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Abstract. Deep learning models have achieved great success on various
vision challenges, but a well-trained model would face drastic perfor-
mance degradation when applied to unseen data. Since the model is sen-
sitive to domain shift, unsupervised domain adaption attempts to reduce
the domain gap and avoid costly annotation of unseen domains. This
paper proposes a novel framework for cross-modality segmentation via
similarity-based prototypes. In specific, we learn class-wise prototypes
within an embedding space, then introduce a similarity constraint to
make these prototypes representative for each semantic class while sepa-
rable from different classes. Moreover, we use dictionaries to store proto-
types extracted from different images, which prevents the class-missing
problem and enables the contrastive learning of prototypes, and fur-
ther improves performance. Extensive experiments show that our method
achieves better results than other state-of-the-art methods.

Keywords: Unsupervised domain adaption · Medical image
segmentation · Prototype · Contrastive learning

1 Introduction

Medical image segmentation is a pixel-wise classification task, which is the basis
of many clinical applications [2]. Though deep neural networks have made signif-
icant progress in medical image analysis [13,24], most supervised works have the
assumption that enough annotated data is collected, which is prohibitively diffi-
cult in reality. In clinical scenarios, data collection is time-consuming and labo-
rious, and pixel-wise annotations require expert knowledge of doctors. Hence,
unsupervised domain adaption (UDA) is introduced as an annotation-efficient
method to help cross-modality medical image segmentation [1].

UDA transfers the knowledge learned in a label-rich domain to a label-lacking
domain, bridging the domain gap. Currently, there are two main streams for
UDA. One is image-level adaption [4,10,21], which aims to make the images of
different domains appear similar, so that the label-lacking target domain can
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Fig. 1. Illustration of our adaption procedure. On the one hand, our method performs
class-wise adaption to align semantic features to their prototypes, on the other hand,
we align class-wise prototypes across domains using the contrastive loss.

learn from the transferred source domain. The other stream focuses on feature-
level adaption [16,22], which aims to match the feature distributions with adver-
sarial learning or contrastive learning. Besides, DualHierNet [1] also uses edges as
self-supervision for the target domain, and EntMin [5] uses entropy minimization
to narrow domain gaps.

For methods based on image adaption, most works only conduct the two-
direction images translation between source and target domains separately,
which may be insufficient to eliminate the domain gap. To this end, we propose a
unified framework to fully exploit the two-direction translation results, and our
network can be trained end-to-end. For methods based on feature adaption, most
works employ adversarial learning to make the semantic features indistinguish-
able to discriminators, which aligns features in an implicit way. In this paper,
we explicitly align features to their prototypes using a class-wise similarity loss,
which aims to minimize intra-class and maximize inter-class feature distribution
difference. Then, with the help of feature dictionaries, we use the contrastive
loss to align class-wise prototypes across domains, which further alleviates the
domain shift problem. Figure 1 shows the illustration of our adaption procedure.

2 Methodology

Given a labeled source dataset Ds =
{
xi
s, y

i
s

}Ns

i=1
and an unlabeled target dataset

Dt =
{
xi
t

}Nt

i=1
, unsupervised domain adaption (UDA) for semantic segmentation

aims to train a model with supervision from Ds and information from Dt to
narrow domain gap and improve segmentation performance on Dt.

2.1 Motivation

In our method, we utilize class-wise feature prototypes to perform explicit feature
alignment. Firstly, we use a similarity-based loss to regularize the embedded
space, and the purpose is to boost feature consistency. Features of the same class
are encouraged to be closer to the prototype, and prototypes of different classes
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are encouraged to be separable. Secondly, we use dictionary to store prototypes
from various images, and then contrastive learning is used to improve feature
adaption across domains. We expect to adapt prototypes from target domain to
source domain, so features of both domains are explicitly aligned.

Fig. 2. Our framework has a cycle structure, and mainly consists of GS and GT . These
modules have the same structure and output the translated image x̂, segmentation
result ŷ and embedded projection ẑ. Prototypes c are obtained by performing a class-
wise average operation on ẑ under supervision from ŷ. During training, only cs and
cs→t are stored into feature dictionaries Bs and Bt. Besides the widely used circle
consistency loss Lcycle, segmentation loss Lseg, adversarial loss Limg

adv and Lseg
adv, we

additionally use the proposed loss Lsim and Lcl to perform explicit feature alignment.

