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Abstract. In this paper, we solve a multi-objective vehicle routing prob-
lem with synchronization constraints at the delivery location. Our work
is motivated by the delivery of parcels and consumer goods in urban
areas, where customers may await deliveries from more than one service
provider on the same day. In addition to minimizing travel costs, we
also consider a second objective to address customer preferences for a
compact schedule at the delivery location, so that all deliveries to a cus-
tomer happen within a non-predefined time interval. To determine the
Pareto fronts, three metaheuristic methods based on large neighborhood
search are developed. The results on small instances are compared with
an ε-constraint method using an exact solver. Results for large real-world
instances are also presented.

Keywords: Vehicle routing problem · Synchronization ·
Multi-objective optimization

1 Introduction

The vehicle routing problem with synchronization constraints at the delivery
location (VRPSCDL) is motivated by a current situation in urban transporta-
tion, where a single recipient often expects several orders from more than one
service provider on the same day [14]. Service providers aim at minimizing the
costs, while recipients are customers that wish to receive all orders approximately
at the same time. Therefore the decision involves several stakeholders that need
to find a compromise between transportation costs and compact schedules at
the delivery location.

A real-life application of the VRPSCDL arises in housing and decoration
logistics [16,20], where several furniture suppliers offer their products on a shared
online platform. A customer may buy products from different suppliers, that are
later shipped with different logistics companies. However, customers wish to
receive all products within a small time interval. As a result, furniture suppliers
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need to find a way to collaborate with each other to improve customer service.
Other possible applications include supermarkets, construction sites, and in gen-
eral, any business that expects deliveries from several suppliers.

The VRPSCDL has been solved in the literature by allowing a maximum
amount of idle time at the delivery location, where idle time is defined as non
service time between the first and the last delivery to a given location. Existing
results show that it is possible to substantially reduce the idle time by more than
40% without sacrificing the travel cost (3% longer travel times) [14]. However,
the problem was addressed by first determining a fix idle time/service time ratio
and then solving the single-objective optimization problem, but it is in general
not easy to find appropriate values for the ratios. We aim at supporting decision
makers by providing several solutions, so that a suitable trade-off solution can
be chosen. To tackle this problem we model the multi-objective problem as
an extension of the single-objetive problem. We formulate two objectives to
minimize travel cost and idle time at the delivery location.

Many of the initial approaches to tackle multi-objective routing problems in
the literature use highly specialized population-based metaheuristics [5,9], such
as evolutionary algorithms [6,13,17]. It has been recently shown that combin-
ing several single-objective methods [3,8,18] as well as using a single-objective
algorithm within a solution framework that treats all other objectives as con-
traints [1,12] provide excellent results in solving multi-objective vehicle routing
problems. In this work, we focus on solution techniques that use powerful single-
objective neighborhood search methods to build the Pareto set.

The remainder of this paper is structured as follows. Section 2 introduces the
problem. Our solution methods are described in Sect. 3. Results are presented in
Sect. 4. Finally, Sect. 5 gives some conclusions and lines of future work.

2 Problem Statement

The multi-objective VRPSCDL (MO-VRPSCDL) is based on the VRPSCDL,
which is defined using a multi-commodity flow formulation [14]. We introduce
here the necessary notation to later define the multi-objective problem. In the
single-objective formulation, the problem consists of minimizing the total travel
time to serve n deliveries to m delivery locations from p depots. A solution
to the VRPSCDL is a set of routes that serves all deliveries once. Each route
starts at a departure depot and ends at the corresponding arrival depot, and
only serves deliveries associated to that depot. A delivery location receives one
or more deliveries, which must be fulfilled in a compact schedule. The notation
for the sets, data, and variables of the VRPSCDL are summarized next.

Sets:

– D is the set of deliveries.
– P1 is the set of departure depots.
– P2 is the set of arrival depots.
– N = P1 ∪ D ∪ P2 is the total set of nodes.
– U is the set of delivery locations.
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– D′
l is the set of all deliveries at location l ∈ U .

