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Abstract. This work investigates an underground mine equipment dispatching
problem under equipment stochastic working times. First, a mathematical model
is developed for solving the Equipment Dispatching problem while considering
the machines working times as deterministic parameters. Then, Monte Carlo sim-
ulation is implemented in order to assess the reliability of the deterministic dis-
patching under stochastic environment, i.e. stochastic working times that include
travel times between stopes, settlement times, and breakdown times. For this chal-
lenging problem, an illustrative variability effect analysis is proposed. Promising
preliminary results highlight the importance of considering machines working
times as stochastic parameters in the case of medium and high variability levels.

Keywords: Underground mine equipment dispatching · Stochastic working
times · Monte Carlo simulation

1 Introduction

With a worldwide high consumption of mineral products, and with a huge resurgence
to “Open pit to underground mining transition” (King et al. 2017) in mining industry,
underground mining projects are considered among the most significantly rewarding
businesses (Campeau and Gamache, 2020). Consequently, it is crucial for underground
mining companies to optimize their processes, mainly, their equipment dispatching pro-
cess in cited rigid environments (Yu et al. 2017). A real fact leading to controlling several
uncertain parameters related to machines performance, that can be tracked and recorded
easily by IoT sensors in the context of mining 4.0 era.

In a real-world context, the uncertainty of underground mining equipment parame-
ters, particularly machine working times, have a significant impact on the dispatching
process and themining activities short-term planning. However, such stochastic process-
ing times have not been clearly investigated in the existing literature on underground
mine dispatching problems, as highlighted in the recent study of Hou et al. (2020). It is
worthy to note that machines working times could include effective processing times,
machines settlement times and mobile equipment traveling times between stopes etc.
(Samatemba et al. 2020). In fact, the work of Hou et al. (2020) is among the very few
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works that have considered uncertainty and in particular only breakdowns are taken as
uncertain, and not the other parameters affecting the mining dispatching problem.

Undergroundminemobile equipment dispatching is defined as the process of allocat-
ing available equipment of the mine to the different developed stopes, for the execution
of the production operations, and schedulingworking times of the allocatedmachines for
every phase of the same production sequence (Hou et al. 2020). In this context, our study
aims at quantifying the effect of stochastic processing times on an underground mine
mobile equipment dispatching problem, in order to highlight the risk of not considering
stochastic equipment working times. For that purpose, we first develop a mathemati-
cal model to solve the equipment dispatching problem while considering the machines
working times as deterministic. Then, Monte Carlo simulation (MCS) is implemented to
assess the reliability of the deterministic dispatching under stochastic environment. This
relevant resolution scheme has been recently used in transportation context (Elgesem
et al. 2018; Guimarans et al. 2018; Layeb et al. 2018) to measure the risk of ignoring
the real stochastic nature of the environment.

The rest of the paper is structured as follows. Section 2 reviews themost related work
on machines dispatching issues in underground mines, and highlights the importance
of considering stochastic working times for such problems. Section 3 presents the main
characteristics of the considered equipment dispatching problem. Section 4 reports the
deployed mathematical model as well as the MCS-based approach. Section 5 discusses
our preliminary experimental results. Finally, Sect. 6 draws conclusions and avenues for
future research.

2 Related Work

Mobile equipment dispatching is defined as the process of allocating available equip-
ment of the mine to the different developed stopes, mining production sites, for the
execution of the production operations, and scheduling working times of the allocated
machines for every phase of the same production sequence (Hou et al. 2020). During
the last decades, some studies were conducted in order to treat dispatching issues in the
mining industry, especially in the context of mining short-term scheduling. Beaulieu and
Gamache (2006) implemented an enumeration tree based algorithm for solving a fleet
management problem in underground mines. The sequence of the tree’s states presents
the shortest routes for the vehicles. The proposed dynamic algorithm showed efficiency
in controlling underground mines’ fleet system at the short-term level. Paduraru and
Dimitrakopoulos (2019) worked differently on real time dispatching and scheduling
issues in mining complex. Precisely, the authors introduce the reinforcement learning
to respond to the insertion of new information that can be related to geological charac-
teristics, availability of material transportation; i.e. mobile equipment availability, and
processing characteristics. Geostatistical simulations were used to model these features
in order to determine adequate destinations policy of extracted material, in real time.
After determining several causes of uncertainty related to mines’ processing activities
(material extraction and transportation), Paduraru and Dimitrakopoulos (2019) state that
this uncertainty is triggered by the interactions between several field’s activities such
as relations of cause effect between equipment queuing times and cycle times, extrac-
tion rates etc. Recently, Manríquez et al. (2020) introduced a Simulation-Optimization
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framework for the consideration of operational uncertainty in the generation of the
mine’s short-term schedule based on equipment KPIs: Availability and Utilization as
introduced by Mohammadi et al. (2015). The yielding underground mine short-term
schedule includes mobile machines allocation to stopes while considering uncertainty
affecting their performance indicators.

