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Abstract. 3D Convolutional Neural Networks (CNNs) have been widely
adopted for airway segmentation. The performance of 3D CNNs is greatly
influenced by the dataset while the public airway datasets are mainly clean
CT scans with coarse annotation, thus difficult to be generalized to noisy
CT scans (e.g. COVID-19 CT scans). In this work, we proposed a new
dual-stream network to address the variability between the clean domain
and noisy domain, which utilizes the clean CT scans and a small amount of
labeled noisy CT scans for airway segmentation. We designed two different
encoders to extract the transferable clean features and the unique noisy
features separately, followed by two independent decoders. Further on,
the transferable features are refined by the channel-wise feature recalibra-
tion and Signed Distance Map (SDM) regression. The feature recalibra-
tion module emphasizes critical features and the SDM pays more attention
to the bronchi, which is beneficial to extracting the transferable topolog-
ical features robust to the coarse labels. Extensive experimental results
demonstrated the obvious improvement brought by our proposed method.
Compared to other state-of-the-art transfer learning methods, our method
accurately segmented more bronchi in the noisy CT scans.

Keywords: Clean and noisy domain · Decomposition and
aggregation · Airway segmentation

1 Introduction

The novel coronavirus 2019 (COVID-19) has turned into a pandemic, infecting
humans all over the world. To relieve the burden of clinicians, many researchers
take the advantage of deep learning methods for automated COVID-19 diagno-
sis and infection measurement from imaging data (e.g., CT scans, Chest X-ray).
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Fig. 1. Different patterns exist between the BAS dataset and the COVID-19 dataset.
One well-trained segmentation model in the clean domain leads to low accuracy when
testing in the noisy domain.

Current studies mainly focus on designing a discriminative or robust model to
distinguish COVID-19 from other patients with pneumonia [11,17], lesion local-
ization [18], and segmentation [16]. In this work, we tackle another challenging
problem, airway segmentation of COVID-19 CT scans. The accurate segmen-
tation enables the quantitative measurements of airway dimensions and wall
thickness which can reveal the abnormality of patients with pulmonary disease
and the extraction of patient-specific airway model from CT image is required
for navigation in bronchoscopic-assisted surgery. It helps the sputum suction for
novel COVID-19 patients.

However, due to the fine-grained pulmonary airway structure, manual anno-
tation is time-consuming, error-prone, and highly relies on the expertise of clin-
icians. Moreover, COVID-19 CT scans share ground-glass opacities in the early
stage and pulmonary consolidation in the late stage [3] that adds additional diffi-
culty for annotation. Even though the fully convolutional networks (FCNs) could
automatically segment the airway, there remain the following challenges. First,
FCNs are data-driven methods, while there are few public airway datasets with
annotation and the data size is also limited. The public airway datasets, including
EXACT’09 dataset [8] and the Binary Airway Segmentation (BAS) dataset [12],
focus on the cases with the abnormality of airway structures mainly caused by
chronic obstructive pulmonary disease (COPD). These cases are relatively clean
and we term their distribution as Clean Domain, on the contrary, we term
the distribution of COVID-19 CT scans as Noisy Domain. Figure 1 shows that
fully convolutional networks (FCNs) methods [5,12] trained on the clean domain
cannot be perfectly generalized to the noisy domain. Although this challenge can
be addressed via the collection and labeling of new cases, it is impractical for
novel diseases, e.g. COVID-19, which cannot guarantee the scale of datasets and
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the quality of annotation. Second, transfer learning methods (e,g. domain adap-
tation [2,13], feature alignment [2,14]) can improve the performance on target
domains by transferring the knowledge contained in source domains or learn-
ing domain-invariant features. However, these methods are inadequate to apply
in our scenario because this target noisy domain contains specific features (e.g.
patterns of shadow patches) which cannot be learned from the source domain.
Third, the annotation of the airway is extremely hard as they are elongated fine
structures with plentiful peripheral bronchi of quite different sizes and orienta-
tions. The annotation in the EXACT’09 dataset [8] and the BAS dataset [12]
are overall coarse and unsatisfactory. However, the deep learning methods are
intended to fit the coarse labels, and thereby they are difficult to learn the robust
features for airway representation.

