofacial features ·
Ocular measurements · Spatio-temporal atlas · Automated biometry

1 Introduction

Arguably, an MRI scan of the fetal brain is not complete without a structural
and dysmorphological assessment of the fetal craniofacial structures due to the
intricate link between brain anomalies and genetic syndromes that affect the
facial features [2,19]. More than 250 syndromes are associated with changes in
craniofacial growth and development and can therefore result in overt anomalies
or subtle changes in anatomical appearance and yet prenatal detection remains
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low [7,15]. Ultrasound is the primary imaging modality for fetal assessment and
has well recognised limitations. High risk fetal cases are increasingly referred for
MRI examinations for further characterisation and to assess for the presence of
additional anomalies.

Fetal motion during MRI acquisition leads to loss of structural continuity
between 2D slices and corruption of 3D information. The image degradation pre-
cludes the reliable use of MRI to assess craniofacial structures. During the past
decade this has been successfully addressed by slice-to-volume registration (SVR)
reconstruction tools [6,11] that can produce motion-corrected high-resolution 3D
fetal brain MRI images. SVR tools also have the potential to increase the clini-
cal reliability of extended craniofacial biometry and objective assessments of the
curved structures of the fetal head and face e.g. orbits, oral hard and soft palate,
and cranial shape. Formalisation of the normal trajectory of rapid development
of craniofacial structures occurring during gestation that can be observed in
MRI is essential for definition of the control reference. However, the existing
spatio-temporal fetal atlases include only the brain region [8].

Automated segmentation and volumetry methods lower the impact of inter-
and intra-observer variability and provide the means for processing large-scale
studies [14]. Recently, several reported works employed semi-automated seg-
mentation for analysis of fetal craniofacial features in MRI and ultrasound
[1,12,13,21] and, more recently, an automated method was proposed for 2D slice-
wise segmentation and biometry of orbits in low resolution stacks [3]. Incorpora-
tion of novel convolutional neural network (CNN) pipelines for motion-corrected
fetal MRI segmentation [9,10,16] has a potential to make the application of
automated biometry and volumetry of craniofacial structures feasible for large
datasets and motion-corrected MRI. Quality control for automated data anal-
ysis methods also remains one of the current challenges in terms of practical
application.

In this work, we propose to generate a first spatio-temporal atlas of the fetal
head that includes craniofacial features. This extends the already existing brain-
only fetal MRI templates for a wider application of analysis of normal craniofacial
feature development. In addition, we implemented an automated pipeline for 3D
CNN-based ocular biometry for motion-corrected fetal MRI with outlier detec-
tion. The biometry outputs were then used for the analysis of ocular growth
trajectories for 253 normal fetal subjects with acceptable biometry results.

2 Methods

2.1 Cohort, Datasets and Preprocessing

The data used in this study included T2w MRI datasets of 291 fetuses with-
out reported anomalies from 20 to 38 weeks gestational age (GA) acquired at
St.Thomas’ hospital, London as a part of the dHCP project1 (dHCP, REC:
14/Lo/1169). The acquisition was performed on a Philips Achieva 3T system

1 dHCP project: http://www.developingconnectome.org/project.

http://www.developingconnectome.org/project


170 A. Uus et al.

Fig. 1. Distribution of the gestational age and image quality in the investigated fetal
MRI cohort. The image quality scores are: fail, poor, average and good.

with a 32-channel cardiac coil using single shot turbo spin echo (ssTSE) sequence
with TE = 250 ms, TR = 2265 ms, acquisition resolution = 1.1 × 1.1 × 2.2 mm
(–1.1 mm gap) [18]. The datasets were reconstructed using a fully automated
SVR pipeline [5] to 0.5 × 0.5 × 0.5 mm resolution for the fetal head region of
interest (ROI). This was followed by reorientation to the standard planes using
a dedicated transformer CNN [22].

The quality of the 3D reconstructed images in terms of definition of the
anatomy features, noise and contrast was assessed by an experienced researcher
with the grades: good (4), average (3), poor (2) and failed (1). All available
datasets were included in the biometry study irrespective of the reconstruction
image quality for the purpose of testing of the proposed automated detection of
outliers approach. The histograms of the cases GA and quality scores is given in
Fig. 1 with the majority of scans within ≥ 3 quality window. For generation of
the atlas we used only a subset of cases from 21 to 36 GA weeks.

2.2 Spatio-Temporal Atlas

For atlas generation, we selected 190 datasets with the best image quality and
optimal coverage of the fetal head. The 4D spatio-temporal atlas of the fetal
head was constructed using the MIRTK2 atlas generation pipeline [20] at 16
discrete timepoints in 21 to 36 weeks GA range. We used local normalised
cross-correlation similarity metric with 5 voxel window, 3 atlas generation itera-
tions, temporal Gaussian kernel with constant 1 week sigma, and 0.7 mm output
isotropic resolution settings.

2 MIRTK library: https://github.com/BioMedIA/MIRTK.

https://github.com/BioMedIA/MIRTK
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2.3 Automated Ocular Biometry

The proposed pipeline for fetal ocular biometry is summarised in Fig. 2. We
first localise the orbit using 3D U-Net [4], then we fit a 3D line through the
orbit centroids and calculate the standard ocular measurements [21]. Further-
more, the step for automated detection of outliers provides quality control of the
segmentations and measurements.

For the orbit segmentation module, the 3D U-Net [4] architecture consists of
5 encoding-decoding levels with 32, 64, 128, 256 and 512 channels, respectively.
Each encoder block consists of 2 repeated blocks of 3 × 3 × 3 convolutions (with
a stride of 1), instance normalisation and LeakyReLU activations. The first two
down-sampling blocks contains a 2×2×2 average pooling layers, while the others
use 2× 2× 2 max pooling layers. The decoder blocks have a similar architecture
as the encoder blocks, followed by upsampling layers. The model outputs an N-
channel 3D image, corresponding to our 2 classes: background and fetal orbits.
The network is implementated in PyTorch3.

The orbit masks were created manually by a trained clinician for 20 cases.
The network was trained on 19 3D reconstructed images and 1 case was used
for validation. The training was performed for 100 epochs with TorchIO aug-
mentation [17] including affine transformations (±180◦ rotations and 0.9 − 1.1
scaling), bias field and motion artifacts (< 5◦ rotations and < 2.0 translations).

Fig. 2. Proposed pipeline for automated ocular biometry.

Next, the output 3D segmentations are post-processed using morphologi-
cal filtering. The two largest components with ±35% difference in volume are
selected as the orbits (to account for a potential intensity variability due to the
presence of a bias field). The calculation of ocular biometry is performed by
fitting a line through the orbit centroids followed by detection of intersection
points, calculation of line segment length and extraction of the standard 2D
metrics: ocular diameter (OD), binocular distance (BOD), interocular distance
(IOD), see Fig. 7.f. In addition, we also calculate volumes of the orbits (OV).
Similarly to [21], the mean OD and OV values are computed as an average
between the left and right orbits.

Outlier detection is based on three inclusion conditions: (i) the number of
detected components should not exceed 5, which is an indicator of not well
defined ocular features due to low image quality; (ii) the sizes of the right and
left (R/L) orbits should be comparable within ±15% difference in terms of both
volumes and OD values; (iii) the extracted metrics should be within ±30% win-
dow of the GA-specific curve values [21].
3 PyTorch: https://pytorch.org.

https://pytorch.org
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In order to confirm the correlation between the intracranial and ocular vol-
umetry, we trained a 3D U-Net with the same architecture for brain extrac-
tion. The training was performed for 400 epochs with augmentation in 3 steps
using semi-supervised approach. At the first stage we used 60 fetal brain SVR
images with manual segmentations of the intracranial volume available from
other research projects. Next, the results of testing on the entire cohort (291)
were examined and successful brain masks that included the entire intracranial
volume were used in the next stage of training. All output intracranial brain
masks for good quality reconstruction cases were visually inspected by a trained
researcher and manually refined in 32 cases due to the presence of errors.

Fig. 3. The generated spatio-temporal atlas of the fetal craniofacial feature develop-
ment at 21, 26, 31 and 36 weeks GA along with the corresponding face masks.
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3 Results and Discussion

3.1 Spatio-Temporal Atlas of Fetal Craniofacial Feature
Development

The generated spatio-temporal atlas of the head ROI at 21, 26, 31 and 36 weeks
GA is shown in Fig. 3. The corresponding presented face masks were created
semi-manually using combination of thresholding, manual refinement and label
propagation from one to the rest of the GA timepoints. The atlas was inspected
by two clinicians trained in fetal MRI who confirmed that all craniofacial features
are correct, well defined and have high contrast. The atlas will be available online
at the SVRTK data repository4.

Fig. 4. Examples of a successful biometry output (a), a case detected as an outlier
due to R/L OD and OV differences (b) and a completely failed case (c). The illus-
trations show the original 3D SVR reconstructions with orbit mask overlay and the
corresponding 3D model with the fitted 3D line.

4 SVRTK fetal and neonatal MRI data repository: https://gin.g-node.org/SVRTK.

https://gin.g-node.org/SVRTK


174 A. Uus et al.

3.2 Eye Biometry

Figure 4 shows an example of a successful (Fig. 4a) and failed (Fig. 4c) biometry
output as well as a case that was automatically identified as an outlier (Fig. 4b)
due to the difference between right and left OD and OV values. The completely
failed case (Fig. 4c) was also automatically detected since there were > 5 com-
ponents in the 3D U-Net output. This was caused by the low image quality due
to the insufficient number of input stacks and the extreme motion that could
not be resolved by SVR reconstruction [5].

Fig. 5. Comparison between automated and manual measurements for mean OD (a),
IOD (b), BOD (c) and mean OV (d) on 10 randomly selected cases.

The performance of the proposed pipeline of ocular biometry (Sect. 2.3) was
evaluated on 10 randomly selected cases (quality grade group 3 to 4) from dif-
ferent GA groups, with automated biometry outputs compared to manual mea-
surements. The corresponding results, presented in Fig. 5, show reasonably low
absolute and relative differences (0.60±0.56 mm and 3.99±3.49% for mean OD,
1.03 ± 0.67 mm and 6.06 ± 3.96% for IOD and 0.88 ± 0.57 mm and 1.88 ± 1.10%
for BOD, see Fig. 5) and high correlation (R2 > 0.91) between the automated
and manual measurements for all metrics. The slightly higher IOD and lower OV
values in the automated output are primarily caused by more conservative auto-
mated segmentations that exclude the boundary around the orbits. It should be
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Fig. 6. Absolute (a) and relative (b) differences in right/left OD measurements. The
cases in yellow and red are outliers with significant differences in either R/L OD or
OV or both, respectively, while the cases in blue can be considered to be reliable for
interpretation. (Color figure online)

noted that both manual and automated mean OD and OV measurements were
characterised by R/L orbit differences.

The outlier detection step identified 4 cases where the reconstruction com-
pletely failed and 34 cases with high differences in right/left orbit metrics. An
illustration of the absolute and relative R/L orbit OD differences for all cases
is given in Fig. 6 with the outliers highlighted in yellow and red depending on
whether there is a difference between either OD or OV or both these measure-
ment. The discrete appearance of the difference values is related to the voxel
size of the input images since the 2D distances are computed as voxels between
intersection points along the fitted lines. The average quality scores (the manual
grading in Fig. 1) in failed (4 cases), outlier (34 cases) and normal (253 cases)
groups are 1.0± 0.0, 3.1± 0.9 and 3.6± 0.5, respectively. Notably, in addition to
motion artefacts, the primary cause of the R/L differences was the presence of a
strong bias field which was not taken into account during image quality grading.

3.3 Growth Charts

Prior to the analysis of growth trajectories, all automated eye segmentations
and biometry results were also inspected manually which confirmed the similar
size of the detected orbits in 253 cases. The automatically detected failed and
outlier cases (Sect. 3.2) were excluded. The growth trajectories constructed from
the selected 253 cases, shown in Fig. 7, include ocular biometry (mean OD, IOD,
BOD), mean OV and total intracranial volume. The trajectories of all indices
show high agreement with the existing formulas for ocular indices [21].
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Fig. 7. Growth charts for 253 subjects from [20; 38] week GA range for mean OD (a),
IOD (b), BOD (c), mean OV (d) and total intracranial volume (e) extracted from the
automated measurements. The illustration of the measurements is given in (f).

4 Conclusions

In summary, we have presented the first spatio-temporal atlas of fetal cranio-
facial feature development from 21 to 36 weeks GA which extends the existing
brain-only fetal MRI atlases. The atlas will be available online at the SVRTK
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data repository5. We also showed that fully automated 3D CNN-based ocular
biometry can be used for processing large cohort datasets as an alternative to
manual measurements. In addition, the proposed solution for detection of out-
liers provides the means to control interpretation of the outputs of automated
processing by highlighting potentially unreliable results that require manual edit-
ing. The outlier cases with significant deviations that can occur due to either low
image quality, failed segmentation or anomalies should be manually inspected,
if required. The growth charts from the automatically derived ocular indices
showed high correlation to the previously reported trends [21]. Our future work
will focus on further automation of parcellation and biometry of craniofacial
structures as well as analysis of abnormal cases.
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Abstract. Prematurity and preterm stressors severely affect the devel-
opment of infants born before 37 weeks of gestation, with increasing
effects seen at earlier gestations. Although preterm mortality rates have
declined due to the advances in neonatal care, disability rates, especially
in middle-income settings, continue to grow. With the advances in MRI
imaging technology, there has been a focus on safely imaging the preterm
brain to better understand its development and discover the brain regions
and networks affected by prematurity. Such studies aim to support inter-
ventions and improve the neurodevelopment of preterm infants and
deliver accurate prognoses. Few studies, however, have focused on the
fully developed brain of preterm born infants, especially in extremely
preterm subjects. To assess the long-term effect of prematurity on the
adult brain, myelin related biomarkers such as myelin water fraction and
g-ratio are measured for a cohort of 19-year-old extremely preterm sub-
jects. Using multi-modal imaging techniques that combine T2 relaxome-
try and neurite density information, the results show that specific regions
of the brain associated with white matter injuries due to preterm birth,
such as the Posterior Limb of the Internal Capsule and Corpus Callosum,
are still less myelinated in adulthood. Such findings might imply reduced
connectivity in the adult preterm brain and explain the poor cognitive
outcome.

1 Introduction

Prematurity is the leading cause of death in children under the age of five,
with preterm birth rates continuing to increase in almost every country with
reliable data [14]. Despite the medical innovations in prenatal care, extremely
preterm (EPT) infants (born before 26 weeks of gestation) remain at a high risk
of death (30%-50% mortality). In addition, despite improved survival, disabil-
ity rates are not declining, specifically in middle-income settings[5,14]. Preterm
birth and other perinatal stressors such as premature exposure to the extra-
uterine environment, ischemia, hypoxia, and inflammation can lead to White
Matter (WM) injuries or otherwise affect brain development; more drastically,
c© Springer Nature Switzerland AG 2021
C. H. Sudre et al. (Eds.): UNSURE 2021/PIPPI 2021, LNCS 12959, pp. 179–188, 2021.
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these can subsequently result in hypomyelination and long-term alterations of
the brain’s connectivity and structural complexity [17]. Therefore, measurement
of myelin density and the spatial variation of myelin has been used to assess
brain maturation in EPT babies and as a predictor of neurodevelopmental out-
come, demonstrating the link between preterm brain development and signifi-
cant alterations which can relate to cognitive performance [4,17]. Few studies
have focused on the fully developed brain of preterm born individuals, where
myelination processes are developed [11]. This study attempts to overcome this
lack of knowledge by examining a cohort of 19-year-old participants, born at
both extremely preterm and term gestation, and combining the structural sen-
sitivity, but myelin non-specificity, of DWI and the high myelin specificity, but
structural insensitivity of T2 relaxometry to reveal changes in myelin related
biomarkers. First, full brain analysis is performed, followed by a region-specific
approach investigating areas hypothesised to be more affected by preterm stres-
sors such as the Corpus Callosum and the Posterior Limb of the Internal Capsule
(PLIC). Lastly, these biomarkers were analysed between defined cortical regions
and along the pathways between regions for a more thorough look at functional
connectivity, and hypomyelination [10]. Figure 1 report the main steps of the
analysis.

2 Methods

2.1 Data

Imaging data were acquired for a cohort of 142 adolescents at 19 years of age.
Data for 89 EPT adolescents (52 Female/37 Male) and 53 term-born socioeco-
nomically matched peers (32 Female/22 Male) were acquired on a 3T Phillips
Achieva. Diffusion weighted data (DWI) was acquired across four b-values at
b = 0, 300, 700, 2000s.mm−2 with n = 4,8,16,32 directions respectively at TE
= 70 ms (2.5 × 2.5 × 3.0mm). T2 weighted data was acquired in the same space
as the diffusion imaging with ten echo times at TE = 13, 16, 19, 25, 30, 40, 50,
85, 100, 150 ms (2.5 × 2.5 × 3.0mm). In addition we acquired 3D T1-weighted
(TR/TE = 6.93/3.14 ms) volume at 1 mm isotropic resolution for segmentation
and parcellation [3]. B0 field maps were acquired to correct for EPI-based distor-
tions between the diffusion imaging and the T1-weighted volumes. All participants
gave informed consent before taking part in the experiment. Ethical approval was
granted by the South Central - Hampshire Research Ethics Committee.

2.2 Region of Interest Values

Based upon previous research in these areas, manual regions of interest were
described in the genu and splenium of the corpus callosum in addition to
the posterior limb of the internal capsule [1,13]. These regions are ordinarily
highly-myelinated white matter regions providing communication between cere-
bral hemispheres and carrying signals relating to motor-function to the rest of
the body.
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Fig. 1. Overview of methodology pipeline: T2-maps are estimated from the single com-
partment T2-relaxometry model, Myelin Water Fraction (MWF) maps are measured
from the multi-compartment T2-relaxometry model. Neurite Density Index from the
NODDI model and MWF maps are used to compute g-ratio maps (Eq. 2). A trac-
togram is generated by performing Whole-brain Probabilistic Tractography (WPT)
for each subject from the diffusion-weighted data (DWI). Combining the streamline
information with the maps of MWF, brain connectomes are derived for each subject.
Statistical tests are performed to detect differences in T2, g-ratio, and MWF-derived
markers between FT and EPT subjects.

2.3 Model Fitting

Myelin Water Fraction (MWF) corresponds to the volume of myelin water in a
determined area of the brain and it is a surrogate measure for myelin content.
Brain water T2 decreases with increasing gestational and postnatal age and is a
more sensitive marker of brain maturation than visual assessment of T2-weighted
MR images [9].

Ordinarily a single T2 value can be fitted to multi-echo data. This assumes
that each voxel of the brain image contains a single biological compartment.
Brain modelling can be enhanced by assuming that each brain voxel con-
tains multiple compartments with different corresponding T2 values [12]. In the
absence of a significant fluid component, brain tissue can be described with
two compartments, one of myelin water with short T2 and one of other intra
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and extra-cellular space with significantly longer T2. The volume fraction of the
MWF component (vmwf ) is thus a marker of myelin density (Eq. 1).

S(TE) = S0

[
vmwfe− TE

T21 + (1 − vmwf )e− TE
T22

]
(1)

DWI is sensitive to local structure, but due to the short T2 of the myelin sig-
nal, DWI is non-specific to myelin content. The g-ratio is a geometrical invariant
of axons quantifying their degree of myelination relative to their cross-sectional
size. This biomarker can be calculated from MWF (vmwf )and NDI (vndi) data
when assuming a cylindrical geometry of the axons since these are both density
related biomarkers (Eq. 2) [12]. Signal conduction velocity can be shown to be
proportional to γ

√− log γ [11]

γ =
(

vmwf

vndi
+ 1

)− 1
2

(2)

2.4 Brain Network and Feature Extraction

A Multi-Shell Multi-Tissue (MSTMT) approach was employed to estimate the
response function for White Matter (WM), Grey Matter (GM), and Cere-
brospinal fluid (CSF) [8]. In addition, Constrained Spherical Deconvolution
(CSD) is utilized to evaluate the orientation distribution of the WM fibres [16].
Ten million streamlines are estimated for each subject by performing whole-brain
probabilistic tractography [15]. Tissue parcellations are obtained by applying the
Geodesic Information Flow labelling protocol to the T1-weighted volumes [3].
Neurite Density Index (vndi) is estimated with the Neurite Orientation Disper-
sion and Density Imaging (NODDI) model [18]. One hundred twenty-one GM
regions (ROIs) formed the nodes of the brain network. For each subject, a graph
G = (V,E) is defined, where the nodes V are the ROI, and E corresponds to the
set of edges connecting the ROIs. In G, along each streamline connecting nodes
i and j, the strength of connectivity of the edge (i, j) is defined as the mean
sampled value of MWF. A more detailed description is provided by a previous
study [7].

3 Results

3.1 Overall Brain

Single-compartment T2 maps of the entire cohort; as well as MWF and g-ratio
maps were generated and examples are shown in Fig. 2. There was no significant
difference for MWF and g-ratio values between EPT and FT participants when
analysing the whole brain but there was a significant difference for T2 values
which were higher in the EPT cohort (p-value 0.00137). The T2, MWF and g-
ratio averages of the whole brain for EPT and FT participants were (90.85±9.00,
86.40±4.23); (0.23±0.03, 0.23±0.03) and (0.84±0.02, 0.85±0.02) respectively.
Figure 3 shows the correlation between g-ratio/MWF (p-value 7.3−34 and ρ –
0.82) and g-ratio/NDI (p-value 6.7−5 and ρ 0.34); with g-ratio/MWF exhibiting
a more significant correlation.
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Fig. 2. Example of Myelin Water Fractio (MWF), g-ratio, T2, and Neurite Density
Index (vndi) maps of an EPT participant.

3.2 Corpus Callosum and Posterior Limb of Internal Capsule

The Corpus Callosum was analysed and Fig. 4 shows an average reduction of
myelin in EPT born participants (0.31±0.06) when compared to FT (0.34±0.05);
overall (p-value 1.6−3). It is worth highlighting that the Splenium of the Corpus
Callosum showed the highest significant difference in the corpus callosum (higher
than the genu), for EPT (0.31 ± 0.06), and FT (0.35 ± 0.050), with (p-value
1.92e−5). The PLIC region was analysed using non-parametric approaches and
Fig. 5 shows a significant lower MWF value in EPT born participants (p-value
0.026). The thalamus was also analysed but showed no difference between EPT
and FT born participants.

For the corpus callosum the results of g-ratio measurement show a statisti-
cally significant difference (p-value 0.0266) between EPT and FT participants;
with g-ratio of EPT being higher (0.830± 0.031) than FT (0.819± 0.0254). Fur-
thermore, g-ratio results in the Splenium of the Corpus Callosum presented a
more significant difference (p-value 0.0015) between EPT (0.834 ± 0.0341) and
FT (0.816 ± 0.026) participants. A difference in conduction velocity (p-value
0.022) was also found for the corpus callosum with EPT participants’ values
being lower (0.355 ± 0.0245) than FT (0.364 ± 0.0180); and specifically for the
splenium of the corpus callosum (p-value 0.0023) where EPT (0.352 ± 0.030)
and FT (0.366 ± 0.017). These results alongside the g-ratio ones are depicted in
Fig. 6. No significant statistical difference was found for PLIC.

3.3 Region Connectivity and Specific Pathways

Decreased MWF was observed in the R.Thalamus-L.Calcarine Cortex (p-value
= 0.03) and in the R.Thalamus- L.Precuneus (p-value = 0.018) pathways in
EPT born participants. Parietal-Frontal pathways were also analysed but no sig-
nificant difference was registered between EPT and FT participants. The MWF
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Fig. 3. Correlation plots a) vndi/g-ratio b) MWF/g-ratio c) MWF/T2.

connectomes were analysed and the average MWF of all myelin containing net-
works was found to be (0.240 ± 0.037) and (0.244 ± 0.036) respectively for EPT
and FT born participants. No significant difference was found for these groups.
Using the same approach for all networks within one region; all 121 regions were
analysed and multiple regions appeared to have a decreased overall myelin den-
sity; Table 1 highlights the regions where a significant difference in MWF values
was found and the corresponding p-values and CIs.

4 Discussion

The average MWF values of the whole brain showed no significant differences
between EPT and FT participants. This might suggest that the effect of preterm
birth is localised to specific brain regions, resulting in some brain areas being
more affected. The preterm brain, having to develop exvivo, will reorganise its
structure and develop differently in comparison to infants still in the womb,
which is an indication that EPT born infants might present tracts with different
characteristics than those in FT born individuals to compensate for the different
developmental conditions [6,7].

Injuries in the Corpus Callosum are considerably frequent in prematurity due
to being adjacent to the periventricular brain region, which is often impaired.
In addition, underdevelopment can lead to disruption of intra-hemispheric com-
munication and reduce connectivity [13]. The findings in the Corpus Callosum
and specifically in the Splenium, which appears less myelinated in EPT than FT
born participants, indicate the persistence of preterm birth consequences into
adolescence.

The low MWF results found for the PLIC in EPT born participants might be
an indicator of motor pathway underdevelopment or disruption of myelination
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Table 1. Table showing the regions of the brain where overall MWF are lower in
EPT participants. The p-values, Confidence Intervals (C.I), and means with standard
deviation (std) are reported. The results that survived the Bonferroni threshold of
0.05/18 = 0.0028 are in bold.

Regions where MWF EPT MWF FT MWF p-value 95C.I

EPT < FT mean (std) mean (std)

Left Superior Occipital Gyrus 0.23 (0.041) 0.24 (0.040) 0.026 –0.031 –0.0020

Left Calcarine Cortex 0.23 (0.042) 0.25 (0.037) 0.0084 -0.034 –0.0051

Left Cuneus 0.22 (0.042) 0.24 (0.039) 0.0101 –0.034 –0.0046

Left Occipital pole 0.22 (0.039) 0.23 (0.039) 0.029 –0.029 –0.0016

Right Middle Temporal Gyrus 0.23 (0.036) 0.24 (0.033) 0.025 –0.027 –0.0018

Right Fusiform Gyrus 0.22 (0.034) 0.24 (0.033) 0.0010 –0.032 –0.0082

R Inferior Temporal Gyrus 0.22 (0.036) 0.24 (0.032) 0.0020 –0.032 –0.0073

R superior parietal lobe 0.22 (0.038) 0.23 (0.038) 0.035 –0.028 -0.00099

Right Angular Gyrus 0.22 (0.036) 0.23 (0.034) 0.0438 –0.026 –0.00037

Right Precuneus 0.23 (0.040) 0.24 (0.037) 0.0481 –0.028 –0.00012

Right Superior occipital Gyrus 0.20 (0.037) 0.23 (0.033) 0.0005 –0.035 –0.010

Right Calcarine Cortex 0.21 (0.040) 0.24 (0.035) 0.0010 –0.037 –0.0095

Right Cuneus 0.20 (0.038) 0.22 (0.034) 0.0043 –0.032 –0.0061

Right Occipital pole 0.19 (0.043) 0.21 (0.036) 0.00192 –0.037 –0.0086

Right lingual Gyrus 0.22 (0.038) 0.24 (0.038) 0.00084 –0.037 –0.0099

Right Occipital Fusiform Gyrus 0.19 (0.037) 0.22 (0.032) 0.00027 –0.0359 –0.0110

Right Inferior occipital Gyrus 0.20 (0.036) 0.22 (0.031) 0.0005 –0.034 –0.0097

Right Middle occipital Gyrus 0.21 (0.039) 0.22 (0.034) 0.030 –0.0279 –0.00143

processes due to preterm stressors, which have led to the hypomyelination of
these pathways and possible motor deficits extended into adolescence [17].

