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Abstract. Transfer learning from supervised ImageNet models has been
frequently used in medical image analysis. Yet, no large-scale evaluation
has been conducted to benchmark the efficacy of newly-developed pre-
training techniques for medical image analysis, leaving several impor-
tant questions unanswered. As the first step in this direction, we con-
duct a systematic study on the transferability of models pre-trained on
iNat2021, the most recent large-scale fine-grained dataset, and 14 top
self-supervised ImageNet models on 7 diverse medical tasks in compar-
ison with the supervised ImageNet model. Furthermore, we present a
practical approach to bridge the domain gap between natural and med-
ical images by continually (pre-)training supervised ImageNet models
on medical images. Our comprehensive evaluation yields new insights:
(1) pre-trained models on fine-grained data yield distinctive local rep-
resentations that are more suitable for medical segmentation tasks, (2)
self-supervised ImageNet models learn holistic features more effectively
than supervised ImageNet models, and (3) continual pre-training can
bridge the domain gap between natural and medical images. We hope
that this large-scale open evaluation of transfer learning can direct the
future research of deep learning for medical imaging. As open science, all
codes and pre-trained models are available on our GitHub page https://
github.com/JLiangLab/BenchmarkTransferLearning.
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1 Introduction

To circumvent the challenge of annotation dearth in medical imaging, fine-tuning
supervised ImageNet models (i.e., models trained on ImageNet via supervised
learning with the human labels) has become the standard practice [9,10,23,24,31].
As evidenced by [31], nearly all top-performing models in a wide range of represen-
tative medical applications, including classifying the common thoracic diseases,
detecting pulmonary embolism, identifying skin cancer, and detecting Alzheimer’s
Disease, are fine-tuned from supervised ImageNet models. However, intuitively,
achieving outstanding performance on medical image classification and segmenta-
tion would require fine-grained features. For instance, chest X-rays all look similar,
therefore, distinguishing diseases and abnormal conditions may rely on some sub-
tle image details. Furthermore, delineating organs and isolating lesions in medical
images would demand some fine-detailed features to determine the boundary pix-
els. In contrast to ImageNet, which was created for coarse-grained object classifi-
cation, iNat2021 [12], the most recent large-scale fine-grained dataset, has recently
been created. It consists of 2.7M training images covering 10K species spanning
the entire tree of life. As such, the first question this paper seeks to answer is:
What advantages can supervised iNat2021 models offer for medical imaging in com-
parison with supervised ImageNet models?

In the meantime, numerous self-supervised learning (SSL) methods have
been developed. In the afore-discussed transfer learning, models are pre-trained
in a supervised manner using expert-provided labels. By comparison, SSL
pre-trained models use machine-generated labels. The recent advancement
in SSL has resulted in self-supervised pre-training techniques that surpass
gold standard supervised ImageNet models in a number of computer vision
tasks [5,7,14,26,30]. Therefore, the second question this paper seeks to answer
is: How generalizable are the self-supervised ImageNet models to medical imaging
in comparison with supervised ImageNet models?

More importantly, there are significant differences between natural and medi-
cal images. Medical images are typically monochromic and consistent in anatom-
ical structures [9,10]. Now, several moderately-sized datasets have been created
in medical imaging, for instance, NIH ChestX-Ray14 [25] that contains 112K
images; CheXpert [13] that consists of 224K images. Naturally, the third ques-
tion this paper seeks to answer is: Can these moderately-sized medical image
datasets help bridge the domain gap between natural and medical images?

To answer these questions, we conduct the first extensive benchmarking study
to evaluate the efficacy of different pre-training techniques for diverse medical
imaging tasks, covering various diseases (e.g., embolism, nodule, tuberculosis,
etc.), organs (e.g., lung and fundus), and modalities (e.g., CT, X-ray, and fun-
duscopy). Concretely, (1) we study the impact of pre-training data granularity
on transfer learning performance by evaluating the fine-grained pre-trained mod-
els on iNat2021 for various medical tasks; (2) we evaluate the transferability of
14 state-of-the-art self-supervised ImageNet models to a diverse set of tasks in
medical image classification and segmentation; and (3) we investigate domain-
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Table 1. We benchmark transfer learning for seven popular medical imaging tasks,
spanning over different label structures (binary/multi-label classification and segmen-
tation), modalities, organs, diseases, and data size.