To alleviate such challenges, we propose a dual-stream network to extract
the robust and transferable features from the clean CT scans (clean domain)
and a few labeled COVID-19 CT scans (noisy domain). Our contributions are
threefold:

• We hypothesize that the COVID-19 CT scans own the general features and
specific features for airway segmentation. The general features (e.g. the topo-
logical structure) are likely to learn from the other clean CT scans, while the
specific features (e.g. patterns of shadow patches) should be extracted inde-
pendently. Therefore, we designed a dual-stream network, which takes both
the clean CT scans and a few labeled COVID-19 CT scans as input to syner-
gistically learn general features and independently learn specific features for
airway segmentation.

• We introduce the feature calibration module and the Signed Distance Map
(SDM) for the clean CT scans with coarse labels, and through this way, robust
features can be obtained for the extraction of general features.

• With extensive experiments on the clean CT scans and the COVID-19 CT
scans, our method revealed the superiority in the extraction of transferable
and robust features and achieved improvement compared to other methods
under the evaluation of tree length detected rate and the branch detected
rate.

2 Method

A new dual-stream network is proposed, which simultaneously processes the
clean CT scans and a few noisy COVID-19 CT scans to learn robust and transfer-
able features for airway segmentation. In this section, we detail the architecture
of the proposed dual-stream network, which is illustrated in Fig. 2.

2.1 Learning Transferable Features

COVID-19 CT scans share a similar airway topological structure with the clean
CT scans, meanwhile introduce unique patterns, e.g., multifocal patchy shadow-
ing and ground-glass opacities, which are not common in clean CT scans. Since
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Fig. 2. Detailed structure and workflow of the proposed dual-stream network.
Encoderclean aims to synergistically learn transferable features from both Xclean and
Xnoisy. Encodernoisy extracts specific features of Xnoisy. The encoded features of
Xclean are fed into Decoderclean, where SE and SDM modules refine the features.
For Xnoisy, the decomposed features are then aggregated again via the channel-wise
summation operation and fed into Decoderclean&noisy.

the number of clean CT scans is relatively large and the airway structure is also
clearer, we aim to adapt the knowledge from clean CT scans to improve the air-
way segmentation of COVID-19 CT scans. Therefore, a dual-stream network is
designed to synergistically learn transferable features from both COVID-19 CT
scans and clean CT scans, and independently learn specific features only from
COVID-19 CT scans. As illustrated in Fig. 2, let Xclean denote the input of sub-
volume CT scans from the clean CT scans, Xnoisy from the noisy COVID-19
CT scans. Encoderclean and Encodernoisy are encoder blocks for feature extrac-
tion. Decoderclean and Decoderclean&noisy are decoder blocks to generate the
segmentation results based on the features from encoders. The OutputSDM rep-
resents the output of clean CT scans, and the OutputPM represents the output
of COVID-19 CT scans, they can be briefly defined as follows:

OutputSDM = Decoderclean(Encoderclean(Xclean))

OutputPM = Decoderclean&noisy(Encoderclean(Xnoisy) + Encodernoisy(Xnoisy))

where we omit the detail of 1 × 1 × 1 convolution and the Squeeze&Excitation
(SE) module for a straightforward explanation of the overall workflow. In this
case, the features of Xnoisy are decomposed into two parts: Encoderclean aims
to extract high-level, semantic and transferable features from both clean CT
scans and COVID-19 CT scans; Encodernoisy is designed to obtain the specific
features which belongs to the COVID-19 samples. The features of clean CT
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scans extracted by Encoderclean are fed into Decoderclean. For COVID-19 CT
images, the decomposed features are then aggregated again via the channel-
wise summation operation and fed into Decoderclean&noisy to reconstruct the
volumetric airway structures.

2.2 Refinement of Transferable Features

As is mentioned before, the annotation of the public airway dataset is overall
coarse and unsatisfactory. Since we have determined which features to transfer,
then the transferable features can be further refined to be more robust through
feature recalibration and introducing signed distance map.

Feature Recalibration: 3D Channel SE (cSE) module [20] is designed to inves-
tigate the channel-wise attention. We embed this module between Encoderclean
and Decoderclean, aiming to refine the transferable features. Take U as input
and ˜U as output, U, ˜U ∈ R

F×D×H×W with the number of channels F, depth D,
height H, width W. 3D cSE firstly compresses the spatial domain then obtains
channel-wise dependencies ˜Z, which are formulated as follows:
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where δ(·) denotes the ReLU function and σ(·) refers to sigmoid activation,
W1 ∈ R

F
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rc . The rc represents the reduction factor in the
channel domain, similar to [4]. The output of 3D cSE is obtained by: ˜U = U�˜Z.