Hou et al. (2020) investigated the problem of simultaneously dispatching the mobile
equipment and sequencing stopes. The authors established a link between production
process and dynamic resource scheduling. A multi-objective optimization model was
proposed to minimize the gap time between two consecutive phases of mining produc-
tion as well as the makespan of the stopes’ production cycle. For the problem resolution,
Hou et al. (2020) used a stope production phase algorithm that allows having possible
scenarios of stopes schedule. The algorithm helps finding a coherent equipment assign-
ment responding to the problem dynamic properties. After preparing different scenarios
of stopes sequencing with equipment assignment, a genetic algorithm is introduced to
reach the best solution meeting the two objectives of the main model, with the initial
individuals being the established scenarios of the equipment assignment algorithm.

Differing from (Hou et al. 2020), our work considers clearly stochastic working
times for the dynamic mobile equipment dispatching problem in underground mines
and assesses the effect of their variability on the generated deterministic solution.

In the context of transportation, Jaoua et al. (2020) considered urban vehicles travel
times as stochastic variables, fittedwith the skewedLognormal distribution, to investigate
the effect of the flow pattern on the reliability of routes planning. They measured the
risk of missing predefined time windows for vehicles when stochastic travel times are
not considered. They found that at high variability levels, the deterministic solution is no
longer efficient, thereby the need to consider stochastic work times for route planning.

Analogically to the transportation context, underground mining equipment working
times are herein fitted with the unimodal Lognormal distribution. Their impact on the
reliability of the deterministic dispatching is evaluated using Monte Carlo simulation.

3 Problem Description

3.1 Production Sequences in Underground Mines

Let’s begin by presenting underground mines production main characteristics. Although
several methods of ore extraction are used within underground mines, the production
cycle remains the same and is based on six-unit operations: Rock drilling, charging,
blasting, ventilation support, stope supporting, ore extraction, loading and transporting
(Åstrand et al. 2018a,2018b; Hou et al. 2020; Song et al. 2015).

Fig. 1. A stope’s production sequence



432 N. E. H. Hammami et al.

Figure 1 presents the six phases of production sequences. In an underground mine,
every existing stope is in one of these six phases. Moreover, underground mining pro-
duction sequence defines stopes’ states or phases. The equipment dispatching realized
in the present study is based on these phases.

3.2 Hypotheses Consideration

This study aims at resolving the problem of mobile equipment dispatching in an under-
ground mine which consists of assigning machines executing the different phases of a
stope production cycle to the different stopes being operated or planned to beoperated.
This is a process evoked by the short-term planning of the mine under consideration.

Precisely, to solve the yielding equipment dispatching problem, the following
assumptions are considered:

• The undergroundmine is composed of N stopes planned to be-operated for ore extrac-
tion. Every stope is operated according to the above mentioned six-phase production
sequence.

• For each phase of the production cycle, a specific fleet of mobile equipment is dedi-
cated. For each of the first five phases, a particular fleet of Jumbos is associated and
for the extracting phase, a set of Load Haul Dumps (LHDs) is dedicated.

• For every phase, the machines are not identical. In fact, every single machine of a
certain phase is characterized by its capacity, expressed in mass unit per time unit. It
is worth to mention that capacity differs from one equipment to another which leads
to variations in machines working times. For the computational experimentation, we
used the average working times of the machines per stope and per phase.

• Each machine can break down during working time. breakdowns are possible at any
time during the effective work in the mine and are part of the factors that create
uncertainty in the working times of the machines.

• Based on the ore reserve and average machine working times, a predetermined set of
machine types required for each stope is established.

• It is assumed that the work of the machines in each stope cannot be interrupted by
moving to other stopes.

• Each machine cannot be operated in two or more stopes in parallel, and when a
machine is inactive, it is considered to be available for each stope that requires it.

• It is possible to have many stopes of a same phase being operated at the same time.