2.2 Proposed Framework

The overall framework is shown in Fig. 2. It has a cycle structure inspired from
Cycle-GAN [12], and consists of two modules GS and GT , which have the same
structures, but process images of different domains. Concretely, GS processes
source domains images, while GT processes target domain images. Structurally,
we input an image for GS or GT , and it will output the translated image x̂,
the segmentation result ŷ and the embedded projection ẑ. During training, our
framework is trained in a cycle manner. At each iteration, we calculate the
class-wise prototypes c from ẑ under the supervision of ŷ. Note that we only
store cs and cs→t into feature dictionaries, since ŷs and ŷs→t are trained under
supervision of ground truth ys, and we expect to adapt features from ct→s, ct
to cs, cs→t. During inference, we get the final output by directly averaging the
target segmentation result ŷt and the target-to-source segmentation result ŷt→s.
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Fig. 3. Details of GS and prototypes cs. GS consists of a feature encoder Es, an image
generator Tt, and symmetric heads Fs and Ps. These heads have same structures but
different output channels. Fs outputs the segmentation results ŷs, while Ps outputs the
embedded representation ẑs. The prototypes cs are obtained by performing class-wise
average on ẑs under supervision of ŷs. And we store these prototypes in Dictionary Bs.

To make it clear, we show the detailed structure of GS and the process to
get prototypes cs in Fig. 3. We introduce skip-connections to the image trans-
lation branch to help model convergence and image structure preservation [13].
The segmentation head Cs and projection head Ps have the same structure
but different output channels. This symmetrical design is proved effective for
semantic feature extraction and regularization [7]. We obtain prototypes cs from
projection zs with the supervision from ŷs by performing a class-wise average
operation, and then we store cs into feature dictionary Bs.

In Fig. 2, we denote the loss using the brown and red dash lines. Following
GAN-based UDA methods [2,4,9], we use the cycle consistency loss Lcycle, seg-
mentation loss Lseg and adversarial loss Limg

adv , Lseg
adv (see brown dash lines). Addi-

tionally, we design a class-wise similarity loss Lsim to promote intra-class consis-
tency and inter-class discrepancy at feature level. Lsim is calculated between the
projection ẑ and the prototype c, which is calculated using ẑ and ŷ. Besides, the
contrastive loss Lcl is used to align prototypes across domains, further reducing
the domain gap and improving the model performance. The calculation of Lcl

needs the prototypes from feature dictionaries. At each iteration, prototypes cs
and cs→t are first used to calculate Lsim and Lcl, then stored into Dict Bs and
Bt, respectively.

2.3 Feature Prototypes and Class-Wise Similarity Loss

It is observed that the features of the same category tend to be clustered together
[19], but the features across different domains have significant discrepancies.
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To solve this issue, we regard class-wise prototypes as centers, and explicitly
align features to their prototypes. As a result, prototypes of target domain are
aligned to those of source domain.

Feature Prototypes. Following [6,7], we calculate the class-wise prototypes
in a similar way, and the difference is that we use network segmentation result
ŷ instead of ground truth as supervision. As shown in Fig. 3, we get prototypes
cs by performing a class-wise average operation on ẑs under supervision of ŷs.
This procedure can be formulated as:

cms =
1

Nm

H×W∑

i=1

δ (ŷs[i],m) ẑs,i, (1)

where cms denotes the prototype of the m-th category from xs, Nm denotes the
total pixels of the m-th category, δ (ŷs[i],m) = 1 if the i -th pixel of ŷs belongs
to category m, and ẑs is the embedded representation.

Class-Wise Similarity Loss. We propose a cosine similarity based loss Lsim

to explicitly regularize features in the embedding space, and we impose the
constraint to ẑ. Taking ẑs for example, the proposed loss Lsim is the summation
of the following Lsc and Ldc.

Lsc =
1
C

C∑

m=1

1
Nm

H×W∑

i=1

δ(ŷs[i],m) (1 − cos sim (cms , ẑs,i)) , (2)

Ldc =
1

Nc

C∑

m=1

C∑

n=m+1

(1 + cos sim(cms , cns )), (3)

where cos sim(u, v) = uT v
‖u‖‖v‖ denotes the cosine similarity, C denotes the number

of categories in the image, Nc = C!
2!(C−2)! denotes the number of combinations.

Lsc becomes minimal when the similarity between category prototype cms and
representation ẑs,i is maximal. This aims to minimize the intra-class feature
discrepancy. In Ldc, the similarity is calculated between prototypes of differ-
ent classes, and it becomes minimal when these prototypes are as dissimilar as
possible. This aims to maximize inter-class variance.

For target domain images, since the ŷt and ŷt→s are trained without ground
truth supervision, we use the pixel-wise predictions of high confidence to super-
vise ẑt and ẑt→s, and get the prototypes ct and ct→s. The similar idea has already
been proven successful in pseudo-labeling [20].

