
Martijn Mes
Eduardo Lalla-Ruiz
Stefan Voß (Eds.)

LN
CS

 1
30

04 Computational
Logistics
12th International Conference, ICCL 2021
Enschede, The Netherlands, September 27–29, 2021
Proceedings

Lecture Notes in Computer Science 13004

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Martijn Mes • Eduardo Lalla-Ruiz •

Stefan Voß (Eds.)

Computational
Logistics
12th International Conference, ICCL 2021
Enschede, The Netherlands, September 27–29, 2021
Proceedings

123

Editors
Martijn Mes
IEBIS
University of Twente
Enschede, Overijssel, The Netherlands

Eduardo Lalla-Ruiz
IEBIS
University of Twente
Enschede, Overijssel, The Netherlands

Stefan Voß
IWI-Institute of Information Systems
University of Hamburg
Hamburg, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-87671-5 ISBN 978-3-030-87672-2 (eBook)
https://doi.org/10.1007/978-3-030-87672-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9676-5259
https://orcid.org/0000-0002-7286-9501
https://doi.org/10.1007/978-3-030-87672-2

Preface

Throughout the last decades, the increasing volume of information and operational
workload in logistics caused a sharp interest in the automation of physical and infor-
mational logistical processes. Companies, institutions, and logistics stakeholders con-
sidering this aspect can react more efficiently to changes and disturbances resulting in
more accurate planning, extending customer and product individualization while, in
many cases, reducing operating costs. This resulted in advances in several logistics
sectors, such as maritime shipping, multi-modal transport, urban logistics, warehous-
ing, and inventory management. Computational logistics, as the driver between deci-
sion making and operations, has become a key component for economic and industrial
growth.

Computational logistics covers the management of logistics’ activities and tasks
through the joint use of information and communication technologies and advanced
decision support and optimization techniques. It is applied in several areas, e.g., the
flow and storage of goods and services as well as the flow of related information. In this
context, modeling and algorithmic approaches are developed, verified, and applied for
planning and executing complex logistics tasks, e.g., for finding the most efficient
routing plan and schedule to transport passengers or distribute goods. The models and
algorithms are integrated with computing technologies, not only to get satisfactory
results in reasonable times but also to exploit interactivity with the decision maker
through visual interfaces, and to extract knowledge from data to improve future
decision making. This promotes the joint effort of practitioners and scholars for better
understanding and solving the logistics problems at hand.

The International Conference on Computational Logistics (ICCL) is a forum where
recent advances in the computational logistics research area are presented and dis-
cussed. This volume offers a selection of 42 peer-reviewed papers out of the 111
contributions submitted to the this year’s edition of ICCL, held virtually at the
University of Twente, Enschede (The Netherlands), during September 27–29, 2021.
The papers show various directions of importance in computational logistics, classified
into five topic areas reflecting the interest of researchers and practitioners in this field.
The papers in this volume are grouped accordingly:

1. Maritime and Port Logistics
Maritime and port logistics is the backbone of global supply chains and international
trade. The performance and functioning of its related activities are remarkably
influenced by the quality of its planning and management. In ICCL 2021, the
contributions that fall into this category relate to, among other things, berth allo-
cation, ship routing, bulk logistics, simulation and proactive approaches, and various
real-world maritime applications.

2. Supply Chain and Production Management
The management of supply chains (SCs) and production covers different relevant
logistics operations such as warehousing, workforce management, lot-sizing,

inventory management, and information sharing. The works included in this cate-
gory pursue the efficient organization and management of the diverse resources and
operations involved in such a way that the production, flow, and storage of products
is as efficient as possible. Contributions related to all above-mentioned components,
such as warehousing and inventory management, production scheduling, lot-sizing,
and other SC-related topics fall into this category.

3. Urban Transport and Collaborative Logistics
The progress in urban transport and collaborative logistics as well as the develop-
ment of (smart) cities and regions require current systems to be adapted and updated
to cope with changes that involve new transportation means, such as drones, the
sharing of logistics resources, and collaboration among different logistics opera-
tions. The papers in this category relate to a diverse range of topics, such as car- and
ride-sharing, drone-assisted delivery, self-coordination of vehicles, and micro-transit
services.

4. Routing, Dispatching, and Scheduling
The routing, dispatching, and scheduling of logistics resources constitute an
important challenge in real-world transport and logistics activities. Due to numerous
specific real-world features, there is a strong necessity for modeling and developing
efficient solutions as well as formalizing cases that foster advancements in this area.
The papers in this category address, among other things, green pickup and delivery,
rerouting and dispatching operations, and service and tour planning approaches.

5. Air Logistics and Multi-Modal Transport
Traditionally, the majority of studies presented at ICCL focus on maritime and road
transport. However, nowadays there is an increasing interest in air logistics due to
the necessity to operate more efficiently and sustainably. Furthermore, attention is
given to logistics problems involving a combination of transportation means,
leading to multi-modal transport, where at least two different transport modes are
used (e.g., air, water, road, or rail). Thus, the papers that appear in this category
relate to a range of topics concerning air logistics and multi-modal transport, such as
aircraft routing, gate scheduling, cargo packing, multi-modal transport, and physical
internet analysis.

ICCL 2021 was the 12th edition of this conference series, following the earlier ones
held in Shanghai, China (2010, 2012), Hamburg, Germany (2011), Copenhagen,
Denmark (2013), Valparaiso, Chile (2014), Delft, The Netherlands (2015), Lisbon,
Portugal (2016), Southampton, UK (2017), Salerno, Italy (2018), Barranquilla,
Colombia (2019), and Enschede, The Netherlands (2020). The editors thank all the
authors for their contributions as well as the Program Committee and reviewers for
their invaluable support and feedback. Finally, we would like to express our gratitude
to Julia Bachale for her helpful support and assistance during the preparation of the
conference. We trust that the present volume supports the continued advances within
computational logistics and inspires all participants and readers to its fullest extent.

September 2021 Martijn Mes
Eduardo Lalla-Ruiz

Stefan Voß

vi Preface

Organization

Program Committee

Panagiotis Angeloudis Imperial College London, UK
Tolga Bektas University of Liverpool, UK
Francesco Carrabs University of Salerno, Italy
Carlos Castro Universidad Federico de Santa María, Chile
Raffaele Cerulli University of Salerno, Italy
Joachim Daduna Berlin School of Economics and Law, Germany
Christopher

Expósito-Izquierdo
University of La Laguna, Spain

Yingjie Fan Leiden University, The Netherlands
Elena Fernández Universidad de Cádiz, Spain
Monica Gentili University of Louisville, USA
Rosa González-Ramírez Universidad de Los Andes, Chile
Hans-Dietrich Haasis University of Bremen, Germany
Richard Hartl University of Vienna, Austria
Geir Hasle SINTEF Digital, Norway
Wouter van Heeswijk University of Twente, The Netherlands
Leonard Heilig University of Hamburg, Germany
Alessandro Hill California Polytechnic State University, USA
Jan Hoffmann UNCTAD, Switzerland
Manuel Iori University of Modena and Reggio Emilia, Italy
Jiangang Jin Shanghai Jiao Tong University, China
Raka Jovanovic Qatar Environment and Energy Research Institute,

Qatar
Herbert Kopfer University of Bremen, Germany
René de Koster Erasmus University Rotterdam, The Netherlands
Ioannis Lagoudis University of Piraeus, Greece
Eduardo Lalla-Ruiz (Chair) University of Twente, The Netherlands
Jasmine Siu Lee LamNanyang Technological University, Singapore
Gilbert Laporte HEC Montréal, Canada
Janny Leung University of Macau, China
Israel López-Plata University of La Laguna, Spain
Dirk Mattfeld TU Braunschweig, Germany
Frank Meisel University of Kiel, Germany
Gonzalo Mejía Universidad de La Sabana, Colombia
Belén Melián-Batista Universidad de La Laguna, Spain
Martijn Mes (Chair) University of Twente, The Netherlands
José Marcos Moreno-Vega Universidad de La Laguna, Spain
Adriana Moros-Daza Universidad del Norte, Colombia

Rudy Negenborn Delft University of Technology, The Netherlands
Dario Pacino Technical University of Denmark, Denmark
Julia Pahl University of Southern Denmark, Denmark
Carlos Paternina-Arboleda Universidad del Norte, Colombia
Mario Ruthmair University of Vienna, Austria
Dirk Sackmann Hochschule Merseburg, Germany
Juan José Salazar González Universidad de La Laguna, Spain
Frederik Schulte Delft University of Technology, The Netherlands
Marco Schutten University of Twente, The Netherlands
Xiaoning Shi University of Hamburg, Germany
Douglas Smith University of Missouri–St. Louis, USA
Maria Grazia Speranza University of Brescia, Italy
Shunji Tanaka Kyoto University, Japan
Kevin Tierney Bielefeld University, Germany
Thierry Vanelslander University of Antwerp, Belgium
Stefan Voß (Chair) University of Hamburg, Germany

Additional Reviewers

Fabian Akkerman
Adina Aldea
Thiago Alves De Queiroz
Lorena Bearzotti
Breno Beirigo
Beatrice Bolsi
Matteo Brunetti
Giovanni Campuzano
Rafael Carmona-Benitez
Fabio D’Andreagiovanni
Alan Dávila de León
Oskar Eikenbroek
Alejandro Fernández-Gil
Jose García Conejeros
Rogier Harmelink
Xiaohuan Lyu
Meead Mansoursamaei

Bernardo Martin-Iradi
Javier Maturana-Ross
Mahmoud Moradi
Mirko Mucciairni
João Nabais
Yaxu Niu
Dennis Prak
Peter Shobayo
Engin Topan
Noemi Van Meir
Robert van Steenbergen
Matthias Volk
Daniel Wetzel
Jeffrey Willems
Vahid Yazdanpanah
Jun Ye
Jingjing Yu

viii Organization

Contents

Maritime and Port Logistics

An Integrated Planning, Scheduling, Yard Allocation and Berth Allocation
Problem in Bulk Ports: Model and Heuristics . 3

João Luiz Marques de Andrade and Gustavo Campos Menezes

Simulation of an AIS System for the Port of Hamburg 21
Pierre Bouchard, Adriana Moros-Daza, and Stefan Voß

Designing the Hydrogen Supply Chain for Maritime transportation
in Norway . 36

Šárka Štádlerová and Peter Schütz

Destination Prediction of Oil Tankers Using Graph Abstractions
and Recurrent Neural Networks . 51

Búgvi Benjamin Magnussen, Nikolaj Bläser, Rune Møller Jensen,
and Kenneth Ylänen

Scheduling Drillships in Offshore Activities . 66
Rafael Gardel Azzariti Brasil, Marco Aurélio de Mesquita,
Dario Ikuo Miyake, Tiago Montanher, and Débora P. Ronconi

Solving a Real-Life Tramp Ship Routing and Scheduling Problem
with Speed Profiles . 82

Lucas Louzada, Rafael Martinelli, and Victor Abu-Marrul

Optimizing Maritime Preparedness Under Uncertainty – Locating Tugboats
Along the Norwegian Coast . 97

Julie Louise Musæus, Håkon Nøstvik, Henrik Andersson,
and Peter Schütz

Supply Chain and Production Management

Layout-Agnostic Order-Batching Optimization . 115
Johan Oxenstierna, Jacek Malec, and Volker Krueger

Automated Negotiation for Supply Chain Finance . 130
Alexandra Fiedler and Dirk Sackmann

Production Scheduling with Stock- and Staff-Related Restrictions 142
Carlo S. Sartori, Vinícius Gandra, Hatice Çalık, and Pieter Smet

Chances of Interpretable Transfer Learning for Human Activity
Recognition in Warehousing. 163

Michael Kirchhof, Lena Schmid, Christopher Reining,
Michael ten Hompel, and Markus Pauly

A Multi-periodic Modelling Approach for Integrated Warehouse Design
and Product Allocation . 178

Martin Scheffler, Lisa Wesselink, and Udo Buscher

New Valid Inequalities for a Multi-echelon Multi-item Lot-Sizing Problem
with Returns and Lost Sales . 192

Franco Quezada, Céline Gicquel, and Safia Kedad-Sidhoum

Interactive Multiobjective Optimization in Lot Sizing with Safety Stock
and Safety Lead Time . 208

Adhe Kania, Juha Sipilä, Bekir Afsar, and Kaisa Miettinen

The Craft Beer Game and the Value of Information Sharing. 222
Joshua Grassel, Alfred Craig Keller, Alessandro Hill,
and Frederik Schulte

Smarter Relationships? The Present and Future Scope of AI Application
in Buyer-Supplier Relationships . 237

Anna-Maria Nitsche, Markus Burger, Julia Arlinghaus,
Christian-Andreas Schumann, and Bogdan Franczyk

The Effect of Order Batching on a Cyclical Order Picking System 252
Flora Maria Hofmann and Stephan Esterhuyse Visagie

Bi-objective Optimization for Joint Production Scheduling and Distribution
Problem with Sustainability . 269

Ece Yağmur and Saadettin Erhan Kesen

On the Effect of Product Demand Correlation on the Storage Space
Allocation Problem in a Fast-Pick Area of a Warehouse 282

Felipe I. Gré Carafí, Alberto Ossa-Ortiz de Zevallos,
Rosa G. González-Ramírez, and Mario C. Velez-Gallego

Urban Transport and Collaborative Logistics

Real-Time Dispatching with Local Search Improvement
for Dynamic Ride-Sharing . 299

Martin Pouls, Anne Meyer, and Katharina Glock

A Learning and Optimization Framework for Collaborative Urban Delivery
Problems with Alliances. 316

Jingfeng Yang and Hoong Chuin Lau

x Contents

Analysis of Schedules for Rural First and Last Mile Microtransit Services . . . 332
Christian Truden, Mario Ruthmair, and Martin J. Kollingbaum

The Share-A-Ride Problem with Integrated Routing and Design Decisions:
The Case of Mixed-Purpose Shared Autonomous Vehicles 347

Max van der Tholen, Breno A. Beirigo, Jovana Jovanova,
and Frederik Schulte

Algorithms for the Design of Round-Trip Carsharing Systems
with a Heterogeneous Fleet . 362

Pieter Smet, Emmanouil Thanos, Federico Mosquera,
and Toni I. Wickert

Exact Separation Algorithms for the Parallel Drone Scheduling Traveling
Salesman Problem. 377

Tobias Klein and Peter Becker

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 393
Giovanni Campuzano, Eduardo Lalla-Ruiz, and Martijn Mes

Formal Methods to Verify and Ensure Self-coordination Abilities
in the Internet of Vehicles . 410

Vahid Yazdanpanah, Enrico H. Gerding, and Sebastian Stein

Routing, Dispatching, and Scheduling

Equipment Dispatching Problem for Underground Mine Under Stochastic
Working Times. 429

Nour El Houda Hammami, Amel Jaoua, and Safa Bhar Layeb

Vertical Stability Constraints in Combined Vehicle Routing and 3D
Container Loading Problems. 442

Corinna Krebs and Jan Fabian Ehmke

Automated Tour Planning for Driving Service of Children with Disabilities:
A Web-Based Platform and a Case Study . 456

Mahdi Moeini and Lukas Mees

A Multi-objective Biased Random-Key Genetic Algorithm for Service
Technician Routing and Scheduling Problem . 471

Ricardo de Brito Damm and Débora P. Ronconi

Optimization of Green Pickup and Delivery Operations in Multi-depot
Distribution Problems . 487

Alejandro Fernández Gil, Eduardo Lalla-Ruiz, Martijn Mes,
and Carlos Castro

Contents xi

Solving the Shipment Rerouting Problem with Quantum
Optimization Techniques . 502

Sheir Yarkoni, Andreas Huck, Hanno Schülldorf, Benjamin Speitkamp,
Marc Shakory Tabrizi, Martin Leib, Thomas Bäck, and Florian Neukart

Improving the Location of Roadside Assistance Resources Through
Incident Forecasting . 518

Roman Buil, Santiago Garcia, Jesica de Armas, and Daniel Riera

Solving a Multi-objective Vehicle Routing Problem
with Synchronization Constraints . 532

Briseida Sarasola and Karl F. Doerner

Air Logistics and Multi-modal Transport

Analysis of the Impact of Physical Internet on the Container
Loading Problem . 549

Ana Rita Ferreira, António G. Ramos, and Elsa Silva

Applying Constraint Programming to the Multi-mode Scheduling Problem
in Harvest Logistics. 562

Till Bender, David Wittwer, and Thorsten Schmidt

Tackling Uncertainty in Online Multimodal Transportation Planning Using
Deep Reinforcement Learning. 578

Amirreza Farahani, Laura Genga, and Remco Dijkman

Robust Multi-Objective Gate Scheduling at Hub Airports Considering
Flight Delays: A Hybrid Metaheuristic Approach . 594

Abtin Nourmohammadzadeh and Stefan Voß

A Branch-and-Cut Algorithm for Aircraft Routing with Crew Assignment
for On-Demand Air Transportation . 611

Rafael Ajudarte de Campos, Thiago Vieira, and Pedro Munari

Designing a Physical Packing Sequence Algorithm with Static Stability
for Pallet Loading Problems in Air Cargo . 627

Philipp Gabriel Mazur, No-San Lee, Detlef Schoder, and Tabea Janssen

Intermodal Competition in Freight Transport - Political Impacts
and Technical Developments . 642

Joachim R. Daduna

Author Index . 661

xii Contents

Maritime and Port Logistics

An Integrated Planning, Scheduling, Yard
Allocation and Berth Allocation Problem

in Bulk Ports: Model and Heuristics

João Luiz Marques de Andrade1(B) and Gustavo Campos Menezes2

1 Graduate Program in Mathematical and Computational Modeling, Federal Center
for Technological Education of Minas Gerais, Belo Horizonte, MG, Brazil

2 Department of Electronics and Computing, Federal Center for Technological
Education of Minas Gerais, Belo Horizonte, MG, Brazil

gustavo@cefetmg.br

Abstract. Integrating operational and logistic processes is fundamental
to ensure a port terminal’s efficient and productive operation. This arti-
cle deals with the integration of planning, scheduling, yard allocation, and
berth allocation in dry bulk export port terminals. The integrated problem
consists of planning and sequencing the flow of products between arrival at
the terminal and the berths, allocating the products to the storage yards,
and determining the sequence, berthing time, and position of each vessel.
A mixed-integer linear programming formulation is proposed, connecting
the problems and incorporating tidal time windows and non-preemptive
scheduling. To solve the integrated problem more efficiently, we developed
an algorithm based on a combination of a diving heuristic with limited
backtracking, two relax-and-fix heuristics, a local branching heuristic, a
rolling horizon heuristic, and a variable-fixing strategy. The mathematical
formulation and proposed algorithm are tested and validated with large-
scale instances. The computational results show that the proposed algo-
rithm is effective in finding strong upper bounds.

Keywords: Integrated planning · Scheduling · Berth allocation · Yard
allocation · Matheuristics

1 Introduction

Port terminals are an essential and strategic part of the global supply chain. They
manage large volumes of products between land transport and sea vessels, and the
performance of their operations directly affects the entire chain. For this reason,
it is fundamental that various logistics operations and processes at the terminals
are carried out with the best possible efficiency. Based on the previous literature,
the benefits of using Operations Research and its methods in improving the per-
formance of the activities practiced by port terminals are well known.

Port terminals are complex facilities that have several strongly related oper-
ational and logistical problems. For example, the equipment schedule is directly
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-030-87672-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_1

4 J. L. M. de Andrade and G. C. Menezes

related to both the allocation of products in the stockyards and the loading of the
vessels because the equipment interferes in when and where a product is stacked
and removed in the yards and when and where the vessel should be loaded. Sim-
ilarly, the storage yards and the allocation of ships in the berths affect the use of
equipment. Therefore, optimizing operations individually, ignoring the relation-
ships between them, can generate solutions for the terminal with low-quality [17].

Motivated by the importance of integrating operations at port terminals,
this paper has as its contribution a mathematical formulation that integrates
the problems of planning, sequencing, yard allocation, and berth allocation in
dry bulk exporting port terminals. It is well established the difficulties of solvers
in solving complex models; for this reason, an algorithm has been developed
that combines a diving heuristic with backtracking, two relax-and-fix heuristics
adapted for the formulation, local branching heuristic, and a rolling horizon
heuristic. Heuristics are applied to obtain integer solutions for specific sets of
variables, and in the end, generate a good quality feasible integer solution to the
problem. Computational experiments with large-scale instances are conducted
to validate the formulation and test the performance of the proposed algorithm.
The computational results prove the effectiveness of the algorithm and the model.

The remainder of the paper is structured as follows: Sect. 2 provides a liter-
ature review. Section 3 introduces the problem through a detailed description.
The mathematical model is proposed in Sect. 4. Section 5 presents a solution app-
roach. Results and computational experiments are analyzed in Sect. 6. Finally,
conclusions and future research are addressed in Sect. 7.

2 Literature Review

The high complexity of management and heterogeneous processes of port termi-
nals provides a fertile field to apply operational research and its methods. In recent
years, the operational problems of port terminals have received attention from the
academic community, and consequently, significant progress has been made. Most
contributions are associated with optimizing container terminals, while bulk port
terminals have received relatively little attention from researchers.

A part of the bulk terminal optimization literature focuses on individual
problems, while the other part is focused on integrated problems. Barros et al.
[1], Umang et al. [15], Ernst et al. [5] and Cheimanoff et al. [2] are papers that
focus on the individual problems of berth allocation, and Hu and Yao [8], Unsal
[16] investigate the individual problems of reclaimer scheduling. Robenek et al.
[11], Tang et al. [14], Menezes et al. [9,10], Unsal and Oguz [17] and Rocha de
Paula et al. [12] study integrated approaches to bulk terminal operational prob-
lems. Robenek et al. [11] extend the work of Umang et al. [15] by integrating the
berth allocation problem with the yard assignment problem. The authors con-
sider several realistic assumptions, such as dynamic ship arrival, cargo handling
capacity, storage location restrictions based on the type of cargo, and congestion
constraints. Tang et al. [14] study an integrated storage space allocation and ship
scheduling problem to achieve better yard utilization and reduce product losses
and transportation costs. The authors of this paper develop a yard management

An Integrated Planning, Scheduling, Yard Allocation 5

method based on dividing large yards into smaller areas. Unsal and Oguz [17]
propose integrating the problems of berth allocation, reclaimer scheduling, and
yard allocation. The problem incorporates the operational problems and con-
straints of the tidal window, multiple stocking pads, non-crossover of reclaimers,
and vessel and berth size. Recently, Rocha de Paula et al. [12] has developed
a genetic algorithm to maximize the efficiency of a coal export terminal. The
article studies an optimization method that programs the arrival of coal at the
terminal, determines the periods of stacking and recovery of the coal loads, and
programs the arrival and departure times of the vessels. Other lines of research
in the area of bulk terminals are represented by the works of Dávila de Leon
et al. [3,4]. Dávila de Leon et al. [3] develops machine learning-based system
for supporting berthing operations in bulk ports, and Dávila de Leon et al. [4]
proposes a simulation-optimization in bulk berth scheduling.

Menezes et al. [9,10] study a production planning and scheduling problem
in bulk cargo terminal. The problem considers planning and sequencing the
flow of products between supply, storage, and demand nodes, minimizing the
operational costs. The main highlights of the papers are the new mathematical
formulation and solution approaches. In Menezes et al. [9], a hierarchical heuristic
is presented, while Menezes et al. [10] developed a branch-and-price algorithm.

The formulation presented in the current paper is based on that of Menezes
et al. [9,10]. In this paper, the integrated problem of Menezes et al. [9,10] is
extended with the berth allocation problem. In addition, scheduling constraints
are reformulated to consider a non-preemptive scheduling. The main contribu-
tions of this paper are a mathematical model for the integrated planning, schedul-
ing, yard allocation, and berth allocation problem and a solution algorithm with
new versions of matheuristics.

3 Problem Description

The problem investigated in this paper considers a dry bulk export terminal. The
port complex as a whole can be represented by a set of three subsystems: recep-
tion, stockyards, and berth. Figure 1 provides an overview of the port terminal
with the three subsystems.

Fig. 1. Port complex and its three subsystems.

6 J. L. M. de Andrade and G. C. Menezes

Products are transported between subsystems via routes x and y. Routes
x stock the reception products in the stockyards, and the routes y transport
the products from the yards to load the ships at the berths. These routes are
responsible for transporting quantities (lots) of products and define the various
options of paths along which the products can be transported. Thus, the goal
is to define the quantity and destination of each product, and in addition, to
determine which routes will transport them.

Routes are a combination of equipment previously defined. Each equipment
has a predefined transportation capacity per hour. The lowest capacity equip-
ment on the route defines the capacity of the route. Given equipment can be
shared by more than one route. Thus, if a pair of routes share any equipment,
these routes cannot be active simultaneously. The goal is to activate and schedule
the best routes that can work simultaneously to transport the products. Figure 2
shows an example of two routes that share a stacker.

Fig. 2. Examples of routes with shared equipment.

The product flows arriving in the reception subsystem are directly trans-
ferred to a stock area in the stockyards via routes x. The stockyards subsystem
consists of large product storage areas. Each storage area is further subdivided
into smaller subareas, named subareas. The capacity limit of each subarea is an
input data of the problem. Free space is maintained between the subareas to
avoid contamination at the stacks of products. Each subarea can only store one
product at a time. Whenever a subarea is empty, and a new product is assigned,
it is considered a subarea cleanup cost. The goal is to allocate the best product
in each subarea, and at the same time, prevent different products from being
allocated in the same subarea.

When a vessel docks at a berth, demand is generated that must be met
by the routes y. The arrival of the vessel is considered static. In this study, a
discrete berth layout is assumed. The berths can have different sizes, so each
vessel must dock in the berth corresponding to its size. Moorings are limited by
the effects of the tide. With this restriction, vessels can only leave the berth at
a high tide period, even if the shipment has been completed earlier. Moreover,
as vessels arrived empty at the terminal, they can dock at a low tide period.
The goal is to determine the most efficient loading sequence, considering stock
product quantity, berth length, and tidal window effects. Based on this goal, it
is intended to reduce load times and costs with demurrage.

An Integrated Planning, Scheduling, Yard Allocation 7

4 Model Formulation

This section presents the mathematical formulation for the integrated planning,
scheduling, yard allocation, and berth allocation problem in dry bulk export
terminals. In this formulation, the time horizon is divided into T periods. The
periods must have a time of fewer than 12 h to consider the high tide effects. The
vessels enter at the beginning of each period and leave only at the end of each
period. The notation used in the mathematical model is provided in Table 1.

Table 1. Notation used in the formulation.

Sets

T Set of periods

It Set of microperiods available for period t ∈ T

P Set of products

Rx Set of routes (Reception/Stockyard)

Ry Set of routes (Stockyard/Berths)

R Set of all available routes (R = Rx ∪ Ry)

S Set of storage subareas

Rx
s Subset of routes x that arrive in the subarea s ∈ S

Ry
s Subset of routes y departing from the subarea s ∈ S

M Set of equipment

Rx
m Subset of routes x that use equipment m ∈ M

Ry
m Subset of routes y that use equipment m ∈ M

B Set of berths

N Set of vessels

E Pairs of routes that share at least one piece of equipment to transport

products

Parameters

Opt Supply (in ton) of product p at the beginning of period t

Knp Amount of cargo (in ton) of product p for vessel n

lspt Storage capacity of subarea s ∈ S for product p in period t

bm Capacity of equipment m

jm
t Available time (in hours) for the use of equipment m in period t

crx Capacity (in tons/hour) of route r ∈ Rx

cry Capacity (in tons/hour) of route r ∈ Ry

αpt Penalty for not meeting the supply at the reception of product p in

period t

βnp Penalty for not meeting the demand (cargo) of product p of vessel n

γs
pp′t Preparation cost associated with replacing product p by product p′ in

subarea s at period t

σr Maintenance cost of using route r ∈ R

φn Penalty on the loading time of vessel n at the terminal

lbb Length (in meters) of berth b

lvn Length (in meters) of vessel n

Kmax Constant value equal to the highest load

Ht Maximum duration (in hours) of each period t

Πt Number of microperiods of each period t

μit duration of each microperiod i in period t

Tmax Constant equal to the total number of periods

(continued)

8 J. L. M. de Andrade and G. C. Menezes

Table 1. (continued)

Variables

xr
pt Time (in hours) used by routes r ∈ Rx to transport product p from

reception to the stockyard in period t

yr
pt Time (in hours) used by routes r ∈ Ry to transport product p from the

stockyard to the berths in period t

db
npt Amount of product p loaded on vessel n allocated in berth b in period t

IRpt Represents the amount of product p in the reception subsystem that

was not delivered at the end of period t

IVnp Represents the amount of product p that was not loaded from vessel n

fs
pt Binary, equals 1 if subarea s is allocated for product p in period t, 0

otherwise

Sfs
pp′t Has a value of 1 when product p has been replaced with product p′ at

period t, 0 otherwise. This replacement can occur only when the

amount of product p in subarea s has been exhausted in the preceding

period t − 1

es
pt Amount of product p stored at subarea s in period t

vb
nt Binary, equals 1 if vessel n is moored to berth b in period t, 0 otherwise

wb
n Binary, equals 1 if the berth b is assigned to the vessel n, 0 otherwise

τn Loading time of vessel n

qr
pit Binary, equals 1 if given route r is activated to transport the product p

in the microperiod i ∈ It in period t

The mixed-integer linear programming (MILP) model for the integrated plan-
ning, scheduling, yard allocation and berth allocation problem in dry bulk ports
can be formulated as follows:

min f =
∑

p∈P

∑

t∈T

αptIRpt +
∑

n∈N

∑

p∈P

βnpIVnp +
∑

s∈S

∑

p∈P

∑

p′∈P

∑

t∈T

γs
ptSfpp′t

s

+
∑

p∈P

∑

t∈T

∑

r∈Rx

σr(crxxr
pt) +

∑

p∈P

∑

t∈T

∑

r∈Ry

σr(cryyr
pt) +

∑

n∈N

φnτn

(1)

subject to

∑

r∈Rx

crxxr
pt − IRp(t−1) + IRpt = Opt ∀p ∈ P,∀t ∈ T (2)

∑

r∈Ry

cryyr
pt =

∑

n∈N

db
npt ∀b ∈ B,∀p ∈ P,∀t ∈ T (3)

∑

b∈B

∑

t∈T

db
npt + IVnp = Knp ∀n ∈ N,∀p ∈ P (4)

∑

n∈(N∪0)

vb
nt = 1 ∀b ∈ B,∀t ∈ T (5)

∑

p∈P

db
npt ≤ Kmaxvb

nt ∀b ∈ B,∀n ∈ N,∀t ∈ T (6)

An Integrated Planning, Scheduling, Yard Allocation 9

t−1∑

m=1

vb
nm − vb

n(t−1)t + vb
ntt ≤ t ∀b ∈ B,∀n ∈ N,∀t ∈ T : t > 1 (7)

∑

t∈T

vb
nt = 0 ∀b ∈ B,∀n ∈ N : (lbb < lvn) (8)

∑

b∈B

∑

t∈T

vb
nt = τn ∀n ∈ N (9)

∑

b∈B

wb
n = 1 ∀n ∈ N (10)

∑

t∈T

vb
nt ≤ Tmaxwb

n ∀b ∈ B,∀n ∈ N (11)

es
p(t+1) = es

pt +
∑

r∈Rx
s

crxxr
pt −

∑

r∈Ry
s

cryyr
pt ∀s ∈ S,∀p ∈ P,∀t ∈ T

(12)
es
pt ≥

∑

r∈Ry
s

cryyr
pt ∀s ∈ S,∀p ∈ P,∀t ∈ T (13)

es
pt ≤ lspt ∀s ∈ S,∀p ∈ P,∀t ∈ T (14)

∑

p∈P

fs
pt = 1 ∀s ∈ S,∀t ∈ T (15)

lsptf
s
pt − es

pt ≥ 0 ∀s ∈ S,∀t ∈ T (16)

lsptf
s
pt −

∑

r∈Rx
s

xr
pt ≥ 0 ∀s ∈ S,∀t ∈ T (17)

Sfs
pp′t ≥ fs

p(t−1) + fs
p′t − 1 ∀s ∈ S,∀t ∈ T,∀p ∈ P,∀p′ ∈ P, p �= p′

(18)∑

p∈P

(
∑

r∈Rx
m

crxxr
pt +

∑

r∈Ry
m

cryyr
pt) ≤ jm

t bm ∀m ∈ M,∀t ∈ T (19)

xr
pt ≤

∑

i∈It

qr
pitμit ∀p ∈ P,∀t ∈ T,∀r ∈ Rx (20)

yr
pt ≤

∑

i∈It

qr
pitμit ∀p ∈ P,∀t ∈ T,∀r ∈ Ry (21)

qr
pit + qr′

pit ≤ 1 ∀i ∈ It,∀p ∈ P,∀(r, r′ ∈ E)∀t ∈ T (22)

i−1∑

k=1

qr
pkt−qr

p(i−1)ti+qr
piti ≤ i ∀r ∈ R,∀p ∈ P,∀t ∈ T,∀i ∈ It : i > 1

(23)
The objective function seeks to minimize the penalty of not meeting the supply

of products at the reception subsystem (first term), the penalty of not meeting
the demand of vessels (second term), the product exchange costs in the subareas

10 J. L. M. de Andrade and G. C. Menezes

(third term), the cost of using routes x and y to transport products (fourth and
fifth terms) and the penalties on the loading time of vessels (sixth term).

Constraints (2) are related to meeting the product supply of the reception
subsystem. Constraints (3) control the vessel loadings in the berth subsystem.
Constraints (4) control the demand meeting of the vessels. Constraints (5) ensure
that once a berth is assigned to a vessel, it can no longer be used by any other
vessel in this same period. Note that the vessel 0 (n = 0) represents that the b
berth is empty at period t. Constraints (6) ensure that a vessel can be loaded just
when it is berthed at the berth. Constraints (3), (5) and (6) are complementary
and ensure that vessels are loaded only within the periods they are allocated to
a berth. Constraints (7) ensure no interruption in the vessel loading operation
([1]). Constraints (8) impose vessels with longer berth lengths from berthing
([17]). Constraints (9) are responsible for summing up all periods used to load
each vessel. Constraints (10) and (11) control the allocation of vessel in berths.

Constraints (12) control the input and output of products in the storage
subareas. Constraints (13) impose that the routes y transport only the products
that are in stock at the beginning of the period. Constraints (14) define the
storage capacity of each subarea. Constraints (15)–(17) are responsible for con-
trolling the allocation of products to subareas. Constraints (15) impose that only
one product can be allocated to a subarea in the period. Note that the product
0 (p = 0) represents that the subarea s is empty at period t. Constraints (18)
control the replacement of products in each subarea.

Constraints (19) ensure that no equipment will have its capacity exceeded.
Constraints (20)–(23) refer to scheduling. To perform scheduling, each period t
is divided into microperiods (μit). Where i ∈ It and It represents the total of
microperiods available for period t. The duration of each microperiod is fixed
and given by the following expression: μit = Ht/Πt. Each microperiod will con-
tain only the routes that can be activated simultaneously, in other words, only
routes that have no conflicts in their equipment. This condition is guaranteed
by the constraints (22). The sums of the constraints (20) and (21) represent the
microperiods available for each route. Variables xr

en and yr
en can be interpreted as

transportation tasks because their values represent the hours used to transport
the products between the subsystems. However, to enable the transportation of
products on these routes, it is necessary to allocate some microperiods. Restric-
tions (23) ensure that microperiods are assigned consecutively on active routes,
thus avoiding pre-emption of tasks ([1]).

db
npt, x

r
pt, y

r
pt, e

s
pt, IRpt, IVnp, τn ≥ 0

∀r ∈ R,∀b ∈ B,∀n ∈ N,∀s ∈ S,∀p ∈ P,∀i ∈ It,∀t ∈ T
(24)

fs
pt, v

b
nt, w

b
n, qr

pit ∈ {0, 1}
∀r ∈ R,∀b ∈ B,∀n ∈ N,∀s ∈ S,∀p ∈ P,∀t ∈ T,∀i ∈ It

(25)

0 ≤ Ss
pp′t ≤ 1

∀s ∈ S,∀p ∈ P,∀p′ ∈ (P ∪ 0), p �= p′,∀i ∈ It,∀t ∈ T
(26)

Constraint (24)–(26) determines the domains of variables.

An Integrated Planning, Scheduling, Yard Allocation 11

5 Solution Approach

Solving MILP model formulation with large-scale instances via a solver, such
as CPLEX, is a substantially tricky task and may even be unfeasible. Due to a
large number of constraints and integer variables. Intending to circumvent these
limitations and obtain good solutions, we developed an algorithm that com-
bines matheuristics with a variable-fixing strategy, named the relax-solve-and-fix
heuristic (RSFH). The strategy adopted by the RSFH consists of obtaining a
feasible integer solution for a set of binary variables through a matheuristic or
a combination of them, fixing this solution, repeating this procedure with other
specific groups of binary variables until a feasible integer solution is obtained.

5.1 Diving Heuristic with Limited Backtracking

The sequence in which the variables are fixed is of critical importance, as this
can result in a good quality solution or even an infeasible solution. The first
variables to be set are the wb

n (responsible for only assigning one berth to each
vessel) to restrict the solution space of the remaining variables without gen-
erating infeasible solutions. The feasible integer solution for the variables wb

n

is obtained through a diving heuristic with limited backtracking (DHLB). The
DHLB is based on the works of Harvey and Ginsberg [7], and Sadykov et al.
[13]. The DHLB strategy consists of performing a limited number of depth-first
searches in the solution tree and using the best feasible integer solution found.

DHLB is divided into two phases. In the first phase, the initial node is
obtained with the solution of the relaxed model (all binary variables are relaxed).
From this initial node, a depth-first search will be performed with the intention
of finding a feasible integer solution. The depth is limited by the input parameter
(maxdepth). A rounding strategy is adopted to generate the branch to the left of
the initial node, which sets the fractional variables with a value higher than the
parameter Δ to 1. If no variable can be fixed, the value of Δ is reduced by the
parameter ε until at least one variable is fixed. After fixing some variables, the
relaxed model is solved again via CPLEX, and the fixing procedure is repeated
until an integer solution is obtained. With some variables fixed at 1, the relaxed
model is solved again via CPLEX, and the fixing procedure is repeated to create
a new node. Repeat the entire process until an integer solution is obtained. If
you reach the last node and the solution obtained is still not an integer, the
previous fractional variables with the value closest to 1 should be fixed.

In the second phase of DHLB, new branches are generated to the right at
each node created in the first phase. In these new branches, the variables that are
set to 1 in the branch to the left (in phase 1) are at this phase set to 0. The other
variables that were relaxed should remain the same. Figure 3 illustrates part of
a tree generated by DHLB and exemplifies the new branches on the right, which
wa represents the set of variables fixed to 1 in the first branch of phase 1 and wb

the group of variables fixed in the next branch in the same phase. Another detail
of Fig. 3 is the nodes highlighted in black, representing the first phase, and the
nodes in white, representing the second phase (backtrackings).

12 J. L. M. de Andrade and G. C. Menezes

Fig. 3. Example of enumeration tree of the diving heuristic with backtracking.

With the specific variables fixed at zero, the same variable-fixing procedure
performed in phase 1 is repeated, intending to find a new feasible integer solution
for the variables wb

n. After ending the depth-first search with the branch to
the right of the initial node, the same procedure should be repeated for the
second node generated in the first phase. This procedure of new right-hand
branching (backtracking) is repeated for all nodes generated in the first phase
of the heuristic.

The solution obtained at the end of the first phase is defined as the best
solution. If a new integer solution is generated during right-hand branching and
has a lower value f , this is the new best solution. If the value f of a solution
generated during some backtracking in phase 2 is greater than the best solution,
the search for that node is terminated, and a new depth-first search starts at
the next node generated in the first phase. Therefore, at the end of the second
phase of the heuristic, the best solution of the variables wb

n is fixed.

5.2 Relax-and-fix Heuristic for Variables vb
nt

The next step of RSFH, after vessels are allocated to a berth through the solu-
tion of DHLB, consists in assigning in which periods vessels are loaded (vb

nt).
To obtain an integer solution for the variables vb

nt, first a relax-and-fix heuris-
tic specific to that set of variables (HRF-V) is implemented, and then a local
branching heuristic.

The strategy of HRF-V consists of fixing the variables by period, following
the criterion of fixing the variables with the value closest to 1, then checking the
quantity loaded by the vessel, and fixing the next period if the minimum loading
percentage is not reached.

One input to the HRF-V is the vector Vmax. This vector is used to limit
the number of periods assigned to the vessels. The vector has a value for each
available vessel in the planning horizon. These values are associated to an average
of periods that each vessel has to load, and are calculated by the expression:
t̄ =

⌊
|B|×|T |

|N |
⌋
.

An Integrated Planning, Scheduling, Yard Allocation 13

HRF-V is divided into iterations, with the number of iterations equal to the
number of periods. Each iteration has two variable-fixing procedures. First, the
relaxed model is solved via CPLEX, and then the first iteration is started. At
the beginning of the iteration, the first variable fixing procedure occurs. This
procedure consists in fixing at 1 the variables vb

nt that has the highest value
in each berth in period 1, thus allocating only one vessel in each berth in the
iteration period. After the variables are fixed, the relaxed model is solved again
by the solver, and the second variable fixing procedure is started.

In the second procedure for fixing the variables vb
nt, each vessel that was set

to 1 in the first procedure has the amount of product loaded by the period of
the iteration verified. If the quantity loaded by the particular vessel is less than
70% of the total cargo and the number of periods assigned to the respective
vessel is less than the maximum (given by Vmax), the variable vb

nt associated
with period 2 is set to 1. For example, if ship 2 has the highest value among the
ships allocated to berth 3 in period 1, the variable v3

21 is set to 1 (first procedure).
After the model is solved, if the amount of product loaded by the vessel in period
1 is less than 70% and the number of periods given by the vector Vmax is equal
or greater than 2, the variable v3

22 is assigned to 1; otherwise, it is not assigned.
Once the second variable-fixing procedure is finished in iteration 1, the second
iteration begins.

In the second and subsequent iterations, the same procedures as in iteration
1 are repeated, i.e., the first procedure, the solution of the relaxed model via
CPLEX, and the second variable-fixing procedure. All variables set to 1, whether
set in the first procedure of the current period t or set in the second step of period
t − 1, are verified and fixed in the second variable fixing procedure of period t.
In the previous example, the variables v3

21 and v3
22 of vessel 2 allocated to berth

3 were fixed at iteration 1 (period 1). In iteration 2 (period 2), no variable
associated with berth three is analyzed in the first fixing procedure because v3

22

is already fixed at 1; however, in the second procedure, the loading of vessel
two is checked, as also of the other vessels. Note that the second variable fixing
procedure is not performed in the last period.

5.3 Local Branching Heuristic

A local branching matheuristic is implemented to refine the greedy solution given
by HRF-V. Local branching is a technique introduced by Fischetti and Lodi [6]
to solve integer problems. The local branching algorithm developed in this work
is presented in Algorithm 1.

14 J. L. M. de Andrade and G. C. Menezes

Algorithm 1: Local Branching
Input: s′,k0,tlimit.

1 s∗ ←− s′

2 k ←− k0
3 it ←− 0
4 while it ≤ itmax do
5 add the constraint Δ(s∗, s′) ≤ k to the model;

6 s′ ←− solveModel(tlimit)

7 if value f of the feasible solution s′ is less than feasible solution s∗ then
8 remove the constraint Δ(s∗, s′) ≤ k to the model;

9 add the constraint Δ(s∗, s′) ≥ k + 1 to the model;

10 s∗ ←− s′

11 else
12 remove the constraint Δ(s∗, s′) ≤ k to the model;
13 k = k + 1

14 it = it + 1

Initially, the solution s′ obtained previously in the relax-and-fix heuristic is
used as a reference solution (s∗). Then a local branching constraint of the form
Δ(s∗, s′) ≤ k is added to the model, and then the CPLEX solver is run until it
finds an optimal solution or reaches the execution time limit (tlimit). If this new
solution (s′) has a lower cost than the solution s∗, the last local branching con-
straint of the form Δ(s∗, s′) ≤ k is removed, and a local branching constraint of
the form Δ(s∗, s′) ≥ k+1 is added to the formulation.This procedure means that
a branch from the right-hand side of the local branching enumeration tree will be
explored, and the value of k returns to the minimum distance. If the solution s′

has a higher cost than the solution s∗, the last local branching constraint of the
form Δ(s∗, s′) ≤ k is removed, and the value of the parameter k is incremented
by 1, extending the distance. Subsequently, to either of the two cases, a new local
branching constraint of the form Δ(s∗, s′) ≤ k based on the new solution found,
or on the new value of k, is added to the formulation. This procedure is repeated
until the maximum iteration is reached. Both local branching constraints used
in Algorithm 1 remain the same as proposed in Fischetti and Lodi [6].

5.4 Relax-and-Fix Heuristic for the Variables fs
pt

With the integer solutions of the variables wb
n and vb

nt already defined, the next
step of RSFH is obtain a feasible integer solution for the variables fs

pt (allocate
the products to the subareas). First, a relax-and-fix heuristic specific to the vari-
ables fs

pt is applied to provide an initial solution, then the same local branching
algorithm is applied to the variables vb

nt, but with different parameters.
The relax-and-fix heuristic specific for the variables fs

pt (HRF-F) is divided
into two parts. The first part starts by solving the model with the variables fs

pt

relaxed via CPLEX. Using the solution generated by the solver, the variables fs
pt

that have a value greater than the parameter α is set to 1. Next, the parameter
α is decremented by the value of 0.05.

These three procedures are repeated in a loop until a feasible integer solution
is found, or while the value of α is greater than 0.5. This limiting value is justified
by the possible case of two or more variables fs

pt having a higher value α in only

An Integrated Planning, Scheduling, Yard Allocation 15

one subarea. If fixed these variables, it would originate an infeasible solution
because it would assign more than one product in only one subarea and not
respecting the constraints (15).

If an integer solution is not obtained yet, the second part of HRF-F begins.
This part consists of converting to binary the variables fs

pt that have not yet been
fixed, solving the relaxed model via CPLEX, and fixing the generated solution.

The feasible integer solution found by HRF-F is used as the incumbent solu-
tion for the local branching heuristic.

5.5 Rolling Horizon Heuristic

The integer solution for the variables fs
pt obtained via a local branching heuristic

is fixed but may be modified. The integer solution for the variables fs
pt and

qr
pit (responsible for scheduling the routes and preventing them from sharing

equipment) is obtained in an integrated manner using a rolling horizon heuristic
(RHH).

The main idea of RHH is to partition the planning horizon into smaller
subproblems and then consecutively solve each of the subproblems. This strategy
is intended to reduce computational effort since only one subproblem will present
binary variables, while the subproblems that have been solved present fixed
variables, and the following subproblems the variables are relaxed.

In this work, each subproblem is a period t. The strategy of RHH consists
of repeating the following procedure for each t period: converting only the fs

pit

and qr
pit variables of the t period to binary, solving the model via solver until

an optimal solution is obtained, and fixing this solution. Note that while the
variables fs

pt and qr
pit are binary of period t, in period t + 1 the variables fs

pt

are fixed following the solution obtained by local branching and the variables
qr
pit are relaxed. Furthermore, the variables fs

pt and qr
pit in the period t − 1 are

fixed according to RHH’s solution. With the completion of this last heuristic a
feasible integer solution to the integrated problem is obtained.

6 Computational Results

To validate the proposed mathematical formulation and test the performance of
the proposed algorithm, we elaborate a set of instances capable of simulating
several characteristics of a dry bulk terminal. The goal is to generate instances
that simulate configurations in relative proximity to real cases and stress the
solution approach used as much as possible. Some of the parameters used are
detailed in the Table 2.

16 J. L. M. de Andrade and G. C. Menezes

Table 2. Data used to generate the instances.

Parameters Description

Stockyard The storage area has been divided into 50 subareas,
where each subarea has a limit capacity of 100,000
tons of storage

Equipment Five car dumpers, five reclaimers, four
stackers/reclaimers (equipment that performs both
tasks), five stackers, and six ship loaders. At the
terminal in question, there are approximately 50 km
of conveyor belts. Each route uses one belt segment

Mooring berths The terminal has three berths. In which the berths
have the lengths (lbb) of 335, 300, 240 m, respectively

Vessel length The length of the vessels (lvn) is divided into three
cases: 10% are vessels longer than 315 m, 40% are
vessels between 275 and 290 m, and 50% are vessels
shorter than 240 m

αpt 0.5 (half monetary units) for all products and periods

βnp 1 (one monetary units) for all products and vessels

φn 10 (ten monetary units) for all for vessels

γs
pp′t 1 (one monetary units) for any product exchange in

all periods and subareas

σr Based on the following formula: 0.01 (monetary unit)
× length of route r

For the experiments described next, the capacity of the equipment is var-
ied between 12,000 and 16,000 ton/h, 150 routes are considered, and the initial
amount of product in the stockyard is set at 30%. About the supply amounts
and shipments, they were generated randomly but are large scale with proximity
to real data from bulk port terminals in Brazil. The maximum duration of each
period (Ht) is 11 h, to respect the high tide restrictions and to consider a reason-
able time for berthing and undocking vessels. The duration of each microperiod
(μit) is one hour.

The input parameters for DHLB are as follows: maxdepth = 5, Δ = 0.95 and
ε = 0.05. Through these parameters, it is intended to fix a reasonable amount of
variables in each node so that consequently, the search tree is not relatively long
and the computational time is reduced, but still generate good integer solutions
for the variables wb

nt. The input parameters for local branching heuristics for the
variables vb

nt are as follows: itmax = 5, tlimit = [180, 540] seconds and k0 =
⌊

|T |
2

⌋
.

Whereas, the input parameters for local branching heuristics for the variables
fs

en are as follows: itmax = 2, tlimit = [900, 1200] seconds and k0 = |T |. These
values for the parameters were obtained after numerous tests, and it was noted
that with them, there was a more significant benefit between computational time
and the upper bound found. The variation in the parameter values in both cases
is associated with the number of types of products handled.

An Integrated Planning, Scheduling, Yard Allocation 17

All computational experiments are performed using CPLEX 12.9 on a com-
puter with a 3.50 GHz processor and 32 GB RAM. The time limit is set as
six-hour (21600 s).

In the following table, the column instance refers to the instance number and
specification. For example, instance 01-05T05P03V , represents instance number
1 and a time horizon of 5 periods (05T), 5 different products being handled
(05P), and a queue with 5 available vessels (5V). The columns f and fub1 exhibit
the best upper bounds obtained by the CPLEX solver and the proposed algo-
rithm, respectively. The column fub2 presents the upper bounds obtained with
the proposed algorithm without using the local branching heuristic. Column
flb provides the lower bound for the MILP model (linear relaxation). Column
GAP1 gives the GAP between the best lower bound and upper bound obtained
via CPLEX solver. Column GAP2 gives the relative GAP between the upper
bounds generated by the CPLEX solver and the developed algorithm, given
GAP2 = ((fub1/f) − 1)100. Lastly, the columns tcplex and theu are the compu-
tational times, expressed in seconds.

Table 3 presents the computational results for instances with variations in
the number of vessels, types of products handled, and periods. The instances
are separated into three groups, representing three congestion situations at the

Table 3. Computational results for a set of instances with variation in the number of
available vessels.

Set Instance CPLEX RSFH

flb f tcplex GAP1 fub1 theu GAP2 fub2

1 01-05T05P03V 52.19 54.49 839 0.00 54.49 276 0,00 84.13

02-05T10P03V 51.29 55.29 2456 0.00 56.41 1170 2,03 95.88

03-10T05P08V 125.63 139.62 T.L. 4.33 146.37 2702 4,84 229.08

04-10T10P08V 127.42 154.04 T.L. 9.40 153.33 4272 −0,46 2.40E+04

05-15T05P12V 196.54 237.34 T.L. 10.70 241.00 3558 1,54 391.89

06-15T10P12V 199.57 – – – 266.55 7777 – 5.92E+04

2 07-05T05P05V 75.66 77.30 658 0.00 78.60 267 1,68 105.87

08-05T10P05V 75.85 81.38 2851 0.00 82.19 1416 0,98 146.91

09-10T05P10V 155.66 172.25 T.L. 4.56 177.98 2245 3,33 251.01

10-10T10P10V 156.70 218.25 T.L. 23.62 182.55 4926 –16,36 1.90E+04

11-15T05P15V 234.06 273.20 T.L. 11.02 284.45 4028 4,12 1062.04

12-15T10P15V 232.67 – – – 310.58 9599 – 7.46E+04

3 13-05T05P07V 101.89 103.26 626 0.00 103.67 166 0,39 157.30

14-05T10P07V 103.49 110.77 6794 0.00 114.04 1389 2,95 194.08

15-10T05P12V 180.50 206.90 T.L. 7.14 208.21 2827 0,64 302.63

16-10T10P12V 183.81 282.52 T.L. 31.18 241.66 4609 –14,46 4.69E+04

17-15T05P17V 255.66 311.47 T.L. 13.38 294.76 5487 –5,36 457.73

18-15T10P17V 254.09 – – – 351.46 10220 – 1.05E+05

(-) represents instances for which the solver could not solve the integrated problem due
to insufficient memory.
T.L. refers that instance is terminated by the time limit.

18 J. L. M. de Andrade and G. C. Menezes

terminal. This congestion is associated with the number of ships that must be
loaded and the number of periods in the time horizon. Sets 1, 2 and 3, are low,
medium, and high congestion, respectively.

The results presented in the table demonstrate the difficulty of the CPLEX
solver in finding good solutions for the MILP model. In the medium-scale
instances, the solver could only find an upper bound within the 6-hour test lim-
its. In the larger scale instances, CPLEX was unable to produce any significant
results due to insufficient memory.

With the RSFH, it was possible to obtain good upper bounds for all instances,
and in all solutions, all offers and demands were met. In the instances that the
solver obtained an optimal solution (ins. 01, 02, 07, 08, 13, and 14), the algorithm
obtained upper bounds with GAP little than 2%. In particular, instance 01, in
which the RSFH obtained optimal solution in one-third of the computational
time of solver. When comparing the solutions between the two methods, using
the columns GAP2, tcplex and theu, the solver obtain a better upper bound than
the algorithm in 55% of the instances; however, the computational time of the
solver is significantly different compared to the developed algorithm. Note that
in 23% of the instances, the algorithm generated an upper bound with a value
of f better than found by the solver. The upper bounds of column fub2 highlight
the importance of the local branching heuristic in refining the greedy solutions
of the relax-and-fix heuristics.

7 Conclusions

This paper proposes an integrated model for the integrated planning, schedul-
ing, yard allocation, and berth allocation problem for bulk cargo port terminals
and an RSFH that combines new and specific versions of matheuristics into a
variable-fixing strategy.

The proposed formulation was validated with instances based on parameters
with proximity to real cases. As expected, the CPLEX solver presented signifi-
cant difficulties in solving the MILP model, solving only the smaller instances.
Meanwhile, the computational results show that the RSFH performed satisfac-
torily. The good upper bounds obtained result from the efficient combination of
the proposed heuristics, especially the local branching heuristic and the variable-
fixing strategy.

Based on the scale of the integrated problem and the formulation, future work
focuses on improving the mathematical formulation and applying a decomposi-
tion method to obtain better, and eventually optimal, solutions more efficiently.

An Integrated Planning, Scheduling, Yard Allocation 19

Acknowledgments. This research is supported by the following institutions: Brazil-
ian National Research Council (CNPq), Coordination of Superior Level Staff Improve-
ment (CAPES) and Federal Center for Technological Education of Minas Gerais
(CEFET-MG).

References

1. Barros, V.H., Costa, T.S., Oliveira, A.C., Lorena, L.A.: Model and heuristic for
berth allocation in tidal bulk ports with stock level constraints. Comput. Ind. Eng.
60(4), 606–613 (2011). https://doi.org/10.1016/j.cie.2010.12.018

2. Cheimanoff, N., Fontane, F., Kitri, M.N., Tchernev, N.: A reduced vns based app-
roach for the dynamic continuous berth allocation problem in bulk terminals with
tidal constraints. Expert Syst. Appl. 168,(2021). https://doi.org/10.1016/j.eswa.
2020.114215

3. de León, A.D., Lalla-Ruiz, E., Melián-Batista, B., Marcos Moreno-Vega, J.: A
machine learning-based system for berth scheduling at bulk terminals. Expert Syst.
Appl. 87, 170–182 (2017). https://doi.org/10.1016/j.eswa.2017.06.010

4. de León, A.D., Lalla-Ruiz, E., Melián-Batista, B., Moreno-Vega, J.M.: A
simulation-optimization framework for enhancing robustness in bulk berth schedul-
ing. Eng. Appl. Artif. Intell. 103,(2021). https://doi.org/10.1016/j.engappai.2021.
104276

5. Ernst, A.T., Oğuz, C., Singh, G., Taherkhani, G.: Mathematical models for the
berth allocation problem in dry bulk terminals. J. Sched. 1–15 (2017). https://doi.
org/10.1007/s10951-017-0510-8

6. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98, 23–47 (2003).
https://doi.org/10.1007/s10107-003-0395-5

7. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI (1995)
8. Hu, D., Yao, Z.: Stacker-reclaimer scheduling in a dry bulk terminal. Int. J. Com-

put. Integr. Manuf. 25(11), 1047–1058 (2012). https://doi.org/10.1080/0951192X.
2012.684707

9. Menezes, G.C., Mateus, G.R., Ravetti, M.G.: A hierarchical approach to solve a
production planning and scheduling problem in bulk cargo terminal. Comput. Ind.
Eng. 97, 1–14 (2016). https://doi.org/10.1016/j.cie.2016.04.007

10. Menezes, G.C., Mateus, G.R., Ravetti, M.G.: A branch and price algorithm to
solve the integrated production planning and scheduling in bulk ports. Eur. J.
Oper. Res. 258(3), 926–937 (2017). https://doi.org/10.1016/j.ejor.2016.08.073

11. Robenek, T., Umang, N., Bierlaire, M., Ropke, S.: A branch-and-price algorithm to
solve the integrated berth allocation and yard assignment problem in bulk ports.
Eur. J. Oper. Res. 235(2), 399–411 (2014). https://doi.org/10.1016/j.ejor.2013.08.
015

12. Rocha de Paula, M., Boland, N., Ernst, A.T., Mendes, A., Savelsbergh, M.:
Throughput optimisation in a coal export system with multiple terminals and
shared resources. Comput. Ind. Eng. 134, 37–51 (2019). https://doi.org/10.1016/
j.cie.2019.05.021

13. Sadykov, R., Vanderbeck, F., Pessoa, A., Tahiri, I., Uchoa, E.: Primal heuristics
for branch and price: the assets of diving methods. INFORMS J. Comput. 31(2),
251–267 (2019). https://doi.org/10.1287/ijoc.2018.0822

14. Tang, L., Sun, D., Liu, J.: Integrated storage space allocation and ship scheduling
problem in bulk cargo terminals. IIE Trans. 48(5), 428–439 (2016). https://doi.
org/10.1080/0740817X.2015.1063791

https://doi.org/10.1016/j.cie.2010.12.018
https://doi.org/10.1016/j.eswa.2020.114215
https://doi.org/10.1016/j.eswa.2020.114215
https://doi.org/10.1016/j.eswa.2017.06.010
https://doi.org/10.1016/j.engappai.2021.104276
https://doi.org/10.1016/j.engappai.2021.104276
https://doi.org/10.1007/s10951-017-0510-8
https://doi.org/10.1007/s10951-017-0510-8
https://doi.org/10.1007/s10107-003-0395-5
https://doi.org/10.1080/0951192X.2012.684707
https://doi.org/10.1080/0951192X.2012.684707
https://doi.org/10.1016/j.cie.2016.04.007
https://doi.org/10.1016/j.ejor.2016.08.073
https://doi.org/10.1016/j.ejor.2013.08.015
https://doi.org/10.1016/j.ejor.2013.08.015
https://doi.org/10.1016/j.cie.2019.05.021
https://doi.org/10.1016/j.cie.2019.05.021
https://doi.org/10.1287/ijoc.2018.0822
https://doi.org/10.1080/0740817X.2015.1063791
https://doi.org/10.1080/0740817X.2015.1063791

20 J. L. M. de Andrade and G. C. Menezes

15. Umang, N., Bierlaire, M., Vacca, I.: Exact and heuristic methods to solve the berth
allocation problem in bulk ports. Transp. Res. Part E: Logistics Transp. Rev. 54
(07 2013). https://doi.org/10.1016/j.tre.2013.03.003

16. Unsal, O.: Reclaimer scheduling in dry bulk terminals. IEEE Access 1 (05 2020).
https://doi.org/10.1109/ACCESS.2020.2997739

17. Unsal, O., Oğuz, C.: An exact algorithm for integrated planning of operations
in dry bulk terminals. Transp. Res. Part E: Logistics Transp. Rev. 126, 103–121
(2019). https://doi.org/10.1016/j.tre.2019.03.018

https://doi.org/10.1016/j.tre.2013.03.003
https://doi.org/10.1109/ACCESS.2020.2997739
https://doi.org/10.1016/j.tre.2019.03.018

Simulation of an AIS System for the Port
of Hamburg

Pierre Bouchard1(B) , Adriana Moros-Daza2(B) , and Stefan Voß1(B)

1 Institute of Information Systems, University of Hamburg, 20146 Hamburg,
Germany

pierre@bouchard.de, stefan.voss@uni-hamburg.de
2 Universidad del Norte, Barranquilla, Colombia

amoros@uninorte.edu.co

Abstract. This paper shows that the prediction of vessel arrival times
with AIS (Automatic Identification System) is increasing the number of
vessels a port can handle without additional superstructure. The Port of
Hamburg is used as a case study to show the difference between the as-is
situation and one with the integrated information system. The simulation
shows improvements with two different risk levels to prove the concept.
The simulation uses simplified versions of an algorithm that assigns ves-
sels to free berths without disrupting the normal terminal usage. It was
possible to clear up to 44% more ships each day just with an additional
system that utilises already existing data for achieving more efficiency
within the port.