– D′′
i is the set of all deliveries to be fulfilled by depot i ∈ P1.

– V is the set of all vehicles.
– Vi is the set of all vehicles associated to depot i ∈ P1.

Problem data:

– cij is the travel time from node i to j, i, j ∈ N .
– di is the service time at node i ∈ N .
– wl is the maximum idle time at delivery location l ∈ U .
– Q is the vehicle capacity.
– T is the return time at the depot.

Variables:

– xijk is equal to 1 if vehicle k travels from node i to node j, 0 otherwise.
– sik is the time at which service starts at delivery i by vehicle k.
– startl is the time at which the first delivery at location l starts.
– lastl is the time at which the last delivery at location l ends.
– zij is 1 if, given two deliveries i, j to the same location, i is scheduled before

j, 0 otherwise.

In previous work, the maximum idle time wl at the delivery location has been
defined as the maximum amount of non service time between the first and the
last delivery at location l. The value of wl depends on the total service time of
all deliveries to location l and a parameter α ≥ 0, so that wl = α · ∑

i∈D′
l
di,

where D′
l is the set of all deliveries to l. The value of α controls the percentage

of allowed idle time at each delivery location. The maximum idle time is thus
modeled as Constraint (1) in the single-objective problem.

lastl − startl −
∑

i∈D′
l

di ≤ α ·
∑

i∈D′
l

di ∀l ∈ U (1)

The model imposes that the service of two or more deliveries at a given loca-
tion cannot overlap, so that a vehicle must wait if another vehicle is currently
serving the customer at the delivery location. Moreover, a vehicle might also
wait if it arrives to the location before service can start according to the syn-
chronization constraints. Following previous work, we assume that vehicles leave
each node as early as possible, so that they departure from the depot at time 0
and leave the delivery location right after serving the delivery.

The MO-VRPSCDL can be defined as a minimization problem of the form:

min f(x,α) = (f1(x), f2(α)) (2)

s.t.

gi(x) ≥ 0 ∀i (3)
hj(x) = 0 ∀j (4)
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The first objective f1(x) is the total travel time of the VRPSCDL.

f1(x) =
∑

i∈N

∑

j∈N

∑

k∈V

xijk · cij (5)

The second objective f2(α) aims at minimizing the maximum αl for every
delivery location l in the problem.

f2(α) = max
l∈D′

l

{

αl

∣
∣
∣
∣ αl =

lastl − startl∑
i∈D′

l
di

− 1

}

(6)

The problem constraints of the MO-VRPSCDL are the same as in the VRP-
SCDL except Constraint (1), which is removed and treated as the second objec-
tive.

3 Solution Techniques

This section provides a description of our solution methods based on neighbor-
hood search. All described methods provide an approximation of the Pareto front
in the MO-VRPSCDL and use an archive to maintain the set of non-dominated
solutions. A solution si is non-dominated if there are no other solutions sj , i �= j,
with f1(sj) < f1(si) and f2(sj) ≤ f2(si), or f1(sj) ≤ f1(si) and f2(sj) < f2(si).
Our local search algorithms try to improve one objective at each step, while the
other objective values might deteriorate, so that each step follows a “pure local
search” scheme [11].

We use the Solomon C1 heuristic to build initial solutions that are feasible
with respect to some value of α. The algorithm selects depots in a random
order and builds a set of routes considering all deliveries of the selected depot.
To ensure that the solution is feasible, we use “self-imposed time windows”,
which provide an earliest and latest start time for all deliveries to the same
location [14]. These time windows are not predefined, so all locations have an
initial self-imposed time window equal to the work day duration [0, T ]. When a
delivery is inserted in the solution, its time window is updated. We denote this
algorithm Solomon C1(α). If α = ∞, self-imposed time windows are not used.