Code† Application Modality Dataset

ECC Pulmonary embolism detection CT RSNA PE Detection [2]

DXC14 Fourteen thorax diseases classification X-ray NIH ChestX-Ray14 [25]

DXC5 Five thorax diseases classification X-ray CheXpert [13]

VFS Blood vessels segmentation fundoscopic DRIVE [4]

PXS Pneumothorax segmentation X-ray SIIM-ACR [1]

LXS Lung segmentation X-ray NIH Montgomery [15]

TXC Tuberculosis detection X-ray NIH Shenzhen CXR [15]
† The first letter denotes the object of interest (“E” for embolism, “D” for thorax dis-
eases, etc.); the second letter denotes the modality (“X” for X-ray, “F” for Fundoscopic,
etc.); the last letter denotes the task (“C” for classification, “S” for segmentation).

adaptive (continual) pre-training [8] on natural and medical datasets to tailor
ImageNet models for target tasks on chest X-rays.

Our extensive empirical study reveals the following important insights: (1)
Pre-trained models on fine-grained data yield distinctive local representations
that are beneficial for medical segmentation tasks, while pre-trained models on
coarser-grained data yield high-level features that prevail in classification target
tasks (see Fig. 1). (2) For each target task, in terms of the mean performance,
there exist at least three self-supervised ImageNet models that outperform the
supervised ImageNet model, an observation that is very encouraging, as migrat-
ing from conventional supervised learning to self-supervised learning will dra-
matically reduce annotation efforts (see Fig. 2). (3) Continual (pre-)training of
supervised ImageNet models on medical images can bridge the gap between the
natural and medical domains, providing more powerful pre-trained models for
medical tasks (see Table 2).

2 Transfer Learning Setup

Tasks and Datasets: Table 1 summarizes the tasks and datasets, with more
details in Appendix A. We considered a diverse suite of 7 challenging and popular
medical imaging tasks covering various diseases, organs, and modalities. These
tasks span many common properties of medical imaging tasks, such as imbal-
anced classes, limited data, and small-scanning areas of pathologies of interest.
We use official data split of these datasets if available; otherwise, we randomly
divide the data into 80%/20% for training/testing.

Evaluations: We evaluate various models pre-trained with different methods
and datasets. Therefore, we control other influencing factors such as preprocess-
ing, network architecture, and transfer hyperparameters. In all experiments, (1)
for the classification target tasks, the standard ResNet-50 backbone [11] followed
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by a task-specific classification head is used, (2) for the segmentation target
tasks, a U-Net network with a ResNet-50 encoder is used, where the encoder is
initialized with the pre-trained models, (3) all target model parameters are fine-
tuned, (4) AUC (area under the ROC curve) and Dice coefficient are used for
evaluating classification and segmentation target tasks, respectively, (5) mean
and standard deviation of performance metrics over ten runs are reported, and
(6) statistical analyses based on independent two-sample t-test are presented.
More implementation details are in Appendix B and project’s GitHub page.

Pre-trained Models: We benchmark transfer learning from two large-scale
natural datasets, ImageNet and iNat2021, and two in-domain medical datasets,
CheXpert [13] and ChestX-Ray14 [25]. We pre-train supervised in-domain mod-
els which are either initialized randomly or fine-tuned from the ImageNet model.
For all other supervised and self-supervised methods, we use existing official and
ready-to-use pre-trained models, ensuring that their configurations have been
meticulously assembled to achieve the best results in target tasks.