Keywords: Smart port · AIS · Berth allocation

1 Introduction

Logistics is necessary for almost every product, whether for manufacturing or
sales. Parts for the final product need to be transported to the last production
facility, and finished goods need to be transported to the consumer. Either way,
ports are important gateways in this respect. The Port of Hamburg as an example
is responsible for 9.3 M. TEU (Twenty-foot Equivalent Unit) in 2019 [20], thus,
making it essential for many companies in and around its metropolitan area.
Above-average growth of the Chinese, Indian and East European markets has
caused a shift and most significant growth of cargo flows [8], which forces the
Port of Hamburg to be more efficient to remain globally significant.

The spatial constraints of the port [8] do not allow for significant expansions
along the river Elbe. Therefore, the Port of Hamburg is highly reliant on innova-
tions and information systems. This holds for the past (see, e.g., [23]) as well as
for today (see, e.g., [10]). In the paper “IT-Governance in the Port of the Future”
[2] we already showcased the potential use and advantages of integrating AIS
data for better predictions of arrival times of the incoming vessels. Having an
AIS onboard is a regulation by the IMO (International Maritime Organisation)
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 21–35, 2021.
https://doi.org/10.1007/978-3-030-87672-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_2&domain=pdf
http://orcid.org/0000-0002-2916-2201
http://orcid.org/0000-0003-2459-773X
http://orcid.org/0000-0003-1296-4221
https://doi.org/10.1007/978-3-030-87672-2_2

22 P. Bouchard et al.

for every container vessel [16]. Therefore, every vessel on its way to the Port of
Hamburg will be recognised by this system. Additionally, the port has another
advantage, the river Elbe: Due to strict regulations regarding speed and limita-
tions by draught at specific tide levels, the earliest arrival time can precisely be
calculated [2]. This information can be used mainly in two different ways. On
the one hand, more vessels get cleared with the same infra- and superstructure
without expanding the port spatially. On the other hand, customer satisfaction
and hinterland transport can be improved.

In this paper we show the feasibility of this concept in a simplified way.
Thus, no advanced algorithm is used for the berth allocation.1 Therefore, the
simulation uses a minimalistic allocation principle, which showcases an imple-
mented advanced system’s possibilities. Every advanced algorithm will allocate
the incoming vessels more efficiently and further improve the Port of Hamburg’s
efficiency. Additionally, this paper shows how many vessels could be added to
the overall schedule with the simplified principle. Common risks are implemented
into the simulation to illustrate the productivity of the concept with more real-
istic conditions.

2 Problem Description

Hamburg’s port is the gateway to the Baltic Sea Region; containers from the
economically strongly growing East European countries are combined at the
Port of Hamburg for cheaper transportation worldwide. The other way around,
goods, especially from Asia, get prepared at the port for further transportation
into the Baltic Sea Region. This rising number of containers forces the Port
of Hamburg to grow and handle more containers to compete with other ports.
Due to the spatial constraints, it needs to be more efficient, especially with the
limited moorings [8].

On average, every vessel waits one hour and 45 min at the Port of Hamburg
before it gets cleared [12]. Besides the obvious issue of the cost factor for the
shipping companies, the Port of Hamburg has not yet enough possibilities for
shore power for the vessels. Thus, the vessels have to run on their fuel to generate
power [7]. In 2017, 39% of all nitric oxides in Hamburg were caused by vessel
traffic [19]. This number is mostly caused by the container ships on their way
entering or leaving the port. However, by an average retention time of 13 h and
49 minutes, 12.7% of the vessels’ nitric oxide emissions of the container vessels
are produced by waiting [12].

Therefore, this paper takes a closer look at the terminal reservations and
berth allocation. Normally, shipping companies reserve berths for their vessels
in advance, especially seagoing vessels that place their reservation up to two
months before they arrive. Logically, those reservations are not precise, and
vessels often have a delay or arrive too early (as shown in Fig. 1). 44% of the
arriving vessels have a schedule deviation of 30 min or more. Those vessels are
the interesting ones for the system because of a noticeable impact on the port
1 For references stating the state-of-the-art over time see, e.g., [1,15,17].

Simulation of an AIS System for the Port of Hamburg 23

Fig. 1. Frequency distribution of the deviation from the to-be to the as-is arrival time
[12]

as well as other vessels. With this, 24% are delayed, whereas almost 20% are
too early. It could happen that the vessels were delayed for up to five-and-a-half
hours [12].

Due to the fast-changing nature of the trade market, berth allocation needs
a fast and reliable solution. It would also be preferable to use existing infras-
tructure and processed data without restructuring the berth reservation process
completely. Thus the expense is very low, and the regulations are not affected
as heavily.

3 The Concept

The idea is based on the precise forecast of the earliest arrival time of every
incoming vessel. This knowledge is utilised to use reserved berths of vessels that
delay clearing of one or more other vessels. Additionally, the system can provide
a precise arrival time more than eight hours in advance. Therefore, time slots
that have been too short for clearing additional vessels between two existing
reservations can now be removed. This makes it possible to communicate the
possibility for schedule changes to the waiting or incoming ships.

42.7% of all arriving vessels can be cleared in under five hours (as shown in
Fig. 2). As an example, one of those vessels that have already arrived at the port
or arrive soon could easily fit into a time slot of a vessel that should arrive in
four hours and is two hours delayed. Before that, the vessel could not be cleared
earlier because it would disrupt the reservation of the incoming vessel by one
hour [12]. Additionally, the time slot of this vessel now got accessible by bringing
the reservation to the front. This previously reserved time slot can be used for
other vessels or make up for possible changes in the terminal schedule due to
the delay of the original vessel. Most of the time, the knowledge of the earliest
arrival time eight hours in advance is sufficient to communicate the possibility
for change to the responsible persons before these container vessels have even

24 P. Bouchard et al.

Fig. 2. Distribution of time needed to clear the vessels [12]

arrived at the port. Therefore, the container ships with a changed schedule can
immediately head to the terminal without the need to stop at the waiting berth,
which leads to a better structured and thus safer port.

The information regarding the arrival times can be used mainly in two dif-
ferent ways: On the one hand, as already described, there are advantages on
the seaside of the port. Vessels already at the Port of Hamburg because they
have arrived too early or vessels like feeder ships that have a fast way to travel
before arriving and therefore are flexible in their schedule benefit from the sys-
tem. On the other hand, the hinterland transportation and the terminal benefit,
too. These correlations are not simulated but important for understanding the
benefits of the core concept. In the Port of Hamburg, every truck driver has
to register the container collection four hours in advance to collect a container.
Thus, the earliest time to collect a container is four hours after it has arrived at
the port [14]. With the knowledge of the arrival times of the vessels, the truck
driver could get the opportunity to collect the container right after it is cleared
and released from customs. Additionally, enhanced planning capabilities for the
haulage companies and truck drivers due to the knowledge of the arrival time
will reduce traffic in the port area and enhance customer satisfaction due to
better arrival predictions in the hinterland transportation. The improvement of
the container collection process, additionally, results in a major improvement
for the port itself. If every truck driver collected the container immediately after
arrival, the port would need 8% less storage capacity. This would also affect the
overall efficiency of the terminal and the gantry cranes [2].

4 Discrete Event Simulation Model

This section introduces the model used to simulate using AIS data for rear-
ranging booked time slots without disrupting the planned schedules of container
vessels. This simulation uses real-life data from the HHLA [12]; therefore, just

Simulation of an AIS System for the Port of Hamburg 25

Fig. 3. Abstracted model of the arriving vessels without an AIS-system integrated

three of four terminals owned by the HHLA will be modelled. Additionally, the
algorithms responsible for the rescheduling will be simplified. Thus, the outcomes
of the simulation will possibly be worse than in reality. However, the results can
showcase the system’s possibilities for a real-life scenario due to the real-life input
data. Thereby, the simplified algorithm will make up for not simulated processes
like the time needed by the captain of a container vessel to decide whether to
use the schedule change or not.

The model shown in Fig. 3 describes the voyage of a container vessel without
using any advantages of the AIS. This type of vessel is called from now on type
one. These vessels arrive on-time or delayed. As seen in Fig. 1, many of those
ships are seagoing vessels. The type one vessels also often need more time to
get cleared due to their size, and thus a higher amount of containers need to be
cleared.

The type one vessels have no potential for getting cleared earlier due to
their arrival time. Thus the process of arriving at the port displays the current
situation at the Port of Hamburg. First, the AIS signature of the vessel gets
recognised up to 24 h in advance by the multi-purpose platform HVCC (Hamburg
Vessel Coordination Center) at the Port of Hamburg [25]. The incoming vessel
may have a delay, which does not affect any other component of the port. After
arrival, the ship has to wait for varying periods of time before it can be cleared
and depart afterwards.

The new vessels added in Fig. 4 are subsequently called type two and are the
interesting ones for this concept. This type of vessels will or have arrived too
early at the port or have no reservation because of schedule changes and fully
reserved terminal berths. Thus, they will or have arrived at the port without
the possibility for immediate clearing due to reserved berths. At first sight, this
could be feeder ships and seagoing vessels, as seen in Fig. 1. However, most of
them will be feeder ships because these vessels need less time for clearing. As
seen in Fig. 2 and as already described in the example in the previous paragraph,
the vessels with a higher chance of fitting in a new schedule gap are those with
short clearing times.

Every time a type one vessel gets recognised by the AIS, the new system is
looking for incoming or waiting type two vessels. Thereby, the list of waiting and

26 P. Bouchard et al.

Fig. 4. Abstracted model of the arriving vessels with an AIS-system integrated

arriving vessels get checked whether any of the type two vessels can come and be
cleared before the type one vessel is arriving. Besides, the algorithm previously
checks whether all the terminals are in use and, if so, declines the inquiry. Thus,
the simple but effective algorithm checks if the terminal can clear one vessel of
type two before the type one vessel that has reserved the berth arrives at the
port. If a waiting or arriving vessel with a reservation is waiting for too long,
they will leave the system. These vessels would then be treated as a type one
vessel in reality but are neglected in this simulation to keep the complexity low.

4.1 Validation

To prove that such a model will work accurately in a real-life scenario, such as
implemented at the Port of Hamburg, historical data need to be used for verifi-
cation. For the validation, the confidence interval method is used for comparing
the historical data from the case study, shown in the columns “Intervals” and
the modelled data shown in the “As is” columns (cf. Table 1).

Table 1. Input data validation

As is Intervals

Average Half width Minimum Average case study Maximum

Vessels Cleared (per day) 17.94 2.36 13.66 16.02 18.38

Time needed to clear
vessels in h

9.44 1.40 8.71 10.11 11.51

Delay in hours 0.04 < 0.00 –3 –0.05 2.5

For the historical data, a sailing list from the HHLA was used. To validate
the first model, shown in Fig. 3, three different pieces of information needed to
be confirmed. As shown in Table 1, the first data used as input for the simulation
is the number of vessels that get cleared daily. For an improved efficiency of the

Simulation of an AIS System for the Port of Hamburg 27

port, this number has risen after using the AIS system. The second and third
piece of information (data) are the time each vessel will stay at a terminal to
get cleared and the deviation from the planned arrival time as seen in Fig. 1.

For verification, the simulated incoming data needs to be represented within
a 95% confidence interval of the real-life data from the HHLA. The number
of cleared vessels and the time needed to clear the ships at the terminal are
verified, as seen in Table 1. Thus these properties of the Port of Hamburg can
be adequately depicted. However, the delay in hours has a slight variation. Due
to the limited display of the half-width, there is no possibility to verify the 95%
like above. However, the arrival-time deviation with the exact numbers of the
real-life data and the simulated data is 32.6 s. Due to the widespread arrival time
deviations of up to 5 h, this paper treats the delay as verified.

4.2 Analysis of Scenarios

To demonstrate the impact of the AIS system at the Port of Hamburg, it is
necessary to highlight the difference between the real implemented system and
the simulated system. Due to the simplified modelling of the AIS system, an
implemented system will be more efficient and achieve better results.

Modeled System. In the modeled system, the type one vessels get recognised
from the AIS systems and are checked with respect to two parameters: First,
whether a type two vessel is arriving or already waiting at the port and second
if one of the type two vessels can be cleared within the time the type one vessel
is coming. After that, the vessel type one continues its journey until it arrives at
its free and reserved berth. If a vessel type two was detected that could arrive
at the berth, get cleared and leave the berth before the vessel type one arrives,
a signal is sent to this vessel to get cleared at the terminal.

To demonstrate the effectiveness of the simulated AIS system, several simula-
tion runs were started. As shown in Fig. 5, every round, an additional vessel per
day was fed into the simulation. Then it was checked if the system can handle an
additional vessel. Thereby, the maximum number of vessels the simulation could
handle was 25 additional type two vessels. The simulation stopped when 150
vessels were simulated simultaneously. Hereby, a simulated peak was recorded
at the simulation with 26 additional vessels. The simulation covers a period of
ten years with 1000 runs per additional type two vessel. While the arrival of the
type one vessels was simulated with the help of the “Segelliste” from the HHLA,
the arrivals of the type two vessels were randomly distributed and were the rea-
son for the simulation to stop. Additionally, the simulation is event-based, thus
waiting for type two vessels is not able to exist by themselves, for example, when
it is time for their reservation, but rather had to wait for a type one vessel to
trigger the selection procedure before they can leave the queue.

Nevertheless, this simulation shows the capability of the simulated AIS sys-
tem. The system handled up to 139% more vessels and thus up to 43.2 instead
of 18.2 vessels a day. The time a type one vessel has to wait has increased by

28 P. Bouchard et al.

Fig. 5. Effectiveness of the simulated AIS system

15.5% or 10 min from zero to 25 additional type two vessels. Due to the random
allocation of the terminals for the vessels in the simulation, it is possible that too
many vessels had a reserved berth, for example, at terminal one, while terminal
two and three were almost empty. Resulting is a simulated waiting time for each
type one vessel of one hour and five minutes. The simulated waiting time for the
type one vessels with an additional 25 type two vessels increased to one hour
and sixteen minutes.

Real-life berth allocation systems like those in the Port of Hamburg are far
more advanced and would only let the vessels reserve a berth at a free terminal
(or even a free dedicated terminal due to the planning situation, respectively).
But the change of this parameter is an indicator of the quality of an AIS system.
With a deviation of ten minutes, the additional type two vessels have a negligible
impact on the average residence time of 23.36 h for the type one vessels in the
simulation.

Real-Life System. In the implemented and finished system, two algorithms
are used for the type two vessel’s berth allocation. The first one calculates the
arrival time of every incoming container ship. Therefore, the AIS data, data from
the harbour and terminals, weather and tidal data will be used to calculate the
estimated arrival times while considering the spatial constraints of the river Elbe.
The algorithms from Fancello et al. [6] and El Mekkaoui et al. [5] can be used as
a basis for the software development to achieve a high-quality arrival estimation.
These estimations were given in the simulations by the historical data to work
correctly. The second algorithm is the more interesting one. This algorithm is
used to allocate free berths if possible. Therefore, the arriving estimations from
the first algorithm and data from the terminal operating system, for the time
needed to clear the type two vessels, are required. This information needs to

Simulation of an AIS System for the Port of Hamburg 29

be precise, complete, correct and updated in a high frequency to allow smooth
handling of the type one vessels. With this information, it is checked by the
system whether it is possible to clear a type two-vessel with a sufficient time
buffer. The new schedule can afterwards be communicated to the (captain of
the) type two-vessel [2].

Comparison of the Systems. The significant difference between the simula-
tion and the real-life system is the algorithm for the berth allocation. The real-life
algorithm will check the incoming vessels for the best usage of the free berth or
if the vessels are from haulage companies with a “premium agreement”. Thus,
not the first vessel that would fit into the slot will be allocated, but rather the
vessel or vessel combination that would fit the best for the time slot is allocated
to the berth. Thus, as mentioned before, an implemented system with advanced
algorithms will be more capable than the simulation.

4.3 Risk Management

The port of Hamburg functions as a hub for container transport into and out
of the Baltic Sea region. Additionally, many companies in Hamburg and the
hinterland depend upon the port. Many goods need to pass the terminals of the
port daily to arrive at various enterprises and factories, thus making the Port
of Hamburg a bottleneck [8]. Simultaneously, different critical industries, like
nutrition, health are interdependent and dependent on the Port of Hamburg. For
example in 2020 when the world was hit by the global pandemic COVID-19 [21],
the German government alone imported masks worth six billion from China [24].
Thus, making harbours and airports directly responsible for the health of the
German population. The port counts to the critical infrastructure of Hamburg
and thus needs special protection, risk and crisis management [4].

Every stock company has an obligation by the German law §91 Abs.2 AktG:
“to take appropriate measures, particularly establishing a monitoring system, to
ensure the timely identification of developments that might place the continued
existence of the Company at risk” [3]. Thus, the companies that count as critical
infrastructure are forced by law to implement functioning risk management. To
support these companies, the German Federal Ministry of the Interior provided a
risk and crisis management concept, consisting of five phases: Preliminary Plan-
ning, Risk Analysis, Preventive Measures, Crisis Management and Evaluation.
For this work, the parts of the first phase and the second phase are primarily
interesting.

Preliminary Planning. The first phase primarily discusses recommendations
for personnel change and change in responsibilities, but also includes strategic
protection objectives. Thereby, holistic and process independent protection goals
are formulated. These aims are subordinated and help for the next phases.

The system described in this paper has an advantage, as it is an additional
system just used for optimisation purposes. It aims to provide suggestions for a

30 P. Bouchard et al.

possible schedule change for vessels that arrive too early or without a reservation.
Thus, in an event of a complete failure of this system, the port itself and the
terminals could be operated just by using the normal scheduling system of the
port. Nevertheless, the strategic protection objective is the “preservation of the
terminals’ capability to clear vessels”.

Risk Analysis. To comply with the strategic protection aims, risks are iden-
tified, structured, objectified and stored in the second phase. Thereby, the risks
can be grouped in two different sets, but due to the separation of this system
and the main harbour system, only risks associated with the system introduced
in this paper are going to be considered. Thus, risks that are only related to
the port system and therefore managed by the port authority and the terminal
operators are not handled in this paper. However, if those risks occurring from
the main port’s systems can, for example, change schedules of vessels and thus
change the parameters for the AIS system, they will be considered in the risk
analysis.

The simplest way to preserve the terminal’s capability to clear vessels is to
not disrupt the type one vessel’s schedule. Thus, even when the additional system
for the type two vessel’s berth allocation would break down, the main system
must not depend on the additional system to run smoothly. Nevertheless, wrong
information or cyber-attacks could be able to damage the main port system’s
scheduling.

There are three main categories and points of attack capable of disrupting
the schedule of the type one vessels and therefore the terminals’ capability to
clear vessels:

– Wrong arrival time estimation (ETA, estimated time of arrival)
– Wrong estimation of the time a vessel needs for mooring, clearing, etc.
– False calculation of the possible schedule changes

If the estimations either of the type one or the type two vessels are wrong the
system is going to rearrange the schedules in a wrong way and thus may imply
to block needed terminal space. Additionally, the system itself or other mistakes
happening at the port have the possibility to stop the terminals from working
properly. These risks can have several different reasons shown in Table 2. For
this more precise risk analysis, the archive of the HHLA was analysed to achieve
a more precise overview of the risks for the port in Hamburg [11].

Due to the automation of the system, human behaviour while using the
system for rearranging the schedules will not be considered.

To simulate the risks, there are three different possibilities: Failure at the
port, failure within the AIS system and wrong estimations of arrival time and
time needed for arriving, clearing and departing of the type one and two container
ships.

Simulation of an AIS System for the Port of Hamburg 31

Table 2. Risk list

Kind of risk Potential intensity Possible impact

Weather

Changed wind direction and

speed

Average wind speed of

5.9m/s per day [9]

Change in arrival time of vessels

Storms Delayed vessel arrivals [13] Delay of vessel clearing and not

enough storage space for

containers

Poor visibility Thick fog or heavy snowfall

can limit the visual

range [18]

Delay of vessel clearing and

delay of arrival times from

vessels

Cold spell Energy Blackout [22] Vessels cannot be cleared for

up to 2 days and information

system failure

Wrong data delivered

Wrong or missing reservation

data

Type 1 vessel arrives at the

port without the system

knowing beforehand

The terminal of type 1 vessel

may be occupied, despite the

reservation of the type 1 vessel

Wrong AIS data Vessels arrive too early or

too late

The terminal of type 1 vessel

may be occupied, despite the

reservation of the type 1 vessel

Shorter duration for clearing

the vessel by the harbour

system estimated

Clearing the vessels takes

longer than planned

- When type 1 vessel takes

longer: Type 2 vessel may be

sent to the wrong terminal

- When type 2 vessel takes

longer: Reserved berth may be

occupied

Mistakes by rearranging the vessels

Mistakes by communicating

information to the type 2

vessels, pilots and terminal

Delay before or while

clearing the vessel

Type 2 vessel cannot be cleared

in the remaining time without

disrupting the schedule of the

type 1 vessel

Human behaviour

Mistakes while driving and

docking vessel

Vessel or terminal damaged Vessel or terminal needs to be

repaired, loss of a terminal,

schedules for this terminal need

to be replanned

Mistakes when clearing the

vessels

- Wrong containers cleared - Reloading the container,

clearing vessels takes longer

- Vessel or terminal

damaged

- Vessel or terminal needs to be

repaired, loss of a terminal,

schedule for this terminal need

to be replanned

Cyber attacks

System hacked and

information changed

Changed information of

ETA, or communication of

wrong schedule to type two

vessels

Too many vessels at the port,

that have to wait

System break down Vessels of type two cannot

enter without reservation

Vessels that arrive too early

have to wait for their reservation

32 P. Bouchard et al.

Fig. 6. Effectiveness of the simulated AIS system simulated with risks

As seen in Fig. 6, the simulation was not able to handle more than nine
additional vessels. Hereby the extremes were decisive. As already mentioned the
simulation had a maximum number of 150 entities in parallel in the simulation.
With risks that stop clearing the vessels for two days or hacking attacks that
disguise several type two vessel arrivals and send them as a bunch to the ter-
minals, the number of parallel vessels rises. Table 3 supports this hypothesis.
It shows the difference in the number of container ships waiting in a simula-
tion at the terminal with and without risks. The average in both cases is pretty
similar and small and shows the system’s capability to work without disrupting
the terminals’ workflow. The maximum shown is the highest number of vessels
over a period of ten years and 1000 simulation runs that had to wait in front of
the terminal without getting cleared. Here, a significant difference can be seen
between the simulations with and without simulated risks.

However, the simulated risks on average do not have a significant impact. The
main reason for the high maximum values is the risks that were not counteracted
by any measures. Additionally, the random terminal allocation for the vessels
affected the capabilities of the simulation. Thus, a higher number of vessels
can be achieved with good risk management and algorithms that allocate the
type one and two vessels in a more efficient way. Additionally, to operate this
additional system separate from the main port’s system lowers the negative
effects and risks for the type one vessels and the strategic protection objective:
“Preservation of the terminals’ capability to clear vessels”.

Simulation of an AIS System for the Port of Hamburg 33

Table 3. Vessels waiting at the terminals before clearing

Additional
type 2 vessels
per day

Number waiting at
terminals before
cleared

Number waiting at
terminals before
cleared with risks

Average Maximum Average Maximum

1 0.00 2.67 0.04 46.67

2 0.00 3.33 0.05 51.67

3 0.00 3.66 0.05 54

4 0.00 4.3 0.05 53.67

5 0.02 4 0.05 59.67

6 0.00 5 0.06 62.67

7 0.01 5 0.06 62.33

8 0.01 6 0.06 61.67

9 0.01 5.7 0.06 61.67

5 Conclusion

This paper followed up with the subject of using AIS data to enable a more
efficient berth allocation process without disrupting existing procedures. While
using this data, vessels that arrive too early or without reservation at the port
could be cleared without disrupting the vessels’ berths if a reservation exists.

To prove the concept, a simple discrete event simulation model was built
to simulate the port under normal conditions and with ascending numbers of
additional vessels per day that had no reservation. Hereby real-life data from the
Port of Hamburg’s largest terminal operator was used for the container ships that
arrive with reservations. For a better understanding of the problem, risks were
introduced to conceive a more realistic model. This led to a unique perspective
of the system. While it worked well for up to nine additional vessels, extreme
situations led to failure at ten additional vessels per day. But these extremes
are due to the limitation of the simulation not using advanced arrival estimation
algorithms nor berth allocation systems that are already in use within the port.
Thus these extremes could easily be reduced by a well-composed system added
to the already existing berth allocation system of the terminal/port. Therefore,
an even higher capacity utilisation rate for the vessels and the port capacity can
be achieved with advanced algorithms for this add-on system.

This study provides more insight on the topic, proves the concept and pro-
vides more quantitative information for the possibilities of this topic. Addition-
ally, this paper constitutes a good basis for further research and thus can be
used to study the possibilities at different ports around the world under differ-
ent conditions.

The limitations of this study are the simulation itself, while it creates a good
foundation for further research and proves the concept, a study under real-world

34 P. Bouchard et al.

conditions with algorithms for the estimation of the earliest arrival time and
the assignment of berths. The use of simple algorithms also was the reason that
only one and only the first fitting additional vessel, per vessel that had reserved
a berth, was able to be chosen from the system. Thus the results with advanced
algorithms can be superior.

Future research will achieve more information on this topic with scenarios
for different harbours around the globe. Additionally, it is proposed to work on
more versatile case studies with real ports to indicate the real-life possibilities
of using AIS data for advance berth allocation.

References

1. Bierwirth, C., Meisel, F.: A follow-up survey of berth allocation and quay crane
scheduling problems in container terminals. Eur. J. Oper. Res. 244(3), 675–689
(2015)

2. Bouchard, P., Moros-Daza, A., Voß, S.: IT-governance in the port of the future.
IWI, Institute of Information Systems, University of Hamburg, Technical Report
(2021)

3. Bundesministerium der Justiz und für Verbraucherschutz: Aktiengesetz §91 Organ-
isation. Buchführung Abs. 2. (no date). https://www.gesetze-im-internet.de/
aktg/ 91.html. Accessed 30 Apr 2021

4. Bundesministerium des Innern: Schutz kritischer Infrastrukturen - Risiko-
und Krisenmanagement. Leitfaden für Unternehmen und Behörden 2 (2011).
https://www.bmi.bund.de/SharedDocs/downloads/DE/publikationen/themen/
bevoelkerungsschutz/kritis-leitfaden.html. Accessed 22 Jul 2021

5. El Mekkaoui, S., Benabbou, L., Berrado, A.: Predicting ships estimated time of
arrival based on AIS data. In: Proceedings of the 13th International Conference
on Intelligent Systems: Theories and Applications (SITA 2020), pp. Article 6, 1–6.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3419604.3419768

6. Fancello, G., Pani, C., Pisano, M., Serra, P., Zuddas, P., Fadda, P.: Prediction of
arrival times and human resources allocation for container terminal. Marit. Econ.
Logistics 13, 142–173 (2011). https://doi.org/10.1057/mel.2011.3

7. Fischer, M.: Keine PowerPacs zur Stromversorgung im Hamburger Hafen (2019).
https://www.welt.de/regionales/hamburg/article194713295/Keine-PowerPacs-
zur-Stromversorgung-im-Hamburger-Hafen. Accessed 22 Jul 2021

8. Freie und Hansestadt Hamburg - Behörde für Wirtschaft, Verkehr und Inno-
vation: Der Hafenentwicklungsplan bis 2025 https://www.buergerschaft-hh.de/
ParlDok/dokument/38168/hafenentwicklungsplan-%E2%80%9Ehamburg-h%C3
%A4lt-kurs-%E2%80%93-der-hafenentwicklungsplan-bis-2025%E2%80%9C.pdf.
Accessed 22 Jul 2021

9. Hamburg.de: Messdaten: Windgeschwindigkeit, https://luft.hamburg.de/clp/
windgeschwindigkeit/clp1/. Accessed 3 May 2021

10. Heilig, L., Voß, S.: Information systems in seaports: a categorization and overview.
Inf. Technol. Manage. 18(3), 179–201 (2016). https://doi.org/10.1007/s10799-016-
0269-1

11. HHLA: News archiv. https://hhla.de/medien/pressemitteilungen/archiv-
pressemitteilungen. Accessed 06 May 2021

https://www.gesetze-im-internet.de/aktg/__91.html
https://www.gesetze-im-internet.de/aktg/__91.html
https://www.bmi.bund.de/SharedDocs/downloads/DE/publikationen/themen/bevoelkerungsschutz/kritis-leitfaden.html
https://www.bmi.bund.de/SharedDocs/downloads/DE/publikationen/themen/bevoelkerungsschutz/kritis-leitfaden.html
https://doi.org/10.1145/3419604.3419768
https://doi.org/10.1145/3419604.3419768
https://doi.org/10.1057/mel.2011.3
https://www.welt.de/regionales/hamburg/article194713295/Keine-PowerPacs-zur-Stromversorgung-im-Hamburger-Hafen
https://www.welt.de/regionales/hamburg/article194713295/Keine-PowerPacs-zur-Stromversorgung-im-Hamburger-Hafen
https://www.buergerschaft-hh.de/ParlDok/dokument/38168/hafenentwicklungsplan-%E2%80%9Ehamburg-h%C3%A4lt-kurs-%E2%80%93-der-hafenentwicklungsplan-bis-2025%E2%80%9C.pdf
https://www.buergerschaft-hh.de/ParlDok/dokument/38168/hafenentwicklungsplan-%E2%80%9Ehamburg-h%C3%A4lt-kurs-%E2%80%93-der-hafenentwicklungsplan-bis-2025%E2%80%9C.pdf
https://www.buergerschaft-hh.de/ParlDok/dokument/38168/hafenentwicklungsplan-%E2%80%9Ehamburg-h%C3%A4lt-kurs-%E2%80%93-der-hafenentwicklungsplan-bis-2025%E2%80%9C.pdf
https://luft.hamburg.de/clp/windgeschwindigkeit/clp1/
https://luft.hamburg.de/clp/windgeschwindigkeit/clp1/
https://doi.org/10.1007/s10799-016-0269-1
https://doi.org/10.1007/s10799-016-0269-1
https://hhla.de/medien/pressemitteilungen/archiv-pressemitteilungen
https://hhla.de/medien/pressemitteilungen/archiv-pressemitteilungen

Simulation of an AIS System for the Port of Hamburg 35

12. HHLA: Schiffsabfertigung: Segelliste. https://coast.hhla.de/report?id=Standard-
Report-Segelliste. Accessed 01 Feb 2021

13. HHLA: Unwetterfolgen beeinträchtigen Betrieb auf Terminalanlagen im
Hamburger Hafen. https://hhla.de/medien/pressemitteilungen/detailansicht/
unwetterfolgen-beeintraechtigen-betrieb-auf-terminalanlagen-im-hamburger-
hafen. Accessed 3 May 2021

14. HHLA: LKW-Transportvormeldung Benutzerhandbuch. Version 1.0.5 (2018).
https://hhla.de/fileadmin/download/HHLA-Handbuch-LKW-Vormeldung-
Slotbuchung-2018-04-30.pdf. Accessed 22 Jul 2021

15. Hoffarth, L., Voß, S.: Liegeplatzdisposition auf einem Container Terminal —
Ansätze zur Entwicklung eines entscheidungsunterstützenden Systems. In: Opera-
tions Research Proceedings 1993. ORP, vol. 1993, pp. 89–95. Springer, Heidelberg
(1994). https://doi.org/10.1007/978-3-642-78910-6 28

16. IMO: IMO identification number schemes. http://www.imo.org/en/OurWork/
MSAS/Pages/IMO-identification-number-scheme.aspx. Accessed 08 Mar 2021

17. Kramer, A., Lalla-Ruiz, E., Iori, M., Voß, S.: Novel formulations and modeling
enhancements for the dynamic berth allocation problem. Eur. J. Oper. Res. 278,
170–185 (2019). https://doi.org/10.1016/j.ejor.2019.03.036

18. Kraus, M.: Wetter Hamburg versinkt in der Nebel-Suppe (2015). https://
www.mopo.de/hamburg/wetter-hamburg-versinkt-in-der-nebel-suppe-23087862.
Accessed 03 May 2021

19. NABU: Da liegt was in der Luft - Messungen des NABU zeigen hohe Luftschadstoff-
belastung durch Schiffe. https://www.nabu.de/umwelt-und-ressourcen/verkehr/
schifffahrt/messungen/16819.html. Accessed 16 Mar 2021

20. Port of Hamburg: Port of Hamburg Statistics. https://www.hafen-hamburg.de/
de/statistiken/containerumschlag. Accessed 03 Mar 2021

21. Robert Koch Institute: Journal of health monitoring s11/2020 (2020). https://
www.rki.de/DE/Content/Gesundheitsmonitoring/JoHM/2020/JoHM Inhalt 20
S11.html. Accessed 29 Apr 2021

22. Sorge, N.: Warum der Stromausfall bisher ausfällt (2012). https://www.manager-
magazin.de/unternehmen/energie/a-813570.html. Accessed 03 May 2021

23. Voß, S., Böse, J.: Innovationsentscheidungen bei logistischen Dienstleistern - Prak-
tische Erfahrungen in der Seeverkehrswirtschaft. In: Dangelmaier, W., Felser, W.
(eds.) Das reagible Unternehmen, pp. 253–282. HNI, Paderborn (2000)

24. Wallenfels, M.: Bundesbürger tragen meist Schutzmasken Made in China
(2021). https://www.aerztezeitung.de/Wirtschaft/Bundesbuerger-tragen-meist-
Schutzmasken-made-in-China-418066.html. Accessed 30 Apr 2021

25. Wärtsilä: The future of shipping. https://www.wartsila.com/marine/white-paper/
the-future-of-shipping. Accessed 22 Jul 2021

https://coast.hhla.de/report?id=Standard-Report-Segelliste
https://coast.hhla.de/report?id=Standard-Report-Segelliste
https://hhla.de/medien/pressemitteilungen/detailansicht/unwetterfolgen-beeintraechtigen-betrieb-auf-terminalanlagen-im-hamburger-hafen
https://hhla.de/medien/pressemitteilungen/detailansicht/unwetterfolgen-beeintraechtigen-betrieb-auf-terminalanlagen-im-hamburger-hafen
https://hhla.de/medien/pressemitteilungen/detailansicht/unwetterfolgen-beeintraechtigen-betrieb-auf-terminalanlagen-im-hamburger-hafen
https://hhla.de/fileadmin/download/HHLA-Handbuch-LKW-Vormeldung-Slotbuchung-2018-04-30.pdf
https://hhla.de/fileadmin/download/HHLA-Handbuch-LKW-Vormeldung-Slotbuchung-2018-04-30.pdf
https://doi.org/10.1007/978-3-642-78910-6_28
http://www.imo.org/en/OurWork/MSAS/Pages/IMO-identification-number-scheme.aspx
http://www.imo.org/en/OurWork/MSAS/Pages/IMO-identification-number-scheme.aspx
https://doi.org/10.1016/j.ejor.2019.03.036
https://www.mopo.de/hamburg/wetter-hamburg-versinkt-in-der-nebel-suppe-23087862
https://www.mopo.de/hamburg/wetter-hamburg-versinkt-in-der-nebel-suppe-23087862
https://www.nabu.de/umwelt-und-ressourcen/verkehr/schifffahrt/messungen/16819.html
https://www.nabu.de/umwelt-und-ressourcen/verkehr/schifffahrt/messungen/16819.html
https://www.hafen-hamburg.de/de/statistiken/containerumschlag
https://www.hafen-hamburg.de/de/statistiken/containerumschlag
https://www.rki.de/DE/Content/Gesundheitsmonitoring/JoHM/2020/JoHM_Inhalt_20_S11.html
https://www.rki.de/DE/Content/Gesundheitsmonitoring/JoHM/2020/JoHM_Inhalt_20_S11.html
https://www.rki.de/DE/Content/Gesundheitsmonitoring/JoHM/2020/JoHM_Inhalt_20_S11.html
https://www.manager-magazin.de/unternehmen/energie/a-813570.html
https://www.manager-magazin.de/unternehmen/energie/a-813570.html
https://www.aerztezeitung.de/Wirtschaft/Bundesbuerger-tragen-meist-Schutzmasken-made-in-China-418066.html
https://www.aerztezeitung.de/Wirtschaft/Bundesbuerger-tragen-meist-Schutzmasken-made-in-China-418066.html
https://www.wartsila.com/marine/white-paper/the-future-of-shipping
https://www.wartsila.com/marine/white-paper/the-future-of-shipping

Designing the Hydrogen Supply Chain
for Maritime transportation in Norway

Šárka Štádlerová(B) and Peter Schütz

Department of Industrial Economics and Technology Management, Norwegian
University of Science and Technology, 7491 Trondheim, Norway

{sarka.stadlerova,peter.schutz}@ntnu.no,
https://www.ntnu.edu/

Abstract. We study the problem of locating hydrogen facilities for the
maritime transportation sector in Norway. We present a multi-period
model with capacity expansion to obtain optimal investment and expan-
sion decisions and to choose optimal production quantities and distribu-
tion solutions. The objective is to minimize the sum of investment, expan-
sion, production, and distribution costs while satisfying the demand in
each period. Hydrogen production costs are subject to economies of scale
which causes non-linearity in the objective function. We model long-term
investment and expansion costs separately from short-term production
costs. The short-term production costs depend on the installed capacity
and production quantities. We analyze two models that differ in invest-
ment decision flexibility and two demand scenarios: demand only from
the maritime sector and demand from the whole transportation sector
in Norway. The results show that the scenario with higher demand does
not lead to a higher number of built facilities due to the economies of
scale. The model with higher flexibility leads to higher capacity utiliza-
tion in the first periods and thus significantly lower production costs.
The results further indicate that the initial demand is too low to build a
steam methane reforming facility, instead only electrolysis facilities are
built in both scenarios and both models.

Keywords: Facility location · Capacity expansion · Hydrogen supply
chain

1 Introduction

Emission reduction in the transportation sector is a crucial step in order to meet
the emission targets set in the Paris agreement on climate change. In 2015, the
Norwegian parliament decided that CO2 emissions must be decreased by at least

This work was performed within MoZEES, a Norwegian Center for Environment-
friendly Energy Research (FME), co-sponsored by the Research Council of Norway
(project number 257653) and 40 partners from research, industry and the public
sector.

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 36–50, 2021.
https://doi.org/10.1007/978-3-030-87672-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_3&domain=pdf
http://orcid.org/0000-0002-4636-573X
http://orcid.org/0000-0002-9466-0354
https://doi.org/10.1007/978-3-030-87672-2_3

Designing the Hydrogen Supply Chain for Maritime Transportation 37

40% (compared to 1990) towards 2030 in an attempt to reach the targets of the
Paris agreement. As a consequence of this ambitious decision, fossil fuels have
to be replaced by alternative zero-emission fuels. The use of hydrogen fuel cells
is considered as one way to decarbonize the transport sector and to decrease the
emission of greenhouse gases (GHG) [12].

In 2017, the transport sector in Norway was responsible for emitting 15.8
mill. tons CO2, accounting for 23% of all CO2 emissions [1]. CO2 emissions from
domestic inland water and coastal transport in Norway accounted for 8.7% of
emissions from the transport sector in 2018. Introducing zero-emission fuels such
as hydrogen in maritime transportation can therefore considerably reduce emis-
sions of CO2. However, limited experience with hydrogen as fuel and uncertainty
about hydrogen availability may affect the smoothness of the transition to hydro-
gen fuels [22]. One way to create an initial demand for hydrogen is to require
that high-speed passenger ferries and car ferries have to use hydrogen as fuel
when public transport contracts are renewed. In general, demand for hydrogen
is expected to increase in the years to come and the production infrastructure
has to adjust to this growth [11]. As such, the infrastructure needed to cover
demand from the maritime sector can help ensuring a stable hydrogen supply
also for other transportation sectors in Norway [12].

The two most relevant hydrogen production technologies for Norway are
electrolysis (EL) and steam methane reforming with carbon capture (SMR+)
[14]. While electrolysis is a more profitable technology in small-scale produc-
tion (50–5,000 Nm3/h), SMR+ is more favourable when producing large quan-
tities of hydrogen (50,000–100,000 Nm3/h). Scaling up the production results in
lower average costs, leading to economies of scale. This property is significant
for SMR+, but it also applies to electrolysis [20]. Figure 1 shows the economies
of scale in the long-term hydrogen cost function. Note that the cost-axis uses a
logarithmic scale.

Fig. 1. Long-term hydrogen costs

In this paper, we study the problem of how to design the hydrogen supply
chain for maritime transportation in Norway. The problem consists of invest-
ment and expansion decisions, production quantities, and distribution solutions.
It belongs to the category of facility location problems with capacity expan-
sion. An early review of pioneering papers dealing with capacity expansion can

38 Š. Štádlerová and P. Schütz

be found in [21]. Shulman [31] and Dias et al. [10] study a multi-period plant
location problem with discrete expansion where a plant is modelled as a set
of facilities in the same location. Capacity expansion is achieved by building
an additional facility and the facility size must be chosen from a finite set of
capacities. The production costs are defined for each facility and depend only
on facility type and quantity produced in the facility. Behmardi and Lee [5]
study a multi-period multi-commodity capacitated facility location problem with
capacity expansion and relocation. The modelling approach differs from previous
papers as Behmardi and Lee [5] work with dummy locations to relocate capac-
ity. The dummy locations are used for modelling purposes to shift the capac-
ity. Customers can only be served from real facilities. Torres et al. [32] present
a comparison of multi-period facility location problems with growing demand
where opening and closing decisions are allowed at any time during the planning
horizon. Jena et al. [17] introduce a multi-period facility location model with a
capacity expansion, reduction, and the option to temporarily close the facility. In
their work, capacity expansion is modelled by the modification of existing facil-
ities. Jena et al. [18] present a facility location problem with modular capacities
where capacity expansion, as well as partial closing and reopening, are allowed.
An extension of their model is published in [19] where also facility relocation is
allowed. Castro et al. [6] present a large-scale capacitated multi-period facility
location model where a set of capacitated facilities is progressively built dur-
ing the planning horizon and simultaneously a maximum amount of operating
facilities in each period is specified.

Facility location and supply chain design problems with a focus on hydrogen
infrastructure are discussed in [3], [24] and [13]. In the work by Almansoori and
Shah [3], a multi-period hydrogen supply chain for Great Britain is studied.
However, in their work, expansion is not allowed. Myklebust et al. [24] present
a case study from Germany and study the impact of demand and input costs on
the optimal technology choice. Han et al. [13] present a different approach where
an optimization model for the hydrogen supply chain with given production
capacities is considered.

Economies of scale cause non-linear production costs. Several approaches
for how to incorporate non-linear production costs in facility location problems
have been published in the literature. Holmberg [15] introduces a piecewise linear
staircase cost function that enables to model different production costs at dif-
ferent capacity levels. Correia and Captivo [7] present the modular capacitated
facility location model and emphasize the advantage of the modular formula-
tion as it enables to take economies of scale into consideration. They separate
investment and operational costs and provide different unit operational costs for
each facility size. Van den Broek et al. [34] study facility location problem with
non-linear, non-convex, and non-concave objective function. They follow the idea
of non-linear costs depending on installed capacity as presented in [7] however,
they introduce a linear staircase cost approximation. The approach presented in
[34] can capture economies as well as diseconomies of scale.

Designing the Hydrogen Supply Chain for Maritime Transportation 39

For more examples of facility location and supply chain design see the excel-
lent reviews by Melo et al. [23], and Arabani et al. [4]. Review on multi-period
facility location problems can be found in [26].

In this paper, we investigate the impact of demand and decision flexibility on
the optimal design of the hydrogen infrastructure for maritime transportation in
Norway. In particular, we study where to locate hydrogen production facilities,
which capacity and production technology to install, and which period to choose
for investment and expansion.

We distinguish between long-term costs and short-term costs. Long-term
costs consist of investment and expansion costs, while the short-term costs are
given as production costs, representing capital expenses (CAPEX) and opera-
tional expenses (OPEX) respectively.

The investment and expansion represent the long-term decision because a
built facility cannot be closed down during the planning horizon. The short-
term production costs depend on installed capacity and its utilization. We allow
the production rate to deviate from the installed capacity, allowing for a more
flexible production schedule. However, deviating from the installed capacity leads
to increasing unit costs [29]. We carry out our analysis using two models and
two demand scenarios. In the first model, opening new facilities is allowed dur-
ing the whole planning horizon, while in the second model, opening facilities is
restricted to the first period. In the first demand scenario, we assume demand
only from the maritime sector, while in the second scenario, demand from the
whole transportation sector in Norway is considered.

The remainder of this paper is organized as follows: in Sect. 2, we provide a
mathematical formulation of the dynamic facility location problem with capacity
expansion. Case description and computational results are discussed in Sects. 3
and 4, respectively. Conclusion is presented in Sect. 5.

2 The Mathematical Programming Model

We formulate our problem as a multi-period facility location problem with capac-
ity expansion. The goal is to determine the optimal strategy for opening and
expanding hydrogen production facilities such that demand is satisfied. Clos-
ing facilities is not allowed. The objective is to minimize the discounted sum of
investment and expansion costs, production costs, and distribution costs.

We provide two models for our multi-period facility location problem with
non-linear objective function and capacity expansion. In the first model, invest-
ing in a new facility is allowed in each period, while in the second model, the
initial investment can only be made in the first period. In both models, capac-
ity expansion is allowed for each facility once during the planning horizon, and
technology change is not permitted. We assume that the cost functions are inde-
pendent of selected locations and investment time. Each technology is charac-
terized by its own cost function. However, the general properties described in
Subsect. 2.1 apply to both considered technologies. The mathematical formula-
tion is then presented in Subsect. 2.2.

40 Š. Štádlerová and P. Schütz

2.1 Modelling Approach

We model investment decisions as a choice from a discrete set of available capac-
ities similar to [7]. Capacity expansion here means modifying an existing facility
and is modelled as a discrete jump between available capacities. This approach
is also used in [18].

To model the cost of investing, expanding, and operating facilities, we sep-
arate the long-term investment and expansion costs from the short-term pro-
duction costs. Each installed capacity has its own short-term production cost
function. We model the short-term production costs as a piecewise linear, con-
vex function. This is similar to the approach presented in [30]. From the point
of view of short-term production costs, higher utilization of smaller capacity is
always more favourable than smaller utilization of higher installed capacity.

Expanding capacity implies an additional investment as well as switching over
to a new short-term production cost function. Figure 2a illustrates our approach
for modelling the expansion of facilities. Let Qk be the initially installed capacity
and Ck the corresponding investment costs. The expansion costs of expanding
from capacity Qk to capacity Ql are denoted as Ekl. As Ck +Ekl > Cl. Investing
in a smaller facility and expanding to a larger capacity is more expensive than
opening the bigger facility right away.

(a) Investment and expansion costs (b) Production costs

Fig. 2. Short-term and long-term costs

Due to separating the long-term investment and expansion costs from the
short-term production costs, expansion implies moving from one short-term pro-
duction cost function to another. An example of this can be seen in Fig. 2b.
Before expanding the facility from capacity Qk to capacity Ql, the production
cost function fk(q) applies, whereas function fl(q) is valid after the expansion
has taken place.

Designing the Hydrogen Supply Chain for Maritime Transportation 41

2.2 Mathematical Formulation

Let us first introduce the following notation:

Sets

B Set of breakpoints of the short-term cost function
I Set of possible facility locations
J Set of customer ports
K Set of available discrete capacities
P Set of periods
T Set of available production technologies

Parameters and coefficients

Cikt investment costs in location i, for point k of capacity function, and tech-
nology t;

Djp demand in port j in period p;
Eklt costs of expansion from capacity in point k to capacity in point l for tech-

nology t;
Fbkt costs at breakpoint b of the short-term cost function given for capacity k

and for technology t;
Lijp 1 if demand at location j can be served from facility i in period p, 0

otherwise;
Qbkt production volume at breakpoint b of the short-term cost function, for

capacity point k and technology t;
Tijp transportation costs from facility i to customer j in period p;

yiklt0 initial facility variable;
δp discount factor in period p;
τp length of time period p in years;

Decision variables

xijp amount of customer demand at location j satisfied from facility i in period
p;

yikltp 1 if facility is opened in location i in period p, with originally installed
capacity k, operated capacity l, and technology t, 0 otherwise;

μbiltp weight of breakpoint b at location i for capacity point k and technology t
in period p.

We present a multi-period model where investment and expansion decisions
are allowed during the whole planning horizon. The changes in formulation

42 Š. Štádlerová and P. Schütz

needed for the first-period model are presented at the end of this section. The
problem is given as:

min
∑

i∈I

∑

k∈K

∑

l∈{l≥k:l∈K }

∑

t∈T

∑

p∈P

δpCikt

(
yikltp − yiklt(p−1)

)
+

∑

i∈I

∑

k∈K

∑

l∈{l>k:l∈K }

∑

t∈T

∑

p∈P

δpEklt(yikltp − yiklt(p−1))+

∑

i∈I

∑

j∈J

∑

p∈P

δpτpTijpxijp+

∑

b∈B

∑

i∈I

∑

l∈K

∑

t∈T

∑

p∈P

δpτpFbltμbiltp,

(1)

subject to:
∑

k∈K

∑

l∈{l≥k:l∈K }

∑

t∈T

yikltp ≤ 1, p ∈ P, (2)

∑

l∈{l≥k:l∈K }
yikltp ≥

∑

l∈{l≥k:l∈K }
yiklt(p−1), i ∈ I , k ∈ K , t ∈ T , p ∈ P, (3)

yikltp − yiklt(p−1) ≥ 0, i ∈ I , k ∈ K , l ∈ {l > k : l ∈ K }, t ∈ T , p ∈ P, (4)
∑

b∈B

μbiltp =
∑

k∈K

yikltp, i ∈ I , l ∈ K , t ∈ T , p ∈ P, (5)

∑

j∈J

xijp =
∑

b∈B

∑

l∈K

∑

t∈T

Qbltμbiltp, i ∈ I , p ∈ P, (6)

∑

i∈I

xijp = Djp, j ∈ J , p ∈ P, (7)

xijp ≤ LijpDip, i ∈ I , j ∈ J , p ∈ P, (8)

yikltp ∈ {0, 1}, i ∈ I , k ∈ K , l ∈ {l ≥ k : l ∈ K }t ∈ T , p ∈ K , (9)

xijp ≥ 0, i ∈ I , j ∈ J , p ∈ P, (10)

μbiltp ≥ 0, b ∈ B, i ∈ I , k ∈ K , t ∈ T , p ∈ P. (11)

The objective function (1) is the discounted sum of investment costs, expansion
costs, distribution costs, and production costs. Restrictions (2) guarantee that
only one facility can be opened at the given location. Constraints (3) ensure
that a facility can expand but cannot be closed. Capacity expansion is allowed
only once during the planning horizon. The variable yikltp contains information
about the initially installed capacity k as well as the capacity l at which it is
currently operated. After expansion, the operated capacity l is higher than the
installed capacity k. Inequalities (4) ensure that capacity index l can change
only once. Equations (5) ensure that production is allocated only to opened
facilities and that the short-term production cost function depends on operated

Designing the Hydrogen Supply Chain for Maritime Transportation 43

capacity. Equations (6) express the requirement that the whole production has
to be distributed to customers. Equations (7) ensure demand satisfaction, while
constraints (8) specify if customer j can be served from facility i. Restrictions
(9)–(11) are the binary and non-negativity requirements.

In our second model, a facility can only be opened in the first period. Expan-
sion is still allowed in later periods. In this model, constraint (12) replaces con-
straint (3):

∑

l∈{l≥k:l∈K }
yikltp = yikkt1, i ∈ I , k ∈ K , t ∈ T , p ∈ P. (12)

The rest of the model is identical to the first model.

3 Case Study

In this section, we present the input data for the problem of designing the Nor-
wegian hydrogen supply chain for maritime transportation. We include 17 candi-
date locations for hydrogen facilities on the Norwegian west coast. The candidate
locations for hydrogen production are obtained from the interactive map set up
by Ocean Hyway Cluster [28].

We consider two hydrogen production technologies: EL and SMR+. We
approximate the facility capacity by 8 discrete points for EL and 7 points for
SMR+. The discrete points are given in Table 1. We use the same discretization
of capacity for both technologies, but we do not consider SMR+ for the smallest
capacity. In Table 1, we provide facility investment costs and production costs
per kilogram at the discrete capacity points. Note that with decreasing utiliza-
tion, the production costs per unit increase. [33]

Table 1. Investment and production costs for EL and SMR+ at discrete capacity
points

Discrete capacity 1 2 3 4 5 6 7 8

Capacity [tonnes/day] 0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9

Investment EL [mill. AC] 1.4 6.0 11.2 20.5 46.5 87.2 197.7 371.5

Investment SMR+ [mill. AC] – 23.9 39.9 65.2 127.7 204.3 402.1 709.2

Production EL [AC/kg] 1.95 1.61 1.53 1.45 1.43 1.42 1.40 1.38

Production SMR+ [AC/kg] – 1.91 1.61 1.42 1.28 1.18 1.04 1.00

The production rate for an EL facility can vary between 20 − 100% of the
installed capacity [25]. We define a piecewise linear, convex short-term produc-
tion costs for each discrete capacity. We approximate the short-term production
costs by a piecewise linear function with breakpoints at 20%, 50%, 80% and 100%

44 Š. Štádlerová and P. Schütz

of installed production quantity. For simplification, we use the same production
rates for SMR+. We use the model by Jakobsen and Åtland [16] for calculating
investment and short-term production costs for electrolysis and SMR+.

We calculate the expansion costs as the difference between the investment
costs of opening two facilities with different capacities plus an additional mark-
up. We assume the mark-up for expansion to be 10% of the difference in invest-
ment costs.

We derive the costs of distributing one kilogram of hydrogen for one kilometer
for distances up to 800 km from [9]. To obtain the costs for distributing up to
1000 km, we extrapolate the distribution cost function. The distribution costs
per kilometer and kilogram hydrogen are then valid for the appropriate interval
as shown in Table 2. If a customer is located in the same municipality as a facility,
we assume zero distribution costs. We set the distance limit between production
facility and customer to 1000 km. Hydrogen distribution over 1000 km is suitable
for pipelines. However, pipelines are not considered relevant for Norway [8].

Table 2. Hydrogen distribution costs in [AC/km/kg H2]

Distance [km] 1–50 51–100 101–200 201–400 401–800 801–1000

Costs 0.00498 0.00426 0.00390 0.00372 0.00363 0.00360

We use two demand scenarios where hydrogen demand is increasing during
the planning horizon (see Fig. 3). In the maritime sector, demand moderately
increases until period 11. In period 11, the coastal route Bergen-Kirkenes starts
to operate on hydrogen fuels which causes a significant increase in demand. Until
period 3, there is no difference between the two demand scenarios. In the whole
transportation sector, the main demand growth is in periods 4 and 9 which
corresponds to years 2025 and 2030. These dates represent two strategic phases
for hydrogen transition in heavy transport and long-distance bus transport [11].

Fig. 3. Development of hydrogen demand during the planning horizon

• Maritime: high-speed passenger ferries, car ferries, and coastal route Bergen-
Kirkenes, [2] and [27]

Designing the Hydrogen Supply Chain for Maritime Transportation 45

• All transportation: maritime sector plus road traffic and railway sector, [11]

Aarskog and Danebergs [2] and Ocean Hyway Cluster [27] present high-speed
passenger ferry and car ferry routes that are relevant for hydrogen fuel as well
as their bunkering locations. They list 51 relevant customer locations for the
maritime sector and assume that new contracts for public transportation services
will require a zero-emission solution and that hydrogen will be selected as fuel.
For the whole transportation sector, the list of customers is extended to 70
locations and consists of bunkering ports and several inland locations relevant
for hydrogen consumption in road traffic and the railway sector.

In our case, we assume the discounting interest rate to be zero. Thus, the
discount factor δp is equal to one in each period.

4 Computational Results

The model is implemented in Mosel and solved with Xpress Optmizer Version
36.01.10. All calculations were run on a laptop with a Intel(R) Core(TM) i7-
10510U CPU @ 1.80 GHz processor and 16 GB RAM.

A summary of the main results of both demand scenarios and both models
can be found in Table 3. We provide the main characteristics of the built infras-
tructure as the number of built facilities and the number of expansions. Total
capacity and average size refer to the installed capacity and average facility size
in the last period. The total costs represent the sum of investment, expansion,
production, and distribution costs. The average hydrogen costs are calculated
over the entire planning horizon average. Note that the chosen technology is
electrolysis in all cases.

Table 3. Hydrogen infrastructure characteristics.