3.1 Multi-Directional Local Search

We solve the MO-VRPSCDL by integrating it in Multi-Directional Local Search
(MDLS) [18]. This framework requires the definition of a local search method for
each objective. Therefore, since the MO-VRPSCDL is a bi-objective problem,
we need to define two local search methods. In our case, each execution of a local
search is a single iteration of an Adaptive Large Neighborhood Search (ALNS).
We denote this method MDLS-ALNS (see pseudocode in Algorithm 1).

For the first objective, we use ALNS1, which is based on the existing ALNS
for the VRPSCDL [14]. Its destroy and remove operators are described in detail



536 B. Sarasola and K. F. Doerner

in previous work. Originally, it handles the maximum idle time constraint by
setting self-imposed time windows on the delivery locations. However, MDLS
considers the maximum idle time as a second objective, so self-imposed time
windows are not used, i.e. an insertion is always feasible as long as other problem
constraints are not violated (flow and timing constraints, vehicle capacity, return
time at the depot, and deliveries served sequentially at the delivery location).

For the second objective, we define ALNS2 as an ALNS with the following
features. The destroy operators are the random removal and the worst removal
operator. The first one selects ξ deliveries using a uniform distribution and
removes them from the solution, whereas the second one removes ξ deliveries
that correspond to delivery locations with high values of α. This latter uses a
randomization factor to avoid always removing the same deliveries. The repair
operators are the greedy insertion and the 2-regret insertion operator. Both of
them consider the cost of inserting a delivery as the maximum value of α in the
solution after inserting the delivery.

In our pseudocode, ALNS1 and ALNS2 are called with two parameters,
where the first one is the initial solution of the ALNS and the second one is
the maximum allowed value of α. In particular, MDLS relies on ALNS2 to
find solutions that are good with respect to the second objective, so it does not
impose a constraint on the maximum allowed idle time and the second parameter
is α = ∞.

The initial solution s0 of MDLS is generated by solving the VRPSCDL with
α = ∞ (line 1) and it is used to initialize the archive A (line 2). Then, MDLS
iteratively selects one random solution z from the archive (line 5) at iteration i
and applies ALNS1 and ALNS2 to obtain two new solutions, si,1 and si,2 (lines
6–7), that are used to update the archive (line 8).

Algorithm 1. MDLS-ALNS
1: s0 ← Solomon C1(∞)
2: A ← {s0}
3: while stopping condition not met do
4: i ← 1
5: Select a random solution z from A
6: si,1 ← ALNS1(z, ∞)
7: si,2 ← ALNS2(z, ∞)
8: Update archive A with si,1 and si,2
9: end while

3.2 ε-Constraint Method

The ε-constraint method (ECM) for multi-objective problems consists of opti-
mizing one single objective, while formulating the second objective as a con-
straint [4]. Although it has been mainly used in association with exact algo-
rithms, the ECM and some of its variants has been shown to provide good
results in combination with heuristics to approximate the Pareto front [1,7,12].
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We embed ALNS1 in the ECM framework and denote the resulting method
ECM-ALNS (see Algorithm 2). The method proceeds as follows. We first solve
the single-objective sub-problem π0 with α0 = 0, so that no idle time is allowed at
any delivery location (line 1). To obtain this first solution s0, the solver is allowed
to run until I0 iterations without improvement are reached. Next, we solve the
single-objective sub-problem π∞ with α∞ = ∞ to get a minimum reference
value for the first objective (line 2). The initial archive A contains thus s0 and
s∞ (line 3). Then, the value of the maximum allowed α is set back to 0 (line 4)
and iteratively increased by ε, so that the single-objective sub-problem πi with
αi = αi−1+ε is solved, i > 0 (lines 6-8). After In iterations without improvement,
ALNS1 stops and returns solution si, which is used to update the archive (line 9).
Following previous work [12] and our own preliminary experiments, we allocate
comparatively longer execution times to obtain the initial solution s0 by setting
I0 	 In.