3 Transfer Learning Benchmarking and Analysis

1) Pre-trained models on fine-grained data are better suited for seg-
mentation tasks, while pre-trained models on coarse-grained data pre-
vail on classification tasks. Medical imaging literature mostly has focused
on the pre-training with coarse-grained natural image datasets, such as Ima-
geNet [17,19,24,27]. In contrast to previous works, we aim to study the capa-
bility of pre-training with fine-grained datasets for transfer learning to medical
tasks. In fine-grained datasets, visual differences between subordinate classes
are often subtle and deeply embedded within local discriminative parts. There-
fore, a model has to capture visual details in the local regions for solving a
fine-grained recognition task [6,29,32]. We hypothesize that a pre-trained model
on a fine-grained dataset derives distinctive local representations that are use-
ful for medical tasks which usually rely upon small, local variations in texture
to detect/segment pathologies of interest. To put this hypothesis to the test,
we empirically validate how well pre-trained models on large-scale fine-grained
datasets can transfer to a range of target medical applications. This study rep-
resents the first effort to rigorously evaluate the impact of pre-training data
granularity on transfer learning to medical imaging tasks.

Experimental Setup: We examine the applicability of iNat2021 as a pre-
training source for medical imaging tasks. Our goal is to compare the gener-
alization of the learned features from fine-grained pre-training on iNat2021 with
the conventional pre-training on the ImageNet. Given this goal, we use existing
official and ready-to-use pre-trained models on these two datasets, and fine-tune
them for 7 diverse target tasks, covering multi-label classification, binary classi-
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Fig. 1. For segmentation (target) tasks (i.e., PXS, VFS, and LXS), fine-tuning the model
pre-trained on iNat2021 outperforms that on ImageNet, while the model pre-trained
on ImageNet prevails on classification (target) tasks (i.e., DXC14, DXC5, TXC, and ECC),
demonstrating the effect of data granularity on transfer learning capability: pre-trained
models on the fine-grained data capture subtle features that empowers segmentation
target tasks, and pre-trained models on the coarse-grained data encode high-level fea-
tures that facilitate classification target tasks.

fication, and pixel-wise segmentation (see Table 1). To provide a comprehensive
evaluation, we also include results for training target models from scratch.

Observations and Analysis: As evidenced in Fig. 1, fine-tuning from the
iNat2021 pre-trained model outperforms the ImageNet counterpart in seman-
tic segmentation tasks, i.e., PXS, VFS, and LXS. This implies that, owing to the
finer data granularity of iNat2021, the pre-trained model on this dataset yields a
more fine-grained visual feature space, which captures essential pixel-level cues
for medical segmentation tasks. This observation gives rise to a natural ques-
tion of whether this improved performance can be attributed to the larger pre-
training data of iNat2021 (2.7M images) compared to ImageNet (1.3M images).
In answering this question, we conducted an ablation study on the iNat2021
mini dataset [12] with 500K images to further investigate the impact of data
granularity on the learned representations. Our result demonstrates that even
with fewer pre-training data, iNat2021 mini pre-trained models can outperform
ImageNet counterparts in segmentation tasks (see Appendix C). This demon-
strates that recovering discriminative features from iNat2021 dataset should be
attributed to fine-grained data rather than the larger training data size.

Despite the success of iNat2021 models in segmentation tasks, fine-tuning
of ImageNet pre-trained features outperforms iNat2021 in classification tasks,
namely DXC14, DXC5, TXC, and ECC (see Fig. 1). Contrary to our intuition (see
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Fig. 2. For each target task, in terms of the mean performance, the supervised Ima-
geNet model can be outperformed by at least three self-supervised ImageNet mod-
els, demonstrating the higher transferability of self-supervised representation learning.
Recent approaches, SwAV [5], Barlow Twins [28], SeLa-v2 [5], and DeepCluster-v2 [5],
stand out as consistently outperforming the supervised ImageNet model in most target
tasks. We conduct statistical analysis between the supervised model and each self-
supervised model in each target task, and show the results for the methods that sig-
nificantly outperform the baseline or provide comparable performance. Methods are
listed in numerical order from left to right.

Sec. 1), pre-training on a coarser granularity dataset, such as ImageNet, yields
high-level semantic features that are more beneficial for classification tasks.

Summary: Fine-grained pre-trained models could be a viable alternative for
transfer learning to fine-grained medical tasks, hoping practitioners will find this
observation useful in migrating from standard ImageNet checkpoints to reap the
benefits we’ve demonstrated. Regardless of – or perhaps in addition to – other
advancements, visually diverse datasets like ImageNet can continue to play a
valuable role in building performant medical imaging models.