Demand scenario Maritime All transportation

Investment decision First-period Multi-period First-period Multi-period

Built facilities # 12 13 13 13

Expansion # 9 2 10 4

Total capacity [tonnes/day] 87.2 87.2 262.5 274.0

Average size [tonnes/day] 7.2 6.7 20.2 21.1

Total cost [mill. AC] 606.0 578.0 1658.7 1594.1

Average hydrogen costs [AC/kg] 2.73 2.61 2.53 2.43

Comparing the maritime sector and the whole transportation sector (all
transportation), the installed capacity significantly increases in the scenario with
higher demand, but not the number of built facilities. In the maritime sector,
using the first-period model, the number of built facilities is 12. In all other
cases, the number of built facilities is 13. As a result, the average facility size in

46 Š. Štádlerová and P. Schütz

the last period is almost three times higher in the scenario for the whole trans-
portation sector comparing to the scenario for the maritime sector. The results
further show that the expansion option is more often used in the first-period
model as the number of expansion is 9 and 10 for the maritime and the whole
transportation demand scenario, respectively. For the first-period model, expan-
sion is the only way how increase capacity and so it leads to a higher number of
expansions compared to the multi-period model which enables to build facilities
later during the planning horizon.

Table 3 further indicates that the capacity utilization is better in the scenario
for the maritime sector where the installed capacity is only slightly higher than
demand in the last period. The installed capacity is 87.2 tonnes per day for
both models and demanded hydrogen amount is 86.9 tonnes per day. In the
whole transportation sector scenario, the infrastructure can daily provide 20 or
37 tonnes of hydrogen more than is the demanded amount for the first-period
and the multi-period model, respectively.

(a) Daily demand and installed capacity (b) Average production costs

Fig. 4. Illustration of installed capacity and average production costs in each period
for both demand scenarios and both models. Blue lines refer to the maritime scenario
and orange lines to the whole transportation sector. (Color figure online)

Figure 4a provides an overview of installed capacity during the planning hori-
zon. The capacity difference between installed capacity and demand is generally
low in the maritime scenario independently of the used model. In the whole
transportation sector scenario, the first-period model expands in the period 4
and then the installed capacity is 2.7 times higher than the demand. In the
multi-period model, the significant increase in capacity comes in period 9 where
three of the four expansion in this scenario are performed and then the increase
in capacity is significantly higher than the increase in demand. However, the
difference is much lower than in the first-period model and the low capacity uti-
lization affects only periods 9 and 10. The reason is that expansion is allowed
only once so the expansion is performed directly to the target size. Figure 4a also
shows that from period 11 onwards, demand remains constant and the installed
capacity is just slightly higher than demand because the investment and expan-
sion decision aimed to satisfy this target value of demand. In addition, the choice

Designing the Hydrogen Supply Chain for Maritime Transportation 47

of capacities is limited by the discrete available capacities. With our choice of
discrete capacities, the lower demand in the maritime scenario can be satisfied
with low excess capacity. When larger capacities are needed, it becomes more
difficult to successively build the capacity in line with growing demand because
differences between adjacent capacities are increasing.

Figure 4b shows the average hydrogen production costs. In the first three
periods, the multi-period model performs significantly better because it allows
to build only a few facilities with high utilization in the first periods and to build
more later when demand increases. This advantage of the multi-period model
also leads to lower total costs and about 5% lower average hydrogen costs than
the first-period model.

Figure 4 as a whole further illustrates the economies of scale, as increasing
demand leads to lower unit production costs. We can see an exception in the first-
period model in the scenario for the whole transportation sector. The average
production costs in period 4 and 5 are higher than the costs in period 3 and then
again the costs increases in period 8. Due to the capacity expansion in period
4 and 8 (see Fig. 4a), the increase in capacity is significantly higher than the
demand growth. The capacity utilization is low, and the unit production costs
increase.

(a) Maritime transportation (b) Whole transportation sector

Fig. 5. Investment and expansion structure of opened hydrogen facilities. The column
height corresponds to the installed discrete capacity. Left columns represent the first-
period model and right column represent the multi-period model.

The optimal investments in opening and expanding facilities for both models
and both demand scenarios are illustrated in Fig. 5. Figure 5a shows the hydro-
gen production infrastructure for maritime transportation and Fig. 5b shows

48 Š. Štádlerová and P. Schütz

the infrastructure when the whole transportation sector is considered. The blue
boxes denote the discrete capacity that was originally invested in, and the
green boxes represent the additional discrete expansion capacity. Comparing
the Figs. 5a and 5b, there is no big difference in the infrastructure design in the
northern part of Norway because most of the demand in that region comes from
the maritime sector. The main difference and also the highest density of opened
facilities is in the southern part of Norway. In the maritime scenario in the first-
period model (left column), the facilities in Mongstad and Florø are larger than
in the whole transportation sector scenario even if the demand in the whole
transportation sector is higher and the basic demand from the maritime sector
is the same. In the whole transportation scenario, the facility in Slemmestad
expands already in period 4 to the target size (see Fig. 4) and helps to satisfy
the demand on the west coast.

The demand in the first periods is very low. Because of that, the infrastruc-
ture has to be successively built to satisfy demand from the first period. Later,
when demand increases, there are already several smaller facilities that still have
to be used and satisfy a part of this demand. The remaining requested hydrogen
amount is not large enough to build a new SMR+ facility. An SMR+ facility
is favourable for quantities higher than 210 tonnes hydrogen daily which is just
slightly lower than hydrogen demand in the last period. As a result, due to the
low initial demand level, there are built smaller EL facilities in all tested cases.

5 Conclusion

We study the optimal hydrogen infrastructure for maritime transportation in
Norway. We use two multi-period models and analyze two demand scenarios.
We consider capacitated modular facility location problem with economies of
scale and two possible production technologies. We allow the production rate to
differ from the installed capacity for both technologies.

Scenario with higher demand does not lead to a higher number of built facili-
ties suggesting that the maritime sector can help to create a hydrogen infrastruc-
ture that can be used for the whole transportation sector later. Due to economies
of scale, increasing demand with a stable number of facilities leads to lower pro-
duction costs. This further indicates that higher initial demand could help to
achieve higher competitiveness of hydrogen.

The impact of hydrogen demand generated by the road traffic sector on
the size of the Slemmestad facility reflects that it would be worth considering
candidate facility locations in the inland southern part of Norway.

As the investment decision flexibility has a significant impact on the designed
infrastructure, a natural extension of this work is to allow facility closing and
technology change during the planning horizon.

The infrastructure design and overall costs highly depend on the demand
scenario. An extension of this work is to introduce uncertain demand and thus
several demand scenarios and construct a stochastic optimization model. It will
be also interesting to analyze the technology choice and the cost structure if we
consider uncertainty in costs.

Designing the Hydrogen Supply Chain for Maritime Transportation 49

Considering international maritime transportation, ships may purchase fuel
in foreign countries. It may increase the uncertainty in demand and lead to
pressure on the hydrogen price in Norway. A complex model where the impact of
international hydrogen purchasing on national hydrogen demand and hydrogen
price is studied is subject to future work.

References

1. Aarskog, F.G., Danebergs, J., Strømgren, T., Ulleberg, Ø.: Energy and cost anal-
ysis of a hydrogen driven high speed passenger ferry. Int. Shipbuild. Progr 67(1),
97–123 (2020)

2. Aarskog, F.G., Danebergs, J.: Estimation of energy demand in the Norwegian
high-speed passenger ferry sector towards 2030. IFE/E-2020/003, Halden, Norway
(2020)

3. Almansoori, A., Shah, N.: Design and operation of a future hydrogen supply chain:
multi-period model. Int. J. Hydrogen Energy 34(19), 7883–7897 (2009)

4. Arabani, A.B., Farahani, R.Z.: Facility location dynamics: an overview of classifi-
cations and applications. Comput. Ind. Eng. 62(1), 408–420 (2012)

5. Behmardi, B., Lee, S.: Dynamic multi-commodity capacitated facility location
problem in supply chain. In: Proceedings of the 2008 Industrial Engineering
Research Conference, pp. 1914–1919. Institute of Industrial and Systems Engineers
(IISE) (2008)

6. Castro, J., Nasini, S., Saldanha-da-Gama, F.: A cutting-plane approach for large-
scale capacitated multi-period facility location using a specialized interior-point
method. Math. Program., 411–444 (2016). https://doi.org/10.1007/s10107-016-
1067-6

7. Correia, I., Captivo, M.E.: A Lagrangean heuristic for a modular capacitated loca-
tion problem. Ann. Oper. Res. 122(1), 141–161 (2003)

8. Damman, S., Sandberg, E., Rosenberg, E., Pisciella, P., Johansen, U.: Largescale
hydrogen production in Norway - possible transition pathways towards 2050. SIN-
TEF Rapport 2020–00179, Trondheim, Norway (2020)

9. Danebergs, J., Aarskog, F.G.: Future compressed hydrogen infrastructure for the
domestic maritime sector. IFE/E-2020/006, Halden, Norway (2020)

10. Dias, J., Captivo, M.E., Cĺımaco, J.: Dynamic location problems with discrete
expansion and reduction sizes of available capacities. Investigação Operacional
27(2), 107–130 (2007)

11. DNV GL: Produksjon og bruk av hydrogen i Norge. Rapport 2019–0039, Oslo,
Norway, (in Norwegian) (2019)

12. Fridstrøm, L., et al.: Decarbonization of transport, a position paper prepared by
FME MoZEES and FME CenSES (2018). ISBN 978-82-93198-25-3

13. Han, J.H., Ryu, J.H., Lee, I.B.: Modeling the operation of hydrogen supply net-
works considering facility location. Int. J. Hydrogen Energy 37(6), 5328–5346
(2012)

14. Hirth, M., et al.: Norwegian future value chains for liquid hydrogen: NCE Maritime
CleanTech, Report liquid hydrogen 2019, Stord, Norway (2019)

15. Holmberg, K.: Solving the staircase cost facility location problem with decompo-
sition and piecewise linearization. Eur. J. Oper. Res. 75(1), 41–61 (1994)

16. Jakobsen, D., Åtland, V.: Concepts for large scale hydrogen production. Master’s
thesis, Department of Energy and Process Engineering, NTNU, Trondheim, Nor-
way (2016)

https://doi.org/10.1007/s10107-016-1067-6
https://doi.org/10.1007/s10107-016-1067-6

50 Š. Štádlerová and P. Schütz

17. Jena, S.D., Cordeau, J.F., Gendron, B.: Dynamic facility location with generalized
modular capacities. Transp. Sci. 49(3), 484–499 (2015)

18. Jena, S.D., Cordeau, J.F., Gendron, B.: Solving a dynamic facility location problem
with partial closing and reopening. Comput. Oper. Res. 67, 143–154 (2016)

19. Jena, S.D., Cordeau, J.F., Gendron, B.: Lagrangian heuristics for large-scale
dynamic facility location with generalized modular capacities. INFORMS J. Com-
put. 29(3), 388–404 (2017)

20. Keipi, T., Tolvanen, H., Konttinen, J.: Economic analysis of hydrogen production
by methane thermal decomposition: comparison to competing technologies. Energy
Conv. Manag. 159, 264–273 (2018)

21. Luss, H.: Operations research and capacity expansion problems: a survey. Oper.
Res. 30(5), 907–947 (1982)

22. Mäkitie, T., Hanson, J., Steen, M., Hansen, T., Andersen, A.D.: The sectoral
interdependencies of low-carbon innovations in sustainability transitions. FME
NTRANS Working paper 01/20, Trondheim, Norway (2020)

23. Melo, M.T., Nickel, S., Saldanha-Da-Gama, F.: Facility location and supply chain
management-a review. Eur. J. Oper. Res. 196(2), 401–412 (2009)

24. Myklebust, J., Holth, C., Tøftum, L.E.S., Tomasgard, A.: Optimizing investments
for hydrogen infrastructure in the transport sector. In: Techno-economic modelling
of value chains based on natural gas:with consideration of CO2 emissions, pp. 27–
70. Doctoral thesis at NTNU 2010:83, Department of Industrial Economics and
Technology Management, Trondheim, Norway (2010)

25. NEL Hydrogen: Efficient electrolysers for hydrogen production (2015). http://
wpstatic.idium.no/www.nel-hydrogen.com/2015/03/Efficient Electrolysers for
Hydrogen Production.pdf/, Accessed 05 Feb 2021

26. Nickel, S., Saldanha-da-Gama, F.: Multi-period facility location. In: Laporte, G.,
Nickel, S., Saldanha da Gama, F. (eds.) Location Science, pp. 303–326. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32177-2 11

27. Ocean Hyway Cluster: 2030 hydrogen demand in the Norwegian domestic maritime
sector. OHC HyInfra project, Workpackage C: Mapping future hydrogen demand
(2020)

28. Ocean Hyway Cluster: Interactive map - potential maritime hydrogen in Norway.
OHC HyInfra project, Workpackage C: Mapping future hydrogen demand (2020)

29. Schütz, P.: Managing uncertainty and flexibility in supply chain optimization, :
Doctoral thesis at NTNU 2009:89. Department of Industrial Economics and Tech-
nology Management, Trondheim, Norway (2009)

30. Schütz, P., Stougie, L., Tomasgard, A.: Stochastic facility location with general
long-run costs and convex short-run costs. Comput. Oper. Res. 35(9), 2988–3000
(2008)

31. Shulman, A.: An algorithm for solving dynamic capacitated plant location prob-
lems with discrete expansion sizes. Oper. Res. 39(3), 423–436 (1991)

32. Torres-Soto, J.E., Üster, H.: Dynamic-demand capacitated facility location prob-
lems with and without relocation. Int. J. Prod. Res. 49(13), 3979–4005 (2011)

33. Ulleberg, Ø., Hancke, R.: Techno-economic calculations of small-scale hydrogen
supply systems for zero emission transport in Norway. Int. J. Hydrogen Energy
45(2), 1201–1211 (2020)

34. Van den Broek, J., Schütz, P., Stougie, L., Tomasgard, A.: Location of slaughter-
houses under economies of scale. Eur. J. Oper. Res. 175(2), 740–750 (2006)

http://wpstatic.idium.no/www.nel-hydrogen.com/2015/03/Efficient_Electrolysers_for_Hydrogen_Production.pdf/
http://wpstatic.idium.no/www.nel-hydrogen.com/2015/03/Efficient_Electrolysers_for_Hydrogen_Production.pdf/
http://wpstatic.idium.no/www.nel-hydrogen.com/2015/03/Efficient_Electrolysers_for_Hydrogen_Production.pdf/
https://doi.org/10.1007/978-3-030-32177-2_11

Destination Prediction of Oil Tankers
Using Graph Abstractions and Recurrent

Neural Networks

Búgvi Benjamin Magnussen1(B) , Nikolaj Bläser1 , Rune Møller Jensen1 ,
and Kenneth Ylänen2

1 IT -University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
bugvibenjamin@magnussen.email, rmj@itu.dk

2 Torm, Tuborg Havnevej 18, 2900 Hellerup, Denmark
koyl@torm.com

Abstract. Predicting the destination of vessels in the maritime indus-
try is a problem that has seen sustained research over the last few years
fuelled by an increase in the availability of Automatic Identification Sys-
tem (AIS) data. The problem is inherently difficult due to the nature of
the maritime domain. In this paper, we focus on a subset of the maritime
industry - the oil transportation business - which complicates the prob-
lem of destination prediction further, as the oil transportation market
is highly dynamic. We propose a novel model, inspired by research on
destination prediction and anomaly detection, for predicting the destina-
tion port- and region of oil tankers. In particular, our approach utilises a
graph abstraction for aggregation of global oil tanker traffic and feature
engineering, and Recurrent Neural Network models for the final port- or
region destination prediction. Our experiments show promising results
with the final model obtaining an accuracy score of 41% and 87.1% on a
destination port- and region basis respectively. While some related works
obtain higher accuracy results - notably 97% port destination prediction
accuracy - the results are not directly comparable, as no related litera-
ture found deals with the problem of predicting oil tanker destination on
a global scale specifically.

Keywords: Oil tankers · Automatic identification system ·
Destination prediction · Graph abstraction · Recurrent neural
networks · Deep learning

1 Introduction

Destination prediction of sea vessels is an area of research that has started to
significantly grow in popularity during recent years, arguably correlated with
the increase in available data in the maritime industry. Research has been
conducted for various destination prediction applications [4,9]. However, what
all work regarding destination prediction tends to agree upon, is that reliable

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 51–65, 2021.
https://doi.org/10.1007/978-3-030-87672-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_4&domain=pdf
http://orcid.org/0000-0002-2350-1508
http://orcid.org/0000-0002-3272-0024
http://orcid.org/0000-0001-5651-1377
http://orcid.org/0000-0001-6145-6587
https://doi.org/10.1007/978-3-030-87672-2_4

52 B. B. Magnussen et al.

behavioural prediction is difficult. The reasons for this are numerous. In partic-
ular, behavioural prediction is difficult due to the fact that sea vessels move in a
continuous space, and because sea vessels are strongly affected by their surround-
ing environment, which includes weather, currents and seasons. Factors related to
the oil transportation business further complicate the problem. Specifically, the
oil transportation business is characterised by the spot-market and short-term
contracts which implies that oil tankers are constantly assigned to new contracts.
As a consequence, the nature of oil shipping is much more dynamic compared to
for example cargo shipping, where vessels often are assigned to long-term con-
tracts, and thus follow more well-defined patterns. In this paper, we propose a
novel model for predicting the future trajectory as well as the destination port
and region of oil tankers on a global scale. We combine ideas from literature
related to both destination prediction and anomaly detection [5,9,13]. Using
Automatic Identification System (AIS) data, we construct a graph abstraction
of global oil tanker traffic and use it to generate sequences that are used to train
a Recurrent Neural Network deep learning model to predict the destination of
oil tankers. In particular, we show that destination prediction is possible with
87.1% accuracy on the regional level.

The rest of this paper is organised as follows. First, the problem statement
is outlined in Sect. 2. Then, related work is presented in Sect. 3, followed by a
detailed outline of the proposed model in Sect. 4. Next, we present our results
and discuss our experiments in Sect. 5. Finally, concluding remarks are delivered
in Sect. 6.

2 Problem Statement

Companies operating in the oil transportation business are engaged in the tramp
trade which means that vessels sail without published schedules. Further, these
companies naturally do not share information with each other regarding the
strategic positioning of their fleet and destinations of their vessels on voyages.
As a consequence of these factors, situations often arise in which there is an
excessive supply of oil transport vessels in certain regions, while there is an
excessive demand in others. Committing a vessel to a voyage can thus in the
worst case be a waste of time and resources, as competitors might reach the
destination first and thus saturate the demand. As such, being able to conduct
an accurate forecast of future destinations of competitors’ oil tankers can lead
to a competitive advantage.

Developing a model capable of predicting the destination of an oil tanker
requires historical data. Oil tankers are obliged to transmit positional data using
the “Automatic Identification System” (AIS). AIS is used worldwide and pro-
vides automatic positioning via small transponders installed on sea vessels. Data
is emitted by these transponders periodically and is referred to as AIS data. It
contains information such as latitude, longitude and ship type [3]. The data
accessible to us is an AIS dataset provided by TORM A/S. It was collected from
4112 oil tankers, gathered in the time span 01−02−2019 to 31−12−2020, and

Destination Prediction of Oil Tankers 53

contains 43948646 data points and 16 features (VesselID, Longitude, Latitude,
Movement Date Time, MoveStatus, Speed, Heading, Destination, Destination-
Tidied, ETA, CargoInfo, Beam, CallSign, Draught, Length ShipType). We pro-
pose a two step model, inspired by related research in destination prediction [5,9]
and anomaly detection [13], to bridge the gap between the available AIS data
and the ability to make predictions regarding the future destination of oil tankers
on a global scale. Thus, given an oil tanker, when making a destination predic-
tion, the input to the model is the recorded partial trajectory of the oil tanker
since it last departed a port. The output of the proposed model is a probability
distribution of future trajectories of an oil tanker, including the destination. The
purpose of the model is to support human decision making, and thus a probabil-
ity distribution is valuable, as it allows the model to express uncertainty, which
in turn allows a human to decide when the model can be trusted, i.e., when the
model assigns a high probability to a single trajectory/destination. In this paper,
we consider destinations on two levels: destination port and destination region.1

Here, predicting the destination region is arguably more valuable, as naturally,
strategical positioning of a fleet will usually take place on a regional level.

The ability to predict the future positioning of competitors’ oil tankers should
lead to an improvement in the ability to strategically position an oil tanker fleet.
The potential competitive benefits of this are numerous. In general, the impli-
cations are that oil tankers would less frequently embark on non-profitable jour-
neys. This is due to the fact that prior to sending an oil tanker on a journey to
a particular destination to meet demand, one could examine the current state
of competitors’ oil tankers, predict their destination using the model, and based
on this information, determine whether demand would be saturated before the
oil tanker in question would be able to arrive at the destination2. This would
have a direct impact on an oil-shipping company’s bottom-line, as it would lead
to reduced costs in terms of crew salaries and other operating costs such as fuel
consumption. Further, it can also directly increase profitability. By reducing the
number of non-profitable journeys that oil tankers undertake, they are free to
embark on profitable ones. Finally, in addition to the competitive benefits, fore-
casting oil tankers could also benefit the oil supply chain as a whole. Positioning
a fleet strategically based on an accurate forecast of the global oil tanker popula-
tion would result in an overall better distribution of oil tankers, and as a result,
this could lead to an improved service for oil-providers and end-consumers.

3 Related Work

Oleh et al. [4] propose a method for predicting port destinations of all types
of vessels in the Mediterranean Sea based on ensemble techniques and different
variants of Decision Trees. They report a port prediction accuracy of 97%. While
this result is impressive, it is not directly comparable to our work. The scale is
1 The regions are defined by human experts.
2 Estimated time of arrival is also an important aspect of this scenario. However, this

is outside the scope of this paper.

54 B. B. Magnussen et al.

regional and not global, i.e., only the Mediterranean Sea is targeted for predic-
tion. Further, there are no details provided as to the nature of the data used, and
it could thus stem from vessels of multiple types, notably container vessels, which
exhibit much more predictable behaviour. Finally, the proposed model outputs
a single prediction and not a probability distribution, which implies that it is
not capable of expressing uncertainty and hence not suitable for our purposes.

Nguyen et al. [9] propose a method that utilises a sequence-to-sequence
Recurrent Neural Network model to predict the trajectories of sea vessels, includ-
ing their destination, in the Mediterranean Sea. Given a stream of AIS data-
points, the spatial features (longitude/latitude) are mapped to a grid with evenly
sized grid cells, each uniquely identified by an identifier (id). The grid cell ids
are then fed as input to a Recurrent Neural Network (RNN) model. The authors
also discuss how other features, such as ship length, can be incorporated. The
authors report that the model is effective at predicting trajectories with a log
perplexity score [2] of 1.44 (lower is better). Note that this method does take
the historical trajectory of a vessel into account. However, their work is also not
directly applicable to our problem, as they only target the Mediterranean Sea
for prediction. Further, the nature of the data is unknown, i.e., it could stem
from multiple types of vessels. For global destination prediction, the proposed
approach would arguably be inefficient (see Sect. 4.5 for why).

Finally, it is worth highlighting a method proposed by Varlamis et al. [13].
Concretely, the authors do not propose a destination prediction model, but
rather, an anomaly detection system where a graph abstraction is constructed
using raw AIS data. The vertices of the graph abstraction are defined by clus-
ters of AIS data-points where vessels are either standing still or performing
significant turns. The edges of the graph abstraction are defined by aggrega-
tions of AIS data segmented into sub-trajectories between the graph vertices.
The authors then propose that anomalous vessel behaviour can be identified by
using the graph abstraction as a descriptor of what “normal” vessel behaviour is,
and observing how much a vessel’s trajectory deviates from the graph abstrac-
tion. A key idea of our work is to apply this graph abstraction to trajectory and
destination prediction (see Sect. 4).

While the related work presented in this section each achieved excellent
results, none of it is directly applicable to the problem we are faced with in
this paper - global destination prediction of oil tankers. Further, as alluded to
throughout this section, there are various reasons for why the related work can-
not directly be used as a solution to the problem we are faced with. Thus, this
highlights the need for a novel model designed specifically for global destination
prediction of oil tankers.

4 Solution Approach

The proposed model can be split into two parts. The objective of the first part
is to extract discrete port-to-port trajectories, as well as relevant associated

Destination Prediction of Oil Tankers 55

constant features3 from raw AIS data. This is achieved by building a multi-step
data pipeline. The objective of the second part is to build a Recurrent Neural
Network capable of predicting the future trajectory of a vessel, including the
destination, given the processed discrete trajectory data. Figure 1 provides an
overview of the model.

Fig. 1. The overall solution approach. The blue boxes represent the first part of the
model and can be described as feature engineering. (Color figure online)

4.1 Pre-processing

In the pre-processing stage the speed and bearing rate4 of a vessel are derived
for each AIS data-point. To calculate said features, AIS data points for each
vessel respectively are sorted by time and considered pairwise. Both features
are needed for later stages in the proposed model. We also perform some basic
data cleaning by removing duplicates and removing data points where features
contain nonsensical values, e.g., a Heading value larger than 360.

4.2 Stay-Point Clustering

The next step in the proposed model is to perform Stay-point clustering. A
Stay-point, is an AIS data-point where the vessel emitting the data-point is
moving very slowly or is stationary. The purpose of Stay-point clustering is
to identify clusters around the globe where vessels can be considered to be in
port. These clusters are then used for the construction of the graph abstraction
outlined in Sect. 4.5. Given the raw AIS data, Stay-points are identified by using
the speed feature computed during the pre-processing stage. Specifically, data-
points with a speed of less than 1 knot are classified as Stay-points, which is
a commonly used threshold for the purpose [13]. Next, a clustering algorithm
called DBSCAN [10] is used to cluster the identified Stay-points. The choice of
DBSCAN is deliberate. DBSCAN can identify arbitrarily shaped clusters, which
implies that no assumption has to be made with respect to the shape of the
3 Constant features are features that do not change during the duration of a vessel’s

port-to-port voyage. For example, the length of a vessel.
4 The bearing rate is the rate of turn of a vessel.

56 B. B. Magnussen et al.

Stay-point clusters. The major limitation of DBSCAN is that it is restricted
to finding clusters of similar density. However, in the case of finding Stay-point
clusters this is less of an issue, as it can arguably be assumed that Stay-point
clusters associated with frequently5 visited ports have a similar density. The
hyper-parameters used have been found empirically, albeit with some inspiration
drawn from Chengkai et al. [17], by visually examining the convex polygons that
the clusters define. Once the Stay-point clusters have been identified the next
step is to remove clusters that cannot reasonably be associated with any port.
This is achieved by verifying that all cluster centroids are within a threshold
distance (15 miles) to the nearest port. If a cluster’s centroid is not within said
distance threshold of a port, it is removed and all data points within said cluster
are classified as non Stay-points.

4.3 Turn-Point Clustering

The next step is to perform Turn-point clustering. A Turn-point, is an AIS data-
point where the vessel emitting the data-point is performing a turn. The purpose
of Turn-point clustering is to identify data-points which indicate that an impor-
tant event is occurring during a vessel’s journey, i.e., where the vessel performs
a turn, indicating a change in course. These clusters, like Stay-point clusters,
are also used to construct the graph abstraction which is described in Sect. 4.5.
The Turn-point clustering process is highly similar to the Stay-point clustering
process described previously. Given the raw AIS data, Turn-points are identified
by using the bearing rate feature computed during the pre-processing phase (see
Sect. 4.1). Concretely, data-points that are not Stay-points and that have a bear-
ing rate of 0.3 or more degrees per minutes are labelled as Turn-points. Next,
the data is split into Turn points “close” to shore and Turn points “far” from
shore. The rationale behind performing this split is that clusters close to shore
are assumed to have different characteristics than clusters far from shore, and
should therefore be clustered differently. Similarly to Stay-points, Turn-points
“close” to shore are clustered using DBSCAN. For Turn-points “far” from shore,
a clustering algorithm called OPTICS [1] is used. OPTICS can cluster arbitrar-
ily shaped clusters of varying density. This is particularly useful for identifying
Turn-point clusters far from shore, as it can be hypothesised that they vary quite
a bit in both shape and density.

4.4 Trajectory Extraction

The AIS data at this point contains labels indicating which, if any, Stay-point or
Turn-point cluster a data-point has been assigned to. In order to extract port-
to-port trajectories, the AIS data is grouped by the Vessel id attribute, sorted
by time and then split into trajectories. The following example illustrates how

5 Less-frequently visited ports are less interesting as they are a form of outlier in the
dataset.

Destination Prediction of Oil Tankers 57

two port-to-port trajectories are extracted from a time-sorted sequence of AIS
data-points emitted from one vessel.

data = 〈1̂, 2̂, 3, 4, 5, 6, 7̂, 8̂, 9, 10, 11, 12, 13, 1̂4〉
↓

t1 = 〈2̂, 3, 4, 5, 6, 7̂〉 t2 = 〈8̂, 9, 10, 11, 12, 13, 1̂4〉,
where numbers with “hats” indicate data points classified as Stay-points. In
this particular example the vessel starts out with being in-port 〈1̂, 2̂〉, sets
out on a voyage 〈3, 4, 5, 6〉, arrives at a port 〈7̂, 8̂〉, sets out on a new voyage
〈9, 10, 11, 12, 13〉 and arrives at the final port 〈1̂4〉. Thus, two port-to-port tra-
jectories are extracted from this example. Once all vessels have been processed,
the result is a new dataset containing port-to-port trajectories from all vessels
in the original AIS dataset.

4.5 Graph Abstraction

The extracted trajectory data could in principle already be used as an input fea-
ture for a sequential prediction model. However, as mentioned by Nguyen et al.
[9], raw AIS data is, due to varying transmission frequencies, not well suited for
this type of prediction. A much more promising approach is to discretize AIS
trajectories into a format that eliminates the frequency problem. As mentioned
in Sect. 3, one way of doing so is to split the coordinate space into a spatial
grid and map each trajectory to a sequence of visited grid cells. This approach
however arguably also has flaws. An even spaced grid does not take swimlanes,
harbour areas, or landmass into account, and as such, there is a loss of infor-
mation when used for discretization. Furthermore, while good results have been
achieved for smaller regions [9], using a grid-cell approach for the whole globe
would be less efficient, as the number of cells (state space) needed in order to
represent trajectories sufficiently accurately grows proportionally with the size
of the coordinate space. To address the aforementioned problems, we propose a
graph-based method for discretizing trajectories. Specifically, our idea is to create
a graph-abstraction in which vertices represent areas of interest and edges rep-
resent swimlanes connecting these areas. A trajectory can then be discretized
into a sequence of traversed vertices or, alternatively, a sequence of traversed
edges. This approach not only solves the frequency problem of raw AIS data,
but also avoids the loss of information of the grid-based approach. Furthermore,
note that compared to grid cells, a graph abstraction is more scalable, as the
size of the graph does not depend on the size of the coordinate space.

Vertices. Vertices represent sea-areas in which vessels perform manoeuvres
of interest. There are two types of areas that are of particular interest. One,
areas in which vessels typically stand still (harbour areas). And two, areas in
which vessels typically perform turn manoeuvres. Vertices can thus be split into
two types, Stay-point vertices and Turn-point vertices. Stay-point vertices are
constructed using the clustered Stay-point AIS data. For each Stay-point cluster

58 B. B. Magnussen et al.

(and thus harbour), a convex polygon is created, tightly encapsulating the data-
points belonging to the cluster. Each polygon thus defines the sea-area of a
harbour. The polygons are then slightly enlarged using a buffer, and overlapping
polygons are merged. This is done to reduce the number of polygons. Note
that this also implies that multiple ports will be mapped to the same polygon.
Next, for each polygon, a Stay-point vertex is created representing the area
defined by the polygon. Finally, the polygon itself as well as the names of the
ports represented by the polygon are stored within the corresponding Stay-point
vertex. Similarly, Turn-point vertices are constructed using the clustered turn-
point AIS data. The only difference to Stay-point vertices, is that Turn-point
vertices with overlapping polygons are not merged. Instead, the intersection is
removed from one of the overlapping polygons. See Fig. 2 for an illustration.

Fig. 2. The Gulf of Mexico. The image to the left shows Stay-point polygons and the
image to the right shows Turn-point polygons.

Edges. Edges are added to the graph by splitting each vessel trajectory into
several sub-trajectories. This is done by pairwise iterating through data-points
in a trajectory and creating a sub-trajectory whenever the line between the pair
of points intersects with a vertex. The edges are then added to the graph. Note
that currently, edges of the graph are not used in further stages of the proposed
methodology. See Sect. 6 for future plans.

Region Mapping. Since a part of the objective of this paper is to predict the
destination region of a vessel, information is added to the graph in regards to
which region any given Stay-point vertex belongs to.

4.6 Discrete Trajectory Translation

Port-to-port trajectories are discretised by iterating through the AIS data-points
of each trajectory and checking for intersection with vertices (polygons). When-
ever a line formed by a pair of consecutive points within a trajectory intersects
with a vertex, the id of that vertex is added to a sequence of vertex ids. The result
is thus a sequence of vertices traversed by a vessel throughout its port-to-port
journey. See Fig. 3 for an illustration.

Destination Prediction of Oil Tankers 59

Fig. 3. Red polygons represent Stay-point vertices and green polygons represent Turn-
point vertices. The left side shows a continuous trajectory and the right side shows the
same trajectory after it is discretized using the graph. The resulting sequence of vertex
ids is {1, 3, 6, 7, 9, 10} (Color figure online)

4.7 Constant Feature Extraction

Apart from spatial features used to construct the aforementioned sequences, AIS
data also contains other features that potentially are useful for predicting the
future destination and trajectory of a vessel. These features will be referred to
as constant features, as they should not change during the port-to-port voyage
of a vessel. Relevant constant features include the vessel id, the length of a
vessel, the draught of a vessel, the departure time of a vessel (month, day, hour),
the previous departure port and information related to the cargo of a vessel.
Combining sequential and constant features yields the following format for each
data-point.

X = {[x0, ..xt−1, xt], id, length, draught,month, day, hour, prev dep, cargo info},

where [x0, ..xt−1, xt] is the discretized trajectory (sequence of vertices).

4.8 Recurrent Neural Network Model

We propose a sequence-to-one RNN for predicting the future trajectory of an
oil tanker. An RNN [11] is a type of Neural Network (NN) designed to detect
patterns in sequential data. What allows an RNN to detect sequential patterns is
the ability to remember previous inputs. That is, outputs are not only determined
by the current input, but also by what has been observed in the past. The
sequence-to-one RNN is thus able to model problems of the following form:

X = {x0, x1... xt−1, xt}, Y = {xt+1}
where the output is generated not only based on the most recent observation
xt, but based on a sequence of previous observations. In our case, the input is a
partial port-to-port trajectory (sequence of vertex ids) and the output is the most
likely next vertex (id) a vessel intersects. Several different variations of RNNs
have been developed that share the same underlying idea, but address some of
the weaknesses of the original approach. One of the most popular variations is
known as Long short-term memory (LSTM) [7]).

60 B. B. Magnussen et al.

Network Architecture. In order to test different combinations of input fea-
tures, we have implemented several variations of the network’s architecture. The
first combination of input features is simply the vertex sequence by itself. Here,
the network consists of an input layer, an embedding layer (for encoding vertex
ids), an LSTM layer and a dense output layer with a softmax activation func-
tion (to model a probability distribution over vertices). The embedding layer
is an alternative to the commonly used one-hot-vectors, and is responsible for
encoding vertex ids into a format that is interpretable by the RNN. Specifically,
the embedding layer transforms a vertex id into a low dimensional dense vec-
tor, representing the vertex and its relation to other vertices. For subsequent
input feature combinations major adaptions to the architecture of the network
are required. This is due to the fact that we now start to mix features of differ-
ent types. While the vertex sequence is a sequential feature, the other constant
features are either categorical or continuous. Inspired by Yuan et al. [15], we
propose a hybrid recurrent neural network architecture for modelling multi-type
input features. Specifically, the architecture is split into two parts, referred to as
the feature learning part and the target learning part. Note that several different
architecture modifications in terms of number of neurons, activation functions
and number of layers have been tested. The best performing architecture (when
including all features) is shown in Fig. 4.

Fig. 4. The best performing architecture of the RNN model.

The vessel id and previous departure port are high-dimensional categorical
input features each forwarded to an embedding layer. The network uses dropout
[12] to reduce overfitting. A dropout of 0.1 is applied within the LSTM layer
and after merging constant features. Furthermore, note that batch normaliza-
tion [8] (BN) is applied after merging the sequential branch with the constant

Destination Prediction of Oil Tankers 61

feature branches. Typically, BN is applied to deep convolutional neural networks
to improve the rate of convergence. Applying it to our RNN model interestingly
has the same effect. Please note that the RNN model described in this Section
is implemented using Tensorflow6.

Decoding. The RNN by itself is designed to predict a single vertex and not
the entire remaining port-to-port trajectory of a vessel. To predict the future
trajectory (sequence of vertices), as well as the future destination, we use the
decoding algorithm beam-search, as described by Zhang et al. [16]. Summarised
briefly, the decoder uses the RNN to iteratively generate tokens (in this case
vertex ids) until an end-of-sequence (eos) token is generated. Given that the
objective is to predict a port-to-port trajectory, the decoding process contin-
ues until a Stay-point vertex id is generated. Thus, every Stay-point vertex of
the graph represents an eos token. Furthermore, note that a hyper-parameter
beam width can be specified, which represents the number of likely trajectories
the decoder should generate. Each returned trajectory includes a score, which
indicates the likelihood of the trajectory relative to other trajectories. The most
likely trajectory is thus the one with the highest score. The destination region
and port are then derived from the predicted trajectory.

5 Experiments and Results

Prior to conducting our experiments, we split the data into training, test and
validation datasets as indicated by Fig. 5.

Fig. 5. An illustration of how the AIS data is divided.

For testing, the training dataset is extended by the validation dataset. We use
the training data to construct the graph abstraction and train the RNN model.
Note that usually, prior to splitting the dataset into training, test, and valida-
tion, the data is shuffled to improve the model’s ability to generalise. However,
due to the fact that the purpose of the RNN model is to predict future vessel
destinations based on historical vessel data, the data is not shuffled, but split
in chronological order as this gives a better indication of how the RNN model
would perform when deployed. The data is then shuffled after the chronological
split.

The RNN model uses a vertex-level loss at training. The loss is measured
using Categorical Cross-Entropy, the optimiser used is Adam with a learning rate
6 https://www.tensorflow.org/.

https://www.tensorflow.org/

62 B. B. Magnussen et al.

of 0.001 and the batch size is set to 32. Hyper-parameters of the RNN model,
including the size of the network, are tuned using a trial-and-error approach.
The accuracy of the trained RNN model is measured using halfway port-to-
port trajectories. The measured metrics are next vertex, destination port and
destination region accuracy. As mentioned previously, several different variations
of the RNN model are trained in order to test different combinations of input
features. The results are shown in Table 1.

Table 1. Results for different feature combinations.

1 2 3 4 5 6 7 8 9 10 11 12

Sequence � � � � � � � � � � � �
Vessel id � � � �
Length � � � � �
Draught � � � � �
Depart. time � � � �
Prev. Depart � � � � � �
Cargo Info � � � �
Val. node 64.2 64.3 65.5 65.6 65.0 64.4 64.4 64.9 66.0 65.7 65.8 65.2

Val region 80.7 80.1 81.1 81.5 80.5 80.8 78.8 80.2 84.9 85.1 83.5 83.3

Val. port 35.1 35.1 37.0 37.2 36.4 35.1 33.1 37.0 37.3 37.1 40.5 40.4

Test node 64.5 64.8 65.8 65.9 65.3 64.7 64.5 65.2 66.4 66.0 65.8 65.8

Test region 81.0 81.0 81.7 82.1 81.1 80.9 78.1 83.1 86.5 87.1 84.3 84.0

Test port 35.4 36.1 37.4 37.5 36.7 35.9 33.3 38.2 38.0 38.0 40.9 41.0

Model 10 achieves the best region accuracy, which is 87.1%, and Model 12
achieves the best port accuracy, which is 41.0%. We hypothesise that the biggest
hindrance to achieving higher accuracy is the data itself. During hyper-parameter
tuning, we observed that the RNN model has a high tendency to over-fit the train-
ing data. Small increments in the complexity of the RNN model (for instance an
increase in the number of neurons in a single layer), already causes the model to
over-fit significantly. Arguably, the chronological split between the training and
test data is a major cause for over-fitting. If the distribution of the test data dif-
fers from the distribution of the training data, the RNN model will not generalise
well. It is hypothesised that this is indeed the case due to the COVID-19 pandemic,
which affected global oil shipping during 2020 [6]. The training data, which spans
from 2019 to 2020, is only partially affected by COVID-19, whereas the valida-
tion and test data exclusively consist of AIS data from the end of 2020, which is
when the pandemic was at its worst. More data, or data ranging over a different
time span, would thus likely give better results. Furthermore, as seen in Table 1,
the test accuracy appears to be significantly higher than the validation accuracy,
which could be due to the difference in size of the training data used for validation
and testing respectively (see Fig. 5). Hence, this further supports the argument
that more data would improve the accuracy of the RNN model.

Destination Prediction of Oil Tankers 63

Visualisation of Predictions. The trajectories predicted by the model can
be plotted on a map and are thus easy to interpret. See Fig. 6.

Fig. 6. The black line indicates the partial trajectory given as input to the RNN model.
The red line indicates the prediction made by the RNN model and the green line the
actual trajectory. (Color figure online)

As seen in the figure, the model is able to consistently produce realistic tra-
jectories. However, even though the predictions are realistic, they can still sub-
stantially deviate from the actual trajectory of a vessel (as seen in example (b) of
Fig. 6). Furthermore, note that predicting only a single trajectory does not serve
as a good basis for decision making, as there is no indication in regards to how
confident the RNN model is in its prediction. Instead, a much better approach
would be to return a probability distribution over possible future trajectories.
This is achieved by using a heatmap, which is extracted from the trajectories
returned by the beam-search decoder. Figure 7 shows a heatmap over predicted
trajectories for the partial trajectory shown in example (b) of Fig. 6.

Fig. 7. A plotted heatmap using a beam width of 35.

While our results show promise our experiments also highlight the fact that
making trajectory- and destination prediction in the oil transportation domain

64 B. B. Magnussen et al.

is difficult. Thus, further work is needed in order to improve the results, in
particularly at the port destination prediction level. Finally, in addition to the
aforementioned issues with the data, our experiments indicate that the data
available to us is rather noisy, and thus another AIS dataset from another source
could potentially also improve the results.

6 Conclusion and Future Work

In this paper, we proposed a model for predicting oil tanker destinations on a
global scale. We highlighted the general difficulties related to predicting sea vessel
destinations and challenges inherent to the oil tanker domain that complicate the
matter of destination prediction. In particular, we proposed a graph abstraction
representing global oil tanker sea traffic. Further, utilising this graph abstraction,
sea vessel port-to-port trajectories are discretised into sequences that are then
used to train a Recurrent Neural Network model for destination prediction on a
port and regional level. We presented experiments that show promising results for
both port- and region destination prediction, thereby highlighting the potential
of the proposed model. While the destination prediction accuracy at the port
level is quite low, at the regional level, it is quite high. Further, because the
model outputs a probability distribution, as of now, it can arguably be used to
aid human decision making. Thus, deploying the model should already lead to
an improvement in the ability to strategically position a tanker fleet.

We consider this work as a first step and there are numerous potential
improvements that can be made. For instance, currently port-to-port trajec-
tories are converted into discrete sequences by checking for intersection with the
vertices of the graph abstraction. An alternative to this would be to utilise the
edges of the graph to discretise the port-to-port trajectories into a sequence of
edge mappings. Using the edges in this way arguably allows for more details
to be captured by the discrete sequences. Finally, the current architecture of
the RNN model uses a vertex-level loss at training, but targets destination-level
accuracy at testing. While this approach works reasonably well in practice, it can
be argued that it is sub-optimal due to the fact that the model is not exposed
to destination-level errors during training. Instead, one could incorporate beam
search decoding in the training of the RNN model [14].

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering points to
identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 1999, pp. 49–60. Associa-
tion for Computing Machinery, New York (1999). https://doi.org/10.1145/304182.
304187

2. Arora, K.: Contrastive perplexity: A new evaluation metric for sentence level lan-
guage models. CoRR abs/1601.00248 (2016). http://arxiv.org/abs/1601.00248

3. BigOceanData: The definitive ais handbook. http://www.marineinsight.com/wp-
content/uploads/2016/11/AiS-Whitepaper.pdf

https://doi.org/10.1145/304182.304187
https://doi.org/10.1145/304182.304187
http://arxiv.org/abs/1601.00248
http://www.marineinsight.com/wp-content/uploads/2016/11/AiS-Whitepaper.pdf
http://www.marineinsight.com/wp-content/uploads/2016/11/AiS-Whitepaper.pdf

Destination Prediction of Oil Tankers 65

4. Bodunov, O., Schmidt, F., Martin, A., Brito, A., Fetzer, C.: Grand challenge: Real-
time destination and ETA prediction for maritime traffic. CoRR abs/1810.05567
(2018). http://arxiv.org/abs/1810.05567

5. Capobianco, S., Millefiori, L.M., Forti, N., Braca, P., Willett, P.: Deep learning
methods for vessel trajectory prediction based on recurrent neural networks. CoRR
abs/2101.02486 (2021). https://arxiv.org/abs/2101.02486

6. Ghosh, S.: Why the oil tanker business boomed during covid-19 pan-
demic? (February 2021). https://www.marineinsight.com/know-more/oil-tanker-
business-boomed-during-covid-19-pandemic/

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/
abs/1502.03167

9. Nguyen, D.D., Le Van, C., Ali, M.I.: Vessel trajectory prediction using sequence-to-
sequence models over spatial grid. In: Proceedings of the 12th ACM International
Conference on Distributed and Event-Based Systems, DEBS 2018, pp. 258–261.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3210284.3219775

10. Ram, A., Sunita, J., Jalal, A., Manoj, K.: A density based algorithm for discovering
density varied clusters in large spatial databases. Int. J. Comput. Appl. 3 (06 2010).
https://doi.org/10.5120/739-1038

11. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by
back-propagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/
323533a0

12. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

13. Varlamis, I., Tserpes, K., Etemad, M., Júnior, A.S., Matwin, S.: A network
abstraction of multi-vessel trajectory data for detecting anomalies. In: Papotti,
P. (ed.) Proceedings of the Workshops of the EDBT/ICDT 2019 Joint Conference,
EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019. CEUR Workshop Proceed-
ings, vol. 2322. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2322/BMDA 5.pdf

14. Wiseman, S., Rush, A.M.: Sequence-to-sequence learning as beam-search optimiza-
tion. CoRR abs/1606.02960 (2016). http://arxiv.org/abs/1606.02960

15. Yuan, Z., Jiang, Y., Li, J., Huang, H.: Hybrid-dnns: Hybrid deep neural networks
for mixed inputs. CoRR abs/2005.08419 (2020). https://arxiv.org/abs/2005.08419

16. Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Dive into deep learning. CoRR
abs/2106.11342 (2021). https://arxiv.org/abs/2106.11342

17. Zhang, C., et al.: Ais data driven general vessel destination prediction: a ran-
dom forest based approach. Transp. Res. Part C: Emerg. Technol. 118, 102729
(2020). https://doi.org/10.1016/j.trc.2020.102729, http://www.sciencedirect.com/
science/article/pii/S0968090X20306446

http://arxiv.org/abs/1810.05567
https://arxiv.org/abs/2101.02486
https://www.marineinsight.com/know-more/oil-tanker-business-boomed-during-covid-19-pandemic/
https://www.marineinsight.com/know-more/oil-tanker-business-boomed-during-covid-19-pandemic/
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1145/3210284.3219775
https://doi.org/10.1145/3210284.3219775
https://doi.org/10.5120/739-1038
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
http://jmlr.org/papers/v15/srivastava14a.html
http://ceur-ws.org/Vol-2322/BMDA_5.pdf
http://arxiv.org/abs/1606.02960
https://arxiv.org/abs/2005.08419
https://arxiv.org/abs/2106.11342
https://doi.org/10.1016/j.trc.2020.102729
http://www.sciencedirect.com/science/article/pii/S0968090X20306446
http://www.sciencedirect.com/science/article/pii/S0968090X20306446

Scheduling Drillships in Offshore
Activities

Rafael Gardel Azzariti Brasil1, Marco Aurélio de Mesquita1 ,
Dario Ikuo Miyake1 , Tiago Montanher2,

and Débora P. Ronconi1(B)

1 Department of Production Engineering, University of São Paulo,
Av. Luciano Gualberto, 1380, Cidade Universitária, São Paulo, SP 05508-010, Brazil

dronconi@usp.br
2 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1,

1090 Vienna, Austria

Abstract. This paper addresses the scheduling of offshore oil well con-
struction using drilling vessels. Drilling costs constitute a substantial
part of the total development costs for an offshore field, thus planning
the efficient use of drilling rigs is crucial to ensure economic feasibility
of oil and gas exploration and production (E&P) projects. The objec-
tive of this study is to minimize the completion time of all operations
involved in the development of subsea wells considering the availability
of the drilling rigs. These activities are drilling and completion of the
well, and maintenance activities. Technical constraints and availability
of the drilling vessels and release dates and precedence constraints of
the activities are considered. In addition, vessel eligibility restrictions
are respected. A mixed integer linear programming model was devel-
oped considering the goals and constraints above. Numerical experiments
using instances based on real-world situations show adequate behavior,
which demonstrates that it faithfully represents the situation portrayed
and can be used, combined with more advanced optimization techniques,
to achieve better results.

Keywords: Oil wells · Offshore activities · Mixed integer linear
programming

1 Introduction

Despite the transition on course for the development of lower carbon sources
of energy and the severe impacts on the global demand for fuels caused by
the Covid-19 pandemic, the supply of oil and gas tends to continue playing an
important role in global energy systems in the coming decades [9,30]. Even in
a scenario of accelerating investments in renewable sources of energy, it will be
necessary to keep heavy investments in the exploration and production (E&P)
projects to avoid an imbalance of supply that may cause significant increases of
prices and risk of supply disruptions [9,16].
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 66–81, 2021.
https://doi.org/10.1007/978-3-030-87672-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_5&domain=pdf
http://orcid.org/0000-0001-9216-8879
http://orcid.org/0000-0002-9452-1338
http://orcid.org/0000-0001-7647-2328
https://doi.org/10.1007/978-3-030-87672-2_5

Scheduling Drillships in Offshore Activities 67

The E&P activities constitute the upstream segment of the oil and gas indus-
try which include onshore and offshore drilling. Nowadays, more than a quarter
of the oil and gas supply is produced offshore and a relevant share of new reserves
additions is expected to keep coming from fields underneath the ocean. However,
offshore drilling is more expensive than onshore drilling. The drilling costs can be
estimated in different ways (e.g. based on functional category, time dependency,
variable or fixed cost classification) encompassing several components [12,17].
A common way is to consider that to a great extent, they will depend on the
drilling time, which includes the non-productive time, and the daily rig rate
[2,14]. In values of 2010, for deepwater wells, offshore rig rates per day could
be six to eight times more expensive than for onshore wells. On its turn, the
number of days will be a function of the well depth. Hence, while usual wells
up to 20,000 ft requires 70 to 80 days, deeper wells up to 32,000 ft may need up to
150 days. Daily rig rate will vary according to the rig type. As of March 2021,
the average day rate of semisubmersible drilling units and drillships to operate
in water depth greater than 7,500 ft was, respectively, about USD 125,000 and
USD 180,000 much higher than for jackup rigs used to operate in water depths
up to 500 ft [13]. This, along with the greater distance from shore, contributes
to make deepwater projects require more investment compared to onshore or
shallow water developments. It is worth noting that numerous other factors may
influence the efficiency of offshore drillings, such as geologic conditions, pur-
pose of the well (i.e. exploratory, development, etc.), trajectory, water depth,
hole diameter, weather, and operator’s experience, among others [12,14]. Even
so, propelled by advancements in E&P technologies and efficiency improvement
efforts, new fields in deepwater areas have accounted for around half of dis-
covered oil and gas resources over the last ten years [15]. Nowadays, much of
deepwater oil production is concentrated in Angola, Brazil, Nigeria and United
States [15]. In the coming years, it is expected that Brazil will remain as one
of main drivers of drilling and well services expenditure to expand deepwater
E&P activities [24]. To a great extent, this dynamism has been promoted by the
opening of the Brazilian sector of oil and gas to allow the participation of foreign
and other local players, besides Petrobras - Brazil’s state controlled oil company
-, in exploration and production activities. Since then, several multinational oil
companies were granted rights to act as operators in order to explore and pro-
duce in the pre-salt fields [5]. As the drilling costs can make up some 25 to 35%
of the total development costs for an offshore field [28], for these operators, it is
imperative to seek the most efficient use of the drilling units they hire for their
E&P projects given that by the end of 2019, the greatest share of the Brazilian
oil (96%) and natural gas (81%) proved reserves was located in offshore areas
[22].

Given the growth in the Brazilian offshore oil production in the past years
and, especially, the contribution of wells from the pre-salt layer to this outcome,
studies intended to characterize and improve this process are very relevant. Fol-
lowing this trend, our research study focus on the scheduling problem of oil
well development activities. These activities can be the drilling, the completion

68 R. G. A. Brasil et al.

(end phase) of the wells, as well as the maintenance activities. Technical con-
straints of each drilling rig, the ready times of the vessels, the release dates
of the activities, and the precedence constraints among the activities are con-
sidered. Moreover, eligibility constraints set by the company are considered. A
MILP model considering the constraints that structure this complex situation
is proposed and evaluated using instances based on real-world situations. The
considered objective is the minimization of the completion time of all activities
considering the availability of the oil drilling rigs. This optimization criterion,
known in the job scheduling literature as makespan, usually implies high resource
utilization. As one of the main components of the well development cost is the
cost of hiring the drilling ships, reducing their idleness is a relevant point for the
optimization of this process.

Considering the characteristics of the problem under study, we present below
studies conducted on the ship routing and scheduling problem which addresses
the very issue of maximizing the efficiency of critical resources in offshore oper-
ations. Christiansen et al. [6] presented a survey approaching the subject of ship
routing and scheduling in recent years. The authors highlighted the relevance of
this theme for global development, presenting the increase in the fleet and the
cargo to be transported, from 1980 to 2010. Hennig et al. [10] addressed a prob-
lem of routing and scheduling heterogeneous transportation ships with pickup
and delivery of crude oil. Characteristics of this problem were the loading capac-
ities at the ports, fractional loads, and the time windows for both pickup and
delivery. A path flow model, which uses pre-generated ship routes, has been
introduced to minimize fuel costs and port charges. Hennig et al. [11] presented
a simpler and more compact model, in addition to detailing the pre-generated
ship routing procedure. Another work that addresses the transportation of crude
oil of various types can be found in Nishi and Izuno [23]. The authors addressed
the problem of routing and scheduling of ships with fractional deliveries aiming
to minimize distances and obeying the capacity of tankers, which collect oil in
various points of the world and distribute it to some customers. The authors
proposed a mixed integer linear programming (MILP) model and applied an
iterative heuristic based on the column generation procedure. Lee and Kim [18]
addressed the routing problem with fractional deliveries, time windows, and het-
erogeneous fleet in the context of a steel manufacturing company. In the consid-
ered problem there were two types of ships: owned, which can perform multiple
pickups and multiple deliveries on a route; and contracted, which perform point-
to-point activities. A MILP model was presented for the problem as well as a
heuristic algorithm, based on Adaptive Large Neighborhood Search.

Assis and Camponogara [8] dealt with the problem of relieving ships, which
perform the transport between the oil platforms, which are located offshore and
the onshore terminal. A MILP model based on a graph in which the vertices
represent the terminal and the platforms was presented. Route feasibility, num-
ber of ships to be used, inventory and cargo transfer balance constraints are
established. In addition, two heuristic methods were applied: rolling-horizon
and relax-and-fix. A MILP approach in the oil industry was also proposed by

Scheduling Drillships in Offshore Activities 69

Lin et al. [19] in a problem of scheduling a fleet of marine ships to unload crude
oil into tankers. This type of activity is often related to the transfer of crude oil
from a discharging tanker to smaller ships to make the tanker lighter. Stanzani
et al. [27] addressed a real-world multi-ship routing and scheduling problem with
inventory constraints that arise in crude oil gathering and delivery operations
from multiple offshore platforms to coastal terminals. MILP models were pre-
sented to handle small to moderate cases; while a matheuristic was proposed to
handle larger cases. A comprehensive analysis of the costs involved in abandoning
wells that have reached their maturity stage was conducted in [1]. Additionally,
the author proposes MILP models to represent the strategic, tactical and oper-
ational planning of this process, which involves the routing and scheduling of
ships with high daily allocation costs.

Addressing the area of scheduling of Pipe Laying Support Vessels (PLSV),
Bassi and Ronconi [4] tackled the problem of connecting subsea oil wells to
offshore platforms through the use of the outsourced fleet of PLSVs. A MILP
model was developed considering several features of the problem, among them
the increase of the production curve using injection wells to combat the natural
decline of well production over time. The objective considered was the maximiza-
tion of the oil production curve. Also related to the area of scheduling PLSVs,
[7,21,26] conducted studies making an analogy between routing activities with
scheduling activities in parallel machines. In the most recent research [7] the
goal was to reschedule identical PLSVs in order to minimize the impacts caused
by operational interruptions. A MILP model was proposed for the routing prob-
lem that starts from previously created activity blocks (voyage) composed of
setup times, activities to be performed and the return navigation to the loading
base. The only navigation considered separately is between the port and the
exploratory region. Additionally, a method based on the Iterated Local Search
(ILS) meta-heuristic was proposed.

Considering oil well development activities, Pereira et al. [25] optimized the
use of PLSVs and drilling rigs using the GRASP (Greedy Randomized Adap-
tive Search Procedure) metaheuristic. The objective was to maximize the oil
production within a given time horizon. Moura et al. [20] addressed the same
problem considered in [25], considering however the time for resource displace-
ment. GRASP was also considered as the solving method. Bassi et al. [3] tackled
the problem of planning and scheduling a fleet of rigs to be used for well drilling
or for maintenance activities with uncertain service times. The authors devel-
oped a procedure based on simulation and optimization strategies to generate
the expected solutions.

Through the literature review it can be observed that a large portion of
the researches presents a mathematical model to represent the ship routing and
scheduling problem in different contexts. However, few authors that approached
the scheduling of oil well development activities presented MILP formulations.
We point out that the representation of this problem as an integer linear pro-
gramming model makes it possible to define the problem precisely, as well as

70 R. G. A. Brasil et al.

to apply exact or heuristic techniques that are based on the model, such as
matheuristics and relax-and-fix strategies.

This paper is organized as follows. Section 2 describes details of the problem
while Sect. 3 presents the proposed mixed integer linear programming model.
Section 4 reports numerical experiments with a set of small-sized instances based
on real-world data. Section 5 presents the final considerations and next steps
suggested for this study.

2 Problem Description

An offshore oil well life cycle can be summarized in the following phases:
prospecting, construction, interconnection, production, maintenance, and clo-
sure. The initial phases of prospecting, construction, and interconnection are
managed by an oil well project manager and involve a wide range of activities,
which need to be carefully managed.

In the first stage, the characteristics of the well and its construction are
defined, and risk and economic analyses are carried out before the project is
approved. Once approved, the project moves on to the construction stage, con-
sisting of a series of activities that can change greatly from one project to
another. In the next phase, interconnection, the well is connected to a pipeline
network and is ready to go into production. In the production phase, the well
requires maintenance activities and, at the end of its useful life, the well is deac-
tivated (abandoned). In all mentioned activities, except in production, a critical
resource is specialized vessels, such as, drillships and pipelaying ships, used in the
construction and interconnection phases of the wells, respectively. The drillships
are also used in maintenance activities, whether scheduled or emergency.