The decrease in myelin-linked markers in the Calcarine cortex, which is the
main site of input signals coming from the retina, alongside the Precuneus,
Cuneus and Lingual Gyrus, indicates differences in the development of brain
cortex and possibly visual deficits. This might be caused by extra-uterine devel-
opment which led to reduced functional connectivity. Another option is that
compensatory mechanisms led to the formation of additional pathways going
from those regions which are hypomyelinated and therefore not entirely func-
tional. This hypothesis could be tested in future work. In addition, the networks
from the Precuneus and the Calcarine cortex to the thalamus also presented
lower MWF values or efficient connectivity, thus demonstrating the effects of
the disruption of myelination of the thalamocortical radiations [2].

The regions and pathways that we have found to be significantly affected
by preterm birth are related to cognitive functions such as speech, sight and
memory. Therefore, lower myelination in these areas could potentially represent
the result of injuries suffered after prematurity, leading to hypomyelination and
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thus to functional deficits that propagated through adolescence, continuing to
affect individuals born extremely prematurely.

No significant difference in results between female and male participants
was registered; however, most results remained significant when distinguishing
between sexes. Some regions, however, did not show a significant difference in
EPT v FT individuals in the male cohort, but this might be due to the smaller
sample size. In conclusion, our results support the hypothesis that preterm stres-
sors affect brain maturation leading to changes in overall brain networks and in
specific brain areas.
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Abstract. Quantitative volumetric evaluation of the placenta in fetal MRI scans
is an important component of the fetal health evaluation. However, manual seg-
mentation of the placenta is a time-consuming task that requires expertise and
suffers from high observer variability. Deep learning methods for automatic seg-
mentation are effective but require manually annotated datasets for each scanning
sequence. We present a new method for bootstrapping automatic placenta seg-
mentation by deep learning on different MRI sequences. The method consists of
automatic placenta segmentation with two networks trained on labeled cases of
one sequence followed by automatic adaptation using self-training of the same
network to a new sequence with new unlabeled cases of this sequence. It uses
a novel combined contour and soft Dice loss function for both the placenta ROI
detection and segmentation networks. Our experimental studies for the FIESTA
sequence yields a Dice score of 0.847 on 21 test cases with only 16 cases in the
training set. Transfer to the TRUFI sequence yields a Dice score of 0.78 on 15
test cases, a significant improvement over the network results without transfer
learning. The contour Dice loss and self-training approach achieve state-of-the art
placenta segmentation results by sequence transfer bootstrapping.

Keywords: Deep learning segmentation · Unsupervised domain adaptation ·
fetal MRI

1 Introduction

The placenta plays an important role in fetal health, as it regulates the transmission
of oxygen and nutrients from the mother to the fetus. Volumetric segmentation of the
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placenta in fetal MRI scans is useful for identifying pregnancy and birth complications
[1, 2]. However, manual placenta delineation requires expertise, is time consuming, and
has a high observer variability [3], which makes it impractical in clinical practice.

Automatic placenta segmentation in fetal MRI scans poses numerous challenges.
These include MRI image related challenges, e.g., varying resolutions and contrasts,
intensity inhomogeneity, image artifacts (due to the large field of view), and partial
volume effect, and additional challenges specifically related to fetal MRI scanning, e.g.,
motion artifacts due to fetal and maternal movements, high variability in the placenta
position, shape, appearance, orientation and fuzzy boundaries.

Various semi-automatic methods for volumetric placenta segmentation have been
developed. Wang et al. [9] describe Slic-Seg, a Random Forest classifier followed by
an iterative CRF method with multiple scans of the same patient and probability-based
4D graph cut segmentation. It yields a Dice score of 0.89 and ASSD of 1.9 mm. Wang
et al. [10] describe a method that computes an initial segmentation with a CNN that is
manually corrected and refined with a CRF. It achieves a Dice score of 0.893 and ASSD
of 1.22 mm. [11] use a 3D U-Net whose inputs are the MRI scan, a distance map from
the placenta center, and user interaction that guides the network to localize the placenta.
A network trained on 80 cases and tested on 20 cases yielded a Dice score of 0.82.

Automaticmethods for placenta segmentation have also been proposed,most of them
using deep learning. Alansary et al. [4] describe the first automatic placenta segmentation
method. It starts with a coarse segmentation with a 3D multi-scale convolution neural
network (CNN) whose results are refined with a dense 3D Conditional Random Field
(CRF). This method achieves a Dice score of 0.72 with 4-fold cross validation on 66
fetal MRI scans. Torrents-Barrena et al. [5] present a method based on super-resolution
and motion correction followed by Gabor filters-based feature extraction and Support
Vector Machine (SVM) voxel classification. This achieves a Dice score of 0.82 with
4-fold cross-validation on 44 fetal MRI scans. Han et al. [6] present a method that uses a
2DU-Net architecture trained on a small dataset 11 fetal MRI scans that achieves a mean
IU score of 0.817. Quah et al. [7] compare various methods for placenta segmentation
on 68 fetal MRI 3D T2* images. The best method achieves a Dice score of 0.808 using
a U-Net with 3D patches. Pietsch et al. [8] describe a network that uses 2D patches and
yields a Dice score of 0.76, comparable to expert variability performance.

The drawbacks of all these methods are that they apply to a single scanning sequence
and thus requiremanually annotated data for each, which is time-consuming and imprac-
tical to acquire. Since scanning sequences used for placenta evaluation can vary both
within and across clinical sites, a multi-sequence solution is needed.

To address this problem, unsupervised domain adaptation (UDA), e.g., self-training
and pseudo-labeling techniques have been proposed [12, 13]. In self-training, a new
network is trained with unlabeled data from a new sequence along with annotated data
from the original sequence. The resulting network produces an initial segmentation that
is then can bemanually corrected to obtain new, high quality validated annotated datasets
that are used for network training. This reduces the time and effort required to obtain
annotated datasets to achieve adequate segmentation performance.

Pseudo-labeling is a method for iterative semi-supervised learning (SSL) in which a
model improves the quality of pseudo annotations by learning from its ownpredictions on
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unannotated data. SSL uses a network training regime inwhich two ormore networks are
alternatively trained with an uncertainty-aware scheme [14, 15]. Nie et al. [16] describe
an adversarial framework consisting of a generator segmentation network and a dis-
criminator confidence network. Xia et al. [12] propose a UDA framework for generating
pseudo-labels based on co-training multiple networks. Each network is trained on anno-
tated and unannotated data with pseudo-annotations from the other networks using an
uncertainty-aware combination. Zoph et al. [17] show the use of a simple self-training
method for classification, detection and segmentation tasks for low and high annotated
data regimes. The method consists of: 1) teacher training on annotated data; 2) pseudo-
labels generation on unannotated data, and; 3) student training to jointly optimize the
loss function on the manual and generated pseudo labels. This UDA method is effective
for natural images, yet has not been applied to 3Dmedical images.We adopt this method
for sequence transfer and combine it with active learning based on segmentation quality
estimation.

2 Method

We present a new method for bootstrapping automatic placenta segmentation by deep
learning on different MRI sequences with few annotated datasets. It consists of auto-
matic placenta segmentation with two networks, each trained on labeled cases of one
sequence, followed by automatic self-training of these networks to a new sequence with
new unlabeled cases of this sequence. The key advantage of our method is that it stream-
lines the annotation of new sequences since annotating data from initial network results
requires less time than annotation from scratch (<30 min vs. >60 min).

Our method consists of: 1) automatic segmentation of placenta with labeled cases
fromone sequence; 2) extension of automatic segmentation to a newsequence using addi-
tional unlabeled cases of that sequence. The automatic placenta segmentation method
uses two cascaded networks for placenta ROI detection and segmentation and a novel
combined contour and soft Dice loss function. The automatic adaptation to another
sequence is performed by self-training consisting of: 1) generation of initial segmen-
tations with the network of the original sequence on the unlabeled scans of the new
sequence; 2) active learning using unsupervised segmentation quality estimation by
selecting the cases with the highest estimated Dice score using Test Time Augmenta-
tions, and; 3) training of a new network with the labeled cases from the first sequence
and the unlabeled cases with best estimated segmentation results of the second sequence.

2.1 Automatic Placenta Segmentation

Automatic supervised placenta segmentation is performed in two stages. First, a region
of interest (ROI) is computed using segmentation network on a downscaled data by a
factor of ×0.5 in the in-plane axes. The placenta is then segmented within the computed
ROI on the original data scale. This cascaded segmentation configuration is inspired by
the nnU-Net framework [18].We use the network architecture of [19] for the localization
and the segmentation networks.



192 B. Specktor-Fadida et al.

Fig. 1. Illustration of the contour Dice loss (Eq. 2). Left: diagram showing the ground truth ∂T
(green line) and computed ∂S (blue line) contours and their corresponding offset bands B∂T and
B∂S . The intersection is B∂T ∩B∂S (dark green). Right: offset bands of the placenta superimposed
on a representative MRI slice (same colors). (Color figure online)

Contour Dice Loss. The networks are trained with a combination of the soft Dice
and the contour Dice losses. We include the contour Dice score since it was shown
to perform well for segmentation errors corrections [20, 21]. Since the contour Dice
function is non-differentiable, Moltz et al. [22] propose to train a regression network to
approximate the loss function and to combine it with a segmentation network to compute
the loss during training. However, this requires training an additional regression network
and is dependent on the quality of the network’s output.

We propose instead to compute the contour Dice loss with an integral over an offset
band around the contour. The use of a regional integral instead of a non-differentiable
function was proposed in [23] to compute distances between contours. Note that this
loss only considers the area of the contours and not the distances between them. It thus
accounts for the desired segmentation correction of the contour Dice.

To compute the contourDice,wefirst apply binary thresholding to the network output
(a value in the [0, 1] interval). Then, we extract 2D offset bands around the contour for
ground truth and network output masks in each slice (Fig. 1). Finally, we compute the
Dice score of the offset band voxels of the ground truth and the segmentation output.

Formally, let ∂T and ∂S be the extracted surfaces of the ground truth delineation and
the network results, respectively and let B∂T and B∂S be their respective offset bands.
The contour Dice of the offset bands is:

Contour Dice(T , S) = |∂T ∩ B∂S | + |∂S ∩ B∂T |
|∂T | + |∂S| (1)

To make it a loss function, we take the negative value and enlarge the contour to an
offset band around the contour with boundaries B∂T and B∂S :

ContourDiceLoss (LCD) = − 2|B∂T ∩ B∂S |
|B∂T | + |B∂S | (2)

Since contour-based methods require an additional regional term to avoid empty-
region solutions, we combine the contour Dice score with a regional loss [23]. For
this, we use the soft Dice score, as it was shown to perform well for fetal structures
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Fig. 2. Flow diagram of the self-training method for two MRI sequences: 1) teacher network
training on annotated FIESTA scans and inference on unlabeled TRUFI scans; 2) ranking by
segmentation quality estimation and selection of TRUFI cases with best estimated Dice scores; 3)
student network training with labeled FIESTA and selected TRUFI cases with pseudo-labels.

segmentation [19]. Indeed, Isensee et al. [18] report that a combination of soft Dice and
Cross Entropy loss yields good results in 53 diverse segmentation tasks.

Formally, let LDSC be the soft Dice loss, let LCE be the Cross Entropy loss, let LCD
be the contour Dice loss and let β and γ balancing p

arameters. The total loss is:

Combined Loss (L) = LDSC + βLCE + γLCD (3)

2.2 Self-training for Sequence Transfer

Wenowdescribe how to use semi-supervised self-training to extend the abovementioned
method to additional scanning sequence without requiring new annotated labels of the
new sequence. Our method is a variant of the teacher-student framework, where the
original networks serve as teachers for the new student networks [17]. We illustrate it
with the FIESTA (original) and TRUFI (new) sequences.

Our self-training method consists of three steps (Fig. 2): 1) automatic placenta seg-
mentation using detection and segmentation networks from the FIESTA sequence on
unlabeled TRUFI sequence scans; 2) segmentation quality estimation using estimated
Dice score. We use Test Time Augmentations (TTA) to estimate the Dice score, as this
does not require training of an additional regression network [19, 24] and; 3) training
of new detection and segmentation networks using pseudo-labeled TRUFI sequence
scans using the best estimated Dice score dataset obtained with TTA, combined with the
labeled FIESTA data.

Both the teacher and the student networks are trained in a cascaded framework with
a combination of the Dice and contour Dice losses. The training of student detection and
segmentation networks starts with the weights computed for the original sequence. The
cases with best estimated Dice score are used for both networks. TTA is used during
inference of the teacher and student segmentation networks.
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Quality Estimation. The estimated Dice score of the teacher results is computed with
TTAas follows.Amedian prediction is first assigned for each voxel. Then theDice scores
between the median and each one of the augmented results are computed. Finally, the
estimated Dice score is obtained by computing the mean Dice score between the median
and each one of the augmentations results. For TTA we use flipping, rotation, transpose
and contrast augmentations.

3 Experimental Results

To evaluate our method, we retrospectively collected fetal MRI scans with the FIESTA
and TRUFI sequences and conducted two studies.

Datasets and Annotations: We collected fetal MRI placenta scans of patients acquired
with the FIESTA and the TRUFI sequences as part of routine fetal assessment from the
Sourasky Medical Center (Tel Aviv, Israel) with gestational ages (GA) 28–39 weeks.
The FIESTA dataset consists of 40 labeled cases acquired on a 1.5T GE Signa Horizon
Echo speed LXMRI scanner using a torso coil. Each scan has 50–100 slices, 256 × 256
pixels/slice, resolution 1.56 × 1.56 × 3.0mm3. The TRUFI dataset has 15 labeled
and 59 unlabeled cases acquired on the Siemens Skyra 3T, Prisma 3T, Auera 1.5T
scanners. Each scan has 50–120 slices, 320–512 × 320–512 pixels/slice. The labeled
and unlabeled cases resolutions are 0.78 × 0.78 × 2.0 and 0.78–1.34 × 0.78–1.34 ×
2–4.8 mm3.

Ground truth segmentations were created as follows. All 31 FIESTA and 15 TRUFI
cases were annotated from scratch; 9 additional FIESTA cases were manually corrected
from network results. Both the annotations and the corrections were performed by a
clinical trainee. All test cases segmentations were validated by two expert radiologists.

Studies: We conducted two studies. Study 1 evaluates the accuracy of the supervised
placenta segmentation for the FIESTA sequence. Study 2 evaluates the efficacy of
sequence transfer using semi-supervised placenta segmentation on the TRUFI sequence.

In both studies, the segmentation quality is evaluated with the Dice, Hausdorff and
2D ASSD (slice wise Average Symmetric Surface Difference) metrics. The 3D ASSD
was not evaluated, as it is highly dependent on the surface extractionmethod. TheVolume
Difference ratio (VD, the absolute volume difference divided by ground truth volume)
was also computed, since placenta volume is a clinically relevant measure [2].

A network architecture similar that of Dudovitch et al. [19] was utilized with a
patch size of 128 × 128 × 48 to capture a large field of view and comply with GPU
limitations. For the ROI detection network, the scans were downscaled by ×0.5 in
the in-plane axes. The segmentation results were refined by standard post-processing
techniques.

Study 1: Supervised Placenta Segmentation. The method was evaluated on training,
validation and test sets of 16, 3 and 21 annotated FIESTA scans respectively. Ablation
experiments were performed to evaluate the contour Dice loss and the cascaded frame-
work. The contour Dice loss was set to γ = 0.5 and the Cross Entropy loss to β = 1.
For contour dice surface extraction we binarize segmentation results with a threshold of
1.



A Bootstrap Self-training Method for Sequence Transfer 195

Table 1. Study 1: results of the various segmentation network loss functions with and without
Test Time Augmentations (TTA): Dice, Cross Entropy (CE), contour Dice (CD). The measures
are Dice, Hausdorff distance, volume difference (VD) ratio, and 2D ASSD.

Dice Hausdorff VD ratio ASSD (2D)

Dice 0.773 ± 0.117 57.73 ± 44.24 0.27 ± 0.24 8.35 ± 7.43

Dice with TTA 0.772 ± 0.126 56.22 ± 46.06 0.26 ± 0.21 7.79 ± 7.92

Dice + CE 0.807 ± 0.098 50.48 ± 40.15 0.21 ± 0.21 5.83 ± 3.34

Dice + CE with TTA 0.817 ± 0.096 44.33 ± 43.08 0.18 ± 0.18 5.18 ± 3.17

Dice + CD 0.847 ± 0.058 44.60 ± 42.31 0.18 ± 0.17 4.46 ± 2.45

Dice + CD with TTA 0.847 ± 0.061 42.29 ± 42.44 0.16 ± 0.14 4.43 ± 2.50

Dice + CE + CD 0.789 ± 0.127 47.75 ± 41.58 0.25 ± 0.22 5.87 ± 3.67

Dice + CE + CD with TTA 0.792 ± 0.128 50.11 ± 43.03 0.20 ± 0.21 6.39 ± 5.17

Fig. 3. Four examples of placenta segmentation results (red) on FIESTA sequence scan slices
(rows). Left to right (columns): 1) original slice; 2) Dice loss; 3) Dice loss and Cross Entropy loss;
4) Dice loss and contour Dice loss; 5) ground truth. Arrows point to relevant differences. (Color
figure online)

Table 1 shows the results of the different loss functions and Test TimeAugmentations
(TTA) on the segmentation accuracy. The contour Dice loss in combination with Dice
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Fig. 4. Placenta segmentation Dice scores of (left to right): single network with Dice loss, single
network with Dice and CD (contour Dice) loss, single downscaled network with Dice loss, single
downscaled network with Dice and CD loss, cascaded networks with Dice loss, and cascaded
networks with Dice and CD loss (mean and minimum maximum intervals).

loss yields the best placenta segmentation results, with Dice score of 0.847, with and
without TTA. Note that TTA slightly improved the Volume Difference ratio.

The second-best performance achieved dice score of 0.817 with a combination
of Dice and Cross Entropy losses and TTA Fig. 3 shows illustrative placenta seg-
mentation results. The network with Dice loss and contour Dice yielded better con-
tours segmentations and decreased the over/under segmentation produced by the other
networks.

An ablation study was performed to quantify the effectiveness of the cascaded two
networks framework on the placenta segmentation. Dice scores for a single network, for
a single networkwith downscaled datasets and for the cascaded framework of a detection
networkwith downscaled datasets followed by the segmentation networkwere computed
using either the Dice loss by itself or combined with contour Dice loss.

The cascade framework significantly improved the segmentation Dice score, while
the contour Dice loss was effective only when used for segmentation network inside an
ROI in the cascaded framework. Figure 4 illustrates this with four cases.

Study 2: Semi-supervised (SSL) Placenta Segmentation for Sequence Transfer. The
semi-supervised self-training method on the TRUFI sequence used annotated data
from the FIESTA sequence and unannotated data from the TRUFI sequence. For semi-
supervised method we applied the FIESTA network on 59 TRUFI cases and selected 16
cases with estimated Dice scores ≥ 0.96. These cases were then used in combination
with the FIESTA annotated cases to train a new network. Prior to training, all cases were
matched to the FIESTA cases resolution of 1.56 × 1.56 × 3.0mm3.

Four scenarios were tested: 1) a network trained on annotated FIESTA cases without
TTA; 2) a network trained on annotated FIESTA cases with TTA; 3) SSL using a network
trained on annotated FIESTA cases and unannotated TRUFI cases with best estimated
dice without TTA, and; 4) SSL using a network trained on annotated FIESTA cases and
unannotated TRUFI cases with best estimated dice with TTA.

Table 2 shows the results. The self-training semi-supervised method improves by
a significant margin the placenta segmentation Dice score from 0.495 to 0.78. Out of
the 15 TRUFI test cases, the segmentation completely failed in 5 cases when only
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Fig. 5. Three examples of placenta segmentation results (red) on TRUFI sequence scan slices
(rows). Left to right (columns): 1) original slice; 2) Teacher networks; 3) Student networks; 4)
Student networks with TTA; 5) ground truth. (Color figure online)

Table 2. Study 2: results of the self-training semi-supervised and supervised only approaches
with and without TTA for the FIESTA (original) and TRUFI (new) sequences.

Dice ↑ Hausdorff (mm) ↓ 2D ASSD (mm) ↓
Supervised FIESTA 0.495

± 0.355
107.97
± 72.27

41.22
± 64.83

Supervised FIESTA with TTA 0.471
± 0.352

108.61
± 72.17

43.08
± 64.23

Supervised SSL FIESTA
and unsupervised TRUFI

0.776
± 0.067

52.30
± 24.42

9.49
± 4.91

Supervised SSL FIESTA and unsupervised
TRUFI with TTA

0.780
± 0.071

51.91
± 24.88

8.64
± 4.23

annotated FIESTA cases were used for training. Adding TRUFI unsupervised cases in a
self-training regime resulted in a TRUFI network that yields useful segmentations that
can be further refined manually, thereby yielding annotation bootstrapping. Using TTA
slightly improved the SSL results: the 2D ASSD decreased from 9.49 mm to 8.64 mm.
Figure 5 shows illustrative placenta segmentation results for the TRUFI sequence. The
use of unsupervised TRUFI cases in the training set improved placenta segmentation
quality; TTA further decreased over segmentation.
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4 Conclusion

We present a new, fully automatic method for bootstrapping automatic placenta seg-
mentation by deep learning on different MRI sequences without requiring additional
supervision. The method consists of automatic placenta segmentation with two net-
works trained on labeled cases of one sequence followed by the automatic adaptation
by self-training of the same network to a new sequence with new unlabeled cases of this
sequence. It uses a novel combined contour and soft Dice loss function.

The key advantages of this method are that it does not require modifications to
the network architecture, that it is self-training, that it is automatic, and that it can be
applied to a variety of fetal MRI scanning sequences. Correcting reasonable quality
segmentations automatically generated by a self-trained network is less tedious and
time-consuming than generating annotation from scratch. This helps to speed up the
annotation process required to develop a multi-sequence placenta segmentation.

Our experimental results show that the contour Dice loss yields state-of-the-art pla-
centa segmentation results. They also show the value of using additional unlabeled cases
in a semi-supervised self-training regime for multi-sequence bootstrapping. Future work
includes exploring other self-training unsupervised domain adaptation techniques, e.g.,
adversarial loss functions [15], to improve the initial teacher segmentation.

Our method was tested on two sequences and 36 placenta segmentation test cases
in total. Future work may include a further large-scale validation study on FIESTA and
TRUFI sequences and method extensions to additional sequences and acquisition types.

Acknowledgments. This research was supported in part by Kamin Grants 72061 and 72126 from
the Israel Innovation Authority.
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Abstract. The fetal cortical plate undergoes drastic morphological
changes throughout early in utero development that can be observed
using magnetic resonance (MR) imaging. An accurate MR image seg-
mentation, and more importantly a topologically correct delineation of
the cortical gray matter, is a key baseline to perform further quanti-
tative analysis of brain development. In this paper, we propose for the
first time the integration of a topological constraint, as an additional loss
function, to enhance the morphological consistency of a deep learning-
based segmentation of the fetal cortical plate. We quantitatively evaluate
our method on 18 fetal brain atlases ranging from 21 to 38 weeks of ges-
tation, showing the significant benefits of our method through all gesta-
tional ages as compared to a baseline method. Furthermore, qualitative
evaluation by three different experts on 26 clinical MRIs evidences the
out-performance of our method independently of the MR reconstruction
quality. Finally, as a proof of concept, 3 fetal brains with abnormal cor-
tical development were assessed. The proposed topologically-constrained
framework outperforms the baseline, thus, suggesting its additional value
to also depict pathology.

Keywords: Fetal brain · Cortical plate · Deep learning · Topology ·
Magnetic resonance imaging

1 Introduction

The early in utero brain development involves complex intertwined processes,
reflected in both physiological and structural changes [23]. The developing corti-
cal plate specifically undergoes drastic morphological transformations through-
out gestation. Nearly all gyri are in place at birth, even though the complexifi-
cation of their patterns carries on after birth [18]. T2-weighted (T2w) magnetic
resonance imaging (MRI) offers a good contrast between brain tissues, hence
allowing to assess the brain growth and detect abnormalities in utero. In the
c© Springer Nature Switzerland AG 2021
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clinical context, fetal MRI is performed with fast, 2D orthogonal series in order
to minimize the effect of unpredictable fetal motion but results in low out-of-
plane spatial resolution and significant partial volume effect. In order to combine
these multiple series, advanced imaging techniques based on super-resolution
(SR) algorithms [10,24] allow the reconstruction of 3D high-resolution motion-
free isotropic volumes. Together with improved visualization, these SR volumes
open up to more accurate quantitative analysis of the growing brain anatomy.
Consequently, based on 3D reconstructed volumes, multiple studies explored
semi-automated fetal brain tissue segmentation [19] and cortical folding pat-
terns in-utero [6,25]. Cortical plate is crucial in early brain development as
pathological conditions, e.g. ventriculomegaly, are proved to manifest along with
altered foldings [2]. However, cortical plate segmentation remains challenging as
it undergoes significant changes due to the brain growth and maturation, respec-
tively modifying the morphology and the image contrast [19]. Furthermore, being
a thin layer easily altered by partial volume effect in MRI, anatomical topology
is prone to be incorrectly represented by automatic segmentation methods.

In this respect, we present a fully automated and topologically correct age-
invariant segmentation method of the cortical plate. In [4,5], the first topological-
based segmentation of the fetal cortex was introduced, based on geometrical
constraints that integrated anatomical and topological priors. Regrettably, their
topological correctness was not further evaluated and qualitative results on only
6 fetuses were presented. More recently, deep learning (DL) methods have also
focused on fetal brain MRI cortical gray matter segmentation. Using a neonatal
segmentation framework as initialization, [12] proposes a multi-scale approach for
the segmentation of the developing cortex, while [9] implements a two-stage seg-
mentation framework with an attention refinement module. Nevertheless, while
the segmentation accuracy of these recent DL methods is promising, none of
these works assess the topological correctness of their results. In fact, these
works report high overlap metrics but illustrated results show lack of topological
consistency with notably discontinuous/broken cortical ribbons.

To our knowledge, only two works explore topological fidelity of the seg-
mentation in different applications. In [15], they proposed a topological loss for
neuronal membrane segmentation. More recently, topological constraints for MR
cardiac image segmentation have been presented [3], although prior topological
knowledge is required. In this paper we integrate for the first time a topologi-
cal constraint, from [15], in a deep image segmentation framework to overcome
the limitation of disjoint cortical plate segmentation in fetal MRI and further
improve DL architectures (Fig. 1).

2 Methodology

2.1 Topological Loss

Our approach, is based on the topological loss function proposed in [15]. The
topology-preserving loss compares the predicted likelihood to the ground truth
segmentation using the concept of persistent homology [11]. In a nutshell, homol-
ogy structures are obtained by filtration to all possible threshold values of the
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Fig. 1. Figure adapted from [15]. TopoCP, integrates a topological loss based on per-
sistent homology to a 2D U-Net segmentation of cortical plate fetal MRI.

predicted likelihood and reported in a persistence diagram (Fig. 1). Both 0-
dimensional and 1-dimensional Betti numbers [13], corresponding respectively
to the number of connected components and the number of holes, are tracked.
The persistence diagrams of the likelihood and the ground truth are matched,
finding the best one-to-one structure correspondence, and the topological loss is
computed as the distance between the matched pairs. We refer the reader to the
original paper for advanced technical details [15].