3.3 Equipment Stochastic Working Times

Underground mines have always been known for their rigid environment due mainly
to natural factors. This fact makes underground mining a difficult process, since its
rigidity leads to uncertainty in production cycles, affecting the working times of mobile
machines, the travel times of machines between stopes, and the human teams carrying
out the different processing tasks.

In our study, we focus on the uncertainty associated to mobile equipment in under-
ground mines. According to Mohammadi et al. (2015) and Samatemba et al. (2020), for
underground mining equipment, the time to complete its assigned task, which refers to
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the machine’s working time, is equal to the sum of the effective processing time, the
machine’s settlement time, and delays. Precisely, the equipment effective processing
time is the time of executing the real task for which the machine is constructed; for
example, for a drilling jumbo, it is the real time spent in drilling stopes. Here, the notion
of effective processing time is considered as presented byManríquez et al. (2020). Then,
the settlement time is the time spent setting up the machine to perform a specific task. It
can be considered in the case of the samemobile machine ensuring two or more different
tasks. Finally, delays present the time spent waiting for the start time of the processing.
For our case, delays can include machines failure or breakdowns or travel times between
the different stopes of the underground mine. All of these parameters related to the
machine’s working time are considered as uncertain. It is assumed that working times
are stochastic input parameters to our problem.

At this stage, it is worthy to note that when fitting an equipment working times, for a
specific production phase at a specific stope, with the Lognormal distribution at different
variability levels (as defined later in Sect. 4.2), the higher the coefficient of variation (CV),
the greater the variability in equipmentworking time. Illustrative histograms are reported
in Fig. 2.

Fig. 2. Histogram of the working time of machine 1 of phase 1 at stope 1, respectively from the
left: CV = 20%, CV = 40%, and CV = 70%

4 Problem Formulation

4.1 Mathematical Model

Now, let’s turn our attention to proposing a mathematical model for this challenging
equipment dispatching problem.
Sets
I = {1…, N}:Set of N stopes,
P = {1…, L}:Set of L possible phases,
Kp = {1…,E}:Set of available equipment for phase p.
Indices
i refers to stope i.
p refers to phase p.
p′refers to the phase following the phase p. For example, if phase p is “charging”, p′is
“blasting”.
k refers to machine k of the set Kp of phase p.
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Parameters
PRipk : Working time of machine k of phase p at stope i,
Nip: Number of required machines for the execution of phase p at the stope i,
B: Big positive number.
Decision Variables
Sipk : continuous non-negative variable that reflects the start time of the execution of
phase p at stope i by equipment k,
Eipk: continuous non-negative variable that reflects the end time of the execution of
phase p at stope i by equipment k,
Wipk : continuous non-negative variable that reflects the start time of phase p at stope i
of assigned equipment k,
V ipk : continuous non-negative variable that reflects the end time of phase p at stope i of
assigned equipment k,
ST ip: continuous non-negative variable that reflects the start time of phase p at stope i,
ETip: non-negative variable that reflects the end time of phase p at stope i,
Xipk : binary decision variable that takes value 1 if equipment k is assigned to phase p at
stope i, 0 otherwise,
H: continuous non-negative variable that reflects the completion time of the execution
of the planned stopes.

Using these notations, a mathematical formulation can be derived as follows:

min Z = w1

N∑

i=1

L−1∑

p=1

(STi(p+1) − ETip) + w2H (1)

The objective function (1) minimizes the weighted sum of the non-productive time
between two consecutive phases and the end time of stopes processing completion H.
Expression (1) should be minimized subject to the following constraints:

Eipk = Sipk + PRipk ∀i ∈ I , p ∈ P, k ∈ Kp (2)

Constraints (2) express the end working time of each machine k of phase p at stope
i.

Either (Ei′pk ≤ Sipk ) Or (Eipk ≤ Si′pk) ∀i, i′ ∈ I/i′ �= i, p ∈ P, k ∈ Kp (3)

To express the prohibition of a same machine parallel work in two different stopes
or more, an “either-or” relationship is defined in (3). It avoids overlapping both intervals
of working times of the same machine k at two different stopes.

Np∑

k=1

Xipk = Nip ∀i ∈ I , p ∈ P (4)

Constraints (4) ensure that the sum of machines operating at phase p for every stope
is equal to the defined required number of machines per specific phase, for the same
stope.

If (Xipk = 1) Then (Wipk = Sipk) ∀i ∈ I , p ∈ P, k ∈ Kp (5)
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In order to define working start times of assigned machines, “If, then” relationships
are introduced in (5).

