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Abstract. Several brain disorders can be detected by observing alter-
ations in the brain’s structural and functional connectivities. Neurologi-
cal findings suggest that early diagnosis of brain disorders, such as mild
cognitive impairment (MCI), can prevent and even reverse its develop-
ment into Alzheimer’s disease (AD). In this context, recent studies aimed
to predict the evolution of brain connectivities over time by proposing
machine learning models that work on brain images. However, such an
approach is costly and time-consuming. Here, we propose to use brain
connectivities as a more efficient alternative for time-dependent brain
disorder diagnosis by regarding the brain as instead a large intercon-
nected graph characterizing the interconnectivity scheme between sev-
eral brain regions. We term our proposed method Recurrent Brain Graph
Mapper (RBGM), a novel efficient edge-based recurrent graph neu-
ral network that predicts the time-dependent evaluation trajectory of
a brain graph from a single baseline. Our RBGM contains a set of recur-
rent neural network -inspired mappers for each time point, where each
mapper aims to project the ground-truth brain graph onto its next time
point. We leverage the teacher forcing method to boost training and
improve the evolved brain graph quality. To maintain the topological
consistency between the predicted brain graphs and their correspond-
ing ground-truth brain graphs at each time point, we further integrate a
topological loss. We also use l1 loss to capture time-dependency and min-
imize the distance between the brain graph at consecutive time points
for regularization. Benchmarks against several variants of RBGM and
state-of-the-art methods prove that we can achieve the same accuracy
in predicting brain graph evolution more efficiently, paving the way for
novel graph neural network architecture and a highly efficient training
scheme. Our RBGM code is available at https://github.com/basiralab/
RBGM.
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1 Introduction

Latest neuroscience studies have emphasized the importance of personalized
treatments for brain disorders that can significantly improve patient’s recov-
ery [1]. Brain disorders such as mild cognitive impairment (MCI) can be eas-
ily reversed if diagnosed at an early stage before evolving into irreversible
Alzheimer’s disease (AD) [2]. As such, recent landmark studies [3–6] proposed
using the breadth of machine learning to predict brain connectome evolution
trajectory. For instance, [3] has proposed a learning-based framework to predict
the longitudinal development of cortical surface and white matter fibers. To do
so, first, they used multiple atlases to generate a spatially heterogeneous atlas
that mimics the cortical surface of the target subject. Second, they predicted
spatio-temporal connectivity features from neonatal brains using low-rank ten-
sor completion. Furthermore, [4] proposed a deep learning model that jointly
classifies and predicts the evolution trajectory of the brain from a single acqui-
sition point. At the baseline, they identified the landmarks, namely regions of
interest (ROIs), and utilized supervised and unsupervised learning to predict the
evolution trajectory at each landmark.

However, such studies were conducted only on brain images that solely con-
sider local neighborhood connectivities undeniably overseeing the brain global
connectivity pattern. To properly diagnose brain connectivity disorders, the
brain must be viewed as a large interconnected graph [7] where each ROI rep-
resents a node, and each pairwise connectivity between two ROIs represents an
edge. To address this limitation, we set out a more challenging problem, which
is predicting the evolution of brain graphs from a baseline observation. In this
context, recent works [5,6] leveraged generative adversarial networks (GANs)
[8], where they proposed the first graph-based GAN specialized in AD evolution
trajectory prediction. Namely, GANs [8] address the problem of unsupervised
learning by training two neural networks: generator and discriminator. The gen-
erator takes randomly distributed data as input and generates synthetic data
that mimics a real distribution. On the other hand, the discriminator inputs
the generated data and predicts whether it is real or fake. Both generator and
discriminator compete in an adversarial way. Hence, the overall quality of the
generated data improves with training epochs. [5] used gGAN to learn how to
normalize a brain graph with respect to a fixed connectional brain template
(CBT). Their gGAN architecture is made up of a graph normalizer network
that learns a high-order representation of each brain in a graph and produces
a CBT-based normalized brain graph. Furthermore, [6] proposed EvoGraphNet
that connects series of gGANs each specialized in how to construct a brain graph
from the predicted brain graph of the previous gGANS in the time-dependent
cascade.