2) Self-supervised ImageNet models outperform supervised ImageNet
models. A recent family of self-supervised ImageNet models has demonstrated
superior transferability in an increasing number of computer vision tasks com-
pared to supervised ImageNet models [7,14,30]. Self-supervised models, in par-
ticular, capture task-agnostic features that can be easily adapted to differ-
ent domains [14,26], while high-level features of supervised pre-trained mod-
els may be extraneous when the source and target data distributions are far
apart [30]. We hypothesize this phenomenon is more pronounced in the med-
ical domain, where there is a remarkable domain shift [7] compared to Ima-
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geNet. To test this hypothesis, we dissect the effectiveness of a wide range of
recent self-supervised methods, encompassing contrastive learning, clustering,
and redundancy-reduction methods, on the broadest benchmark yet of various
modalities spanning X-ray, CT, and fundus images. This work represents the
first effort to rigorously benchmark SSL techniques to a broader range of medi-
cal imaging problems.

Experimental Setup: We evaluate the transferability of 14 popular SSL meth-
ods with officially released models, which have been expertly optimized, includ-
ing contrastive learning (CL) based on instance discrimination (i.e., InsDis,
MoCo-v1, MoCo-v2, SimCLR-v1, SimCLR-v2, and BYOL), CL based on JigSaw
shuffling (PIRL), clustering (DeepCluster-v2 and SeLa-v2), clustering bridging
CL (PCL-v1, PCL-v2, and SwAV), mutual information reduction (InfoMin), and
redundancy reduction (Barlow Twins), on 7 diverse medical tasks. All methods
are pre-trained on the ImageNet and use ResNet-50 architecture. Details of SSL
methods can be found in Appendix F. As the baseline, we consider the standard
supervised pre-trained model on ImageNet with a ResNet-50 backbone.

Observations and Analysis: According to Fig. 2, for each target task, there
are at least three self-supervised ImageNet models that outperform the super-
vised ImageNet model on average. Moreover, the top self-supervised ImageNet
models remarkably accelerate the training process of target models in compari-
son with supervised counterpart (see Appendix E). Intuitively, supervised pre-
training labels encourage the model to retain more domain-specific high-level
information, causing the learned representation to be biased toward the pre-
training task/dataset’s idiosyncrasies. Self-supervised learners, however, capture
low/mid level features that are not attuned to domain-relevant semantics, gen-
eralizing better to diverse sorts of target tasks with low-data regimes.

Comparing the classification (DXC14, DXC5, TXC, and ECC) and segmentation
tasks (PXS, VFS, and LXS) in Fig. 2, in the latter, a larger number of SSL meth-
ods results in better transfer performance, while supervised pre-training falls
short. This suggests that when there are larger domain shifts, self-supervised
models can provide more precise localization than supervised models. This is
because supervised pre-trained models primarily focus on the smaller discrimina-
tive regions of the images, whereas SSL methods attune to larger regions [7,30],
which empowers them with deriving richer visual information from the entire
image.

Summary: SSL can learn holistic features more effectively than supervised pre-
training, resulting in higher transferability to a variety of medical tasks. It’s
worth noting that no single SSL method dominates in all tasks, implying that
universal pre-training remains a mystery. We hope that the results of this bench-
marking, resonating with recent studies in the natural image domain [7,14,30],
will lead to more effective transfer learning for medical image analysis.

3) Domain-adaptive pre-training bridges the gap between the natu-
ral and medical imaging domains. Pre-trained ImageNet models are the
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Table 2. Domain-adapted pre-trained models outperform the corresponding ImageNet
and in-domain models. For every target task, we performed the independent two sample
t-test between the best (bolded) vs. others. Highlighted boxes in green indicate results
which have no statistically significant difference at the p = 0.05 level. When pre-training
and target tasks are the same, transfer learning is not applicable, denoted by “-”. The
footnotes compare our results with the state-of-the-art performance for each task.