2.2 Network Architecture

The topological loss introduced above is indeed compatible with any deep neu-
ral network providing a pixel-wise prediction. We chose as baseline the well-
established U-Net [22] image segmentation method, as it recently proved its
ability to deal with 2D fetal brain MRI tissue segmentation [17]. The baseline
2D U-Net uses a binary cross-entropy loss function Lbce. The proposed frame-
work TopoCP is based on a 2D U-Net trained using

L = Lbce + λtopoLtopo, (1)

where Ltopo is the topological term in [15] and λtopo the weight of the contribution
of Ltopo in the final loss.

The 2D U-Net architecture is composed of encoding and decoding paths. The
encoding path in our study is composed of 5 repetitions of the followings: two
3 × 3 convolutional layers, followed by a rectified linear unit (ReLu) activation
function and a 2 × 2 max-pooling downsampling layer. Feature maps are hence
doubled from 32 to 512. In the expanding path, 2 × 2 upsampled encoded fea-
tures concatenated with the corresponding encoding path are 3×3 convolved and
passed through ReLu. The network prediction is computed with final 1×1 convo-
lution. Both Baseline and TopoCP are implemented in Tensorflow. In TopoCP,
the topological loss is implemented in C++ and built as a Python library.
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2.3 Training Strategy

The publicly available dataset Fetal Tissue Annotation and Segmentation
Dataset (FeTA) is used in the training phase [20,21]. Discarding pathological
and non-annotated brains, our training dataset results in 15 healthy fetal brains
(see details summarized in Table 1). Both networks are fed with 64 × 64 patches
of axial orientation (see Fig. 1), containing cortical gray matter. Intensities of
all image patches are standardized and data augmentation is performed by ran-
domly flipping and rotating patches (by n × 90◦, n ∈ �0; 3�). As in [15], to
overcome the high computational cost of persistent homology, we adopted the
following optimization strategy: 1) our baseline model was trained over 23 epochs
with a learning rate decay scheduled at epochs 11, 16, 17, 22 and a decay factor
of 0.5, initialized at 0.0001; 2) from the pretrained model in the first step, both
networks were fine-tuned over 35 epochs, with a learning rate decay scheduled
at epochs 14, 23 for Baseline U-Net and none for TopoCP. TopoCP was trained
with λtopo = 1. A 7-fold cross-validation approach was used to determine the
epochs for learning rate decay.

3 Evaluation

3.1 Quantitative Evaluation

Data. In the training dataset (FeTA), label maps were sparse (annotations
were performed on every 2nd to 3rd slice) and their interpolation resulted in noisy
labels with topological inconsistencies. Therefore, we rather evaluate our method
on an independent pure testing dataset, presenting a topologically accurate seg-
mentation. The normative spatiotemporal MRI atlas of the fetal brain [14] pro-
vides 3D high-quality isotropic smooth volumes along with tissue label maps,
including more than fifty anatomical regions, for all gestational age between 21
and 38 weeks (see Table 1 for details). Atlas labels were merged to match the
tissue classes represented in our training dataset.

Analysis. Though inferred segmentation rely on 2D patches, performance of
the methods is evaluated on the whole 3D segmentation. Three complementary
types of evaluation metrics are used: 1) the overlap between the ground truth
and the predicted segmentation is quantified with the Dice similarity coefficient
(DSC) [8]; 2) a boundary-distance-based metric is measured to evaluate the
contours: the 95th percentile of the Hausdorff distance (HD95) [16]; 3) finally,
the topological correctness is quantified with the error of a topological invari-
ant: the Euler characteristic (EC), defined as a function of the k -dimensional
(k -dim) Betti numbers (Bk), topologically invariant themselves. The 3D Euler
characteristic is defined as:

EC = B0 − B1 + B2, (2)

where B0 counts the number of connected components, B1 the number of holes
(tunnels) and B2 counts number of void/cavities encapsulated in the binary
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objects. Topology errors are defined as the absolute difference of the ground
truth and the prediction measures. For completeness, k -dim Betti errors (BE)
are also reported. To assess the significance of the observed differences between
the two methods, we perform a Wilcoxon rank sum test for each metrics. p-
values were adjusted for multiple comparisons using Bonferroni correction and
statistical significance level was set to 0.05.

3.2 Qualitative Evaluation

Data. In order to better represent the diversity of the cortical variability and
to prove the generalization of our approach to SR reconstructions of clinical
acquisitions, we introduce a second pure testing set of T2w SR images of 26
healthy fetuses. Two subsets were created, from a consensus of three experts
evaluation, based on the quality of the reconstructed 3D volumes: 1) excellent
(N = 16) and 2) acceptable (N = 10) - with remaining motion artifacts or partial
volume effects. Additionally, as a proof of concept, three subjects with corti-
cal plate pathologies were segmented (schizencephaly (1); polymicrogyria (1);
corpus callosum agenesis (CCA) and schizencephaly (1)). MR image patches
were preprocessed for intensity standardization with no further intensity-based
domain adaptation performed. Nevertheless, prior to the segmentation inference,
clinical images were resampled to match the resolution of the training data using
ANTs [1] in order to present a similar field of view (see Table 1).

Analysis. Three experienced raters (two radiologists and one engineer) per-
formed independently a qualitative analysis of the baseline and TopoCP seg-
mentations. For healthy subjects, randomly-ordered segmentation of axial slices
from healthy subjects were presented. The experts were asked to indicate if they
preferred either the segmentation A or B or if they were of equivalent quality. The
inter-rater reliability was assessed with their percentage agreement before con-
sidering a consensus evaluation resulting from the majority voting of the experts’
evaluations. For the pathological cases, three radiologists, blindly assessed the
whole 3D volume to ensure that the pathological area was included.

Table 1. Summary of the data used for training and quantitative and qualitative
evaluation.

Dataset Field strength Vendor Num. of subjects Gestational age (weeks) Reconstruction method Resolution (mm3)

Training 1.5T; 3T General electric 15 [22.6–33.4] (28.7 ± 3.5) mialSRTK [7,24] 0.5 × 0.5 × 0.5

Evaluation quantitative 1.5T; 3T Siemens; Philips 18 21–38 Gholipour et al., 2017 [14] 0.8 × 0.8 × 0.8

Evaluation qualitative 1.5T Siemens 29 [18–25] (27.8 ± 4.1) mialSRTK [7,24] 1.12 × 1.12 × 1.12
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Fig. 2. Segmentation results on 35 weeks of gestation atlas. (a) T2w (left) and ground
truth segmentation overlaid (right). (b) Baseline U-Net and (c) TopoCP: predicted
likelihood (left) and estimated segmentation (right). Likelihood probabilities: 0
1. Case 1 illustrates a net improvement in the segmentation of the midsagittal area and
frontal cortical foldings. Case 2 shows a more accurate detection of the deep sulci with
TopoCP.

4 Results

Figure 2 shows the ground truth of two representative patches with their pre-
dicted likelihood and segmentation overlaid on the T2w SR image. These results
illustrate the benefits of TopoCP on the estimated probability maps, detecting
more subtle variation of the cortex. The improved likelihood echoes with a better
segmentation. A summary of the 3D performance (Sect. 3.1) metrics on the fetal
brain atlas is presented in Table 2. TopoCP outperformed the Baseline U-Net
in both similarity- and distance-based evaluation metrics. Corrected p-values
between both methods (shown in italics) indicate that our method significantly
improves the baseline segmentation. Regarding the topological correctness, the
holistic EC error shows significant improvement with TopoCP. The 1-dim BE
is the most improved Betti Error and with the highest impact on the global
topological assessment. We recall that it represents the error of bored cortical
ribbon compared to the ground truth, which is the initial problem addressed.
Besides, it should be noted that the 0-dim BE is deteriorated with TopoCP.
Visual inspection shows the presence of small isolated false positives in the deep
gray matter area. Although, these false positives do not echo with impaired sim-
ilarity and distance-based metrics. We hypothesise that this behaviour would be
due to the fact that training was done on positive (cortex-aware) patches only.
We believe these false positive can be reduced with the integration of negative
patches in the training phase. Nonetheless, the 3D topology of the cortical plate
with TopoCP is much closer to the reality than with Baseline U-Net (see Fig. 3a).
Moreover, we observe large standard deviations in the topology-based metrics,
although they are slightly reduced with TopoCP (Table 2). Figure 3b shows that
the performance metrics varies over the gestational age. For both methods, we
observe better performances in the middle of the gestational age range, which
we explain as this corresponds to the age range present in the training set (see
Table 1). Furthermore, third trimester fetuses benefits more from TopoCP than
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Table 2. Performances (mean ± standard deviation), best score for each metric in bold.
p-values (in italics) of paired Wilcoxon rank sum test adjusted with Bonferroni multiple
comparisons correction, between both methods for each metric.

DSC↑ HD95 (mm)↓ 0-d BE↓ 1-d BE↓ 2-d BE↓ EC Error↓
Baseline U-Net TopoCP Baseline U-Net TopoCP Baseline U-Net TopoCP Baseline U-Net TopoCP Baseline U-Net TopoCP Baseline U-Net TopoCP

3D 0.57 ± 0.07 0.72 ± 0.05 3.5 ± 0.87 2.58 ± 0.96 10.1 ± 10.8 13.3 ± 9.6 61 ± 30.3 35.4 ± 23.7 8.5 ± 13.4 8.0 ± 12.2 60.1 ± 33.4 30.0 ± 25.3

2e-07 0.0053 0.076 0.00099 0.96 0.00075

Fig. 3. (a) 3D rendering of 28 weeks-old atlas cortical plate segmentation from both
automatic methods compared to the ground truth. (b) Performance metrics at the
subject-level computed on the whole 3D volume for all atlas images.

others. TopoCP is more valuable to older fetuses, as they undergo the more com-
plex cortical gyrification patterns. While the overlap metric constantly improves
throughout gestation, distance error is mainly enhanced from the third trimester.
The topological loss has a stronger positive effect on the topological errors for
old subjects, although the whole range of gestational age presented benefits from
it.

Qualitative assessment of healthy fetuses indicates a good inter-rater agree-
ment of 74%. Figure 4a shows the consensus of the experts’ blind evaluation of
the cortical plate segmentation on SR volumes based on T2w clinical acquisi-
tions. For both excellent and acceptable sets, TopoCP was selected as giving the
best segmentation (overall on 81% of the slices), showing the robustness of our
method to the SR quality. Figure 4b illustrates a representative slice segmented
with both methods. Similarly, all raters preferred TopoCP segmentation in the
three pathological cases (CCA and schizencephaly shown in Fig. 5).
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Fig. 4. (a) Experts’ qualitative evaluation results in the comparison of Baseline U-Net
and TopoCP automatic segmentations. (b) Segmentation results on 23 (top) and 32
(bottom) gestational weeks fetuses.

Fig. 5. Segmentation results of a 33 weeks old subject with corpus callosum agenesis
and schizencephaly. Yellow arrows indicate the pathological area, where TopoCP is
better performing. (Color figure online)

5 Discussion and Conclusion

This work assesses for the first time the integration of a topological constraint in
DL-based segmentation of the fetal cortical plate on MRI. Our results on a wide
range of gestational ages (21 to 38 weeks) (measured with 3D topology error) and
qualitative assessment on 29 clinical subjects (including 3 with cortical patholo-
gies) demonstrate the resulting improved topological correctness of the fetal
cortex, despite noisy training labels and 2D inference. Our approach can possi-
bly be extended to 3D, although, one should note that an increase in the input
dimension will echo to an increase of the computational cost. In this study, we
arbitrarily set to 1 the weight of the topological loss, as done in [15]. We acknowl-
edge the loss contribution has its influence in the training phase and should be
fine tuned for improved performance. By testing our method on different acquisi-
tions than those of the training phase, we observe that the segmentation quality
of our method seems robust to different scanners and reconstruction methods.
Nevertheless, the main drawback of our work is its sensitivity to the resolution
of the input image. Resampling of both the input image and result segmentation
introduces interpolation that might embed the final results. We hypothesize that
training on images of various resolutions would make our method more robust
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to this parameter. We briefly presented preliminary results showing the benefits
of TopoCP in the segmentation of pathological cortical plates. While all training
images were of neurotypical fetal brains, we assume pathological brains could be
added to training set to better represent the variability of fetal cortical plates.
Finally, we emphasize the genericity of this loss, which can be applied to any seg-
mentation network providing a pixel-wise prediction. We believe that pairing up
the topological loss with state-of-the-art methods would considerably improve
the resulting segmentation, even in a multi-class task.
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Abstract. We present a new deep learning method, FML, that auto-
matically computes linear measurements in a fetal brain MRI volume.
The method is based on landmark detection and estimates their loca-
tion reliability. It consists of four steps: 1) fetal brain region of interest
detection with a two-stage anisotropic U-Net; 2) reference slice selec-
tion with a convolutional neural network (CNN); 3) linear measurement
computation based on landmarks detection using a novel CNN, FMLNet;
4) measurement reliability estimation using a Gaussian Mixture Model.
The advantages of our method are that it does not rely on heuristics
to identify the landmarks, that it does not require fetal brain struc-
tures segmentation, and that it is robust since it incorporates reliability
estimation. We demonstrate our method on three key fetal biometric
measurements from fetal brain MRI volumes: Cerebral Biparietal Diam-
eter (CBD), Bone Biparietal Diameter (BBD), and Trans Cerebellum
Diameter (TCD). Experimental results on training (N = 164) and test
(N = 46) datasets of fetal MRI volumes yield a 95% confidence interval
agreement of 3.70 mm, 2.20 mm and 2.40 mm for CBD, BBD and TCD,
in comparison to measurements performed by an expert fetal radiol-
ogist. All results were below the interobserver variability, and surpass
previously published results. Our method is generic, as it can be directly
applied to other linear measurements in volumetric scans and can be
used in a clinical setup.

Keywords: fetal MRI · Linear measurements · Reliability estimation

1 Introduction

Magnetic resonance imaging (MRI) is increasingly used to assess fetal brain
development. Clinical assessment of fetal brain development based on MRI is
c© Springer Nature Switzerland AG 2021
C. H. Sudre et al. (Eds.): UNSURE 2021/PIPPI 2021, LNCS 12959, pp. 210–220, 2021.
https://doi.org/10.1007/978-3-030-87735-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87735-4_20&domain=pdf
http://orcid.org/0000-0002-0719-1327
https://doi.org/10.1007/978-3-030-87735-4_20


FML: fetal Brain Measurements in MRI 211

mainly subjective and is complemented with a few biometric linear measure-
ments [17]. Three key biometric linear measurements currently performed on
fetal brain MRI are the Cerebral Biparietal Diameter (CBD), the Bone Bipari-
etal Diameter (BBD), and the Trans Cerebellum Diameter (TCD) [18]. These
measurements are used to assess fetal development according to the gestational
age. They are manually acquired on individual MR reference slices by a fetal radi-
ologist following guidelines that indicate how to establish the scanning imaging
plane, how to select the reference slice in the MR volume for each measurement,
and how to identify the two endpoint landmarks of the linear measurement [9].

Various methods have been developed for computing biometric linear mea-
surements in 2D ultrasound images, e.g., the biparietal diameter [13], the fetal
head circumference [12], and the fetus femur length [13]. Recently, Avisdris et
al. [3] describe an automatic method for computing fetal brain linear measure-
ments in MRI scans. The method mimics the radiologist manual annotation
workflow, relies on a fetal brain segmentation and is based on measurement spe-
cific geometric heuristics for identifying the anatomical landmarks of each linear
measurement. While it yields acceptable measurements, its reliance on accurate
fetal brain segmentation and ad hoc heuristics may not always be robust.

Methods for the automatic computation of linear measurements of a structure
in volumetric scans have been proposed in the past. For example, Yan et al.
[21] describe a deep learning method for the computation of the length and
width of a lesion following the RECIST guidelines. The method uses the Mask-
RCNN network [10] to detect and segment each lesion from which the linear
measurements are computed. The training segmentation masks are obtained
from the ground truth measurements by fitting an ellipse bounded by the long
and short axes measurement endpoints. This method is specific to lesions and
RECIST measurements and is not applicable to fetal brain measurements.

Automatic landmark detection in images is a common task in a variety of
computer vision applications, e.g., face alignment [20], pose estimation and in
medical image analysis [16,22]. Two popular CNN-based methods consist of
computing the spatial coordinates of each landmark by direct regression [22] or
by heat map regression [16,20]. In the latter, the network computes a heat map
defined by a Gaussian function centered at the landmark coordinates whose co-
variance describes the landmark location uncertainty. HRNet [20], a heat map
regression network, achieves state of the art results in face landmark detection,
human pose estimation, object classification and semantic segmentation.

Uncertainty estimation is an essential aspect of a variety of related tasks,
e.g., classification, regression and segmentation with deep neural networks in
computer vision [8] and medical image analysis [4]. Wang et al. [19] describes
a test time augmentation (TTA) based uncertainty estimation method. TTA
consists of generating similar new cases, computing the voxel predictions for
each, and then obtaining the final voxel prediction on the original image by
taking the mean or median value or voxel uncertainty by computing the entropy.
This approach is not directly applicable to landmark detection. Payer et al.
[15] describes a Gaussian-based uncertainty estimation method for landmark
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localization in hand X-ray images and in lateral cephalograms datasets. The
method fits a Gaussian for each landmark from its predicted heat map. Their
results show that the predicted uncertainties correlate with the landmark spatial
error and the interobserver variability.

2 Method

We present a new deep learning method, called FML (Fetal Measurement by
Landmarks), to automatically compute landmark-based linear measurements in
a fetal brain MRI volume and to estimate their reliability. We demonstrate FML
on 3 key fetal biometric measurements: CBD, BBD, TCD.

The method consists of four steps: 1) fetal brain region of interest (ROI)
detection with a two-stage anisotropic U-Net; 2) reference slice selection with
a 2D CNN; 3) linear measurement computation based on landmarks detec-
tion using a novel CNN, FMLNet; 4) measurement reliability estimation with a
Bayesian score using a Gaussian Mixture Model (GMM).

2.1 Fetal Brain ROI Detection

The first step computes the fetal brain ROI in the fetal MRI volume with the
method described in [6]. The ROI is a 3D axis-aligned bounding box that contains
the fetal brain. The method uses a custom anisotropic 3D U-Net network trained
with a Dice loss on a ×4 downsized fetal MRI volume. It outputs a coarse fetal
brain segmentation from which a tight fitting ROI is computed.

2.2 Reference Slice Selection

The second step computes for each measurement, the reference slice of the fetal
MRI volume on which the linear measurements will be performed from input
fetal MRI volume with the method described in [3]. The method uses a slice-
based 2D CNN that predicts for each slice in the ROI its probability to be a
reference slice. It then selects the one with the highest probability. One CNN is
trained for each measurement reference slice to detect the slice that was manually
selected by the radiologist.

2.3 Linear Measurement Computation

The third step computes for each measurement the two anatomical landmarks
of the measurement endpoints on the selected reference slice. The landmarks are
computed using FMLNet, a variant of the HRNet network [20].

HRNet is a CNN type network whose key characteristic is that it maintains
a high resolution representation of the input throughout network layers. This is
achieved by connecting the high-to-low resolution convolution streams in parallel
and by repeatedly spreading the intermediate results of each layer across the
other layers at different resolutions.

We describe next the FMLNet architecture and its training and inference
pipelines.
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Fig. 1. Diagram of the FMLNet architecture. FMLNet is CNN network that consists
of four streams (rows) at subsequently lower resolutions: full, 1/2, 1/4, 1/8 (each in a
different color). Each stream consists four convolutional blocks (dotted boxes); in each
block, boxes represent feature maps and arrows correspond to layers. After each block,
the feature maps are combined across streams (red and green arrows). At the end of
the blocks (two upper right 4-box clusters), the features maps of all four resolutions are
concatenated and combined (pink box). The outputs are the two landmark Gaussian
heat maps, one for each measurement endpoint (top rightmost box with red ovals).
(Color figure online)

FMLNet Architecture: Figure 1 shows the architecture of FMLNet. It is a
CNN that combines the representations from four high-to-low resolution parallel
streams into a single stream. The representations are then input to a two-layer
convolution classifier. The first layer combines the feature maps of all four res-
olutions; the second layer computes a Gaussian heat map for each of the two
landmark endpoint. One network is trained for each measurement with the Mean
Squared Error (MSE) loss between the Gaussian maps created from the ground
truth measurement landmarks and the predicted heat maps. At inference time,
the two measurement landmark locations are defined by the coordinates of the
pixel with the maximal value on each heat map.

FMLNet Training: Three FMLNet networks are trained, one for each of the
linear measurements, CBD, BBD and TCD. The input is the reference slice
image; the outputs are the two measurement endpoint locations on the image.

Two training time augmentations are used: 1) rotations around the image
center at angles randomly sampled in the [−180, 180]o range; 2) image scaling
at scales randomly sampled in the [−5,+5]% range. In addition, landmark class
(left/right) reassignment (LCR) is performed on the resulting landmarks.

Landmark class reassignment is necessary because rotations may cause the
left/right labeling of the two measurement landmarks to be inconsistent with
the image coordinates, i.e. the left and right points may be switched, which
will hamper the network training. This inconsistency is corrected by performing
landmark class reassignment (Fig. 2). During each training epoch, the left/right
assignment for each rotated image is verified with respect to the image coordinate
system and if needed, is corrected by switching the left/right labels.

Note that these augmentations are different than the ones used in the original
HRNet. Unlike faces, which are almost always vertical, the fetal brain can be
in any orientation, so the full range of rotations (beyond flipping) should be
accounted for. The network is trained for 200 epochs on a batch size of 16
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Fig. 2. Illustration of the landmark class reassignment: (a) reference slice image with
ground-truth left (blue) and right (green) landmarks; (b) image after rotation with
inconsistent landmark labeling (left/right switched); (c) reassignment of labels. (Color
figure online)

images with the ADAM optimizer [14] with an initial learning rate of 10−4 and
a dropping factor of 0.2 in epochs 10, 40, 90, and 150.

FMLNet Inference: the inference pipeline consists of three steps (Fig. 3): 1)
test time augmentation (TTA) of the reference slice image; 2) landmarks location
prediction with FMLNet; and 3) robust landmarks fusion (RLF).

1. Test time augmentation: new reference slice images are generated with
a set of reversible spatial transformations T = {ti} applied to the original
image I. Rotation transformations are applied at a equally spaced angles in
the [0, 360]o range (in our case, a = 12). The result is a set of transformed
images I ′ = {I ′

i = ti(I)}.
2. Landmarks prediction with FMLNet: two measurement landmarks,
L′
i = {l

′(k)
i |k ∈ K}, K = {left, right} are computed for each image I ′

i with the
trained FMLNet. The resulting landmark predictions, L′

i, are then mapped
back to their original location on the reference slice image by applying the
reverse spatial transformation t−1

i to the corresponding image I ′
i. The result

is a set of landmarks L = {l
(k)
i |i ∈ [1..a], k ∈ K} in the original image

coordinates.
3. Robust landmarks fusion: the final landmark predictions, l(right), l(left),
are computed from the landmarks prediction set L with the Density Based
Spatial Clustering of Applications with Noise (DBSCAN) [7] algorithm. First,
DBSCAN clusters together a minimum of q points that are within a pre-
defined distance of d between them (in our case, q = 4 and d = 2 pixels).
Next, outlier points outside clusters are discarded, and two point clusters
corresponding to the left and right measurement landmark endpoints are
computed with the K-means algorithm [2]. Finally, the left and right landmark
coordinates are obtained by computing the centroid of the points in each
cluster.
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Fig. 3. FMLNet inference pipeline. The input is the reference slice of the measurement;
the outputs are the measurement endpoints and the measurement value (blue line).
The pipeline consists of: 1) test time augmentation of the reference slice image (TTA,
illustrated with three augmentations); 2) landmarks prediction with FMLNet, and; 3)
robust landmarks fusion. The dots on the images corresponds to the left (blue), right
(green), unassigned (yellow) and outlier (red cross) landmark predictions. (Color figure
online)

2.4 Measurement Reliability Estimation

The fourth step estimates the reliability of the landmarks predictions using the
set of landmark predictions L generated in the landmark prediction step of the
FMLNet inference. It models the landmarks location distribution, irrespective
of their landmark class (left/right), with a bi-modal Gaussian Mixture Model
(GMM). The GMM Bayesian likelihood is computed to obtain an estimate of
the prediction reliability. When likelihood value is low, the landmark locations
are spatially dispersed, so their distribution is not bi-modal (two clusters). In
this case, the measurement is labeled as unreliable and should be performed
manually by an expert radiologist.

Formally, the GMM is defined as X ∼ ∑
k∈K πkN(μk, Σk), where for each of

the two landmark clusters k (left/right), πk is the cluster probability, N(μk, Σk)
is a multivariate Gaussian distribution, μk ∈ IR2 is the cluster mean location
and Σk ∈ IR2×2 is the cluster location covariance.

We estimate the GMM parameters, Φ = (πk, μk, Σk), from the set of land-
mark predictions L by Expectation-Maximization (EM) [5]. The mean values
of each cluster location are initialized with the final landmark locations, e.g.,
μk = l(k), and are as described in the robust landmark fusion inference step. To
estimate the reliability of the predicted landmark points in L, we compute the
GMM log-likelihood score:
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LLscore(Φ|L) =
∑

l∈L

∑

k∈K

log(πkN(l|μk, Σk))

where l is a point in L (the labels left/right are ignored), and N(l|μk, Σk) is the
Gaussian probability of cluster k for l.

3 Experimental Results

To evaluate our method, we conducted three studies on fetal MRI dataset.

Dataset and Annotations: The dataset consists of fetal brain MRI volumes
acquired with the FRFSE protocol at the Sourasky Medical Center (Tel Aviv,
Israel) as part of routine fetal assessment. The dataset includes 210 MRI vol-
umes of 154 singleton pregnancies (cases) with mean gestational age of 32 weeks
(std = 2.8, range 22–38). Of these, 113 volumes (87 cases) were diagnosed as nor-
mal, and 107 volumes (67 cases) as abnormal. To allow direct comparison, we
use the same train/test splits of 164/46 volumes (121/33 disjoint cases) as in [3].
CBD, BBD and TCD measurements for all volumes were manually performed
by a senior pediatric neuro-radiologist.

Studies: We conducted three studies. Study 1 evaluates the accuracy of the
FMLNet method and the contribution of its various components. Study 2 ana-
lyzes the impact of selected reference slices. Study 3 evaluates the measurement
reliability estimation.

In all studies, we use the following metrics: L1 difference, bias and agreement.
For two sets of n measurements, M1 = {m1

i }, M2 = {m2
i }, m1

i and m2
i (1 ≤ i ≤

n) are two values of the measurement, e.g., ground-truth and computed. The dif-
ference between two linear measurement sets M1,M2 is defined as L1(M1,M2) =
1/n

∑n
i=1 |di|, where the difference between each measurement is di = m1

i − m2
i .

For repeatability estimation, we use the Bland-Altman method [1] to estimate
the bias and agreement between two observers. Agreement is defined by the 95%
confidence interval CI95(M1,M2) = 1.96×√

1/n
∑n

i=1 (L1(M1,M2) − di)2. The
measurements bias is defined as Bias(M1,M2) = 1/n

∑n
i=1 di. These three met-

rics represent different aspects of algorithm performance.

Study 1: Accuracy Analysis and Ablation Study. We evaluate the accuracy of
the FMLNet method and the contribution of its three main components: test
time augmentation (TTA), robust landmark fusion (RLF) and landmark class
reassignment (LCR). We compare its performance to that of HRNet, to the
geometric method [3] and to the interobserver variability on the test dataset
and its ground-truth values.