Although gGANs were proven to be successful for predicting brain connec-
tome evolution trajectory given a single observation, there is still a considerable
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amount of computational complexity. Since gGANs contain two graph neural
networks (i.e., generator and discriminator), they require a significant amount
of computational power and training time. Also, these architectures require a
sequential framework where each gGAN has to generate a time point ti to get
the following time point prediction ti+1.

This challenge raises the following question: can we mimic the prediction
power of the above-mentioned sequential gGANs without the need to use highly
complex sequential networks?

According to [9], brain connectivities do not evolve randomly. Their evolution
follows a temporal scheme that aims to satisfy the patient’s needs for each given
age and health condition. In that regard, recurrent neural networks (RNNs) [10]
are known for their temporal pattern recognition. Therefore, in this paper, we
propose to power our model with RNNs. We term our proposed model Recurrent
Brain Graph Mapper (RBGM), the first framework to predict brain connectome
evolution while efficiently reducing complexity and training time consumption.
Our model uses a shallow graph convolutional neural network architecture to
predict brain disease’s evolution trajectory given a baseline graph. To do so, for
a given time point, ti each mapper uses the ground-truth from the previous time
point ti−1 to predict the brain connectivity scheme at the time point ti instead
of starting from the initial time point. To do so, we apply the teacher forcing
method [11], which is known for its quick and efficient training recurrent-based
models.

We propose preserving the topological consistency between the predicted
and ground-truth brain graphs at each time point. To do so, we integrate a
topological loss measuring the topological discrepancy between the predicted
brain graph and its corresponding ground-truth brain graph. Furthermore, we
leverage a l1 loss to minimize the sparse distance between two serialized brain
graphs to capture time-dependency between two consecutive observations. We
also investigate the effect of Kullback-Leibler divergence (i.e., KL-divergence),
where we enforce the preservation of node distribution between predicted and
ground-truth brain graphs over time. We articulate the main contributions of
our work as follows:

1. On a methodological level. Our proposed RGBM is the first RNN-based geo-
metrical deep learning framework that predicts the time-dependent brain
graph evolution trajectory from a single observation.

2. On a conceptual level. Our model reduces the complexity of the geometri-
cal deep learning framework by speeding up the training while maintaining
similar performances to the state-of-the-art methods.

3. On clinical level. Our RGBM can be used to prevent and reverse the onset of
neurological diseases.

2 Proposed Method

This section introduces the key steps of our RBGM for predicting brain graph
evolution from a single observation. Table 1 displays the mathematical notations
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Fig. 1. Proposed Recurrent Brain Graph Mapper architecture (RBGM) for predicting
the evaluation trajectory of brain disease given a single time point. We develop a map-
per that learns how to morph an input at time point ti−1 to its next time point ti. Given
m mappers for m time points, each mapper contains a graph neural network and trans-
formation layer. The graph neural network takes the input brain graph Xtr

ti−1 ∈ R
nr×nr

for a given time point ti, where nr is the number of ROIs to learn node embedding
Vl = [vl

1,v
l
2, . . . ,v

l
nr

]T that captures the node-to-node relation and visualizes it in vec-
tor form. Then a transformation layer takes these node embeddings Vl and computes
the pairwise absolute difference to predict the brain graph at the time point ti given by
X̂tr

ti ∈ R
nr×nr . First Vl is repeated horizontally nr times to obtain R ∈ R

nr×nr×nr .
Next, we compute the absolute difference between R and its transpose. Finally, the
resulting tensor is sum along z-axis to obtain the predicted brain graph X̂tr

ti for the
time point ti.

that we use throughout our paper. We denote the matrices as boldface capital
letters (e.g., X) and scalars as lowercase letters (e.g., m). The transpose operator
is denoted as XT .

Overview of Recurrent Brain Graph Mapper for Predicting Brain
Graph Evolution Trajectory from a Single Baseline. Our proposed
RBGM is composed of m mappers for m time points, as shown in Fig. 1. Each
mapper can predict a brain graph for a given time point ti using its correspond-
ing ground-truth brain graph at the time point ti−1 as an input. The recur-
rent graph convolution enables each mapper to capture temporal changes in the
brain connectivity pattern between consecutive time points. Also, it increases
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Table 1. Mathematical definitions.