This article addresses the scheduling of drillships used in the construction
of offshore oil wells in a maritime oil field. The scheduling for this operation
considers two main input data: i) a portfolio of approved projects and ii) a fleet of
drillships in operation. The drillships scheduling is dynamic, as the vessels are in
continuous operation while new projects are released. Thus, the scheduling must
consider when each drillship will be available for a new operation, called “ready
time”. The projects also have an “earliest start date” since they require a range
of materials and equipment for the execution of the operations in addition to the
vessels. The availability dates for these materials and equipment are planned by
the supply area and, based on these dates, the operation’s earliest start date is
defined, which will be called “release date.” Once we know the ships’ availability
and the projects’ release dates, the new projects may be scheduled.

Considering the construction stage, we have different activities that are pre-
viously planned by the engineering area. From the scheduling point of view, this
activity will be divided into only two stages: drilling and completion. Completion
consists of constructive activities that, after drilling, prepare the well for produc-
tion. It includes finishing the well, installing equipment, among other activities.
Ideally, drilling and completion activities should be carried out in sequence and
without interruption, using the same drillship. However, due to contingencies of

Scheduling Drillships in Offshore Activities 71

the operation, there are cases where there is a time gap between the execution of
these activities, and the ship is moved from one geographical position to another.
Thus, in the scheduling model, it is considered that each construction project
consists exactly of two and sequential activities.

The proposed model aims to provide a schedule of the drilling vessels’ activ-
ities that considers, in addition to the constraints of availability of the resources
and the activities themselves, the time of displacement of the vessels from one
geographical position to another. It also considers that the ships are different in
terms of efficiency and that not all drillships are eligible for each of the projects.
Based on the characteristics of the rigs, the engineering determines the time
required to carry out drilling and completion activities for each of the eligible
rigs, as well as the travel time between two construction sites.

It is noteworthy that in this study, we consider only two activities in the
construction schedules. However, extending the model to consider cases with
more activities and more general precedence relations is possible. Our choice
is adequate for the case at hand and does not significantly compromise the
computational efficiency of running the model. Another highlight is that, as it
was developed, considering the initial availability of the rigs, the model meets
the needs of rescheduling the operations, which could be triggered either by
the launch of new projects or by uncertainty in the execution of offshore well
construction projects.

3 Mathematical Model

The mixed integer programming model presented next is based on the model
presented by [29] to minimize the completion time of the last task in a system
with parallel heterogeneous machines with sequence-dependent setup times. In
the proposed MILP model, the sequence-dependent setup times represent the
travel times of the vessels from one position to another. The processing times
of the tasks correspond to the execution times of the drilling and completion
activities, which are dependent on the allocated drillship.

Let m be the number of rigs and n the number of activities. There is at
least one rig i that can perform an activity j, so that we have: pij (i= 1, . . . ,m;
j = 1, . . . ,n) the processing time of an activity j using rig i. A dummy activity
0 will be used to represent the starting point of each rig. Let tijk (i= 1, . . . ,m,
j = 1, . . . ,n; k= 1, . . . ,n) be the travel time of rig i, after having performed
activity j, to perform activity k. At the beginning of the schedule, each rig i
may be at a particular location where an activity k is located, in which case
ti0k = 0. The continuous variables Cij (i= 1, . . . ,m; j = 1, . . . ,n) represent the
completion time of an activity j using rig i. The following model aims to minimize
the completion time of the last activity in the system, known in the job shop
scheduling literature as makespan. Table 1 summarizes the notation used in the
model.

72 R. G. A. Brasil et al.

Table 1. Notation of the model.

Sets

M = {1, . . . , m} Set of rigs

N = {1, . . . , n} Set of activities

PR Pairs of activities (u, v), where u must be finished before v

can start to be processed

Parameters

pij Processing time of activity j using the rig i; i ∈ M, j ∈ N

tijk Travel time of rig i, after execute activity j, to execute the
activity k; i ∈ M, j, k ∈ N

V,W Big numbers

ri Ready time of rig i; i ∈ I

Fi End of contract of rig i; i ∈ M

minactivk Lower bound for the beginning of activity k (release date);
k ∈ N

maxactivk Upper bound for the beginning of activity k; k ∈ N

aik Binary constant whose value is 1 if the rig i is able to
perform activity k; k ∈ N

Decision variables

xijk 1, if activity j precedes activity k on rig i; 0, otherwise

Cdril
i Completion time of the service of rig i;

Cij Completion time of activity j on rig i

yik Auxiliary binary variable associated to rig i and the activity
k

p′
k Processing time of the activity k

Cactiv
k Completion time of activity k

MILP Model:

Minimize cmax (1)
subject to

cmax ≥ ci,j , i ∈ M, j ∈ N , (2)
∑

i∈M

∑

j∈{0}∪N
j �=k

xijk = 1, k ∈ N , (3)

∑

i∈M

∑

k∈N
j �=k

xijk ≤ 1, j ∈ N , (4)

∑

k∈N
xi0k ≤ 1, i ∈ M, (5)

∑

h∈{0}∪N
h�=k,h�=j

xihj ≥ xijk, j, k ∈ N , j �= k, i ∈ M, (6)

cik + V (1 − xijk) ≥ cij + tijk + pik, j ∈ {0} ∪ N , k ∈ N , j �= k, i ∈ M, (7)
ci0 = ri, i ∈ M, (8)

Scheduling Drillships in Offshore Activities 73

cdrilli ≥ cij , i ∈ M, j ∈ N , (9)

cdrilli ≤ Fi, i ∈ M, (10)

p′
k =

∑

i∈M

∑

j∈{0}∪N
j �=k

pikxijk, k ∈ N , (11)

cactivk =
∑

i∈M
cik, k ∈ N , (12)

cik ≤ Wyik, k ∈ N , i ∈ M, (13)

1 −
∑

j∈{0}∪N
j �=k

xijk ≤ W (1 − yik), i ∈ M, k ∈ N , (14)

cactivk − p′
k ≥ minactiv

k , k ∈ N , (15)

cactivk − p′
k ≤ maxactiv

k , k ∈ N , (16)

cactivv − p′
v ≥ cactivu , (u, v) ∈ PR, (17)

∑

j∈{0}∪N
xijk ≤ aik, k ∈ N , i ∈ M, (18)

∑

k∈N

p′
k ≤

∑

i∈M
(Fi − ri), (19)

cij ≥ 0, j ∈ N , i ∈ M, (20)
xijk ∈ {0, 1}, j ∈ 0 ∪ N , k ∈ N , j �= k, i ∈ M, (21)
yik ∈ {0, 1}, k ∈ N , i ∈ M. (22)

The objective function (1) aims to minimize the completion time of the last
activity in the system (makespan). Constraints (2) establish the minimum value
of the makespan. The constraint set (3) ensures that each activity is assigned to
exactly one rig and has exactly one predecessor activity. Constraints (4) set the
maximum number of successors of each activity to one. Constraints (5) limit the
number of successors of the fictitious activity 0 to at most one per rig. The set of
constraints (6) ensures that if activity j is allocated to a rig i, a predecessor h of
this activity must already exist on the same rig. Constraints (7) aim to establish
that if an activity k is allocated to vessel i after activity j, i.e., xijk = 1, its
completion time, Cik, has to be greater than or equal to the completion time
of activity j plus the travel time between j and k and the processing time of
k. Constraints (8) guarantee that vessel i can only start its activities after the
ready time ri, while constraints (9) state that a rig will only finish its trip
after the completion of all activities assigned to this rig. In addition, the set
of restrictions (10) states that rigs must complete their activities within the
period in which they were contracted. Constraints (11) calculate the processing
time of activity k considering that the activity will be executed by only one
of the available rigs. With the same consideration, constraints (12) determine
the completion time of activity k. Constraints (13) and (14) establish, using the
auxiliary binary variable yik, that if an activity k is not allocated to a drilling
ship i, the variable corresponding to its completion time on this vessel, Cik, is

74 R. G. A. Brasil et al.

equal to zero. Constraints (15-16) set the minimum and maximum limits for
the beginning of activity k, while constraints (17) ensure that the precedence
relationships between activities are respected. The constraint set (18) restricts
the use of the vessels for certain activities. A parameter aik is provided to check
which ship can be used for each of the activities to be performed. Constraints
(19) state that the sum of the activity processing times must be equal to or less
than the total time available for vessels activities. Constraints (20), (21), and
(22) indicate the domain of decision variables.

4 Numerical Experiments

Aiming to evaluate the performance of the proposed MILP model, several
instances based on real-world data from the exploration and production projects
of a major oil company that operates in Brazil were solved. Three different types
of offshore activities performed by drillships were considered: drilling, completion
and workover activities. Table 2 presents the characteristics of the vessels. Each
drillship is identified by a number (“Drillship”) and has an available time win-
dow (“Available From” and “Available Until” columns). The following columns
specify the starting location of the drillship (“Pos. X” and “Pos. Y”) and its
speed (“Speed”). The last three columns specify the standard times for drilling,
completion, and workover activities in days (“Drill”, “Comp.”, and “Workover”).
Table 3 describes the activities that must be scheduled. The first two columns
identify the activity and its type (“Activity” and “Type”). The fourth column
(“Prec.”) identifies the preceding activity if any (otherwise it is zero-filled). The
activities belong to a project (“Proj.”) that has an associated geographic loca-
tion (“Pos. X” and “Pos. Y”). Finally, activities also have a time window defined
by an earliest start time and a latest start time (“EST” and “LST”) in days
from time zero. Figure 1 shows the geographical distribution of the drillships
and activities considered in this experiment. It is worth noting that the data
were changed due to a confidentiality request by the oil company that provided
access to the considered situations.

Table 2. Drillships: characteristics and technical limitations.

Drillship Available from Available until Pos. X Pos. Y Speed Drill Comp. Workover

1 31 857 100.00 392.56 406 36 33 24

2 12 973 750.00 100.00 451 43 23 17

3 28 472 303.44 366.08 240 60 34 35

4 13 496 349.28 372.24 293 64 29 13

5 0 364 301.43 100.00 226 46 31 25

6 20 364 500.00 400.00 226 61 28 17

7 26 218 600.00 50.00 257 45 24 38

Scheduling Drillships in Offshore Activities 75

Fig. 1. Geographical positions of the drillships and activities of the experiments.

The dataset of vessels (Table 2) and activities (Table 3) allows composing
different test instances. In order to illustrate a solution of the focused problem
Fig. 2 shows the Gantt chart of the schedule achieved for the problem instance
made of the first five drillships and the first twelve activities (5× 12 instance).

Next, we aim to evaluate the performance of the proposed method in a set
of small-sized instances in order to obtain its optimal solution. In this set the
number of drillships varying between 2 and 7 and the number of activities vary-
ing from 10 to 13. Numerical experiments were run on a Huawei Matebook 13
computer with an AMD Ryzen 5 3500U 2.1 GHz and 8 Gb of RAM memory.
The solver GUROBI 9.0, with all its default parameters, was able to find fea-
sible solutions for all evaluated instances. A CPU time limit of one hour per
instance was imposed. Table 4 presents the results obtained. The first column
shows the dimension of each instance, while the next three columns indicate
the core dimensions of the associated MILP model. The following columns show
the objective function value, the running time required to solve each instance,
and the column named Gap (%) indicates the percentage difference between the
incumbent solution and the lower bound determined by the solver.

76 R. G. A. Brasil et al.

Table 3. Offshore activities: characteristics and technical limitations.

Activity Type Prec. Project Pos. X Pos. Y EST LST

1 Completion 0 1 0.00 415.60 0 364

2 Completion 0 2 542.95 429.59 0 364

3 Completion 0 3 546.86 416.95 0 364

4 Completion 0 4 344.83 390.83 0 62

5 Completion 0 5 339.06 392.55 0 364

6 Drilling procedure 0 6 545.27 429.58 0 364

7 Drilling procedure 0 7 366.68 358.41 0 364

8 Completion 7 7 366.68 358.41 0 101

9 Drilling procedure 0 8 346.41 396.07 0 364

10 Completion 9 8 346.41 396.07 0 172

11 Drilling procedure 0 9 349.45 391.74 0 23

12 Drilling procedure 0 10 0.00 415.60 0 364

13 Drilling procedure 0 11 337.15 389.59 0 240

14 Completion 13 11 337.15 389.59 0 364

15 Drilling procedure 0 12 490.10 366.40 0 138

16 Drilling procedure 0 13 233.03 358.59 0 31

17 Completion 0 14 570.03 0.00 14 259

18 Workover 0 15 567.05 2.59 30 110

19 Drilling procedure 0 16 58517 2.90 29 183

20 Drilling procedure 0 17 591.46 5.62 7 56

21 Completion 20 17 591.46 5.62 20 103

22 Drilling procedure 0 18 592.29 3.20 24 104

23 Completion 22 18 592.29 3.20 34 102

24 Drilling procedure 0 19 311.39 21.91 0 1750

25 Completion 24 19 311.39 21.91 0 714

26 Workover 0 20 640.44 36.87 25 34

27 Drilling procedure 0 21 641.15 34.01 22 178

28 Completion 27 21 641.15 34.01 32 240

29 Completion 0 22 350.85 128.82 26 364

30 Completion 0 23 328.71 367.17 11 364

31 Completion 0 24 838.99 116.39 18 364

32 Completion 0 25 838.99 144.74 19 364

33 Drilling procedure 0 26 447.21 141.02 5 364

34 Completion 33 26 447.21 141.02 23 364

35 Drilling procedure 0 27 594.31 5.35 0 364

36 Completion 35 27 594.31 5.35 0 364

37 Workover 0 28 590.57 7.36 0 4

Scheduling Drillships in Offshore Activities 77

Fig. 2. Gantt chart for an instance with 5 drillships and 12 activities with the following
values of the completion times: C1,7 = 68, C1,6 = 105, C2,9 = 57, C2,3 = 81, C2,10 = 105,
C3,4 = 63, C3,8 = 102, C4,5 = 43, C4,2 = 73, C4,1 = 104, C5,11 = 48, C5,12 = 96.

Analyzing the figures in Table 4, it can be seen that the solver was able to
achieve the optimal solution within the allowed runtime in almost 80% of the
instances. For the remaining instances, the average difference was about 13%.
As expected, the solutions found by the solver for the tighter instances (higher
rate of activities per probe) contain results (instant of termination of the last
activity) equal to or worse than the results for the looser instances. To illustrate
the results achieved with the model, Fig. 2 shows an optimal schedule for an
instance with five drilling ships and twelve activities.

In order to illustrate the effect of considering drilling and well completion
activities as separate activities, the instance with five drillships and twelve activ-
ities was adapted. In this case, activities 7 and 8 were considered as a single
activity at the same location. The same adaptation was performed with activi-
ties 9 and 10. As expected, the quantities of binary and real variables, 600 and
81, respectively, were reduced (see Table 4), as was the resolution time (14.50 s).
However, on the other hand, the final completion time of all system activities,
111 days, increased by approximately 6%.

78 R. G. A. Brasil et al.

Table 4. MILP details (number of variables and constraints) and results (for each
instance.

Drill×Activ. #binary
variables

#real
variables

#constraints Objective
function

CPU
time (s)

Gap (%)

2× 10 240 45 529 175 14.44 0.00

3× 10 360 57 762 138 107.14 0.00

4× 10 480 69 995 105 31.54 0.00

5× 10 600 81 1228 98 22.92 0.00

6× 10 720 93 1461 80 8.44 0.00

7× 10 840 105 1694 80 6.96 0.00

2× 11 286 49 625 201 21.46 0.00

3× 11 429 62 903 153 59.97 0.00

4× 11 572 75 1181 129 163.10 0.00

5× 11 715 88 1459 103 88.04 0.00

6× 11 858 101 1737 98 115.40 0.00

7× 11 1001 114 2015 80 13.07 0.00

2× 12 336 53 729 212 37.21 0.00

3× 12 504 67 1056 171 470.81 0.00

4× 12 672 81 1383 138 765.27 0.00

5× 12 840 95 1710 105 523.84 0.00

6× 12 1008 109 2037 101 268.19 0.00

7× 12 1176 123 2364 95 284.76 0.00

2× 13 390 57 841 225 352.59 0.00

3× 13 585 72 1221 179 3600.17 10.61

4× 13 780 87 1601 145 3600.04 24.04

5× 13 975 102 1981 124 3608.05 21.03

6× 13 1170 117 2361 105 3600.05 7.62

7× 13 1365 132 2741 100 3600.09 3.00

5 Conclusion and Further Research

This article dealt with the scheduling of offshore oil well construction using
drillships. Considering that the costs of this operation constitute a substantial
part of the total costs of developing an offshore field, the efficient scheduling of
drilling rigs is crucial for the economic viability of oil exploration and produc-
tion projects. Following this premise, this study aimed to minimize the comple-
tion time of a portfolio of subsea oil well development projects, considering the
restrictions of precedence between activities and other operational restrictions
such as eligibility, readiness, and contracts of rigs and readiness and deadlines
for activities.

Scheduling Drillships in Offshore Activities 79

A mixed integer linear programming model was developed, considering the
practical constraints of the problem addressed. Numerical experiments using
examples based on real-world situations demonstrate that the model faithfully
represents the described operation and can be used to achieve better schedules
combined with more advanced optimization techniques. These numerical exper-
iments showed consistent results, showing a reduction in the completion time of
activities, as expected, with a larger number of drillships available. This indi-
cates that with a larger number of vessels, despite the operational restrictions,
more activities can occur in parallel, allowing for the anticipation of the start
of production of producing wells and the increase in production volume in the
analyzed period. It is noteworthy that the model presented can be easily adapted
to consider different objective functions, such as minimizing the sum of the com-
pletion times or minimizing the total tardiness of the projects’ completion based
on the projects’ due date.

As a future research topic, we suggest developing heuristic procedures to
tackle larger instances. However, since our target problem has many limitations,
preparing an advanced procedure is a big challenge because the solution can
easily lose its feasibility characteristics.

Acknowledgments. This study was financially supported by the National Agency
for Petroleum, Natural Gas and Biofuels (ANP) through the clauses for funding of
Research, Development and Innovation (R, D&I) investments established by the Res-
olution no. 50/2015 and by PETROBRAS under grant TC 5900.0112830.19.9. The
authors are grateful for the collaboration of Pedro H. M. S. Sousa and Marco V. S.
Nóbrega from PETROBRAS-CENPES and to the Brazilian funding agencies CAPES,
CNPq and FAPESP that partially supported this research.

References

1. Aarlott, M.M.: Cost Analysis of Plug and Abandonment Operations on the Nor-
wegian Continental Shelf. Master’s thesis, NTNU (2016)

2. Amado, L.: Field cases evaluations, chap. 12. In: Reservoir Exploration and
Appraisal, pp. 53–156. Gulf Professional Publishing, Oxford (2013)

3. Bassi, H.V., Ferreira Filho, V.J.M., Bahiense, L.: Planning and scheduling a fleet
of rigs using simulation-optimization. Comput. Ind. Eng. 63(4), 1074–1088 (2012)

4. Bassi, S., Ronconi, D.P.: Optimization of the use of critical resources in the devel-
opment of offshore oil fields. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol.
12249, pp. 391–405. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58799-4 29

5. Brito, T.C.: The growing relevance of the PPSA in the Brazilian exploration and
production arena and its main challenges. J. World Energ. Law Bus. 12(2), 156–168
(2019)

6. Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Ship routing and schedul-
ing in the new millennium. Eur. J. Oper. Res. 228(3), 467–483 (2013)

7. Cunha, V., Santos, I., Pessoa, L., Hamacher, S.: An ILS heuristic for the ship
scheduling problem: application in the oil industry. Int. Trans. Oper. Res. 27(1),
197–218 (2020)

https://doi.org/10.1007/978-3-030-58799-4_29
https://doi.org/10.1007/978-3-030-58799-4_29

80 R. G. A. Brasil et al.

8. de Assis, L.S., Camponogara, E.: A MILP model for planning the trips of dynamic
positioned tankers with variable travel time. Transp. Res. Part E Logist. Transp.
Rev. 93, 372–388 (2016)

9. Empresa de Pesquisa Energética: Oil price forecasts 2021–2030 (February
2021). https://www.epe.gov.br/sites-en/publicacoes-dados-abertos/publicacoes/
Paginas/Special-Report-Oil-Price-Forecasts-2021-2030.aspx

10. Hennig, F., et al.: Maritime crude oil transportation - a split pickup and split
delivery problem. Eur. J. Oper. Res. 218(3), 764–774 (2012)

11. Hennig, F., Nygreen, B., Furman, K.C., Song, J.: Alternative approaches to the
crude oil tanker routing and scheduling problem with split pickup and split delivery.
Eur. J. Oper. Res. 243(1), 41–51 (2015)

12. Hossain, M.E.: Drilling costs estimation for hydrocarbon wells. J. Sustain. Energ.
Eng. 3(1), 3–32 (2015)

13. IHS Markit: Petrodata offshore rig day rate trends (April 2021). https://ihsmarkit.
com/products/oil-gas-drilling-rigs-offshore-day-rates.html

14. Ikwan, U., Egba, A.N., Dosunmu, A., Iledare, W.: Comparative analysis of drilling
cost used for petroleum economics in the North Sea, Gulf of Mexico and Niger
Delta regions. In: Society of Petroleum Engineers (eds.) SPE Nigeria Annual Inter-
national Conference and Exhibition, Lagos, Nigeria, vol. 2, pp. 1179–1190 (2016)

15. International Energy Agency: Offshore energy outlook (May 2018). https://www.
iea.org/reports/offshore-energy-outlook-2018

16. International Energy Agency: Oil 2021 - analysis and forecast to 2026 (March
2021). https://www.iea.org/reports/oil-2021

17. Kaiser, M.J.: Modeling the time and cost to drill an offshore well. Energy 34(9),
1097–1112 (2009)

18. Lee, J., Kim, B.I.: Industrial ship routing problem with split delivery and two types
of vessels. Exp. Syst. Appl. 42(22), 9012–9023 (2015)

19. Lin, X., Chajakis, E.D., Floudas, C.A.: Scheduling of tanker lightering via a novel
continuous-time optimization framework. Ind. Eng. Chem. Res. 42(20), 4441–4451
(2003)

20. Moura, A.V., Pereira, R.A., De Souza, C.C.: Scheduling activities at oil wells with
resource displacement. Int. Trans. Oper. Res. 15(6), 659–683 (2008)

21. Moura, V.C.: Programação de frota de embarcações de lançamento de dutos. Mas-
ter’s thesis, Universidade de São Paulo (2012)

22. National Agency for Petroleum: Natural Gas and Biofuels: oil, natural gas and
biofuels statistical yearbook 2020 (2020). http://www.anp.gov.br/publicacoes/
anuario-estatistico/statistical-yearbook-2020

23. Nishi, T., Izuno, T.: Column generation heuristics for ship routing and scheduling
problems in crude oil transportation with split deliveries. Comput. Chem. Eng. 60,
329–338 (2014)

24. Offshore Magazine: Brazil, Guyana to boost offshore drilling market recov-
ery (2021). https://www.offshore-mag.com/drilling-completion/article/14199897/
brazil-guyana-to-boost-offshore-drilling-market-recovery

25. Pereira, R.A., Moura, A.V., de Souza, C.C.: Comparative experiments with
GRASP and constraint programming for the oil well drilling problem. In: Niko-
letseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 328–340. Springer, Heidelberg
(2005). https://doi.org/10.1007/11427186 29

26. Queiroz, M.M., Mendes, A.B.: Heuristic approach for solving a pipe layer fleet
scheduling problem. In: Sustainable Maritime Transportation and Exploitation of
Sea Resources, pp. pp. 1073–1080. Taylor & Francis Group, London (2012)

https://www.epe.gov.br/sites-en/publicacoes-dados-abertos/publicacoes/Paginas/Special-Report-Oil-Price-Forecasts-2021-2030.aspx
https://www.epe.gov.br/sites-en/publicacoes-dados-abertos/publicacoes/Paginas/Special-Report-Oil-Price-Forecasts-2021-2030.aspx
https://ihsmarkit.com/products/oil-gas-drilling-rigs-offshore-day-rates.html
https://ihsmarkit.com/products/oil-gas-drilling-rigs-offshore-day-rates.html
https://www.iea.org/reports/offshore-energy-outlook-2018
https://www.iea.org/reports/offshore-energy-outlook-2018
https://www.iea.org/reports/oil-2021
http://www.anp.gov.br/publicacoes/anuario-estatistico/statistical-yearbook-2020
http://www.anp.gov.br/publicacoes/anuario-estatistico/statistical-yearbook-2020
https://www.offshore-mag.com/drilling-completion/article/14199897/brazil-guyana-to-boost-offshore-drilling-market-recovery
https://www.offshore-mag.com/drilling-completion/article/14199897/brazil-guyana-to-boost-offshore-drilling-market-recovery
https://doi.org/10.1007/11427186_29

Scheduling Drillships in Offshore Activities 81

27. de Lorena Stanzani, A., Pureza, V., Morabito, R., da Silva, B.J.V., Yamashita,
D., Ribas, P.C.: Optimizing multiship routing and scheduling with constraints on
inventory levels in a Brazilian oil company. Int. Trans. Oper. Res. 25(4), 1163–1198
(2018)

28. Thakkar, A., Raval, A., Chandra, S., Shah, M., Sircar, A.: A comprehensive review
of the application of nano-silica in oil well cementing. Petroleum 6(2), 123–129
(2020)

29. Vallada, E., Ruiz, R.: A genetic algorithm for the unrelated parallel machine
scheduling problem with sequence dependent setup times. Eur. J. Oper. Res.
211(3), 612–622 (2011)

30. World Bank Group: Commodity markets outlook: causes and consequences
of metal price shocks (April 2021). https://thedocs.worldbank.org/en/doc/
c5de1ea3b3276cf54e7a1dff4e95362b-0350012021/original/CMO-April-2021.pdf

https://thedocs.worldbank.org/en/doc/c5de1ea3b3276cf54e7a1dff4e95362b-0350012021/original/CMO-April-2021.pdf
https://thedocs.worldbank.org/en/doc/c5de1ea3b3276cf54e7a1dff4e95362b-0350012021/original/CMO-April-2021.pdf

Solving a Real-Life Tramp Ship Routing
and Scheduling Problem with Speed

Profiles

Lucas Louzada , Rafael Martinelli(B) , and Victor Abu-Marrul

Departamento de Engenharia Industrial, Pontif́ıcia Universidade Católica do Rio de
Janeiro (PUC-Rio), Rio de Janeiro, Brazil

lucas.louzada@aluno.puc-rio.br, martinelli@puc-rio.br,
victor.cunha@tecgraf.puc-rio.br

Abstract. Shipowners seek to increase their profits by optimizing the
operation of their available fleet, increasing its capacity, and reducing
costs while meeting the customers’ demands. Ship routing stands out as
a relevant topic of study, especially for tramp shipping companies, due to
the high competitivity on this market, which highlights the importance
of providing reliable and price competitive services. This work presents
a mixed-integer programming formulation to maximize the profit of an
actual tramp shipping company. The studied problem considers pick-up-
and-delivery for different cargoes, partial contract orders, time window
restrictions, heterogeneous fleet, cargo split, varying navigation speeds,
and guaranteed transit time terms. We perform computational experi-
ments with real data from the studied company, comparing the achieved
solutions with those developed by the company following their current
planning process. The mathematical formulation improves the existing
solutions in all tested cases with total costs up to 7% smaller, including
fuel, port, and ship’s operational costs.

Keywords: Ship routing · Mixed-integer programming · Tramp
shipping · Speed profiles

1 Introduction

The United Nations Conference on Trade and Development (UNCTAD), in its
2018 annual review [30], highlights that maritime modal transports around 80%
of the total volume of the global trade of goods, reaching more than 10.7 billion
tons of cargoes transported in 2017. The review by UNCTAD indicates that,
since seaborne trade plays such an essential role in the international trade of
goods and the global economy overall, the global fleet of ships and the industries
related to it can be considered the backbone of global trading. The review also
states that the industry of maritime transportation is volatile, being directly
impacted by changes in geopolitics, economics, and international trade policies,
affecting its profitability. Moreover, the imbalance between the availability and
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 82–96, 2021.
https://doi.org/10.1007/978-3-030-87672-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_6&domain=pdf
http://orcid.org/0000-0002-8947-715X
http://orcid.org/0000-0001-5715-149X
http://orcid.org/0000-0003-3042-9249
https://doi.org/10.1007/978-3-030-87672-2_6

Solving a Real-Life Tramp Ship Routing and Scheduling Problem 83

demand of ships combined with the low global economic growth affected the
maritime transport companies. The reduction in demand for freight combined
with the increase in fuel prices (the highest variable cost in operating a ship)
leads ship operators to seek strategies to increase profits and reduce costs [31].

Maritime transportation is usually classified as: liner, industrial, and tramp
shipping [21]. Liner shipping companies plan their fleet to follow a strict itinerary,
similar to a bus line. Thus, the cargo shippers must adjust their demand for cargo
transportation to the available schedule [7]. Industrial shipping companies con-
trol their fleet and decide how to schedule it to transport their cargo, which
is more common in vertically integrated businesses, such as oil, chemical, and
mining companies [7,27]. Finally, tramp shipping companies operate similarly
to a taxi service, i.e., the ships are planned according to a demand for cargo
transportation [7]. On the one hand, this shipping model works better when the
demand for cargo transportation increases; on the other hand, it is less effective
for the operating companies when the demand decreases. For this reason, con-
tracts of affreightment are usually fixed between cargo shippers and ship owners
or operators, in which a certain amount of cargo is transported between defined
ports within an agreed period. Freight is paid on the transported cargo unit, and
ship operators aim to maximize profit by time unit.

As highlighted by Fagerholt [9], the ship scheduling directly affects the oper-
ating costs for ship owners. And, these schedules are usually manually defined
according to expert knowledge within the companies. Ship routing and schedul-
ing problems have been increasingly studied by academics, with most works
focusing on industrial shipping with recent growth in tramp shipping planning
problems. The current increase in tramp shipping is because companies decide
to focus on their core business, outsourcing their cargo transportation by con-
tracting independent ship owners [26].

In this work, we deal with a ship scheduling problem related to a real tramp
shipping company. The studied company is investing in several initiatives to
optimize the schedule of its fleet, improving the service level for its customers,
and increasing the flexibility to fix spot cargoes. Spot cargoes can be defined as
irregular, sporadic cargoes, usually available for prompt loading and covered by
a contract associated with a specific shipment [33]. We propose a Mixed-Integer
Programming (MIP) formulation to solve the tramp ship routing and scheduling
problem for the studied company to minimize the operating costs and increasing
the service level towards customers. Real data from the company is considered,
such as orders, ports, cargo quantity, vessel capacity, and contractual restrictions,
enabling the mathematical formulation to generate optimal routing solutions
suitable to the actual problem. To the best of our knowledge, no attempt has
been made to consider all these aspects simultaneously. The vessel planners
within the company analyzed the generated solutions and validated them for
later implementation with customers. The mathematical formulation currently
works as a decision support tool for the ship planners within the company. Before
developing the model, we performed two steps to allow applying it to a real-
life problem described as following: process mapping to define the scope of the

84 L. Louzada et al.

problem among with the vessel cargo lifting, port, and contractual restrictions
(such as arrival windows at load ports and transit time); data gathering regarding
orders, ships, distances, and the actual company’s planning. The company defines
a plan for periods of 30 to 45 days. After implementing the formulation, we
conducted experiments with data regarding six months demands.

This work is organized into six sections, including this introduction. A lit-
erature review related to tramp ship routing and scheduling problems is pre-
sented in Sect. 2. Section 3 describes the studied problem, while Sect. 4 presents
the developed MIP formulation. In Sect. 5, computational experiments are per-
formed. The results are presented and compared to real solutions provided by
the company planners. Finally, Sect. 6 concludes the paper and includes some
recommendations for future studies.

2 Literature Review

Al-Khayyal and Hwang [1] define that cargo routing problems are often restric-
tive since they consider the cargo conditions, either due to the aspects of the
loading and discharging ports (such as capacity and productivity) or due to the
arrival windows and transit times required for the ships to reach their destina-
tions. To Christiansen et al. [6], the concept of scheduling includes the tempo-
ral aspects in a ship routing problem, i.e., when planners must consider time-
marked events regarding the vessels’ voyages. Both works consider ship routing
and scheduling problems of high importance for the tramp and industrial ship-
ping companies. Christiansen et al. [6] define ‘cargo’ as an individual number
of products to be collected in a specific port, transported, and discharged in a
particular delivery port. Usually, an arrival window is imposed at the loading
port and, potentially also at the discharging port. The ship operator controls a
heterogeneous fleet that is available for transporting the cargo demands. Several
reasons might prevent ships from being compatible with loading certain cargoes.
Christiansen et al. [6] mention draft constraints at the loading and discharging
ports, for instance. Depending on the ship’s capacity and the total amount of
cargo transported within a certain period, a ship could load multiple cargoes on
a voyage. For major bulk cargoes, such as grains and iron ore, it is typical for
the entire cargo on board of a ship to belong to only one shipper with only one
loading port for a given voyage. Minor bulks and liquids can be jointly loaded
within the vessels.

The work of Flood [12], one of the first studies regarding ship routing, deals
with a homogeneous military fleet that transports fuel. The author considered
equal ship operational and port costs focusing on re-positioning ballast voyages
to minimize the operating costs. Brown et al. [5] address a tanker fleet routing
problem considering variable speeds and time windows. This work is a significant
reference for problems including speeds as variables in the routing decision-
making process [11,13,24,32].

Fagerholt and Christiansen [10] apply a dynamic programming algorithm to
solve a traveling salesman problem similar to a ship routing problem. Andersson

Solving a Real-Life Tramp Ship Routing and Scheduling Problem 85

et al. [2] studies a collection and delivery problem with arrival windows at the
loading port and orders split. The authors propose a methodology that generates
routes using an exact method to use in two network flow models. Regarding split
cargo shipments, St̊alhane et al. [28] use a Branch-and-Cut algorithm for solving
the problem. Vilhelmsen et al. [31] introduces a column generation approach
to solve full shipment problems limited to one cargo on-board, integrating and
optimizing fuel bunkering.

Regarding the use of heuristics and metaheuristics, Homsi et al. [16] highlights
some works using different approaches in this context for solving ship routing and
scheduling problems as follows:multi-start local search byBrønmo et al. [4], unified
tabu search by Korsvik and Fagerholt [18], large neighborhood search by Korsvik
et al. [20] and Hemmati et al. [14], and hybrid genetic search by Borthen et al. [3].
Homsi et al. [16] also use a hybrid genetic search combining it with a Branch-and-
Cut algorithm.

Several works deal with tramp ship routing and scheduling problems, although
none of them deals with break-bulk cargo. We refer the reader to the works of
Andersson et al. [2] and Kang et al. [17] for a review about these problems. We
also highlight the works of St̊alhane et al. [29], and Hemmati et al. [15], in which
shipowner companies and charterer vessel are considered. Based on our literature
review, we note a continued interest in tramp shipping problems. Different aspects
are considered in the literature, such as heterogeneous fleets, arrival windows for
loading and discharging, pickup and delivery, transit time, and cargo lifting capac-
ity. Nevertheless, to the best of our knowledge, no attempt has been made to
consider all these aspects simultaneously addressing a real-life tramp shipping
problem.

3 Problem Description

The addressed tramp ship scheduling problem considers a real-life problem of a
company that operates a permanent fleet of over 90 ships. However, we focus
our approach on the fleet that operates routes between the East Coast of South
America and Asian ports, with four cargo loading ports in Brazil and 12 dis-
charging ports across China, South Korea, and Japan. The company plans its
fleet for horizons of 30 to 45 days. The available space within the ships is commer-
cialized through long-term Contracts of Affreightment (CoAs) or spot fixtures
(one-time or few-times loading in a short period). Spot cargoes with fixtures
before the foreseeable scheduling period for the respective route are equivalent
to affreightment contracts.

The company aims at accomplishing all contracted cargo transportation
orders, including spot, minimizing the total operational cost. Each order is iden-
tified by the demanding customer, the loading port, the discharging port, the
total cargo volume to be transported, the arrival window at the loading port,
and the maximum transit time between the ports. All these information and
conditions are defined by contract. Orders can be served by more than one ship
due to the limited capacity of the vessels. After loading the cargo, all ships pro-
ceed to the port of Singapore for bunkering, due to its lower fuel price, to further

86 L. Louzada et al.

continue their voyage to the discharging port. Thus, the fuel price is given by the
average fuel price at Singapore port considering the planning horizon. Vessels
can operate under three possible speed profiles (full speed, economical speed,
and super economical speed), independently if it transports cargo or not. As
highlighted by Psaraftis [25], the possibility to adjust a ship’s speed allows the
ship operator to reduce costs by avoiding idleness at the port.

Whenever a ship anchors or berths, known as a port call, port fixed or vari-
able fees are charged (the latter depending on the length of stay in the port).
Fixed costs represent 98% of the total cost of a port call [22]. Thus, we only
consider fixed costs for the port calls. The company’s fleet is heterogeneous,
and each ship type has a daily operational cost (USD/day), regardless of the
route performed, which covers crew, maintenance, certification, and insurance
costs. Larger and older ships tend to have higher daily operational costs when
compared to smaller or newer ones. Vessels should be available for loading the
cargo within a pre-defined time window agreed with the client. Moreover, the
company must accomplish all CoAs. Each ship has a different number of cranes,
equipment capacity, cargo hold dimensions, and crane operation visibility. We
consider average loading productivity (tons/day) for each port, which will affect
the length of stay in the port of each order. Due to the fleet’s heterogeneity,
not all ships can load in all ports due to their width or length. Furthermore,
some ports have arrival and departure draft restrictions. Draft is the distance
between the waterline and the ship’s keel. The more cargo a ship has on board,
the deeper a ship will be and closer to reaching a port’s maximum allowable
draft. A ship’s capacity at a given port is calculated considering the local draft
restriction and water density. All ships in the fleet have a maximum cargo intake
associated with these restrictions.

4 MIP Formulation

We propose a MIP formulation to model and solve the real-life tramp ship
scheduling problem described in the previous section. Table 1 shows the sets
considered by the MIP formulation, while Tables 2 and 3 presents the parame-
ters and variables, respectively. The formulation uses six decision variables. The
binary variable xijk assumes 1 if a ship k travels from the loading port i to the
discharging port j, and 0, otherwise. Following the same idea, the binary vari-
able sijkv defines the speed profile s that a ship k will follow while navigating
between ports i and j. The parameter Sks gives the actual speed (in knots) of
vessel k when navigating under profile s. As mentioned previously, three speed
profiles can be considered: full speed, economical speed, and super economical
speed. The idea is to reduce costs by controlling the navigation speeds to accom-
plish the required time windows for the ship’s arrival in the loading ports. The
third binary variable, yrk, assumes 1 if order r is addressed by ship k, and 0,
otherwise. The continuous variable zikr indicates the cargo volume of order r
loaded at port i by vessel k. The continuous variable wik indicates the total
cargo on board of ship k after it departs from port i. This variable is important

Solving a Real-Life Tramp Ship Routing and Scheduling Problem 87

to control the maximum cargo a ship can take at each port. The last continuous
variable, tik, identifies the arrival time of ship k at loading port i that must
respect the allowed time window [LEr, LBr], if ship k addresses order r.

Table 1. Formulation sets

Name Description

N Ports, indexed by i and j

Nc ⊆ N Loading ports

Nd ⊆ N Discharging ports

K Ships, indexed by k

R Orders, indexed by r

Ri ⊆ R Subset of orders to be loaded in port i

V Speed profiles, indexed by s: 1 (full speed), 2
(economical speed) and 3 (super economical speed)

Table 2. Formulation parameters

Name Description

Ok Starting point of ship k

Zk Starting day of ship k

Dij Distance, in nautical miles, between ports i and j

Qik Maximum cargo intake of ship k at port i

c Port of Singapore

F Artificial port where all ships end

CDk Daily operational cost in USD of ship k

CPi Cost of port i

PRik Productivity (tons per day) of ship k at port i

Sks Speed (in knots) of ship k under speed profile s

CCks Daily fuel consumption (in tons) of ship k at speed profile s

LEr Starting time of arrival window at the loading port of order r

LBr Final time of arrival window at loading port of order r

TTr Maximum transit time of order r

BP Fuel price in USD per ton

Olr Loading port of order r

Odr Discharging port of order r

Oqr Total cargo of order r

88 L. Louzada et al.

Table 3. Formulation decision variables

Name Type Description

xijk Binary 1, if ship k travels from port i to port j. 0,
otherwise

yrk Binary 1, if order r is carried on ship k. 0, otherwise

sijkv Binary 1, if ship k travels from port i to port j at
speed v. 0, otherwise

zikr Continuous Cargo volume carried from order r loaded or
discharged at port i on board ship k

wik Continuous Cargo volume remaining on board ship k after
calling port i

tik Continuous Arrival time for ship k at port i

The developed mathematical formulation extends the one proposed by
Korsvik and Fagerholt [19], with transit time constraints and speed profiles
decision variables included fitting the actual problem addressed. The objective
function, shown in Eq. (1), aims at minimizing the total operating cost of the
company’s fleet, considering fuel consumption costs, port fees costs, and ship
operational costs. The mathematical formulation, including the objective func-
tion and the respective constraints, is shown in the following:

min
∑

k∈K

∑

i∈N

∑

j∈N

∑

v∈V

SkvCCkvBPsijkv

︸ ︷︷ ︸
Fuel cost

+
∑

k∈K

∑

i∈N

∑

j∈N

CPixijk

︸ ︷︷ ︸
Port cost

+
∑

k∈K

CDk (tFk − Zk)

︸ ︷︷ ︸
Ship cost

(1)

subject to
∑

i∈N

xijk ≤ 1 ∀k ∈ K, j ∈ N (2)

∑

j∈N

xijk ≤ 1 ∀k ∈ K, i ∈ N (3)

∑

i∈N

xijk −
∑

i∈N

xjik = 0 ∀k ∈ K, j ∈ N\{Ok, F} (4)

∑

k∈K

∑

j∈N

xijk ≥ 1 ∀i ∈ N (5)

∑

r∈Ri

zikr ≤ wik ≤ Qik ∀k ∈ K, i ∈ Nc (6)

∑

r∈Ri

zikr + wik ≤ Qik ∀k ∈ K, i ∈ Nd (7)

∑

k∈K

yrk ≥ 1 ∀r ∈ R (8)

∑

i∈Nc∪{c}
xOlrjk ≥ yrk ∀k ∈ K, r ∈ R (9)

Solving a Real-Life Tramp Ship Routing and Scheduling Problem 89

∑

i∈Nd∪{F}
xOdrjk ≥ yrk ∀k ∈ K, r ∈ R (10)

∑

k∈K

zOlrkr = Oqr ∀r ∈ R (11)

zOlrkr ≤ Oqryrk ∀k ∈ K, r ∈ R (12)
∑

k∈K

zOdrkr = Oqr ∀r ∈ R (13)

zOdrkr ≤ Oqryrk ∀k ∈ K, r ∈ R (14)
zOlrkr = zOdrkr ∀k ∈ K, r ∈ R (15)

wij =

⎛

⎝wik +
∑

r∈Rj

zjkr

⎞

⎠xijk ∀k ∈ K, i ∈ Nc, j ∈ Nc ∪ {c} (16)

wij =

⎛

⎝wik −
∑

r∈Rj

zjkr

⎞

⎠xijk ∀k ∈ K, i ∈ Nd ∪ {c, F}, j ∈ Nd

(17)
∑

v∈V

sijkv = xijk ∀k ∈ K, i ∈ N, j ∈ N (18)

tOkk ≥ Zk ∀k ∈ K (19)

tjk ≥
(
tik +

∑

v∈V

sijkvDij

24Skv
+

∑

r∈Ri

zikr
PRik

)
xijk ∀k ∈ K, i ∈ N, j ∈ N (20)

LBryrk ≤ tOlrk ≤ LEryrk ∀k ∈ K, r ∈ R (21)

tOdrk ≤
(
tOlrk +

∑

r∈Ri

zOlrkr

PROlrk
+ TTr

)
yrk ∀k ∈ K, r ∈ R (22)

xijk + xjik = 1 ∀k ∈ K, i ∈ N, j ∈ N (23)
∑

j∈Nc

xOkjk = 1 ∀k ∈ K (24)

∑

i∈Nc

xick = 1 ∀k ∈ K (25)

∑

j∈Nd

xcjk = 1 ∀k ∈ K (26)

xijk = 0 ∀k ∈ K, i ∈ Nc, j ∈ Nd (27)
∑

i∈Nd

xiFk = 1 ∀k ∈ K (28)

∑

i∈Nc

xiFk = 0 ∀k ∈ K (29)

wOkk = 0 ∀k ∈ K (30)
wFk = 0 ∀k ∈ K (31)
xijk ∈ {0, 1} ∀k ∈ K, i ∈ N, j ∈ N (32)
ykr ∈ {0, 1} ∀k ∈ K, r ∈ R (33)

90 L. Louzada et al.

sijkv ∈ {0, 1} ∀k ∈ K, i ∈ N, j ∈ N, v ∈ V (34)
zikr ≥ 0 ∀k ∈ K, i ∈ N, r ∈ R (35)
wik ≥ 0 ∀k ∈ K, i ∈ N (36)
tik ≥ 0 ∀k ∈ K, i ∈ N (37)

Constraints (2) and (3) guarantee that each ship only attends a port call
once, whether for loading or discharging. With the former referring to depart-
ing ports, and the latter to arriving ports. Constraints (4) guarantee the flow
conservation of the ships. Constraints (5) forces all ports calls (orders) to be
addressed. Constraints (6) make sure the amount of cargo after ship k departs
port i respects the ship’s maximum intake (tons) at this same port, also ensur-
ing that the volume wik (remaining on board of the ship after departing from
port i) is superior to the amount of cargo loaded at that port. Constraints (7)
do the same but for the discharging ports. Constraints (8) guarantee that every
order is addressed at least by one ship. Constraints (9) and (10) force ship k to
visit the loading and discharging ports of an addressed order r. Constraints (11)
and (12) guarantee that the cargo loaded within a ship k respects the total
amount of cargo regarding an addressed order r, while constraints (13) and (14)
do the same but for discharging ports. Constraints (15) ensure that the amount
loaded is equal to the amount discharged if a ship k addresses an order r. Con-
straints (16) and (17) compute variables wik. We linearize these constraints
using a large value M [23], but we present it in its quadratic form for a bet-
ter understanding. Constraints (18) connect the speed profile variables with the
routing variables. Constraints (19) compute the period in which each ship is
available to start its route. Constraints (20) compute the arrival time of ship k
at port i, considering the departure from the previous port visited and the trav-
eling times between the ports. We also linearize these constraints using a large
value M [23]. Constraints (21) guarantee the arrival at the loading port accord-
ing to the customer’s declaration or contractual terms if a ship k addresses an
order r. Constraints (22) force the transit time between the loading port i and
the discharging port j to respect the maximum transit time TTr of an order r.
Constraints (23) force every ship departing to a port different from the previ-
ous one. Constraints (24) guarantee that each ship route starts from its starting
port. Constraints (25) and (26) force all ships to perform a call at Singapore
port, following the company’s policy. Constraints (28) force all routes to end at
the artificial node F . Constraints (29) remove arcs between loading ports and
the artificial node F . Constraints (30) and (31) force all ships to be empty at
the beginning and at the end of its routes, respectively. Finally, constraints (32)
to (37) set the variables’ domains.

5 Computational Experiments

This section presents the experiments conducted on a set of six real-life instances
from the studied tramp shipping company. Each instance represents one specific

Solving a Real-Life Tramp Ship Routing and Scheduling Problem 91

period planned by the company, which comprises 30 to 45 days, with numerous
available ships and several orders to serve. Each order is associated with a volume
of cargo to transport. The identifier of each instance with the total number of
orders and ships, total cargo volume (in metric tons), percentage cargo volume,
and bunker price (in dollars) are shown in Table 4. The cargo volume percentage
indicates the percentage of the available capacity among the vessels that needs
to be used to accommodate the total cargo volume. Higher values limit the
model’s decision to allocate cargo on ships. All experiments were performed on
a computer with an Intel Core i7-7600U with a 2.80 Ghz CPU and 8.00 GB of
RAM running Windows 10. The proposed MIP formulation was coded in Julia
language v.0.19.2 using the JuMP library [8], and the model was solved by
Gurobi 8.1 solver.

Table 4. Instances’ details

Instance Orders Ships Total cargo Cargo volume Bunker

Volume Percentage Price

1 14 3 135,200 86% 370.00

2 17 6 335,589 93% 412.00

3 13 6 300,646 97% 432.50

4 19 7 379,486 95% 427.00

5 24 8 429,088 94% 427.00

6 13 6 243,577 80% 349.00

We compare all results with the actual ship schedules developed by the com-
pany’s planners. Three shipping planners validated our results regarding the
operational viability and the solution cost calculation: the current tramp ship
planner within the company, who has five years of experience, the commercial
manager, and a ship planner expert, with more than twenty-five years working
with ship scheduling problems in the company. According to the experts’ vali-
dation, the proposed approach can be used as an actual decision support tool
within the company due to the feasibility and quality of the solutions provided in
a computational time that respects their process. Usually, when a new demand
arrives, the company takes 24 to 48 h to respond if they can accomplish it due
to their limited capacity. Moreover, the company defines when the order will be
addressed and how much will be charged for the cargo transportation. Thus, we
limited the model execution to 24 h. Anyway, none of the instances took 24 h to
run, the faster ones took less than 3 h, while the harder one took almost 16 h
to reach optimality. Table 5 depicts the percentage deviation of our solutions in
relation to the ones provided by the company regarding the six real-life instances
described above in terms of the objective function elements (fuel cost, port cost,
ship operation cost). We use the deviation to present the results due to confiden-
tial issues regarding the real costs of the solutions. In the company’s solution,

92 L. Louzada et al.

the average contribution of the fuel costs to the total objective function value is
34%, the port costs 8% and the operating costs 58%. In the obtained solution,
these contributions change to 31%, 8%, and 60%, respectively.

Table 5. Detailed results regarding the objective function elements.

Instance 1 2 3 4 5 6

Total fuel costs −7% −15% −17% −22% −6% −1%

Total port costs −5% −29% 6% 67% −22% −21%

Total ship operating costs −7% 6% 0% −2% −2% −1%

Total costs −7% −4% −6% −5% −5% −3%

One can note that the MIP formulation reduces the total operating costs in
all instances, with the largest one being Instance 1 with costs 7% smaller when
compared to the solution provided by the company experts. It is interesting
to see that, even when some costs increases (see for example the increase of
67% in the port costs of Instance 4), the total costs are at least 3% smaller.
In the context of high fuel prices, the mathematical model focused on defining
more loading port calls to reduce discharging port calls, reducing the distance
traveled, and consequently, the fuel consumption. In addition, the optimization
of the ships’ speed allowed the model to efficiently reduce the fuel consumption
while accomplishing the time windows for the addressed orders.

In Table 6, we detail the obtained solutions considering several aspects, high-
lighting the deviation from the MIP formulation solutions to the company’s
solutions in terms of the number of loading port calls, number of discharging
port calls, the total number of port calls, capacity occupation, total days of the
ships’ operation, nautical miles traveled, total days of navigation, and total fuel
consumption. One can note a more significant reduction in the indicators that
affect fuel costs, such as fuel consumption and nautical miles traveled due to the
high fuel prices, as highlighted previously. Note that in some cases, the model
increased the total number of port calls (Instances 3 and 4), the total number
of ships’ operating days (Instance 2), or even the total number of navigation
days (Instances 2, 3 and 5). However, those decisions led to better solutions in
terms of total costs, with a reduced capacity occupation variance. An interesting
aspect of this analysis is highlighting the model capacity of modifying the solu-
tions according to the real aspects of each scenario. This makes the approach
flexible and capable of providing solutions for different conditions of operational
demands and costs, in many cases making decisions that a company planner
would never make. Usually, programmers follow fixed rules with low flexibility
and inadequate response to different input data characteristics.

Some interesting points were discussed with the company experts while
validating and comparing the MIP formulation solutions with their solutions.
Regarding Instance 1, the solution of the mathematical formulation led to a par-
adigm change for the planners by defining the largest ship available to perform

Solving a Real-Life Tramp Ship Routing and Scheduling Problem 93

Table 6. Detailed results regarding other solution aspects.

Instance 1 2 3 4 5 6

Loading port calls −13% −25% 27% 36% 6% −17%

Discharging port calls 0% −27% −13% 39% −18% 0%

Total port calls −5% −26% 4% 38% −8% −8%

Capacity occupation −2% 0% −2% 0% −2% 0%

Ships’ operating days −6% 6% 0% −4% −1% −1%

Nautical miles traveled 0% −6% −1% −9% −2% −46%

Sailing days −6% 1% 1% −8% 1% −2%

Fuel consumption −7% −18% −3% −10% −6% −1%

the shortest route, leading to more balanced routes and better use of the ves-
sel’s capacities. Planners were used to allocate larger ships on more extensive
routes to always navigate to more distant destinations. Concerning Instance 4,
the mathematical model defined the final ports of the routes of two ships in the
southern region of China, a region generally with low demand for cargo loading.
However, according to planners, the study of this strategy seems to be interest-
ing as it could reduce navigation costs due to its location and the easiness of
attending any demanding port in China. The results and the discussions led the
company to start using the MIP formulation as a decision support tool to help
ship planners.

6 Conclusion and Future Works

Given the scenario that a large part of international trade takes place through
maritime transport, arises the opportunity for tramp shipping companies to
meet cargo transportation demands worldwide. Tramp shipowners have faced,
in recent years, difficulties in increasing freight rates, among several reasons, due
to the asymmetry between the availability of vessels and cargo demand, high-
lighting the importance of seeking operational costs reduction. The optimization
of ship routing and scheduling, usually done manually by experienced profession-
als in these organizations, is increasingly being explored by academic literature,
helping ship owners enhance their competitivity.

In this work, we studied a real-life tramp ship scheduling problem to address
a set of cargo transportation orders to be loaded on the East Coast of South
America and discharged in Asian ports, minimizing the total operating costs of
the company’s fleet. We consider navigation speeds as a problem’s decision to
accomplish the available loading time windows for the vessels in the ports.

The study has an essential role in addressing a real problem and in develop-
ing an approach that improves the current scheduling methodology used in the
studied company. According to the validation within the company, our approach
serves as a decision support tool for ship planners. We conducted experiments on

94 L. Louzada et al.

six instances with actual data from the company with different scenarios of ves-
sel availability and demands for cargo transportation. The results show a clear
advantage of using the proposed approach to improve solutions in all instances,
with costs up to 7% smaller. Due to the good results achieved, the company
expects to expand its applicability and capture more spot cargo fixtures.

Throughout the development of the work, we noticed some innovation oppor-
tunities within the studied company. The application of approaches explored
in the academic literature to ship routing and scheduling problems can help to
reduce costs and improve service levels within the company. Furthermore, details
of the company’s operation can be further explored by the academic community
to support new researches. Below, we highlight some opportunities for future
research:

– Include specific constraints for spot parcels, as an optional decision to be
taken during the planning horizon.

– Investigate the relationship between speed and fuel consumption as continu-
ous functions instead of using discrete levels for these variables.

– Consider sustainability indicators in the problem, such as reducing the social
and environmental impact.

– Analyze longer planning horizons with up to one year.
– Include other trade routes incorporating strategic (allocation of ships on the

lines) and tactical (ports, sequence, and volumes of each ship) decisions.
– Consider uncertainties on the problem, such as seasonal weather events which

affect productivity and congestion in ports, variation in fuel prices and daily
operating cost, associated with market indexes for each line and type of ship.

Acknowledgments. This study was financed in part by PUC-Rio, by the Coor-
denação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance
Code 001, by the Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
(CNPq) under grant 315361/2020-4 and by Fundação de Amparo à Pesquisa do Estado
do Rio de Janeiro (FAPERJ) under grant E-26/010.002232/2019. The financial support
is gratefully acknowledged.