Table 1 shows the results. The original HRNet (row 2) performs poorly, as
it yields high measurement agreement CI95 and difference L1 values. Removing
each one of algorithmic components from FMLNet - TTA (row 3), RLF (row
4) or LCR (row 5), yields better results than standalone HRNet, but still not
acceptable. FMLNet with all its components (row 6) yields the best results,
which are always reliable (46 out of 46 for CBD, BBD, TCD). Using a two-sided
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Table 1. Study 1 and 2 results for the CBD, BBD, TCD fetal brain measurements.
For each, the number of MR volumes N , Bias, agreement CI95, and difference L1 with
respect to the manual annotation are listed. Row 1 lists the variability of manual mea-
surements of two radiologists. Rows 2–5 list the results of the ablation study including
HRNet (standalone), FMLNet without test time augmentation (-TTA), without robust
landmark fusion (-RLF) and without landmark class reassignment (-LCR). Row 6–8
list FMLNet results, while row 6 is for all test set and 7, 8 is for normal and abnormal
cases, respectively. Row 9 list the results of FMLNet on ground truth reference slice
(FMLNet+). Rows 10–11 list geometric method results on the predicted reference slice,
and on ground truth reference slice (Geometric+). Bold face results indicates the best
results for each metric.

Measurement CBD BBD TCD

Metrics N
Bias CI95 L1

N
Bias CI95 L1

N
Bias CI95 L1

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

Interobserver 45 0.03 4.12 1.60 45 −0.09 3.18 1.27 45 0.26 2.39 0.97

HRNet 46 −10.40 54.36 13.37 46 −8.42 45.82 9.51 46 −3.96 28.97 6.21

FMLNet

-TTA 46 −0.70 20.06 3.38 46 −1.17 23.90 3.20 46 −3.59 24.83 5.83

-RLF 46 −1.45 8.58 3.11 46 −0.90 6.28 2.00 46 0.72 4.60 1.78

-LCR 39 0.72 5.35 1.85 44 −2.48 22.14 3.43 45 2.28 9.45 2.49

FMLNet 46 0.57 3.70 1.60 46 0.21 2.20 0.90 46 0.88 2.40 1.16

*Normal 25 0.27 3.62 1.56 25 −0.05 2.00 0.85 25 0.69 1.94 0.97

*Abnormal 21 0.92 3.52 1.66 21 0.52 2.35 1.05 21 1.12 2.79 1.39

FMLNet+ 46 0.20 2.32 0.96 45 0.00 2.08 0.89 46 0.70 2.15 1.06

Geometric 40 0.00 3.63 1.28 40 −0.80 3.58 1.28 37 −0.51 2.45 0.89

Geometric+ 46 −0.02 3.99 1.47 46 −0.50 3.07 1.17 46 −0.56 2.58 1.09

t-test, no statistically significant difference was found in the performance between
Normal (row 7) and Abnormal cases (row 8) in all measurements (p > 0.05).

Comparison of our method results with those of the previously published
geometric method [3] with reliability estimation (row 10) shows that for all
three measurements, FMLNet (row 6) performs better in terms of reliable mea-
surements on the number of MR volumes N , agreement CI95 and difference
L1. Specifically, for TCD, our method yields reliable measurements in all cases
(N = 46) with comparable agreement CI95, while the geometric method fails in
20% of the cases (9 out of 46). Using a two-sided t-test, in BBD and TCD our
method performs significantly better (p < 0.01). These results shows superiority
of our new method.

Study 2: Impact of Selected Reference Slices. Differences were detected between
the reference slices selected by the radiologist and the slice selected by the algo-
rithm on the test set of: 20/46 cases in CBD/BBD slices and 12/46 cases in
TCD slices. Table 1 shows the measurements accuracy results. When analyzing
the impact of selected reference slices on the accuracy of measurements (FML-
Net - uses the slices selected by the algorithm vs FMLNet+ uses the slices
selected by radiologist) - the main impact was on CBD measurements (almost
doubles the variability), while the TCD and BBD accuracy remains similar. A
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Fig. 4. CBD Measurement reliability estimation results. The plot graph (center) shows
the log-likelihood score LLscore (horizontal axis) with respect to the measurement
difference L1(vertical axis) for the test set cases (blue dots). Representative images of
unreliable (left) and reliable (right) measurements: (1) failure of brain ROI detection;
(2) blurry image; (3) reliable predictions with outliers; and (4) reliable predictions.
(Color figure online)

possible explanation is that the TCD and BBD are measured on smooth con-
tours (cerebellum and skull, respectively) while CBD is measured on a more
complex contour, the brain sulcation and gyri. Furthermore, when normalizing
the interobserver variability in the absolute value of measurements, the relative
error variability results in 6% for CBD and 4% for BBD and TCD. For the
geometric algorithm (Geometric vs Geometric+), no significant differences were
observed when working on slices selected by a radiologist. These results show
that improving the reference slice selection algorithm may improve the accuracy
of the automatic measurements.

Study 3: Measurement Reliability Estimation. Table 1 shows the number of cases
(column N) for each measurement for which the computed values are reliable.

We evaluate the reliability estimation by computing the difference between
the measurements computed and ground truth values, L1, and by establishing
their correlation with the LLscore, on the test set cases. Figure 4 illustrates this
correlation for the CBD measurement. For all three measurements, we observe
that LLscore correlates well with L1. We establish from the plot graphs the
threshold value of LLscore that adequately discriminates between reliable and
unreliable computed measurements – set to −5.75 for all three measurements.

4 Conclusion

We have presented a new fully automatic method to compute landmark-based
linear measurements in a fetal brain MRI volume, to estimate their reliability,
and to identify the unreliable measurements that should be obtained manually
for the case at hand. The computed reliability estimation value can be used to
rank the measurement predictions for inspection and validation by a radiologist.

We demonstrate our method on three key fetal biometric measurements from
fetal brain MRI scans, CBD, BBD, TCD, and show that it yields state-of-the-
art results for all three measurements, within the interobserver variability. These
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results also comparable to the best reported results for fetal head circumference
(HC) measurements in ultrasound images of the HC18 challenge [11] (mean L1

of 1.72 mm, CI95 of 3.16 mm).
The main novelties of our method are three-fold. First, it robustly handles

the wide span of fetal brain orientations and correctly identifies left and right
measurement landmark endpoints by test time augmentation, robust landmark
fusion, and landmark class reassignment. Second, it directly computes landmarks
by heat map regression, obviating the need for structure segmentation and its
data annotation effort [3,21]. Third, it computes landmarks location uncertainty
estimation with a new method that combines test time augmentation [19] and
landmark Gaussian-based uncertainty estimation [15] and that simultaneously
computes the estimates on multiple landmarks with a GMM instead of using a
single Gaussian for each landmark, thereby yielding a single reliability score.

The advantages of our method are that it only requires a small number
(∼150) of manual linear measurements for the training dataset, that it does not
rely on heuristics to identify the landmarks, that it does not require fetal brain
structures segmentation, and that it is robust since it incorporates reliability
estimation. Note that our method is generic, i.e., it is not tailored to specific
linear measurements, so it can be applied directly to other measurements.
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Abstract. Fetal Magnetic Resonance Imaging (MRI) is used in prena-
tal diagnosis and to assess early brain development. Accurate segmenta-
tion of the different brain tissues is a vital step in several brain analysis
tasks, such as cortical surface reconstruction and tissue thickness mea-
surements. Fetal MRI scans, however, are prone to motion artifacts that
can affect the correctness of both manual and automatic segmentation
techniques. In this paper, we propose a novel network structure that can
simultaneously generate conditional atlases and predict brain tissue seg-
mentation, called CAS-Net. The conditional atlases provide anatomical
priors that can constrain the segmentation connectivity, despite the het-
erogeneity of intensity values caused by motion or partial volume effects.
The proposed method is trained and evaluated on 253 subjects from the
developing Human Connectome Project (dHCP). The results demon-
strate that the proposed method can generate conditional age-specific
atlas with sharp boundary and shape variance. It also segment multi-
category brain tissues for fetal MRI with a high overall Dice similarity
coefficient (DSC) of 85.2% for the selected 9 tissue labels.

1 Introduction

The perinatal period is an important time for the study of human brain devel-
opment. Cellular connections start to form across the brain, and the cerebral
cortex becomes more complex. These brain structure developments are closely
related to the formation of human cognitive functions [5]. Magnetic Resonance
Imaging (MRI) plays an essential role in fetal diagnosis and for studying neu-
rodevelopment, as it can capture different brain tissues in detail compared to
conventional fetal Ultrasound [11].

Brain tissue segmentation is important for the quantitative evaluation of
the cortical development, and is a vital step for standard surface reconstruction
pipelines [19]. However, during the scanning process, the fetus is moving and not
c© Springer Nature Switzerland AG 2021
C. H. Sudre et al. (Eds.): UNSURE 2021/PIPPI 2021, LNCS 12959, pp. 221–230, 2021.
https://doi.org/10.1007/978-3-030-87735-4_21
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sedated and the mother breathes normally, which can produce motion artifacts.
Recent works for super-resolution and motion correction in fetal MRI [1,10,16]
can reconstruct the scanned image with less motion artifacts between the slices;
nevertheless, in-plane motion can remain.

Other limitations are partial volume effects and lower signal-to-noise-ratio
caused by the small size of the brain. Furthermore, the structure of the fetal
brain has a large shape variance because of the rapid development during the
perinatal period. This can hinder the learning of automatic segmentation models,
especially using a limited number of training subjects from a wide age range.

In order to address problems caused by poor image quality and inaccurate
training labels, we propose a novel architecture that learns to predict the segmen-
tation maps and a conditional atlas simultaneously in an end-to-end pipeline.
The atlas enables the model to learn anatomical priors without depending solely
on the intensity values of the input image. This can improve the segmentation
performance especially if there is no gold standard label for training due to the
poor image quality.

1.1 Related Work

Traditionally, the two tasks of atlas generation and tissue segmentation are
learned separately. For tissue segmentation, atlas-based segmentation results are
obtained by warping the atlas label maps to the target image with a restrained
deformation field [4,18]. Generating an atlas with higher similarity to the target
image will ease the calculation for the deformation field thus improving the seg-
mentation performance. For atlas generation, the atlas is usually generated by
registering and aggregating all the images to the same atlas coordinate space.
The performance of these methods largely relies on the initial similarity of the
atlas and the testing samples [18]. Since atlas-based approaches require expen-
sive registration optimization, the processing time may take hours to days for a
single subject.

With the evolution of deep learning methods, UNet-based [21] architectures
have defined state-of-the-art performance for segmentation [2,14,24], including
fetal brain scans [9,15,20]. Such methods can be sensitive to the consistency of
the intensity distribution of the input images and the accuracy of the segmen-
tation label maps used for training. Fetit et al. [13] proposed a segmentation
pipeline for neonatal CGM that utilized the silver labels from the DrawEM
method [18], and further used a small part of the manually labeled slices to
refine the segmentation results.

Dalca et al. [7] trained an additional auto-encoding variational network to
encode the anatomical prior in a decoder. However, the anatomical priors are
implicitly encoded in these methods, which can be difficult to interpret manually.
Recently, Sinclair et al. [23] proposed a network that jointly learns segmentation
and registration, and atlas construction for cardiac and brain scans. It explicitly
learns the shape prior based on a structure-guided image registration [17].

Contributions: Inspired by previous works [7,13,23], we propose a novel seg-
mentation network that utilizes anatomical priors conditioned on an age-specific
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4D atlas to address the challenges caused by noisy labels and bad image quality.
The main contributions of this work include:

– Novel multi-task network for learning end-to-end tissue segmentation and
conditional atlas generation simultaneously, called CAS-Net.

– Age-conditioned 4D atlas construction that is constrained by the smoothness
and continuity of the diffeomorphic transformation field.

– Detailed evaluation of the quality of the spatio-temporal atlas and the per-
formance of the segmentation, whereas the proposed CAS-Net outperforms
other baseline methods with an overall 85.2% dice score.

2 Method
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Fig. 1. The main architecture of the proposed CAS-Net for brain tissue segmentation
and conditional atlas generation (a). The detailed architecture of the atlas generation
(AGS) and diffeomorphic registration (DRS) subnets (b).

CAS-Net learns end-to-end the conditional atlas generation and tissue seg-
mentation, whereas the age-specific atlas can be considered as an anatomical
prior for the segmentation task. It consists of three main sub-networks: segmen-
tation subnet (SS), atlas generation subnet (AGS), and diffeomorphic registra-
tion subnet (DRS), see Fig. 1.

The input of the CAS-Net, Fig. 1a, is the paired MR image, segmentation
labelmap and the conditional attribute (e.g., gestational age) from the training
set D = {Ii,Si,ai}, where i is the index of training samples. Note that the
MRI and its labelmap are in the size of l × w × h × 1 and l × w × h × c,
where l, w and h are the length, width and height of the 3D volume, and c is
the number of anatomical labels in the segmentation maps. In our setting, the
conditional attribute is the gestational age (GA), which is used to generate an
age-specific atlas for studying the development of brain structure. However, other
attributes such as sex or pathologies camayn can also be used for conditional
atlas generation.

The input of the AGS, Fig. 1b, are the GA attribute ai, the global averaging
atlas image Ag and its labelmap As

g, and the output are the conditional atlas
image A and its labelmap As. At the same time, the segmentation subnet takes
the MR image Ii as an input, and predicts the multi-label segmentation map Ŝi.
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As such, both Ii and Ŝi are in the image space, and conditional atlas space
(A and As). Then, the four images (Ii, Ŝi, A and As) are concatenated along the
channel axis as the input for the diffeomorphic registration subnet. Based on the
concatenated input, a deformation field Φi is predicted by the DRS to warp the
conditional atlas to the image space, and output the atlas-based segmentation
result Ŝ

a

i . Finally, Ŝi and Ŝ
a

i are merged by a convolutional layer, i.e., a 3D
convolutional layer with the kernel size of 1 × 1 × 1, to output the final refined
segmentation results Ŝ

r

i.

Diffeomorphic Registration Subnet (DRS): The purpose of the DRS is
to learn a deformation field that registers the conditional atlas to the target
input image, so that the atlas label maps can also be warped and propagated
to segment the target image. Inspired by [8,23], we model the registration step
using a diffeomorphic deformation parameterized by a stationary velocity field,
which ensures a one-to-one mapping while preserving the topology of the brain
structure [3]. Given that the diffeomorphic deformation is always invertible, the
deformation between the conditional atlas and input image is also bidirectional.

Given a deformation field Φ, the process of warping the moving atlas can be
formulated as A ◦ Φ, where ◦ is the operation of using the values from A and
voxel locations from Φ to calculate the output warped image. Note that the 3D
moving atlas and the output warped image are both of size of l × w × h × c,
where c = 1 for the atlas image and c = k for atlas labelmap, and the learnt
deformation field Φ is in the size of l × w × h × 3.

The procedure for computing a diffeomorphic deformation can be modeled by
an ordinary differential equation (ODE) parameterized with a stationary velocity
field V [3]:

dΦ

dt
= V (Φ(t)). (1)

As shown in Fig. 1b (bottom), V is simulated by an encoder-decoder structure
with the concatenated input. Given the velocity field, the final deformation field
Φ(t=1) is obtained by integrating the stationary velocity field V over unit time:

Φ(t=1) = Φ(t=0) +
∫ t=1

t=0

V (Φ(t))dt. (2)

Here, Φ(t=0) is the initial condition of identity deformation, i.e., X ◦ Φt=0 = X,
where X is a map with the size of l × w × h × c.

In practice, the computation of the integration is approximated by the Euler
methods with small time steps h, and is interpolated by the scaling and squar-
ing layer in CAS-Net, similar to [6]. Specifically, the integration is recursively
calculated with small time steps h as:

Φ(t+h) = Φ(t) +
∫ t+h

t

V (Φ(t))dt ≈ Φ(t) + hV (Φ(t)) = (x + hV ) ◦ Φ(t), (3)

with x = Φ(0). When the integration steps in the scaling and squaring layer is
the power of 2, given the predicted velocity field V , the final deformation field
Φ(1) can be calculated iteratively through Euler integration.
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Since the diffeomorphic registration is invertible, the image can be warped
to the atlas space using the inverse deformation field Φ−1

i , which is calculated
by integrating the negative velocity field −V i, as shown in Fig. 1b (bottom).

Atlas Generation Subnet (AGS): The main task of the AGS is to generate
an age specific deformation field that can warp the global average atlas to be
age-specific. Different to [12], which only constructs the conditional atlas image
by adding a displacement field, AGS predicts the deformation field, atlas image
and labelmap simultaneously. The age-specific atlas labelmap is then used by
the DRS to predict the atlas-based segmentation result.

The structure of this subnet is shown in Fig. 1b (top). The input attribute is
first decoded from the low-dimensional attribute space a to a high-dimensional
feature space Qi. Specifically, the decoder consists of a fully connected layer,
an upsampling layer and several convolutional layers. In order to deal with the
problem of the imbalanced distribution of GA, we divide the training samples
into 4 age groups, and encode this attribute in a one-hot label (instead of directly
encoding the GA as a continuous scalar). Based on the decoder feature map
Qi, we also model the deformation with a diffeomorphism parameterized by a
velocity field, where Qi is treated as the velocity field. Then, the age-specific Qi

is integrated by the scaling and squaring layer Ψ i. Consequently, the conditional
atlas image and labelmap are constructed as: A = Ag ◦ Ψ i, and As = As

g ◦ Ψ i.
Here, Ag and As

g are the global atlas image and labelmap, respectively, which
are initialized by averaging all the input images Ii and their corresponding
labelmaps Si in the training set.

In addition, since the deformation between global atlas space to conditional
atlas space (Φi and Φ−1

i ) and the deformation between conditional atlas space
and input MRI space (Ψ i and Ψ−1

i ) are diffeomorphic, following [23], the global
atlas and its labelmap in our CAS-Net are also updated at the end of each epoch
to improve the segmentation performance using: A(j)

g = 1
N

∑N
i=1 Ii ◦ Φ

−1(j)
i ◦

Ψ
−1(j)
i , and As(j)

g = 1
N

∑N
i=1 Si ◦ Φ

−1(j)
i ◦ Ψ

−1(j)
i . Here, j is the index of epoch,

and N is the number of the training samples.

Loss Function: In order to achieve end-to-end training, the training process is
optimized using four loss terms, namely, segmentation loss LS, registration loss
LR, combination loss LC and the regularization term LReg.

The segmentation loss is a standard L2-norm between the predicted Ŝi and
groundtruth labels Si, and used to update the parameters of the segmentation
subnet.

The parameters of the AGS and DRS are supervised by LR in both image
and labelmap space as follows:

LR =λl‖As ◦ Φi − Si‖2 + λi‖A ◦ Φi − Ii‖2
=λl‖As

g ◦ Ψ i ◦ Φi − Si‖2 + λi‖Ag ◦ Ψ i ◦ Φi − Ii‖2.
(4)

Here, λi and λl are the weights for image and labelmap space loss. The first term
is beneficial for the generated atlas quality, while the second term contributes to
the accuracy of the segmentation. At the beginning of the training, λi has higher
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values in order to learn an accurate conditional atlas, and later λl is increased
for a better segmentation performance.

The combination loss (LC) is defined as the L2-norm between the refined Ŝ
r

i

and ground truth Si segmentation.
In order to preserve the topology of the warped images, LReg is defined as:

λg‖∇U i‖2 +λd‖U i‖2 +λm‖Ū i‖2, which regularizes the continuity and smooth-
ness of the predicted deformation field [12]. U i represents the displacement field
(Φ(t=1) − Φ(t=0)), and λg, λd and λm are the hyper-parameters for tuning the
weight of the regularization loss. Finally, the overall loss L is the linear combi-
nation of all four losses: L = LS + LR + LC + LReg.

3 Evaluation and Results

Data: We train and validate our model on 274 T2 fetal MRI scans (253 patients)
from the Developing Human Connectome Project (dHCP)1. These images are
randomly split into 202 training images (from 186 subjects), 18 validation images
(from 18 subjects), and 54 testing images (from 49 subjects). Note that there is
no overlap of any single subject in different subsets. The GA attribute in this
dataset ranges from 20.6 to 38.2 weeks. In order to improve the performance of
learning-based deformation, all the input images are affinely aligned to a coarse
fetal atlas [22].

We use the revised segmentation results provided by the dHCP pipeline using
DrawEM [18] as the ground truth for training and evaluation, from which the
atlas used in DrawEM is advanced to a fetal atlas [22] to improve the segmen-
tation performance. The ground truth label maps can be imperfect because of
the fetal image artifacts, which is the main motivation of using a conditional
atlas as an anatomical prior. The segmentation labels consist of nine classes,
namely, cerebrospinal fluid (CSF), cortical gray matter (CGM), white matter
(WM), outliers, ventricles, cerebellum, deep grey matter (DGM), brainstem,
and hippocampus.

Table 1 shows the selected hyper-parameters used in the CAS-Net. All the
experiments are conducted on a PC with an NVIDIA GTX 3080 GPU. Our
model took 2 hours for 500 training epochs (generating the conditional atlas),
and took around 2 seconds during inference per MRI (outputting the segmenta-
tion results), which is much faster comparing to traditional atlas generation and
brain tissue segmentation.

Evaluation: A 3D-UNet is used as a baseline for evaluating the segmentation
performance compared to different variants of the CAS-Net. In order to compen-
sate for the class imbalance, the loss term for the 3D-UNet is re-scaled for the
different tissues according to the average volume of each tissue. Table 2 demon-
strates the Dice Similarity Coefficient (DSC) scores used to evaluate the accuracy
of the results. It also shows that the proposed CAS-Net achieves a higher overall
average accuracy of 85.2%, compared to 70.1% using a 3D-UNet. Furthermore,

1 http://www.developingconnectome.org/.

http://www.developingconnectome.org/
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Table 1. Hyper-parameters in CAS-Net.

Hyperparameters l, w, h c T λi λl λg λd λm

Value 64 10 6 2 <200 epoch 1 <200 epoch 200 500 200

1 ≥200 epoch 2 ≥ 200 epoch

Table 2. The segmentation performance of the different variants of CAS-Net compared
to a 3D-UNet baseline in terms of Dice similarity coefficient (%). The metrics are
presented in the format of mean and standard deviation (sd).

Methods CSF CGM WM Outlier Ventricles Cerebellum DGM Brainstem Hippocampus Overall

3D-UNet 18.0 80.3 90.1 66.0 85.9 86.5 80.0 54.1 70.0 70.1

(sd) 2.3 2.8 3.2 7.4 3.5 3.9 2.2 5.0 6.5 4.1

SS 86.7 83.2 91.9 71.6 0 0 0 0 0 37.0

(sd) 7.2 4.7 3.8 13.8 0 0 0 0 0 3.3

DRS 84.7 83.4 91.8 66.0 76.0 90.2 90.5 89.6 77.0 83.2

(sd) 7.0 3.9 3.1 19.6 6.0 4.5 1.8 3.7 4.7 6.0

CAS-Net 87.7 85.1 92.9 71.5 78.3 91.7 91.1 90.1 78.5 85.2

(sd) 7.2 4.1 2.8 13.5 5.7 4.0 2.0 2.8 4.6 5.2

CAS-Net significantly improves the accuracy of the small or complicated struc-
tures that are more likely to be affected by motion or partial volume artifacts.
Whereas intensity-based methods, e.g. 3D-UNet, may fail to segment such labels
accurately from bad quality images.

Table 2 also demonstrates that the segmentation results from using different
variants of the proposed CAS-Net based on the selected sub-networks, namely,
segmentation subnet (SS) and diffeomorphic registration subnet (DRS). Note
that the SS is not supervised by the re-scaled loss, which results in a better
segmentation performance for the salient tissue (larger volume) but fails to seg-
ment smaller tissues. Although the overall segmentation performance of the SS
is inferior to the 3D UNet with a re-scaled loss, the main contribution of the
SS within the CAS-Net architecture is to provide valuable information for the
DRS to learn a good deformation field. The extension of the SS with the DRS
significantly improves the overall accuracy to 83.2% for all tissues, which can
indicate that the predictions from the SS can provide valuable information for
the DRS to learn the deformation field.

At last, the final CAS-Net output is the combination of the SS and DRS,
while SS learns to segment the input images based on solely the intensity values,
and DRS learns to preserve the structural topology. The quantitative results
from Table 2 show that the performance from the final CAS-Net is better than
both SS and DRS by 1.9% and 1.7%, respectively, in terms of DSC for the CGM
segmentation. Similar results can be found for the other tissues.

Discussion: Figure 2a shows that the complexity of the cortex of the generated
conditional atlases increases with the GA. Furthermore, based on the conditional
atlas, the segmentation maps from our model, including the output from the
intermediate SS and DRS, as well as the final CAS-Net output, are shown in
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Fig. 2. Generated conditional atlas image and labelmap (a): From left to right: lower
than 25, 26–28, 29–32 and over than 33 weeks GA. Samples in the test set with imaging
artifacts and their segmentation results from CAS-Net. (b): From left to right: original
MRI in axial axis, groundtruth labelmap, segmentation results from SS, DRS, and
combined layer, and their Dice score are 81.3, 82.5, 83.4 (upper for 27.6 GA subject)
and 68.5, 71.2, 72.4 (lower for 37.0 GA subject), respectively. Note that the MRIs
are shown in original resolution, and the segmentation maps are produced at lower
resolution.

Fig. 2b. Compared with the SS output (the 3rd column), the segmentation result
from the DRS (the 4th column), i.e., the atlas-based method, can preserve the
connectivity for the CGM structure, while the discontinuous part from SS is
highlighted by green circles. Comparing with the segmentation result between
DRS and final CAS-Net, the final CAS-Net output can tightly follow the intensity
changes of the tissues boundaries benefiting from the output from SS, which is
highlighted by yellow circles. Consequently, our model combines the advantage
from UNet-based (SS) and atlas-based (DRS) methods, which achieves better
segmentation performance in terms of both connectivity and tissue accuracy. As
shown in the second column, the ground truth we used to train the CAS-Net
is not the golden labelmap that the segmentation errors are highlighted in red
circle, but the output from our method can also correct this mislabeling, which
indicates the potential for our pipeline to the noisy label problem.

4 Conclusion

Fetal MRI is an important tool to monitor the development of brain structure. In
this paper, we first generate a model that learns a conditional atlas based on fetal
MRI which shows the averaged morphological change across different age groups
in the dHCP dataset. Given the conditional atlas with an anatomical prior,
tissue segmentation performance improved with better mesh connectivity for the
tissues when facing imaging artifacts. In future work, quantitative evaluation
of the generated conditional atlas will be extended, and ablation studies for
different subnets will be performed.
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Abstract. Automatic detection or highlighting of neonatal brain injury could be
a valuable adjunct to radiological interpretation. Here we propose a normative
modeling-based detection method for preterm neonatal neuroimaging using gaus-
sian processes (GPs). These GPs incorporates local image intensity information
from image patches and demographics such as age. Z-score images can then be cre-
ated from the scaled difference between the model predictions and a neonate’s T1
and T2 weightedMRI. To test the use of these GP Z-scores as a form of automated
triage, we trained a logistic regression classifier to separate normal and abnormal
images. We used 133 preterm neonatal images with normal-reported MRI to train
a GP model and optimized lesion detection performance on 36 preterm neona-
tal images with manually annotated lesion masks. The automated triage model
was trained on 100 preterm neonates with normal reported MRI and 109 preterm
neonates withMRI detectable lesions. It was tested on the same 36manually anno-
tated abnormal MRI preterm neonates and 33 normal-reported preterm neonates.
Using a patch diameter of 7 voxels and integrating both T1w and T2w Z-score
images provided our highest performing GP model for within image lesion detec-
tion, achieving an AUC of 0.961. By combining the output probabilities of a T1w
and a T2w Z-score histogram classifiers allows for the correctly identification
of 32/36 abnormal and 28/33 normal images. These results indicate patch-based
normative model can accurately detect lesions in a highly interpretable fashion in
preterm neonates with abnormal MRI. Using outputs from these predictions, the
classifier is effective at separating abnormal and normal images.
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1 Introduction

The developing human brain is a complex structure, with large variability in shape
and volume between individuals and across age [1]. Developmental processes such as
gyrification,myelination and volumetric growth undergo rapid progress over the first few
months of life [2]. This makes identification of abnormal tissue challenging, requiring
expert knowledge of typical developmental brain anatomy and image contrast changes,
as well as the imaging appearances of injuries themselves.