Mathematical notation Definition

m Number of time points

ns Number of training subjects

mr Number of edges

nr Number of ROIs in brain

Str
i Node strength vector of ROI i in the ground-truth brain graph

Ŝtr
i Node strength vector of ROI i in the predicted brain graph

Xtr
ti

Training brain graph connectivity matrices ∈ R
nr×nr at ti

X̂tr
ti

Predicted brain graph connectivity matrices ∈ R
nr×nr at ti

Mi Mapper at time point ti

Ll1 l1 loss

LTP Topological loss function

λ1 Coefficient of l1 loss

λ2 Coefficient of topological loss

V a set of nr nodes

E a set of mr undirected or directed edges

l index of layer

N (i) The neighborhood containing all the adjacent nodes of node i

F l edge-conditioned filter

Θl Learnable edge-based parameter for dynamic graph convolution

vi
l Node embedding of ROI i at layer l ∈ R

dt

Wl Weight parameter

bl Bias term

R Horizontally replicated brain connectivity matrix

∈ R
nr×nr×nr

RT Transpose of horizontally replicated brain connectivity matrix

∈ R
nr×nr×nr

hi Hidden state matrix at ti ∈ R
mr×mr

Wih Input to hidden weight for recurrent filter ∈ R
1×mr

Whh Hidden to hidden weight for recurrent filter ∈ R
mr×mr

bh Bias term for recurrent filter ∈ R
mr×mr

the prediction power of each mapper, hence using fewer convolutional layers.
Furthermore, we apply the teacher forcing method [11] to quickly and efficiently
train our RGBM.

To enhance our method’s robustness, we propose using l1 loss thanks to its
resilience against outliers to enforce the connectivity consistency across time
points. Thus, we express the l1 loss for each subject tr using the predicted brain
graph X̂tr

ti−1
from the mapper Mi−1, and its corresponding ground-truth brain

graph at ti as follows:

Ll1(Mi−1) = ||X̂tr
ti−1

−Xtr
ti ||1 (1)

This acts as a regularizer over time and aligns with the sparse nature of brain
connectivity evolution. In addition to the l1 loss, we propose a second loss to
preserve the topological consistency between predicted brain graphs and their
corresponding ground-truth at each time point. To frame the topological loss,
we define a node strength vector measuring the topological strength for each
node in a given graph. Since our brain graph is fully-connected (each node has
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a same number of edges), we chose node strength as a centrality measures. We
compute the node strength vector by adding the weights of all edges connected to
a node of interest. As such, S = [S1,S2, ...,Snr

]T represents the node strengths
for all ROIs where nr is the number of ROIs. The following equation gives the
topological loss:

LTP (Str, Ŝtr) =
1
nr

nr∑

i=1

(
Str
i − Ŝtr

i

)2

(2)

The Full Loss. We combine the previous losses to train our RGBM as follows:

LFull =
m∑

i=1

(
λ1Ll1(Mi−1) + λ2LTP (Str, Ŝtr)

)
(3)

where λ1, and λ2 are hyperparameters adjusting each corresponding loss.

The Mapper Network Architecture. Each mapper m uses our proposed
recurrent graph convolution (RGC) function. We leverage the teacher forcing
method [11] to speed up training and increase the overall performance in training.
Namely, the teacher forcing is a common method that speeds up training and
improves the quality of recurrent-based models. It enforces the recurrent model
to use ground-truth samples to predict the brain graph at the following time
point. According to this method, for a given time point, ti the mapper takes
the ground-truth Xtr

ti−1
from the time point ti−1 instead of taking the predicted

brain graph X̂tr
ti−1

from the preceding mapper Mti−1 to make prediction for the
time point ti in training phase. Therefore, the need to start from the initial time
point is eliminated during training.

Dynamic Edge-filtered Convolution. Each mapper in our RBGM uses the
dynamic graph convolution with edge-conditioned filter proposed by [12]. Let
G = (V,E) is a directed or undirected graph, where V is the set of nr ROIs and
E ∈ V × V is a set of mr edges between each ROI. Let l be the layer index. For
each layer l ∈ {1, 2, ..., L}, F l : Rdm �→ R

dl×dl−1 represents a filter-generating
network that generate edge weights for the message passing between ROIs i and
j given features of eij . dm and dl are dimensionality indexes. This operation is
expressed as follows:

vl
i = Θlvl−1

i +
1

|N (i)|
( ∑

j∈N (i)