The ECM can proceed with both increasing and decreasing constraint values.
We choose to increase the values of α because the solutions of a sub-problem with
αi are also feasible solutions of sub-problems with αj if αj > αi, but the opposite
is in general not true. Preliminary experiments show that, instead of generating
a new solution from scratch for each problem πi, i > 0, better results can be
obtained by using the solution si−1 of πi−1 found in the previous iteration as the
initial solution of the ALNS1 to solve πi. This can be achieved without repairing
the solution or using penalties if the ECM operates for increasing values of α.

Algorithm 2. ECM-ALNS
1: s0 ← ALNS1(Solomon C1(0), 0)
2: s∞ ← ALNS1(Solomon C1(∞), ∞)
3: A ← {s0, s∞}
4: α0 = 0
5: while stopping condition not met do
6: i ← 1
7: αi ← αi−1 + ε
8: si ← ALNS1(si−1, αi)
9: Update archive A with si

10: end while

3.3 Heuristic Box Splitting

Heuristic Box Splitting (HBS) addresses some of the problems arising in the
ECM [12]. Instead of iteratively solving a single-objective sub-problem with
increasing (or decreasing) constraint values, HBS forms a rectangle determined
by the minimum and maximum values of each objective. This rectangle is iter-
atively split in halves, so that a single-objective sub-problem with a constraint
determined by the splitting value is solved.
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We embed ALNS1 in HBS (HBS-ALNS) as follows (see Algorithm 3). Similar
to the ECM, the single-objective sub-problem π0 with α0 = 0 is solved to obtain
s0 after I0 iterations without improvement (line 1). Then, we solve the single-
objective problem with α∞ = ∞ and obtain thus s∞ with the same termination
criterion as before (line 2). The initial archive contains solutions s0 and s∞ (line
3). Points (f1(s∞), f2(s∞)) and (f1(s0), f2(s0)) form a rectangle that determines
the area where HBS searches for new solutions (lines 4–5). The initial rectangle
is added to the rectangle set S (line 6) and HBS runs until no more rectangles
are available as follows. It selects the rectangle R(y1, y2) with the larger area
(line 9). The rectangle is split in two halves, so that the line that halves the
rectangle determines the value of the constraint αi, where i > 0 is the current
iteration. For example, in the first iteration after creating the initial rectangle,
α1 = 0.5 · f2(s∞), and in general, αi = 0.5 · (y1

2 + y2
2) (line 10). The solver runs

using this constraint until In iterations without improvement are reached (line
12), and the found solution si is used to update the archive (lines 13–16). The
solution also allows the algorithm to discard areas that are dominated by the
found solutions and to create new rectangles that are added to S (line 17).

Algorithm 3. HBS-ALNS
1: s0 ← ALNS1(Solomon C1(0), 0)
2: s∞ ← ALNS1(Solomon C1(∞), ∞)
3: A ← {s0, s∞}
4: z1 ← (f1(s∞), f2(s∞))
5: z2 ← (f1(s0), f2(s0))
6: S ← {R(z1, z2)}
7: while stopping condition not met do
8: i ← 1
9: Select R(y1, y2) ∈ S with the largest area

10: αi ← 0.5 · (y1
2 + y2

2)
11: Select z ∈ A with f1(z) ≤ f1(zj) such that zj ∈ A and f2(zj) ≤ αi

12: si ← ALNS1(z, αi)
13: if si is dominated then
14: y2 ← (y2

1 , αi)
15: else
16: Update archive A with si
17: Update S according to HBS rules
18: end if
19: if S = ∅ then
20: S ← {R(z1, z2)}
21: end if
22: end while

Similar to the ECM, preliminary experiments show that better results can
be obtained by using solutions found with αi as the initial solution for solving
problems with αj > αi (line 11). In the ECM this step is straightforward, since
α increases monotonically. However, HBS needs to select a solution z ∈ A that
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is feasible with respect to the current αi. This is done by choosing the solution z
with the best value of the first objective f1 among those those solutions zj ∈ A
that are feasible with respect to αi (line 11).

The original HBS terminates when the rectangle set S is empty. We modify it
to run until the maximum runtime is reached. If S is empty, the initial rectangle
is added to S (lines 18–20).