If (Xipk = 0) Then (Wipk = B) ∀i ∈ I , p ∈ P, k ∈ Kp (6)

Relationships (6) allow the start time of equipment that is not assigned to a specific
stope at a phase p to be ignored when calculating the start time of that phase at that stope.

If (Xipk = 1) Then (Vipk = Eipk) ∀i ∈ I , p ∈ P, k ∈ Kp (7)

Relationships (7) express the working end times of the assigned equipment.

If (Xipk = 0) Then (Vipk = 0) ∀i ∈ I , p ∈ P, k ∈ Kp (8)

Relationships (8) enable the end time of equipment that is not assigned to a specific
stope at a phase p to be ignored when calculating the end time of that phase at that stope.

STip ≤ Wipk ∀i ∈ I , p ∈ P, k ∈ Kp (9)

Constraints (9) define the start time of each phase per stope.

ETip ≥ Vipk ∀i ∈ I , p ∈ P, k ∈ Kp (10)

Constraints (10) define the end time of each phase per stope.

H ≥ ETip ∀i ∈ I , p ∈ P, k ∈ Kp (11)

Constraints (11) establish the end time of stopes process completion time as it is the
maximum of different phases end times of all planned stopes.

STip′ ≥ ETip ∀i ∈ I , p ∈ P, p′ ∈ {2...L − 1} (12)

Constraints (12) ensure that the start time of the next phase is necessarily greater
than or equal to the end time of the current phase.

Sipk ,Wipk , STip ≥ 0 ∀i ∈ I , p ∈ P, k ∈ Kp (13)

Xipk ∈ {0, 1} ∀i ∈ I , p ∈ P, k ∈ Kp (14)

Constraints (13)-(14) define the nature of the decision variables.
To conclude, Model (1)-(14) is a valid formulation for the considered mobile

equipment dispatching Problem in underground mine.

4.2 Monte Carlo Simulation-Based Sampling Approach

To analyze the effect of equipment stochastic working times on the underground mine
machines dispatching problem, a MCS-based sampling approach is used. It consists
of introducing stochastic input parameters, i.e. stochastic machines working times,
to Model (1)–(14), for generating objective functions values of different stochastic
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instances. More precisely, M independent scenarios of equipment working times per
instance are considered. A scenario is composed of machines sets of working times per
phase and stope. Let f 1l, f 2l…, f Ml denote stochastic objective functions of the problem,
for instance l. For scenarios generation, the Lognormal distribution is adopted with three
different coefficients of variation. After obtaining stochastic objective functions values
of the problem, the absolute gap between both, the deterministic objective function value
Zl and the stochastic one, is calculated for every scenario realization. The absolute gap
and the mean absolute gap are defined as follows:

Gapjl = |Zl − f jl

∣∣∣ ∀ j ∈ {1...M } (15)

MeanGapl = 1

M

M∑

j=1

Gapjl (16)

Moreover, let T be the vector of random working times variables of machine per
phase and per stope. Actually, each machine working time per phase and per stope is a
random variable following the Lognormal distribution. Thus, T is defined as follows:

T= (T1,…,Ts) where s =
L∑

p=1
KpN .

Then, the location and the scale parameters of the lognormal distribution are
calculated as follows:

μt = ln(E[Tt]) − 0.5 ln(1 + Var[Tt]
(E[Tt])2 ) ∀t ∈ {1...s} (17)

σ 2
t = ln(1 + Var[Tt]

(E[Tt])2 ) ∀t ∈ {1...s} (18)

where E[Tt] is the arithmetic mean of Tt, and Var[Tt] is its variance.

5 Results and Discussion

The mathematical model (1)–(14) was implemented in OPL language and solved using
the commercial state-of-the-art solver CPLEX, version 12.6 with its default settings, on
a computer processor intel Core i5, 7th generation running at up to 3.1GHz. In order to
understand the utility of the mathematical formulation, an illustrative example is first
introduced. Then, the results of six different instances of equipment dispatching problem
for an underground mine are presented. Results for the stochastic case are reported to
extract some useful insights about its effect on the proposed dispatching solution.

5.1 The Deterministic Case

Let’s begin by treating an illustrative example that presents the case of three to-be-
operated phases for three different stopes. We assume having as number of available
machines K1 = 3, K2 = 3, K3 = 4 (and as weights in the objective function (1) w1 =
w2 = 0.5).
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For the first phase’s execution, 3 machines are required for the different stopes. For
the second phase, 3 machines are required at the first stope, and 2 machines are needed
at stopes 2 & 3. And finally, for the third phase’s execution, 2 machines are required
at the different stopes. Mean equipment working times are extracted from (Hou et al.
2020).