2.4 Contrastive Loss via Feature Dictionaries

To align features across domains and boost representative embedded projection,
we use dictionaries to store class-wise prototypes from various images, which
avoids the category missing problem and enables contrastive learning.
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Fig. 4. Visual comparison of representative methods. The structures of MYO, LAC,
LVC, AA are denoted by yellow, green, red, blue colors, respectively. (Color figure
online)

Feature Dictionaries. In our framework, Dict Bs and Bt are used to store
prototypes from xs and xs→t, respectively. Following [8], each dictionary has
category labels as the keys and the values of each key are prototypes. We denote
Bc

s as the source domain dictionary accessed with category key c, and its shape is
[depth×dict size]. Bs and Bt are updated at every iteration, and old prototypes
will be de-queued if the dictionary is full.

Contrastive Loss of Prototypes. Taking cms (category m from source image
xs) as an example, we first calculate the cosine similarity between cms and all
prototypes stored in the dictionary Bs. Then for each category, we calculate
the average of the highest k similarity values. And the contrastive loss can be
formulated as:

[vm,c
1 , vm,c

2 , ..., vm,c
L ] = cos sim(cms , [dcs,1, d

c
s,2, ..., d

c
s,L]), (4)

vm,c =
1
k

k∑

i=1

topk(vm,c
1 , vm,c

2 , ..., vm,c
L ), (5)

Lcl = − 1
C

C∑

m=1

log
exp (vm,m/τ)

C∑

i=1,i �=m

exp (vm,i/τ) + exp (vm,m/τ)
, (6)

where vm,c
i denotes the cosine similarity between cms and dcs,i, dcs,i denotes i -th

value from category c of dictionary Bs, and τ is the temperature factor.
The contrastive loss not only makes the representation discriminative in

embedding space, but also pulls target features closer to the source. Thus both
domains are explicitly aligned at the feature level.

Overall Objectives. Following [2,4,9], the widely used cycle consistency loss
Lcycle, segmentation loss Lseg and adversarial loss Limg

adv , Lseg
adv are also employed
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in our training process, we denote them as Lbase. By adding our proposed
similarity-base losses, and the overall objectives can be formulated as:

Lall = Lbase + λ1Lsim + λ2Lcl, (7)

where λ1, λ2 are balance parameters.

Table 1. Results of the MRI → CT task for four cardiac structures on MMWHS.

Methods Volumetric dice↑ Volumetric ASD↓
AA LAC LVC MYO Avg. AA LAC LVC MYO Avg.

Supervised training 92.7 91.1 91.9 87.7 90.9 1.5 3.5 1.7 2.1 2.2

W/o adaptation 28.4 27.7 4.0 8.7 17.2 20.6 16.2 - 48.4 -

PnP-AdaNet [16] 74.0 68.9 61.9 50.8 63.9 12.8 6.3 17.4 14.7 12.8

SynSeg-Net [23] 71.6 69.0 51.6 40.8 58.2 11.7 7.8 7.0 9.2 8.9

AdaOutput [22] 65.2 76.6 54.4 43.6 59.9 17.9 5.5 5.9 8.9 9.6

CycleGAN [12] 73.8 75.7 52.3 28.7 57.6 11.5 13.6 9.2 8.8 10.8

CyCADA [21] 72.9 77.0 62.4 45.3 64.4 9.6 8.0 9.6 10.5 9.4

EntMin [5] 83.0 81.3 67.2 58.4 72.5 2.9 2.7 6.3 6.4 4.6

SIFAv1 [3] 81.1 76.4 75.7 58.7 73.0 10.6 7.4 6.7 7.8 8.1

SIFAv2 [2] 81.3 79.5 73.8 61.6 74.1 7.9 6.2 5.5 8.5 7.0

DSFN [4] 84.7 76.9 79.1 62.4 75.8 - - - - -

Ours 82.6 81.3 81.7 64.3 77.5 6.1 6.0 3.6 4.8 5.1

Fig. 5. t-SNE visualization of foreground features in Fig. 4. Left: The results without
the proposed losses, Right: The results with the proposed losses.

3 Experiments

3.1 Datasets and Details

The proposed method is validated on the Multi-Modality Heart Segmentation
Challenge 2017 (MMWHS) dataset [15], which consists 20 unpaired MR and CT
volumes data with their pixel-level ground truth of heart structures. The left ven-
tricle blood cavity (LVC), the left atrium blood cavity (LAC), the myocardium
of the left ventricle (MYO) and the ascending aorta (AA) are usually selected
to evaluate the model segmentation performance. For a fair comparison, we use
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Table 2. Ablation study of the proposed losses

Components Dice↑ ASD↓
Lsim Lcl AA LAC LVC MYO Avg. AA LAC LVC MYO Avg.