4 Experiments and Results

This section presents the results obtained by our algorithms. We first com-
pare the performance of our neighborhood search based methods with solutions
obtained by an exact solver embedded in the ECM (see Sect. 4.1). Then, we
evaluate our algorithms by solving large instances obtained from real-world data
in Sect. 4.2. We use the set of instances for the VRPSCDL without instances 0,
1, 20, and 21, because those instances define a single depot and there is thus no
synchronization involved.

Results report the normalized hypervolume (HV ) as a percentage of the
reference HV [21]. To calculate the reference HV for each instance, we build
reference sets with all non-dominated solutions found in all our experiments. The
nadir point is estimated to be 10% larger than the worst found values for each
objective [10,12], so that extreme solutions also contribute to the HV . Although
the HV is currently considered the most relevant performance indicator in multi-
objective optimization [2], we also include some results concerning the overall
non-dominated vector generation (ONV G) [19] and spacing (SP ) [15] to obtain
further information about the performance of our algorithms.

The exact solver is an implementation of the model of the VRPSCDL using
CPLEX. We embed this solver in the ECM framework as described in Sect. 3.2,
and denote this algorithm ECM-CPLEX. It runs for 86, 400 s and dedicates a
maximum of 3, 600 s to solve each sub-problem. We use ε = 0.01 in all exper-
iments. Each call to CPLEX runs until it finds the optimum solution or the
maximum runtime is reached. The exact solver is run only once for each instance.

We allow each combination of multi-objective framework and neighborhood
search algorithm to run for a maximum time of 3, 600 s. Following previous
settings in the literature, each iteration of MDLS consists of one iteration of
each ALNS. Same as described above, ECM-ALNS uses ε = 0.01. ECM-ALNS
and HBS-ALNS first obtain their reference points using I0 = 5, 000, and then
solve each sub-problem with In = 500. For each instance and metaheuristic, we
report the average and the best of 5 independent runs.

All algorithms were implemented in Java 1.7. The exact solver requires
CPLEX 12.6.2. Each experiment runs on a Xeon core at 2.50 GHz with 64 GB
shared RAM and deactivated hyperthreading.

4.1 Small Instances

First we compare our results on a small dataset with instances that contain
p ∈ [2, 3] depots, n ∈ [10, 40] deliveries, and m ∈ [6, 23] delivery locations.
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Table 1 reports the HV obtained by the ECM-CPLEX as well as the average
and best HV obtained by ECM-ALNS, HBS-ALNS, and MDLS-ALNS. Best
results for each instance are highlighted in bold. Our results show that ECM-
CPLEX is not always able to find the best-known Pareto front due to runtime
restrictions. It obtains the best HV in 9 of 18 instances, but its results are weaker
for the larger instances 8–9 and 16–19, each with 30 to 40 deliveries. In addition,
the exact solver for the VRPSCDL only optimizes the travel cost, while its
schedules are just determined to be feasible by CPLEX. For this reason, it often
obtains worse Pareto fronts than the heuristic algorithms, which try to schedule
deliveries in a compact manner. The best overall results are provided by HBS-
ALNS, both regarding the average quality of the Pareto fronts as well as the best
of 5 runs. In particular, it obtains the best average result in 11 of 18 instances
with an average HV = 98.5%. MDLS-ALNS provides competitive results and
finds the best result for 8 of 18 instances. ECM-ALNS is outperformed by all
algorithms.

Table 1. HV (%) obtained by each algorithm solving small instances.