Initialization Target tasks

DXC14
a DXC5

b TXCc PXSd LXSe

Scratch 80.31±0.10 86.60±0.17 89.03±1.82 67.54±0.60 97.55±0.36

ImageNet 81.70±0.15 87.10±0.36 95.62±0.63 67.93±1.45 98.19±0.13

ChestX-ray14 [25] - 87.40±0.26 96.32±0.65 68.92±0.98 98.18±0.06

CheXpert [13] 81.99±0.08 - 97.07±0.95 69.30± 0.50 98.25±0.04

ImageNet→ChestX-ray14 - 87.09±0.44 98.47±0.26 69.52±0.38 98.27±0.03

ImageNet→CheXpert 82.25±0.18 - 97.33±0.26 69.36±0.49 98.31±0.05
a [16] holds an AUC of 82.00% vs. 82.25% ± 0.18% (ours)
b [18] holds an AUC of 89.40% w/ disease dependencies (DD) vs. 87.40% ± 0.26%
(ours w/o DD)
c [20] holds an AUC of 95.35% ± 1.86% vs. 98.47% ± 0.26% (ours)
d [10] holds a Dice of 68.41% ± 0.14% vs. 69.52% ± 0.38% (ours)
e [21] holds a Dice of 96.94% ± 2.67% vs. 98.31% ± 0.05% (ours)

predominant standard for transfer learning as they are free, open-source mod-
els which can be used for a variety of tasks [3,9,17,27]. Despite the prevailing
use of ImageNet models, the remarkable covariate shift between natural and
medical images restrain transfer learning [19]. This constraint motivates us to
present a practical approach that tailors ImageNet models to medical applica-
tions. Towards this end, we investigate domain-adaptive pre-training on natural
and medical datasets to tune ImageNet models for medical tasks.

Experimental Setup: The domain-adaptive paradigm originated from natu-
ral language processing [8]. This is a sequential pre-training approach in which
a model is first pre-trained on a massive general dataset, such as ImageNet,
and then pre-trained on domain-specific datasets, resulting in domain-adapted
pre-trained models. For the first pre-training step, we used the supervised Ima-
geNet model. For the second pre-training step, we created two new models that
were initialized through the ImageNet model followed by supervised pre-training
on CheXpert (ImageNet→CheXpert) and ChestX-ray14 (ImageNet→ChestX-
ray14). We compare the domain-adapted models with (1) the ImageNet model,
and (2) two supervised pre-trained models on CheXpert and ChestX-ray14,
which are randomly initialized. In contrast to previous work [3] which is limited
to two classification tasks, we evaluate domain-adapted models on a broader
range of five target tasks on chest X-ray scans; these tasks span classification
and segmentation, ascertaining the generality of our findings.

Observations and Analysis: We draw the following observations from Table 2.
(1) Both ChestX-ray14 and CheXpert models consistently outperform the Ima-
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geNet model in all cases. This observation implies that in-domain medical trans-
fer learning, whenever possible, is preferred over ImageNet transfer learning. Our
conclusion is opposite to [27], where in-domain pre-trained models outperform
ImageNet models in controlled setups but lag far behind the real-world Ima-
geNet models. (2) The overall trend showcases the advantage of domain-adaptive
pre-training. Specifically, for DXC14, fine-tuning the ImageNet→CheXpert model
surpasses both ImageNet and CheXpert models. Furthermore, the dominance of
domain-adapted models (ImageNet→CheXpert and ImageNet→ChestX-ray14)
over ImageNet and corresponding in-domain models (CheXpert and ChestX-
ray14) is conserved at LXS, TXC, and PXS. This suggests that domain-adapted
models leverage the learning experience of the ImageNet model and further refine
it with domain-relevant data, resulting in more pronounced representation. (3)
In DXC5, the domain-adapted performance decreases relative to corresponding
ImageNet and in-domain models. This is most likely due to the lesser number of
images in the in-domain pre-training dataset than the target dataset (75K vs.
200K), suggesting that in-domain pre-training data should be larger than the
target data [8,22].

Summary: Continual pre-training can bridge the domain gap between natural
and medical images. Concretely, we leverage the readily conducted annotation
efforts to produce more performant medical imaging models and reduce future
annotation burdens. We hope our findings posit new research directions for devel-
oping specialized pre-trained models in medical imaging.