× × 79.7 82.9 77.5 58.1 74.5 7.4 4.3 4.1 4.3 5.0

� × 77.7 83.0 78.0 61.8 75.2 9.5 5.0 4.8 4.7 6.0

� � 82.6 81.3 81.7 64.3 77.5 6.1 6.0 3.6 4.8 5.1

Table 3. Ablation study of three methods
to utilize feature dictionaries

Methods Dice↑
AA LAC LVC MYO Avg.

Max Similarity 79.1 84.1 78.3 61.2 75.7

Mean All 80.5 82.1 79.1 62.7 76.1

Mean Top-k 82.6 81.3 81.7 64.3 77.5

Table 4. Ablation study of dict sizes S

S Dice↑
AA LAC LVC MYO Avg.

w/o 77.7 83.0 78.0 61.8 75.2

200 81.1 84.8 81.6 58.4 76.5

400 82.6 81.3 81.7 64.3 77.5

600 80.3 82.8 80.3 63.6 76.8

the preprocessed data released by [2,16], which contains randomly selected 16
volumes for training and 4 volumes for testing for both modalities. All data were
first normalized to zero-mean and unit standard deviation, and then switched to
[−1, 1]. Each slice was cropped and resized to the size of 256 × 256. These data
were also augmented by rotation, scaling, and affine transformations.

Implementations. The discriminators follow patchGAN [17], except that we
replace log objective with least-squares loss for a stable training [14]. We empiri-
cally set λ1 = 0.05, λ2 = 0.02, and the dictionary size S is set to 400, temperature
τ is set to 1, while top-k is set to 20. Batch size and training epoch are set to 4
and 35, respectively. Besides, we use Adam optimizer [18] with weight decay of
1×10−4, and the learning rate for discriminators is set to 2×10−4, while 3×10−4

for GS and GT . To warm up training, we apply our proposed loss after the first
epoch, and our model is trained on a NVIDIA Tesla V100 with PyTorch.

3.2 Results and Analysis

Quantitative and Qualitative Analysis. Table 1 shows the MRI→CT adap-
tion performance comparison with other methods. Since our experiment is con-
ducted under the same setting as [2,16], we directly refer to their paper results.
As shown in Table 1, the model without adaption gets a poor performance on the
unseen target domain. Methods based on image-alignment [12,21,23] and meth-
ods based on feature-alignment [5,16,22] can significantly improve the model
results by narrowing the domain gap. [2,4] further improve the performance by
taking both perspectives into account. Our proposed method outperforms these
methods in terms of dice, and achieves an average result of 77.5%, besides, we
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achieve an average ASD of 5.1, which is slightly worse than EntMin [5]. This indi-
cates that our generated results may be not smooth on the boundary regions,
while EntMin [5] conduct the entropy minimization to deal with high uncer-
tainty of the boundary. Figure 4 shows the visual comparison, and we choose
[2,12,16] as the representative methods from different alignment perspectives.
We visualize the feature distribution of Fig. 4 using t-SNE [25] in Fig. 5.

Ablation Study. Firstly, we evaluate the effectiveness of the proposed losses.
As shown in Table 2, when neither of the proposed losses were used, our method
can be seen as a variant of [4], except that we redesign network structure to
utilize low-level features to help image-translation and we do not use auxiliary
task for feature adaption. In this case, our method achieves an average Dice of
74.5%. When only the class-wise similarity loss is used, the result gets a gain
of 0.7%. When both losses are applied, our model achieves an average dice of
77.5%, surpassing other methods by a large margin.

Secondly, we test on several strategies to utilize prototypes in dictionaries.
Mean Top-k means taking average of the top-k similarity values. Mean All
means taking average of all similarity values. Max Similarity means only use
the largest similarity value. Table 3 shows the results, and we can find that Mean
Top-k achieves the best performance. This may due to the fact that sampling
average can improve the robustness of similarity calculation, and the similarity
will not be generalized to much.

Thirdly, we consider different dictionary sizes S. Table 4 shows the results, we
can achieve the best performance when S = 400, which indicates that an appro-
priate dictionary size is necessary. A small dictionary may not have sufficient
feature diversity, while a big dictionary may induce a slow updating of Lcl, as
we calculate the average similarity using the top-k strategy.

4 Conclusion

This paper proposes a novel unsupervised domain adaption framework for medi-
cal image segmentation. The framework is a unified network that can be trained
end-to-end. We propose an innovative class-wise loss (calculated within a sin-
gle sample) to boost feature consistency and learn representative prototype.
Moreover, we conduct contrastive learning of prototypes (calculated with proto-
types of multiple samples) to further improve feature adaption across domains.
Compared with existing adversarial learning based methods, we explicitly align
features. Extensive experiments prove the effectiveness of our method, and show
the superiority of the class-wise similarity loss and prototype contrastive learn-
ing via dictionary. In the future, we will test our method with different datasets
and explore to apply it to domain generalization task.
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