References

1. Al-Khayyal, F., Hwang, S.J.: Inventory constrained maritime routing and schedul-
ing for multi-commodity liquid bulk, part i: applications and model. Eur. J. Oper.
Res. 176(1), 106–130 (2007)

2. Andersson, H., Christiansen, M., Fagerholt, K.: The maritime pickup and delivery
problem with time windows and split loads. INFOR: Inf. Syst. Oper. Res. 49(2),
79–91 (2011)

3. Borthen, T., Loennechen, H., Wang, X., Fagerholt, K., Vidal, T.: A genetic search-
based heuristic for a fleet size and periodic routing problem with application to
offshore supply planning. EURO J. Transp. Logist. 7(2), 121–150 (2017). https://
doi.org/10.1007/s13676-017-0111-x

4. Brønmo, G., Christiansen, M., Nygreen, B.: Ship routing and scheduling with flex-
ible cargo sizes. J. Oper. Res. Soc. 58(9), 1167–1177 (2007)

https://doi.org/10.1007/s13676-017-0111-x
https://doi.org/10.1007/s13676-017-0111-x

Solving a Real-Life Tramp Ship Routing and Scheduling Problem 95

5. Brown, G.G., Graves, G.W., Ronen, D.: Scheduling ocean transportation of crude
oil. Manage. Sci. 33(3), 335–346 (1987)

6. Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Ship routing and schedul-
ing in the new millennium. Eur. J. Oper. Res. 228(3), 467–483 (2013)

7. Christiansen, M., Fagerholt, K., Ronen, D.: Ship routing and scheduling: status
and perspectives. Transp. Sci. 38(1), 1–18 (2004)

8. Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathematical
optimization. SIAM Rev. 59(2), 295–320 (2017)

9. Fagerholt, K.: A computer-based decision support system for vessel fleet
scheduling-experience and future research. Decis. Support Syst. 37(1), 35–47
(2004)

10. Fagerholt, K., Christiansen, M.: A travelling salesman problem with allocation,
time window and precedence constraints-an application to ship scheduling. Int.
Trans. Oper. Res. 7(3), 231–244 (2000)

11. Fagerholt, K., Christiansen, M., Hvattum, L.M., Johnsen, T.A., Vabø, T.J.: A
decision support methodology for strategic planning in maritime transportation.
Omega 38(6), 465–474 (2010)

12. Flood, M.M.: Application of transportation theory to scheduling a military tanker
fleet. J. Oper. Res. Soc. Am. 2(2), 150–162 (1954)

13. Gatica, R.A., Miranda, P.A.: Special issue on Latin-American research: a time
based discretization approach for ship routing and scheduling with variable speed.
Netw. Spat. Econ. 11(3), 465–485 (2011)

14. Hemmati, A., Hvattum, L.M., Fagerholt, K., Norstad, I.: Benchmark suite for
industrial and tramp ship routing and scheduling problems. INFOR: Inf. Syst.
Oper. Res. 52(1), 28–38 (2014)

15. Hemmati, A., St̊alhane, M., Hvattum, L.M., Andersson, H.: An effective heuristic
for solving a combined cargo and inventory routing problem in tramp shipping.
Comput. Oper. Res. 64, 274–282 (2015)

16. Homsi, G., Martinelli, R., Vidal, T., Fagerholt, K.: Industrial and tramp ship
routing problems: closing the gap for real-scale instances. Eur. J. Oper. Res. 283(3),
972–990 (2020)

17. Kang, K., Zhang, W., Guo, L., Ma, T.: Research on ship routing and deployment
mode for a bulk. In: 2012 19th Annual Conference Proceedings of the International
Conference on Management Science & Engineering, pp. 1832–1837. IEEE (2012)

18. Korsvik, J.E., Fagerholt, K.: A tabu search heuristic for ship routing and scheduling
with flexible cargo quantities. J. Heuristics 16(2), 117–137 (2010)

19. Korsvik, J.E., Fagerholt, K., Laporte, G.: A tabu search heuristic for ship routing
and scheduling. J. Oper. Res. Soc. 61(4), 594–603 (2010)

20. Korsvik, J.E., Fagerholt, K., Laporte, G.: A large neighbourhood search heuristic
for ship routing and scheduling with split loads. Comput. Oper. Res. 38(2), 474–
483 (2011)

21. Lawrence, S.A.: International Sea Transport: The Years Ahead. Lexington Books
(1972)

22. Meersman, H., Strandenes, S.P., Van de Voorde, E.: Port pricing: principles, struc-
ture and models. NHH Department of Economics Discussion Paper (14) (2014)

23. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. J. ACM (JACM) 7(4), 326–329 (1960)

24. Norstad, I., Fagerholt, K., Laporte, G.: Tramp ship routing and scheduling with
speed optimization. Transp. Res. Part C Emerg. Technol. 19(5), 853–865 (2011)

25. Psaraftis, H.N.: Ship routing and scheduling: the cart before the horse conjecture.
Marit. Econ. Logist. 21(1), 111–124 (2019)

96 L. Louzada et al.

26. Rowbotham, M.: Introduction to Marine Cargo Management. Informa Law from
Routledge (2014)

27. Sanghikian, N., Martinelli, R., Abu-Marrul, V.: A hybrid VNS for the multi-
product maritime inventory routing problem. In: Mladenovic, N., Sleptchenko,
A., Sifaleras, A., Omar, M. (eds.) ICVNS 2021. LNCS, vol. 12559, pp. 111–122.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69625-2 9

28. St̊alhane, M., Andersson, H., Christiansen, M., Cordeau, J.F., Desaulniers, G.: A
branch-price-and-cut method for a ship routing and scheduling problem with split
loads. Comput. Operat. Res. 39(12), 3361–3375 (2012)

29. St̊alhane, M., Andersson, H., Christiansen, M., Fagerholt, K.: Vendor managed
inventory in tramp shipping. Omega 47, 60–72 (2014)

30. UNCTAD: Review of Maritime Transport. United Nations Conference on Trade
and Development, New York and Geneva, vol. e.18 ii.d, 5 edn. (2018). https://
unctad.org/en/PublicationsLibrary/rmt2018 en.pdf. Accessed 25 May 2020

31. Vilhelmsen, C., Lusby, R.M., Larsen, J.: Tramp ship routing and scheduling with
voyage separation requirements. OR Spectrum 39(4), 913–943 (2017). https://doi.
org/10.1007/s00291-017-0480-4

32. Wen, M., Ropke, S., Petersen, H.L., Larsen, R., Madsen, O.B.: Full-shipload tramp
ship routing and scheduling with variable speeds. Comput. Oper. Res. 70, 1–8
(2016)

33. Yu, B., Wang, K., Wang, C., Yao, B.: Ship scheduling problems in tramp shipping
considering static and spot cargoes. Int. J. Shipping Transp. Logist. 9(4), 391–416
(2017)

https://doi.org/10.1007/978-3-030-69625-2_9
https://unctad.org/en/PublicationsLibrary/rmt2018_en.pdf
https://unctad.org/en/PublicationsLibrary/rmt2018_en.pdf
https://doi.org/10.1007/s00291-017-0480-4
https://doi.org/10.1007/s00291-017-0480-4

Optimizing Maritime Preparedness Under
Uncertainty – Locating Tugboats Along

the Norwegian Coast

Julie Louise Musæus, H̊akon Nøstvik, Henrik Andersson ,
and Peter Schütz(B)

Department of Industrial Economics and Technology Management,
Norwegian University of Science and Technology, Trondheim, Norway

{julielm,haakonmn}@stud.ntnu.no
{henrik.andersson,peter.schuetz}@ntnu.no

Abstract. We study the strategic problem of locating tugboats along
the Norwegian coast to optimize maritime preparedness. The problem
is formulated as a two-stage stochastic program. In the first stage, we
locate the tugboats such that nominal coverage requirements are sat-
isfied, whereas we deploy the located tugboats in the second stage in
order to assist vessels in distress. The objective is to minimize the sum
of the costs of publicly operated tugboats in the emergency towing ser-
vice and the expected penalty costs due to insufficient preparedness. We
solve the problem using Sample Average Approximation in combination
with a self-developed heuristic. Our results indicate that we can achieve
a sufficient preparedness level with six tugboats.

Keywords: Maritime preparedness · Set covering problem ·
Uncertainty

1 Introduction

A safe and reliable maritime transportation system is of great economic impor-
tance to Norway: Approximately 83% of all international cargoes (in tonnes) and
about 44% of all domestic cargoes (in tonne-kilometres) are carried on board
ships [11]. In addition, overall ship traffic (in kilometres) along the coast of
Norway is predicted to increase by 41% until 2040. However, maritime trans-
portation is risky and the number of accidents is also expected to increase by as
much as 30% during the same period [15].

A recent example of the risk in maritime transportation is the incident involv-
ing the MV Eemslift Hendrika that was abandoned off the west coast of Norway
in April 2021. The ship drifted for 2 days before tugboats were able to secure
the ship and avert grounding of the ship. Up to 350 tonnes of heavy fuel oil and
up to 50 tonnes of diesel fuel could have caused severe environmental pollution
in the area if the ship’s hull had been damaged [23].

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 97–111, 2021.
https://doi.org/10.1007/978-3-030-87672-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_7&domain=pdf
http://orcid.org/0000-0002-0312-8072
http://orcid.org/0000-0002-9466-0354
https://doi.org/10.1007/978-3-030-87672-2_7

98 J. L. Musæus et al.

To assist drifting vessels and prevent them from grounding or colliding in
coastal waters, Norway has established an emergency towing service [4]. The
ambition is to be able to reach and assist a drifting vessel with the necessary
tugboats to prevent an accident from happening [18]. The tactical problem of
how to dynamically position these tugboats according to current vessel traffic
has been extensively studied, see e. g. [2,3,5] or [6]. However, these approaches
all focus on the allocation of existing resources and consider the number of
available tugboats as given. In this paper, we consider the strategic problem
of determining both the optimal location and number of tugboats to achieve a
satisfying maritime preparedness level.

A common characteristic of emergency response planning is that the location
decisions have to be made before the actual emergency is known. Approaches
considering uncertainty are therefore common in the literature. Some recent and
relevant examples of this literature are: [16] discusses the problem of locating
ambulances to serve random road crashes. [19] uses a maximal covering formula-
tion to evaluate the effectiveness of different fleets when responding to emergen-
cies. [14] introduces a robust formulation of the set covering problem for locating
emergency service facilities. In [1], two variants of the probabilistic set covering
problem are discussed: the first variant considers a problem with uncertainty
regarding whether a selected set can cover an item, while the second variant
aims at maximizing the minimum probability that a selected set can cover all
items. For a more thorough overview over covering models in the literature see
[10]. See also [13] for an overview of the literature on covering models used for
emergency response planning.

We propose a two-stage stochastic programming model for the strategic Tug-
boat Location Problem (TLP) under uncertainty that covers nominal prepared-
ness requirements in the first stage and uses the second-stage decisions to eval-
uate the quality of the first-stage decisions by calculating the expected costs in
case accidents cannot be prevented. To solve the model, we use Sample Average
Approximation (SAA) combined with a self-developed heuristic.

The remainder of this article is structured in the following way: The problem
is presented in more detail in Sect. 2, before the mathematical model is intro-
duced in Sect. 3. Subsequently, the solution scheme is presented in Sect. 4 and
followed by a description of our case study and computational results in Sect. 5.
Lastly, we conclude in Sect. 6.

2 Problem Description

In this section, we present the TLP in more detail. First, we introduce the
problem before discussing the uncertainty in the problem and its consequences.

2.1 Problem Structure

The overall goal of the strategic TLP is to determine the optimal fleet of tugboats
in the emergency towing service and to locate the tugboats in ports such that

Optimizing Maritime Preparedness Under Uncertainty 99

they can respond to vessels in need of assistance. As the decision which tugboats
to locate where has to be made before the location of the vessels in need of
assistance is known, this gives rise to a two-stage structure of the problem where
the first-stage decisions include the number and type of required tugboats and
which ports to locate them in. The second-stage decisions are made after a vessel
calls for assistance and cover which tugboat(s) to deploy to the incident site to
assist the vessel.

The first-stage decisions have to satisfy dimensioning criteria for Norway’s
emergency towing service. The dimensioning criteria are derived from dimen-
sioning incidents that represent the assistance needs of high-risk vessels such as
large oil tankers [17]. The maximum time to reach the vessel is determined by
the vessel’s drifting time, whereas the tugboats’ time to assist the vessel con-
sists of mobilization and sailing time as well as hook-up time. In addition, we
include a safety margin to enforce even stricter requirements for high-risk areas
and vessels. We formulate these criteria as minimal covering requirements for
maritime preparedness, ensuring that a sufficient number of tugboats are able
to reach any vessel in any area within the required time.

Once an incident becomes known, tugboats are deployed to assist the vessel
in distress. However, due to weather conditions at the time of the incident, not
only drifting speed of the vessel but also sailing speed of the tugboat and hook-
up time can be different from the nominal values used in the first stage. It is
therefore possible that tugboats arrive too late and an accident occurs. In this
case, a penalty cost is incurred.

Each located tugboat has a chartering and operating cost associated with it
and can provide a certain bollard pull. The combined bollard pull of all deployed
tugboats has to be higher than the required bollard pull to assist the vessel in
distress. If multiple tugboats are deployed, hook-up to the vessel will start once
all tugboats have arrived at the scene.

Some ports in Norway serve as bases for a large number of privately oper-
ated vessels with tugboat capabilities. When the number of these tugboats is
sufficiently large, we assume that a small number can contribute to maritime
preparedness. We therefore account for them when considering the minimal cov-
ering requirements. However, the cost of these tugboats does not become part of
the objective function as they are not paid for by the emergency towing service.

The objective is to minimize the sum of the costs of publicly operated tug-
boats in the emergency towing service and expected penalty costs due to insuffi-
cient preparedness. Incident-dependent operational costs are not included in the
model as these are usually paid for by the vessel in need of assistance.

Note that the probability of a vessel starting to drift is small. This implies
that the probability of two or more drifting incidents happening simultaneously
is extremely low, and these incidents are therefore neglected in this paper. This
is a common simplification in preparedness planning, see e.g. [2] and [20].

100 J. L. Musæus et al.

2.2 Geography, Vessel Types and Tugboat Types

We divide the Norwegian coast into geographical zones, as illustrated in Fig. 1.
Every zone is described by its seabed characteristic, ecosystem vulnerability,
weather conditions and traffic density. Each zone also contains an impact point
and a set of one or more corridors where vessels are sailing. A zone is defined
from the coastline to the corridor located farthest away from the shore. When
a vessel encounters a problem leading to loss of propulsion, it will start to drift
from the center of its corridor towards the coast. If no tugboats are able to assist
the drifting vessel before it reaches the impact point, an accident happens. The
impact point is located in the middle of each zone’s baseline.

Fig. 1. Representation of the Norwegian coastline.

We categorize vessels by vessel type. A vessel type is defined by its size,
cargo type and sailing corridor. All vessel belonging to a given vessel type are
considered to be identical. Tugboats are grouped by tugboat type. Each tugboat
type is described by its bollard pull and maximal sailing speed, with all tugboats
belonging to a tugboat type having the same properties.

2.3 Uncertain Parameters

We define date and location of an incident, characteristics of the involved vessel
and wind speed (as a proxy for weather conditions) as uncertain parameters
affecting the potential consequences of the incident and the lateness of the tug-
boats deployed to assist the vessel in distress. See Fig. 2 for an illustration of how
these parameters relate to each other and the penalty cost. Both consequence,
lateness and penalty cost are explained in more detail below.

Consequence. Consequences result from an accident when the deployed tug-
boats are not able to assist a drifting vessel before it reaches the impact point.
The consequences depend on vessel and seabed characteristics as well as the

Optimizing Maritime Preparedness Under Uncertainty 101

Fig. 2. Uncertain parameters and their relationship to the incurred penalty cost.

vulnerability of the ecosystem. The vessel characteristics, and cargo type in par-
ticular, influence the expected consequence of an accident. Incidents involving
passenger vessels put human lives at stake whereas spills from oil tankers have
higher consequences in more vulnerable ecosystems. The ecosystem vulnerabil-
ity is changing throughout the year and differs across areas. We assume that
grounding on a rocky seabed will cause a greater fracture in the vessel’s hull
than a sandy seabed, thus leading to a greater spill.

Lateness. By lateness we describe the tugboat’s ability to assist the vessel in
time. Drifting speed increases with wind speed and determines how much time
the tugboats have to reach and assist the vessel in distress. The hook-up time
is the time is takes to connect the tugboat’s tugline to the vessel. We assume
that the hook-up time increases with higher wind speed and heavier vessels. The
tugboat’s sailing speed determines how long it takes to sail from port to the
incident site. Sailing speed is negatively correlated with wind speed.

Lateness is positive if the sum of the tugboat’s mobilization time, sailing time
and hook-up time is larger than the vessel’s drifting time. In the other case, the
accident is avoided and lateness is zero.

Penalty Cost. We introduce a fictitious penalty cost function depending on
lateness to penalize accidents. The penalty cost reflects that it might not always
be possible to prevent accidents from happening, but that is often beneficial to
have vessels quickly at the site of the accident to reduce its consequences, for
example through search-and-rescue operations or oil-spill mitigation. By adjust-
ing the penalty cost function, e.g. for accidents involving high-risk vessels or
in high-risk areas, a policy maker can analyze how different expected costs of
accidents influence the optimal number and location of the tugboats.

102 J. L. Musæus et al.

We have chosen to model the penalty cost as a piecewise linear and convex
function, see Fig. 3. Large lateness in arriving at the accident site is therefore
penalized more severely than small lateness. We keep weights αt

k and αc
k constant

in our modeling approach and adjust the maximum lateness, T , and maximum
penalty cost, C, according to seabed characteristics, ecosystem vulnerability and
vessel characteristics. Note that for passenger vessels, the maximal penalty costs
C apply already at a lateness of 0.

Fig. 3. Penalty cost as a function of lateness.

3 Model Formulation

We formulate the problem of optimizing maritime preparedness as a two-stage
stochastic programming problem. The objective is to minimize the sum of the
costs of tugboats in the emergency towing service and the expected penalty costs
resulting from accidents.

Let us first introduce the following notation for our problem formulation:
Sets

B Set of tugboat types.
K Set of breakpoints of the penalty cost function.
P Set of ports.
S Set of scenarios.
V Set of vessel types.
Z Set of zones along the coast.

Parameters

Abpvz 1 if tugboat type b in port p is close enough to vessel type v in zone z, 0
otherwise, b ∈ B, p ∈ P, v ∈ V, z ∈ Z.

CB
b Cost of chartering and operating a tugboat of type b, b ∈ B.

C
s

Maximal penalty cost in scenario s, s ∈ S.

Optimizing Maritime Preparedness Under Uncertainty 103

Fb Bollard pull of tugboat type b, b ∈ B.
F̂ s
b Effective bollard pull of tugboat type b in scenario s, b ∈ B, s ∈ S.

Qv Number of tugboats required by vessel type v, given the minimal covering
requirement, v ∈ V.

Q̂s Number of tugboats required, depending on the characteristics of the drift-
ing vessel in scenario s, s ∈ S.

T s
bp Lateness of tugboat type b in port p in scenario s, b ∈ B, p ∈ P, s ∈ S.

T
s

Maximal lateness in scenario s, s ∈ S.
Wv Total bollard pull required by vessel type v, given the minimal covering

requirement, v ∈ V.
Ŵ s Total effective bollard pull required, depending on the characteristics of

the drifting vessel in scenario s, s ∈ S.
Xbpz 1 if a privately operated tugboat of type b in port p has zone z within its

operating range, 0 otherwise, b ∈ B, p ∈ P, z ∈ Z.
X̂s

bp 1 if the range of privately operated tugboat type b in port p includes the
drifting vessel in scenario s, 0 otherwise, b ∈ B, p ∈ P, s ∈ S.

αc
k Breakpoint k’s weight of the maximal penalty cost, k ∈ K.

αt
k Breakpoint k’s weight of the maximal lateness, k ∈ K.

ps Probability of scenario s, s ∈ S.

Decision variables

us
bp 1 if tugboat type b located in port p is deployed in scenario s, 0 otherwise,

b ∈ B, p ∈ P, s ∈ S.
ts Maximum lateness in scenario s, s ∈ S.

xbp 1 if tugboat type b is located in port p, 0 otherwise, b ∈ B, p ∈ P.
ybvz 1 if tugboat type b is able to rescue vessel type v in zone z, given the

minimal cover requirement, 0 otherwise, b ∈ B, v ∈ V, z ∈ Z.
μs
k Weight of breakpoint k in scenario s, k ∈ K, s ∈ S.

In the first stage of the two-stage stochastic programming problem, the num-
ber of tugboats and their locations are decided upon. In the second-stage, tug-
boats are deployed in order to prevent a specific drifting accident. The resulting
model formulation is given below:

min
∑

b∈B

∑

p∈P
CB

b xbp +
∑

s∈S
psQs(x) (1)

subject to
∑

p∈P
Abpvz · (xbp + Xbpz) ≥ ybvz b ∈ B, v ∈ V, z ∈ Z, (2)

∑

b∈B
ybvz ≥ Qv v ∈ V, z ∈ Z, (3)

∑

b∈B
Fb · ybvz ≥ Wv v ∈ V, z ∈ Z, , (4)

xbp ∈ {0, 1} b ∈ B, p ∈ P, (5)
ybvz ∈ {0, 1} b ∈ B, v ∈ V, z ∈ Z, (6)

104 J. L. Musæus et al.

where Qs(x) is the solution to the following second-stage problem:

Qs(x) = min
∑

k∈K
αc
kC

s
μs
k (7)

subject to

us
bp ≤ xbp + X̂s

bp b ∈ B, p ∈ P, s ∈ S, (8)
∑

b∈B

∑

p∈P
us
bp ≥ Q̂s s ∈ S, (9)

∑

b∈B

∑

p∈P
F̂ s
b · us

bp ≥ Ŵ s s ∈ S, (10)

ts ≥ T s
bpu

s
bp b ∈ B, p ∈ P, s ∈ S, (11)

ts =
∑

k∈K
αt
kT

s
μs
k s ∈ S, (12)

∑

k∈K
μs
k = 1 s ∈ S, (13)

μs
k ≥ 0, SOS2 k ∈ K, s ∈ S, (14)

us
bp ∈ {0, 1} b ∈ B, p ∈ P, s ∈ S. (15)

The first-stage problem (1)–(6) is formulated as a covering problem, satis-
fying the dimensioning criteria for planning maritime preparedness. The first-
stage objective (1) minimizes the sum of the tugboats’ chartering and operating
costs and the expected penalty costs. Constraints (2) ensure that tugboat type
b located in port p has to be close enough to zone z to rescue a vessel of type
v. Constraints (3) make sure that the number of available tugboats for rescuing
vessel type v in zone z exceeds the required number of tugboats. Constraints
(4) ensure that the combined bollard pull of the available tugboats is sufficiently
large. Constraints (5) and (6) are the binary restrictions on xbp and ybvz, respec-
tively.

The second-stage problem is given by (7)–(15). The second-stage objective (7)
minimizes the penalty costs of responding to an incident. Constraints (8) ensure
that a tugboat type b has to be located in port p in order to be deployed in
scenario s. Restrictions (9) and (10) ensure that a sufficient number of tugboats
with a sufficiently large combined effective bollard pull are deployed to assist
the drifting vessel. Constraints (11) determine the lateness for a given scenario.
Lateness for a scenario is defined by the lateness of the last deployed tugboat
to reach the drifting vessel. Constraints (12) link the scenario lateness to the
penalty cost in the objective function (7) through weights μs

k on the breakpoints
of the penalty cost function. Constraints (13) in combination with constraints
(14) define variable μs

k as a special ordered set of type 2 (SOS2), see e.g. [24]
for more details. The binary requirements on variable us

bp are imposed through
constraints (15).

Optimizing Maritime Preparedness Under Uncertainty 105

4 Solution Approach

We first introduce the scenario generation procedure, before we briefly present
our solution approach. Our approach combines Sample Average Approximation
to determine a lower bound to the problem with a heuristic for finding upper
bounds.

4.1 Scenario Generation

A scenario is mainly characterized by 3 groups of uncertain parameters: location,
date and incident type. The location of the incident affects the seabed charac-
teristics and, together with the date of the incident, the vulnerability of the
ecosystem. The date also provides the weather conditions for the given location
and wind speed in particular. The incident type specifies the vessel characteris-
tics such as vessel type and size as well as its cargo.

The date of the incident is drawn randomly from the datasets of available
wind data. We use historical weather data from the ERA-Interim dataset [7],
made available by the European Centre for Medium-Range Weather Forecasts
(ECMWF). One might assume that locations with extreme weather conditions
are more likely to experience an incident. However, human error and technical
conditions of the vessel actually have a greater impact on the probability of an
incident [9]. We therefore sample date and location of an incident independent of
each other. The probability distribution for the location of an incident is based
on the accidents statistics provided by the Norwegian Maritime Authority. The
incident type is sampled based on historical marine traffic information from the
Norwegian Coastal Administration.

4.2 Sample Average Approximation for Estimating a Lower Bound

A common challenge in stochastic programming is that the problems often
become computationally intractable when using an appropriately large num-
ber of scenarios. We therefore apply Sample Average Approximation (SAA) to
obtain a lower bound estimate for our problem [12]. SAA is based on the idea
that it is often easier to solve multiple smaller optimization problems than one
single large problem.

By solving M problems with N scenarios each, we can derive a statistical
lower bound for our problem. Note that the scenario trees for the M problems
are generated independent of each other and that the number of scenarios N
used to solve the problem is small compared with the true problem size. See
[12,21] or [22] for detailed descriptions of the algorithm.

4.3 Search Heuristic for Determining an Upper Bound

To calculate an upper bound for the problem, we need to evaluate a feasible
solution over a reference sample of N ′

ref scenarios. The reference sample is sam-
pled independently from the M · N scenarios of the SAA-problems and usually
N ′

ref � N .

106 J. L. Musæus et al.

The solutions for the different SAA problems can be used as candidate solu-
tions for calculating an upper bound, but they may be infeasible for the reference
sample. We therefore use a search heuristic that generates feasible solutions in
the neighbourhood of the solutions provided by the SAA problems. A solution’s
neighbourhood is defined as the closest surrounding ports and tugboat types.
For example, if a tugboat of type B is located in port 13, its neighbourhood are
tugboat types A–C located in ports 12–14. We group the different unique solu-
tions from the SAA problems according to the number of used tugboats and then
generate the neighbourhood solutions for the best solutions of each group. These
solutions are then checked for feasibility and infeasible solutions are discarded.
The remaining feasible solutions are then evaluated in the reference sample.

However, in many cases it is impractical to evaluate all solutions in the refer-
ence sample N ′

ref as the computational time could be huge. We therefore apply
a stepwise approach to evaluating feasible solutions: All feasible candidate solu-
tions are evaluated over a relatively small sample N ′

1. Solutions that perform
poorly in N ′

1 are assumed to be bad and are discarded, while the K1 best solu-
tions are evaluated a second time. In the second evaluation, the sample size is
larger, N ′

2 ≈ 100 · N ′
1, thus providing a better estimate of the true objective

function value. The K2 best solutions in N ′
2 are evaluated a third time, now in

the reference sample N ′
ref . The best objective function value from the reference

sample is then used as an upper bound estimate.
Note that our heuristic can only search a neighbourhood where all solutions

use a predefined number of tugboats. We therefore denote the upper bound for
solutions using n tugboats UBn with the corresponding solution x(n).

5 Computational Results

In this section we present our computational study of locating tugboats along
the Norwegian coast. We first introduce the input data and the problem instance
in Sect. 5.1, before presenting our results in Sect. 5.2.

5.1 Problem Instance

This section discusses how the parameters used in the model are calculated and
estimated. First the geography, vessel and tugboat characteristics are introduced.
Then penalty costs are presented before the calculations of the time-related
parameters are provided.

Geography and Ports. The Norwegian coastline is divided into 38 zones of
approximately equal width. The coastline itself is represented as a set of line
segments, referred to as the baseline. The impact point is located in the middle
of the baseline and its seabed characteristics and ecosystem vulnerability are
representative for the entire zone.

The seabed in a zone is categorized as either sandy, rocky or cliffy. The
ecosystem vulnerability is classified as low, medium or high, depending on the

Optimizing Maritime Preparedness Under Uncertainty 107

season [8]. Both of these factors have an impact on the penalty cost function
described below.

Only ports satisfying the International Ship and Port Facility Security (ISPS)
Code are regarded as sufficiently large to be used for tugboat operations. Among
the 640 ISPS ports in Norway, 30 ports close to relatively large densely populated
areas are chosen as possible base locations for tugboats.

Vessel Types and Tugboat Characteristics. A vessel type is categorized by
cargo type as either “passenger”, “oil”, or “other”, sailing in the inner or outer
corridor depending on cargo type. The size of the vessels is classified as either
“light” or “heavy”, with a required effective bollard pull of 45 tonnes and 95
tonnes, respectively.

A tugboat type is defined by its bollard pull, sailing speed and chartering
and operating cost. We define four tugboat types, A–D, as shown in Table 1.
The types represent different real-world tugboats, from smaller harbour tugs to
larger tugboats used in the offshore oil & gas industry. Effective bollard pull and
sailing speed are adjusted for wind speed according to a linear reduction function.
The maximal reduction occurs when the wind speed is 28 m/s, corresponding to
violent storm on the Beaufort wind force scale, reducing bollard pull and sailing
speed by 20% and 30% respectively.

Table 1. Overview of tugboat types used in the model.

Tugboat type A B C D

Maximal sailing speed [knots] 15 14 13 12

Bollard pull [tonnes] 200 150 100 80

Chartering and operating cost [MNOK/year] 51 36 33 18

We include two tugboats of type B located in Bergen and Oslo in our analysis
to reflect the availability of privately operated tugboats in those areas.

Generation of Penalty Cost Functions. The penalty costs for not being able
to provide assistance in time depend on the severity of the accident. The expected
spillage in case of an accident depends on the given seabed characteristics. We
assume no leakage if the seabed is classified as sandy, only leakage from the fuel
tank if rocky and leakage from the fuel and oil tanks if cliffy.

Human lives are generally considered more important than environmental
damage. Therefore, we regard all incidents involving “passenger” vessels as
equally bad and worse than any other accidents. Consequently, neither C nor T
depend on seabed characteristics or ecosystem vulnerability.

Vessels with cargo type “oil” spill from both the fuel tank and the oil tank,
depending on the seabed characteristics at the impact point. The consequences
in case of an accident are determined by spill size (with heavy vessels spilling

108 J. L. Musæus et al.

more oil than light vessels) and ecosystem vulnerability. In case the vessel is
grounding on a sandy seabed, no fuel or oil spill is expected. Thus, the penalty
cost is in this case independent of ecosystem vulnerability.

Vessels with cargo type “other” can by definition only spill fuel, as they do
not have an oil tank. This means that the consequences of grounding on a cliffy
and rocky seabed are the same, resulting in the same penalty cost function as
long as the ecosystem vulnerability does not change.

We model the penalty cost function as an approximated quadratic func-
tion using five breakpoints (αtT , αcC), where the weights are chosen as αt =
(0 1

4
2
4

3
4 1) and αc = (0 1

20
1
4

5
9 1). The actual values for maximal penalty cost

C and maximal lateness T depend on the combination of cargo type, seabed
characteristics and ecosystem vulnerability at the time of the accident and are
therefore calculated for each scenario. The values used in the model range from
100 to 10 000 MNOK for C and 0 to 10 h for T .

Preprocessing Abpvz and T s
bp . The incidence matrix A is used in the first-

stage problem to identify which tugboats at which ports can contribute to satis-
fying the covering requirements. Its values are mainly determined by the nominal
dimensioning criteria for maritime preparedness. We calculate the nominal time
for tugboat assistance as the sum of a tugboat b’s mobilization and sailing time
from port p to zone z, TB

bpz, the hook-up time TH
vz for connecting the tugboat to

the vessel v in zone z and a safety margin TS
vz dependent on vessel v and zone

z. The value of the incidence matrix is then set based on whether the nominal
time for tugboat assistance is less than vessel v’s nominal drifting time to the
impact point in zone z, TV

vz. So, if (16) holds, we set Abpvz = 1 and Abpvz = 0
otherwise.

TB
bpz + TH

vz + TS
vz ≤ TV

vz v ∈ V, b ∈ B, p ∈ P, z ∈ Z. (16)

Matrix T is needed in the second-stage problem and depends on the real-
ization of the uncertain parameters. Its values, T s

bp, represent the lateness of
tugboat b located in port p in scenario s. Lateness is non-negative and cannot
be larger than the maximal lateness T . As each scenario s only considers a sin-
gle incident, the location, date and vessel type are known. We can therefore
preprocess lateness for different combinations of tugboat type b and port p as
the difference between the time needed by tugboat type b in port p to reach
the drifting vessel in scenario s, TB

bp(s), the corresponding hook-up time TH(s),
and the vessel’s actual drifting time, TV (s). Hence, the values of matrix T are
determined by (17):

T s
bp = max

{
0,min

{
T , TB

bp(s) + TH(s) − TV (s)
}}

b ∈ B, p ∈ P, s ∈ S. (17)

5.2 Case Study

We use the SAA method, solving M = 20 problems with N = 60 scenarios each.
The resulting lower bound estimate LB is 179.8 with a corresponding standard

Optimizing Maritime Preparedness Under Uncertainty 109

deviation σLB of 2.67%. We observe that the minimum number of tugboats sat-
isfying the minimal covering requirement is 6. To not exclude possibly better
solutions with more tugboats, we use a search heuristic to generate neighbour-
hood solutions for the solutions containing 6, 7 and 8 tugboats, respectively.

For each neighbourhood, the solutions are evaluated using N ′
1 = 500, K1 =

500, N ′
2 = 50 000 and K2 = 20. The best solutions are then evaluated in the

reference sample N ′
ref containing 700 000 scenarios. These numbers are chosen

based on experience from initial testing. Table 2 shows that the best upper bound
estimate found by the search heuristic is UB(6) = 245.3 for a solution with 6
tugboats, resulting in an optimality gap of approx. 36%. Furthermore, Table 2
indicates that solutions with 7 and 8 tugboats perform considerably worse when
evaluated in the reference sample, even though the neighbourhoods are ∼100
times larger.

Table 2. Upper bound estimates found by the search heuristic and the corresponding
neighbourhood size. Values for UB in MNOK.

Solution Upper bound Neighborhood size

UB(n) σUB(n) All solutions Feasible solutions

x(6) 245.300 0.03% 41 472 3 888

x(7) 257.431 0.05% 6 531 264 315 792

x(8) 257.055 0.04% 6 398 388 537 408

To provide a better estimate on the lower bound, we solve the SAA problems
again, but force the number of tugboats in the solution to be either 6, 7 or 8.
The lower bounds and optimality gaps from these constrained SAA problems
are shown in Table 3.

Table 3. Results for the constrained SAA problems. The upper bounds are found by
the search heuristic and the confidence interval is at 90%. Values for LB and UB in
MNOK.

Solution Lower bound Upper bound Optimality gap

LB(n) σLB(n) UB(n) σUB(n) Estimate Confidence interval

x(6) 245.113 8.03% 245.300 0.03% 0.08% 10.36%

x(7) 202.255 5.97% 257.431 0.05% 21.44% 27.44%

x(8) 189.308 1.92% 257.055 0.04% 26.35% 28.17%

Table 3 shows that the optimality gap estimate from the constrained prob-
lem with 6 tugboats is less than 0.1%. The optimality gap estimates for the
constrained problem with 7 and 8 tugboats are still above 20%. However, due

110 J. L. Musæus et al.

to the lower upper bound for the 6 tugboat solution and the stable performance
of the tested solutions in the evaluation procedure, we believe that the optimal
solution consists of 6 tugboats with an objective value of approx. 245 MNOK.

6 Conclusions

The goal of this work is to develop an optimization framework that can support
the design of maritime preparedness systems. In our case, we want to compose the
tugboat fleet and locate the tugboats along the Norwegian coast such that they
can assist vessels in distress before accidents happen. We therefore formulate a
two-stage stochastic programming model with the objective to find the optimal
trade-off between the costs of tugboats in the emergency towing service and
expected penalty costs from accidents that could not be prevented.

Our results indicate that six tugboats are sufficient to satisfy the dimension-
ing criteria for maritime preparedness along the Norwegian coast. Restricting
the original problem, we can show that our approach is capable of identifying
near-optimal locations and tugboat types for the six tugboats.

Areas of future research include studying how a more detailed description of
the Norwegian coastline, i. e. a larger problem instance, affects runtime and solu-
tion quality of the approach presented in this paper. It should also be possible to
use a formulation based on facility location models to design the maritime pre-
paredness system. In addition, further work is needed to better understand how
different penalty costs impact the optimal number and location of the tugboats.

References

1. Ahmed, S., Papageorgiou, D.J.: Probabilistic set covering with correlations. Oper.
Res. 61(2), 438–452 (2013)

2. Assimizele, B.: Models and algorithms for optimal dynamic allocation of patrol
tugs to oil tankers along the northern Norwegian coast. PhD theses in Logistics
2017:1, Molde University College, Molde, Norway (2017)

3. Assimizele, B., Royset, J.O., Bye, R.T., Oppen, J.: Preventing environmental dis-
asters from grounding accidents: a case study of tugboat positioning along the
Norwegian coast. J. Oper. Res. Soc. 69(11), 1773–1792 (2018)

4. Berg, T.E., Selvik, Ø., Jordheim, O.K.: Norwegian emergence towing service - past
- present and future. TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 14(1), 83–88
(2020)

5. Bye, R.T.: A receding horizon genetic algorithm for dynamic resource allocation:
a case study on optimal positioning of tugs. In: Madani, K., Dourado Correia, A.,
Rosa, A., Filipe, J. (eds.) Computational Intelligence. SCI, vol. 399, pp. 131–147.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27534-0 9

6. Bye, R.T., Schaathun, H.G.: A simulation study of evaluation heuristics for tug
fleet optimisation algorithms. In: de Werra, D., Parlier, G.H., Vitoriano, B. (eds.)
ICORES 2015. CCIS, vol. 577, pp. 165–190. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-27680-9 11

7. Dee, D.P., et al.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system. Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011)

https://doi.org/10.1007/978-3-642-27534-0_9
https://doi.org/10.1007/978-3-319-27680-9_11
https://doi.org/10.1007/978-3-319-27680-9_11

Optimizing Maritime Preparedness Under Uncertainty 111

8. DNV: Miljørisiko ved akutt oljeforurensning fra skipstrafikken langs kysten av
Fastlands-Norge for 2008 og progonoser for 2025. Technical report, 2011–0850
(2011), http://www.kystverket.no/contentassets/d6d1509b3b5b46f4b3d58628e
99c7437/miljorapport-10.10.2011.pdf. Accessed: 10 Jun 2021 (in Norwegian)

9. DNV GL: Årsaksanalyse av grunnstøtinger og kollisjoner i norske farvann. Tech-
nical report, 2014–1332 Rev. C, Høvik, Norge (2015). https://www.kystverket.no/
contentassets/f056df3c875140aa98ef49a25cc082c6/3 arsaksanalyse.pdf. Accessed:
1 Jun 2021 (in Norwegian)

10. Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., Goh, M.: Covering prob-
lems in facility location: a review. Comput. Ind. Eng. 62(1), 368–407 (2012)

11. Farstad, E., Flotve, B.L., Hauk̊as, K.: Transportytelser i Norge 1946–2019. TØI
rapport 1808/2020, Transportøkonomisk institutt, Oslo, Norway (2020). in Norwe-
gian

12. Kleywegt, A., Shapiro, A., Homem-de-Mello, T.: The sample average approxima-
tion method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502
(2001)

13. Li, X., Zhao, Z., Zhu, X., Wyatt, T.: Covering models and optimization techniques
for emergency response facility location and planning: a review. Math. Methods
Oper. Res. 74, 281–310 (2011)

14. Lutter, P., Degel, D., Büsing, C., Koster, A.M.C.A., Werners, B.: Improved han-
dling of uncertainty and robustness in set covering problems. Eur. J. Oper. Res.
263(1), 35–49 (2017)

15. Meld. St. 35 (2015–2016): P̊a rett kurs - forebyggende sjøsikkerhet og beredskap
mot akutt forurensing. Det Kongelige Samferdselsdepartementet, Oslo, Norway.
https://www.regjeringen.no/no/aktuelt/venter-vekst-i-skipstrafikken-nye-tiltak-
skal-pa-plass/id2502911/. Accessed 5 Jun 2021 (in Norwegian)

16. Mohri, S.S., Haghshenas, H.: An ambulance location problem for covering inher-
ently rare and random road crashes. Comput. Ind. Eng. 251, 106937 (2021)

17. Norwegian Coastal Administration: Nasjonal slepeberedskap. Rapport fra
arbeidsgruppe. https://www.regjeringen.no/globalassets/upload/kilde/fkd/prm/
2006/0006/ddd/pdfv/271859-2005-00047 vedlegg 1 samlet rapport-endelig.pdf.
Accessed 8 Jun 2021 (in Norwegian)

18. Norwegian Coastal Administration: Konseptvalgutredning nasjonal slepeb̊atbe-
redskap. https://www.kystverket.no/globalassets/beredskap/slepeberedskap/kvu-
slepeberedskap.pdf. Accessed 9 Jun 2021 (in Norwegian)

19. Pettersen, S., Fagerholt, K., Asbjørnslett, B.: Evaluating fleet effectiveness in tac-
tical emergency response missions using a maximal covering formulation. Naval
Eng. J. 131(1), 65–82 (2019)

20. Psaraftis, H.N., Tharakan, G.G., Ceder, A.: Optimal response to oil spills: the
strategic decision case. Oper. Res. 347(2), 203–217 (1986)

21. Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming
approach for supply chain network design under uncertainty. Eur. J. Oper. Res.
167(1), 96–115 (2005)

22. Schütz, P., Tomasgard, A., Ahmed, S.: Supply chain design under uncertainty using
sample average approximation and dual decomposition. Eur. J. Oper. Res. 199(2),
409–419 (2005)

23. Wikipedia: MV Eemslift Hendrika (2015). https://en.wikipedia.org/wiki/MV
Eemslift Hendrika (2015). Accessed 19 May 2021

24. Williams, H.P.: Model Building in Mathematical Programming, 5th edn. Wiley,
Chichester (2013)

http://www.kystverket.no/contentassets/d6d1509b3b5b46f4b3d58628e99c7437/miljorapport-10.10.2011.pdf
http://www.kystverket.no/contentassets/d6d1509b3b5b46f4b3d58628e99c7437/miljorapport-10.10.2011.pdf
https://www.kystverket.no/contentassets/f056df3c875140aa98ef49a25cc082c6/3_arsaksanalyse.pdf
https://www.kystverket.no/contentassets/f056df3c875140aa98ef49a25cc082c6/3_arsaksanalyse.pdf
https://www.regjeringen.no/no/aktuelt/venter-vekst-i-skipstrafikken-nye-tiltak-skal-pa-plass/id2502911/
https://www.regjeringen.no/no/aktuelt/venter-vekst-i-skipstrafikken-nye-tiltak-skal-pa-plass/id2502911/
https://www.regjeringen.no/globalassets/upload/kilde/fkd/prm/2006/0006/ddd/pdfv/271859-2005-00047_vedlegg_1_samlet_rapport-endelig.pdf
https://www.regjeringen.no/globalassets/upload/kilde/fkd/prm/2006/0006/ddd/pdfv/271859-2005-00047_vedlegg_1_samlet_rapport-endelig.pdf
https://www.kystverket.no/globalassets/beredskap/slepeberedskap/kvu-slepeberedskap.pdf
https://www.kystverket.no/globalassets/beredskap/slepeberedskap/kvu-slepeberedskap.pdf
https://en.wikipedia.org/wiki/MV_Eemslift_Hendrika_(2015)
https://en.wikipedia.org/wiki/MV_Eemslift_Hendrika_(2015)

Supply Chain and Production
Management

Layout-Agnostic Order-Batching
Optimization

Johan Oxenstierna1,2(B) , Jacek Malec1 , and Volker Krueger1

1 Department of Computer Science, Lund University, Box 118,
SE-221 00 Lund, Sweden

{johan.oxenstierna,jacek.malec,volker.krueger}@cs.lth.se
2 Kairos Logic AB, Lund, Sweden

https://rss.cs.lth.se/

Abstract. Order-batching is an important methodology in warehouse
material handling. This paper addresses three identified shortcomings in
the current literature on order-batching optimization. The first concerns
the overly large dependence on conventional warehouse layouts. The sec-
ond is a lack of proposed optimization methods capable of producing
approximate solutions in minimal computational time. The third is a
scarcity of benchmark datasets, which are necessary for data-driven per-
formance evaluation. This paper introduces an optimization algorithm,
SBI, capable of generating reasonably strong solutions to order-batching
problems for any warehouse layout at great speed. On an existing bench-
mark dataset for a conventional layout, Foodmart, results show that the
algorithm on average used 6.9% computational time and 105.8% travel
cost relative to the state of the art. New benchmark instances and pro-
posed solutions for various layouts and problem settings were shared on
a public repository.

Keywords: Order-batching problem · Order picking · Discrete
optimization

1 Introduction

There are many optimizable processes within warehouse operations. One of these
is order-picking, which refers to the retrieval of shipment orders, where each order
contains one or several products (items stored in the warehouse) [23]. As much as
55% of all operating expenses in a warehouse are allocated for order-picking [21].
A common method with which to conduct order-picking is order-batching, where
each picker (vehicle) is set to pick a batch of one or more orders [37]. Within
optimization literature order-batching is known as the Order-Batching Problem
(OBP) [15] or the Joint Order-Batching and Picker Routing Problem (JOBPRP)
[39]. The Picker Routing Problem is the Traveling Salesman Problem (TSP) [33]
applied in warehouses (henceforth the Picker Routing Problem is referred to as

Supported by the Wallenberg Autonomous Systems Program.

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 115–129, 2021.
https://doi.org/10.1007/978-3-030-87672-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_8&domain=pdf
http://orcid.org/0000-0002-6608-9621
http://orcid.org/0000-0002-2121-1937
http://orcid.org/0000-0002-8836-8816
https://doi.org/10.1007/978-3-030-87672-2_8

116 J. Oxenstierna et al.

TSP). Most of the literature assesses quality of batches based on travel cost
estimation while calling the problem an OBP (without necessarily incorporating
picker routing in the term), and this paper follows this convention. The OBP is
usually formulated as a special version of the more well known Vehicle Routing
Problem (VRP) [13]. While the general objective in the OBP is the same as in
the VRP, i.e., to assign a set of vehicles to visit a set of locations at minimum
travel cost, the literature on the OBP includes two distinguishing features:

– Order-integrity : In the OBP products of one order cannot be picked by more
than one vehicle [18] whereas in the VRP this constraint is not used (orders
are not defined in the VRP) [13].

– Obstacle-layout : As far as we are aware, all previous work on the OBP requires
a certain form of obstacle layout in the warehouse (the conventional lay-
out) (e.g. [5,24,38]). The conventional layout means that warehouse racks
are placed in Manhattan style blocks with parallel aisles and cross-aisles (see
Fig. 1a). The VRP does not have this requirement.

We are not aware of any reference in the literature which suggests a proportion of
conventional versus unconventional layouts in the warehousing domain. Figure 1
includes examples of unconventional layouts used in industry. We see an overly
large reliance on conventional layouts as a shortcoming in research on OBP
optimization.

Fig. 1. Examples of warehouse layouts. All except a) are unconventional.

A second identified shortcoming concerns the subject of an OBP optimization
module’s required computational time, versus the ease with which it can be
integrated with a Warehouse Management System (WMS). The WMS manages
the overall operation of a warehouse and there is a complex interaction between
processes such as order-picking, delivery scheduling, quality assurance, location
tracking, packing, verification, shipping, replenishment, yard management, labor
management etc., and time margins are usually tight [4]. The WMS gets orders

Layout-Agnostic Order-Batching Optimization 117

for picking dynamically during the workday. If a subset of these orders are sent
to an optimization module, which will select some of them to be picked by a
vehicle, it is therefore preferable, from an optimization point of view, to have
this selection and corresponding picking tour computed before new orders have
arrived to the warehouse. The simplest form of integration is by a synchronous
request/response cycle between the WMS and the optimization module, instead
of an asynchronous setup where the WMS first sends a request for optimization
followed by the collection of a response at a later time (when the original request
may already be obsolete). Synchronous request/response is only preferable if
optimization can be completed within a few seconds. This paper showcases the
kind of OBP optimization performance achievable in such a short time.

A third identified shortcoming is a scarcity of publicly shared benchmark
datasets on the OBP. These types of datasets are crucial to allow for experiment
reproducibility and peer collaboration.

Our contributions are as follows:

1. The introduction of an optimization algorithm, SingleBatchIterated (SBI),
with capability of producing fast approximate solutions to the OBP, irrespec-
tive of warehouse layout. SBI’s performance is evaluated against the state of
the art on Foodmart, a publicly available dataset, which models a warehouse
with a conventional layout. The evaluation concerns distance minimization
as well as computational time.

2. The introduction of a publicly shared OBP dataset with six types of ware-
house layouts and 203 test-instances. Optimization results using SBI and
various settings are included in each instance.

2 Literature Review

OBP’s for warehouses with conventional layouts have been formulated using inte-
ger programming (e.g. [39]) or set-partitioning (e.g. [15]). The conventional lay-
out appears in these formulations as required input parameters such as “number
of aisles”[5], intra-aisle distance [7], the cross-distance between two consecutive
aisles [15] or number of vertices in the subaisle [39]. Some authors have requested
investigations into more layouts than the conventional layout [14,16,18,28]. One
benefit of this generalization is that more problem scenarios within logistics could
be explored as OBP’s. One drawback is that it is very challenging to reduce the
OBP solution space without taking advantage of regularities in the layout [39].

Authors often discuss OBP optimization with regard to two fundamental
components: 1. Order to vehicle assignments. 2. Solving the TSP’s needed to
visit all products in the proposed order assignments. The two components can
either be optimized jointly [39] or in separate phases [3,38]. The TSP component
is often optimized using linear time S-shape or Largest-gap heuristics [18,35]
which are specifically designed for conventional layouts. The order to vehicle
assignment component is often optimized using so called proximity batching,
which heuristically ensures vehicles are assigned orders whose pick products are
located close together [15]. Sharp & Gibson [37] propose First-Come-First-Served

118 J. Oxenstierna et al.

(FCFS), Space Filling Curve (SFC) and Sequential Minimal Distance (SMD)
heuristics to ensure closeness between batched products. Rosenwein [36] proposes
Minimum Additional Aisle (MAA) and Centre of Gravity (COG) heuristics. Ho
et al. [20] propose 25 different heuristics to initialize and then add one order at
a time to a batch until vehicle capacity is exceeded. These heuristics are some-
times collectively referred to as seed heuristics or seed algorithms [22]. Another
heuristic optimization method for order to vehicle assignment is the so called
Clark & Wright (C&W) savings algorithm [5]. In this algorithm travel cost to
pick individual orders are first estimated and then compared against the cost
required to pick larger collections of orders. This algorithm is known to produce
batches with less travel cost than seed algorithms, while the computational effort
is 100–200 times greater [22].

The OBP optimization objective can be stated as minimizing the sum of
all TSP solution costs needed to pick all products (henceforth referred to as
minisum) [5,6] or to minimize the maximum TSP solution costs (minimax) [18].
Solution cost is mostly expressed in terms of distance or time. The latter is more
complex but also more realistic to work with as it involves predicting vehicle
velocities, time to search for and pick items on shelves etc.

There is a broad array of focus areas in the literature on OBP optimization,
reflecting different types of warehouse models and constraints. Chew & Tang
[11], for example, examine the relationship between the travel cost of a vehicle,
number of available vehicles and where products are stored in the warehouse.
The latter is an optimization problem on its own called the Storage Location
Assignment Problem (SLAP) [9]. It is rarely studied in conjunction with batching
although there is a clear interdependence [18,29]. If there are different origin and
destination locations for vehicles the OBP is said to be a multi-depot or Dial-A-
Ride Problem (DARP) [18]. A basic multi-depot example is whenever vehicles
are set to drop off their picked orders at one pre-designated location, then move
to another pre-designated location to collect empty boxes, i.e. orders that have
not been picked yet, before moving out to collect a new batch. If all products that
need to be picked are assumed to be known apriori the OBP is said to be static or
off-line as opposed to dynamic or on-line [40]. Proposed optimization programs
for the OBP versions described above include integer and mixed integer [5],
dynamic programming [6], data mining [10], clustering [24] and meta-heuristics
such as Tabu Search [19], Ant Colony Optimization [26] and Genetic Algorithms
[8].

Computational time used for OBP optimization and its relevance within
warehouse operations is a topic rarely discussed in the literature. Some authors
set timeouts for optimization but these are only arbitrarily defined to simulate
a “tolerable” time horizon [24]. The largest test-instance results with 30–5000
orders in Briant et al. [6], were achieved after optimization was set to run between
30 min to 2 h. Briant et al. do not discuss whether a WMS provider would be
interested in allocating 30 min for generating 6 optimized batches out of 30
unassigned orders.

Layout-Agnostic Order-Batching Optimization 119

Two examples of OBP benchmark datasets are Foodmart [39] and HappyChic
[6], which are designed for static OBP’s and two conventional layouts. The vast
majority of benchmarking in OBP research is not carried out on public datasets,
but instead on a described model/simulation of a warehouse with a conventional
layout. For comparison, in the related research domain on the Vehicle Rout-
ing Problem (VRP), there are several widely used benchmark datasets which
researchers use to evaluate optimization performance, including the Solomon,
Christofides, Taillard, Augerat et al., Fisher and Kilby instances [27,30–32].
A commonly used data format for VRP instances is TSPLIB [17]. We have
extended on TSPLIB to introduce new OBP instances in the experimental part
of this paper (Sect. 5).

3 Preliminaries

In this section we define all relevant terms and parameters that will be needed
for the reminder of the paper. For better readability, we keep the definitions on
an intuitive level and use mathematical precision only where necessary.

A batch b is defined as a set of orders from customers, selected out of a set of
unassigned orders. The unassigned orders are denoted O and the set of all possible
batches is denotedB. Each order contains a set of products and each product has a
volume and weight. A batch is picked by a vehicle, m, selected out of a set of avail-
able vehicles, m ∈ M . The vehicle’s capacities are expressed in number of orders,
weight and volume. Each product has a location in the warehouse. The union of
all locations in a batch b is retrievable with a function locb. The sequence of loca-
tion visits a vehicle follows to pick a batch (including an origin and a destination
location for the vehicle) is computable with a function T b. Note T b gives a solution
to a Traveling Salesman Problem (TSP). The distance of T b is computable with
a function Db. The Db function makes use of a distance matrix which contains
the shortest distance between all locations in a given warehouse (without crossing
obstacles). The distance matrix is assumed pre-computed. For a presentation of
the digitization steps followed to produce it see [34].

The optimization objective of the minisum OBP [5,15,19] is to assign batches
to vehicles such that the distance required to pick the orders is minimized, while
not breaking any of the following constraints:

1. Each unassigned order is assigned to exactly one vehicle (order-integrity).
2. Each product location in each order assigned to a vehicle must be visited at

least once.
3. Capacities of vehicles may never be exceeded.

The proposed optimization algorithm (Sect. 4) makes use of an optimization mod-
ule which optimizes a more tractable form of the OBP, the so called single batch
OBP. The optimization objective of the single batch OBP is to find a single batch
b with the minimal batch distance. Constraints 2 and 3 still apply for the single
batch version of the problem. The following additional constraint is added:

4. The number of orders in a single batch must be as large as possible.

120 J. Oxenstierna et al.

Without this last constraint i.e. the maximization of number of orders, a single
batch optimization algorithm would always create a batch with just a single
order. This is because the minimal batch distance is always achieved if the batch
is made up of just a single order. Note that it is possible to define constraint 4
as both a constraint and an objective. Constraint 4 is delimited from including
weight and volume of products in the maximization since this would necessi-
tate decision making over whether weigth, volume or number of orders is more
important. Both above models are concerned with static OBP’s (Sect. 2) i.e.
ones where all unassigned orders can be batched at any time.

4 Optimization Algorithm

In this section we will introduce the SingleBatchIterated (SBI) optimization
algorithm, which produces an approximate solution to the minisum OBP. Inter-
nally it makes use of the SingleBatch algorithm, which produces an approximate
solution to the single batch OBP (Sect. 3). SingleBatch is shown in the lower
rectangular box in Fig. 2. It is used to produce single batches and corresponding
picking tours iteratively until there are no more unassigned orders left.

Fig. 2. Flowchart showing SingleBatchIterated (SBI). First unassigned orders are pro-
cessed according to priority and a subset of orders is then sent to the SingleBatch
optimization algorithm (lower box), which produces a single batch and the TSP solu-
tion required to pick that batch. The algorithm runs until all unassigned orders have
been batched. (Color figure online)

A vehicle is first selected from a set of vehicles (a) and a subset of unassigned
orders from the set of all unassigned orders is selected (b). This subset selection
is done to reduce the amount of computational time needed for the subsequent
optimization. A single batch b as well as a TSP solution for that batch are then
computed using the SingleBatch optimization algorithm (c). The distance of
the TSP solution is added to the total cost of the OBP solution (initialized as

Layout-Agnostic Order-Batching Optimization 121

0). The selected vehicle is dispatched to pick batch b (d). The orders in b are
removed from the set of unassigned orders (e). The steps in Fig. 2 correspond to
Algorithm 1 shown below.

Algorithm 1: SBI
cost ← 0
while O do

m ← select vehicle(M)
Os ← select subset(O)
b ← single batch(Os,m,D)
cost = cost +D(b)

end

Algorithm 2: SingleBatch
single batch(Os,m,D)
// Phase 1
bord ← seed algorithm(Os,m,D)
// Phase 2
btour ← solve tsp(b,D)
return b

The SingleBatch algorithm, Algorithm 2, takes a subset of unassigned orders
Os, a vehicle m and the distance matrix D as input. Order selection using one
of two seed algorithms is used to initialize a batch and assign orders to it (bord)
until vehicle capacity runs out. A tour to pick the batch (btour) is computed
using the Concorde TSP solver (details for Concorde are beyond the scope of
this paper, for details see [2,12]). The SingleBatch function returns the batch
(including the orders and the tour).

SBI requires that there are enough vehicles to batch all orders. This delim-
itation is used because the vehicle selection part is handled by the Warehouse
Management System (WMS) in the intended industrial application (the WMS
takes over the full handling of the upper rectangle in Fig. 1, i.e., it decides when
and which vehicles should be assigned a batch).

The purpose of the SingleBatch seed algorithm (inside Algorithm 2) is to
return a batch of orders that allows subsequent TSP optimization (for the loca-
tions in that batch) to result in a short distance. One way to achieve a batch
selection quickly is to use heuristics such as Sequential Minimal Distance (SMD)
[37] or Centre of Gravity (COG) [36], and these are tested and compared in
the experimental part of this paper. SMD and COG can be used to output a
scalar value (“distance”) that estimates the distance that would be achieved if
the locations of the products of two orders were used to formulate and optimize
a TSP. The “seed algorithm” works sequentially by adding an order at a time to
a sequence of assigned orders (i.e. the single batch). The “seed order” denotes
the order which was last added to the sequence (while the sequence is being
populated). SMD and COG are used to search for an unassigned order, with a
low “distance” to the seed order, to add next. The first order in the sequence
can for example be selected randomly [37]. In SingleBatch’s seed algorithm it is
instead selected as the order with the least sequential minimal distance (SMD)
or the shortest distance to the centre of gravity (COG) (depending on which is
used). To enable this the vehicle origin location is used as a first seed placeholder.
Using SMD or COG for the first order selection is motivated by the SingleBatch
optimization objective which states that the distance of the batch should be as
short as possible regardless of how many orders end up in that batch.

122 J. Oxenstierna et al.

SMD is computed using the following:

SMD(s, o) =
∑

i∈s

min
j∈o

|dij |, o ∈ O, o �∈ b, s ∈ b (1)

where dij is the distance between product i in order s (the seed) and product j
in unassigned order o. SMD(s, o) is then calculated as the sum of these minimal
distances dij . Sharp & Gibson [37] present a way in which to compute dij in the
conventional layout scenario. For the unconventional layout scenario it is given
as dij ∈ D (D is the shortest paths distance matrix, assumed pre-computed).

The COG heuristic was introduced by Rosenwein [36] and is for a single order
given as:

COG(o) =
1
|o|

∑

p∈o

ap (2)

where ap denotes the location of the product, and |o| is the number of products
in the order. The COG of two orders is given by the Manhattan distance between
two order COGs: COG(s, o) = |COG(s) − COG(o)| where s and o denote the
seed order and an unassigned order, respectively. Note this version of COG does
not make use of distance matrix D and hence does not take the warehouse layout
into account.

Once the order with the least SMD or COG has been found it is added to
the batch and set as the new seed. New orders are then added in the same way
until vehicle capacity is full or there are no more unassigned orders left.

5 Experiments

In this section we first discuss the datasets used i.e. Foodmart and the new test
instances generated. Then,

1. we discuss OBP results using our SBI approach on the datasets in terms of
distance minimization, as well as computational times.

2. we compare results using a seed algorithm running either the SMD or COG
heuristics.

3. we compare computational times required by the seed algorithm and the TSP
solver.

5.1 Datasets

Foodmart. Foodmart contains test-instances for static OBP’s and a conven-
tional layout. It was introduced by Valle et al. [39] and includes 135 test-instances
with up to 50 unassigned orders and 7 larger testing-instances with 50 to 5000
orders. The layout has 3 cross-aisles and a maximum of 8 aisles (see Fig. 1a)).
There is only a single origin and destination location.

In Foodmart each vehicle carries 8 bins, where each bin has a volume capacity
of “40 V ”. Each product has a volume ranging from 1 to 40 V , and if an order

Layout-Agnostic Order-Batching Optimization 123

contains products whose sum of V ’s exceeds 40, or exceeds the volume left in
any of the 8 bins, the order may be split between different bins on the same
vehicle. This way to formulate vehicle capacity is specific to Foodmart. There
are many possible alternatives, e.g. maximum number of orders [25], products
[5], volume [8] or weight [24]). The number of available vehicles is unlimited in
Foodmart.

Presented results for Foodmart in [6,39] include optimal OBP results for 130
test-instances where the number of orders to be batched varies between 5–100.
These instances can therefore be used to evaluate our approach against optimal
results on conventional layouts. We believe the gap between SBI’s results and
optimal results can be used as an estimate of how far away from optimality SBI’s
results are on unconventional layouts.