4 Conclusion and Future Work

We provide the first fine-grained and up-to-date study on the transferability of
various brand-new pre-training techniques for medical imaging tasks, answer-
ing central and timely questions on transfer learning in medical image analysis.
Our empirical evaluation suggests that: (1) what truly matters for the segmenta-
tion tasks is fine-grained representation rather than high-level semantic features,
(2) top self-supervised ImageNet models outperform the supervised ImageNet
model, offering a new transfer learning standard for medical imaging, and (3)
ImageNet models can be strengthened with continual in-domain pre-training.

Future Work: In this work, we have considered transfer learning from the
supervised ImageNet model as the baseline, on which all our evaluations are
benchmarked. To compute p-values for statistical analysis, 14 SSL, 5 supervised,
and 2 domain-adaptive pre-trained models were run 10 times each on a set of
7 target tasks—leading to a large number of experiments (1,420). Nevertheless,
our self-supervised models were all pre-trained on ImageNet with ResNet50 as
the backbone. While ImageNet is generally regarded as a strong source for pre-
training [12,27], pre-training modern self-supervised models with iNat2021 and
in-domain medical image data on various architectures may offer even deeper
insights into transfer learning for medical imaging.



12 M. R. Hosseinzadeh Taher et al.

Acknowledgments. This research has been supported partially by ASU and Mayo
Clinic through a Seed Grant and an Innovation Grant, and partially by the NIH under
Award Number R01HL128785. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the NIH. This work has utilized
the GPUs provided partially by the ASU Research Computing and partially by the
Extreme Science and Engineering Discovery Environment (XSEDE) funded by the
National Science Foundation (NSF) under grant number ACI-1548562. We thank Nahid
Islam for evaluating the self-supervised methods on the PE detection target task. The
content of this paper is covered by patents pending.

References

1. SIIM-ACR pneumothorax segmentation (2019). https://www.kaggle.com/c/siim-
acr-pneumothorax-segmentation/

2. RSNA STR pulmonary embolism detection (2020). https://www.kaggle.com/c/
rsna-str-pulmonary-embolism-detection/overview

3. Azizi, S., et al.: Big self-supervised models advance medical image classification.
arXiv:2101.05224 (2021)

4. Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G.: Robust vessel seg-
mentation in fundus images. Int. J. Biomed. Imaging 2013 (2013). Article ID
154860

5. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. arXiv:2006.09882
(2021)

6. Chang, D., et al.: The devil is in the channels: mutual-channel loss for fine-grained
image classification. IEEE Trans. Image Process. 29, 4683–4695 (2020)

7. Ericsson, L., Gouk, H., Hospedales, T.M.: How well do self-supervised models trans-
fer? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5414–5423, June 2021

8. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains
and tasks. arXiv:2004.10964 (2020)

9. Haghighi, F., Hosseinzadeh Taher, M.R., Zhou, Z., Gotway, M.B., Liang, J.: Learn-
ing semantics-enriched representation via self-discovery, self-classification, and self-
restoration. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp.
137–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8 14

10. Haghighi, F., Taher, M.R.H., Zhou, Z., Gotway, M.B., Liang, J.: Transferable visual
words: exploiting the semantics of anatomical patterns for self-supervised learning.
arXiv:2102.10680 (2021)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

12. Horn, G.V., Cole, E., Beery, S., Wilber, K., Belongie, S., Aodha, O.M.: Benchmark-
ing representation learning for natural world image collections. arXiv:2103.16483
(2021)

13. Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels
and expert comparison. arXiv:1901.07031 (2019)

14. Islam, A., Chen, C.F., Panda, R., Karlinsky, L., Radke, R., Feris, R.: A broad study
on the transferability of visual representations with contrastive learning (2021)

https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/
https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection/overview
https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection/overview
http://arxiv.org/abs/2101.05224
http://arxiv.org/abs/2006.09882
http://arxiv.org/abs/2004.10964
https://doi.org/10.1007/978-3-030-59710-8_14
http://arxiv.org/abs/2102.10680
http://arxiv.org/abs/2103.16483
http://arxiv.org/abs/1901.07031


Benchmarking Transfer Learning for Medical Image Analysis 13

15. Jaeger, S., Candemir, S., Antani, S., Wáng, Y.X.J., Lu, P.X., Thoma, G.: Two
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