The expertise needed for abnormality identificationmakes an automatedmethod that
can assist detection highly desirable [3]. Although several methods have successfully
focused on detection in specific pathological domains in adults (e.g. tumours [4] or
multiple sclerosis lesions [5]), these uses have focused only on the information relevant
to the specific illness or abnormality. Neonatal brain injury covers a wide range and
comprehensive detection of the various pathologies (e.g. periventricular leukomalacia
or interventricular haemorrhage) could require multiple specialised classifiers.

Normative modelling-based approaches [6] model what is “normal” for a given
context (e.g., age, clinical background) and detect values that deviate from this norm,
falling into the family of anomaly detection methods. Recent neurological applications
include dementia [7], white matter lesions in adults [8] and punctate white matter lesions
(PWML) in neonates [9]. The latter [9] is particularly relevant as they modelled normal
neonatal development as a function of age and prematurity to model the fast changes in
structure (gyrification, volume) and image intensity (myelination).

However, voxel-wise models such as these provide predictions that are spatially
smooth, as models are specific to the point being modelled and do not take into account
neighbouring tissue. This makes them sensitive to local shifts in intensity, typical brain
shape variability, and misregistration errors. In predicted images, highly variable areas
(especially at the cortical surface) and structural boundaries can appear blurry, reduc-
ing interpretability. This is due to tissue type variability across the sample (WM, grey
matter, GM, and cerebrospinal fluid, CSF) and differences in exact position (registra-
tion performance). This can result in areas of rare, but still typical, anatomical variants
being classified as abnormal (false positives). Ideally, a useful model should incorpo-
rate normal local tissue heterogeneity into the prediction while inferring normal tissue
intensities from the training set in abnormal areas.

Here, we incorporate subject-specific local structural information in the form of
patches of voxels into the model. The aim is to increase spatial accuracy of models
by incorporating subject specific local anatomical and image heterogeneity into the
prediction, increasing interpretability. An additional advantage could be to reduce false
positives in highly variable areas and improve anomaly detection specificity due to better
intensity value inference. Using the resulting outliermaps, we also implement a classifier
that triages abnormal MRI in neonates for radiological follow-up.

2 Methods

2.1 Sample and Dataset

Ethical approval was granted by a research ethics committee and written informed
parental consentwas obtained prior to scanning.AnMRI dataset of 423 pretermneonates
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were acquired on a Philips 3T scanner. Modeling was completed on 3 types of acquisi-
tions (Table 1). After quality control, 145 were discarded due to not having both a T1w
and T2w modality images of sufficiently high quality, leaving 278 complete datasets.
The age distribution of the preterm neonatal cohort is shown in Fig. 1A.

Table 1. Acquisition parameters.

Scan TR TE Voxel Size Subjects

T2w 7000–8000 ms 160 ms 0.859 × 0.859 × 1 mm 278

T1w 17 ms 4.6 ms 0.8 × 0.82 × 0.82 mm 241

High Res T1w 17 ms 4.6 ms 0.5 × 0.82 × 0.82 mm 37

Of the 278 images, 133 were considered “normal” in a preterm context and used as
training data for the GP models as they contained no obvious lesions. Of the 145 consid-
ered abnormal, 36 were selected as held-out testing set and the tissue injury manually
labelled. They included the following pathologies: Germinal matrix hemorrhage (n =
11), intra-ventricular hemorrhage (n= 6), cerebellar hemorrhage (n= 11), hemorrhagic
parenchymal infarct (n = 4), temporal horn cysts (n = 1), sub-arachnoid cysts (n = 2),
pseudocysts (n = 1), cystic periventricular leukomalacia (CPVL) (n = 3), large/many
PWML (n = 7) and few/single PWML (n = 9). 13 neonates had multiple pathologies.
Subject demographics are displayed in Table 2. Manual segmentations were created by
2 raters and inter-rater reliability assessed (opinion on lesion extent can vary [10]).

Table 2. Cohort information.

Parameter Value
Total Subjects (Female) 278 (125)
Mean Post Menstrual Age at scan (PMA) (Weeks+Days) [Range] 37+0 [25+1 to 55+0]
Mean Gestational Age at birth (GA) [Range] 29+3 [23+2 to 36+1]
Preterm without Lesions (Training) (Female) 133 (66)
PMA Mean [Range] 39+6 [27+5 to 51+0]
GA Mean [Range] 29+5 [23+2 to 35+4]
Preterm with Lesions (Female) 145 (59)
PMA Mean [Range] 34+2 [25+1 to 55+0]
GA Mean [Range] 29+3 [24+3 to 36+1]
Testing Abnormalities with Ground Truth (Female) 36 (18)
PMA Mean [Range] 32+2 [25+1 to 37+5]
GA Mean [Range] 29+4 [24+3 to 35+2]
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2.2 Pre-processing

Individual subject T1w and T2w images were rigidly co-registered [11, 12], B0 inhomo-
geneity corrected using N4BiasCorrection [13] and FSLBET [14] removed non-brain
tissue. Affine registrations between the T2w images and weekly developing human con-
nectome project templates [15] were calculated using FSL [11], followed by a non-linear
registration to the same template using ANTS [13]. These transformations and warps
were applied to the T1w images. Datasets below 28 weeks PMA were registered to
week 28, the youngest template available. Each template had an affine registration to the
week 36 template, also applied to the images. Finally, all voxels within an image were
standardized to image intensity mean and standard deviation.

2.3 Base Gaussian Process Tissue Intensity Model

An independent GP [16] model was fit to each voxel using GPyTorch [17]. GPs model a
distribution of possible functions that fit some dependent variable given an input dataset.
A prior ε (an initial estimation of the intensity distribution of voxel n) is specified based
on a normal distribution N with a mean (usually 0) and variance σ2.

ε ∼ N
(
0, σ 2

n

)
(1)

The covariance between datapoints is quantified by the widely used radial basis
function (RBF) as a covariance matrix �.

K(x, x) = exp

(
−‖x − x′‖

2σ 2

)
(2)

� = K(x, x) (3)

The RBF kernel hyperparameters (length-scale and variance) were optimized using
the Adam optimizer [18] which minimizes the log marginal likelihood. Predictions were
made based on the joint conditional probability of the training and testing samples.

[
f
f ∗

]
∼ N

(
0,

[
k (x, x) k(x, x∗)
k (x∗, x) k(x∗, x)

])
(4)

Here, each voxel’s GP incorporated GA at birth, PMA at scan and sex in the design
matrix to model image intensity. This is described as the base model from here on out.

2.3.1 Patch Extension to the Gaussian Process Tissue Intensity Model

Patch-basedmodels used the same structure as the basemodel but incorporated additional
spatial information at training and inference time. Intensity values from a patch of voxels
surrounding the target voxel were added into the design matrix. This provides a prior on
target voxel intensity from surrounding patch voxels making the model less dependent
on global image standardisation. We investigated patch neighbourhoods of 3 × 3 × 3, 5
× 5 × 5, 7 × 7 × 7 and 9 × 9 × 9 using two approaches of voxel contribution. A dense
patch used all voxels except the target voxel for prediction, while a surface patch only
those voxels on the outermost edge of the patch (Fig. 1B).
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Fig. 1. A: Age distribution of preterm neonatal dataset. B: 5 × 5 × 5 patch model. A model
predicts the intensity of the green voxel based on theGA, PMA, sex, and any patch voxel intensities
included in the design matrix. For this 5 × 5 × 5 patch, the dense patch included white and blue
voxel intensities while the surface patch included only blue voxel intensities. (Color figure online)

2.3.2 Iterative Patch Extension Gaussian Process Tissue Intensity Model

Lesions, when contained within a patch, will have values far outside those in the training
range, leading to high predictive variance. To address this, we investigated the effect of
replacing the initial input image with the model predicted image. This acts as a form of
lesion infilling by iteratively replacing outlier tissue intensities. All patch models were
iterated in this way up to 5 times with no updates to model parameters.

2.4 Detecting Pathology

Z-score images were created by calculating the difference between the observed and pre-
dicted images and scaling by the predicted standard deviation. In the 36 held-out images
with labelled pathology, receiver operating characteristic’s (ROC) area under the curve
(AUC)were calculated for all neonate’s absolute Z-score image against their correspond-
ing manual segmentations and averaged across subjects for each model. The sensitivity
and specificity for fixed Z thresholds of 3–5 standard deviations were calculated for all
models at the iteration with the best results from the testing AUC.

2.5 Automated Clinical Image Triage

A logistic regression classifier was used to separate images into those with (0) or without
(1) lesions using Z-score histograms as inputs. We used T1w Z-score, T2w Z-score
and joint Z-score histograms, each with 99 bins between −100 and 100. The logistic
regression classifier outputs the probability of a sample belonging to a class based on a
threshold (≥0.5= 1,<0.5= 0). This allows for an additional classification based on the
combined probability of the T1w and T2w classifier predictions. We simply taking the
mean of a sample’s probability prediction from each classifier and apply the threshold.
5-fold cross application of the model with the best AUC from the previous analysis
was applied to the 133 preterm neonates without obvious lesions for three iterations.
33 of these, stratified by age, were added to the 36 manually segmented images with
abnormalities to act as a classifier test set. The remaining 100 preterm images with no
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obvious lesions and 109 preterm images with lesions were used for training. The number
of correctly classified images, sensitivity and specificity were recorded for the held-out
testing set for each classifier.

3 Results

3.1 Base Gaussian Process Tissue Intensity Model

The synthesized images of the base model offered a good qualitative representation of
neonatal brain structure but were very smooth. With the exception of major sulci and
gyri, heterogeneous cortical folding patterns (as in frontal and parietal areas) were not
modelled well, appearing blurry. Nonetheless, for detecting lesions, the base model had
a high joint AUC of 0.948 and a T2w AUC of 0.951, Table 3.

Table 3. AUC for all models on the 1st and 3rd iteration.

Model
AUC
(Iteration)

Base Dense 3
× 3 × 3

Dense 5
× 5 × 5

Dense 7
× 7 × 7

Dense 9
× 9 × 9

Surface 5
× 5 × 5

Surface 7
× 7 × 7

Surface 9
× 9 × 9

T1w (1) 0.918 0.901 0.919 0.919 0.929 0.926 0.937 0.938

T2w (1) 0.951 0.904 0.92 0.92 0.928 0.927 0.937 0.938

Joint (1) 0.948 0.915 0.924 0.924 0.942 0.935 0.951 0.953

T1w (3) 0.908 0.932 0.941 0.941 0.941 0.947 0.946

T2w (3) 0.911 0.934 0.943 0.942 0.943 0.948 0.946

Joint (3) 0.925 0.94 0.953 0.952 0.953 0.961 0.959

3.2 Patch Gaussian Process Tissue Intensity Model

Dense patchmodel synthesized images incorporatedmore subject specific structural het-
erogeneity but also pathological hypo/hyperintensity into target voxels (the latter being
undesirable in this application), Fig. 2. Patch size affected generalisation, smaller patches
closely matched heterogeneous brain structure, but included more local pathology in the
prediction. Larger patches were smoother and less sensitive to predicting lesioned tissue.
In most of the brain, target voxel patches were consistent with those in the training set
and reduced variance to extremely low values. In lesioned areas, patches could contain
intensity values drastically different from those in the training set, dramatically increas-
ing model variance compared to areas of uninjured tissue. This led to Z-score values in
abnormal areas within normal range (Fig. 2).

The surface patch model increased generalisation and reduced variance inflation.
Fewer voxels, farther from a target voxel, reduced the model’s ability to accurately infer
intensity and ranges for a given input. Synthesis of “normal” brain tissue remained similar
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to the dense patch model, although the 9 × 9 × 9 surface patch model demonstrated an
obvious blur in the cortical surface. The 9 × 9 × 9 surface patch joint Z-score achieved
an AUC of 0.953 compared to 0.948 joint AUC and 0.951 T2w AUC of the base model,
Table 3. The T1w AUC scores were consistently lower than the T2w AUC score but
when combined gave the highest AUC scores for all except the base model.

All patch models had higher AUC scores after patch-based prediction iteration.
However, after 3 iterations most models demonstrated no further improvement. The 7
× 7 × 7 surface patch model had the best performance with an AUC of 0.961, Table 3.
We examined the trade of between sensitivity and specificity for the models with AUC
above 0.95 after 3 iterations for a range of thresholds, Table 4. For Z thresholds of 2 to
4 the 7 × 7 × 7 surface patch model gave the best sensitivity, specificity trade-off but
the 7 × 7 × 7 dense patch model had higher sensitivity for higher thresholds.

Fig. 2. T1w/T2w predicted images, variance maps and absolute Z-scores (thresholded at 4 stan-
dard deviations) for the 1st and 3rd model iteration in example surface patch models. Blue circles
show heterogenous cortical structure patch models were able to duplicate. Red circles show lesion
areas retained by the patch model but with high associated variance (yellow circles). (Color figure
online)

3.3 Automated Triage of Abnormal Images

The classifier used 7 × 7 × 7 surface patch model output data as it had the best lesion
detection AUC. The joint Z-scores classifier had a sensitivity of 0.767, a specificity
of 0.744 and correctly identified 29/36 abnormal and 23/33 normal images. The T1w
classifier a sensitivity of 0.778, specificity of 0.848 and identified 28/36 abnormal and
28/33 normal images. The T2w classifier a sensitivity of 0.818, specificity of 0.833
and identified 30/36 abnormal and 27/33 normal images. Combining the T1w and T2w
classifiers probability outputs achieved 0.875 for sensitivity 0.865 for specificity and
correctly identifying 32/36 abnormal images and 28/33 normal images.
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Table 4. Sensitivity and Specificity using the joint Z-scores for all models that achieved an AUC
higher than 0.95 with thresholds ranging from 2 to 5 standard deviations.

Z Thresh
(Sens/Spec)

2 (Sens) 2 (Spec) 3 (Sens) 3 (Spec) 4 (Sens) 4 (Spec) 5 (Sens) 5 (Spec)

Base 0.358 0.993 0.198 0.998 0.108 0.999 0.056 0.999

Dense 7 ×
7 × 7

0.656 0.972 0.467 0.993 0.319 0.998 0.232 0.999

Dense 9 ×
9 × 9

0.632 0.971 0.436 0.992 0.308 0.997 0.222 0.999

Surface 5 ×
5 × 5

0.641 0.98 0.451 0.995 0.306 0.998 0.211 0.999

Surface 7 ×
7 × 7

0.645 0.982 0.463 0.995 0.321 0.998 0.223 0.999

Surface 9 ×
9 × 9

0.629 0.98 0.445 0.995 0.308 0.998 0.213 0.999

4 Discussion

In this work, we developed a patch-based model to synthesise “normal” MRI images of
preterm neonates. We tested different variations of patch size and contribution to eval-
uate their predictive ability. We showed that the patch model qualitatively encapsulated
individual anatomy accurately while demonstrating good lesion detection performance.
Next, we constructed a classifier based on the GP outputs to detect abnormal images as
a form of triage. Combined, this strategy could allow a 2-stage process of automated
triage followed by lesion identification in preterm neonates MRI.

The combination of patch-based models and iterative infilling helped maintain nor-
mal subject-specific expected variance when synthesizing a “typical” image while pre-
serving abnormal tissue intensity detection. The 7 × 7 × 7 surface patch iterated 3
times was our best performing model. It produced more accurate predictions, attained a
higher AUC (0.961) and higher sensitivity for a given specificity. Combining T1w and
T2w absolute Z-scores further increased AUC of patch models, likely through a higher
specificity due to noise removal but relies on good quality images. Figure 3 shows a
single preterm neonate with germinal matrix haemorrhage whose AUC improved with
use of a patch-based models (A), multiple iterations (B) and combining Z-scores from
multiple modalities. The corresponding absolute Z-score images for the base (T2w) and
7 × 7 × 7 surface patch model (joint) are shown in C and D.

Patch model outputs were more interpretable than the base model as the predicted
imagewas anatomically closer to the subjects observedMRI image. Small haemorrhages,
groups of PWML and other small/subtle pathologies had more complete highlighting of
lesioned tissue at the sameZ-score threshold compared to the basemodel.However, patch
models had lower performance when looking at some larger pathologies as abnormal
tissue was present in the prediction. This can be attributable to two factors. One, the
model infers target intensity from the voxels within the patch, even if those voxels are
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abnormal. Two, if there is a training image patch with intensities close to the abnormal
intensities in the target patch it will interpolate from that image. Due to this, large lesions
like CPVL often miss the lesion core but detected the edges. Some pathologies (e.g., a
single PWML, tiny cerebellar haemorrhage) could not be easily detected due to partial
volume or intensity blurring during registration.

In classification, combining the singlemodality probabilities achieved the best results
(32/36 abnormal and 28/33 normal images). This supports the argument that different
modalities make pathologies more detectable [19] and output combination is advanta-
geous. The joint Z-score histogram classifier gave the worst performance being poor at
identifying normal images. The missed abnormal images contained single/very small
PWML and small cerebellar hemorrhages with small intensity differences.

Inclusion of lesioned tissue in the predicted image could be corrected by better
standardization of the tissue intensities between images. Alternatively, average intensity
values could be created from tissue segmentations and either incorporated into themodel
or used to group similar images together. The classification could be improved by using a
probabilistic method such as GPs [20] or a non-linear method that can better separate the
input data. A final note is that both the GP model and the classifier could be improved
with access to larger datasets of both lesion free (more robust normative model) and
lesioned (type and variational coverage) neonates.

Fig. 3. A: ROCs for all models for a single neonate. B: ROCs for the same neonate for multiple
iterations of the 7 × 7 × 7 Surface Patch model. C: The base model absolute T2 Z-score. D: The
7 × 7 × 7 surface patch model absolute joint Z-score. C and D both have a threshold of 4.

5 Conclusion

The inclusion of patch information into MRI normative models results in synthesized
“normal” images that more closely match subject specific structural heterogeneity while
maintaining excellent lesion detection. Optimal performance was attained by selection
of patch type, size and by iteratively applying the once trained model. The 7 × 7 ×
7 surface patch with prediction iteration improved abnormality detection giving higher
AUCs, a better sensitivity specificity trade-off and better coverage of smaller lesions.
A classifier built using the combined probability output from T2w and T1w Z-score
histograms was able to correctly identify 32/36 abnormal images only missing images
with small lesions that were almost imperceptible after non-linear registration.
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Abstract. The relationship between fetal cortical development and ges-
tational age has been commonly studied, with cortical folding events
found to be temporally consistent across the healthy population. In order
to utilise this relationship in clinical practice, manual fissure grading
charts have been proposed to compare fissure appearance or measure-
ments to the known fetal gestational age. However, these techniques are
found to be extremely user-dependent, time-consuming and error-prone.
In this study, we propose a deep learning-based automated method to
assess the development of three fissures: the Sylvian fissure (SF), Parieto-
occipital fissure (POF) and Calcarine sulcus (CLC), by predicting fetal
gestational age based on their respective morphology. This fissure-specific
age prediction can then be compared to the true gestational age to deter-
mine if regional cortical development is healthy, delayed, or advanced.
Our best-performing CNN estimated the gestational age with an error
of 3.4, 5.0, 4.9 and 4.1 days, for the SF, POF, CLC and whole-brain,
respectively, outperforming previously reported ultrasound whole-brain
age prediction techniques.
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1 Introduction

As a fetus develops, the once smooth cortical plate progressively becomes heavily
folded in a process known as gyrification. This event creates peaks (gyri) and
troughs (sulci) within the cortex, with larger sulci referred to as fissures. In
healthy development, the emergence and growth of fissures is well timetabled
and found to be temporally consistent across a large population [17]. Therefore,
the development of the fissures can be utilised as landmarks to monitor fetal
development. Abnormal cortical folding has been commonly linked to disease,
with the development of specific fissures or regions significantly affected [2].
Therefore, individual fissures have the potential to be used as biomarkers for
disease, however, a fast and accurate method of assessing and grading the fissure
development is required.

During routine ultrasound (US) scans, the appearance of fissures is usually
not assessed [12]. However, if any fetal abnormalities are identified, detailed
neurosonography is performed, which usually includes the assessment of the
Sylvian fissure (SF) [12]. The SF is one of the earliest and most prominent
features seen in the fetal brain, emerging around the 14th gestational week (GW)
and developing into a deep fissure in each hemisphere. Several methods to grade
SF development have been proposed in the past. Initial studies primarily focused
on manual measurements of the fissure depth and angle in 2D US planes [15], but
such methods are extremely time-consuming and require consistent localisation
of the correct US plane. Alternatively, several grading charts have been proposed
to quantify the fissure development in more detail [14,16]. However, manually
grading fissures based on such charts is still very user-dependent, resulting in
high inter-observer variability [3]. For these reasons, there is a clear need for
reproducible and non-user dependent techniques to quantify fissure development.

An alternative method to using grading charts to quantify fissure develop-
ment is to predict the age of the fetus based on fissure appearance and com-
pare this to the known true gestational age (GA). Whole-brain age prediction
has been commonly performed for the adult brain, to quantify healthy develop-
ment and detect any deviation related to disease [4]. These methods have since
been applied in-utero using magnetic resonance imaging (MRI) [9] and US [10].
However, as these methods quantify the GA of the whole brain in one mea-
sure, specific regions of advanced or delayed gyrification can be easily missed.
Convolutional neural networks (CNNs), such as the VGG-Net [18] and Residual
network (ResNet) [8], are often used to perform automated age estimation tasks.

In this work, we propose a CNN-based method to estimate the development
of 3 key fissures; the SF, Parieto-occipital (POF) and Calcarine (CLC) from 3D
US scans between 19 and 30 GWs, by predicting the fetal GA based on their
respective morphology. These fissures were selected as they undergo rapid devel-
opment across this GA range and are well visualised in US scans. Furthermore,
these fissures were found to show significant differences in diseased groups [2]
and were previously identified as age-discriminating regions [10].
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2 Methods

2.1 Age Prediction Pipeline

The processing pipeline is shown in Fig. 1. For each volume, a 3D region of
fixed size is extracted around each of the fissures of interest X. Subsequently, a
separate CNN, f , is trained for each of these 3D boxes, predicting the GA of the
region ŷ = f(X).

Fig. 1. Left panel: Schematic of the age prediction pipeline. Bounding boxes were
extracted from each scaled volume and used as inputs to individual CNNs trained for
each fissure. Right panel: Masking control experiments (described in Sect. 3.4).

In this study, the aim of predicting age based on individual image patches is
not to predict the most accurate overall GA (i.e. by averaging the predictions of
the individual fissures), but to determine the degree of maturation of a specific
cortical region. For this reason, all image volumes are scaled to the same brain
volume, ensuring that our CNN is not predicting GA only based on size, but
focuses on the shape, and thus degree of maturation, of the fissures.

2.2 Network Architectures

We compared 3D VGG-Net [18] and 3D ResNet [8] architectures with each other
to determine the optimal network architecture for our task. For the VGG-Net,
we adapted the batch-normalised VGG-Net 11 [18] to make it suitable for our
3D regression task. Due to our relatively small input volumes, we removed the
last two convolutional layers as well as the last max-pool operation, resulting
in a VGG-Net of depth 9. Furthermore, the number of feature maps in the
convolutional layers was set to 24, 48, 96, 96, 192, 192, and the dimensions of
the two linear layers preceding the final layer were reduced to 64. The 3D ResNet
architecture used in this work is an adapted version of a previously published
architecture for video data classification [7]. The deviating stride for the temporal
axis was set equal to the stride in the spatial dimensions (=2) and, as for the
VGG-Net, the last fully connected layer was replaced by a single neuron without
an activation function. For the ResNet, we explored depths of 10 and 18 layers.
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2.3 Attention Maps

To improve our understanding of the CNN GA estimation, we created attention
maps for our input volumes using Guided Backpropagation from each network
[19]. This saliency method determines the pixels in the image that most strongly
activate the neurons in a certain layer, and, as such, are most discriminative for
the output of this layer. We computed attention maps with respect to the last
layer of our network, producing maps of the same dimensions as the input X,
showing the importance of pixels with respect to the predicted GA.

2.4 Dataset

A total of 811 3D US volumes from the INTERGROWTH-21th dataset between
the GA of 19+0 and 30+6 weeks were used throughout. As only the brain hemi-
sphere proximal to the US probe is visible on volumes acquired in the axial
plane, it was ensured that volumes from both the left and right hemisphere were
included. The GA of each fetus was determined by the last menstrual period
(LMP) and confirmed with an US crown-rump length measurement between
9+0 and 13+6 GWs after the LMP, agreeing within 7 days.

All volumes were resampled to an isotropic voxel size of 0.6 mm (using trilin-
ear interpolation), cropped around the centre to a total size of 160 × 160 × 160
voxels and manually aligned to a common coordinate system [11]. To ensure
the network was not predicting based on size differences, each volume was up-
scaled to the maximum brain volume present in our dataset, based on the size
of a whole-brain mask. The whole-brain masks were derived from MRI fetal
atlas masks which were rigidly aligned to the individual US volumes [5]. Next, a
bounding box was extracted around each fissure. As all volumes were aligned and
scaled to the same size, the same bounding box size and location was selected
across all volumes. However, as the three fissures vary considerably in size, the
bounding box dimensions differed for each fissure (SF: 66×44×46 voxels, CLC:
33×40×34 voxels, POF: 46×37×36 voxels). To perform baseline experiments,
a bounding box in the less visible hemisphere was also selected (referred to as
random crop, 38,49,25 voxels), as well as a crop within the US beam but outside
the fetal skull (referred to as background crop, 38 × 35 × 41 voxels).

2.5 Experimental Setup

The dataset was split into a training (85%) and test set (15%). Five-fold cross-
validation was performed across the training set, with an even distribution of
each GW in each fold. All five models were applied to the test set and, throughout
this study, the mean performance across these folds is reported.

We trained our CNNs with a standard mean squared error loss Lmse =
1
N

∑N
i=1(yi− ŷi) between the predicted, ŷ, and true GA, y. As augmentation, we

applied scaling (0.8–1.2), rotation around the centre of the bounding box (±10◦)
and translation (±3 voxels) during training. Furthermore, to ensure that the
network could not predict GA based on interpolation patterns introduced during
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up-scaling of the volumes, we also applied a random level of down-sampling,
followed by up-sampling to the original resolution. The sampling was performed
using trilinear interpolation, with the maximum down-sampling factor specified
per GW, given by the factor required to down-sample the average volume at
the respective GW to the average brain volume at 19 GWs (computed from the
whole brain masks).

Implementation. All experiments were implemented in Python 3.8 with Pytorch
(version 1.8.1) and trained on an NVIDIA GeForce RTX 2080 Ti with 12 GB
of memory. We trained all models for 200 epochs using the Adam optimizer
with an initial learning rate of 0.001, and a batch size of 10. Attention maps
were generated with the Pytorch library M3d-CAM [6] and augmentation was
implemented with TorchIO (version 0.18) [13].