Signed Distance Map: In recent years, introducing the distance transformed
map into CNNs have proven effectivity in medical image segmentation task
[6,10,19] due to its superiority of paying attention to the global structural infor-
mation. The manual annotation of the plentiful tenuous bronchi is error-prone
and often be labeled thinner or thicker. The 3D FCNs cooperating with common
loss function treat the labeled foreground equally and intend to fit such coarse
labels, which are difficult to extract robust features. Even though the thickness
of the annotated bronchi is uncertain, the phenomenon of breakage or leakage
in the annotation can be avoided by experienced radiologists. Therefore, the
overall topology is correctly delineated, and we can use the topological structure
instead of the coarse label as a supervised signal. Besides, the intra-class imbal-
ance problem in airway segmentation is severe. Distance transform map is used
to rebalance the distribution of trachea, main bronchi, lobar bronchi, and distal
segmental bronchi. We use the signed distance map transform as a voxel-wise
reweighting method, incorporating with the regression loss that focuses on the
relatively small values (such as the lobar bronchi and distal segmental bronchi)
by having larger gradient magnitudes.
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Given the airway as target structure and each voxel x in the volume set X,
we construct the Signed Distance Map (SDM) function termed as φ(x), defined
as:

φ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x ∈ airway and x ∈ C,

− inf
∀z∈C

‖x − z‖2 , x ∈ airway and x /∈ C,

+ inf
∀z∈C

‖x − z‖2 , x /∈ airway,

(3)

where the C represents the surface of the airway, we further normalize the SDM
into [−1,+1]. We then transformed the segmentation task on clean CT scans to
an SDM regression problem and introduce the loss function that penalizes the
prediction SDM for having the wrong sign and forces the 3D CNNs to learn more
robust features that contain topological features for airway. Denote the yx as the
ground truth of SDM and fx as the prediction of the SDM, the loss function for
the regression problem can be defined as follows:

Lreg =
∑

∀x
‖fx − yx‖1 −

∑

∀x

fxyx
fxyx + f2

x + y2
x

, (4)

where ‖·‖1 denotes the L1 norm.

2.3 Training Loss Functions

The training loss functions consist of two parts, The first part is the Lreg for
the clean CT scans, and the second part is the Lseg for the noisy CT scans, we
combine the Dice [9] and Focal loss [7] to construct the Lseg:

Lseg = − 2
∑

∀x pxgx
∑

∀x(px + gx)
− 1

|X| (
∑

∀x
(1 − px)2log(px)), (5)

where gx is the binary ground truth and px is the prediction. The total loss is
defined as Ltotal = Lseg + Lreg.

3 Experiments and Results

Dataset: We used two datasets to evaluate our method.

• Clean Domain: Binary Airway Segmentation (BAS) dataset [12]. It contains
90 CT scans (70 CT scans from LIDC [1]) and 20 CT scans from the training
set of the EXACT’09 dataset [8]. The spatial resolution ranges from 0.5 to
0.82 mm and the slice thickness ranges from 0.5 to 1.0 mm. We randomly split
the 90 CT scans into the training set (50 scans), validation set (20 scans),
and test set (20 scans).

• Noisy Domain: COVID-19 dataset. We collected 58 COVID-19 patients from
three hospitals and the airway ground truth of each COVID-19 CT scan
was corrected by three experienced radiologists. The spatial resolution of the
COVID-19 dataset ranges from 0.58 to 0.84 mm and slice thickness varies from
0.5 to 1.0 mm. The COVID-19 dataset is randomly divided into 10 scans for
training and 48 scans for testing.
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Table 1. Results (%) on the test set of the COVID-19 dataset. Values are shown as
mean ± standard deviation. ‘B’ indicates the training set of the BAS dataset and ‘C’
indicates the training set of the COVID-19 dataset.