The optimal assignment for this illustrative example is deployed in Fig. 3.

Fig. 3. Diagram of stopes production phases for the illustrative example of 3 phases & 3 stopes

Considering the execution of Phase 2, it is noticed that Stope 2 and Stope 3 use both
the same equipment, namely Machine 2. In fact, Machine 2 starts operating Phase 2 at
Stope 2 (the priority is for the second stope for this case), at time h1 = 10.5 h. It finishes
its job at time h2 = 14.75 h, and becomes then “Available”. At h3 = 15.75 h, Machine 2
starts operating Phase 2 at Stope 3, and finishes its work at h4 = 19 h. It is also the same
case for Machines 1, 2, and 3 of Phase 1. The priority is first considered for the first
stope, after that the second stope is processed, and the three assigned machines finish
their work at the third stope. We do not have overlapping working intervals for a same
machine proceeding at two different stopes. It is the case for all of the shared machines
of different phases. The end completion time of stopes processing H is equal to 27.25 h.

Depending on the start and end times of the phases per stope, the production cycles
of the phases differ from one stope to another. This can be due to the difference between
the working times of the machines for the same phase and the different stops, and to
the dispatching generated. For example, the first phase’s execution lasts 5.25 h for both
Stopes 1 and 3, whereas it lasts 6h for the second stope. The second phase lasts 3.75 h,
4.25 h and 3.5 h for stopes 1, 2, and 3, respectively. For the first and second phase, the
gap between phases’ production cycles for many stopes is not large when compared with
the gap between stopes phase 3 execution times. In fact, a gap of 4.5 h is found between
the execution times of Phase 3 for Stope 3 and Stope 2.

Now, based on this illustrative example and the case of “Sanshandao” gold mine
in china treated by Hou et al. (2020), six realistic instances are derived by varying the
number of stopes and phases. Deterministic results are as reported in Table 1. Precisely,
Model (1)–(14) was solved to optimality while taking the mean values as the machines
working times, for each instance. The column headings of Table 1 are as follows: Inst.
= name of the instance; Z* = value of the optimal solution in hours, H* = end time of
the stopes processing in hours, CPU Time = CPU time required to compute Z*.

Recall that the objective function presents the equally weighted sum of the total
production end time and between-phases gaps. Table 1 shows that Model (1)–(14) were
successful in achieving equipment dispatching with zero inter-phase deviations. This
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Table 1. Results of the deterministic case

Inst Z* H* CPU time

1 7.000 14.000 1.27 s

2 8.625 17.250 4.27 s

3 10.375 20.750 70.53 s

4 10.750 21.500 0,52 s

5 13.625 27.250 4 min 30,78 s

6 16.250 32.500 5 min 14,8 s

fact may be due to the limited size of the considered instances. Not surprisingly, by
increasing the constraints and variables of the model (i.e., increasing the number of
stops and phases), its CPU time increases.

5.2 The Stochastic Case

In order to measure the variability effect of stochastic machines working times on the
underground mine equipment dispatching problem, we use the MCS Sampling. This
method is tested on instances Inst.1- Inst.6. 100 stochastic objective functions are gen-
erated, for every variability level, and for every instance, basing on the absolute gap
between the stochastic and the deterministic optimal solutions, and the mean absolute
gap are calculated. Numerical results showed that the higher the variability level is,
the higher the Mean Absolute Gap (MeanGap) is, for all of the instances. The highest
MeanGap is noticed for Inst.4, for an arithmetic coefficient of variability CV = 70%;
MeanGap = 5.329 h. It presents 50% of the instance’s deterministic objective function.
For low variability level, MeanGap is of low values indicating that for low working
times variability rate, the objective function of the dispatching problem lightly varies.
For medium variability levels (CV= 40%), MeanGap values present higher values when
compared toMeanGap of low variability. The impact of variability is clearer at the high
level.

For a detailed study of the absolute gap between stochastic and deterministic
solutions, Box & Whisker plots representation are used, as shown in Fig. 4.