3 Results and Discussion

3.1 Network Architecture

The age prediction performance for each of the individual fissures is reported in
Table 1. Across the three architectures, the performance was relatively consis-
tent. As the ResNet-10 performed marginally better, it was used for the rest of
this work. The ResNet-10 estimated the GA of the SF, POF, CLC and scaled
whole-brain with a mean error of 4.1, 5.1, 4.9 and 4.1 days, respectively, out-
performing previously reported US whole-brain age-prediction, which achieved
an accuracy of ±6.10 days [10]. Moreover, as the true GA (estimated from the
LMP) can contain inaccuracies up to 7 days, some variation is expected.

Both control areas (random and background) obtained lower performance
than each of the fissures. The performance of the random crop, which was only
significantly worse than the SF and POF, indicates that the network was still
able to learn age-discriminative patterns in an uninformative area for a human
observer. However, as the whole brain develops and changes in appearance during
gestation, all areas within the fetal skull will contain changing patterns that the
network can learn. Although obtaining large prediction errors, the performance
of the background area was higher than randomly predicted ages. Most likely,
this can be attributed to the fact that the network could learn some GA-specific
features from both the US cone shape, which may vary due to up-scaling of
the volumes, as well as from the tissue surrounding the fetal head, such as the
amniotic fluid composition.

3.2 Age Prediction

In Fig. 2 the predicted GA versus the true GA is shown for each of the fissures.
It can be observed that for all fissures, good performance is obtained across
the GA range. Although there is a small tendency towards the mean (i.e. over-
predicting at the younger ages and under-predicting later in gestation), which
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Table 1. MAE for the different network configurations. Values between brackets are
standard deviations. For each fissure, significance with respect to the random area,
calculated using paired t-tests with Bonferonni correction for multiple comparisons, is
noted with a *(p < 0.05) or **(p < 0.005). Masking experiments described in Sect. 3.4.

SF CLC POF Random Background

VGG-Net 5.4 (4.3)** 5.7 (4.5)* 6.1 (4.9) 7.1 (5.2) 10.2 (7.6)

ResNet-18 4.1 (3.7)** 5.0 (4.5) 5.2 (4.6) 6.3 (5.4) 11.1 (8.7)

ResNet-10 4.1 (3.7)** 5.1 (4.2) 4.9 (4.2)* 6.1 (5.1) 11.2 (8.5)

+ brain mask 3.4 (3.1) – – – –

+ Gaussian mask – 5.1 (4.1) 5.2 (4.4) – –

Fig. 2. True versus predicted GA for the SF, CLC and POF, shown with a linear fit.
The separately colored samples match the examples in Fig. 3.

can be observed by the linear fit slightly deviation from the equality line, this
deviation is small and is to be expected for a regression task.

In Fig. 3, qualitative examples of each fissure and their corresponding labels
are shown. Examples were included of outliers (Fig. 3a), which were age-matched
to more accurate predictions by both the predicted age and the true age (Fig. 3b
and c, respectively). The outlier shown for the SF has a true GA of 183 and a
predicted GA of 192 days. However, it can be observed from the age-matched
examples that for this volume, the SF begins to fold over itself in a process
known as operculization (shown with white arrows), which is early for a 183
days old fetus [14]. Although it is challenging to manually compare the degree of
operculization across the shown samples in a 2D slice, the large prediction error
could also suggest advanced development of the SF for this fetus. As across
the healthy population there will be inter-subject anatomical variations, it is
expected that some cases naturally have advanced or delayed gyrification. For
the outlier shown for the POF, it can be observed that only the fissure on one
side of the hemisphere is well visible, which might contribute to the larger error
as not all anatomical information is present. Furthermore, for the CLC, the
outlier (a) seems to resemble (b) more than the age-matched (c), therefore it is
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Fig. 3. Predictions for all fissures; (a) outlier predictions having a large error, (b/c)
predictions with a small error, approximately matched to (b) the predicted GA of a,
and (c) the true GA of a. The white arrows indicate key age-dependant areas.

unsurprising that for (a) and (b) the same GA is predicted. This suggests that
the fetus in (a) might have delayed CLC development.

3.3 Network Attention Maps

To investigate which image areas the trained CNNs were focusing on, we gener-
ated attention maps for our input volumes during inference. For all three fissures,
attention maps of varying GA are shown in Fig. 4. Interestingly, for the SF, it
can be clearly seen that the network’s attention changes with increasing GA.
At earlier ages the network traces the cortical plate, focusing around the insula,
whereas for older ages the attention is on the SF’s operculization. These obser-
vations mimic what neurosonographers look for and are recorded in SF grading
charts [16]. Although less distinct for the POF and CLC, also for these fissures
it can be observed that part of the network focus follows the fissure boundaries.

From the attention maps it can also be observed that the network focuses
on some areas outside of the fissure itself (orange arrows). A clear focus area
in the fetal skull can be observed in the SF patch, indicating that the skull
contributes to the output prediction. For the CLC, a clear spot is consistently
present in the left bottom corner of the image, suggesting that the presence or
absence of a certain structure at that location, and thus the exact location of the
bounding box might influence the final predictions. Based on these observations,
we implemented several control experiments, presented in the next section.
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Fig. 4. Attention maps for each of the three fissures across different GAs. The arrows
indicate regions of high saliency for clinically meaningful parts of the fissure (white)
and areas outside the fissure of interest (orange), i.e. the skull. (Color figure online)

Next to providing valuable information regarding network performance, the
attention maps might also provide improved interpretability of the age predic-
tion. However, as saliency methods have shown to produce unreliable predictions
under certain conditions [1], more thorough investigation is necessary to validate
the attention maps, which is planned for further work.

3.4 Control Experiments

Whole Brain Masking. The SF bounding boxes contained part of the fetal
skull, which the network was found to focus on (see Fig. 4). The fetal skull
can potentially provide GA information in two ways: Firstly, due to the high
intensities of the skull, interpolation patterns introduced when up-sampling all
volumes to the same size are expected to be especially pronounced in this area.
Although we compensate for the interpolation by applying random sampling
operations during training, some interpolation information might still be picked
up on by the network. Secondly, with increasing GA, the skull becomes thicker
and undergoes calcification, changing its appearance on US volumes. Although
the skull appearance is anatomical information, we wish to decouple it from
the SF’s appearance in our GA predictions. For these reasons, we retrained
our ResNet-10 for the SF using brain volumes with the fetal skull masked out.
Masking was performed by applying whole brain masks, eroded with 10 pixels
to ensure that no skull was included (Fig. 1). The results of this are depicted in
Table 1 (+brain mask), showing that brain masking significantly improved the
prediction performance by 0.7 days (p < 0.005). Although the shape of the brain
mask itself could also contain GA information, this experiments does show that
the age estimation does not rely heavily on skull appearance.
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Table 2. Mean absolute difference in days between each volume without augmentation,
and the same volume subject to a range of augmentations. Lower values indicate better
robustness. Values between brackets are the standard deviations.

Rotation Scaling Translation Combination

SF 0.9 (0.6) 0.4 (0.3) 0.7 (0.4) 2.3 (0.8)

CLC 0.6 (0.5) 0.3 (0.3) 0.6 (0.5) 2.2 (1.3)

POF 0.7 (0.6) 0.4 (0.3) 0.6 (0.4) 2.2 (1.2)

Gaussian Mask. For the POF and CLC, we applied Gaussian masks to the
input volumes with a random σ between 1.3 and 3, chosen empirically to min-
imise the intensities at the border areas surrounding the fissures whilst high-
lighting the centre of the bounding box (Fig. 1). Despite the smoothing, the CLC
performance remained the same, whilst the POF reduced by 0.3 days, showing
the border information is not required for age prediction (Table 1 +Gaussian
mask).

Inference Augmentation. To investigate the robustness of our networks with
respect to bounding box position during inference, we applied test-time aug-
mentation. For each volume, a range of random augmentations, within the same
range as during training, were applied, and the mean absolute difference was
computed between the GA predicted from each augmented volume and the vol-
ume without augmentation as shown in Table 2.

Across the three fissures, the variation in age prediction was less than a
day after applying either scaling, translation or rotation to the bounding boxes,
with rotation performing slightly worse. This suggests that the network is more
robust to the location of the fissures than the angle, which notably changes across
gestation. However, a larger mean difference of >2 days was found when applying
all three augmentations, which is likely caused by key areas of the fissures being
cropped from the bounding box area. This experiment demonstrates that our
method is robust to bounding box location to a certain degree, however, in
further work, more investigation is necessary to confirm this.

4 Conclusion

We have shown that it is possible to accurately predict the fetal GA based on the
morphology of individual fissures, with the goal of assessing regional fetal devel-
opment. Studying each fissure individually provides crucial insights into regional
brain development, which ensures local changes do not cancel each other out.
Our automated method has the potential to replace manual scoring systems
that exhibit significant intra- and inter-observer variability, allowing fast, accu-
rate and highly reproducible age predictions. This could be used clinically to
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ensure the brain is developing at the expected rate. In future work, better vali-
dated attention maps could also improve clinicians’ trust and understanding of
the method, by visualizing what the network’s prediction is based on.
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13. Pérez-Garćıa, F., Sparks, R., Ourselin, S.: TorchIO: a python library for efficient
loading, preprocessing, augmentation and patch-based sampling of medical images
in deep learning. Comput. Methods Programs Biomed. 106236 (2021)

14. Pistorius, L., et al.: Grade and symmetry of normal fetal cortical development:
a longitudinal two-and three-dimensional ultrasound study. Ultrasound Obstet.
Gynecol. 36(6), 700–708 (2010)

15. Poon, L.C., et al.: Transvaginal three-dimensional ultrasound assessment of sylvian
fissures at 18–30 weeks’ gestation. Ultrasound Obstet. Gynecol. 54(2), 190–198
(2019)

16. Quarello, E., Stirnemann, J., Ville, Y., Guibaud, L.: Assessment of fetal sylvian
fissure operculization between 22 and 32 weeks: a subjective approach. Ultrasound
Obstet. Gynecol. Official J. Int. Soc. Ultrasound Obstet. Gynecol. 32(1), 44–49
(2008)

17. Rajagopalan, V., et al.: Local tissue growth patterns underlying normal fetal
human brain gyrification quantified in utero. J. Neurosci. 31(8), 2878–2887 (2011)

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

19. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1412.6806


Texture-Based Analysis of Fetal Organs
in Fetal Growth Restriction

Aya Mutaz Zeidan1(B), Paula Ramirez Gilliland1(B), Ashay Patel1,
Zhanchong Ou1, Dimitra Flouri1, Nada Mufti1,2, Kasia Maksym2,
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Abstract. Fetal growth restriction (FGR) is common, affecting around
10% of all pregnancies. Growth restricted fetuses fail to achieve their
genetically predetermined size and often weigh <10th centile for gesta-
tion. However, even appropriately grown fetuses can be affected, with the
diagnosis of FGR missed before birth. Babies with FGR have a higher
rate of stillbirth, neonatal morbidity such as breathing problems, and
neurodevelopmental delay. FGR is usually due to placental insufficiency
leading to poor placental perfusion and fetal hypoxia. MRI is increasingly
used to image the fetus and placenta. Here we explore the use of novel
multi-compartment Intravoxel Incoherent Motion Model (IVIM)-based
models for MRI fetal and placental analysis, to improve understanding
of FGR and quantify abnormalities and biomarkers in fetal organs. In
12 normally grown and 12 FGR gestational-age matched pregnancies
(Median 28+4wks±3+3wks) we acquired T2 relaxometry and diffusion
MRI datasets. Decreased perfusion, pseudo-diffusion coefficient, and fetal
blood T2 values in the placenta and fetal liver were significant features
distinguishing between FGR and normal controls (p-value <0.05). This
may be related to the preferential shunting of fetal blood away from the
fetal liver to the fetal brain that occurs in placental insufficiency. These
features were used to predict FGR diagnosis and gestational age at deliv-
ery using simple machine learning models. Texture analysis was explored
to compare Haralick features between control and FGR fetuses, with the
placenta and liver yielding the most significant differences between the
groups. This project provides insights into the effect of FGR on fetal
organs emphasizing the significant impact on the fetal liver and placenta,
and the potential of an automated approach to diagnosis by leveraging
simple machine learning models.
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1 Introduction

The term Fetal Growth Restriction (FGR) is used to describe a fetus that has
not reached their genetic growth potential, due to placental insufficiency causing
inadequate supply of oxygen and nutrients [1]. FGR is a clinical diagnosis, defined
by the Delphi consensus standardised definitions [2], and is divided into two dif-
ferent phenotypes, with onset either early (less than 32 weeks gestational age)
or late in gestation. It is associated with high rates of stillbirth [3] and neonatal
morbidity including increased rates of cerebral palsy, bronchopulmonary dyspla-
sia, and cardiovascular disease long term [4]. There is currently no treatment for
FGR, therefore clinicians must weigh the risks of prematurity against the risk
of hypoxia and death in utero to determine the optimal delivery time. There are
limited clinical tools to do this, so at present, clinicians follow national guidelines
to make this decision [5].

MRI is increasingly used to image the placental circulation. The DECIDE
multi-compartment model separates fetal and maternal flow characteristics of
the placenta allowing measurement of the relative proportions of vascular spaces
[6,7]. When applied in early-onset FGR, it identified reduced feto-placental blood
oxygen saturation, where the degree of abnormality correlated with disease sever-
ity defined by ultrasound fetal and maternal arterial Doppler findings [8].

The motivation for this research was to compare MR derived parameters
relating to perfusion and oxygenation within the placenta and three fetal organs
(the brain, liver and lungs) between normally grown pregnancies and those com-
plicated by early onset FGR, through multi-compartment models and texture
analysis. Distinguishing features were then used to predict FGR diagnosis and
gestational age (GA) at delivery via simple machine learning models.

2 Methods

2.1 Data

Patient MRI scans of voxel resolution 1.9 × 1.9 × 6mm were acquired using the
acquisition parameters from [6] (enabling both T2 relaxometry and diffusion MRI
fitting), using a 1.5 T Siemens Avanto and performed under free-breathing. The
dataset consisted of 12 early-onset FGR [2] ranging between [24+2, 33+6] gesta-
tion weeks+days, and 12 control pregnancies with MR data ranged between [25+1,
34+0] GA interval, (Median 28+4wks±3+3wks) respectively. Specific details on
subject inclusion criteria are available in [6]. The study was approved by the
UK National Research Ethics Service and all participants gave written informed
consent (REC reference 15/LO/1488).

There are biological mechanisms that may cause differences in the distribu-
tion of blood perfusion throughout the fetus in FGR. To investigate this, man-
ual segmentation of the placenta, liver, lungs and brain was accomplished using
itk-SNAP software. The resultant 3D mask files were used within the NiftyFit
package for multi-parametric model-fitting [6], and to perform texture analysis.
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Fig. 1. Succeeding pre-processing of the data, model fitting techniques were applied
to yield parameters describing various signals extracted from the placenta and fetal
organs of interest. These parameters were then employed to perform texture analysis
from multi-contrast MRI modelling. Results from the model fitting were used as inputs
to the classifier and regressor to predict a diagnosis of FGR and the gestational age at
delivery.

2.2 Model Fitting

Model fitting techniques were applied to each organ segmentation over the aver-
aged ROI signal and on a voxelwise scale, yielding quantitative metrics for both
approaches. Non-linear least squares were used to perform the fitting, with vox-
elwise fitting being initialised with the ROI parameter estimates - enhancing
SNR. A range of models were explored, including simple T2 and Apparent Dif-
fusion Coefficient (ADC) estimation, as well as more complex models based on
Intravoxel Incoherent Motion Model (IVIM) [9] and DECIDE [6] (Fig. 1).

The IVIM model describes perfusion as a pseudodiffusion process (repre-
sented by a pseudodiffusion coefficient, D∗), by characterising the collective
motion of blood water molecules within the vessel network as a random walk.
The IVIM model also incorporates “true” diffusion of water molecules (ADC),
modelling the signal as

S = S0[fe−bD∗
+ (1 − f)e−bADC], (1)

where f is the perfusion fraction (volume occupied by incoherently flowing blood
in a given voxel), b is the b-value, S is the measured signal and S0 the baseline
signal, [10]. This can be extended to incorporate T2 relaxometry as

S = S0e
−t/T2 [fe−bD∗

+ (1 − f)e−bADC]. (2)

However, this model presents inherent limitations, as it assumes both vascular
and tissue compartments (parametrised by pseudo-diffusion and true diffusion
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coefficients) have the same T2 value, leading to an overestimation of the pseudo-
diffusion volume fraction f with increasing echo time (t) [11]. Thus, the analysis
presented incorporates more complex models, accounting for varying blood and
tissue T2 values:

S(b, t) = S0[fe−bD∗
e−t/T2p + (1 − f)e−bADCe−t/T2t ], (3)

with f being the perfusion fraction, T2p and T2t being the transverse relaxation
time for the pseudo-diffusion compartment (blood) and true diffusion compart-
ment (tissue), respectively [11].

The DECIDE model [6] was also applied specifically to the placenta, which
assumes three compartments with distinct diffusivity and relaxivity: fetal capil-
laries, trophoblast space and maternal blood pool. This model, given by Eq. 4,
enables computation of novel placental biomarkers including maternal fetal blood
volume ratio and fetal blood saturation.

S(b, t) = S0 [fe−bD∗−tRfb
2 + (1 − f) e−bADC (νe−tRmb

2 + (1 − ν) e−tRts
2 )]. (4)

Here, Rfb
2 , Rmb

2 and Rts
2 represent the inverse of relaxation transverse relax-

ation times for fetal blood, maternal blood and trophoblast space, respectively;
and ν is the maternal blood volume fraction.

2.3 Texture Analysis

The aim of texture analysis was to examine the spatial arrangement of intensi-
ties in the segmented organs. To achieve this, Haralick features were extracted
from the grey level co-occurrence matrix to describe the overall image texture
using measures encompassing energy, entropy, correlation, contrast, variance,
and homogeneity [12].

These features were computed for each subject on all model fitting maps,
as well as the original IVIM T2-weighted MRI scan, to yield interpretable tex-
ture descriptors [12,13]. The images were quantised into grey level bins of fixed
equal width for between-subject texture feature value comparisons. Single-factor
analysis of each feature was conducted between the FGR and control patients.

2.4 Statistical Methods and Feature Selection

Statistical analysis was performed on the model fitting maps to identify the most
significant parameters in differentiating between the control and FGR cohorts.
A Shapiro-Wilk test was used to confirm normality of the results. T-tests were
then carried out between the cohorts for all the model fitted parameters, Har-
alick features, and organ ratio parameters. Results with p-value less than 0.05
indicated statistically significant differences between the control and FGR group
means.
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2.5 Machine Learning for FGR Diagnosis and Severity Assessment

Binary Classification Model. A linear logistic regression model was trained
to predict healthy or FGR using an 80/20% train-test split. The best regular-
isation parameters were derived by performing a grid search and 3-fold cross-
validation, yielding a final model with regularisation strength of 0.001 and an
L1 ratio of 0, i.e. L2 regularisation.

Regression Model. A linear regression model was trained to predict the scan-
to-delivery interval, using clinical records data including the date of birth and
the date on which the MRI scan was taken. The trained model had an elastic-
net regularisation with an L1 ratio of 0.22 (i.e. a combination of L1 and L2
regularisation at a ratio of 0.22:0.78 respectively) and a regularisation strength
of 0.0061.

3 Results

3.1 Model Fitting

Figure 2 depicts examples of the parameter maps obtained from the model fitting
techniques. The lower parameter map intensities in FGR compared to that in
the controls is indicative of hypoperfusion and low oxygen saturation levels in
these fetal organs. The T2 maps display pronounced differences in the signal
intensities of both cohorts. The most significant ROI and voxelwise parameters
in identifying differences between controls and FGR fetuses were the perfusion
fraction, S0, pseudo-diffusion coefficient (D∗), and T2 (as given in Tables 1 and
2). The placenta and liver were determined to be the most influential organs in
diagnosing FGR.

Fig. 2. Green shaded area plots: Perfusion fraction layer in the model fitting maps
each taken from a single slice in the MRI scan. These correspond to ((a), (e)) placenta,
((b), (f)) liver, ((c), (g)) brain and ((d), (h)) lungs. Grey shaded area plots: T2

maps for placenta ((i), (iii)), and liver ((ii), (iv)) from a single slice. In all cases top
and bottom rows correspond to controls and FGR, respectively. (Color figure online)
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Table 1. Hierarchy of parameter feature importances of the ROI measurements.

Table 2. Hierarchy of parameter feature importances of the voxelwise measurements.

The hierarchy of feature importances in Tables 1 and 2 specify that there
were no significant differences detectable in the fetal brain and lungs between
normal and FGR fetuses, especially compared to the placenta and liver, where
differences were significant. This suggests that the brain and lungs may benefit
from alternative analysis, focusing on certain cortical regions for the brain, and
incorporating alternative imaging modalities for the lungs, as model fitting MRI
analysis may not be the most appropriate technique for this fluid-filled organ.

3.2 Texture Analysis

Texture analysis was conducted on the most significant parameter maps for each
organ, as determined by the t-tests. Results from the texture analysis were then
concatenated by considering the mean and max of each Haralick feature.

Evaluation of the resulting Haralick features corroborated the degree of effect
on the placenta in FGR, particularly using the Extended T2 IVIM map and its
mean variance. The brain was the least significantly different organ in this anal-
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Fig. 3. Notched box plots of the most significant placental (pink) and liver (blue)
Haralick features: (a, b) mean variance and contrast of the perfusion fraction in the
Extended T2 IVIM model, (c) max contrast of the Standard IVIM model, and (d)
max correlation computed from the original scan. (Color figure online)

ysis. The notches in the box plots delineate the extent of significant difference in
the medians of the investigated features by representing the confidence interval
of the metric. Greater mean variance in the signal from the Extended T2 IVIM
model of the healthy cohort (refer to Fig. 3(a)), is indicative of increased hetero-
geneity in FGR placentas. Max correlation of the liver perfusion fraction in the
controls in Fig. 3(d) reflects larger intensity differences compared to FGR. This
is a significant feature to consider in the Standard IVIM model when studying
the liver in FGR, especially given that the notches do not overlap between the
cohorts.

3.3 Machine Learning

The classifier achieved a prediction accuracy of 100% in testing (refer to Table 3).
Regarding the regressor, an RMSE of 0.02 weeks was achieved with the train-
ing data (N = 18), in contrast with the RMSE of 3.06 weeks obtained on the
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test set (N = 5). A generalisation error was evident, indicating a great degree of
overfitting of the regression model on the training samples.

4 Discussion

In this study, we combined model fitting techniques, texture analysis from multi-
contrast MRI modelling, and machine learning, to facilitate multi-fetal organ
analysis of FGR. This provided a more holistic approach to imaging this common
pregnancy condition. Differences were observed, particularly in the placenta and
fetal liver, emphasising the significant effect of FGR on these organs.

Table 3. Classification results.

Overall, the fitted model parameters reveal decreased perfusion fraction, T2,
and D∗ in the liver and placenta in FGR fetuses compared to the controls. These
differences are indicative of a reduced oxygen saturation and perfusion within
these organs, as well as abnormal capillary blood flow motion [8]. We did not
observe significant differences in the properties of fetal brains and lungs between
the FGR and control groups.

The machine learning analysis on these results supports the potential use
of these parametric biomarkers in measuring FGR and providing an estimate
of severity, including an indication of the likely GA at delivery. The classifier
achieved 100% accuracy on testing data, indicating the model features are pow-
erful indicators for FGR detection. But these results require prospective val-
idation in a larger study population due to the small test group size in this
proof-of-concept study. Moreover, a larger dataset would permit the transition
into more complex prediction models in future research.

The RMSE of 3.06 weeks for the regressor’s predictive performance encodes
a large window in terms of fetal development. This method must therefore be
refined before translation to a clinical environment. However, it may serve as a
guide on condition severity. In practice though, this tool would also be used in
conjunction with a wide range of information, including ultrasound data on fetal
size, and maternal and fetal Doppler analysis of vascular resistance, which we
have not included so far in this work.

The most influential Haralick features were extracted from the perfusion
fraction measurements, particularly computed from the Extended T2 IVIM and
Standard IVIM models. Another important parameter determined by the Har-
alick features was T2, attributed to its correlation with oxygen saturation (lower
T2 reflects a lower oxygen saturation [14]).
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The placenta was established as the organ with most significant textural
differences between the FGR and control groups. Variance, contrast, entropy and
energy in placental perfusion fraction maps were the most significant textural
differences between FGR and controls. This may be related to differences in the
presence of maternal and fetal vascular malformation [15,16].

The second organ with greatest textural differences between both cohorts
was the liver, particularly the pseudo-diffusion coefficient (D∗) maps (contrast,
correlation, and energy), indicating spatial differences in the incoherent fetal
capillary blood motion in this organ. This may indicate an abnormal blood
motion in the liver compared to a healthy developing organ, affecting nutrient
supply to this organ and may be related to the role of the ductus venosus in
redistributing blood to the heart under the influence of increasing hypoxia [17].
Energy was heavily influenced by the number of grey levels and was, therefore,
a significant feature for the placenta, lungs and brain, due to the presence of
similar intensity voxels within local regions. Correlation was affected by the
noise present in the image, which explains the notable correlation differences
found in the liver, being the organ with the lowest SNR.

Analysis on parameter correlations indicated that as the perfusion fraction in
the liver and placenta decreased, the more severely growth-restricted the FGR
fetuses were. This corroborated our initial hypotheses for selecting the fetal liver
and placenta as severely-affected organs in FGR, with SNR perhaps too low and
variability too high to observe differences in the fetal brain and lung. Despite
this, further work is needed to refine the analysis of the signals from these organs
to better study the impact of FGR.

5 Conclusion

This study demonstrated the potential of MRI to improve holistic assessment
of the fetus in FGR by assessing the vascular properties of highly-perfused fetal
organs, via a multi-compartmental model fitting approach and texture analysis.
The placenta and liver were prominent organs in identifying FGR fetuses, with
key parametric features indicating a reduced perfusion, oxygenation and fetal
capillary blood motion in these organs. Future work into multi-organ fetal anal-
ysis will extend these techniques to other placental complications in a larger-scale
study.
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Abstract. The performance of deep neural networks typically increases
with the number of training images. However, not all images have the
same importance towards improved performance and robustness. In fetal
brain MRI, abnormalities exacerbate the variability of the developing
brain anatomy compared to non-pathological cases. A small number of
abnormal cases, as is typically available in clinical datasets used for train-
ing, are unlikely to fairly represent the rich variability of abnormal devel-
oping brains. This leads machine learning systems trained by maximizing
the average performance to be biased toward non-pathological cases. This
problem was recently referred to as hidden stratification. To be suited
for clinical use, automatic segmentation methods need to reliably achieve
high-quality segmentation outcomes also for pathological cases. In this
paper, we show that the state-of-the-art deep learning pipeline nnU-Net
has difficulties to generalize to unseen abnormal cases. To mitigate this
problem, we propose to train a deep neural network to minimize a per-
centile of the distribution of per-volume loss over the dataset. We show
that this can be achieved by using Distributionally Robust Optimization
(DRO). DRO automatically reweights the training samples with lower
performance, encouraging nnU-Net to perform more consistently on all
cases. We validated our approach using a dataset of 368 fetal brain T2w
MRIs, including 124 MRIs of open spina bifida cases and 51 MRIs of
cases with other severe abnormalities of brain development.
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doi.org/10.1007/978-3-030-87735-4 25) contains supplementary material, which is
available to authorized users.
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Fig. 1. Illustration of the anatomical variability in fetal brain across gestational ages
and diagnostics. 1: Control (22 weeks); 2: Control (26 weeks); 3: Control (29 weeks);
4: Spina bifida (19 weeks); 5: Spina bifida (26 weeks); 6: Spina bifida (32 weeks); 7:
Dandy-walker malformation with corpus callosum abnormality (23 weeks); 8: Dandy-
walker malformation with ventriculomegaly and periventricular nodular heterotopia
(27 weeks); 9: Aqueductal stenosis (34 weeks).