Instance ECM- ECM-ALNS HBS-ALNS MDLS

CPLEX Avg Best Avg Best Avg Best

2 99.8 97.9 99.8 99.9 99.9 97.0 98.9

3 100.0 98.8 100.0 100.0 100.0 100.0 100.0

4 98.8 97.1 98.0 98.5 98.7 98.1 98.2

5 95.9 94.9 95.4 96.0 96.0 89.9 91.8

6 100.0 97.5 98.7 100.0 100.0 95.7 97.7

7 100.0 97.6 100.0 100.0 100.0 100.0 100.0

8 97.1 99.1 99.9 100.0 100.0 94.3 94.9

9 90.2 97.4 99.2 100.0 100.0 95.0 98.1

10 100.0 97.7 100.0 100.0 100.0 100.0 100.0

11 97.7 95.2 96.8 98.0 98.1 95.0 95.2

12 100.0 94.4 99.5 96.3 100.0 100.0 100.0

13 100.0 97.9 99.1 99.6 99.9 100.0 100.0

14 96.7 93.1 95.7 96.0 97.1 95.8 96.3

15 100.0 79.9 86.7 97.3 98.5 100.0 100.0

16 97.8 96.7 97.9 98.2 98.3 98.0 98.6

17 95.8 95.6 96.6 97.5 98.5 98.1 98.4

18 91.1 94.7 96.4 98.3 98.9 95.3 96.0

19 83.6 95.2 96.6 97.6 98.9 99.9 99.9

Avg 96.9 95.6 97.6 98.5 99.0 97.3 98.0
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4.2 Large Instances

Table 2 show the results obtained using the set of large instances with p ∈ [2, 6]
depots, n ∈ [100, 300] deliveries, and m ∈ [65, 100] delivery locations. For each
algorithm and instance the average and the best HV (%) are reported. Our
results show that HBS-ALNS outperforms the other solution methods in 15 of
18 instances regarding the average results, and it is able to find the best approx-
imation of the Pareto front in 14 of 18 instances. In the remaining instances,
ECM-ALNS finds the best results and always outperforms MDLS-ALNS.

Table 2. HV (%) obtained by each algorithm solving large instances.

Instance ECM-ALNS HBS-ALNS MDLS-ALNS

Avg Best Avg Best Avg Best

22 97.0 97.3 98.4 98.5 96.8 97.7

23 97.2 98.0 97.9 98.0 96.3 97.0

24 97.5 97.7 98.2 98.4 96.0 97.1

25 95.9 96.6 95.7 96.4 91.3 92.2

26 95.8 96.5 96.3 96.5 91.8 92.6

27 96.9 97.1 97.8 98.2 92.7 93.4

28 95.3 95.6 96.3 96.9 87.3 88.7

29 95.1 95.6 94.8 95.5 85.1 85.3

30 95.2 95.6 96.6 97.0 89.5 90.0

31 95.0 95.8 96.4 96.6 88.9 89.5

32 95.8 96.6 96.8 97.1 87.6 88.5

33 94.9 96.3 96.0 96.2 85.1 85.6

34 95.9 96.9 95.7 95.9 83.7 84.1

35 95.4 96.0 96.4 96.9 86.1 88.0

36 93.0 94.4 95.6 95.9 83.9 84.5

37 94.5 95.3 95.1 95.9 82.6 83.3

38 94.8 95.9 95.6 96.0 83.0 83.7

39 94.3 94.6 95.6 96.3 84.9 85.5

Avg 95.5 96.2 96.4 96.8 88.5 89.2

Table 3 shows average and best results of the ONV G indicator obtained
by each algorithm on each instance. This measure is the number of solutions
in the Pareto front approximation and larger values are considered to be bet-
ter. Although it poses some problems, as bad approximations with many non-
dominated points are preferred over better approximations with only a few
points, it can be used together with the HV to provide additional insights about
the algorithms. Our results show that ECM-ALNS consistently finds mores solu-
tions than the other algorithms, both in the average and in the best case. It also
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finds more solutions for larger instances (80–100) than for medium-sized ones
(40–80), which seems a priori logical because the solution space is likely larger.
HBS-ALNS finds more solutions than MDLS-ALNS, but it should be noted that
the number of solutions for both algorithms does not depend on the instance size.
The difference between ECM-ALNS and HBS-ALNS can be explained by how
they explore the solution space. While ECM-ALNS increases α by very small
values in each iteration and is therefore able to find many similar (but different)
solutions, HBS-ALNS tries to explore different regions of the solution space and
therefore finds less (but more diverse) solutions.