Method Length Branch DSC

3D UNet Train on B only 72.4 ± 4.8 62.1 ± 4.5 93.2 ± 1.5

Train on B + C 82.8 ± 4.8 83.8 ± 3.8 95.2 ± 1.3

Train on C only 85.7 ± 5.1 84.9 ± 3.5 95.9 ± 1.2

Train on B, finetuned on C 86.8 ± 5.3 85.0 ± 4.1 95.7 ± 1.1

3D UNet + cSE (Medical Physics,2019) [20] 86.2 ± 5.3 84.6 ± 4.2 95.8 ± 1.2

Feature Alignment (TMI,2020) [2] 87.9 ± 4.9 85.5 ± 4.8 95.5 ± 1.6

Domain Adaptation (TPAMI,2018) [13] 87.0 ± 4.6 84.9 ± 4.0 96.0 ± 1.3

Proposed w/o cSE&SDM 90.2 ± 5.3 87.6 ± 4.2 96.5 ± 1.2

Proposed w/o cSE 91.1 ± 4.3 86.8 ± 3.7 96.8 ± 1.0

Proposed w/o SDM 91.0 ± 4.7 86.3 ± 4.1 96.6 ± 1.0

Proposed 92.1 ± 4.3 87.8 ± 3.7 96.8 ± 1.1

Network Configuration and Implementation Details: As shown in Fig. 2,
each block in the encoder or decoder contains two convolutional layers followed
by pReLU and Instance Normalization [15]. The initial number of channel is
set to 32, thus {F1, F2, F3, F4} = {32, 64, 128, 256}. During the preprocessing
procedure, we clamped the voxel values to [−1200, 600] HU, normalized them
into [0, 255], and cropped the lung field to remove unrelated background regions.
We adopted a large input size of 128 × 224 × 304 CT cubes densely cropped
near airways and chose a batch size of 1 (randomly chose a clean CT scan
and noisy COVID-19 CT scan) in the training phase. On-the-fly data augmen-
tation included the random horizontal flipping and random rotation between
[−10◦, 10◦]. All models were trained by Adam optimizer with the initial learning
rate of 0.002. The total epoch is set to 60 and the learning rate was divide by
10 in the 50th epoch, the hyperparameter of rc used in 3D cSE module is set
to 2. Preliminary experiments confirmed training procedures converged under
this setup. In testing phase, we performed the sliding window prediction with
stride 48. All the models were implemented in PyTorch framework with a single
NVIDIA Geforce RTX 3090 GPU (24 GB graphical memory).

Evaluation Metrics: We adopted three metrics to evaluate methods, including
the a) tree length detected rate (Length) [8], b) branch detected rate (Branch)
[8], and c) Dice score coefficient (DSC). All metrics are evaluated on the largest
component of each airway segmentation result.

Quantitative Results: Experimental results showed that the way of training
on the BAS dataset then evaluating on the COVID-19 dataset performed worst,
as expected. Training merely on the COVID-19 dataset performed better than
training on both the BAS dataset and the COVID-19 dataset, which implied
the necessity of transfer learning rather than merely together different datasets.
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3D UNet with cSE [20] was trained on the COVID-19 dataset and the results
showed no significant improvement. For comparison, three commonly used trans-
fer learning methods, Fine-tuned (pre-trained on BAS dataset, fine-tuned on
COVID-19 dataset), Feature Alignment (FA) [2] through adversarial training,
and Domain Adaptation (DA) by sharing weights [13] were reimplemented to be
applied in our task, the results in Table 1 demonstrated our proposed method
is superior to these methods, the proposed method achieved the highest per-
formance on all metrics of Length (92.1%), Branch (87.8%), and DSC (96.8%).
We also conducted the ablation study to investigate the effectiveness of each
component of the proposed method. In Table 1, we observed that the original
dual-stream network had outperformed the other methods, with the achievement
of 90.2% Length, 87.6% Branch, and 96.5% DSC. The improvement confirmed
the validity of our proposed dual-stream network. Furthermore, cSE module and
SDM could boost performance independently and the combination of cSE and
SDM brings the highest performance gain, which demonstrated the necessity of
refinement for transferable features.

Fig. 3. Visualization of segmentation results. a) is a severe case and b) is a mild case in
the test set of the COVID-19 dataset. The blue dotted boxes indicate the local regions
full of shadow patches and are zoomed in for better observation.

Qualitative Results: The visualization of segmentation results is presented in
Fig. 3. Compared to other methods, the proposed method gains improvement
on both the severe and mild cases of the COVID-19 dataset, which accurately
detected more bronchi surround by multifocal patchy shadowing of COVID-19.
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4 Conclusion

This paper proposed a novel dual-stream network to learn transferable and
robust features from clean CT scans to noisy CT for airway segmentation.
Our proposed method not only extracted the transferable clean features but
also extract unique noisy features separately, transferable features were further
refined by the cSE module and SDM. Extensive experimental results showed our
proposed method accurately segmented more bronchi than other methods.
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