1 Introduction

The segmentation of fetal brain tissues in MRI is essential for the study of
abnormal fetal brain developments [2]. Fetal brain structures segmentation
could also support the evaluation and prediction of surgery outcome for open
spina bifida [1,4,16,21,22]. Accurate and automatic methods for fetal brain
segmentation are necessary as manual segmentation is very time-consuming
and suffers from high inter- and intra-rater variability. Recently, deep neural
network-based methods for fetal brain T2w MRI segmentation have been pro-
posed [7,8,15,18,19]. On average, deep learning currently achieves state-of-the-
art segmentation performance. However, those studies do not evaluate specifi-
cally the generalization and robustness properties when applied to fetuses with
a pathological central nervous system.

Datasets used to train deep neural networks typically contain some under-
represented subsets of cases. These cases are not specifically dealt with by the
training algorithms currently used for deep neural networks. This problem has
been referred to as hidden stratification [17]. Hidden stratification has been
shown to lead to deep learning models with good average performance but poor
performance on some clinically relevant subsets of the population [17]. While
uncovering the issue, the study of [17], which is limited to classification, does
not study the cause or propose a method to mitigate this problem. Cases with
abnormal fetal brain development are likely to suffer from hidden stratification
effects for two reasons: 1) The presence of abnormalities exacerbates the anatom-
ical variability of the fetal brain between 18 weeks and 38 weeks of gestation, as
illustrated in Fig. 1; and 2) The prevalence of those diseases is typically below
1/1000 births [1].



Abnormal Fetal Brain 3D MRI Segmentation 265

In this work, we study the problem of hidden stratification in fetal brain
MRI segmentation using deep learning. We claim that the methodology currently
used to train deep neural networks, that is maximizing the average performance
across the training volumes, is at the root of the hidden stratification problem.
Instead of the average empirical risk, training safe and robust deep learning
models requires an asymmetric measure of risk that gives higher weights to the
cases for which the algorithm fails (hard examples). Percentiles, also known as
value-at-risk, is such a measure of risk that has even been adopted in industry
regulations [13]. Given a per-volume fetal brain MRI segmentation metric such
as the Dice score and an algorithm, the percentile at 5% is the value of the
score below which 5% of the cases fall, i.e. perform worse than the percentile.
The percentile relates to hidden stratification effects as it informs us of how
badly worst-case examples are performing. Our contributions are four-fold. 1)
We empirically show that the state-of-the-art deep learning pipeline nnU-Net [14]
trained by maximizing the average segmentation performance leads to clinically
significant failures for fetal brain MRI segmentation. 2) We propose to use per-
centiles of the Dice score on clinically relevant subpopulations as a measure of
hidden stratification effects. 3) We propose to train a deep learning network to
minimize a percentile of the per-volume loss function. 4) We propose a relaxation
of this optimization problem based on distributionally robust optimization that
can be solved efficiently in practice. We evaluate the proposed methodology for
the automatic segmentation of white matter, ventricles, and cerebellum based on
fetal brain 3D T2w MRI. We used a total of 368 fetal brain 3D MRIs including
anatomically normal fetuses, fetuses with open spina bifida, and fetuses with
other central nervous system pathologies for gestational ages ranging from 19
weeks to 39 weeks. Our empirical results suggests that the proposed training
method based on distributionally robust optimization leads to better percentiles
values for abnormal fetuses. In addition, qualitative results shows that distribu-
tionally robust optimization allows to reduce the number of clinically relevant
failures of nnU-Net.

2 Minimization of a Percentile Loss Using
Distributionally Robust Optimization

In this section, we study how a deep neural network can be trained to mini-
mize percentiles of the loss function using a distributionally robust optimiza-
tion (DRO) approach [10].

Standard deep learning training consists in optimizing the parameters θ of a
deep neural network f(·;θ) by minimizing the average per-example loss L

min
θ

1
n

n∑

i=1

L (f(xi;θ),yi) (1)

Within this empirical risk minimization framework, f(·;θ) is typically a Con-
volutional Neural Network (CNN), L is a smooth per-volume loss function, and
{(xi,yi)}n

i=1 is the training dataset.
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In our case, xi are the input 3D fetal brain T2w MRI volumes and yi are
the ground-truth manual segmentations. This approach is the one used to train
state-of-the-art deep learning methods for segmentation using stochastic gra-
dient descent [14]. Due to the scarcity and the higher anatomical variability of
abnormal cases illustrated in Fig. 1, we cannot assume that the set of all possible
fetal brain anatomies is sampled uniformly in the training dataset. However, in
(1), all brain volumes are given the same weight equal to 1

n .
Instead of the average per-volume loss, for robust and safe segmentation,

we argue that it might be more interesting to minimize the percentile lα at
α (e.g. 5%) of the per-volume loss function. Formally, this corresponds to the
minimization problem

min
θ, lα

lα such that P (L (f(x;θ), y) ≥ lα) ≤ α (2)

where P is the empirical distribution defined by the training dataset. In other
words, if α = 0.05, the optimal l∗α(θ) of (2) for a given value set of parameters
θ is the value of the loss such that the per-volume loss function is worse than
l∗α(θ) 5% of the time. As a result, training the deep neural network using (2)
corresponds to minimizing the percentile of the per-volume loss function l∗α(θ).

Unfortunately, the minimization problem (2) cannot be solved directly using
stochastic gradient descent to train a deep neural network. We now propose a
tractable upper bound for l∗α(θ) and show that it can be solved in practice using
distributionally robust optimization [10].

The Chernoff bound [3] applied to the per-volume loss function and the
empirical training data distribution states that for all lα and β > 0

P (L (f(x;θ), y) ≥ lα) ≤ exp (−βlα)
n

n∑

i=1

exp (β L (f(xi;θ),yi)) (3)

To link this inequality to the minimization problem (2), we set β such that

α =
exp

(
−βl̂α(θ)

)

n

n∑

i=1

exp (β L (f(xi;θ),yi)) (4)

⇐⇒ l̂α(θ) =
1
β

log

(
1

αn

n∑

i=1

exp (β L (f(xi;θ),yi))

)
(5)

l̂α(θ) is therefore an upper bound for l∗α(θ), independently to the value of θ. We
propose to relax the minimization problem (2) by

min
θ

1
β

log

(
n∑

i=1

exp (β L (f(xi;θ),yi))

)
(6)

where β > 0 is a hyperparameter, and where the term 1
β log

(
1

αn

)
was dropped

as being independent of θ. While in (6), α does not appear in the optimization
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Table 1. Training and testing dataset details. Other Abn: other brain structural
abnormalities. There is no overlap of subjects between training and testing.

Train/Test Origin Condition Volumes Gestational age (in weeks)

Training Atlas [12] Control 18 [21, 38]

Training FeTA [18] Control 5 [22, 28]

Training UHL and MUV Control 116 [20, 35]

Training UHL and MUV Spina Bifida 28 [22, 34]

Training UHL and MUV Other Abn 10 [23, 35]

Testing FeTA [18] Control 28 [20, 34]

Testing FeTA [18] Spina Bifida 31 [22, 31]

Testing FeTA [18] Other Abn 16 [20, 34]

Testing UHL and MUV Control 26 [26, 37]

Testing UHL and MUV Spina Bifida 65 [19, 33]

Testing UHL and MUV Other Abn 25 [21, 40]

problem directly anymore, β essentially acts as a substitute for α. The higher
the value of β, the higher weights the per-volume losses with a high value will
have in (6).

We give a proof in the supplementary material1 that (6) is equivalent to
solving the distributionally robust optimization problem

min
θ

max
q∈Δn

(
n∑

i=1

qi L (f(xi;θ),yi) − 1
β

DKL

(
q

∥∥∥∥
1
n
1
))

(7)

where a new unknown probabilities vector parameter q is introduced, 1
n1 denotes

the uniform probability vector
(
1
n , . . . , 1

n

)
, DKL is the Kullback-Leibler diver-

gence, Δn is the unit n-simplex, and β > 0 is a hyperparameter. DKL measures
the dissimilarity between q and the uniform probability vector 1

n1 that corre-
sponds to assign the same weight 1

n to each sample. Therefore, β controls how
much the samples with a relatively high loss value (hard examples) are weighted.

Recently, hardness weighted sampling [10] was introduced as a principled
hard example mining method to solve (7). Here, we proved that it can be used
to minimize the proposed relaxed minimization (6) of the percentile loss problem.

3 Anatomically Abnormal Fetal Brain T2w MRI Dataset

In this section, we give details about the fetal brain 3D MRI data, the labelling
protocol, and the pre-processing used in our experiments.

1 Please see the arxiv version for the supplementary material http://arxiv.org/abs/
2108.04175.

http://arxiv.org/abs/2108.04175
http://arxiv.org/abs/2108.04175
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Public Fetal Brain Datasets. We used the 18 control fetal brain 3D MRI
volumes of the spatio-temporal fetal brain atlas2 [12] for gestational ages ranging
from 21 weeks to 38 weeks. We also used 80 volumes from the publicly available
FeTA MICCAI challenge dataset3 [18]. For the 40 MIAL 3D MRIs, corrections
of the segmentations were performed by authors MA, LF, and PD to reduce
the variability against the published segmentation guidelines that was released
with the FeTA dataset [18]. Those corrections were performed as part of our
previous work [8] and are publicly available4. Brain masks for the FeTA data
were obtained via affine registration using two fetal brain atlases5 [11,12].

Image Acquisition and Preprocessing for the Private Dataset. All
images in the private dataset were part of routine clinical care and were acquired
at UHL and MUV due to congenital malformations seen on ultrasound.

In total, 93 cases with open spina bifida, 35 cases with other central nervous
system pathologies, and 142 cases with other malformations, though with nor-
mal brain, and referred as controls, were included. The gestational age at MRI
ranged from 19 weeks to 40 weeks. We have started to make fetal brain T2w 3D
MRIs publicly available6. For each study, at least three orthogonal T2-weighted
HASTE series of the fetal brain were collected on a 1.5T scanner using an echo
time of 133 ms, a repetition time of 1000 ms, with no slice overlap nor gap, pixel
size 0.39 mm to 1.48 mm, and slice thickness 2.50 mm to 4.40 mm. A radiologist
attended all the acquisitions for quality control.

The reconstructed fetal brain 3D MRIs were obtained using NiftyMIC [6]
a state-of-the-art super resolution and reconstruction algorithm. The volumes
were all reconstructed to a resolution of 0.8 mm isotropic and registered to a
fetal brain atlas [12]. Our pre-processing improves the resolution, and removes
motion between neighboring slices and motion artefacts present in the original
2D slices [6]. We used volumetric brain masks to mask the tissues outside the
fetal brain. Those brain masks were obtained using the automatic segmentation
method described in [6,20].

Labelling Protocol. The labelling protocol used for white matter, ventricles
and cerebellum is the same as in [18]. The three tissue types were segmented
for our private dataset by a trained obstetrician and medical students under the
supervision of a paediatric radiologist specialized in fetal brain anatomy, who
quality controlled and corrected all manual segmentations.

Separation of the Data into Training and Testing. A summary of the
number of fetal brain 3D MRIs used at training and testing for each central

2 http://crl.med.harvard.edu/research/fetal brain atlas/.
3 DOI: 10.7303/syn25649159.
4 DOI: 10.5281/zenodo.5148611.
5 DOI: 10.7303/syn25887675.
6 https://www.cir.meduniwien.ac.at/research/fetal/.

http://crl.med.harvard.edu/research/fetal_brain_atlas/
https://doi.org/10.7303/syn25649159
https://doi.org/10.5281/zenodo.5148611
https://doi.org/10.7303/syn25887675
https://www.cir.meduniwien.ac.at/research/fetal/
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Fig. 2. Qualitative results. a) Fetus with aqueductal stenosis (34 weeks). b) Fetus
with open spina bifida (27 weeks). For those two cases, nnU-Net [14] misses completly
the cerebellum and achieves poor segmentation for the white matter and the ventricles.
Our nnU-Net-DRO achieves satisfactory segmentation for the cerebellum for the two
cases, and for all tissue types for the aqueductal stenosis case.

nervous system condition can be found in Table 1. The training dataset contains
a total of 177 cases with a majority of 139 controls and only 38 abnormal cases
which is typical in clinical datasets. Five controls from the FeTA dataset were
added in the training dataset because we found in preliminary experiments that
nnU-Net [14] fails on most of the FeTA data at testing when it is trained using
only data from UHL and MUV and the fetal brain atlas [12]. The testing dataset
contains 193 volumes with a majority of abnormal cases which is necessary to
cover the anatomical variability of abnormal cases in our evaluation.

4 Experiments

Common Deep Learning Pipeline. We used nnU-Net [14], a generic deep
learning pipeline for medical image segmentation, that has been shown to outper-
form other deep learning pipelines on 23 public datasets without the need to tune
the loss function or the deep neural network architecture. Specifically, we used
nnU-Net version 2 in 3D-full-resolution mode which is the recommended mode
for isotropic 3D MRI data. nnU-Net automatically splits the training data into
5 folds 80% training/20% validation used to train 5 networks for each method.
The predicted class probability maps of the 5 models are averaged at inference
to improve robustness [14]. We used NVIDIA Tesla V100 GPUs with 16 GB of
memory. Training each network took from 4 to 6 days.

Specificities of Each Method. The baseline consists in using nnU-Net [14]
without any modification. Our method, nnU-Net-DRO, also uses nnU-Net. The
only difference is that we changed the sampling strategy to use the hardness
weighted sampler for DRO [10]. We used the default hyper-parameter values for
the hardness weighted sampler, i.e. β = 100 with importance sampling and clip-
ping values wmin = 0.1 and wmax = 10 as described in [10]. No other values were
tested. Our implementation of the nnU-Net-DRO training procedure is publicly
available at https://github.com/LucasFidon/HardnessWeightedSampler. It pro-
vides an implementation of the hardness weighted sampler described in [10].

https://github.com/LucasFidon/HardnessWeightedSampler
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Table 2. Evaluation of distribution robustness with respect to the pathology
(193 3D MRIs). WM: White matter, Vent: Ventricles, Cer: Cerebellum. pX : Xth

percentile of the Dice score distribution in percentage. Best values are in bold.

Method CNS ROI Dice Score (%)

Mean Std p50 p25 p10 p5

(baseline) nnU-Net Controls (54 cases) WM 93.9 2.9 94.1 91.5 90.6 89.3

Vent 87.8 6.8 89.7 82.1 78.1 76.8

Cer 94.5 3.2 94.6 92.4 90.7 89.8

Spina Bifida (98 cases) WM 89.9 7.9 92.5 89.1 79.9 73.4

Vent 90.6 10.6 93.0 88.6 84.8 80.7

Cer 78.2 28.7 89.8 84.2 13.9 0.0

Other Abn. (41 cases) WM 90.3 9.8 92.7 89.7 82.7 70.1

Vent 87.1 7.3 87.1 82.5 77.7 75.2

Cer 89.7 14.7 92.8 89.4 85.1 81.6

(ours) nnU-Net-DRO Controls (54 cases) WM 93.8 3.0 93.9 91.2 90.1 89.2

Vent 87.9 6.7 89.9 82.6 78.3 76.7

Cer 94.4 3.1 94.6 92.6 90.7 89.5

Spina Bifida (98 cases) WM 90.3 7.5 92.9 89.2 81.5 73.7

Vent 90.9 10.3 93.2 89.2 85.1 81.7

Cer 79.7 27.6 89.7 84.1 40.4 0.0

Other Abn. (41 cases) WM 90.3 9.5 92.5 89.6 82.5 72.0

Vent 87.5 7.1 87.5 82.7 80.4 76.7

Cer 90.6 10.5 92.8 89.8 85.5 82.9

Evaluation Method. We evaluate the quality of the automatic fetal brain
MRI segmentations using the Dice score [5,9]. We are particularly interested in
measuring the statistical risk of the results as a way to evaluate the robustness
of the different methods. To this end, in addition to the mean and standard
deviation, we also report the percentiles of the Dice score at 50%, 25%, 10%,
and 5%. In Table 2, we report those quantities for the Dice scores of the three
tissue types white matter, ventricular system, and cerebellum.

For each method, nnU-Net is trained 5 times using different train/validation
splits and different random initializations. The 5 same splits, computed ran-
domly, are used for the two methods. The results in Table 2 are for the ensemble
of the 5 3D U-Nets. Ensembling is known to increase the robustness of deep
learning methods for segmentation [14]. It also makes the evaluation less sensi-
tive to the random initialization and to the stochastic optimization.

Evaluation of nnU-Net and nnU-Net-DRO. Quantitative evaluation of
nnU-Net and nnU-Net-DRO for the three different central nervous system con-
ditions control, spina bifida, and other abnormalities can be found in Table 2.

For spina bifida and other brain abnormalities, the proposed nnU-Net-DRO
achieves same or higher mean Dice scores and lower standard deviations than
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nnU-Net [14] for the three tissue types. For controls, the mean Dice scores and
standard deviation of nnU-Net-DRO and nnU-Net differ by less than 0.1 per-
centage points (pp) for the three tissue types.

The comparison of the percentiles of the Dice score allows us to compare
methods at the tail of the Dice scores distribution where segmentation meth-
ods reach their worst-case performance. For spina bifida, nnU-Net-DRO achieves
higher values of percentiles than nnU-Net for the white matter (+0.6pp for p10),
for the ventricular system (+1.0pp for p5), and for the cerebellum (+26.5pp for
p10). And for other brain abnormalities, nnU-Net-DRO achieves higher values of
percentiles than nnU-Net for the white matter (+1.9pp for p5), for the ventricu-
lar system (+1.5pp for p5 and +2.7pp for p10), and for the cerebellum (+1.3pp
for p5). All the other percentile values differ by less than 0.5pp of Dice score
between the two methods. This suggests that nnU-Net-DRO achieves better
worst case performance than nnU-Net for abnormal cases.

It is worth noting that the Dice scores decrease for the white matter and
the cerebellum between controls and spina bifida and abnormal cases. It was
expected due to the higher anatomical variability in pathological cases. However,
the Dice scores for the ventricular system tend to be higher for abnormal cases
than for controls. This can be attributed to the large proportion of pathological
cases with enlarged ventricles because the Dice score values tend to be higher
for larger region of interests.

As can be seen in the qualitative results of Table 2, there are cases for
which nnU-Net predicts an empty cerebellum segmentation while nnU-Net-DRO
achieves satisfactory cerebellum segmentation. There were no cases for which
the converse was true. Robust segmentation of the cerebellum for spina bifida
is particularly relevant for the evaluation of fetal brain surgery for open spina
bifida [1,4,21]. Additional qualitative results in the supplementary material7

illustrates 5 other cases for which nnU-Net-DRO outperforms nnU-Net.

5 Conclusion

The high anatomical variability of the developing fetal brain across gestational
ages and pathologies hampers the robustness of deep neural networks trained
by maximizing the average per-volume performance. Specifically, it limits the
generalization of deep neural networks to abnormal cases for which few cases
are available during training. In this paper, we propose to mitigate this problem
by training deep neural networks to minimize a percentile of the per-volume
performance rather than the average. To allow to do this in practice, we pro-
pose to train deep neural networks with Distributionally Robust Optimization
(DRO) and we show that the DRO objective is a relaxation of the per-volume
loss percentile. We have validated the proposed training method on a multi-
centric dataset of 368 fetal brain T2w 3D MRIs with various diagnostics. nnU-
Net trained with DRO achieved improved segmentation results for pathological
7 Please see the arxiv version for the supplementary material http://arxiv.org/abs/

2108.04175.

http://arxiv.org/abs/2108.04175
http://arxiv.org/abs/2108.04175
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cases as compared to the unmodified nnU-Net, while achieving similar segmen-
tation performance for the neurotypical cases. Our results suggest that nnU-Net
trained with DRO is more robust to anatomical variabilities than the original
nnU-Net.
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causes clinically meaningful failures in machine learning for medical imaging. In:
Proceedings of the ACM Conference on Health, Inference, and Learning, pp. 151–
159 (2020)

18. Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation
benchmark using the fetal tissue annotation dataset. Sci. Data 8(1), 1–14 (2021)

19. Payette, K., et al.: Longitudinal analysis of fetal MRI in patients with prenatal
spina bifida repair. In: Wang, Q., et al. (eds.) PIPPI/SUSI -2019. LNCS, vol.
11798, pp. 161–170. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32875-7 18

20. Ranzini, M., Fidon, L., Ourselin, S., Modat, M., Vercauteren, T.: MONAIfbs:
MONAI-based fetal brain MRI deep learning segmentation. arXiv preprint
arXiv:2103.13314 (2021)

21. Sacco, A., et al.: Fetal surgery for open spina bifida. Obstetrician Gynaecol. 21(4),
271 (2019)

22. Zarutskie, A., et al.: Prenatal brain imaging for predicting need for postnatal
hydrocephalus treatment in fetuses that had neural tube defect repair in utero.
Ultrasound Obstet. Gynecol. 53(3), 324–334 (2019)

https://doi.org/10.1007/978-3-030-32875-7_18
https://doi.org/10.1007/978-3-030-32875-7_18
http://arxiv.org/abs/2103.13314


Analysis of the Anatomical Variability
of Fetal Brains with Corpus Callosum

Agenesis
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Abstract. Corpus Callosum Agenesis (CCA), one of the most common
congenital anomalies, has uncertain neurodevelopmental outcome, espe-
cially when the disease is isolated. To provide parents with informed
counselling, it is crucial to identify anatomical markers linked to a pre-
dicted outcome early in pregnancy. Quantitative exploration of fetal
brains with CCA is rare and has been mostly limited to the study of
specific brain structures. Here, we propose to characterize the anatomi-
cal variability of fetal brains with CCA using a shape analysis pipeline
based on diffeomorphic transformation. 38 MRIs from healthy fetuses
and 73 from fetuses with CCA are retrospectively selected and volume
reconstructed. A healthy template is registered to each fetal brain to
quantify deviations from normal development at a global scale. Deforma-
tions are parallel transported to the same space to smooth age differences
between fetuses. Deformation modes specific to CCA are identified using
Principal Component Analysis (PCA) and classification. In accordance
with more local analyses, the most relevant deformation mode for classi-
fication combines well-known alterations of brains with CCA. This pre-
liminary work is promising for the quantitative exploration of abnormal
fetal brains and will be used in the future to identify anatomical features
correlated to poor clinical outcome.

Keywords: Corpus callosum agenesis · Fetal magnetic resonance
imaging · Diffeomorphic registration

1 Introduction

Corpus callosum agenesis (CCA) is one of the most common congenital brain
anomalies, with a prevalence at birth of 0.02% [13]. It is characterized by the
total or partial absence of the largest commissure of the brain, responsible for
the transmission of sensory, motor and cognitive information between hemi-
spheres [13]. Diagnosis is usually suspected during the second-trimester routine
ultrasound, and confirmed by fetal Magnetic Resonance Imaging (MRI) [13]. In
c© Springer Nature Switzerland AG 2021
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complement with genetic screening, MRI is valuable to provide clinicians with
additional information, as the presence of other anomalies is the only consensual
prognosis factor for neurodevelopmental delays [17]. In the presence of associ-
ated defects, accounting for 45% cases [17], the outcome is usually poor, with
impairments affecting motor control, coordination and language [5]. Predicting
the outcome is challenging in isolated CCA, where 20–30% children demonstrate
a broad spectrum of cognitive deficits [5,17], resulting in heterogenous medical
counselling across hospitals and countries [7]. To provide parents with informed
counselling, it is crucial to identify anatomical markers linked to neurodevelop-
mental outcome as early as possible during pregnancy.

Quantitative analysis of fetal brains has long been limited by the scarcity of
fetal MRI and its restriction to 2D slices [4]. Most studies focused on characteriz-
ing healthy brain growth and cortical folding. Only few studies have investigated
quantitatively anatomical alterations in fetuses with CCA [12,14,18,19], and
their focus was on specific brain structures rather than global trends. Another
limitation is the difficulty to compare fetal brains of different gestational ages
(GA), since they undergo rapid and drastic changes across pregnancy [10].

Whole brain shape analysis can provide information about which structures
are impaired along with corpus callosum. To perform such global analysis, one
can think of image registration, which maps a population average brain tem-
plate onto individual images in order to measure a distance from normality. In
a clinical setting, functions called diffeomorphisms are an appropriate choice for
computing shape changes, as they are high dimensional, topology-preserving, and
sensitive to small anatomical variations. The Large Deformation Diffeomorphic
Metric Mapping (LDDMM) setting [3,20] is a powerful method for computing
such functions, which are seen as geodesics on a Riemanian manifold. Diffeomor-
phisms can be efficiently computed through a discrete parametrization [8]. The
LDDMM framework also provides geometrical tools such as parallel transport,
which enables comparing subjects of different developmental stages. Diffeomor-
phisms have proven useful in the quantification and classification of disorders
such as Alzheimer’s disease [6,15]. To our knowledge, deformation models have
never been applied to abnormal fetal brains.

Here, we propose to explore the anatomical variability of fetal brains diag-
nosed with CCA using diffeomorphic brain mapping. After registration to a
template brain, age-related differences between fetuses will be erased by trans-
porting deformations to a common space. CCA specific deformations will be
identified using Principal Component Analysis (PCA) and classification.

2 Materials and Methods

2.1 Image Acquisition and Preprocessing

Data. Data consists of retrospectively selected fetal MRIs from hospital [anony-
mous], performed between 2006 and 2019. Abnormality of the corpus callosum
was identified at second or third trimester screening ultrasound examinations,
followed by expert ultrasound assessment to investigate other associated fetal



276 F. Gaudfernau et al.

anomalies before the fetal MRI. Corpus callosum anomalies were defined as: 1.
complete CCA defined as the complete absence of the corpus callosum and 2.
partial CCA defined as the absence of one or more of the five segments of the
corpus callosum resulting in an abnormally shaped corpus callosum. Inclusion
criteria were: fetuses affected by isolated or associated partial or complete corpus
callosum abnormalities and fetuses with normal central nervous system findings
at MRI examination. The database contains 38 healthy fetuses scanned at GA
between 26 and 37 weeks (mean = 32.4 ± 1.69) and 73 fetuses diagnosed with
CCA scanned at GA between 25 and 37 weeks (mean = 31.63 ± 2.09). In the
latter group, 51 fetuses have partial CCA and 22 complete CCA.

Image Acquisition. Fetal brain MRI was performed using repeated T2 half-
Fourier Single Shot Fast Spin Echo (SSFSE), or Single-Shot half-Fourier Turbo
Spin Echo (SshTSE). Fetal MRIs were performed on a 1.5 T MRI system Achieva
Philips (Best, the Netherlands) before 2016 and Optima MR450w General Elec-
tric (Waukesha, WI, USA), since 2016. Maternal sedation was systematically
offered to reduce fetal motion artefacts. Scan acquisitions were performed in
the three orthogonal planes. Scanning parameters were as follows: field of view:
256 × 256 or 512 × 512 mm; echo time: 150–200 ms; repetition time: 3500–4000
ms; slice thickness: 4 mm; flip angle: 90◦; acquisition matrix: 320 × 320.