Generated Test-Instances. Six different types of warehouse layouts on a
80 × 80 grid were first generated with the following name-tags: “No obsta-
cles”, “conventional layout with 3 cross-aisles and 12 aisles”, “1 single rack”,
“12 racks”, “NR1” and “NR2” (see Fig. 4). “NR” stands for non-regular. The
unconventional layouts were chosen as simplified representations of real examples
seen in the industry (see Fig. 1).

Using the generated layouts, 203 test-instances on a modified TSPLIB for-
mat were then generated (30–40 instances for each layout)1. The modifications
made to the TSPLIB are described in a text file in the provided link. For sim-
plicity vehicle capacity is the same for all vehicles and only expressed in number
of orders (between 2–30) in these instances, and experiments involving more
capacity types (e.g. volume, weight, number of products, Foodmart type bins
and combinations of capacities and/or vehicle types) are left for future work.
The number of vehicles in the instances is set as the ceiling of number of unas-
signed orders divided by the vehicle number of orders capacity (denoted kM):
|M | = � |O|

kM �. Concerning where the products are placed in the warehouse (see
Sect. 2 for an explanation for why this is relevant in OBP’s), either 1, 2 or 4
rectangular storage assignment zones are used. These zones are placed anywhere
on the grid and are generated in two steps: First a random x, y storage zone
centroid coordinate within the 80 × 80 grid is generated. Then storage locations
for products (for each order in the generated instance) are generated such that
the Manhattan distance between the product location and the storage zone cen-
troid coordinate do not exceed a specified distance2. Each of the six layout types
has a differing origin and destination location where vehicles start and end their
tours.

1 https://github.com/johanoxenstierna/OBP instances.
2 it is called “min distance to slotting zone” and can be found in a specs JSON in

each instance.

https://github.com/johanoxenstierna/OBP_instances

124 J. Oxenstierna et al.

5.2 Experimental Results

Since the vehicles in Foodmart use bins into which orders are placed the Single-
Batch algorithm was first adapted to be able to handle that particular capac-
ity type. To be exact, the modification was conducted within the call to the
“seed algorithm” function in Algorithm 2. Three modifications were made: 1.
The batch object b was modified to include a key-value dictionary “bins” with
8 enumerated keys and corresponding values to keep track of how much volume
has been taken up in each bin. 2. A function check candidate order(b, o) (inside
“seed algorithm”), which checks if a candidate order can be added to a batch
without breaking constraints, was modified to find the bin which, if the order
is added to it, comes as close as possible to the 40 volume capacity without
breaking it. 3. If there exists such a bin its key is returned, the order is added
to the batch and the given bin is updated with the added volume. If the order
cannot be added to any bin in this batch it is excluded and added to a different
batch at a later stage. Only SMD was used as order selection heuristic for the
Foodmart experiment.

The OBP experimental results are summarized in Table 1 (Foodmart) and
Table 2 (generated instances). On the Foodmart instances an average of 105.8%
distance and 6.9% computational time was achieved relative to reported optimal
results in [6,38]. The result shows that fast approximate OBP optimization can
be accomplished with a relatively small penalty in added distance.

Concerning the comparison of the SMD and COG heuristics, results only con-
cern the generated instances (since COG was not used on Foodmart). It was
found that, on the 203 generated OBP instances, SBI with SMD yielded solutions
with 97.9% distance and 131% computational time, relative to SBI with COG.
Within SingleBatch, the seed algorithm on average used only 7.3% of the total
computational time versus the TSP solver Concorde’s 92.7%. On average, the seed
algorithm requires 0.05–0.1 s to construct a batch using SMD, whereas Concorde
requires anywhere between 0.001–3 s to solve a batch TSP, depending on various
factors such as number of product locations in the batch (see Fig. 3).

Fig. 3. CPU-time (y-axis) of the SingleBatch algorithm versus number of products in
the single batch OBP’s (x-axis) (this figure excludes results on Foodmart and “NR1”).

Layout-Agnostic Order-Batching Optimization 125

Fig. 4. Six examples of instances (one for each layout type) and solutions (from top
left to bottom right) using SBI with the SMD heuristic. The larger red and blue dots
are the origin and destination locations for vehicles. Each smaller dot denotes a product
and their color denotes the order which the product belongs to. (Color figure online)

126 J. Oxenstierna et al.

Table 1. This table shows experimental results on a subset of the Foodmart dataset

Layout-Agnostic Order-Batching Optimization 127

Table 2. This table summarizes the experimental results on 14 types of instances
(Foodmart can be seen in the lowest row).

No attempt was made to infer how features such as layout, storage zones and
depot locations affect the computational times shown in Fig. 3. Concorde has a
high degree of internal variance when it comes to computational time [1,2,12].
It would therefore require a large number of OBP test instances to make this
type of inference.

6 Conclusion

This paper introduced an optimization algorithm, SingleBatchIterated (SBI),
capable of producing strong approximate solutions to the OBP at minimal com-
putational time for both conventional and unconventional warehouse layouts.
The algorithm was evaluated on the Foodmart benchmark dataset, where it
showed that OBP solutions could be obtained at great speed and with a rela-
tively low penalty in added distance compared to optimal results. Additionally, a
new OBP dataset with several types of layouts, depot locations and storage zone
settings was introduced. Proposed solutions using SBI were uploaded together
with visualizations of the new instances.

The vast majority of computational time in SBI was allocated to TSP solving
rather than order selection. Results show that this is mostly due to the TSP
solver Concorde, which has a high internal variance in terms of computational
time. Instead of replacing Concorde with a TSP optimizer which is more stable
with regard to computational time, it is deemed more relevant to allocate more
computational time at the order selection phase. As Fig. 3 and Table 2 show,
most OBP instances were optimized in well under 1 s, which allows for more
optimization in many scenarios. One alternative could be to add the savings
algorithm (Sect. 2) as an alternative for order selection and to use it if there

128 J. Oxenstierna et al.

are relatively few products in the batch. Further work on dataset generation is
also needed, especially for OBP instances involving dynamicity and more vehicle
capacity options.

References

1. Applegate, D., Cook, W., Dash, S., Rohe, A.: Solution of a min-max vehicle routing
problem. INFORMS J. Comput. 14, 132–143 (2002)

2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

3. Azadnia, A., Taheri, S., Ghadimi, P., Samanm, M., Wong, K.: Order batching in
warehouses by minimizing total tardiness: a hybrid approach of weighted associ-
ation rule mining and genetic algorithms. Sci. World J. 2013 (2013). Article ID
246578 . https://doi.org/10.1155/2013/246578

4. Bartholdi, J., Hackman, S.: Warehouse and distribution science Release 0.98 (2019)
5. Bozer, Y.A., Kile, J.W.: Order batching in walk-and-pick order picking systems.

Int. J. Prod. Res. 46(7), 1887–1909 (2008)
6. Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.L., Ogier, M.:

An efficient and general approach for the joint order batching and picker routing
problem. Eur. J. Oper. Res. 285(2), 497–512 (2020)

7. Bu, M., Cattaruzza, D., Ogier, M., Semet, F.: A Two-Phase Approach for an
Integrated Order Batching and Picker Routing Problem, pp. 3–18 (2019)

8. Cergibozan, C., Tasan, A.: Genetic algorithm based approaches to solve the order
batching problem and a case study in a distribution center. J. Intell. Manuf. 1–13
(2020). https://doi.org/10.1007/s10845-020-01653-3

9. Charris, E., Rojas-Reyes, J., Montoya-Torres, J.: The storage location assignment
problem: a literature review. Int. J. Ind. Eng. Comput. 10, 199–224 (2018)

10. Chen, M.C., Wu, H.P.: An association-based clustering approach to order batching
considering customer demand patterns. Omega 33(4), 333–343 (2005)

11. Chew, E.P., Tang, L.C.: Travel time analysis for general item location assignment
in a rectangular warehouse. Eur. J. Oper. Res. 112(3), 582–597 (1999)

12. Cook, W.: Concorde TSP Solver (2020). http://www.math.uwaterloo.ca/tsp/
concorde/index.html

13. Cordeau, J.F., Laporte, G., Savelsbergh, M., Vigo, D.: Vehicle routing. Transp.
Handb. Oper. Res. Manage. Sci. 14, 195–224 (2007)

14. Fumi, A., Scarabotti, L., Schiraldi, M.: The effect of slot-code optimization in
warehouse order picking. Int. J. Bus. Manage. 5, 5–20 (2013)

15. Gademann, N., Velde, V.D.S.: Order batching to minimize total travel time in a
parallel-aisle warehouse. IIE Trans. 37(1), 63–75 (2005)

16. Gue, K.R., Meller, R.D.: Aisle configurations for unit-load warehouses. IIE Trans.
41(3), 171–182 (2009)

17. Hahsler, M., Kurt, H.: TSP - infrastructure for the traveling salesperson problem.
J. Stat. Softw. 2, 1–21 (2007)

18. Henn, S.: Algorithms for online order batching in an order picking warehouse.
Comput. Oper. Res. 39(11), 2549–2563 (2012)

19. Henn, S., Wscher, G.: Tabu search heuristics for the order batching problem in
manual order picking systems. Eur. J. Oper. Res. 222(3), 484–494 (2012)

20. Ho, Y.C., Su, T.S., Shi, Z.B.: Order-batching methods for an order-picking ware-
house with two cross aisles. Comput. Ind. Eng. 55(2), 321–347 (2008)

https://doi.org/10.1155/2013/246578
https://doi.org/10.1007/s10845-020-01653-3
http://www.math.uwaterloo.ca/tsp/concorde/index.html
http://www.math.uwaterloo.ca/tsp/concorde/index.html

Layout-Agnostic Order-Batching Optimization 129

21. Jiang, X., Zhou, Y., Zhang, Y., Sun, L., Hu, X.: Order batching and sequencing
problem under the pick-and-sort strategy in online supermarkets. Procedia Com-
put. Sci. 126, 1985–1993 (2018)

22. Koster, M.B.M.D., Poort, E.S.V.d., Wolters, M.: Efficient orderbatching methods
in warehouses. Int. J. Prod. Res. 37(7), 1479–1504 (1999)

23. Koster, R.D., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order
picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)

24. Kulak, O., Sahin, Y., Taner, M.E.: Joint order batching and picker routing in single
and multiple-cross-aisle warehouses using cluster-based tabu search algorithms.
Flex. Serv. Manuf. J. 24(1), 52–80 (2012)

25. Le-Duc, T., Koster, R.M.B.M.D.: Travel time estimation and order batching in a
2-block warehouse. Eur. J. Ope. Res. 176(1), 374–388 (2007)

26. Li, J., Huang, R., Dai, J.B.: Joint optimisation of order batching and picker routing
in the online retailers warehouse in China. Int. J. Prod. Res. 55(2), 447–461 (2017)

27. Mańdziuk, J., Świechowski, M.: UCT in capacitated vehicle routing problem with
traffic jams. Inf. Sci. 406–407, 42–56 (2017)

28. Masae, M., Glock, C.H., Grosse, E.H.: Order picker routing in warehouses: a sys-
tematic literature review. Int. J. Prod. Econ. 224, 107564 (2020)

29. Nieuwenhuyse, I., De Koster, R., Colpaert, J.: Order batching in multi-server pick-
and-sort warehouses. Katholieke Universiteit Leuven, Open Access publications
from Katholieke Universiteit Leuven (2007)

30. Okulewicz, M., Mańdziuk, J.: The impact of particular components of the PSO-
based algorithm solving the dynamic vehicle routing problem. Appl. Soft Comput.
58, 586–604 (2017)

31. Pillac, V., Gendreau, M., Guret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)

32. Psaraftis, H., Wen, M., Kontovas, C.: Dynamic vehicle routing problems: three
decades and counting. Networks 67, 3–31 (2015)

33. Ratliff, H., Rosenthal, A.: Order-picking in a rectangular warehouse: a solvable
case of the traveling salesman problem. Oper. Res. 31, 507–521 (1983)

34. Rensburg, L.J.V.: Artificial intelligence for warehouse picking optimization - an
NP-hard problem. Master’s thesis, Uppsala University (2019)

35. Roodbergen, K.J., Koster, R.: Routing methods for warehouses with multiple cross
aisles. Int. J. Prod. Res. 39(9), 1865–1883 (2001)

36. Rosenwein, M.B.: A comparison of heuristics for the problem of batching orders
for warehouse selection. Int. J. Prod. Res. 34, 657–664 (1996)

37. Sharp, G., Gibson, D.: Order batching procedures. Eur. J. Oper. Res. 58, 57–67
(1992)

38. Valle, C., Beasley, B.: Order batching using an approximation for the distance
travelled by pickers. Eur. J. Oper. Res. 284, 460–484 (2019)

39. Valle, C., Beasley, J.E., da Cunha, A.S.: Optimally solving the joint order batching
and picker routing problem. Eur. J. Oper. Res. 262(3), 817–834 (2017)

40. Yu, M., Koster, R.BMd.: The impact of order batching and picking area zoning on
order picking system performance. Eur. J. Oper. Res. 198(2), 480–490 (2009)

Automated Negotiation for Supply Chain
Finance

Alexandra Fiedler(B) and Dirk Sackmann

Faculty of Business Administration and Information Sciences,
University of Applied Sciences Merseburg, Merseburg, Germany

alexandra.fiedler@hs-merseburg.de

https://www.hs-merseburg.de

Abstract. The growing importance of supply chain finance and the
possibility of digital descriptions for goods and services increase the
urgency of providing sophisticated solutions for automating negotiations
in this area. Multi-agent systems technology plays an essential role in
this regard. This paper highlights the specifics of automated negotiations
and describes financial supply chain actors as agents. It also describes
the complexity of possible supply chain finance solutions. A scenario for
automated decision making for the best financing option is explained and
the negotiation flow of a multi-agent system implemented in Java Agent
Development Framework is demonstrated.

The negotiations, in the form of an auction, are aimed at minimizing
the capital costs of the supply chain. Here, it is important to weigh up
whether internal financing via an investor within the supply chain or
external financing via the capital market is more advantageous. The dif-
ferent roles of the supply chain finance agents capital demander, investor
and capital market are described in detail. The use of so-called HelperA-
gents for the negotiating participants capital demander and investor as
negotiating agents within a supply chain finance negotiation protocol is
also explained.

Keywords: Automated negotiation · Supply chain finance ·
Multi-agent system

1 Introduction

Automation and robotization are also making their way into the world of negoti-
ations. This is made possible by the use of so-called BOTs. While in a “normal”
negotiation people interact with each other, in the case of an automated nego-
tiation the process is controlled by a BOT. According to the term, a BOT is

The work is supported by the federal–state funding initiative “Innovative Hochschule”,
funded by the Federal Ministry of Education and Research and the Federal State of
Saxony-Anhalt. It is carried out within the joint project “TransInno LSA - Transfer and
innovation service in the federal state of Saxony-Anhalt” (grant number 03IHS013).

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 130–141, 2021.
https://doi.org/10.1007/978-3-030-87672-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_9&domain=pdf
http://orcid.org/0000-0002-7941-0015
https://doi.org/10.1007/978-3-030-87672-2_9

Automated Negotiation for Supply Chain Finance 131

a computer program that automatically processes procedures. In the case of
a negotiation BOT, the program takes over and controls the negotiation and
interacts with the user on the other side: clarifications about options are made,
proposals and counterproposals are made, and agreements are reached without
the need for human intervention on either side. Due to the structure of commu-
nication and decision variants, this form of negotiation can be seen as a kind of
hybrid of a usual negotiation and an auction. The automation of the negotia-
tion process leads to a purely transactional orientation of the negotiation. The
relationship level is reduced to the technical interaction, the focus is on result
optimization.

In a multi-agent environment, such BOTs can be implemented in the form of
negotiating agents. These are autonomous and therefore did not require a human
during the negotiation. However, the specific requirements must be defined by
a human before the actual negotiation begins. The process of decision making
through automated negotiation can quickly become complex, so techniques such
as artificial intelligence [10,17], game theory [13,18], or evolutionary program-
ming [5,14] are needed and explored.

This paper firstly provides an overview of automated negotiation and supply
chain finance (SCF) and secondly presents a multi-agent approach to identify
the best financing option in the supply chain. In particular, the DFHelperAgent
developed in JADE is discussed and its use in the specially developed negotiation
protocol is explained.

2 Automated Negotiation

An automated negotiation is understood as an iterative communication and
decision-making process between at least two agents (persons or their represen-
tatives) who cannot fulfill their goals through unilateral actions and exchange
offers and arguments to reach a consensus [3]. In addition to the understanding
of the term, there are also physical characteristics into which negotiations can
be differentiated:

– Number of participants (cf. Fig. 1) bilateral: The negotiation is limited to
one supplier and one buyer. If deception and the withholding of information
are neglected as negotiation strategies, this is a simple scenario. However, if
these behaviors are taken into account, complexity can increase significantly,
making automation difficult [22].
multilateral: One-sided multilateral negotiations are usually automated in
the form of auctions [19] regardless of whether there is one supplier and
several demanders or vice versa. If multiple demanders negotiate with multiple
suppliers, it is a two-sided multilateral negotiation. Such complex situations
require appropriate rules, as considered by Wooldridge [27], among others.

– Number of attributes (cf. Fig. 2)
In auctions, as a special case of a negotiation it is often only about the price
[15]. All other attributes of the object of negotiation are not part of the process

132 A. Fiedler and D. Sackmann

Fig. 1. Negotiation characteristics according to number of participants

Fig. 2. Negotiation characteristics according to number of attributes

and must be agreed upon separately. In the business environment, however,
negotiation is often about more than just price. The need to consider several
attributes simultaneously is difficult to automate as research shows [2,25].

– With and without mediator
In a negotiation without a mediator, communication takes place exclusively
between the negotiating parties, i.e., directly. With the use of mediators (also
called brokers or intermediaries), an intermediary role is introduced between
the negotiating parties, who can also serve to control the market process [6].

– Number of negotiation items (cf. Fig. 3)
In non-combinatorial negotiations, a decision is made only on a single or sev-
eral similar negotiation items within the negotiation process. In contrast, in
combinatorial negotiations, the negotiation takes place over a bundle (pack-
age) of different negotiation items. The automation of combinatorial negoti-
ations is complex, so this is usually done in the form of bidding or auction
packages to obtain a combined product package [4].

Automated Negotiation for Supply Chain Finance 133

Fig. 3. Negotiation characteristics according to number of negotiation items

Because of the previously documented multiple possible manifestations of
negotiation, fully automated models require strong structuring so that soft-
ware agents can negotiate autonomously [3]. They are considered result-oriented
because they are used to generate a negotiation outcome. The technology used
for automation must be able to reflect this.

3 Supply Chain Finance

The globalization of trade has contributed to the development of the concept of
supply chain finance (SCF). Within a supply chain, suppliers strive to receive
their payments as early as possible, while buyers extend their payment terms as
far as possible. SCF provides solutions to get a grip on this dilemma and thus
offers opportunities for all stakeholders involved. Pfohl and Gomm [21] formulate
that SCF is about which objects within a supply chain are financed by which
actor and under which conditions. In the meantime, many SCF solutions have
been developed in this area of tension [11,20,23,28].

The basis of functioning solutions is the exchange of information between the
actors. The higher the level of information sharing, the closer the cooperation
between upstream and downstream parts of the supply chain or between com-
panies [24]. The efficiency of information sharing depends on the technological
development of information systems and the improvement of transmission tech-
nology [12]. Nevertheless, the relationship between capital demanders (agent)
and capital providers (principal) will be characterized by information asymme-
try, partly because of incomplete information and partly because of information
inequality. It can be assumed that the capital demander has more information
about the investment project than the investor. If financing is provided, the
cost of capital will be determined not least by the resulting risk to the donor.
Donors will install monitoring and control mechanisms (agency costs) to protect
and monitor the investment. In the case of internal supply chain (SC) financ-
ing, although commonality between principal and agent can be assumed with
respect to SC objectives (e.g., lowering the SC’s cost of capital), the pursuit of

134 A. Fiedler and D. Sackmann

Fig. 4. Complex SCF negotiation

self-interest (e.g., maximizing profit from the investment) cannot be ruled out.
The higher the degree of integration of principal and agent within the SC, the
more likely there is to be a relationship of trust and the better the exchange of
information, which minimizes the occurrence of information problems.

As Fig. 4 illustrates, negotiations in the context of SCF can take the possi-
ble forms of multilateral (there are multiple capital demanders and investors in
the supply chain) and multiattribute (negotiations e.g. on cost of capital, loan
amount and duration). In addition, intermediaries in the form of banks, plat-
form providers, FinTechs or similar are often used. A multi-agent environment
provides an infrastructure that specifies the communication and interaction of
agents in such a way.

4 Multi-agent Systems

Multi-agent systems (MAS) are populations of agents that either work together
towards a goal or work against each other [26]. The focus is on interaction, i.e.
coordination and planning mechanisms that allow the different agents to solve
a problem. MAS can be divided into the classes of problem solving, simulation,
construction of artificial worlds, robotics and program design according to the
type of use [7]. The approach presented here for SCF is used for problem solving
(making funding decisions). Problem solving in the broadest sense of the word
refers to all processes in which software agents solve tasks that are useful for
humans. In problem solving with agents, one can distinguish the three subcases
of distributed problem solving, solving distributed problems, and distributed
techniques for problem solving [7,16].

Distributed problem solving is necessary when the task to be solved is com-
plex and cannot be solved by one agent alone, but rather requires multiple

Automated Negotiation for Supply Chain Finance 135

specialized agents that complement each other in the solution. The task itself
is not distributed, so the agents must collaborate appropriately in solving it.
When solving distributed problems, an additional aspect is that the problem
itself is inherently distributed. Accordingly, problem solving is also distributed.
Distributed problems are typically encountered in the analysis, identification,
troubleshooting, and control of physically distributed systems where a central-
ized overview is difficult (e.g., power grids). Distributed techniques for problem
solving are used for problems that, in principle, a single agent can solve. Neither
the scope nor the expertise is distributed. However, the distributed approach to
the problem can lead to simpler solutions (e.g., assembling parts).

In the context of this thesis, the Java Agent Development Framework (JADE)
[1] serves as the environment for the development of agent-oriented software.
JADE is an open-source platform for the development of agent-based applica-
tions with the following characteristics: it is based on Java and benefits from
third-party libraries, it is written based on the FIPA standard (Fipa, 2010), it
supports the simulation of distributed systems, and it has a graphical interface
for the design of MAS. To regulate communication, it uses the agent communi-
cation language (FIPA-ACL), a language based on speech act theory that allows
agents to represent the communicative acts or purpose of a message (e.g., inform,
request, reject). In addition, JADE has the Agent Management System (AMS),
the Directory Facilitator (DF), and the Message Transport Service (MTS). The
AMS entity is responsible for managing operations such as agent creation and
deletion. The DF is responsible for providing yellow page services to other agents.
It manages the full list of agents that have public services to help agents find ser-
vices in the platform. Finally, the MTS is a service responsible for transporting
and delivering ACL messages between agents on the platform [9].

Fig. 5. One-to-many SCF scenario

136 A. Fiedler and D. Sackmann

5 An Illustrative Example

For the implementation of a SCF solution by MAS, the primary and support-
ing actors [21] must be represented in the form of agents. The roles of capital
demander, internal investor and external investor must be represented.

The following process is to be mapped: For a project to be financed, an actor
in the supply chain requires capital. It is possible to finance either externally via
the capital market or via investors within the SC. These also finance via debt
capital. Due to their position in the SC, they may have better conditions and are
also interested in investing in an SC project in order to strengthen relationships
and gain trust.

Fig. 6. UML sequence diagram of the negotiation protocol

Based on the scenario described above, the following discussion presents a
MAS for a one-to-many negotiation on one negotiation item and one attribute
(cf. Fig. 5). Initiator of the negotiation is the capital demand party, negotiation
participants are several internal investors who are willing to provide financing
at different conditions. Negotiation is about the cost of capital in the form of a
return requirement for a given capital demand. All other conditions (duration,
loan amount, etc.) are taken as given. The result of the negotiation is the best
internal financing option. Subsequently, the demand agent checks whether the
internal financing is more favorable than the external one and decides accord-
ingly. The roles of the agents used are described below (cf. Table 1).

Automated Negotiation for Supply Chain Finance 137

The classes are connected via helper agents, so-called DFHelper. This class
is created when an InvestorAgent (participant) or a DemanderAgent (initiator)
is initialized. Its purpose is to provide the agents with information relevant to
the bidding process, as well as the termination of agents. The InvestorAgent
and DemanderAgent classes use an evolution of the FIPA Iterated Contract Net
Protocol [8] and are closely comparable to reverse English auctions.

Fig. 7. UML sequence diagram of the auction

138 A. Fiedler and D. Sackmann

Table 1. Description of the agent roles

Role scheme: Capital demander (Initiator)

Description: The role has the task of meeting the desired capital
requirements in compliance with the conditions and on
the best possible terms in the context of a negotiation

Protocols and activities: Registration, mediation, negotiation, funding review

Rights:

- Reads: Project, contact list, bids

- Changes: Start bids

- Creates: Offers, financing data

Duties:

- Activity: CAPITALDEMANDER =

(registration.[mediation.negotiation.financing review])

- Security: min{debt interest rate; return requirement}
Role scheme: Investor (Participant)

Description: The role has the task of requesting the required capital on
the capital market and offering it to the demander in
compliance with the conditions and at the best possible
terms in the course of a negotiation

Protocols and activities: Registration, mediation, negotiation, funding review

Rights:

- Reads: Project, contact list, bids

- Changes: –

- Creates: Offers, financing data

Duties:

- Activity: INVESTOR =

(registration.[mediation.negotiation.financing review])

- Security: max{profit}
Role scheme: Capital market (Participant)

Description: The role is to respond to credit requests and provide the
required capital at a specified interest rate, taking into
account the associated risk

Protocols and activities: Registration, mediation

Rights:

- Reads: Contact list, requests

- Changes: –

- Creates: Offers, financing data

Duties:

- Activity: CAPITALMARKET =

(registration.[mediation.credit check])

- Security: max{profit}

Figure 6 is a section of a UML sequence diagram of the negotiation protocol,
recorded with the sniffer agent provided by JADE. It shows the communication

Automated Negotiation for Supply Chain Finance 139

of each agent in a negotiation with a CapitalMarketAgent (B), a DemanderA-
gent (N), his helper (N-NH), and two InvestorAgents (G1, G2) and their helpers
(G1–GH, G2–GH). After the agents are registered, G1, G2 and N ask B for debt
capital. Within the negotiation protocol this is done by the message type “call
for proposal” (cfp) in lines 10, 11 and 18. In lines 12, 13 and 19, the CapitalMar-
ketAgent responds with the message type “propose”. B submits corresponding
offers, the helpers are generated, and the starting bid and the respective bid
lower bounds are calculated.

The actual negotiation process starts (cf. Fig. 7). N-NH as helper of the
auction initiator requests with the message “cfp” all investor helpers to submit
bids (for example in lines 56 from N-NH to G1–GH and 59 from N-NH to G2–
GH). In addition, the necessary requirements of the auction are transmitted
with this message. Participants respond with a bid through the message type
“propose” (for example, G1–GH submits a bid in line 58 and G2–GH submits
a bid in line 61) or decline to bid further through the message “refuse” (in line
90, G2–GH drops out). If no new bids are made, N-NH can accept the offer
after checking the financing options via the message “accept-proposal” or reject
it with the message “reject-proposal”. Here, in line 91, the offer from investor
G1 is accepted.

Subsequently, the DemanderHelper N-NH informs the DemanderAgent N (line
93) and the contracts are concluded. The investor G1 accepts the offer (line 98) of
the CapitalMarketAgent (B) and lends capital to the demander at the conditions
negotiated in the auction (line 99). The process is completed as soon as the funds
have been repaid with corresponding interest premiums (cf. Fig. 8, lines 100–103).

Fig. 8. UML sequence diagram of the contract closures

140 A. Fiedler and D. Sackmann

6 Conclusion and Outlook

This paper has provided a brief overview of automated negotiation. It outlines
the possible characteristics of such negotiations in terms of the number of par-
ticipants, attributes, and items of negotiation, as well as the involvement of
mediators.

Supply chain finance is presented as an application area for automated
negotiation. In particular, the importance of information exchange between the
involved actors is pointed out.

After introducing multi-agent technology in particular as a technique for
problem solving and describing the Java Agent Development Framework as the
development environment used, the demonstration is based on a scenario from
SCF. The agents and their roles, which are used, are described in detail.

The successful implementation of an automated negotiation of the best fund-
ing option for a project in a supply chain is demonstrated using a UML sequence
diagram. In summary, automated negotiation using agents has been shown to
be of interest in the field of SCF and requires further investigation.

References

1. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley and Sons, Hoboken (2007)

2. Bichler, M.: Trading financial derivatives on the Web–an approach towards
automating negotiations on OTC markets. Inf. Syst. Front. 1(4), 401–
414 (2000). https://doi.org/10.1023/A:1010070109801, https://link.springer.com/
article/10.1023/a:1010070109801

3. Bichler, M., Kersten, G., Strecker, S.: Towards a structured design of electronic
negotiations. Group Decis. Negot. 12(4), 311–335 (2003)

4. Bichler, M., Pikovsky, A., Setzer, T.: Kombinatorische Auktionen in der
betrieblichen Beschaffung. Wirtschaftsinformatik 47(2), 126–134 (2005)

5. Choi, S.P.M., Liu, J., Chan, S.P.: A genetic agent-based negotiation system. Com-
put. Netw. 37(2), 195–204 (2001)

6. Collins, J., Tsvetovat, M., Mobasher, B., Gini, M.: MAGNET: a multi-agent con-
tracting system for plan execution. In: Proceedings of the Artificial Intelligence
and Manufacturing Workshop: State of the Art and State of Practice, pp. 63–68
(1998)

7. Ferber, J.: Multiagentensysteme: eine Einführung in die verteilte künstliche Intel-
ligenz. Addison-Wesley, Boston (2001)

8. FIPA: FIPA iterated contract net interaction protocol specification (2000)
9. FIPA: Foundation for Intelligent Physical Agents (2020). http://www.fipa.org/

10. Gerding, E.H., van Bragt, D.D.B., La Poutré, J.A.: Scientific Approaches and Tech-
niques for Negotiation A Game Theoretic and Artificial Intelligence Perspective.
Centrum voor Wiskunde en Informatica (2000)

11. Hausladen, I., Dachsel, B.: Supply Chain Finance im Überblick. WiSt -
Wirtschaftswissenschaftliches Studium 47(2–3), 4–11 (2018). https://doi.org/10.
15358/0340-1650-2018-2-3-4

https://doi.org/10.1023/A:1010070109801
https://springerlink.bibliotecabuap.elogim.com/article/10.1023/a:1010070109801
https://springerlink.bibliotecabuap.elogim.com/article/10.1023/a:1010070109801
http://www.fipa.org/
https://doi.org/10.15358/0340-1650-2018-2-3-4
https://doi.org/10.15358/0340-1650-2018-2-3-4

Automated Negotiation for Supply Chain Finance 141

12. Hu, J., Erdogan, B., Jiang, K., Bauer, T.N., Liu, S.: Leader humility and team
creativity: the role of team information sharing, psychological safety, and power
distance. J. Appl. Psychol. 103(3), 313–323 (2018). https://doi.org/10.1037/
apl0000277

13. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge,
M.: Automated negotiation: prospects, methods and challenges. Int. J. Group Dec.
Negotiation 10(2), 199–215 (2001)

14. de Jonge, D., Sierra, C.: GANGSTER: an automated negotiator applying genetic
algorithms. In: Recent Advances in Agent-based Complex Automated Negotiation,
pp. 225–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30307-
9 14

15. Kehagias, D.D., Symeonidis, A.L., Mitkas, P.A.: Designing pricing mechanisms for
autonomous agents based on bid-forecasting. Electron. Mark. 15(1), 53–62 (2005)

16. Klügl, F.: Multiagentensysteme. In: Görz, G., Schneeberger, J. (eds.) Handbuch
der künstlichen Intelligenz, pp. 527–556. Walter de Gruyter (2012)

17. Li, C., Giampapa, J., Sycara-Cyranski, K.: A review of research literature on bilat-
eral negotiations. Technical report (2003)

18. Liang, Y., Yuan, Y.: Co-evolutionary stability in the alternating-offer negotiation.
In: IEEE Conference on Cybernetics and Intelligent Systems, 2008. IEEE, Piscat-
away, NJ (2008). https://doi.org/10.1109/iccis.2008.4670896

19. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for nego-
tiation in electronic commerce. Group Decis. Negot. 12(1), 31–56 (2003). https://
doi.org/10.1023/A:1022232410606

20. Marak, Z., Pillai, D.: Factors, outcome, and the solutions of supply chain finance:
review and the future directions. J. Risk Finan. Manage. 12(1), 3 (2019). https://
doi.org/10.3390/jrfm12010003, https://www.mdpi.com/1911-8074/12/1/3

21. Pfohl, H.-C., Gomm, M.: Supply chain finance: optimizing financial flows in sup-
ply chains. Logistics Res. 1, 149–161 (2009). https://doi.org/10.1007/s12159-009-
0020-y

22. Rebstock, M.: Elektronische Unterstützung und Automatisierung von Verhandlun-
gen. Wirtschaftsinformatik 43(6), 609–619 (2001)

23. Taschner, A., Charifzadeh, M.: Supply chain finance. In: Management Accounting
in Supply Chains, pp. 121–151. Springer, Wiesbaden (2020). https://doi.org/10.
1007/978-3-658-28597-5 6

24. Tchamyou, V.S., Asongu, S.A.: Information sharing and financial sector devel-
opment in Africa. J. Afr. Bus. 18(1), 24–49 (2017). https://doi.org/10.1080/
15228916.2016.1216233

25. Teuteberg, F.: Experimental evaluation of a model for multilateral negotiation
with fuzzy preferences on an agent-based marketplace. Electron. Mark. 13(1), 21–
32 (2003)

26. Veit, D.J.: Matchmaking in Electronic Markets: An Agent-Based Approach towards
Matchmaking in Electronic Negotiations, Lecture notes in computer science, vol.
2882. Springer, Berlin and Heidelberg (2003). https://doi.org/10.1007/b94069

27. Wooldridge, M., Bussmann, S., Klosterberg, M.: Production sequencing as negoti-
ation. In: Proceedings of the First International Conference on the Practical Appli-
cation of Intelligent Agents and Multi-Agent Technology (PAAM-96), pp. 709–726
(1996)

28. Zhao, L., Huchzermeier, A.: Supply chain finance: integrating operations and
finance in global supply chains. In: EURO Advanced Tutorials on Operational
Research. Springer, Cham, Switzerland (2018). https://doi.org/10.1007/978-3-
319-76663-8 6

https://doi.org/10.1037/apl0000277
https://doi.org/10.1037/apl0000277
https://doi.org/10.1007/978-3-319-30307-9_14
https://doi.org/10.1007/978-3-319-30307-9_14
https://doi.org/10.1109/iccis.2008.4670896
https://doi.org/10.1023/A:1022232410606
https://doi.org/10.1023/A:1022232410606
https://doi.org/10.3390/jrfm12010003
https://doi.org/10.3390/jrfm12010003
https://www.mdpi.com/1911-8074/12/1/3
https://doi.org/10.1007/s12159-009-0020-y
https://doi.org/10.1007/s12159-009-0020-y
https://doi.org/10.1007/978-3-658-28597-5_6
https://doi.org/10.1007/978-3-658-28597-5_6
https://doi.org/10.1080/15228916.2016.1216233
https://doi.org/10.1080/15228916.2016.1216233
https://doi.org/10.1007/b94069
https://doi.org/10.1007/978-3-319-76663-8_6
https://doi.org/10.1007/978-3-319-76663-8_6

Production Scheduling with Stock-
and Staff-Related Restrictions

Carlo S. Sartori(B), Vińıcius Gandra, Hatice Çalık, and Pieter Smet

Department of Computer Science, CODeS, Leuven.AI, KU Leuven, Leuven, Belgium
{carlo.sartori,vinicius.gandramartinssantos,hatice.calik,

pieter.smet}@kuleuven.be

Abstract. Effective production scheduling allows manufacturing com-
panies to be flexible and well-adjusted to varying customer demand. In
practice, production scheduling decisions are subject to several complex
constraints which emerge from staff working hours and skills, delivery
schedules, stock capacities, machine maintenance and machine setup.
This paper introduces a novel production scheduling problem based on
the real-world case of a manufacturing company in Belgium. Given a set
of customer requests which may only be delivered together on one of the
provided potential shipment days, the problem is to select a subset of
these requests and schedule the production of the required item quan-
tities subject to the aforementioned restrictions. All decisions must be
taken for a time horizon of several days, leading to a complex problem
where there may not be enough resources to serve all requests. We pro-
vide an integer programming formulation of this novel problem which is
capable of solving small-scale instances to proven optimality. In order to
efficiently solve large-scale instances, we develop a metaheuristic algo-
rithm. A computational study with instances generated from real-world
data indicates that the metaheuristic can quickly produce high-quality
solutions, even for cases comprising several days, requests and limited
stock capacities. We also conduct a sensitivity analysis concerning char-
acteristics of the schedules and instances, the results of which can be
exploited to increase production capacity and revenue.

Keywords: Production scheduling · Stock levels · Integer
programming · Metaheuristic

1 Introduction

Due to increased global competitiveness and market uncertainty, manufacturing
companies have become increasingly flexible to meet varying demand for their
products. Typically, production lines have finite capacities and demand cannot
be met by simply increasing production rates. Instead, careful lot-sizing decisions
must be made to determine how much of each product is produced and how
much stock is maintained. In practice, these decisions are subject to a variety of
constraints, including staff-related restrictions and delivery schedules.
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 142–162, 2021.
https://doi.org/10.1007/978-3-030-87672-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_10

Production Scheduling with Additional Restrictions 143

Our work is motivated by a problem faced by a manufacturing company
in Belgium. The production environment is equipped with two non-identical
machines capable of producing multiple item types under the supervision of
human operators. Each machine can only produce one item type at a time given
that the necessary configuration (setup) for an item type is conducted before
production begins. The item types and quantities demanded by a set of customers
are fixed, but the date to deliver the entire demand of each customer must
be selected from multiple options provided by the customer. If resources are
not sufficient to satisfy all customer demands, the lost sales are reflected as a
penalty cost. Machines require maintenance at regular intervals. Maintenance
and certain setups can only be performed by a skilled operator who is available
during a specific time slot each day. In order to increase production capacity,
the two machines can operate in parallel. They can also operate with overtime
or during night shifts, but each of these options incurs additional costs. Another
type of cost is incurred when the daily safety stocks are not maintained, meaning
that the stock level of an item type drops below a minimum desired threshold.
Moreover, a predetermined maximum stock level may not be exceeded under
any circumstances for any item type.

Given all these machine-, operator- and stock-related restrictions, a solu-
tion for the problem involves generating a production schedule at minimum cost
for a finite period of time, which comprises a number of days subdivided into
several time blocks. We refer to this problem as the Production Scheduling Prob-
lem with stock- and staff-related restrictions (PSP). Before providing a detailed
description of the PSP in Sect. 2, we will briefly review some related problems
to position the PSP in the literature.

The literature most closely related to the PSP is that of Lot-sizing and
Scheduling Problems (LSPs): a class of problems with many variants for the
planning of production schedules. A review concerning standard models pro-
posed for several LSPs was provided by [3]. Additionally, due to its numerous
side constraints, the PSP can also be positioned within the literature of LSPs
with Secondary Resources (SRs) [12]. SRs are subcategorized as one of two types:
disjunctive or cumulative. A disjunctive SR can only be employed once at a time,
whereas a cumulative SR is one for which the total accumulated value restricts
the solution in some way. The PSP contains SRs of both types. Similar to the
study conducted by [11], certain operations can only be performed in the pres-
ence of a skilled operator. This operator is a disjunctive SR who cannot perform
multiple duties in parallel. Meanwhile, daily stock capacities and the stocks
themselves are cumulative SRs since although they constrain the solutions to
the problem, they can be used to satisfy multiple requests.

More specifically, the PSP can be considered a variant of the Discrete Lot-
sizing and Scheduling Problem (DLSP) [5]. This is one of the classic LSPs as per
the classification provided by [3]. There are two characteristics that distinguish
the DLSP from other LSPs [4]. First, it considers both macro and micro periods
where macro periods are formed by a sequence of micro periods. Other LSPs only
consider the macro scale. Second, the DLSP assumes all-or-nothing production:

144 C. S. Sartori et al.

only one item type may be produced by a machine during a micro period while
running at full capacity. In the PSP, we have both macro and micro periods:
days and blocks. Furthermore, in each block, a machine is either idle or entirely
dedicated to a single type of operation (maintenance, setup or production of
one item type). One key difference, however, is that while the DLSP considers
a holding cost per item in stock, the PSP assumes no holding costs but instead
enforces a maximum stock level for each item type.

Another key challenge in the PSP is the order selection and scheduling, for
which we refer interested readers to [10] for a thorough review of the topic. Note
that order selection and scheduling coupled with sequence-dependent setup times
becomes significantly more challenging to solve since the production order can
impact the amount of unproductive time introduced depending on the setups
required for each machine. A recent problem variant which combines both char-
acteristics was studied by [9].

The PSP differs from the aforementioned DLSP and other LSP variants in
three main ways which in combination with one another makes the problem very
challenging. First, demand and due dates are not entirely fixed and should be
decided. Second, daily production capacities can be increased via parallel pro-
duction on machines, overtime and night shift production, however all of these
options incur additional costs. Third, setup or maintenance operations can be
spread over multiple non-continuous blocks, between which the dedicated opera-
tor might be assigned other duties, such as the setup or maintenance of another
machine. The demand selection and multiple due date options associated with
the PSP resemble the order selection and scheduling with leadtime flexibility
considered by [2] for a single-machine system. However, the PSP remains dis-
tinct due to the second and third aforementioned characteristics.

The remainder of this paper is organized as follows. Section 2 formally intro-
duces the PSP. Section 3 details a Late Acceptance Hill-Climbing (LAHC) heuris-
tic [1] we designed for the PSP. A recent successful application of LAHC in
combination with exact methods to solve a variant of the LSP [6] encouraged us
to select this method. Section 4 goes on to provide a computational study and
introduce new instances, while Sect. 5 concludes the paper.

2 Notation and Problem Description

The PSP is modeled over an ordered set D = {1, . . . , |D|} of days, each of which
begins at 05:00 and has a duration of 24 h. Each day is decomposed into a set
B = {1, . . . , bn} of time blocks of equal length as depicted in Fig. 1. Figure 1 also
highlights specific blocks that define intervals during which certain operations
can take place. A task to be carried out on a machine takes an integer number
of blocks to be completed and cannot take less than one block. Throughout the
remainder of this paper, time is expressed in terms of number of blocks.

Production Scheduling with Additional Restrictions 145

1 2 . . . be . . . bl . . . bs bs+1 . . . bo . . . bn
05:00 07:00 15:00 21:00 00:00 05:00

Night shiftDay shift

Overtime blocksMaintenance and long setups

Fig. 1. Representation of one day as a set of time blocks.

A day begins with block 1 and ends with block bn, after which the following
day begins. The factory is open every day between blocks 1 and bs. Blocks
1, . . . , bs constitute the day shift, whereas blocks bs+1, . . . , bn constitute the night
shift. The night shift may be used at an additional cost in one of two different
ways. First, blocks bs + 1, . . . , bo may be individually scheduled as overtime and
incur a cost po per block. Overtime may be scheduled any day and as often as
necessary. Alternatively, a full night shift may be scheduled at a cost pn per
day, thereby enabling all night blocks bs +1, . . . , bn to be used. The organization
in question requires full night shifts to be scheduled for at least dn consecutive
days. We refer to this as the minimum consecutive night shifts constraint. It is
not possible to schedule overtime and a full night shift on the same day.

There are two machines available to produce a set I of different item types.
Let M = {m1,m2} denote the set of machines and emi ≥ 0 represent the total
number of type i ∈ I items that machine m ∈ M produces per block. If machine
m cannot produce items of type i, then emi = 0.

Machines can operate simultaneously, which we will henceforth refer to as
parallel operation. Parallel operation occurs in a day d ∈ D and a block b ∈ B
when no machines are idle during this time slot. Parallel operation during the
day shift incurs an additional cost pp for that day because the company must
hire an additional outsourced external worker. During night shifts, however,
machines can operate in parallel without additional costs because night shifts
already include the outsourced external worker in their cost.

Machines operate to fulfill a set R of customer requests, where each r ∈ R
requires a quantity qir of item type i ∈ I to be produced. Let ci be the sales price
of each item type i ∈ I, then c(r) =

∑
i∈I qirci denotes the revenue obtained from

request r ∈ R when it is fulfilled. Each request r has a set of allowed shipping
days Dr ⊆ D which are specified by the customer. A request r can only be
shipped on day d ∈ Dr if all the necessary quantities of items are available at
the end of day d (partial shipments are not permitted). Items do not necessarily
need to be produced during day d and may instead be taken from the available
stock. If a request cannot be shipped by its latest feasible day, it is considered
unserved.

The allowed shipping days are also crucial with respect to maintaining fea-
sible stock levels. Shipments are scheduled by the end of each day (after block
bn). After shipment, but before the start of the next day, stock levels must be
updated. The stock on day d ∈ D corresponds to the stock on day d−1 plus the

146 C. S. Sartori et al.

total production minus the shipped items on day d. For each item type i ∈ I,
its stock at the end of day d must never exceed the maximum stock level Smax

i

that can be stored in the warehouse. There is also a minimum level Smin
i that

should be kept in stock at the end of each day to ensure sufficient resources are
available in case of disruptions or unexpected orders. Having stocks below the
minimum stock level is allowed, but incurs a penalty ps at the end of the day per
unit below the minimum. Naturally, the stock of an item can never be negative.

For each (m, d, b) tuple such that m ∈ M , d ∈ D and b ∈ B, we assign one
of the following four tasks: (i) production of an item type, (ii) machine setup
from one item type to another, (iii) maintenance and (iv) idle. If a task requires
more than one block of time, then multiple blocks must be scheduled. Tasks
with multiple blocks are not necessarily continuous. Idle and maintenance/setup
blocks may be scheduled in between other setup/maintenance tasks. When night
shift blocks are not employed in the schedule, they are all set to idle.

The type of item produced on a machine can be changed with sequence-
dependent setup times that require smij blocks to change the configuration of
machine m from production of item type i ∈ I to type j ∈ I. These setups are
classified as either short (U) or long (L). A short setup (i, j) ∈ U, i, j ∈ I may
be carried out at any time. Meanwhile, a long setup (i, j) ∈ L, i, j ∈ I is only
allowed during the range of blocks [be, bl] due to staff-related constraints. Addi-
tionally, maintenance must be scheduled for each machine m ∈ M at most gmmax

days apart and each maintenance takes fm blocks. No production is possible
while a machine is undergoing maintenance or setup. Long setups and mainte-
nance can only be scheduled during the range [be, bl] and are never allowed in
parallel with another maintenance or long setup.

Since production is supposed to be a continuous process, we need to take
into account certain information concerning schedules from the previous time
horizon. This historic information includes: the last item type for which each
machine was configured, the number of days since maintenance was performed for
each machine, the stocked quantity of each item, and the number of consecutive
night shifts scheduled at the end of the preceding scheduling period. The last of
these parameters provides us with the number of mandatory night shifts hn ≥ 0:
the number of night shifts that must be scheduled at the beginning of the time
horizon in order to comply with the minimum consecutive night shifts constraint.

The primary decision is to select when and which requests to produce and
ship. This not only involves deciding on which date/time, on which machine
and in which order to produce items, but also how many items of each type to
produce, and how many items to take from the stock. Additionally, we must
decide when to schedule overtime or night shifts to extend production capacity.
All decisions must also account for the constraints related to the limited shipping
days, stock levels, machine maintenance and limited setup times.

A solution is sought which minimizes the revenue loss from unserved requests,
additional personnel costs (overtime, night shift and parallel operations) and the
penalties incurred by stock deficits. Let X be the set of all feasible solutions to
the PSP and f(s) be the cost of solution s ∈ X. The aim is to find the minimum

Production Scheduling with Additional Restrictions 147

cost solution s∗ = arg mins∈X f(s). This cost is defined by five components.
First, the cost c(r) of all unserved requests r ∈ R (or the revenue loss). Second,
a cost pp for each day d ∈ D that contains at least one parallel operation. Third,
a cost pn for each day d ∈ D that a night shift has been scheduled. This cost
is incurred even if all night shift blocks are completely idle, as long as day d is
part of a minimum consecutive night shifts sequence. Fourth, a cost po for each
block b ∈ B of overtime scheduled for each day d ∈ D. Finally, a penalty ps is
incurred per unit of item i ∈ I below its minimum stock level Smin

i at the end
of every day d ∈ D.

In order to formally define the problem, an Integer Linear Programming
(ILP) formulation is provided in Appendix 5. This ILP formulation is also used
to assess the performance of the heuristic approach proposed in Sect. 3.

3 A Heuristic Approach

Preliminary experiments revealed that the ILP formulation can only provide
high-quality solutions for very small instances within a time limit of one hour.
Thus, a tailored algorithm is required in order to produce high-quality solutions
for large-scale PSP instances within reasonable processing times. In this paper,
we employ a heuristic which improves an initial solution through insertion and
removal of requests in order to efficiently explore the PSP’s solution space.

The proposed heuristic to solve the PSP adapts LAHC [1], which is a simple
metaheuristic framework that requires only a single parameter: the length of
the list containing previous solution costs. LAHC has recently been employed to
solve a variant of the LSP and achieved high-quality results [6], demonstrating
that it is also a good choice for this class of problems. Algorithm 1 outlines the
LAHC algorithm employed to solve the PSP.

Algorithm 1: Late Acceptance Hill-Climbing (LAHC).
1 Input: Instance of the PSP, parameters Miter, α, Ls, γ, βroll, βnight, η;
2 s ← initialSolution();
3 F [k] ← +∞, k = 1, . . . , Ls;
4 iter, idle ← 0;
5 while iter < Miter and idle < �αMiter� do
6 s′ ← buildNewSolution(s, iter, Miter, γ, βnight, η);
7 if f(s′) ≥ f(s) then
8 idle ← idle + 1;
9 else

10 idle ← 0;
11 k ← iter mod Ls;
12 if f(s′) < F [k] or f(s′) ≤ f(s) then s ← s′;
13 if f(s) < F [k] then F [k] ← f(s);
14 if idle = �αβrollMiter� then s ← s∗;
15 iter ← iter + 1;

16 return s∗

148 C. S. Sartori et al.

Algorithm 1 begins by constructing an initial feasible solution using the pro-
cedure which will be detailed in Sect. 3.1, followed by initializing LAHC’s fitness
array F and counter variables iter and idle (lines 2–4). The main loop of the algo-
rithm (lines 5–18) is iterated over until either Miter iterations have been reached
or no improvement has been observed for �αMiter� iterations. Both Miter and
α ∈ [0, 1] are parameters of the LAHC.

In every iteration of the LAHC, a new solution s′ is generated using the
current solution s and the procedure which will be described in Sect. 3.2 (line
6). Then, lines 7–15 update the idle iteration counter, the current solution s and
the fitness array F according to the original strategy introduced by [1]. Note
that F allows a worsening solution s′ to be accepted whenever its total cost
is less than the cost of the solution Ls iterations earlier, where Ls is the size
of LAHC’s list of solution costs. To increase intensification of the search, we
included a rollback procedure so that when the number of idle iterations reaches
a specified percentage of its maximum value, the current solution s is replaced
with s∗ (lines 16–17). Here, βroll ∈ [0, 1] is also a parameter. The first rollback
is always allowed. Any additional rollbacks can only occur if s∗ is improved
after the preceding rollback. The best solution s∗ generated over all iterations is
returned (line 19).

3.1 Initial Solution

Initial solution s is constructed by first initializing the blocks for every day and
every machine as idle. Next, the required maintenance is scheduled for each
machine with as many days in-between as possible while avoiding parallel main-
tenance blocks. These initial maintenance days are fixed throughout the entirety
of LAHC’s execution. After these steps, solution s should contain a feasible main-
tenance schedule for all machines, otherwise the instance is considered infeasible.
Algorithm 2 outlines the steps to build the initial solution.

Algorithm 2: initialSolution()
1 s ← idleSolution();
2 s ← scheduleMaintenance(s);
3 Or ← true, ∀r ∈ R ; // Initially all requests are available

4 while ∃ r ∈ R : Or = true do
5 cmax ← max c(r) : Or = true;
6 select request y : Oy = true with probability 0.8 · c(y)/cmax;
7 s ← insertRequestBestPosition(s, y, true);
8 Oy ← false;

9 return s;

Once a feasible maintenance schedule is generated, requests are inserted into
s along with the necessary production and setup blocks. These insertions are

Production Scheduling with Additional Restrictions 149

performed in a greedy-randomized manner (lines 4–8 of Algorithm 2). While
there remain available requests to be inserted, one request r ∈ R is selected at
random with probability 0.8c(r)/cmax, where c(r) denotes the profit for shipping
request r and cmax is the value of the most profitable request among all currently
available ones (lines 5–6). The selected request r is inserted into its best shipment
day d∗ ∈ Dr using the procedure described in Sect. 3.3 (line 7). Once r is inserted
into s or once no feasible day remains into which r can be inserted, the request
is marked as processed so that it is no longer considered for insertion in the
construction phase (line 8). Request insertion is repeated until all requests have
been marked processed.

3.2 New Solution Generation

A new solution s′ is constructed from the current solution s via a series of modifi-
cations. Algorithm 3 outlines the steps to perform these changes. The algorithm
removes requests at random from s′, as well as unnecessary production blocks
arising from such removal, employing the procedure described in Sect. 3.4 (line
7 of Algorithm 3). Note that by removing requests and unecessary production
blocks, more space or slack is created to later reinsert requests and therefore
more effectively explore the solution space of the PSP. The algorithm reinserts
these requests in a random order on their best possible shipping dates using
the heuristic outlined in Sect. 3.3 (line 8). The number of removed requests is
selected uniformly from [1, max{20, �γ|R|�}], where γ ∈ [0, 1] is a parameter
of the LAHC. We limit the removal to a maximum of 20 requests to account
for very large instances. In the case that not all of the removed requests are
successfully reinserted, the remaining unserved requests incur a penalty.

Algorithm 3: buildNewSolution(s, iter, Miter, γ, βnight, η)

1 Input: Solution s, num. of iterations iter, parameters Miter, γ, βnight, η;
2 s′ ← s;
3 if iter > Miterβnight and iter mod η = 0 then
4 s′ ← removeUnusedOvertimeAndNightShift(s′);
5 s′ ← insertRandomOvertimeOrNightShift(s′);
6 y ← rand(1, min{20, γ|R|});
7 s′ ← randomRequestRemoval(s′, y);
8 s′ ← bestRequestInsertion(s′);
9 s′ ← fixStockBelowMinimum(s′);

10 return s′;

Once the number of iterations in Algorithm 1 reaches �βnightMiter�, new
solutions are permitted to employ overtime or additional night shifts. Here, value
βnight ∈ [0, 1] is another parameter of the LAHC. Overtime and night shifts are
modified as follows (lines 3–5). First, unused but active overtime and night shifts

150 C. S. Sartori et al.

are removed, followed by the activation of new overtime or night shift blocks.
The procedures for (de)activating overtime and night shift blocks are detailed in
Sect. 3.5. These (de)activations are only executed every η iterations of the LAHC
so that the algorithm has sufficient time to make best use of the new overtime
or night shift blocks. The value of η is parameterized as well. The decision to
postpone the activation of night shifts and overtime to later iterations in the
LAHC’s execution is not arbitrary. In practice, night shifts and overtime are
deemed undesired by both employers and employees. Therefore, avoiding their
use forces the LAHC to produce solutions without featuring them.

When all requests have been fulfilled in s′, a procedure to increase stock levels
by scheduling production blocks is employed (line 9). This procedure examines
each day d ∈ D for the items i ∈ I that have stocks below their minimum level.
It then attempts to schedule production blocks for these items on days d′ ≤ d to
reduce stock penalties. Production blocks on days d′ < d are only added if they
do not result in a solution exceeding maximum stock levels.

3.3 Request Insertion Heuristic

A shipping day must be determined for each request while respecting stock levels
and only considering the allowed shipping days for that request Dr. Our proposed
request insertion heuristic inserts requests into each allowed shipping day. The
shipping day which yields the best result is then selected. When attempting to
ship a request r on a given day d, production of all requested items qir (i ∈ I) is
scheduled in such a way that the maximum possible number of items is produced
from day 0 until day d. When the produced items are not enough to serve the
request, the shortfall of production is compensated by preexisting stock. By
producing as many items as possible for each inserted request, solutions have
less chance of violating minimum stock levels and stocks may be preserved to
help serve requests with greater demand.

Algorithm 4 outlines the overall framework of the request insertion heuristic
for a single request r. The insertion of parallel production is optional and given
as a parameter. Production of items is inserted backwards, beginning from the
shipping day d back until the first day of the time horizon (lines 8–11). This
mechanism aims to maintain production as close to the shipment date as possible,
which decreases the chance of violating maximum stock levels. If a solution
producing all qr items is not found, the remaining items to complete request r
are removed from stocks (lines 12–15). In this case, minimum stock levels can be
violated. After all permitted shipping days have been checked, the best solution
is returned (line 19).

The insertProduction method receives a set of item types and their respective
quantities RP to be produced on a given day d′. For every i ∈ I where RPi ≥ 1,
the method attempts to insert a total of b = � ∗
RPi/emi production blocks
on any machine m ∈ M where emi > 0. The method ends as soon as either
all production has been scheduled or once it is not possible to insert any more
production on that day. The items and machines are iterated over sequentially.

Production Scheduling with Additional Restrictions 151

The production of b blocks of item type i is then scheduled on machine m on
day d′ in accordance with one of two possible methods.

The first method is used when machine m on day d′ has no production of
item i. In this scenario, production of item i is inserted along with the necessary
setups into the first sequence of idle blocks on day d′ where it can be fit. If the
production of b blocks is not possible, the same method is called to insert b − 1
blocks on the same day and on the same machine. The second method handles the
insertion of production of item i on a day and machine that is already producing
at least one block of i. This method increments the sequence of production blocks
of i by b blocks. Tasks already scheduled on day d′ are pulled back or pushed
forward, replacing idle blocks. The resulting day is feasible if every non-idle task
remains scheduled and no conflict is found.

Algorithm 4: insertRequestBestPosition(s, r, bp)
1 Input: Solution s, Request r, boolean bp to enable parallel production;
2 s∗ ← s;
3 foreach d ∈ Dr do
4 s′ ← s;

5 RP ← qi
r ∀i ∈ I ; // Remaining production of each item

6 IP ← ∅ ∀i ∈ I ; // Inserted production of each item

7 d′ ← d;
8 while d′ �= 0 or RP �= ∅ do
9 insertProduction(s′, d′, RP , IP , bp);

10 RP ← RP \ IP ;
11 d′ ← d′ − 1;

12 if RP �= ∅ then
13 possible ← RemoveFromStock(s′, RP , d);
14 if possible = False then go to next d;

15 s′ ← Schedule shipping of request r on day d;
16 if f(s′) < f(s∗) then
17 s∗ ← s′;
18 return s∗;

3.4 Request Removal Heuristic

Given a current solution and a set of requests R to be removed from the schedule,
the request removal heuristic starts by removing the scheduled shipping days of
all requests in R. Stock levels for every item and day are then recalculated. In
this step, solutions often have a large number of items being produced which are
not shipped, possibly violating maximum stock levels.