F l(eij ;Wl)vl−1
j + bl

)
, (4)

where vl
i is the node embedding for the ROI i at layer l. N (i) denotes the

neighbors of ROI i. F l is the neural network that maps R
dm to R

dl×dl−1 with
weights Wl. Θl is the dynamically generated edge specific weights by F l. The
bl ∈ R

dl is the bias term. We note that F l can be any type of neural network.
We draw inspiration from the image-based recurrent neural network archi-

tecture, which shows outstanding performances on time-series data prediction
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[13,14]. This type of network can remember the former information and process
new events accordingly thanks to its hidden state, which holds the former infor-
mation (i.e., learned information in the previous layer). Each RNN cells takes
two distinct inputs: (i) the input brain graphs from the current time point, and
(ii) hidden state value from the brain graphs at the previous time point, then
updates the hidden state, which holds the representation of the knowledge from
the prior time point.

Proposed Graph Recurrent-Filter. We propose the first edge-based recurrent
graph neural network Fig. 2 by re-designing the edge-conditioned filter [12] in
the graph convolution layer as a graph recurrent-filter so that each mapper can
capture temporal changes on brain connections over time, as shown in Fig. 2.
Therefore, unlike [6], the need to start from the initial time point is eliminated
during training. Our proposed graph recurrent filter can process past information
when generating messages between each ROI to capture temporal changes of
brain connectivity. To do so, it takes the set of edges e ∈ R

mr×1 for a given time
point ti and the hidden state matrix from the previous time point ti−1 given by
hti−1 ∈ R

mr×mr , which acts as a memory and processes past information. Then
it updates the hidden state matrix hti ∈ R

mr×mr for the current time point
ti. In order to avoid the vanishing gradient problem which makes the network’s
gradients tend to zero (i.e., hard to learn parameters), we need a function which
can bound the gradient and eliminate the risk of divergence during the training.
To do so, we use tanh [15] as an activation function in our graph-recurrent filter
since it allows the state values to update by bounding in the range of [−1, 1]
compared to other activation functions such as sigmoid. The equation for our
recurrent edge-filtering function F l(eti ,hti−1) is expressed as follows:

hti = tanh ([eti ,hti−1 ] � [Wih,Whh]T + bh) (5)

where Wih ∈ R
1×mr and Whh ∈ R

mr×mr are learnable parameters for
input-to-hidden weight and hidden-to-hidden weight respectively. bh ∈ R

mr×mr

is bias term.

The Transformation Layer Architecture. Let Xtr
ti−1

∈ R
nr×nr be the input

brain connectivity matrix at a given time point, ti where nr is the number of
ROIs. After obtaining the output node embeddings Vl = [vl

1,v
l
2, ...,v

l
n]T of

RGC layer from a given input Xtr
ti−1

, we construct predicted brain graph X̂tr
ti at

ti by computing pairwise absolute difference of learned embeddings [16]. To do
so, first Vl is replicated with respect to the horizontal axis nr times to obtain
R ∈ R

nr×nr×nr . Then, we compute the absolute difference between R and its
transpose RT . Finally, the resulting tensor is the sum along z-axis to obtain the
predicted brain graph X̂tr

ti ∈ R
nr×nr for the time point ti.

3 Results and Discussion

Evaluation Dataset. We conducted experiments on OASIS-21 longitudinal
dataset with 113 subjects [17]. This set contains longitudinal collection of 150
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Fig. 2. Illustration of the key differences between the conventional edge-conditioned fil-
ter graph generation and our proposed recurrent graph convolution. (A) Conventional
edge filter for graph convolution. First, messages are created between ROIs i and its
neighbors N (i). Then, the average of the messages is computed by the mean opera-
tion. To inherit the previous layer embedding Vl−1 ∈ R

nr×nr , we multiply Vl−1 by
dynamically generated edge specific weight Θl. Finally, Vl is computed by combining
the previous layer embedding and the average message passing between ROIs. (B)
Recurrent graph convolution. First, the graph recurrent-filter network creates the mes-
sage between ROIs i and N (i) by taking hidden state value hij in contradiction to the
conventional edge-conditioned filter graph generation. To inherit previous layer embed-
ding Vl−1 ∈ R

nr×nr , we multiply Vl−1 by dynamically generated edge specific weight
Θl. Finally, Vl is computed by combining the previous layer embedding and average
message passing between ROIs.

subjects aged between 60 to 96. Each subject’s brain scans were acquired 3 times
one year apart. For each subject, we construct a cortical morphological network
derived from cortical thickness measure using structural T1-w MRI as proposed
in [18]. Each cortical hemisphere is parcellated into 35 ROIs using the Desikan-
Killiany cortical atlas. We construct our RBGM with PyTorch Geometric library
[19].