Table 3. ONV G obtained by each algorithm solving large instances.

Instance ECM-ALNS HBS-ALNS MDLS-ALNS

Avg Best Avg Best Avg Best

22 45.2 57.0 42.0 48.0 28.4 42.0

23 42.4 51.0 32.6 41.0 23.2 28.0

24 57.6 71.0 47.2 59.0 32.2 45.0

25 69.8 80.0 52.6 73.0 39.6 47.0

26 63.0 75.0 53.2 61.0 35.4 40.0

27 65.6 78.0 49.0 56.0 42.2 49.0

28 76.9 86.0 45.6 54.0 36.4 40.0

29 85.4 96.0 47.8 64.0 38.6 44.0

30 79.1 92.0 39.8 56.0 37.6 43.0

31 78.7 90.0 39.0 54.0 39.6 45.0

32 81.3 88.0 42.8 49.0 42.2 50.0

33 91.1 100.0 47.6 60.0 36.2 39.0

34 84.3 94.0 38.8 46.0 31.8 41.0

35 89.8 98.0 56.4 70.0 30.4 42.0

36 86.1 93.0 40.0 51.0 35.8 39.0

37 96.1 112.0 41.0 55.0 32.6 34.0

38 90.5 100.0 38.6 54.0 26.4 34.0

39 95.2 106.0 45.8 54.0 40.6 50.0

Avg 76.6 87.1 44.4 55.8 35.0 41.8

The performance of MDLS is hindered by the poor performance of ALNS2

when the instance size increases. Although it obtains reasonably good HV val-
ues for middle-sized instances such as 22–24 (100 deliveries), its results quickly
degradate for larger instances. Figure 1 shows the median Pareto front obtained
by each method based on neighborhood search for two instances. The median
Pareto front is the front that corresponds to the median HV of 5 independent
runs. Figures 1a and 1b show the results obtained for instances 19 and 39 (40 and
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(b) Instance 39 with 6 depots, 300 deliveries, and 100 locations.
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Fig. 1. Median Pareto front obtained by each solution method based on neighborhood
search on (a) a small instance and (b) a large instance.
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300 deliveries, respectively). On the smaller instance, MDLS-ALNS is fast and
outperforms the other two solution methods, while it fails at finding good solu-
tions in the larger instance. Figure 1b also shows that EPS-ALNS finds many
good solutions, but it does not explore the front for high values of α, while
HBS-ALNS finds reasonably good spread solutions along the complete Pareto
front.

We quantify this latter effect by calculating the average SP for each algo-
rithm and instance (see Fig. 2, only ECM-ALNS and HBS-ALNS are shown for
better readability). The SP indicator measures how uniformly the solutions of a
Pareto front approximation are spread (lower values are considered to be better).
Our results show that ECM-ALNS finds good spread Pareto fronts for smaller
instances (22–26), while the fronts become more sparse for larger instances (27–
39). The performance of HBS-ALNS on this indicator, however, does not depend
so strongly on the instance size, i.e. similar SP values are obtained for most
instances, and they are on average better than those of ECM-ALNS, specially
for larger instances.
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Fig. 2. Average SP obtained by ECM-ALNS and HBS-ALNS.

5 Conclusions

In this paper, we defined and solved a multi-objective vehicle routing prob-
lem with synchronization constraints at the delivery location. We proposed
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three methods based on single-objective neighborhood search that are embed-
ded within more general optimization frameworks for multi-objective optimiza-
tion. In particular, we used ECM, HBS, and MDLS together with two ALNS
algorithms. Experiments showed that HBS-ALNS provide the best Pareto fronts
regarding the HV , also outperforming an exact solver on small instances. Future
research should consider other quality indicators for multi-objective optimiza-
tion problems, additional analysis on how fast the methods are at finding new
solutions, tune the ALNS for the second objective in MDLS, and implement
some restart criteria to better explore the Pareto front in the ECM.
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