In order to remove unnecessary production and correct stock level violations,
a removal slack SLK is calculated for each day and item type. SLK expresses
how many production tasks of item type i can be removed from day d without
violating Smin

i and is calculated as SLK[d][i] = min(stock[d]−Smin
i , SLK[d+1][i]).

152 C. S. Sartori et al.

SLK is used as an upper bound and the request removal heuristic continues by
removing as many production tasks as possible for each day and item type.
Removing a large number of production tasks results in a partial solution with
more idle blocks, providing additional flexibility for request insertion. When
removing production tasks, setups for certain item types become obsolete as
those items are no longer being produced, hence these setups are also removed.

3.5 Overtime and Night Shift Heuristics

Once the number of iterations performed by Algorithm 1 exceeds the thresh-
old defined in Sect. 3.2, non-mandatory night shifts and overtime blocks are
(de)activated in the schedule. For a particular day d ∈ D, (de)activation of
night shifts and overtime is performed by the use of Boolean flags indicating
whether a night shift (alternatively overtime) is active for a day d. Overtime
and night shift flags cannot be simultaneously active during the same day d.

Overtime and Night Shift Removal: Before the insertion of overtime or night
shifts, the algorithm first removes all unused blocks. For every day d with active
overtime but for which all blocks in [bs+1, bo] contain idle tasks, the overtime flag
is deactivated. For night shifts, a sequence of at least dn consecutive days with
night shifts is extracted from the solution (if such a sequence exists). All empty
night shifts – those with only idle blocks in both machines – in this sequence are
deactivated from either the beginning, the end, or the middle of the sequence so
long as the minimum consecutive night shift constraint is respected. Note that
mandatory night shifts are never removed and are always available for use.

Overtime and Night Shift Insertion: After the removal of unused overtime
and night shifts, new insertions are performed. The algorithm chooses with uni-
form probability one of the three following insertion methods:

(I1) Overtime insertion: a number δ ∈ [1, |D|] is selected with uniform prob-
ability. Then, the procedure iterates over all days D in a random order,
activating overtime flags for days without any active flags. This continues
until either δ overtime blocks have been activated or all days have been
checked.

(I2) Earliest night shift insertion: this can only be executed if the instance con-
tains mandatory night shifts. The algorithm selects with uniform probabil-
ity a number δ ∈ [1, dn − 1]. Then, starting from the first day without a
mandatory night shift, the algorithm activates night shifts for the next δ
days in the time horizon. Any of the δ days which already contains an acti-
vated night shift is counted as an activation. In the case that a day contains
overtime, it is deactivated and a night shift is activated in its place.

(I3) Random night shift insertion: a day d1 ∈ [hn, |D|] is selected at random.
Then, for all days d1, . . . , d1 + dn, night shifts are activated. Any active
overtime is replaced with a night shift.

For both (I2) and (I3), feasibility with respect to the minimum consecutive night
shift constraint is maintained at all times.

Production Scheduling with Additional Restrictions 153

4 Computational Study

In order to provide some managerial insights on certain PSP characteristics and
analyze the performance of the ILP model as well as the LAHC heuristic, this
section presents the results obtained from a computational study on the PSP.

All experiments were conducted on a computer with Intel Xeon E5-2660
at 2.6 GHz and 160 GB of RAM running Ubuntu 20.04 LTS. The LAHC was
implemented in C++, compiled using g++ 9.3 and executed in single-thread mode.
The ILP was implemented using the C++ API of Gurobi 9 and it was run for up to
one hour per instance, using maximum eight threads. Based on the company’s
requests, we set the maximum execution time of the LAHC to ten minutes.

4.1 New Instance Sets

In order to run experiments using the proposed algorithm and stimulate further
research regarding the PSP, instances were generated based on real-world data.
The instances, solutions and a validator are publicly available at an online repos-
itory [8]. The company that inspired this work provided us with a set of items
(I) and machines (M), minimum and maximum stock levels per item (Smin

i and
Smax
i), a set of short/long setups and their duration (U , L and smij), maintenance

durations and frequencies per machine (fm and gmmax) and time restrictions for
long setup and maintenance (bounded by the block indexes be,l,s,o,n). The effi-
ciency of machines per item (emi) is identical for both machines with the excep-
tion of certain items which cannot be produced by machine m2, in which case
em1
i > 0 and em2

i = 0. This data was considered standard and left unaltered for
every instance. The company also provided the cost of items (ci), overtime (po),
night shift (pn) and parallel production (pp). For privacy reasons, these values
were converted into proportional values. Finally, a month’s worth of customer
requests were provided and used as the basis for generating multiple instances.

Consider AvgI =
∑

r∈R

∑
i∈I qir

|D| , which is the average number of items
requested per day in a given time horizon of |D| days. The company gener-
ates their production schedule for a time horizon of 10 days considering blocks
of 60 min and an AvgI up to one million in high-demand weeks. Based on the
provided data, we generated two instance sets corresponding to periods of low
and high production demands. For every instance in the low-demand and high-
demand sets, AvgI = 500, 000 and 1, 000, 000, respectively. The high-demand
set corresponds to a busy scenario for the company and can therefore be con-
sidered realistic in terms of size. Each benchmark set contains 18 instances.
Each instance is named in accordance with its three primary attributes: |D|, |R|
and bdur (the length of each block in minutes). For example, the high-demand
instance H 10 15 30 has a time horizon of 10 days, 15 requests (with an average
of 1, 000, 000 items per day) and blocks of 30 min.

Given AvgI and these three primary attributes, the remaining attributes
of each instance were generated as follows. The minimum number of consec-
utive days with night shifts dn was selected with uniform probability from

154 C. S. Sartori et al.

[2,min(10, |D| ∗ 0.5)]. For each request, the permitted shipping days Dr ⊆ D
are either every day, every two days or every five days with selection proba-
bilities 0.4, 0.4 and 0.2, respectively. Each request r ∈ R comprises of at most
three different items selected with uniform probability from I. The demand for
each request r is selected from [0.8, 1.1] of the average item demand per request
(AvgI∗|D|

|R|) and divided randomly among the items comprising request r. Note
that two instances with the same |D| and |R| are identical in every aspect, except
for bdur. Moreover, instances from the same instance set have the same AvgI
despite the varying number of requests |R|.

4.2 LAHC Parameters

Parameters for LAHC were obtained by tuning the algorithm with the irace
package [7]. Tuning was performed for the two instance types, resulting in a low-
demand and a high-demand parameter set. This is not arbitrary as schedules for
low- and high-demand instances differ considerably. In each tunning, irace was
given a budget of 5,000 runs and six randomly selected instances as the training
set. We fixed LAHC’s maximum number of iterations to Miter = 20, 000 and
the idle rate α = 0.2. The best parameter sets reported by irace are provided
in the format {Ls, γ, βroll, βnight, η}. For the low-demand instances parameter
values were {2000, 0.60, 0.56, 0.62, 20}, whereas for the high-demand instances
they were {2000, 0.64, 0.84, 0.01, 60}.

4.3 Results

Table 1 provides the results of the ILP and those obtained by the LAHC. The
results concerning instances in the same set with the same |D| and |R| but differ-
ent block sizes are aggregated into a single row. For example, row L 10 15 pro-
vides the aggregated results for instances L 10 15 15, L 10 15 30 and L 10 15 60.
Moreover, since the LAHC is an inherently stochastic algorithm, we ran it ten
times per instance with different seeds for the random number generator. There-
fore, the cells associated with LAHC correspond to the averages or minimums
of 30 runs: 10 runs per instance for 3 different block sizes. Similarly, for the ILP,
each cell corresponds to the average or minimum of 3 runs: 1 run per instance
for 3 different block sizes. The online repository [8] provides a complete table
with detailed results to each individual instance.

In these experiments, the ILP reached the one-hour time limit for all instances
except L 10 15 30 and L 10 15 60 (solved in 1800 and 800 s, respectively). There-
fore, the ILP columns in Table 1 report only the upper bounds (the values of the
best solutions found) and lower bounds provided by the solver, but not the com-
putation times. More specifically, columns UBmin, UBavg and LBavg report the
minimum upper bound, average upper bound and average lower bound, respec-
tively. For the LAHC, column BKS reports the best-known solution value (cost).
The next columns report the average values for the solution cost (Savg), execu-
tion time in seconds (Timeavg), standard deviation of the solution costs (SDavg),

Production Scheduling with Additional Restrictions 155

number of blocks used for overtime (OTavg), number of days with night shifts
(NSavg), number of days with parallel tasks (PDavg) and number of unserved
requests (URavg).

Table 1. ILP and LAHC results.

Instance ILP LAHC

UBmin UBavg LBavg BKS Savg Timeavg SDavg OTavg NSavg PDavg URavg

L 10 15 900.00 143,438.03 900.00 985.00 1,074.50 341.93 34.17 4.63 0.00 0.53 0.00

L 10 25 120.00 212,243.26 0.00 258.75 348.06 259.74 42.20 7.82 0.00 1.43 0.00

L 20 15 331,921.48 522,131.40 0.00 307.50 431.10 522.36 48.38 16.89 0.00 0.37 0.00

L 20 25 683,697.80 703,534.73 0.00 595.00 801.96 525.58 76.02 8.17 0.00 4.30 0.00

L 40 50 1,538,832.12 1,539,432.12 0.00 1,780.00 2,044.94 601.65 97.98 6.04 0.00 14.87 0.00

L 40 100 1,578,473.24 1,579,463.24 0.00 1,920.00 2,282.71 602.96 76.14 2.72 0.00 18.33 0.00

H 10 15 70,580.86 394,387.34 1,594.74 3,782.50 3,963.75 228.38 49.52 0.40 6.83 8.13 0.00

H 10 25 64,098.45 317,605.53 15,649.56 62,604.85 84,184.75 185.93 10,383.02 2.75 8.80 6.00 2.53

H 20 15 1,497,758.35 1,621,849.64 76,390.43 233,532.05 269,658.30 547.06 37,532.99 4.93 15.23 12.50 2.37

H 20 25 1,281,182.11 1,533,486.47 2,855.43 7,637.50 20,550.81 577.50 8,581.04 0.19 11.83 15.17 0.23

H 40 50 3,481,699.59 3,481,999.59 0.00 282,959.48 493,129.05 601.41 66,928.92 64.87 10.30 35.70 6.47

H 40 100 3,324,599.38 3,331,056.53 1,800.00 13,128.75 59,202.84 603.47 67,203.97 8.81 27.17 34.37 1.33

The first thing to note from Table 1 is that the ILP was able to find the best
solution for instances L 10 15 and L 10 25 when comparing the minimum values
UBmin (ILP) and BKS (LAHC) for these instances. However, when considering
the average across all three block sizes, LAHC obtains far lower solution costs in
under five minutes. For both low- and high-demand instance types, LAHC finds
solutions with costs far lower than the ILP’s as the instances become larger.
Such differences in solution quality are due to the size of the ILP model, which
becomes significantly large and experiences significant difficulty to solve even
for a time horizon of just 20 days. Indeed, the ILP was unable to produce any
feasible solution for instances of 40 days and blocks of 15 min.

In terms of the lower bounds produced by the ILP, the LBavg for low-demand
instances is always the trivial bound considering only mandatory night shifts and
maintenance without any production. Meanwhile, for high-demand instances the
ILP improved the lower bound for those with time horizons of less than 40 days,
sometimes even by a large margin (for example instance H 20 15 for which the
trivial LB is 0). This may occur due to the fact that in high-demand instances,
machine occupancy rates are high enough for the ILP to prove that lower solution
values are impossible, whereas with low occupancy rates this is harder to prove
since more blocks are likely idle and could be used to avoid parallel tasks or
stock penalties. Because block usage depends on several other factors, the model
requires longer execution times to improve lower bounds.

LAHC’s standard deviation is low for low-demand instances, whereas for
high-demand instances the observed variation increases significantly. This high
standard deviation is possible given the different number of unserved requests
which incur large penalties. Column URavg shows that while all requests were
served for the low-demand instances, in the high-demand instances a number of

156 C. S. Sartori et al.

requests remained unserved, increasing the solution cost. For example, on aver-
age 97% of the total cost of solutions for H 40 50 instances is due to unserved
requests. Meanwhile, solutions for H 40 100 are only penalized in the 15-minute
block set where unserved requests account for 50% of the total cost on aver-
age, but for blocks of 30 and 60 min all requests are served and so no penalty
is incurred. These results indicate how the difficulty of solving the problem
increases as the search space expands.

Out of the total hours available for overtime and total number of days, the
low-demand instance set employs on average 15% of overtime hours and 21% of
days with parallel tasks. These are the two main components that incur costs
in the low-demand instances as no night shifts are employed and the penalty
per item under minimum stock levels is on average responsible for only 4% of
the total solution cost. Meanwhile, high-demand instances employs on average
64% of the available night shifts, 13% of overtime hours and 76% of days with
parallel tasks. For high-demand instances with 40 days the usage of night shifts,
overtime and parallel tasks may reach as high as 79%, 65% and 90%, respectively.
Items bellow the minimum stock levels were also successfully avoided in the high-
demand instances, representing 0.5% of the total solution cost.

Further analyses are performed concerning the impact of block lengths and
the relaxation of different constraints. Table 2(a) provides the solution gaps for
each block size and instance set. For a block size bdur ∈ {15, 30, 60}, gapBKS of
bdur is calculated by BKS(bdur)−minBKS

minBKS
, where BKS(bdur) is the best solution

found for bdur and minBKS = mint∈{15,30,60} BKS(t). Similarly, gapavg is calcu-
lated between the average solution of bdur and the minimum average solution
of all block sizes. The average processing time is reported by timeavg. Solutions
with blocks of 30 min often perform better than the other two block lengths for
both instance sets. Instances with blocks of 60 min have the quickest process-
ing times and obtain the second best gap. In contrast, when scheduling blocks
of 15 min, the search space is much larger and this results in longer processing
times, fewer iterations and worse solution values. To evaluate statistically sig-
nificant differences, the pairwise T-test was performed with a confidence level of
95%. Although using blocks of 30 min resulted in the best solutions, no statis-
tically significant difference was found when comparing the results of the three
block sizes.

Table 2(b) provides the gap between the average solutions produced by the
LAHC for the original instance sets and those obtained when relaxing one of the
following PSP constraints: (i) shipment day, meaning requests may be shipped
on any day; (ii) time windows for long setup and maintenance, meaning these
two tasks may be performed during any block and; (iii) maximum stock levels,
where Smax

i is doubled for every item. These constraints were selected because
we consider them to be the most constraining. For the low-demand instance set,
statistical tests were performed using the Wilcoxon signed-rank test and demon-
strated significant differences between LAHC’s results and those obtained by
the shipment day and time window relaxations. While relaxing shipment days
improves the solutions, relaxed time windows counter-intuitively resulted in a

Production Scheduling with Additional Restrictions 157

worsening of solution quality. The reasons behind these results are twofold. First,
time window relaxation increases the number of blocks to be considered for main-
tenance and long setups and increases the size of the search space significantly.
Second, results show an increase of days with parallel tasks and total number
of used overtime blocks, while a decrease on items under the minimum stock is
observed. Therefore, the flexibility given by the relaxed time windows enables
more production of items to be scheduled, which is considered a priority of the
request insertion heuristic (to insert as many production tasks as possible and
take as few items as possible from stock). To remedy this behavior one option
would be to calibrate the algorithm and give it more time to insert production
while prohibiting parallel tasks and overtime blocks.

Table 2. Sensitivity analysis.

bdur Low High

15 30 60 15 30 60

gapBKS 13.39 0.00 13.77 19.51 4.32 7.58

gapavg 11.29 0.06 13.57 254.71 5.26 6.46

timeavg 572.78 483.93 370.40 521.14 458.01 392.73

Inst. Ship Maintenance Double

set any day any time max stock

Low −5.00 13.13 −3.11

High −3.48 −16.68 −33.91

(a) Impact of block size (b) Gapavg with relaxations

When considering high-demand instances, the Wilcoxon signed-rank test sug-
gests statistically significant differences for all relaxations. The results indicate
that improvements may be obtained by increasing the shipping frequency, dou-
bling the stock capacity or hiring more skilled workers for maintenance and long
setups. Indeed, the results demonstrate that doubling stock capacity would bring
the largest profits, although one should also consider the construction or rental
costs incurred by doing so. Interestingly, increasing the stock capacity by more
than 100% did not present significant gains for the considered instances.

5 Conclusion

This paper introduced a real-world production scheduling problem with stock-
and staff-related restrictions. To serve a profitable selection of available customer
requests within a given time horizon, production, setup and maintenance tasks
must be scheduled in blocks of time of predetermined lengths. In addition to
an integer programming formulation of the problem, this paper also designed a
heuristic algorithm with local search moves based on the insertion and removal
of requests. Given the originality of the problem, and thus the lack of benchmark
instances in the literature, and with an aim to stimulate future research on the
subject, a set of instances was derived from real-world data provided by the
company which inspired this research.

A computational study demonstrated the efficacy of the proposed meta-
heuristic in producing high-quality schedules in quick processing times, even
for the more challenging scenarios. Moreover, experiments were carried out to

158 C. S. Sartori et al.

understand the impact of varying demand and block size, along with a sensitivity
analysis concerning constraints regarding stock capacities, request shipment days
and task time windows. This analysis suggested that companies confronted with
similar situations ought to consider operational changes regarding limited ship-
ping days, maintenance windows and stock limits. All of these changes should
be exploited to increase revenue. However, we foresee that a broader analysis
concerning the trade-off between the gain from such changes and the costs asso-
ciated with making them represents a crucial consideration which ought to be
explored by future research. Furthermore, additional studies could be conducted
considering the following extensions: technician scheduling, which would result
in flexible times for long setups maintenance; more than two machines, which
should be considered along with the scheduling of multiple operators so as to
allow parallel operations; and a dynamic version of the problem where requests
are not known a priori.

Acknowledgments. Research supported by KU Leuven (C2 C24/17/012) and ‘Data-
driven logistics’ (FWO-S007318N). Editorial consultation provided by Luke Connolly
(KU Leuven).

Appendix A Integer Linear Programming Formulation

To model the PSP as an ILP we introduce some additional notation.

– T : set of all blocks in the scheduling horizon: T = {1, . . . , |B|, |B| +
1, . . . , 2|B|, 2|B| + 1, . . . , |D||B|}

– TM ⊂ T : set of all maintenance blocks.
– TN ⊂ T : set of all night-shift blocks.
– TO ⊂ TN : set of all overtime blocks.
– Tr ⊂ T : set of all shipping blocks for request r ∈ R.
– d(t) ∈ D: the day index of block t ∈ T : d(t) = 1 for t = 1, . . . , |B|; d(t) = 2

for t = |B| + 1, . . . , 2|B| ...
– hn: the index of the last day with a night shift pushed from the previous

scheduling horizon.
– gm0 : at the beginning of current scheduling horizon, the number of days passed

without a maintenance for machine m ∈ M since the last maintenance in the
previous scheduling horizon.

– bdn: the last block of day d ∈ D.

Additionally, a set of decision variables is used.

– ηd = 1 if there is a night shift on day d ∈ D, 0 otherwise.
– πd = 1 if there is parallel processing of machines on day d ∈ D, 0 otherwise.
– θt = 1 if block t ∈ TO is used as overtime, 0 otherwise.
– ym

t = 1 if machine m ∈ M is idle during block t ∈ T , 0 otherwise.
– μm

t = 1 if m ∈ M is under maintenance during block t ∈ T , 0 otherwise.
– γt

r = 1 if request r ∈ R is fulfilled by shipping at t ∈ Tr, 0 otherwise.

Production Scheduling with Additional Restrictions 159

– zmti = 1 if m ∈ M is producing item i ∈ I during block t ∈ T , 0 otherwise.
– Δid is the stock level of item i ∈ I at the end of day d ∈ D. Δi0 is the initial

stock of i.
– φid is the stock deficit of i ∈ I at the end of day d ∈ D.
– τm

d = 1 if m ∈ M undergoes a maintenance on day d ∈ D, 0 otherwise.
– vm

tt′ = 1 if during block t ∈ TM , machine m ∈ M is occupied by a long setup
to be finished during block t′ ∈ TM , 0 otherwise.

– wmt′
ij = 1 if during block t′ ∈ TM , machine m ∈ M is occupied and finished

a long setup from item i ∈ I to item j ∈ I, 0 otherwise.
– ψm

tt′ = 1 if during block t ∈ T , machine m ∈ M is occupied by a short setup
to be finished during block t′ ∈ T , 0 otherwise.

– umt
ij = 1 if during block t ∈ T , machine m ∈ M is occupied and finished a

short setup from item i ∈ I to item j ∈ I, 0 otherwise.
– ρmti = 1 if machine m ∈ M is set-up to produce item i ∈ I during block t ∈ T ,

0 otherwise (ρm0i = 1 if the initial configuration of machine m is for item i).

The following is an integer programming formulation for the PSP.

min
∑

r∈R

∑

t∈Tr

c(r)(1 − γt
r) +

∑

t∈TO

poθt +
∑

d∈D

(ppπd + pnηd +
∑

i∈I

psφid) (1)

s.t. θt + ηd(t) ≤ 1, ∀t ∈ T
O

, (2)
θt+1 ≤ θt, ∀t ∈ T

O
, (3)

θt + ηd(t) + y
m
t ≥ 1, ∀t ∈ T

O
, m ∈ M (4)

ηd(t) + y
m
t ≥ 1, ∀t ∈ T

N \ T
O

, m ∈ M (5)

(dn − 1)ηd ≤
d+dn−1∑

d′=d+1

ηd′ + (dn − 1)ηd−1, ∀d : |D| − dn ≥ d > hn (6)

(dn − 1)ηd ≤
d−1∑

d′=d−dn+1

ηd′ + (dn − 1)ηd+1, ∀d ≥ max{hn + 1, dn} (7)

y
m
t +

∑

i∈I

z
m
ti +

∑

t′∈T :t′≥t

ψ
m
tt′ +

∑

t′∈TM :t′≥t

v
m
tt′ + μ

m
t = 1, ∀t ∈ T

M
, m ∈ M (8)

y
m
t +

∑

i∈I

z
m
ti +

∑

t′∈T :t′≥t

ψ
m
tt′ = 1, ∀t ∈ T \ T

M
, m ∈ M (9)

∑

m∈M

(1 − y
m
t) ≤ (|M| − 1)πd + 1, ∀d ∈ D, t ∈ T \ T

N
: d(t) = d

(10)
Δid = Δid−1 +

∑

t∈T :d(t)=d

∑

m∈M

e
m
i z

m
ti −

∑

r∈R

q
i
rγ

t′
r , ∀d ∈ D, i ∈ I, t

′
= b

d
n (11)

φid ≥ S
min
i − Δid, ∀d ∈ D, i ∈ I (12)

∑

t∈Tr

γ
t′
r ≤ 1, ∀r ∈ R, i ∈ I (13)

u
mt
ij ≤ ψ

m
tt , ∀t ∈ T, m ∈ M, (i, j) ∈ U (14)

(s
m
ij − 1)u

mt′
ij ≤

∑

t∈T :d(t)=d(t′),t<t′
ψ

m
tt′ , ∀t

′ ∈ T, m ∈ M, (i, j) ∈ U (15)

∑

t3∈T :t3≥t,t3 �=t2
ψ

m
tt3 +

∑

t3∈TM :t3≥t

v
m
tt3 +

∑

i∈I

z
m
ti + ψ

m
t1t2 ≤ 1, ∀t, t

1
, t

2 ∈ T :t
1 ≤t ≤ t

2
, m∈M

(16)

160 C. S. Sartori et al.

∑

t∈T :d(t)=d

u
mt
ij ≤ 1, ∀d ∈ D, m ∈ M, (i, j) ∈ U (17)

w
mt
ij ≤ v

m
tt , ∀t ∈ T

M
, m ∈ M, (i, j) ∈ L

(18)

(s
m
ij − 1)w

mt′
ij ≤

t′−1∑

t∈TM :d(t)=d(t′)
v
m
tt′ , ∀t

′ ∈ T
M

, m ∈ M, (i, j) ∈ L

(19)
∑

t3∈TM :t3≥t,t3 �=t2

v
m
tt3 +

∑

t3∈T :t3≥t

ψ
m
tt3 +

∑

i∈I

z
m
ti + v

m
t1t2 ≤1, ∀t, t

1
, t

2 ∈ T
M

:t
1 ≤t≤t

2
, m∈M

(20)
∑

t∈T :d(t)=d

w
mt
ij ≤ 1, ∀d ∈ D, m ∈ M, (i, j) ∈ L (21)

∑

m∈M

∑

t′∈TM :t′≥t

v
m
tt′ +

∑

m∈M

μ
m
t ≤ 1, ∀t ∈ T

M (22)

∑

t:d(t)=d

μ
m
t = f

m
τ
m
d , ∀d ∈ D, m ∈ M (23)

gmmax−dm0∑

d=0

τ
m
d ≥ 1, ∀m ∈ M (24)

d∑

d′=d−gmmax

τ
m
d ≥ 1, ∀d ∈ D : d ≥ g

m
max, m ∈ M

(25)
μ
m
t1 + μ

m
t2 +

∑

i∈I

z
m
ti ≤ 2, ∀t, t

1
, t

2 ∈ T
M

, m ∈ M

t
1 ≤ t ≤ t

2
, d(t

1
) = d(t

2
) (26)

z
m
ti ≤ ρ

m
ti , ∀t ∈ T, m ∈ M, i ∈ I (27)

∑

i∈I

ρ
m
ti ≤ 1, ∀t ∈ T, m ∈ M (28)

ρ
m
ti ≤ ρ

m
(t−1)i +

∑

j:(j,i)∈U

u
mt−1
ji +

∑

j:(j,i)∈L

w
mt−1
ji , ∀t ∈ T

M
, m ∈ M, i ∈ I (29)

ρ
m
ti ≤ ρ

m
(t−1)i +

∑

j:(j,i)∈U

u
mt−1
ji , ∀t ∈ T \ T

M
, m ∈ M, i ∈ I (30)

∑

j:(i,j)∈U

u
mt
ij +

∑

j:(i,j)∈L

w
mt
ij ≤ ρ

m
(t−1)i, ∀t ∈ T

M
, m ∈ M, i ∈ I (31)

∑

j:(i,j)∈U

u
mt
ij ≤ ρ

m
(t−1)i, ∀t ∈ T \ T

M
, m ∈ M, i ∈ I (32)

Δid ≤ S
max
i , ∀d ∈ D, i ∈ I (33)

φid, Δid ≥ 0, ∀d ∈ D, i ∈ I (34)
ηd, πd ∈ {0, 1}, ∀d ∈ D (35)
τ
m
d ∈ {0, 1}, ∀d ∈ D, m ∈ M (36)

θt ∈ {0, 1}, ∀t ∈ T
O (37)

y
m
t ∈ {0, 1}, ∀t ∈ T (38)

μ
m
t ∈ {0, 1}, ∀t ∈ T

M (39)
z
m
ti , ρ

m
ti ∈ {0, 1}, ∀t ∈ T, i ∈ I, m ∈ M (40)

u
mt
ij ∈ {0, 1}, ∀t ∈ T, (i, j) ∈ U, m ∈ M (41)

w
mt
ij ∈ {0, 1}, ∀t ∈ T

M
, (i, j) ∈ L, m ∈ M

(42)

Production Scheduling with Additional Restrictions 161

v
m
tt′ ∈ {0, 1}, ∀t, t

′ ∈ T
M

: t
′ ≥ t, m ∈ M

(43)
γ
t
r ∈ {0, 1}, ∀r ∈ R, t ∈ Tr (44)

Objective function (1) minimizes the sum of revenue loss from unserved
requests, additional personnel costs (overtime, night shift and parallel opera-
tions) and penalties incurred by stock deficits. Constraints (2) ensure that if a
block is used for overtime then there is no night shift that day and vice versa
(meaning no overtime is possible if there is a night shift on a certain day). Con-
straints (3) forbid using isolated overtime blocks, in other words: overtime in
a block is possible only if the previous overtime block is also used, except for
the first overtime block, which can be used without preceding overtime blocks.
Constraints (4) and (5) enforce the machines to be idle during night-shift blocks
if there is no overtime or night shift used that day. Constraints (6) ensure that
for a certain day with no night shift on the preceding day, night shifts are only
allowed if there is a night shift on every single one of the following dn −1 consec-
utive days. Similarly, Constraints (7) ensure that for a certain day with no night
shift on the following day that night shifts are only allowed if there is a night
shift on every single one of the preceding dn−1 consecutive days. Constraints (8)
and (9) ensure that during any block, a machine is either idle or occupied by a
single operation, namely: setup (short or long), maintenance or production. Con-
straints (10) enforce a parallel processing penalty if more than one machine is not
idle. Constraints (11) are the inventory (stock) balance constraints. Constraints
(12) retrieve the daily stock deficit per item, if there is any. If the inventory level
is greater than the minimum stock requirement, the deficit variable assumes a
value of zero thanks to the objective function (1) and binary restrictions (34).
By Constraints (13), at most one shipping is conducted per request. Constraints
(14)–(16) ensure that no production is performed in between the blocks of the
same short setup. Constraints (18)–(20) ensure that no production is performed
in between the blocks of the same long setup. Constraints (17) and (21) ensure
that only one type of setup is scheduled per day. Constraints (22) ensure that at
most one long setup or maintenance takes place during any single block. Con-
straints (23)–(26) ensure that maintenance blocks are assigned with the required
frequency while ensuring that no production is conducted in between the blocks
of a maintenance. Constraints (27)–(30) guarantee that production of an item is
only possible if the machine has the right configuration, which is validated by a
previous block either with the identical configuration or via a completed setup
to that item. Maximum stock levels are respected thanks to Constraints (33).
Finally, (34)–(44) are nonnegativiy and binary restrictions.

References

1. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Eur. J. Oper.
Res. 258(1), 70–78 (2017)

162 C. S. Sartori et al.

2. Charnsirisakskul, K., Griffin, P.M., Keskinocak, P.: Order selection and scheduling
with leadtime flexibility. IIE Trans. 36(7), 697–707 (2004)

3. Copil, K., Wörbelauer, M., Meyr, H., Tempelmeier, H.: Simultaneous lotsizing and
scheduling problems: a classification and review of models. OR Spectrum 39(1),
1–64 (2016). https://doi.org/10.1007/s00291-015-0429-4

4. Drexl, A., Kimms, A.: Lot sizing and scheduling - survey and extensions. Eur. J.
Oper. Res. 99(2), 221–235 (1997)

5. Fleischmann, B.: The discrete lot-sizing and scheduling problem. Eur. J. Oper.
Res. 44(3), 337–348 (1990)

6. Goerler, A., Lalla-Ruiz, E., Voß, S.: Late acceptance hill-climbing matheuristic for
the general lot sizing and scheduling problem with rich constraints. Algorithms
13(6), 138 (2020)

7. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

8. Sartori, C.S., Gandra, V., Çalik, H., Smet, P.: Instances for production scheduling
with stock- and staff-related restrictions. Mendeley Data, V2 at http://dx.doi.org/
10.17632/rpbv622wyd.2 (2021). Accessed 26 July 2021

9. Silva, Y.L.T., Subramanian, A., Pessoa, A.A.: Exact and heuristic algorithms for
order acceptance and scheduling with sequence-dependent setup times. Comput.
Oper. Res. 90, 142–160 (2018)

10. Slotnick, S.A.: Order acceptance and scheduling: a taxonomy and review. Eur. J.
Oper. Res. 212(1), 1–11 (2011)

11. Tempelmeier, H., Copil, K.: Capacitated lot sizing with parallel machines,
sequence-dependent setups, and a common setup operator. OR Spectrum 38(4),
819–847 (2015). https://doi.org/10.1007/s00291-015-0410-2

12. Wörbelauer, M., Meyr, H., Almada-Lobo, B.: Simultaneous lotsizing and schedul-
ing considering secondary resources: a general model, literature review and clas-
sification. OR Spectrum 41(1), 1–43 (2018). https://doi.org/10.1007/s00291-018-
0536-0

https://doi.org/10.1007/s00291-015-0429-4
http://dx.doi.org/10.17632/rpbv622wyd.2
http://dx.doi.org/10.17632/rpbv622wyd.2
https://doi.org/10.1007/s00291-015-0410-2
https://doi.org/10.1007/s00291-018-0536-0
https://doi.org/10.1007/s00291-018-0536-0

Chances of Interpretable Transfer
Learning for Human Activity Recognition

in Warehousing

Michael Kirchhof1 , Lena Schmid1(B) , Christopher Reining2 ,
Michael ten Hompel2, and Markus Pauly1

1 Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany
lena.schmid@tu-dortmund.de

2 Chair of Material Handling and Warehousing, TU Dortmund University,

44221 Dortmund, Germany

Abstract. Human activity recognition evolves around classifying and
analyzing workers’ actions quantitatively using convolutional neural net-
works on the time-series data provided by inertial measurement units
and motion capture systems. However, this requires expensive training
datasets since each warehouse scenario has slightly different settings and
activities of interest. Here, transfer learning promises to shift the knowl-
edge a deep learning method gained on existing reference data to new
target data. We benchmark interpretable and non-interpretable trans-
fer learning for human activity recognition on the LARa order-picking
dataset with AndyLab and RealDisp as domain-related and domain-
foreign reference datasets. We find that interpretable transfer learning
via the recently proposed probabilistic rule stacking learner, which does
not require any labeled data on the target dataset, is possible if the labels
are sufficiently semantically related. The success depends on the prox-
imity of the reference and target domains and labels. Non-interpretable
transfer learning via fine-tuning can be applied even if there is a major
domain-shift between the datasets and reduces the amount of labeled
data required on the target dataset.

Keywords: Domain-shift · Few-shot learning · Interpretability ·
Logistics · Multi-label classification · Time-series · Zero-shot learning

1 Introduction and Related Work

Manual processes in warehouses make up more than half of their total operat-
ing expenses [12,17]. Consequently, human activities need to be quantitatively
determinable to allow for their assessment and improvement in regards to eco-
nomics and ergonomics [5]. Detailed information on the occurrence and duration
of activities is crucial to draw conclusions on how to enhance warehouse layout
and employee performance. In fact, it is seen as a managerial failure not to
account for human characteristics when planning warehousing activities [11].
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 163–177, 2021.
https://doi.org/10.1007/978-3-030-87672-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_11&domain=pdf
http://orcid.org/0000-0003-4521-9391
http://orcid.org/0000-0002-6535-776X
http://orcid.org/0000-0003-4915-4070
http://orcid.org/0000-0002-0976-7190
https://doi.org/10.1007/978-3-030-87672-2_11

164 M. Kirchhof et al.

Due to advancements in sensor technology and data processing, IT-supported
approaches for automated recognition of human activities receive increasing
attention [6]. This leads to the emerging research field of Human Activity Recog-
nition (HAR) that is highly relevant for logistics.

Typically, body-worn sensors such as inertial measurement units (IMUs) are
deployed for data gathering in industrial settings [25]. These low-power devices
are cheap, highly reliable, non-invasive and easy-to-use as they are not affected
by occlusion. They do not portray human identities as in the case of videos.
A so-called classifier is capable of automatically recognizing human activities,
which are referred to as classes or labels in this context. In the past decade,
methods of deep learning, in particular neural networks, have become the state
of the art for HAR [25]. For training such a classifier, a set of labelled examples
is necessary. The creation of a dataset that comprises the relevant activity labels
remains a challenging task as recorded data needs to be annotated.

Manual annotation of multi-channel times series data recorded with IMUs is
time-consuming and expensive [33]. The effort scales with the amount of data
to annotate. The intra- and inter-class variability of human motion and the
influence of the employees’ physique necessitate a high quantity of observations
from different subjects for classifier training [24]. For example, annotating the
OPPORTUNITY dataset took 7–10 h per 30 min of video [28]. In [10], it took
26 min to annotate 1 min of order-picking activities from a video that was syn-
chronized with an IMU data stream. Reining et al. state that annotating the
LARa dataset [23] took 85 min per 2 min of recorded material [26]. The research
group was further able to halve the time consumption by semi-automated anno-
tation procedures [3]. However, their approach is restricted to recordings in lab-
oratory environments as an marker-based motion capturing system is deployed
for reference. This technology may not be available in many cases. As a result,
recording new data for each application scenario of HAR in warehousing still
entails substantial expenditures.

This contribution investigates to what extent already existing datasets can
be utilized for HAR in different warehousing scenarios, even though the datasets
do not originate from the same scenario. This is feasible with the help of trans-
fer learning techniques. Here, the goal is to connect the labels of an existing
dataset to the possibly different labels of a related target dataset. For exam-
ple, a combination of labels from a posture dataset can be utilized to describe
the labels of an ergonomics dataset. Transfer learning can be conducted both
with interpretable and non-interpretable means. In the former case, different
HAR classes are connected with rules or structures that are semantically inter-
pretable. Thus, besides being self-learned on examples, they can also be given by
experts without requiring any examples, known as zero-shot classification [32].
In particular, recent approaches use knowledge graphs [20], attribute-class struc-
tures [2] and logical rules to connect the classes [9]. We focus on the recently
proposed probabilistic rule stacking learner (pRSL) [15] that exploits logic rules
in a probabilistic framework for the classification task. Non-interpretable trans-
fer learning usually evolves around fine-tuning of neural networks [35]. Here, a

Transfer Learning for Human Activity Recognition 165

neural network is trained on a HAR dataset to recognize a set of classes, and
for that it has to learn a way of summarizing the raw IMU data into more com-
pact form, its internal latent representation space, which is usually a black-box.
This representation space is then kept as starting point to learn the classes of a
new dataset. Thereby, it needs only a few labeled examples on the new dataset,
known as few-shot learning [7].

In this work, we focus on localizing the border between zero-shot inter-
pretable transfer learning and few-shot non-interpretable transfer learning in
HAR. Hence, we apply pRSL and fine-tuning to both a transfer from ergonomics
to logistics and to a transfer from sports to logistics. The idea to use transfer
learning in intra-logistics is motivated by the variety of emerging HAR-datasets,
that share activities and labels resembling warehousing activities [23]. Making
full use of existing data sources extends a classifier’s application potential in
warehousing without requiring cumbersome recording and annotating sessions.
Thus, the effort for taking new warehousing scenarios into account is reduced as
less new data needs to be recorded and annotated.

The paper is structured as follows: The ideas behind the applied pRSL trans-
fer learner and its training are explained in Sect. 2. Section 3 introduces the LARa
dataset for which we seek transfer learning and two anotated datasets from which
we like to gain knowledge for this task. In Sect. 4, pRSL is applied and its results
are analyzed. The paper closes with a discussion and an outlook.

2 Methods

2.1 tCNN

We choose temporal convolutional neural networks (tCNNs) [29] as deep learning
method to cast the IMU and motion capture (MoCap) data into predictions on
the labels as it proved successful in previous HAR problems [22]. Its main idea
is to learn convolution filters along the time dimension of the input time-series.
The tCNN framework has two variants: one for IMUs, called tCNN-IMU, and
one for MoCap data, called tCNN-MoCap. Apart from the dimension of the
input data, the frameworks differ in that tCNN-IMU applies one convolutional
neural network (CNN) per IMU before concatenating them together in a later
step, while tCNN-MoCap analyzes the whole body posture in one CNN.

2.2 pRSL

pRSL was recently proposed by the same authors. As the method contains a
plethora of technical ideas we refer to [15] for its explicit definition and all
detailed technicalities. Instead, we focus on describing its interpretable trans-
fer learning ideas along Fig. 1 by means of the following illustrative example:
Suppose we have three sensor set-ups, each analyzed by an individual machine
learning model: An RGB-camera C1 can distinguish locomotion w of a person
from a standing position n. Furthermore, workers wear surface electromyography

166 M. Kirchhof et al.

Sensors

Individual
Predictions

Rules

Final
Predictions

RGB sEMG IMU

C0 : wa/se/hw/hs/sc/ca C1 : w/n C2 : s/g C3 : h/c/l

s → hw/hs
p = 0.8

s → ¬(wa/ca)
p = 0.6

ca/hw → w
p = 0.9

h/l → n ∨ se/hs/sc
p = 0.8

L0 : wa/se/hw/hs/sc/ca L1 : w/n L2 : s/g L3 : h/c/l

Fig. 1. Illustrative example of interpretable transfer learning using pRSL.

(sEMG) sensors attached to their forearms C2 that can detect handling activi-
ties s and the lack thereof g. Also, a set of IMUs attached to the hands and belt
C3, each including accelerometers and gyroscopes, observe in what direction an
activity is being performed - upwards h, centered c or downwards l.

So far, data has been recorded in a conventional ’person-to-stock’ order pick-
ing system. Employees walk from a base to the retrieval locations according
to their order, pick packages and bring them back to the base where they are
consolidated. The conventional activity classes C0 would be, e.g., walking wa,
searching se, handling ha, scanning sc, and carrying ca. In this scenario, the
classes may be well recognizable using C2 or C3.

Now, the classifier shall be deployed in a two-stage picking scenario in which
the first stage is a pick-to-belt system. Here, the employees tend to put the
packages on the conveyor belt during locomotion as the handling is far easier
than taking or placing an item from a box or a shelf. The classifier trained in
the first scenario cannot properly tell walking, carrying and handling apart since
the corresponding motion pattern overlap, rendering the assessment of human
activities in the second scenario impossible. The idea rises to subdivide the
handling class ha in handling while walking hw and handling while standing hs.
But recognizing these new classes would require recording and annotating new
data. To avoid this or to reduce the dataset creation effort, we can make use of
the camera and the following rules:

– Handling in any direction is likely to happen when sEMG sensors detect
activity. This is true for both handling while walking and handling while
standing. This can be expressed as the logical formula s → hw/hs with a
probability of p = 0.8. Similarly, walking and carrying are less likely, when
sEMG sensors detect activity, that is s → ¬(wa/ca) with p = 0.6.

– carrying or walking while handling are far more likely, when the camera
detects locomotion, i.e. ca/hw → w with p = 0.9.

Transfer Learning for Human Activity Recognition 167

– Locomotion and the corresponding classes are less likely, when the IMUs
recognize handling in upwards or downwards direction, i.e. h/l → n∨se/hs/sc
with p = 0.8. This is because employees rarely walk in bent over position or
with the arms above their head.

As visualized in Fig. 1, pRSL uses these rules to interlink the previously inde-
pendent C0, C1, C2, and C3, where especially C0 has no specially trained classi-
fier and thus no prediction yet. After consolidating all information, it returns a
coherent prediction on all labels denoted as L0 − L3. In particular, L0 is now
predicted based on the states of L1, L2, and L3.

2.3 Fine-tuning

Fine-tuning [35] is a non-interpretable transfer learning technique where the
tCNN is first trained on a given reference dataset in order to learn weights of
lower layers that embed the input data into a space suitable for classification.
Then, the final classification layer is removed from the tCNN and replaced with
a layer for the target dataset’s classification. The weights of this layer are then
trained using the available annotated target data. All other layers are trained
as well, but due to the bottleneck of provided target data, they need to rely on
the pre-training performed on the reference dataset.

3 Datasets

We used the LARa [23] logistics dataset along with one domain-foreign and one
domain-related HAR dataset to study to what extent transfer learning via pRSL
is feasible. They were selected from the 61 HAR datasets surveyed in [23] using
the following inclusion criteria:

1. The sensor data must be compatible with LARa.
2. The dataset must comprise several participants.
3. The domain-related dataset’s labels must be related to LARa, and the

domain-foreign dataset’s labels must describe diverse human motion in suffi-
cient detail.

For Criterion 1, LARa offers MoCap and IMU data. Although IMUs can
be simulated at arbitrary positions using the MoCap data, [29] report poor
performance using such simulated data. Hence, for Criterion 1, datasets had
to have IMUs at positions compatible with those in LARa, or offer MoCap
data. Criterion 3 was the biggest filter as most datasets only included general
locomotion classes (e.g. standing, walking).

Finally, we selected RealDisp as domain-foreign and AndyLab as domain-
related datasets. They are described along with LARa below.

168 M. Kirchhof et al.

LARa. Our target dataset, LARa, includes 14 workers performing different
tasks in a logistics settings. As labels, six mutually exclusive activity categories
describe the workers’ current action (e.g. pushing a cart, handling items on a
centered level) and 17 binary attributes describe these actions in finer detail
(e.g. stepping, holding a bulky object), some of which are mutually exclusive.
In this work, we exclude the activity categories and focus on the attributes as
we are mainly interested in linking these to attributes of other datasets. As
input data, the dataset comprises 5 IMUs measuring tri-axial linear and angular
acceleration 100 Hz, positioned at the forearms, calves, and back, and 39 MoCap
markers measuring 3D-locations 200 Hz, positioned according to the Vicon Full-
Body Scheme [31]. We therefore correspond to these datasets as LARa-IMU and
LARa-MoCap.

The preprocessing of IMUs and MoCap data was the same as explained for
the next two datasets. We follow the original paper’s train-validation-test split,
where 8 subjects are used for training and 3 are used for validating and testing
each. Note that for IMUs, this split reduces to 4 subjects for training and 2 for
validating and testing each, because not all subjects were recorded with IMUs.
This also means that a direct comparison between IMU and MoCap data is not
possible.

RealDisp. In RealDisp [4], 17 subjects perform different sports exercises, mak-
ing it the domain-foreign dataset. It was designed to provide measurements for
both ideally placed and misplaced IMUs. However, we restricted on the ideally
placed IMUs. The dataset is labeled with 33 mutually exclusive categories giving
the current sports exercise (e.g. waist-bends, high-knees running). 9 IMUs posi-
tioned at the forearms, upper arms, calves, thighs, and back measure tri-axial
linear and angular acceleration as well as the magnetic field and orientation
50 Hz serve as input variables.

To make it compatible with LARa, the IMUs at the upper arms and thighs
were discarded along with the measurements of the magnetic field and orienta-
tion. Further, LARa’s IMUs were downsampled 50 Hz. Following [29], each IMU
channel was standardized to have zero mean and unit variance as learned on
the training data. There is no train-validation-test split in the literature. As no
potential stratification data on the subjects is reported and they all performed
the same routines, they were randomly assigned into 11 train, 3 validation and
3 test subjects.

AndyLab. AndyLab [21] serves as domain-related dataset, containing 13 work-
ers performing industrial tasks such as screwing or carrying packages in different
experiment setups. These tasks are labeled in 3 groups, not with the primary
goal of activity recognition, but for ergonomics assessment following [30]: They
describe the general posture in 6 mutually exclusive categories (e.g. sitting,
standing), an ergonomics-oriented posture in 5 mutually exclusive categories
(e.g. overhead work, forward bending) and the performed action in 8 mutually
exclusive categories (e.g. picking, carrying). The input data includes a sensor

Transfer Learning for Human Activity Recognition 169

glove, an IMU suit and MoCap markers measuring the same 39 3D-locations as
in LARa 120 Hz as well as two additional markers on each foot.

We only used the 39 3D-position markers and downsampled the measure-
ments in LARa and AndyLab to their biggest common factor 40 Hz. The further
preprocessing followed [29]: To prevent the models from memorizing which spa-
tial locations belong to which actions, all coordinates were given in relation to
the subject’s approximate center of body mass. This is defined as the middle of
the right and left posterior inferior iliac markers. Each coordinate channel was
normalized to the interval [0,1] using their minimum and maximum values in
the training data.

In 76.74% of AndyLab’s measurements, the position of at least one marker
is missing. The dataset’s authors note that this was often caused by workers
interacting with objects that covered the marker. Thus, the data is not missing
completely at random and can not simply be left out. As creating a human-
motion-aware imputation model, e.g. via expectation-maximization, exceeds this
work’s scope, we applied linear interpolation in the time dimension.

[27] provide a train-validation-test split for AndyLab. However, this split is
unbalanced: E.g., two of the three test persons are left-handed whereas only
right-handed persons are seen during training and validation. Also, the distri-
butions of categories is unbalanced, e.g. the category kneeling is seen for three
seconds during training, but for 2.7 min during testing. Hence, we constructed a
stratified train-validation-test split with 7 persons for training, 3 for validating,
and 3 for testing. The split had to fulfill the following constraints:

1. At least one left-handed person must be both in the train and in the test
data.

2. At least one male and one female worker must be both in the train, in the
validation, and in the test data.

3. The two experiment setups must be at least once both in the train, in the
validation, and in the test data.

4. Each category must be seen for at least one minute during training.

From the splits that fulfilled these criteria, the split with the most similar
conditions during training, validating, and testing was selected, as measured by
the χ2 statistic [1] between the category distributions of train, validation, and
test data. The chosen split, along with its category distributions, is reported in
the online appendix [16].

4 Application

In this section, we use predictions on previously learned categories of reference
datasets in order to classify new categories on the LARa data. We frame this
as a zero-shot problem where we aim to predict novel labels without having
seen examples for them. This task poses a strong concept shift: The classifiers
trained on reference data are not only applied to new, slightly differently dis-
tributed LARa data, but also the labels of LARa are far off the labels of the

170 M. Kirchhof et al.

reference datasets. E.g. in RealDisp, the classifier’s predictions on (by design
incorrectly) detected sports activities on the LARa data were used to find out
which work in logistics a worker performs. This is a harder task than attribute-
based descriptions of new classes and also fine-tuning, since, besides the concept
shift, pRSL did not have access to the high-dimensional tCNN-embedding of the
data, but only to the low-dimensional classifier beliefs on each category.

4.1 Experimental Setup

Manual Rules. To perform a zero-shot transfer, interpretable rules that link
the reference dataset’s labels to those of the target dataset need to be provided
to pRSL. To this, we directly linked combinations of AndyLab’s labels to combi-
nations of LARa’s labels as detailed in the online appendix. For RealDisp, this
is infeasible since RealDisp’s sport activities cannot be directly linked to LARa’s
logistics labels. Hence, we inserted a mid-layer of latent labels that describe which
body part is in motion in each sports or logistics action, as visualized in Fig. 2.
The construction of these rules, as derivated from the datasets’ documentations,
is also further explained in the online appendix.

Self-learned Rules. Besides using pRSL to apply designed rules, we also
trained it on LARa to find rules on its own. This allows a better insight into
whether the manually designed rules exploit the information stored in the refer-
ence labels, or whether better a better interpretable transfer is possible beyond
the above manual rules. pRSL was trained to find rules between the reference
and target labels using 20% of the available data, with a budget of 500 batches
of 20 samples each or a maximum training time of 44 h on ten cores of an Intel
Xeon E5-2640v4@2.40GHz CPU and 8GB RAM. Note that this used pRSL’s
ability to train when parts of the ground truths, here those for RealDisp and
AndyLab, are missing. The ideal number of rules K was found by applying a
grid search on validation data over K ∈ {10, 20, . . . , 100}.

Fine-tuning. In defining manual rules, none of LARa’s data was used. Hence,
as a comparison to the manual rules, we applied fine-tuning [35] with 1% of
LARa’s data, selected at random from all available one-second long samples. As a
comparison to the learned rules, we performed fine-tuning using 20% of the LARa
data. As an additional baseline for the zero-shot experiments, a classifier that
predicts labels in each XOR group or each binary label at random is provided.

Performance Metrics. We chose the metrics from [15] and [29] to quantify
the performance of the resulting transfer learned classifiers. As such, we report
the F1-Score for each label on LARa, as well as a weighted average (w-F1).
The weights for the average are proportional to how often each label is present
in the test data, as reported in the online appendix. As additional summary
metrics over all labels, we report the hamming loss, that is the average number

Transfer Learning for Human Activity Recognition 171

tCNN-MoCap

Walk Shoulder Level Overhead . . .

Walk → Gait ∨ Step
p = 0.6

Upwards → Shoulder Level ∨ Overhead
p = 0.6

. . .

Gait Step Upwards . . .

(a) Direct Transfer

tCNN-IMU

Waist BendsJumping JacksSide Jumps . . .

Arms Vertical →
Jumping Jacks ∨ Waist Bends

p = 0.6

Legs Horizontal →
Jumping Jacks ∨ Side Jumps

p = 0.6
. . .

Arms VerticalLegs Horizontal . . .

Legs Horizontal → Step ∨ ¬Gait
p = 0.6

Arms Vertical → Upwards ∨ . . .
p = 0.6

. . .

Gait Step Upwards . . .

(b) Indirect Transfer via Latent Labels

Fig. 2. Connection of reference labels to target labels via rules. (a) shows the direct
transfer in AndyLab where labels are domain-related (b) shows the indirect transfer
in RealDisp where the domain-foreign reference labels are first abstracted to limb
movement labels and then connected to the target labels.

172 M. Kirchhof et al.

Table 1. F1-score for LARa’s attributes using RealDisp and AndyLab as reference
datasets for transfer learning.

Legs Upper Body Arms Item Pose

Method G
a
it

C
y
cl

e

S
te

p

S
ta

n
d
in

g
S
ti

ll

U
p
w

a
rd

s

C
en

te
re

d

D
ow

n
w

a
rd

s

N
o

M
o
ti

o
n

T
o
rs

o
R

o
ta

ti
o
n

R
ig

h
t

H
a
n
d

L
ef

t
H

a
n
d

N
o

H
a
n
d

B
u
lk

y
U

n
it

H
a
n
d
y

U
n
it

U
ti

li
ty

C
a
rt

C
o
m

p
u
te

r

N
o

It
em

W
ei

g
h
te

d
A

v
er

a
g
e

Random (Baseline) 0.28 0.38 0.32 0.14 0.35 0.08 0.24 0.02 0.63 0.58 0.24 0.19 0.22 0.16 0.14 0.07 0.13 0.38

RealDisp (IMU)

Manual Rules 0.00 0.47 0.38 0.00 0.56 0.00 0.31 0.02 0.91 0.82 0.00 0.19 0.22 0.17 0.15 0.07 0.12 0.48
Learned Rules 0.10 0.39 0.56 0.00 0.77 0.00 0.10 0.00 0.91 0.82 0.00 0.08 0.52 0.00 0.16 0.00 0.23 0.52
Fine-tuning 1% 0.67 0.35 0.63 0.35 0.81 0.40 0.66 0.00 0.94 0.85 0.53 0.11 0.57 0.31 0.68 0.28 0.67 0.66
Fine-tuning 20% 0.75 0.60 0.72 0.48 0.85 0.59 0.76 0.00 0.95 0.87 0.60 0.41 0.60 0.48 0.78 0.69 0.72 0.75
Full Dataset 0.75 0.59 0.72 0.50 0.85 0.53 0.78 0.00 0.95 0.87 0.66 0.47 0.61 0.48 0.83 0.71 0.73 0.76

AndyLab (MoCap)

Manual Rules 0.58 0.42 0.08 0.32 0.53 0.54 0.34 0.02 0.93 0.84 0.00 0.00 0.00 0.19 0.18 0.07 0.14 0.48
Learned Rules 0.51 0.54 0.48 0.14 0.80 0.00 0.59 0.00 0.91 0.80 0.48 0.13 0.55 0.00 0.25 0.00 0.43 0.61
Fine-tuning 1% 0.66 0.24 0.60 0.16 0.80 0.58 0.58 0.00 0.92 0.82 0.00 0.23 0.56 0.05 0.47 0.36 0.08 0.60
Fine-tuning 20% 0.76 0.37 0.64 0.64 0.85 0.72 0.74 0.00 0.93 0.84 0.55 0.14 0.54 0.46 0.71 0.74 0.72 0.70
Full Dataset 0.77 0.47 0.68 0.65 0.86 0.73 0.75 0.00 0.94 0.84 0.59 0.25 0.55 0.47 0.72 0.72 0.72 0.72

of wrongly predicted labels, the joint-label accuracy, which is the percentage of
examples in which all labels are correct, and the log-likelihood, which indicates
how good the probabilistic estimates returned by the classifier are.

Hyperparameter Tuning. The tCNN has two hyperparameters, the weight-
decay regularizer strength and the learning rate, which we tuned in a grid-search
on validation data. The learning rate was tuned among {10−1, 10−2, 10−3, 10−4,
10−5, 10−6} and the regularizer among {1, 0, 10−1, 10−2, 10−3, 10−4, 10−5}.
Moreover, the validation data was used to apply early stopping to prevent over-
fitting. The training of the tCNNs was performed on an NVIDIA GTX1060 6GB
GPU. After training, we calibrated the tCNNs on validation data using Dirich-
let calibration [19] to ensure that the returned probabilistic estimates match the
actual performance of the tCNNs.

4.2 Quantitative Results

For each transfer learner, Table 1 shows the F1-scores for each of LARa’s cate-
gories and Table 2 reports the summary metrics across all categories.

On RealDisp, at first glance, it appears that the manual rules outperformed
the random baseline both in terms of summary metrics and the F1-scores for
labels where rules were provided. However, closer inspection reveals that the
manual rules lead to constant or purely random predictions for all labels, which
results in F1-scores of 0 and equal scores as the random baseline, respectively.
Hence, the performance is limited in comparison to the 1% fine-tuning. The

Transfer Learning for Human Activity Recognition 173

Table 2. Quality metrics for transfer learning using RealDisp and AndyLab as refer-
ence datasets. Best result per reference dataset are printed in bold.

Hamming loss Weighted F1 Log-likelihood Accuracy

Random (baseline) 0.607 0.484 −7.05 0.001

RealDisp (IMU)

Manual rules 0.448 0.484 −6.203 0.008

Learned rules 0.315 0.523 −4.448 0.076

Fine-tuning 1% 0.241 0.664 −3.138 0.154

Fine-tuning 20% 0.189 0.751 −2.239 0.278

Full dataset 0.184 0.759 −2.152 0.284

AndyLab (MoCap)

Manual rules 0.435 0.480 −6.419 0.007

Learned rules 0.295 0.607 −4.436 0.085

Fine-tuning 1% 0.284 0.596 −3.707 0.108

Fine-tuning 20% 0.224 0.700 −2.739 0.210

Full dataset 0.212 0.723 −2.529 0.229

learned rules improved over manual rules in all summary metrics by 8% to 850%,
but could not outperform the 20% fine-tuning. Comparing the fine-tuning results
given different amounts of data reveals diminishing returns: While the summary
metrics increased by 13% to 81% when comparing 1% to 20% fine-tuning, the
gap between 20% and the full dataset is just 1% to 4%.

Manual rules did not suffer from constant predictions on AndyLab. For LARa
labels that were connected to (sets of) semantically equivalent labels on Andy-
Lab, e.g. gait cycle or upwards and downwards work, the F1-score is competitive
with or outperforms that of 1% fine-tuning. Learned rules lead to an increased
F1-score in 9 of the 17 labels against manual rules, showing that further relations
between the labels were found and utilized. We provide a qualitative analysis
of these relations in Sect. 4.3. The diminishing returns of fine-tuning are also
present on AndyLab: Using 20% of the data improves the summary metrics by
17% to 94% compared to using 1%, while adding the remaining 80% increases
them by 3% to 9%.

4.3 Qualitative Analysis

To analyze the semantic meaning of learned rules, we randomly selected three
out of the 90 rules learned on AndyLab in the previous Section and showcase
them in Fig. 3. The figure reveals that pRSL did not only model within-LARa
dependencies, but transferred the information provided in the AndyLab labels,
since both AndyLab and LARa labels are present in each rule.