Fig. 1. Fetal MRI preprocessing steps

Image Processing. Isotropic high resolution 3D volume reconstruction of fetal
brains is performed using a state-of-the-art algorithm [9] and followed by addi-
tional processing steps as described in Fig. 2. The main reconstruction steps
comprise localization and segmentation of the fetal brain, bias field correction
and outlier-robust super-resolution reconstruction. We process further the result-
ing image in order to enable inter-subjects comparisons (see Fig. 1). As the fetus
orientation is unknown during image acquisition, the coronal, sagittal and axial
planes are automatically identified based on length and symmetry measure-
ments, and flipped in the right direction by minimizing the sum of squared
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differences between all possible orientations and a reference fetal brain at 31
weeks of GA from [10] atlas. The subject brains are aligned and cropped to a
size of 105×100×120 voxels. The algorithm used for brain segmentation [9] often
misclassifies voxels belonging to the skull or the placenta as brain (see Fig. 1).
A correct brain mask is extracted from the reference brain, rigidly registered to
each erroneous fetal brain mask, and used to re-mask the fetal brain. In cases
where brain over-detection is too important, manual refinement of the masks
is performed using ITK-SNAP, Version 3.6 [22]. To enable inter-subjects com-
parisons and eliminate position and size differences, fetal brains are transported
to a common anatomical space by performing affine registration to the previ-
ously used reference template. Finally, intensity normalization and histogram
matching to the template brain are performed.

Fig. 2. Shape analysis pipeline (Color figure online)

2.2 Shape Analysis

Shape Analysis Pipeline. Registering a reference average brain, called tem-
plate, to healthy or pathological brains, yields transformations that encode
subject-specific anatomical deviations from normality. As brains undergo impor-
tant structural changes during gestation, we compare each fetal brain to a
healthy template brain of the same age using registration. To enable inter-
subjects comparisons, deformations are transported to a common space using
parallel transport. PCA is applied to the transported subject deformations to
reduce dimension and extract relevant features. Finally, these features are fed to
a Support Vector Machine (SVM) to perform patient classification. The steps of
our shape analysis pipeline are summarized in Fig. 2 and detailed below.
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We perform shape analysis computations in the LDDMM framework [3,20],
where shapes are seen as objects on a Riemanian Manifold and transforma-
tions belong to groups of diffeomorphims. Diffeomorphisms can be entirely
parametrized by a finite set of initial momentum vectors α0 attached to control
points c0 [8]. Evolution of α(t) and c(t), described by Hamiltonian equations,
defines a time-varying velocity field, whose integration yields a flow of diffeomor-
phisms [8]. This framework provides tools for computational anatomy, namely
geodesic regression, geodesic shooting and parallel transport. Optimization is
performed with a gradient-descent algorithm. Shape comparisons are computed
using the open-source software Deformetrica [2].

Geodesic Regression of Template Brains. To adjust for anatomical changes
during gestation, each fetal brain is compared to an age-matched healthy brain.
We use as reference a spatiotemporal atlas defined at each week of gestation,
constructed from 81 healthy fetuses between 19 and 39 weeks of GA [10]. From
this discrete atlas, we construct a continuous trajectory of normal brain changes
from 26 to 38 weeks by performing geodesic regression, which can be seen as
the generalisation of linear regression to shapes. This trajectory γ(t) (red curve)
is described by a pair of vectors: control points c0 and momenta α0 defined at
time t0 = 31 weeks. The point from which the geodesic was computed, i.e. the
template brain at age 31, will be referred to as Tref in the following.

Registration to an Age-Matched Template. For each subject i, the age-
matched template brain is extracted from the geodesic trajectory, and registered
to the subject’s brain using geodesic shooting. Given an initial set of controls
points ci

0 and momenta αi
0, geodesic shooting computes the trajectory of a shape

under the flow of diffeomorphisms defined by ci
0 and αi

0 (green paths). By com-
paring the deformed template image and the subject image, registration opti-
mizes the ci

0, α
i
0 that best warp the template image to match the subject image.

P = 10,000 control points are used for the registration, which corresponds to a 5
voxel spacing.

Parallel Transport. The diffeomorphism encodes, for each subject, the differ-
ences between its anatomy and that of an age-matched healthy brain. To enable
comparisons between subjects, transformations need to exist in the same space.
The momenta parametrizing each deformation are parallel transported to the
tangent space of Tref . In brief, parallel transport translates the deformation
towards subject i, defined by ci

0 and αi
0, at any time point along the trajectory

γ(t) (blue arrows). It adjusts for anatomical differences related to GA while
preserving components of the transformation non-related to age.

PCA. Given the high dimension of the transformations (P = 10,000 momenta)
and the low sample size (N = 111), the momenta cannot be used as features to
perform prediction. To reduce feature space and extract interpretable deforma-
tion modes, PCA is applied to the data. We denote by βi the 3P transported
momentum vector for subject i. Let X be the N by 3P data observation matrix:
X = (β1, . . . , βN )T . X is mean-centered, and the empirical covariance matrix
is given by Σ = XT X. Eigendecomposition of Σ is performed in the form of
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Fig. 3. Explained variance of each
component of PCA

Fig. 4. Accuracy gain for each feature
added to the model

Σ = UΛU−1 in which U is a matrix of size 3PxN, whose columns (U1, . . . , Un)
are the eigenvectors of Σ, and Λ a diagonal matrix of size NxN, whose diagonal
elements (λ1, . . . , λn) are the eigenvalues of Σ. We extract the first 67 compo-
nents that characterize 90 % of the sample shape variability (see Fig. 3).

Being a linear combination of momentum vectors, each eigenvector can gener-
ate a diffeomorphism, called deformation mode, which represents how the tem-
plate brain anatomy varies within the population. The ith mode is given by:
mi = X̄ + cσiUi, with c ∈ [−4,−2, 0, 2, 4], σi =

√
λi, and Ui the ith eigenvector.

Geodesic shooting applies the generated diffeomorphism to Tref in order to visu-
alize the deformation mode. In T2 fetal MRI, thinness and hypointensity of the
corpus callosum make it difficult to discern. Geodesic shooting is performed on
the template segmentation image as provided by [10] to make corpus callosum
deformations discernible. Projection of the momenta of subject j on deformation
i is computed as follows: Pβj

= βT
j Ui. Pβj

can be seen as a score quantifying how
much βj is represented by the ith deformation mode.

Classification. To assess whether or not the deformation modes can discrim-
inate between controls and fetuses with CCA, we perform classification with a
SVM equipped with a RBF kernel. SVM parameters (width of the gaussian ker-
nel and penalty) are tuned using grid-search. The dataset is randomly split into
a training (70% of the data) and a test set (30% of the data) to perform 5-fold
cross validation. While modes with the highest eigenvalues are those that explain
best the variability of the data, they don’t only encode shape variations related
to CCA, but also components of rigid registration correction and inter-subjects
variability. To extract deformation modes specific to CCA, we perform forward
feature selection: starting from an initial model with no input features, we train
the model with each of the 67 principal deformations independently and keep the
one that best enhances the model accuracy. This process is repeated iteratively
until the addition of a new deformation does not augment the accuracy. This
leads to the selection of 4 deformation modes as indicated in Fig. 4.
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Fig. 5. Second mode of deformation applied to the segmentation of the template brain
at age 31. Top three rows: axial, coronal and sagittal views. Bottom row: distribution
of the subjects scores on component 2. B: brainstem. C: corpus callosum. G: cingulate
gyrus. H: hippocampi. I: interhemispheric fissure. O: occipital cortex. R: roof of the
third ventricle. S: superior and inferior temporal sulci. T: thalami. V: lateral ventricles.

3 Results

The final classification model reaches a 90% (±7%) accuracy. Interestingly, fea-
ture selection did not retain the first component of PCA. Visual inspection of
the related deformation mode (not shown here) indicates it corrects for brain
misalignment and characterizes subjects with large ventricles.

We present here the second component, which drives to most of the model
accuracy (see Fig. 4). Subjects with CCA score generally higher on this compo-
nent (see Fig. 5). The corresponding deformation mode reveals a thinning and
a shortening of corpus callosum (C) on sagittal view. It is folded into a V-like
shape, with a stronger distortion towards its posterior part. Volume of the cingu-
late gyrus (G) is also reduced. Lateral ventricles (V) are widely spaced and par-
allel, with prominent occipital horns and atrium, corresponding to colpocephaly.
Dilation is slightly stronger in the right ventricle. The interhemispheric fissure
(I) is wide. Shape of the third ventricle is abnormal, with an expanded roof (R).
Volume of the occipital cortical and subcortical region (O) is reduced, especially
in the right hemisphere. Hippocampi (H) appear thinner and verticalized. The
superior and inferior temporal sulci (S) seem less pronounced. On coronal view,
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thalami (T) are parallelized and displaced away from the interhemispheric fis-
sure. Shape of the brainstem (B) is abnormal on sagittal view, with prominent
pons and midbrain.

4 Discussion and Conclusion

In this work, we addressed the challenge of exploring quantitatively alterations
in abnormal fetal brains. We developed a shape analysis pipeline adapted to
the specificities of fetal MRI and extracted anatomical deformations correlated
to CCA. Geometrical models based on diffeomorphisms, that were originally
designed for postnatal imaging, enabled us to compare fetuses of different ages
and investigate brain alterations globally, without requiring any prior assump-
tion. Such models are adapted to the scarcity of medical data and to the need
for interpretable results. This preliminary work opens new perspectives for the
quantitative analysis of fetal brains with malformations.

In contrast to previous studies, which had fewer data and often targeted
specific brain areas or structures [1,12,14,19,21], our method extracted global
deformations that correlate together, as they belong to the same deformation
mode. These alterations revealed well-known defects of brains with CCA. As
expected, the corpus callosum had abnormal shape and size. It was especially
distorted in its posterior segment, the splenium, which is usually the missing part
in partial CCA [16]. The cingulate gyrus, commonly absent in CCA [1], was also
reduced. As our dataset comprised fetuses with complete and partial CCA, it
cannot be known whether these patterns reflect a reduction or an absence of
both structures. CCA is often accompanied by the development of a pair of
aberrant callosal fibers, called Probst bundles, that run parallel to the midline,
and a rearrangement of the midline cerebral structures [13]. The most common
alterations include colpocephaly, elevation of the third ventricle, and widening
of the interhemispheric fissure [1,13], all of which were clearly visible in the sec-
ond deformation mode. Ventricles dilation and volume reduction of the occipi-
tal cortical and subcortical brain matter were uneven across hemispheres, which
may reflect a tendency for abnormal brain asymmetry, frequently encountered in
fetuses with CCA [11,18]. The observed volume reduction of the occipital region
coincides with findings of decreased thickness of the cerebral wall in the lateral
occipital region [18]. Consistent with findings of abnormal shape and rotation
of the hippocampi in fetuses with CCA [11,12], we observed verticalized hip-
pocampi, probably because of the extension of the temporal ventricular horns
into the parahippocampal gyri. Both observations might be related to reduced
volume of the ventral cingulum bundle, the fibers of which normally have an
initial course below the body of the corpus callosum and then course within
the parahippocampal gyrus in the inferior and medial temporal lobe [14]. We
also observed underdeveloped temporal sulci, which might be related to delayed
sulcation [21] or altered cortical folding [19], commonly observed in fetuses with
CCA. Verticalization and displacement of the thalami, which are not reported
in the literature, probably result from the widening of the interhemispheric fis-
sure. It has been suggested that in CCA other interhemispheric connections
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such as indirect thalamic nuclei connections supply the absence of callosal fibers
[1]. Understanding whether the displacement of the thalami is a marker of the
absence or presence of such indirect connections and related to neurodevelop-
mental outcome could help understand the differences in outcome of patients
with apparently isolated CCA. Surprinsingly, we observed a strong deformation
of the brainstem, which is not a typical feature of CCA. This result likely orig-
inates from inaccurate segmentation of the brainstem during image processing,
which tended to exclude the medulla.

Together, our findings draw a typical profile of brains with CCA, which is
in agreement with the results of more local methods, validating our approach.
Our method could help understand the mechanisms of the rearrangements linked
to CCA, and, above all, identify the anatomical defects related to poor clinical
outcome in isolated CCA.

This work has several limitations. Fetal brains undergo important and rapid
changes across gestation. The majority of fetuses in our dataset had a GA
between 30 and 34 weeks and alterations on late developing structures may
have been missed. Speed of growth across gestation and structures is not con-
stant, contrary to the assumption made by parallel transport. To strenghen the
methodology, spatiotemporal models [6] could be adapted to take into account
regional and temporal differences in growth rate. As the registration was com-
puted in the space of the healthy template brain using topology-preserving defor-
mations, structures specific to CCA brains such as Probst’s bundles could not be
studied. Furthermore, the small spacing between control points yielded unregular
deformations, that can be anatomically inaccurate.

In the future, we will study the correlation between anatomical alterations
in CCA brains and clinical outcome, with a focus on isolated cases. As partial
and complete CCA can affect brains differently [18], deformations specific to each
subgroup will be extracted. CCA-specific anomalies such as Probst’s bundles will
be further studied using atlas estimation. Efforts will be made towards increasing
the sample size in order to extract more robust features, and registration will be
adapted to the matching of complex biological structures.

Acknowledgement. This work was partly funded by the last author’s chair in
the PRAIRIE institute funded by the French national agency ANR as part of the
“Investissements d’avenir” programme under the reference ANR-19- P3IA-0001.
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Abstract. Preterm birth (PTB) (<37 weeks’ gestational age (GA)) is
associated with increased risk of short- and long-term sequelae. Accurate
predictive tools allow to improve the outcomes of those born preterm by
offering early obstetric interventions to mothers at high-risk of PTB.

Methods: This study combines a wide range of structural and func-
tional MRI parameters, from the fetal head, lung, placenta with clini-
cally available Ultrasound and outcome data. A preprocessing pipeline
adapted to the special requirements of the often incomplete and highly
GA dependant data and a supervised machine learning model based on
these derived markers derived is proposed. Data from 58 preterm and
217 term-born neonates were analysed.

Results: The best SVR model achieved an R2 value of 0.67 and cor-
rectly predicted 92% of true preterm cases using a combination of two
maternal and four fetal features.

Conclusion: The significance of this study is uncovering the potential
of markers derived from multi-modal imaging data in the prediction of
PTB using large-scale fetal studies. This study paves the way for future
studies focusing on at-risk women to further enhance the data set and
thus predictive power.

Keywords: Preterm · MRI · Prediction

1 Introduction

Preterm birth (PTB), affecting 8% of all deliveries in the UK, poses a signifi-
cant challenge to healthcare services due to the complex and multifaceted nature
of the condition. The burden is prevalent not only in the perinatal period but
throughout life, with those born preterm having higher risk of neurodevelop-
mental delay and motor impairment compared to their term-born counterparts
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(Luu et al. 2017). Developing better diagnostic and predictive tools can help
patients receive early, targeted support leading to improved outcomes (WHO
2020). However, current predictive capabilities are limited (Suff et al. 2019).

Most commonly, a history of previous PTB and cervical length (McIntosh et
al. 2016) are used in a clinical setting. Recently, (Watson et al. 2019b) combined
risk factors such as previous preterm births and multiple pregnancy (≥2 fetuses),
with clinical investigations such as fetal fibronectin values and cervical length
measurements were employed to predict whether a woman is high risk for preterm
birth (Watson et al. 2019b). For women with symptoms of threatened preterm
labour, the model combining risk factors and fetal fibronectin predicted 77%–
96% of the cases correctly depending on the GA.

However, most screening tools for preterm birth are limited to ultrasound
(US) derived cervical length and biochemical markers and fail to match the
complex etiology of PTB by not including placental or other fetal parameters.
While US and Doppler US (DUS) are the mainstream screening techniques dur-
ing pregnancy, they are operator-dependent methods that have limited utility in
some clinical populations e.g. mother’s with increased body mass index (BMI).
Fetal magnetic resonance imaging (MRI) is increasingly used both for research
and clinical use especially in high risk populations (mother’s with increased
BMI). It also provides both structural and functional information in an operator-
dependent manner, covering the entire uterus even in late gestation. Studies
using fetal MRI to investigate preterm birth have found decreased thymus vol-
umes (Story et al. 2020b), smaller lungs (Story et al. 2020a) and a reduction in
cortical and extra-axial cerebrospinal fluid volumes (Story et al. 2021) in fetuses
who subsequently deliver preterm compared to those who deliver at term.

Previous in utero functional MRI studies have employed both diffusion MRI
(Slator et al. 2021), which provides information about tissue microstructure
and T2∗ relaxometry, which provides an indirect measure of tissue oxygena-
tion via the blood-oxygen-level-dependent (BOLD) effect (Sorensen et al. 2020).
Decreased placental T2∗ has been correlated with low birth weight (Sorensen
et al. 2020), pre-eclampsia (Ho et al. 2020) and fetal growth restriction. How-
ever, there is a paucity of literature using in utero functional MRI to investigate
preterm birth. To our knowledge no previous MRI studies have combined mul-
tiple functional and structural measures to predict preterm birth.

Data-driven methods are therefore ideally suited for the data set obtained.
Identification of the features which hold the highest predictive power can pro-
vide valuable clinical insight and lead to improved targeting, monitoring and
outcomes for high-risk women and their babies. This study aims to leverage the
data available from large scale fetal MRI studies, together with available clinical
background and US information, to build supervised machine learning models
capable of predicting whether a fetus will be born preterm.

2 Methods

The steps in Fig. 1, from data collection to model evaluation will be detailed in
the following.
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2.1 Data

The data sets analysed here are combined from multiple ongoing large-scale
fetal research studies with similar protocols. These studies are: the Cardiac and
Placental Imaging Project (CARP), the Placental Imaging Project (PIP) and
the infection study for patients with prolonged preterm rupture of membranes
(PPROM). Data was collected from a combined total of 275 patients, and can
be divided into the following five categories:

Fig. 1. Illustration of the workflow for the study. All six stages from data collection to
model evaluation are graphically depicted.

1. Structural MRI data: automatic and manual segmentation of MRI scans
to obtain imaging features e.g. volumes of different brain regions or bi-parietal
diameter of the fetal head. (in red in Fig. 2B)

2. Functional MRI data: functional imaging features derived from the MRI
data e.g. mean placental T2∗ (in red, italic and bold in Fig. 2B).

3. Ultrasonographic data: measurements such as the expected fetal weight
(in blue in Fig. 2B)

4. Medical history and demographic data: e.g. maternal age, previous
preterm deliveries and smoking status from patient records.

5. Pregnancy outcome data: gestational age at birth, birth weight, placental
histopathology.

Structural and Functional MRI Data. After informed consent, all women where
scanned in supine position on either a 3T Philips Achieva scanner or a 1.5 T
Philips Ingenia scanner (Hughes et al. 2021) under constant monitoring of vital
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signs including blood pressure, oxygen saturation and heart rate, with frequent
verbal interaction. After survey and calibration scans, T2-weighted Turbo Spin
Echo images (1.25 × 1.25 × 2 mm3 resolution) were acquired in 3–5 orientations,
covering the uterus and fetal head in sagittal and coronal planes. A 30 s coronal
Multi-Echo Gradient Echo scan (T2ME), covering the entire uterus (3×3×3 mm3

resolution), was acquired. Furthermore, diffusion, perfusion, angiographic and
other sequences were acquired, however, the present work here focuses on the
T2 weighted and T2* scans.

The T2 weighted scans were employed to obtain 3D reconstructions of the
brain and lung using slice-to-volume techniques (Uus et al. 2020). The T2ME
data was fitted to the mono-exponential decay model, resulting in quantitative
T2∗ maps. These were either manually segmented (placenta, brain) or further
processed by a 3D model (lungs) and then segmented.

Fig. 2. Overview over the (A) time course considered and (B) attributes considered
for this study.

Ultrasonographic Data and Medical History. A growth ultrasound was taken
within one week of the MRI. In addition, the data from the screening and
anomaly scan were available for this study. The following measurements were
obtained: pulsatility indices of the uterine, umbilical and middle cerebral arter-
ies and morphological measurements including abdominal circumference, femur
length, expected fetal weight, head circumference and bi-parietal diameter.

Maternal age, body-mass index, parity, previous preterm birth, smoking sta-
tus, medication status and diagnosis with gestational diabetes mellitus, fetal
growth restriction or pre-eclampsia were recorded. At the time of delivery the
birth weight, birth weight centile, head circumference and APGAR score at one
and five minutes were included. Where available, histopathological information
was recorded, most notably the placental weight, the presence of chorioamnioni-
tis and maternal and fetal villi malperfusion.
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2.2 Preprocessing

The main concerns for this specific dataset are the following: 1) a large proportion
of missing values; 2) age-dependent features 3) imbalance in the dataset between
preterm and term babies; 4) the relatively small size of the dataset. As the size
of the dataset cannot be changed, it is important to preserve all present data
points. The imbalance of the data will be dealt with during model training. The
following describes the preprocessing performed for 1) and 2).

Z-scores were calculated (DeVore 2017) for all time-dependent variables using
the control group as basis for the transformation. Z-score transformation was
performed before imputation to ensure that only measured and no imputed
values are included when finding the mean and standard deviation regression
lines. This aims to limit any systematic error that could be introduced through
Z-score transformation. k-nearest neighbour was then performed on all numerical
features with missing values. Each missing value was thereby replaced with a
weighted average value from the k-closest neighbours for that feature. Weighting
by the Euclidean distance was required due to the imbalance in the dataset.

2.3 Model Optimisation and Implementation

Class imbalance (greater number of babies born at term compared to preterm)
was addressed through weighted sampling, where weights were defined as the
inverse of the class frequency. Two classification schemes were used: 1) term
vs. preterm birth (binary categories), and 2) extremely preterm, very preterm,
moderate-to-late preterm and term birth (four birth categories).

This study focuses on predicting GA as a continuous variable using a regres-
sion model. The results can then be categorised, allowing for comparison against
a small number of existing studies with similar aims (Story et al. 2020a, Story
et al. 2020b). Support vector regression (SVR) was chosen as it is captures non-
linearity, is capable of dealing with many features and the flexibility to define
error margins, which is essential when dealing with low signal-to-noise data such
as fetal MRI. A split of 80/20 was used for stratified train/test. Feature selec-
tion and exploration was performed by computing the correlation between each
feature and GA at birth and then converting into an F statistic. Features with
the 19 highest F statistics, and parity (categorical), were selected. Next, Feature
x feature interactions were explored between the top 20 features (19 continu-
ous + 1 categorical). Features with >60% missing were excluded from further
processing.

3 Results

3.1 Preprocessing

Results from before (Fig. 3) and after (Fig. 4) Z-score transformation, demon-
strated exemplarily for placental mean T2∗, illustrate the change from a negative
linear relationship to close to constant evolution over GA.
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Fig. 3. Placental T2∗ mean values and
the line of best fit over GA (term
(blue), extremely preterm (orange),
very preterm (green) and late preterm
birth (pink)). (Color figure online)

Fig. 4. Placental T2∗ mean value
after z-score transformation (term
(blue), extremely preterm (orange),
very preterm (green) and late preterm
birth (pink)). (Color figure online)

Feature selection was performed in three steps, with the mean placental
T2∗ performing best. The predicted GA at birth for all cases in the test
dataset using the best model was further divided into four birth categories
(<28+0, 28+0 − 33+6, 34+0 − 36+6 and ≥37+0 weeks’ GA) and binary birth cat-
egories (preterm vs. term) to show the confusion matrices in Fig. 5 and Fig. 6
respectively. Figure 5 indicates that the only fetus in the test set born extremely
preterm was correctly predicted by the model. For the very preterm group, one
fetus was correctly predicted by the model while two instances were predicted
to be born late preterm rather than very preterm. For the late preterm group,
seven out of eight children were correctly predicted by the model. 65.5% of the
instances were correctly predicted by the model to be term babies while 12.7%
who were also term-born were incorrectly predicted to be late preterm. Similarly,
when the prediction results were divided into term and preterm, the number of
correctly diagnosed term instances was 36 or 65.5% while there were 11 or 20% of
correctly diagnosed preterm instances. The number of false positives or instances
which were predicted to be preterm but were actually born at term was seven
or 12.7%. Only one instance or 1.8% was predicted to be term while they were
actually born preterm.

Figure 7 illustrates the R2 values using the best model for all possible combi-
nations of two features among the best 19 continuous features and the categorical
parity feature. The mean placental T2* score (R2 ∈ [0.34,0.6]) followed by the
pulsatility index of the uterine artery and the body volume with R2 values ∈
[0.1–0.5]. A number of features, which did not individually result in high R2

scores display high R2 scores when combined with other features. An example
of this would be the mean brain T2* value, which alone yields a R2 value of
0.018 but paired with the placental mean T2* score the R2 increases to 0.4. The
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Fig. 5. Confusion matrix for the best
SVR model, obtained using sampling
weights with four birth categories. All
fields add up to 100%.

Fig. 6. Confusion matrix for the best
SVR model with sampling weights with
binary categories. All fields add up to
100%.

Fig. 7. Heatmap matrix for 20 features with each element corresponding to the R2

value for the test set with the best model for any given pair of features. The diagonal
of the matrix gives the R2 for the best model based on the individual features.

most extreme case is the parity which raises its R2 value from −0.031 to 0.54 if
combined with the mean placental T2* score.

From the top 19 continuous features with the highest R2 scores and the
parity feature, any feature with a missing value percentage of more than 60%
was removed. The top 10 features were then the following: Mean placental T2*
score, CPR score, head circumference, abdominal circumference, femur length,
pulsatility index uterine artery, bi-parietal diameter from the growth ultrasound
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Fig. 8. Results of the SVR model with the highest R2 score (C = 100, ε = 0.1, γ =
0.1, kernel = sigmoid). Predicted GA from the best SVR model is plotted vs true GA
at birth for the test dataset. The features used were the placenta T2* mean, the head
and abdominal circumference, the femur length and the pulsatility index of the right
uterine artery from the growth ultrasound and the number of previous preterm births.

and the parity. For the top 10 features, models were trained and tested with all
combinations of features, with the number of features ranging from 1 to 10. The
best five models all used the same following parameters: C = 100, degree = 2,
γ = 0.1 and kernel = sigmoid. The best model uses six features and results in a
R2 of 0.665 and a mean absolute error of 1.6 weeks. Figure 8 shows the predicted
GA at birth for the test set using the best model compared to the true GA. The
R2 value for the best model was 0.665, the mean absolute error was 1.6 weeks
and the root mean squared error was 2.0 weeks.

4 Discussion and Conclusion

The present study exploits a comprehensive dataset containing clinical, US and
multimodal fetal MRI data to predict the GA, and thus ultimately preterm birth.
The results reflect that, in order to accurately predict preterm birth, acquiring
datasets that capture the multifactorial nature of preterm birth are essential. As
preterm birth is still poorly understood, acquiring detailed datasets provides an
opportunity to better investigate the aetiology and pathophysiology of preterm
birth. This study is however merely a first attempt to combine such large and
diverse derived parameters.

There are a number of important limitations. These include the number
of available datasets. While the collection is big for obstetric comprehensive
datasets, it is small for ML standards. It is not well balanced between PTB
and term-born cases and includes data from a range of different pregnancy com-
plications, all with their own disease aetiology and progression. The required
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and here developed pre-processing pipeline reflects these challenges and works
towards overcoming them. Future studies should include a higher number of
women with threatened PTB to allow to stratify these cases further. Another
limitation of this study is the choice of simple imputation method. Next steps
can include recently proposed methods such as graph-based imputation tech-
niques (You et al. 2020). The dataset contains both cases of spontaneous and
iatrogenic PTB, both with distinct aetiology. The GA at birth prediction results
thus also include this information and larger studies are required to treat these
as different entities. A further significant limitation of this study is the fact that
cervical length was not included. Tools are currently been developed to add this
into a future study. Further second order derived quantities can also be included
in a next step.

Future work will expand the achieved results into multiple directions. Further
models will be explored, direct prediction on the imaging data will be explored to
include whether further characteristics such as the heterogeneity of the placenta
further increases the ability to predict PTB and further cohorts will be recruited,
such as these with previous cervical surgeries or overt signs of inflammation.
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