For a low variability level (CV = 20%), maximum values of absolute gap (Gap) do
not exceed 1.8 h for Inst.1, Inst.2 and Inst.3 instances. For a medium variability level
(CV = 40%), 50% of Gap values do not exceed 1.6 h, and 75% of the Gaps data do
not exceed the value of 2 h for the three first instances. However, for a high variability
level (CV = 70%), 75% of the first instanceGap values are below 4 h (below 46% of the
deterministic objective function of Inst.2), and maximumGap values can reach 8.3 h for
the first instance and 5.5 h for the Inst.3 instance. As for the last three instances, for low
variability level, 75% of absolute gap is below 2 h. For high variability, maximum Gap
can reach 44% of the objective function for Inst.5, and 49% of the deterministic objective
function of Inst.6. For medium variability level, maximum Gap values can reach 27%
of the deterministic solution. So as a first conclusion, for the medium variability (CV
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Fig. 4. Box & Whisker Plots

= 40%) and high variability (CV = 70%), it may be necessary to consider stochastic
equipment working times for the dispatching problem: The problem’s deterministic
solution is no longer optimal, so there is a need to use other approaches for solving the
problem such as the simulation-based optimization approach (Jaoua et al. 2020).

Beside their effect on the variation of the objective function, equipment stochastic
working times affect the assignment of machines within the underground mine. This
effect can be illustrated in the case of the illustrative example by comparing one of
its stochastic solutions to the optimal deterministic solution. The example of the 76th
stochastic generation at a high variability level (CV = 70%) is displayed in Fig. 5. The
gap between stochastic and deterministic solutions is equal to 7.94 h. Ac: for this specific
generation, the end time of the total production cycle has increased up to 43.12 h and the
assignment has changed too for specific stopes at phase 2 and phase3. With the change
of assignment, clearly considering this stochasticity level induces a complete change of
priorities as well as phases start and end times per stope.

Fig. 5. Diagram of stopes production phases for the illustrative example at the 76th stochastic
working times generation

These preliminary computational results illustrate the validity of the implemented
model and confirm the intuitive outcomes of the proposed approach. It is clearly seen,
that at low variability levels, the solution of the mathematical program is robust, which is
not the case for higher variability levels. For enhancing the effectiveness of the planning
system optimization, it may be necessary for underground mines planners to refer to the
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historical data analysis of the machines working times. Precisely, if the coefficient of
variation is of low value, the optimal solution remains valid. Otherwise, if the coefficient
of variation is of high value (superior to 70%), it is necessary to use another appropri-
ate approach such as the simulation-based optimization approach, as detailed in (Jaoua
et al. 2020) and (Layeb et al. 2018) in the context of transportation planning. Besides, the
simulation-based optimization approach is consequently validated for the deterministic
case, with our mathematical program. In the same context, extensive empirical experi-
ments should be conducted on larger dataset that could be derived from big data analytics
within a Mining 4.0 framework.

6 Conclusion

This work investigated the variability effect of the equipment working times on the
equipment dispatching in the context of underground mines. It underlines the disadvan-
tages of not taking into account the stochastic working times of the mobile equipment
on the quality of the equipment dispatching solution, for the short-term planning of an
underground mine.

The proposed approach consists of first, generating the fleet dispatching by solving
a mathematical model that considers deterministic mean values of the equipment work-
ing times. Then, MCS is used to assess the reliability of the deterministic dispatching
under stochastic environment, i.e. under stochastic working times. In the present work,
mobile equipment working times of six realistic instances are fitted with the skewed
unimodal Lognormal distribution. Preliminary computational results illustrative that for
high variability level of the equipment working times, themean absolute gap between the
stochastic solution and the deterministic one, can exceed the value of the deterministic
objective function, by 50% of its value. Whereas for low variability level, the determin-
istic objective function of the dispatching problem lightly varies. Furthermore, results
reveal that for high variability level, absolute gap per scenario can reach 49% and 27% of
the deterministic objective function, for respectively high and medium variability levels.
In the case of low variability level, i.e. for CV = 20%, objective functions of generated
scenarios lightly vary when compared to the deterministic solution. In consequence, for
low variability, the deterministic dispatching, that is obtained by using mean values of
equipment working times, remains efficient.

However, for higher variability levels, it is recommended to use the simulation-
based optimization approach to handle stochastic mobile equipment working times. The
decision of the appropriate approach, simulation-based optimization or mathematical
programming, for different variability intensity is based on the analysis of the equipment
historical data.

As a future work, we aim to conduct an extensive computational experimentation
on larger dataset to assess the proposed approach. Such larger sets of data could be
obtained using big data analytics in the new mining era: Mining 4.0. In the same vein,
the stochastic waiting and queuing times of mobile machines, which are included in
stochastic working times, could be obtained from real-time records of connected IoT
sensors in the mining environment.
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