Parameter Setting. In Table 2, we report the mean absolute error between
ground-truth and synthesized brain graphs at follow-up time points t1 and t2.
In Table 3, we publish the required training time for each comparison method
respectively. We set hyperparameters of each mapper as follows: λ1 = 1, λ2 = 10.
We used AdamW [20] optimizer and set the learning rate at 0.0001 for each
mapper. Finally, we trained our model by using 3-fold cross-validation for 200
epochs using an NVIDIA Tesla V100 GPU.

Table 2. Prediction accuracy of compared methods using MAE at t1 and t2.

t1 t2

Method Mean MAE

± std

Best

MAE

Mean MAE

± std

Best

MAE

EvoGraphNet[6] 0.05544 ± 0.01140 0.04555 0.05991 ± 0.00937 0.05168

RBGM (w/KL) 0.05585 ± 0.00349 0.05341 0.13509 ± 0.0098 0.12249

RBGM 0.04465 ± 0.00473 0.03994 0.06228 ± 0.00315 0.05870
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Table 3. Required time for training.

Method Average training time Best training time

EvoGraphNet [6] 07 : 08 : 33 02 : 22 : 35

RBGM (w/KL) 02 : 19 : 40 00 : 46 : 70

RBGM 03 : 24 : 08 01 : 07 : 50

Comparison Method and Evaluation. Due to the lack of RNN-based
comparison methods that consider time-dependency for brain graph predic-
tion, we benchmarked our RBGM against some of its variants. We call the
first benchmark method: RBGM (w/KL), where we replaced topological loss
with KL-divergence loss between the predicted graph at ti and its correspond-
ing ground-truth brain graph. The KL-divergence minimizes the discrepancy
between ground-truth and predicted connectivity weight distribution at each
time point ti. The second benchmarking method is against the current state-of-
the-art EvoGraphNet [6] in order to assess the power of topological loss and the
recurrent graph convolution. In Table 2 we report the mean absolute error (MAE)
between ground-truth and predicted brain graphs for consecutive time points t1
and t2 for each comparison method. Our proposed RBGM outperformed base-
line methods at t1 by achieving both the lowest mean MAE (averaged across
the 3 folds) and the overall best MAE as shown in Table 2. However, for t2,
EvoGraphNet achieved both the best MAE and mean MAE results. Notably,
results show that our RBGM closely matches the best results at time point t2
by an error difference of 7 × 10−3 in mean MAE yet outperformed EvoGraph-
Net in time consumption by achieving 46% less training time. To the best of our
knowledge, such time/complexity/error is a delicate compromise to make. Under
such a compromisation paradigm, we can fairly judge the outperformance of our
proposed RBGM is matching state-of-the-art results given less complexity and
time consumption.

Overall, our RBGM performs almost similar to the state-of-the-art method
EvoGraphNet while speeding up the training and reducing the complexity
Table 3 since it consists of fewer convolutional layers. However, our RBGM
has a few limitations. So far, we have worked on brain graphs where the single
edge connects only two ROIs. We aim to generalize our RGBM to handle brain
hypergraphs where multiple edges can link two ROIs in our future work. This
will enable us to better model and capture the complexity of the brain as a
highly interactive network with different topological properties.

4 Conclusion

In this paper, we proposed the first edge-based recurrent graph neural network
RBGM that uses a novel recurrent graph convolution to predict the brain con-
nectivity evolution trajectory from a single time point. Our architecture contains
m number of mappers for m time points. We proposed a time-dependency loss
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between consecutive time points and a topological loss to preserve topological con-
sistency between predicted and ground-truth brain graphs at the same time point.
The results showed that our time-dependent RBGM achieved a similar prediction
accuracy compared to the state-of-the-art EvoGraphNet while reducing the train-
ing time and complexity. The RBGM is generic and can be used to predict brain
graphs for any given time point. In future studies, we aim to generalize our RBGM
to using hypergraphs and account for brain hyperconnectivity.
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