The first rule considers work, where the operator applies some fine manipu-
lation using both hands. The second revolves around actions where the worker

174 M. Kirchhof et al.

(Stand) ∧ (Bulky Unit / Computer / No Item) → Right Hand ∨ Left Hand ∨
(Step / Standing Still)

(Standing Still / Step) ∧ (Centered / Downwards) → (Kneeling / Lying) ∨
(Handy / Utility / No Item) ∨ Bent Forward / Bent Strongly Forward)

(Cart / No Item) ∧ (No Motion) ∧ (Walking / Standing) ∧ (No Hand) →
(No Torso Rotation)

Fig. 3. Three randomly selected self-learned rules from the AndyLab transfer learning
task along with five examples where the rule has a high impact on the classification
decision, as measured by the L1 distance to the prediction without the rule.

is leaning forward while standing to handle a utility or bulky item. The third is
harder to interpret, though appears to refer to situations in which the worker car-
ries items or pushes the cart with otherwise resting hands. Here, it is interesting
to see that pRSL used the torso rotation category, which nearly never occurred
in the data. This also happened in other rules not shown here with categories
like kneeling or lying. Aside from possibly being a fragment from training, this
might have been used to reduce the rule strength since “No Torso Rotation”
applies almost always.

Transfer Learning for Human Activity Recognition 175

4.4 Discussion

In summary, the fact that the performance of manual and learned rules is more
favorable on AndyLab than on RealDisp (see Table 2) indicates that label-based
transfer learning requires closely related domains and labels. The, by construc-
tion wrongly, detected sports categories and the coarse-grained latent labels in
RealDisp proved to be insufficient information for transfer learning. In contrast,
using the higher dimensional and more adjustable embedding space in fine-tuning
outperformed the label-based transfer learning on both datasets. For fine-tuning,
there was a notable decrease in returns when training with more data. However,
it should be noted that this does not justify recording less data in general since
the data was sampled at random from the whole dataset, and hence was scattered
across all recordings.

Finally, the examples from Sect. 4.3 show that pRSL’s label-based transfer
learning can yield interpretable rules in real world environments, though we
stress that the interpretation strategy is still unpolished

5 Conclusion

The results of our experiments showed that an interpretable label-based transfer
achieves a competitive zero-shot detection but requires the labels of the ref-
erence and target dataset to be semantically related. When moving towards
few-shot learning, non-interpretable fine-tuning allowed transfer learning even
under a big domain-shift from sports to logistics. Moreover, fine–tuned learners,
even with only a few annotated examples on the target dataset, quickly outper-
formed learned zero-shots. First results confirmed that this transfer might help
to reduce the amount of required labeled target data, which is a main cost factor
in deploying deep learning techniques to novel warehousing scenarios.

6 Outlook

To make more precise statements about the potential of interpretable or non-
interpretable transfer learning with multi-channel times series data, the method-
ology should be applied to solve related problems for other data sets, experimen-
tal set-ups and even other domains, e.g. a (back) transfer in sports, production
management etc., in subsequent research.

Moreover, beyond classification many logistics tasks are related to predicting
quantitative outcomes, i.e. regressions tasks. Considering the above-mentioned
advantages, it is tempting to exploit the applicability of different transfer learn-
ing techniques in logistics more exhaustively in the future, e.g. beside warehous-
ing [18] also for transport planning [8,14] or predictive maintenance [13,34].

176 M. Kirchhof et al.

References

1. Agresti, A.: An Introduction to Categorical Data Analysis. John Wiley, Hoboken
(2018)

2. Atzmon, Y., Chechik, G.: Probabilistic AND-OR attribute grouping for zero-shot
learning. In: Conference on Uncertainty in Artificial Intelligence (2018)

3. Avsar, H., Altermann, E., Reining, C., Rueda, F.M., Fink, G.A., ten Hompel, M.:
Benchmarking annotation procedures for multi-channel time series HAR dataset.
In: 2021 IEEE International Conference on Pervasive Computing and Communi-
cations Workshops and other Affiliated Events, pp. 453–458 (2021)

4. Banos, O., Toth, M.A., Damas, M., Pomares, H., Rojas, I.: Dealing with the effects
of sensor displacement in wearable activity recognition. Sensors 14(6), 9995–10023
(2014)

5. Calzavara, M., Glock, C.H., Grosse, E.H., Persona, A., Sgarbossa, F.: Analysis of
economic and ergonomic performance measures of different rack layouts in an order
picking warehouse. Comput. Ind. Eng. 111, 527–536 (2017)

6. Chen, C., Jafari, R., Kehtarnavaz, N.: A survey of depth and inertial sensor fusion
for human action recognition. Multimed. Tools Appl. 76(3), 4405–4425 (2017)

7. Cheng, H.T., Sun, F.T., Griss, M., Davis, P., Li, J., You, D.: NuActiv: recognizing
unseen new activities using semantic attribute-based learning. In: 11th Annual
Conference on Mobile Systems, Applications, and Services, pp. 361–374 (2013)

8. Daduna, J.R.: Automated and autonomous driving in freight transport - oppor-
tunities and limitations. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020.
LNCS, vol. 12433, pp. 457–475. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59747-4 30

9. Ding, N., Deng, J., Murphy, K.P., Neven, H.: probabilistic label relation graphs
with Ising models. In: Proceedings of the 2015 IEEE International Conference on
Computer Vision, pp. 1161–1169 (2015)

10. Feldhorst, S., Aniol, S., ten Hompel, M.: Human Activity Recognition in der Kom-
missionierung - Charakterisierung des Kommissionierprozesses als Ausgangsbasis
für die Methodenentwicklung. Logistics J. 2016(10) (2016)

11. Grosse, E.H., Calzavara, M., Glock, C.H., Sgarbossa, F.: Incorporating human
factors into decision support models for production and logistics: current state of
research. IFAC-PapersOnLine 50(1), 6900–6905 (2017)

12. Grosse, E.H., Glock, C.H., Neumann, W.P.: Human factors in order picking system
design: a content analysis. IFAC-PapersOnLine 48(3), 320–325 (2015)

13. Guo, L., Lei, Y., Xing, S., Yan, T., Li, N.: Deep convolutional transfer learning
network: a new method for intelligent fault diagnosis of machines with unlabeled
data. IEEE Trans. Industr. Electron. 66(9), 7316–7325 (2018)

14. Huang, H., Pouls, M., Meyer, A., Pauly, M.: Travel time prediction using tree-
based ensembles. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020. LNCS,
vol. 12433, pp. 412–427. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59747-4 27

15. Kirchhof, M., Schmid, L., Reining, C., ten Hompel, M., Pauly, M.: pRSL: inter-
pretable multi-label stacking by learning probabilistic rules. In: Uncertainty in
Artificial Intelligence. PMLR (2021). (in press)

16. Kirchhof, M.: GitHub repository for this article (2021). https://github.com/
mkirchhof/rslAppl

17. de Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse
order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)

https://doi.org/10.1007/978-3-030-59747-4_30
https://doi.org/10.1007/978-3-030-59747-4_30
https://doi.org/10.1007/978-3-030-59747-4_27
https://doi.org/10.1007/978-3-030-59747-4_27
https://github.com/mkirchhof/rslAppl
https://github.com/mkirchhof/rslAppl

Transfer Learning for Human Activity Recognition 177

18. Krüger, A., Feldmann, F., Pauly, M., ten Hompel, M.: Einsatzmöglichkeiten
maschineller Lernverfahren in einer dezentral organisierten Lagerverwaltung auf
Basis intelligenter Behälter. Logistics J. Proc. 2020(12) (2020)

19. Kull, M., Perello Nieto, M., Kängsepp, M., Silva Filho, T., Song, H., Flach, P.:
Beyond temperature scaling: obtaining well-calibrated multi-class probabilities
with Dirichlet calibration. Adv. Neural. Inf. Process. Syst. 32, 12316–12326 (2019)

20. Liu, L., Zhou, T., Long, G., Jiang, J., Zhang, C.: Attribute propagation network
for graph zero-shot learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34(04), pp. 4868–4875 (2020)

21. Maurice, P., et al.: Human movement and ergonomics: an industry-oriented dataset
for collaborative robotics. Int. J. Robot. Res. 38(14), 1529–1537 (2019)

22. Rueda, F.M., Grzeszick, R., Fink, G.A., Feldhorst, S., Ten Hompel, M.: Convo-
lutional neural networks for human activity recognition using body-worn sensors.
Informatics 5(2), 26 (2018)

23. Niemann, F., et al.: LARa: creating a dataset for human activity recognition in
logistics using semantic attributes. Sensors 20(15), 4083 (2020)

24. Ordóñez, F., Roggen, D.: Deep convolutional and LSTM recurrent neural networks
for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

25. Reining, C., Niemann, F., Rueda, F.M., Fink, G.A., ten Hompel, M.: Human activ-
ity recognition for production and logistics - a systematic literature review. Infor-
mation 10(8), 245 (2019)

26. Reining, C., Rueda, F.M., Niemann, F., Fink, G.A., ten Hompel, M.: Annotation
performance for multi-channel time series HAR dataset in logistics. In: 2020 IEEE
International Conference on Pervasive Computing and Communications Work-
shops, pp. 1–6 (2020)

27. Ribeiro, P.M.S., Matos, A.C., Santos, P.H., Cardoso, J.S.: Machine learning
improvements to human motion tracking with IMUs. Sensors 20(21), 6383 (2020)

28. Roggen, D., et al.: Collecting complex activity datasets in highly rich networked
sensor environments. In: Seventh International Conference on Networked Sensing
Systems (INSS), pp. 233–240 (2010)

29. Rueda, F.M., Fink, G.: From human pose to on-body devices for human-activity
recognition. In: 26th International Conference on Pattern Recognition (ICPR), pp.
10066–10073 (2021)

30. Schaub, K., Caragnano, G., Britzke, B., Bruder, R.: The European assembly work-
sheet. Theor. Issues Ergon. Sci. 14(6), 616–639 (2013)

31. Vicon: Full Body Modeling with Plug-in Gate (2017). https://docs.vicon.com/
display/Nexus26/Full+body+modeling+with+Plug-in+Gait. Accessed 16 Mar
2021

32. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a compre-
hensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal.
Mach. Intell. 41(9), 2251–2265 (2018)

33. Yordanova, K., et al.: Challenges in Annotation of useR Data for UbiquitOUs
Systems: Results from the 1st ARDUOUS Workshop (2018). arXiv:1803.05843

34. Zhang, A., et al.: Transfer learning with deep recurrent neural networks for remain-
ing useful life estimation. Appl. Sci. 8(12), 2416 (2018)

35. Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Dive into Deep Learning (2020)

https://docs.vicon.com/display/Nexus26/Full+body+modeling+with+Plug-in+Gait
https://docs.vicon.com/display/Nexus26/Full+body+modeling+with+Plug-in+Gait
http://arxiv.org/abs/1803.05843

A Multi-periodic Modelling Approach
for Integrated Warehouse Design

and Product Allocation

Martin Scheffler, Lisa Wesselink(B), and Udo Buscher

Faculty of Business and Economics, TU Dresden, 01069 Dresden, Germany
{martin.scheffler,lisa.wesselink,udo.buscher}@tu-dresden.de

http://www.industrielles-managment.de

Abstract. Consumers today expect supermarkets to offer a wide vari-
ety of items at favourable prices and with consistent availability. These
expectations lead to major capacity challenges for distribution centres
responsible for replenishing goods since consumer demand fluctuates
weekly. Therefore, we investigate an integrated warehouse design and
product allocation problem for a distribution centre in the retail food
industry. For this purpose, we formulate a multi-periodic mixed-integer
program that reflects the flow of goods within the distribution centre
and, thus, explicitly captures daily fluctuations in demand. The suitabil-
ity of the approach is demonstrated using modified data from a distribu-
tion centre in Germany. The results show that a static approach violates
the weekday-specific capacity restrictions and that only a multi-periodic
approach can meet the requirements of practice. In analyzing the real-
world case we selected, the trade-off between handling and transport
costs reveals that the automated storage and retrieval system is fully
utilized. Interestingly, it shows that, even considering 20,000 different
items, the problem can be solved in seconds using the presented model
formulation.

Keywords: Warehouse design · Product allocation · Integrated
approach · Mixed integer programming · Decision support

1 Introduction

In recent decades, warehouses have evolved from temporary storage facilities
to complex distribution centres as an essential part of the supply chain [2]. In
addition to warehousing, one of the greatest planning challenges in food retail-
ing is picking items for individual stores. For the most-efficient commissioning
possible, several storage and handling concepts (referred to as flows) have been
developed over the years to meet the different characteristics of individual items
(e.g. throughput speeds, dimensions). Due to limited resources (e.g. technical
limits of the equipment, number of picking locations), not every item can be
assigned to the most cost-efficient flow through the warehouse. In addition, the
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 178–191, 2021.
https://doi.org/10.1007/978-3-030-87672-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_12

Multi-periodic Integrated Warehouse Design and Product Allocation 179

available space can be divided very flexibly between the individual flows, creat-
ing a highly complex planning problem that requires automated decision-making
support. Both, capacity restriction and flexibility of the space use avoid the use
of simple assignment heuristics for allocating products. A suitable approach for
combining the allocation of space (warehouse design) and the allocation of prod-
ucts was presented by [7]; they considered one year as a single-period planning
horizon and only space as a resource.

In practice product demand is subjected to weekday-dependent fluctuations.
Thus, the main contribution of this paper is a new multi-periodic modelling
approach that takes these fluctuations into consideration. Further, this approach
enables us to integrate several technical restrictions and requirements related to
the flow through an automated storage and retrieval system (ASRS). For prac-
tical application, a trade-off emerges from the transportation systems utilized to
move products from the distribution centre to the markets. Picking in high-bay
warehouses is traditionally done directly onto pallets (term refers to a manual,
conventional pallet warehouse in the following), which are then transported to
stores. In contrast, in automated systems which often consist of a high-bay ware-
house, picking is partially conducted in other transport systems. In the selected
case, this involves small containers that cause greater volume losses compared to
transport on pallets. The result is that the usually lower handling or picking costs
in automated storage are offset by higher transport costs to markets. Therefore,
our last contribution considers managerial insights on interdependence caused
by the cost structure occurring in practice.

The paper is structured as follows: Sect. 2 provides a brief literature review
focussing on the combined consideration of warehouse design and product allo-
cation; in Sect. 3, we describe the problem in detail; Sect. 4 introduces the math-
ematical problem formulation; and finally a real-world case is described and the
multi-periodic approach tested against the single-period variant for evaluating
the improvements. Further, the cost interdependence of transport costs is dis-
cussed in detail, followed by Sect. 6, which summarizes the paper and briefly
discusses further research.

2 Literature Review

Technical evolutions of the past three decades have led to more integrated and
automated warehousing systems, with an increased demand for in-depth analysis
regarding, e.g. the planning of operations [8]. In this context, both storage and
picking processes form the core of the warehouse and significantly affect perfor-
mance and operating costs [5,15]. Therefore, the design of the warehouse has to
be considered as a basis for the operational system (with the aim of obtaining
high performance at low cost) [1,2,12]. The integrated approach determining
size and to allocate items to different storage areas as seen in [7] and as deployed
in this paper can be classified as ’infrastructure design’. It is important to dis-
tinguish this type of problem from the so-called storage-location assignment
problem, which aims to determine a distinct location inside a storage type (i.e.
flow) for an item [4]. A thorough review has been provided by, e.g. [10].

180 M. Scheffler et al.

Similar to the problem introduced herein is the forward-reserve problem,
which deals with the allocation of items and their quantity to the forward (effi-
cient for order picking) and reserve (efficient for storing) areas while trading off
the costs of order picking and internal replenishment as presented by [3] or [14].
Possible additional considerations include the compatibility of different items or
item groups and three-dimensional slots, as examined by [6]. Also relevant in
the context of this paper is the approach by [9], who focused on the available
space in a warehouse with the option of renting additional space under item-
specific shortage probabilities. Moreover, integrated approaches, as in [7,11,13],
play a vital role for combining warehouse design and operations, e.g. by simul-
taneously determining the warehouse layout and its control policies such as the
applied storage policy. Nevertheless, in contrast to the present paper, none of the
above-mentioned contributions has taken into consideration multi-periodicity or
a combination of automated and ‘manual’ storage areas for planning.

3 Problem Description

We consider a distribution centre in the retail food industry that consists of
two storage areas: a high-bay storage (HBS) area and an ASRS. The physical
dimension of the latter is fixed. The ground floor of the HBS area is used for
forward storage acting as picking locations. It is possible to either pick directly
from pallets (pallet picking, PP) or to set up sloping shelves (shelf picking, SP)
to increase the number of available picking locations. The upper levels of the
HBS are used as reserve storage, from which the replenishment of the items on
the ground floor takes place. Figure 1 illustrates this; note that, in practice, there
is more than one storage level above the ground-floor level.

None of the items require refrigeration or frozen storage. On the receiving
side of the warehouse, items arrive from producers on pallets (i.e. on each pallet,
there is only one type of item). Each type of item has to be assigned to one flow
through the warehouse (i.e. ASRS, PP or SP). Depending on this decision, the
items pass through different processes, thereby resulting in different costs. In the
HBS (i.e. PP and SP), an incoming pallet has to be stored in the upper levels by
a forklift first. For PP flow, as soon as the current pallet in the picking location
of a particular item is empty, a new one is replenished from the upper levels. In
the SP flow, no entire pallet can be replenished, only the quantity that fits onto
the sloping shelf. In both flows, picking takes place onto mixed pallets for stores
on the shipping side. In contrast, the items are first repacked from pallets into
boxes for storage for the ASRS on the receiving side.

Each item must either be stored in and picked from the ASRS or requires
storage and picking from a picking location in the HBS. This means that the
capacity limitation here is not the storage space itself but the number of picking
locations, which is dependent on the shares of PP and SP flows of the HBS.
One pallet position in the PP flow can be substituted by several sloping shelves,
whereby this decision on the distribution of the HBS area is also considered later
in this work. Figure 2 illustrates the structure of the distribution centre and the

Multi-periodic Integrated Warehouse Design and Product Allocation 181

Fig. 1. Possible uses of the ground-floor level of the HBS

Receiving

Shipping

HBSSP PP ASRS

Fig. 2. Item flows in the distribution centre

three possible item flows. The dashed line represents the flexibility of area usage
in HBS.

On the shipping side, picking using the ASRS involves moving items to small
containers specially designed for the stores. Based on this, the (volume-based)
transport costs to the stores must also be taken into account since the containers
result in more volume loss than the pallets during transport by truck. Without
transportation costs, the most-favourable allocation would be for all items in
the ASRS. In the combined consideration of both types of costs, several items
result in the lowest (total) costs if they are assigned to PP. In practice, frequent

182 M. Scheffler et al.

discussions take place among planners as to whether it makes more sense to only
partially utilize the ASRS (i.e. assigning fewer items to ASRS) or to operate it
at its technical performance limit (i.e. assigning many items to ASRS).

The planning problem occurs on a tactical level and is usually solved semi-
annually to annually. In some cases, it is also solved at short notice to be able to
assign new item types. Item demand is subject to weekday-dependent fluctua-
tions. Over the course of a year, highly similar weekly patterns can be observed
for about 40 weeks, while significant fluctuations in demand occur, for example,
around Christmas and New Year celebrations. However, these fluctuations are
managed by additional capacity increases and other operational actions (e.g.
special cross-docking areas) and are generally not part of the planning problem.
Since the daily output quantity of the ASRS is limited from a technical perspec-
tive, taking weekday-dependent fluctuations into consideration when planning is
inevitable. The average output quantities of a standard six-day week (the distri-
bution centre is closed on Sundays) are thus used as input data. Capacity limits
must be respected during planning for each weekday.

4 Mathematical Formulation

To model the considered problem, we use the notation shown in Table 1. The
input data used equal the list of parameters.

The objective (1) minimizes the total costs over all weekdays.

min
∑

t∈T

∑

l∈L

∑

a∈A
Cal · Kat · xal. (1)

The total costs for handling an item depend on the flow and on the item itself.
Equation (2) shows the composition of the costs. The relationship between the
different cost types and flows is explained and displayed in detail in Sect. 5.3.

Cal = Cstoring
al + Creplenish

al + Cpicking
l + Ctransport

l · Va (2)

The assignment of an item to a flow determines the picking costs, it is therefore
assumed that the costs for picking a unit are independent of the item type. We
will refer to the sum of Cstoring

al , Creplenish
al and Cpicking

l as handling costs. The
transportation costs Ctransport

l · Va depend on the volume of a unit (depending
on the item type) and the flow, as described in Sect. 3.

Items that are stored in the ASRS must be repacked into boxes. Analogously
to picking, the costs are independent of the item itself. If an item is stored in
HBS, the incoming pallet has to be fork-lifted to the storage levels. The costs
depend on the number of units on the incoming pallet.

Cstoring
al =

{
Crepacking if l = [ASRS]
Cfork-lifting · 1

Fa
else.

(3)

Multi-periodic Integrated Warehouse Design and Product Allocation 183

Table 1. Symbols

Sets

A Set of all items a

L Set of all flows l; L = {[ASRS], [PP], [SP]}
L̄a Set of all inappropriate flows for item a

T Set of all (work)days t

Parameter

R Number of picking locations in HBS, if all used for PP

USP Number of picking locations resulting from replacing a
PP zone with an SP zone

M[ASRS] Number of boxes available in ASRS

Ma Max. unit quantity of item a that fits in one box

Kat Average unit quantity of item a picked on day t

Pa Average number of units picked in one pick

Fa Number of units of item a on an incoming pallet

Ba Number of units per replenishment of item a to a sloping
shelf

Ga Number of picking locations in HBS required for item a

Va Volume of one unit of item a

Ad Max. working time on one day in hours

A2d Max. cumulated working time on two consecutive days in
hours

Aw Max. cumulated working time per week in hours

DASRS Max. number of moved boxes per hour (ASRS)

Cstoring
al Costs for storing one unit of item a in storage l

Crepacking Costs for repacking one unit in boxes for storage [ASRS]

Cfork−lifting Costs for moving a pallet to the storage levels of HBS by
a forklift

Creplenish
al Costs for replenishing one unit of item a in storage l

Creplenish
[PP]

Costs for replenishing one pallet to a PP zone

Creplenish
[SP]

Costs for refilling the shelf of a SP zone

Cpicking
l Costs for picking one unit from storage l

Ctransport
l Transport costs of one dm3 in storage l

Cal Total costs for handling item a in storage l

Variables

xal Binary, equals 1, if item a is assigned to storage l,
otherwise 0

zl Continuous, share of storage places assigned to storage
type l

p[ASRS]t Continuous, resulting number of box movements in ASRS
on day t (dependent auxiliary variable)

184 M. Scheffler et al.

Similar considerations apply to replenishment. For PP, a complete pallet is
moved to the picking location. For SP, only a specific number of units is replen-
ished to the shelves. If the item is assigned to ASRS, replenishment is not nec-
essary.

Creplenish
al =

⎧
⎪⎨

⎪⎩

0 if l = [ASRS]
Creplenish

[PP] · 1
Fa

if l = [PP]

Creplenish
[SP] · 1

Ba
if l = [SP].

(4)

Constraints (5) and (6) model the item assignment and the warehouse design.
Here, the model’s similarity to the structure used by [7] becomes clear. The rest
of the model differs significantly.

∑

l∈L
xal = 1 ∀ a ∈ A (5)

z[PP] + z[SP] ≤ 1 (6)

Constraint (7) avoids the assignment of some items to flows. For example, based
on practicality, items such as edible oils or rice are stored in the ASRS reluc-
tantly, as considerable cleaning is necessary in the event of damage or spillage.
Because of the short computing times required to solve the model (see Sect. 5),
sensitivity analyses can be used efficiently in practical planning for this purpose
(i.e. determining the extra costs for restricting certain items from an ASRS).

xal = 0 ∀ a ∈ A, l ∈ L̄a (7)

Constraints (8) and (9) link variables, z, to the available space in the distribu-
tion centre. For some items, multiple picking locations are required in HBS for
operational reasons.

∑

a∈A
Ga · xa[PP] = R · z[PP], (8)

∑

a∈A
Ga · xa[SP] = USP · R · z[SP], (9)

Constraint (10) calculates the daily number of box movements in the ASRS.
Constraint (11) limits this to the technical limit, which is subject to daily flex-
ibility spread over the week. This is modelled by Constraints (12) and (13).
Index t̂ represents the day before t and is represented by (t − 1) mod |T |. For
the parameters related to working time applies 2 · Ad ≥ A2d and 6 · Ad ≥ Aw

meaning that the maximum cumulated working time of two consecutive days (or
one week) has to be less than or equal to the maximum working time of two (or
six) individual days . This allows maintenance to be distributed flexibly over the
week and also facilitates the handling of peaks.

Multi-periodic Integrated Warehouse Design and Product Allocation 185

∑

a∈A

Kat

Pa
· xa[ASRS] = p[ASRS]t ∀ t ∈ T . (10)

p[ASRS]t ≤ Ad · DASRS ∀ t ∈ T , (11)

p[ASRS]t̂ + p[ASRS]t ≤ A2d · DASRS ∀ t ∈ T , (12)
∑

t∈T
p[ASRS]t ≤ Aw · DASRS, (13)

A second capacity limit for the ASRS results from the number of boxes. Con-
straint (14) limits the number of required boxes to the number of available
boxes. To ensure continuous operation, each item must be available in at least
five boxes. The weekly maximum of outgoing units of each item a is shown by
Kmax

a = max
t∈T

Kat.

∑

a∈A
max

(
5,

⌈
Kmax

a

Ma

⌉)
· xa[ASRS] ≤ M[ASRS]. (14)

Finally, Constraints (15)–(17) state the domains:

xal ∈ {0, 1} ∀ a ∈ A, l ∈ L (15)
p[ASRS]t ≥ 0 ∀ t ∈ T (16)

0 ≤ zl ≤ 1 ∀ l ∈ L \ [ASRS] (17)

The complete optimization problem is represented by min. (1) s.t. (5)–(17).

5 Computational Analysis

5.1 Experimental Design

The mathematical formulation is solved by Gurobi 9.1 using the C#-API on an
Intel Core i7-3770 CPU and 8 GB RAM. We consider the real-world case of a
distribution centre in Germany with almost 20,000 items. An initial analysis of
the cost structure is visualized by the pie chart at the centre of Fig. 3. The share
of items for which each of the three flows is the most economical is shown. Note
that SP cannot be the least costly flow for any item because of the replenishment
process. The three outer rings represent the assignment restrictions with respect
to Constraint (7). The shares of items marked in white must not be assigned
to the respective flow. For easy referencing of the shares, we have labelled them
alphabetically. The interpretation of the figure can be well illustrated by (e):
9% of the items can be assigned to either ASRS or PP. An assignment to SP
is prohibited (e.g. because the items are too large for the shelves). As another
example, 52% of the items can be aggregated in (d), thereby implying that the
lowest costs are incurred when these items are assigned to the ASRS. Never-
theless, an assignment to each of the flows (SP, PP or ASRS) is possible. By
contrast, although the items in (c) can also be assigned to every flow, assign-
ment to PP is the least costly. For all items in (e) applies Ca[ASRS] ≤ Ca[PP]. The

186 M. Scheffler et al.

items in (a) and (f) could be ignored in the optimization process (combined with
a corresponding capacity reduction), but they are included for clarity. Gurobi
automatically removes the associated variables in a presolve step.

3% (a)

23% (b)

2% (c)

52% (d)

9% (e)

11% (f)

PP

SP

ASRS

Fig. 3. Cost structure and assignment restrictions of the considered real-world case

We refer to solving the model with T = {Mo, Tu, We, Th, Fr, Sa} as using a
multi-periodic approach. For comparison, we also solve the model with |T | = 1
and refer to this as a single-periodic approach. Note that, in this case, Constraint
(11) dominates (12) and (13) automatically. We use the average values from
all weekdays as input data. This is the same as the single-periodic approach
used by [7]. In a first step, we compare both variants. The resulting costs are
considered in monetary units or cost points respectively. Thus, the objectives do
not represent real cash flows but only reflect the ratio. For simplification, we have
therefore omitted the specification of units. A second evaluation is performed for
the capacity utilization of the ASRS with a special focus on the two different
transport systems to markets (pallets and containers).

Multi-periodic Integrated Warehouse Design and Product Allocation 187

5.2 Single-Periodic Approach vs. Multi-periodic Approach

Solving the single-periodic version with a daily uptime of 24 h of the ASRS results
in costs of 40,515.70. This is equal to 243,094.20 for a six-day week. Reduc-
ing the uptime to 20 h incurs almost identical daily (weekly) costs of 40,552.79
(243,316.74). Solving the multi-periodic version with a daily uptime limit of 24 h,
a two-day limit of 40 h and a weekly limit of 120 h results in costs in the amount
of 243,714.63. In all automatically generated solutions by solving the model, a
maximum of seven items were assigned to SP. Therefore, SP is not visualized and
discussed in detail in the following. Note that the fact that SP is almost never
used in the optimal solutions does not mean that design Constraints (6), (8)
and (9) should not be considered. This simply means that there are no capacity
bottlenecks in the current product mix that would require more-extensive use of
SP.

For a better understanding of the differences between the single-periodic
and multi-periodic formulations, an illustrative example is provided in Table 2.
By assuming one box movement per hour, the maximum technical limit of the
ASRS is 24 box movements per day. The single-periodic approach is based on
the average values, and it is clear that the limit is respected even if all items
are assigned to the ASRS. In contrast, it becomes obvious that the technical
limits will be exceeded on a daily basis on Monday, Tuesday and Wednesday. As
a solution, only the following combined assignments of items to the ASRS are
possible: {1;2}, {1;3}, {2;3}, {3;4}. Thus, it can be seen that the shortcomings
of the static single-periodic model can only be overcome with a multi-periodic
approach.

Table 2. Example of (average) unit throughput Kat and K̄a

Item Mo Tu We Th Fr Sa AVG

1 15 9 9 5 3 1 7.00

2 5 13 5 5 5 5 6.17

3 5 7 1 0 0 0 2.17

4 19 12 10 5 3 1 8.33

Sum 44 41 25 15 11 7 23.67

In the following, we take another look at our practical example. Figure 4
shows the resulting number of picks for the ASRS and PP. For the ASRS, the
number of picks equals the total daily number of box movements (bm), which is
restricted to a technical limit determined by 24 h ·3200 bm/h; this is represented
by the horizontal line.

In the solution of the single-periodic version with a limit of 24 h uptime,
this technical limit is exceeded significantly on Monday and Tuesday. Thus, this
solution is not feasible in practice. Even with the solution with an uptime limit

188 M. Scheffler et al.

manual solution

20

40

60

80

Mo Tu We Th Fr Sa

single-periodic (24h)

20

40

60

80

Mo Tu We Th Fr Sa

single-periodic (20h)

20

40

60

80

Mo Tu We Th Fr Sa

multi-periodic

20

40

60

80

Mo Tu We Th Fr Sa

ASRS PP exceeding the technical daily limit

Fig. 4. Daily number of picks in thousands

of 20 h, the absolute technical limit of 24 uptime hours is exceeded on Tuesday.
This solution leads to considerable capacity bottlenecks on Monday and Tuesday
and is, therefore, also not feasible in practice. Of course, for both solutions, the
respective limit is adhered to on a weekly average. For practical application,
however, the day-to-day consideration of a complete week is unavoidable.

Since the cost difference between the single- and the multi-periodic version
is less than 0.2%, it can be said that it is possible to keep the technical capacity
limits of the ASRS at the same cost. Both variants can be solved in about
one second; this is caused by the very strong linear relaxation of the problem
(243,711.30 for the standard week). Compared to the capacity limits (i.e. the
technical limit in the ASRS and the space limit in HBS), the impact of a single
item is extremely small. This leads to the fact that, inherent in the LP solution, a
large number of the variables already take integer values. Roughly speaking, only
a very small number of items must be split in the LP solution; this makes solving
with branch and bound strategies much easier. Therefore it can be assumed that
no special heuristics need to be developed for problems of this kind.

The solution provided by the multi-periodic approach is visualized in Fig. 5.
The average throughput speed (K̄a = 1/T ·∑t∈T Kat) is plotted against the item
size (Va). Small and slow-moving items are, preferably, assigned to the ASRS,
whereas larger, slow-moving items are more likely to be found in PP. In the case
of fast-moving items (right side of both graphs), it can be seen that, more often,
they tend to be assigned to the ASRS regardless of volume. However, it should
be noted that there are separate cross-docking areas in the distribution centre
for extremely fast-moving items (e.g. beverages), which are generally not part of
the optimization considered here.

Multi-periodic Integrated Warehouse Design and Product Allocation 189

ASRS

K̄a

Va

10

20

30

30 60 90 120

PP

K̄a

Va

10

20

30

30 60 90 120

128 1

Fig. 5. Assigned number of items of (c), (d) and (e)

5.3 Cost Effects Depending on the Capacity Utilization of the
ASRS

The general cost structure for the transportation related to the different trans-
port systems to markets used in the HBS (pallet) and ASRS (container) is shown
by Ctransport

[PP] = Ctransport
[SP] ≤ Ctransport

[ASRS] . This is in contrast to the handling costs

shown by Chandling
al = Cstoring

al + Creplenish
al + Cpicking

l with the following cost
structure: Chandling

[ASRS] ≤ Chandling
[PP] ≤ Chandling

[SP] . In practice, these counteractive cost
structures lead to intensive discussions about the trend in costs as the utilization
of the ASRS increases. Therefore, Fig. 6 shows the cost trend and composition
for increasing utilization of the ASRS.

110

120

130

140

150

uptime limit for ASRS

4 8 12 16 20 24 28

handling costs

transportation costs

240

245

250

255

260

uptime limit for ASRS

4 8 12 16 20 24 28

total costs

Fig. 6. Change in costs for increasing ASRS utilization

The data were generated by solving the multi-periodic version without con-
sidering Constraints (12) and (13) for an easier interpretation. The uptime limits
correspond to an increase in the utilization of ASRS with a constant performance
(DASRS). Except for the values for 28 h, these correspond to an uptime limit

190 M. Scheffler et al.

of 24 h with an increased performance, which cannot be maintained over a long
period from a technical perspective. However, we have included this value in
order to reflect the global cost optimum.

As utilization of the ASRS increases, handling costs fall and transport costs to
markets rise. When the cost optimum is reached, the additional transport costs
can no longer be compensated for by savings in handling when using containers.
This knowledge about the shifting of costs from the warehouse to transport rep-
resents considerable added value for planners and can be gained only through
the use of an automated planning process. Furthermore, this information should
be included in future evaluations of transport systems such as containers. For
example, optimizing the standard week (Ad = 24, A2d = 40, Aw = 120) without
taking the transportation costs into account leads to handling costs of 118,451.31.
Assuming that all items are transported on pallets results in additional trans-
portation costs of 113,969.09. Compared to the results distinguishing between
both transport systems (total costs 243,714.63), the containers lead to a cost
increase of 11,292.86, which corresponds to 4.9% of the total costs. Of course,
the containers can offer benefits at other points in the supply chain (e.g. due
to different costs occurring during handling when placing items in the store).
Nevertheless, a concrete consideration for future deployment can be made, and
the shift of costs between the sub-processes can be analyzed.

6 Summary

This paper presents a multi-periodic mixed-integer formulation for the integrated
product assignment and warehouse design problem. In cooperation with a Ger-
man food retailer, the formulation was developed, implemented, tested and eval-
uated in practice. Based on a real-world case, the inevitability of a multi-periodic
approach was demonstrated. Further, several technical requirements for an ASRS
are considered and integrated for the first time. From a managerial point of
view it is of utmost importance to consider the relationship between costs for
transportation to the markets and handling costs in a warehouse when mak-
ing decisions. In general, small items with a low throughput speed are assigned
to ASRS (low handling costs and high transport costs) whereby large and slow
items are assigned to PP (cost structure vice versa). If there is sufficient capacity
the utilization of SP is avoided because of the costly replenishment process.

The direction of future research is twofold. The first is the integration of
additional practical requirements; this includes, in particular, a limitation and
distribution of the work capacity in high-bay storage. Any capacity peaks that
arise can be compensated for by short-term increases in staff, which means that
these limitations have not yet been taken into account. With increasing staff
shortages, capacity restrictions will also have to be expected here in the future.
The second and somewhat more significant point is the fact that modelling has,
thus far, been performed for only the single distribution centre under consider-
ation, but in practice, not every distribution centre is equipped with an ASRS.
To still be able to take advantage of the cost benefits of an ASRS, several cen-
tres can cooperate. This results in more-complex flows, which are reflected in a

Multi-periodic Integrated Warehouse Design and Product Allocation 191

more complicated form in the capacity restrictions. It also offers the possibility
of splitting product flows so that the capacities of both warehouses can be fully
utilized. However, this makes modelling more difficult, and whether a model-
based solution with state-of-the-art solvers is still possible without further effort
requires further research and examination.

References

1. Baker, P., Canessa, M.: Warehouse design: a structured approach. Eur. J. Oper.
Res. 193(2), 425–436 (2009)

2. De Koster, R.B.M., Johnson, A.L., Roy, D.: Warehouse design and management.
Int. J. Prod. Res. 55(21), 6327–6330 (2017)

3. Gu, J., Goetschalckx, M., McGinnis, L.F.: Solving the forward-reserve allocation
problem in warehouse order picking systems. J. Oper. Res. Soc. 61(6), 1013–1021
(2010)

4. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: a
comprehensive review. Eur. J. Oper. Res. 177(1), 1–21 (2007)

5. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse design and per-
formance evaluation: a comprehensive review. Eur. J. Oper. Res. 203(3), 539–549
(2010)

6. Guerriero, F., Pisacane, O., Rende, F.: Comparing heuristics for the product allo-
cation problem in multi-level warehouses under compatibility constraints. Appl.
Math. Model. 39(23), 7375–7389 (2015)

7. Heragu, S.S., Du, L., Mantel, R.J., Schuur, P.C.: Mathematical model for ware-
house design and product allocation. Int. J. Prod. Res. 43(2), 327–338 (2005)

8. Kumar, S., Narkhede, B.E., Jain, K.: Revisiting the warehouse research through
an evolutionary lens: a review from 1990 to 2019. Int. J. Prod. Res. 1–23 (2021)

9. Lee, M.K., Elsayed, E.: Optimization of warehouse storage capacity under a dedi-
cated storage policy. Int. J. Prod. Res. 43(9), 1785–1805 (2005)

10. Reyes, J., Solano-Charris, E., Montoya-Torres, J.: The storage location assignment
problem: a literature review. Int. J. Ind. Eng. Comput. 10(2), 199–224 (2019)

11. Roodbergen, K.J., Vis, I.F., Taylor, G.D., Jr.: Simultaneous determination of ware-
house layout and control policies. Int. J. Prod. Res. 53(11), 3306–3326 (2015)

12. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G.J., Mantel, R., Zijm,
W.H.: Warehouse design and control: framework and literature review. Eur. J.
Oper. Res. 122(3), 515–533 (2000)

13. Strack, G., Pochet, Y.: An integrated model for warehouse and inventory planning.
Eur. J. Oper. Res. 204(1), 35–50 (2010)

14. Van den Berg, J.P., Sharp, G.P., Gademann, A., Pochet, Y.: Forward-reserve allo-
cation in a warehouse with unit-load replenishments. Eur. J. Oper. Res. 111(1),
98–113 (1998)

15. Van den Berg, J.P., Zijm, W.H.: Models for warehouse management: classification
and examples. Int. J. Prod. Econ. 59(1–3), 519–528 (1999)

New Valid Inequalities
for a Multi-echelon Multi-item Lot-Sizing
Problem with Returns and Lost Sales

Franco Quezada1,2(B), Céline Gicquel3, and Safia Kedad-Sidhoum4

1 Sorbonne Université, LIP6, 75005 Paris, France
2 Universidad de Santiago de Chile, LDSPS, Santiago, Chile

franco.quezada@usach.cl
3 Université Paris Saclay, LISN, 91190 Gif-sur-Yvette, France

celine.gicquel@lri.fr
4 CNAM, CEDRIC, 75003 Paris, France

safia.kedad sidhoum@cnam.fr

Abstract. This work studies a multi-echelon multi-item lot-sizing prob-
lem with remanufacturing and lost sales. The problem is formulated as a
mixed-integer linear program. A new family of valid inequalities taking
advantage of the problem structure is introduced and used in a cus-
tomized branch-and-cut algorithm. The provided numerical results show
that the proposed algorithm outperforms both the generic branch-and-
cut algorithm embedded in a standard-alone mathematical solver and a
previously published customized branch-and-cut algorithm.

Keywords: Production planning · Lot-sizing · Remanufacturing ·
Mixed-integer linear programming · Valid inequalities

1 Introduction

Industrial companies face an increasing pressure from customers and govern-
ments to become more environmentally responsible and mitigate the environ-
mental impact of their products. One way of achieving this objective is to reman-
ufacture the products once they have reached their end of life. Remanufacturing
is defined as a set of processes transforming used products into like-new prod-
ucts, mainly by rehabilitating damaged components. By reusing the materials
and components embedded in used products, remanufacturing both contributes
in reducing pollution emissions and natural resource consumption, making pro-
duction processes more environment-friendly.

The present work considers a remanufacturing system involving three pro-
duction echelons: disassembly of used products brought back by customers, refur-
bishing of the recovered parts and reassembly into like-new finished products. We

This work was partially funded by the National Agency for Research and Development
(ANID)/Scholarship Program/DOCTORADO BECAS CHILE/2018 - 72190160.

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 192–207, 2021.
https://doi.org/10.1007/978-3-030-87672-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_13

Valid Inequalities for Lot-Sizing with Remanufacturing 193

aim at optimizing the production planning for the corresponding three-echelon
system over a multi-period horizon. Within a remanufacturing context, pro-
duction planning includes making decisions on the used products returned by
customers, such as how much and when used products should be disassembled,
refurbished or reassembled in order to build new or like-new products. The main
objective is to meet customers’ demand for the remanufactured products in the
most cost-effective way.

We consider the case where the production on a machine requires setup
operations such as machine calibration and incurs fixed setup costs. As a naive
perception, to reduce these setup costs, production should be run using large lot
sizes. However, this generates desynchronized patterns between the customers’
demand and the production plan leading to costly high levels of inventory. Lot-
sizing models thus aim at reaching the best possible trade-off between minimizing
the setup costs and minimizing the inventory holding costs, taking into account
both the customers’ demand satisfaction and the practical limitations of the
system. In the present work, we investigate the problem of reaching the best
possible trade-off between setup and inventory holding costs within a reman-
ufacturing environment and introduce an additional lost sales cost to be paid
when the customers’ demand is not satisfied on time. We thus study a 3-echelon
lot-sizing problem with returns and lost sales.

Only a few works have addressed such multi-echelon production systems
through exact solution approaches. A first attempt at tackling this difficulty can
be found in [12]. Quezada et al. [12] considered the problem in a stochastic set-
ting, taking into account uncertainties on the problem input parameters. They
proposed a multi-stage stochastic approach based on the use of scenario trees.
The problem was formulated as a MILP and solved through a new customized
branch-and-cut algorithm. This algorithm relied on valid inequalities focused
on strengthening the formulation of the single-echelon uncapacitated lot-sizing
sub-problems embedded in the main problem. Although this approach was suc-
cessful at providing near optimal solutions for small to medium size instances,
some numerical difficulties were encountered to solve the larger instances. Intu-
itively, this difficulty might be partly due to the fact that the valid inequalities
used to strengthen the formulation considered uncapacitated single-echelon sub-
problems. They did not take into account the fact that, even if the production
resources are assumed uncapacitated, the amount of products that can be pro-
cessed on a resource at a given time period is limited among others by the amount
of available used products returned up to this time period and by the yield of
the disassembly process, i.e. by the proportion of disassembled parts that are
in a sufficiently good state to be refurbished and reused in a remanufactured
product. Hence, using valid inequalities taking into account this aspect of the
problem might contribute in further strengthening its MILP formulation and
decrease the computational effort needed to solve large-size instances.

To the best of our knowledge, the formulation of valid inequalities that explic-
itly take into account the impact of a limited returns quantity on the production
plan has not yet been studied for a multi-echelon remanufacturing system. The

194 F. Quezada et al.

present work aims at partially closing this gap by proposing new valid inequal-
ities for this problem. However, in view of the theoretical and numerical dif-
ficulties encountered when developing new valid inequalities, we focus on the
deterministic variant of the problem. Our contributions are thus twofold. First,
we propose a new family of valid inequalities for the problem under study. These
valid inequalities can be seen as an extension of valid inequalities previously
known for the uncapacitated single-echelon lot-sizing problem with lost sales (the
(k, U) inequalities first introduced in [8]) to take into account, at each echelon of
the studied multi-echelon production system, the constraints on the production
plan coming from the limited availability of the returns. We prove that these
new valid inequalities are at least as strong as the previously known inequalities.
Second, we develop a branch-and-cut algorithm based on the newly proposed
valid inequalities and seek to assess its computational performance by compar-
ing it with the one of a stand-alone mathematical programming solver and the
one of a branch-and-cut algorithm based on previously known valid inequalities.
The numerical results show the usefulness of the proposed inequalities at solving
the problem under study.

The remainder of this paper is organized as follows. We first provide a brief
overview of the related literature in Sect. 2. The problem description, together
with its MILP formulation, are provided in Sect. 3. We then present the proposed
new family of valid inequalities in Sect. 4. Computational results are summarized
in Sect. 5. Finally, Sect. 6 gives a conclusion and some research perspectives.

2 Related Works

Throughout the last decade, several works sought to strengthen the MILP for-
mulation of single-echelon lot-sizing problems involving remanufacturing, either
through extended reformulations or through valid inequalities.

Helmrich et al. [13] discussed several MILP formulations of the uncapac-
itated single-item single-echelon lot-sizing problem with remanufacturing and
introduced new valid inequalities by adapting the previously known (l, S,WW)
proposed by [10] to their problem. The inequalities developed in [13] are based on
the assumption that all returned products are either processed or kept in stock
and do not consider the possibility that some of the returns may be discarded in
case of an unbalance between returns quantity and demand. They can therefore
not be directly used for the problem under study here. Similarly, [5] proposed
a multi-commodity reformulation and a new set of valid inequalities for this
problem. In particular, they further strengthened the (l, S,WW) inequalities
presented in [13] by considering that the amount of finished products remanu-
factured in a given period t is limited by the cumulative quantity of returned
products brought back up to t. Ali et al. [2] enriched the previous works by
highlighting a theoretical property with regards to the equivalence of the short-
est path and facility location reformulations. They also carried out a polyhedral
analysis of a related sub-problem based on the single node fixed-charge net-
work problem, proving the validity of several flow cover inequalities and their

Valid Inequalities for Lot-Sizing with Remanufacturing 195

facet-defining conditions as well. Akartunali and Arulselvan [1] studied both
the uncapacitated and capacitated variants of this single-item single-echelon lot-
sizing problem. They showed that the uncapacitated problem cannot have a
fully polynomial time approximation scheme (FPTAS) and provided a pseudo-
polynomial algorithm to solve the problem. They also provided valid inequalities
based on the flow-cover inequalities for the problem with a limited production
capacity. Finally, we refer the reader to [4] for a recent survey on single-item
lot-sizing problems with remanufacturing.

We note that all the above mentioned works focus on single-item single-
echelon problems and do not consider the fact that remanufacturing may involve
several processing steps, i.e. several production echelons, in order to transform
the returned used products into like-new products. Moreover, these works con-
sider hybrid manufacturing/remanufacturing systems and assume that, thanks
to the presence of an uncapacitated manufacturing system, it will always be
possible to satisfy the demand for finished products on time. In contrast, we
investigate a pure remanufacturing system and consider that the demand will
be lost in case the quantity and/or the quality of the returned products are
insufficient to meet it on time. This means among others that the inequalities
introduced in [5,13] and [2] are not valid for our problem and that new valid
inequalities taking into account its specific features are needed.

3 Problem Description and Modeling

3.1 Production System

We consider a remanufacturing system comprising three main production eche-
lons: disassembly, refurbishing and reassembly. We seek to plan the production
activities in this system over a horizon comprising a discrete set T = {1, .., T}
of periods. The system involves a set I of items. Among these ones, item i = 0
represents the used products returned by customers in limited quantities at each
period. A used product is composed of I parts. Let αi be the number of parts
i embedded in a used product. The returned products are first disassembled to
obtain a set Ir = {1, ..., I} of recoverable parts. Due to the usage state of the
used products, some of the parts obtained during disassembly have to be dis-
carded. In order to reflect the variations in the quality of the used products, i.e.
the yield of the disassembly process, we let πt

i denote the proportion of parts
which will be recoverable at each time period t for each item i = {1, . . . , I}. The
recoverable parts are then refurbished on dedicated refurbishing processes. The
set of Is = {I + 1, ..., 2I} of serviceable parts obtained after refurbishing are
reassembled into remanufactured products which have the same bill-of-material
as the used products. These remanufactured products, indexed by i = 2I + 1,
are used to satisfy the dynamic demand of customers.

The system comprises a set P = {0, ..., I + 1} of production processes: p = 0
corresponds to the disassembly process, p ∈ {1, ..., I} corresponds to the process
refurbishing the recoverable part indexed by p into the serviceable part indexed
by p+I and p = I +1 corresponds to the reassembly process. All these processes

196 F. Quezada et al.

are assumed to be uncapacitated. However, the system might not be able to
satisfy the customer demand on time due to part shortages if there are not
enough used products returned by customers or if their quality is low. In this
situation, the corresponding demand is lost incurring a high penalty cost to
account for the loss of customer goodwill. Moreover, some used products and
recoverable parts are allowed to be discarded. This option might be useful in case
more used products are returned than what is needed to satisfy the demand for
remanufactured products and in case there is a strong unbalance between the
part-dependent disassembly yields leading to an unnecessary accumulation in
inventory of the easy-to-recover parts.

All input parameters of the problem are time-dependent: rt denotes the quan-
tity of collected used products, dt the customers’ demand and πt

i the proportion
of recoverable parts i ∈ Ir obtained by disassembling one unit of returned prod-
uct at period t. As for the costs, for each period t, we have the setup cost f t

p

for process p ∈ P, the unit inventory cost ht
i for part i ∈ I, the unit lost-sales

penalty cost lt, the unit cost qt
i for discarding item i ∈ Ir ∪ {0} and the unit

cost gt for discarding the unrecoverable parts obtained while disassembling one
unit of returned product (Fig. 1).

returns

used
products

0

DISASSEMBLY

discarded
products

1
...

i

...

I
recoverable

parts

REFURBISHING

discarded
parts

I + 1
...

I + i

...

2I
serviceable

parts

REASSEMBLY

2I + 1

remanufactured
products

demands

Fig. 1. Studied remanufacturing system

3.2 Natural Formulation

In order to build a mathematical model for the problem, we introduce the follow-
ing decision variables at time period t ∈ T : Xt

p the quantity of parts processed
on process p ∈ P, Y t

p ∈ {0, 1} the setup variable for process p ∈ P, St
i the

inventory level of part i ∈ I, Qt
i the quantity of part i ∈ Ir ∪ {0} discarded and

Lt the lost sales of remanufactured products. This leads to the following MILP
model.

min
∑

t∈T

(∑

p∈J
f t

pY
t
p +

∑

i∈I
ht

iS
t
i + ltLt +

∑

i∈Ir∪{0}
qt
iQ

t
i + gtXt

0

)
(1)

Valid Inequalities for Lot-Sizing with Remanufacturing 197

Xt
p ≤ M t

pY
t
p ∀p ∈ J ,∀t ∈ T

(2)

St
0 = St−1

0 + rt − Xt
0 − Qt

0 ∀t ∈ T
(3)

St
i = St−1

i + πt
iαiX

t
0 − Xt

i − Qt
i ∀i ∈ Ir,∀t ∈ T

(4)

St
i = St−1

i + Xt
i−I − αiX

t
I+1 ∀i ∈ Is,∀t ∈ T

(5)

St
2I+1 = St−1

2I+1 + Xt
I+1 − dt + Lt ∀t ∈ T

(6)

S0
i = 0 ∀i ∈ I

(7)

St
i ≥ 0 ∀i ∈ I,∀t ∈ T

(8)

Xt
p ≥ 0, Y t

p ∈ {0, 1} ∀p ∈ J ,∀t ∈ T
(9)

The objective function (1) aims at minimizing the total remanufacturing cost
over the whole planning horizon, i.e., the sum of the setup, inventory holding, lost
sales and disposal costs. Constraints (2) link the production quantity variables
to the setup variables. Constraints (3)–(6) are the inventory balance constraints.
More specifically, Constraints (3) ensure that any returned product is either
disassembled, discarded, or kept in stock. Constraints (4) guarantee that any
item obtained from the disassembly process is either refurbished, discarded, or
kept in stock. Constraints (5) ensure that any refurbished item is either used
in the reassembly process or kept in stock. Constraints (6) ensure that any
remanufactured/finished product is either used to satisfy the demand or kept in
stock and that, if there is not enough remanufactured products to satisfy the
demand, the unsatisfied demand is lost. Without loss of generality, we assume
that the initial inventory, S0

i , is set to 0 for each item i ∈ I (see Constraints (7)).
Finally, Constraints (8)–(9) provide the domain of the decision variables.

Note that the value of each constant M t
p can be set by using an upper bound

on the quantity that can be processed on process p at each time period t. This
quantity is limited by two elements: the availability of the used products already
returned by customers and the future demand for remanufactured products. We
thus have, for each period t:

– M t
0 = min

{
∑

1≤κ≤t

rκ,

∑

t≤κ≤T

dκ

min
i=1,...,I

πt
i

}

– M t
p = αp min

{ ∑
1≤κ≤t

rκπ̂κ,t
p ,

∑
1≤κ≤T

dκ

}
, for p ∈ Ir.

– M t
I+1 = min

{
min
p∈Ir

{
∑

1≤κ≤t

rκπ̂κ,t
p

}
,

∑
t≤κ≤T

dκ

}

198 F. Quezada et al.

where π̂κ,t
p = argmax{πθ

p, θ = κ, . . . , t} denotes the maximum disassembly
yield that can be obtained for recoverable item p over the time interval [κ, t].

3.3 Echelon Stock Reformulation

We now provide a reformulation of the problem using the echelon stock con-
cept [11]. The echelon stock of a product in a multi-echelon production system
corresponds to the total quantity of the product held in inventory, either as such
or as a component within its successors in the bill-of-material. We thus denote
by Et

i the echelon stock level of item i ∈ I \{0} at the end of period t. Replacing
variables St

i by variables Et
i in Problem (1)–(9) leads to the following MILP

formulation:

min
∑

t∈T

(∑

p∈J
f t
pY t

p + ht
iS

t
0 +

∑

i∈I\{0}
eht

iE
t
i +

∑

i∈Ir∪{0}
qtiQ

t
i + gt0Xt

0

)
(10)

Xt
p ≤ Mt

pY t
p ∀p ∈ J , ∀t ∈ T

(11)
St
0 = St−1

0 + rt − Xt
0 − Qt

0 ∀t ∈ T
(12)

Et
i = Et−1

i + πt
iαiX

t
0 − αi(d

t − Lt) − Qt
i ∀i ∈ Ir, ∀t ∈ T

(13)
Et

i = Et−1
i + Xt

i−I − αi(d
t − Lt) ∀i ∈ Is, ∀t ∈ T

(14)
Et

2I+1 = Et−1
2I+1 + Xt

I+1 − dt + Lt ∀t ∈ T
(15)

S0
0 = 0 (16)

E0
i = 0 ∀i ∈ I \ {0}

(17)
Et

i − Et
I+i ≥ 0 ∀i ∈ Ir, ∀n ∈ T

(18)
Et

i − αiE
t
2I+1 ≥ 0 ∀i ∈ Is, ∀n ∈ T

(19)
Et

i ≥ 0 ∀i ∈ I, ∀t ∈ T
(20)

St
0, Lt ≥ 0 ∀t ∈ T

(21)
Xt

p ≥ 0, Y t
p ∈ {0, 1} ∀p ∈ J , ∀t ∈ T

(22)

The objective function (10) aims at minimizing the total cost over the whole
planning horizon. Constraints (11) link the production quantity variables to
the setup variables. Constraints (12)–(15) are the inventory balance constraints.
Constraints (12) use the classical inventory variables, whereas Constraints (13)–
(15) make use of the echelon inventory variables. Constraints (16)–(17) translate

Valid Inequalities for Lot-Sizing with Remanufacturing 199

the fact that the initial inventory of each item is assumed to be equal to 0. Con-
straints (18)–(19) ensure consistency between the echelon inventory at the differ-
ent echelons of the bill-of-material and guarantee that the physical inventory of
each product, St

i , remains non-negative for all i ∈ I . Finally, Constraints (20)–
(22) define the domain of the decision variables.

The use of the echelon stock reformulation (11)–(22) enables us to decompose
the initial problem into a series of single-echelon sub-problems by relaxing the
linking constraints (18)–(19). Each of these sub-problems is an uncapacitated
single-echelon single-item lot-sizing problem with lost sales, whose formulation
can be strengthened by the (k, U) valid inequalities proposed in [8]. We refer the
reader to [12] for a detailed description of each subproblem and the single-echelon
(k, U) inequalities applied to each subproblem. Nonetheless, this decomposition
into single-echelon uncapacitated sub-problems overlooks the fact that the pro-
duction on each process at a given period is limited by the amount of used
products returned up to this period. Therefore, in what follows, we investigate
a class of valid inequalities in which these aspects of the problem are explicitly
considered.

4 Single-Echelon (�, k, U) Inequalities

We now seek to strengthen the single-echelon (k, U) inequalities investigated
in [8] and [12] by considering the limited quantity of returned products available
at each time period in the system. The (�, k, U) inequalities are defined as follows:

Proposition 1. Let 0 ≤ � ≤ k ≤ T be two periods of the planning horizon.
Let U ⊆ {k +1, ..., T} be a subset of periods and t∗ = max{τ : τ ∈ U} be the last
time period belonging to U .
The following inequalities are valid for Problem (11)–(22):

S�
0π̂

�,t∗
i + α−1

i Ek
i +

∑

k<t≤t∗
φt

iY
t
0 ≥

∑

t∈U

(dt − Lt) ∀i ∈ Ir

(23)

S�
0π̂

�,t∗
i + α−1

i (E�
i − E�

i+I) + α−1
i Ek

i+I +
∑

k<t≤t∗
φt

iY
t
i ≥

∑

t∈U

(dt − Lt) ∀i ∈ Ir

(24)

S�
0π̂

�,t∗
i + (α−1

i E�
i − E�

2I+I) + Ek
2I+1 +

∑

k<t≤t∗
φt

iY
t
I+1 ≥

∑

t∈U

(dt − Lt) ∀i ∈ Ir

(25)

with φt
i = min

{ ∑
�<ν≤t

rν π̂ν,t
i ,

∑
ν∈U :t≤ν

dν
}

Proof. Let (X,Y, S,E, L,Q) be a feasible solution of Problem (10)–(22). We
show that this solution complies with inequalities (23) for any pair of periods
(�, k), any subset U ⊂ {k + 1, ..., T} and any recoverable item i ∈ Ir.

200 F. Quezada et al.

Let τ ∈ [k + 1, t∗] be the first production period in which φτ
i =

∑
ν∈U :τ≤ν

dν .

By convention, τ = t∗ + 1 if there is no such period.
We have φτ

i Y τ
0 =

∑
t∈U :τ≤t

dt ≥
∑

t∈U :τ≤t

(dt − Lt).

We consider two cases.
– Case 1: there is no production on p = 0 over the interval [k + 1; τ − 1]

In this case, Y t
0 = 0 and Xt

0 = 0 for all periods t in [k + 1, τ − 1]. As
no disassembly occurs over [k + 1, τ − 1], all the recoverable items needed to
satisfy the demand over this time interval, and in particular needed to satisfy∑
t∈U ;t≤τ−1

(dt − Lt), should already have been disassembled previously and be in

stock at the end of period k. This gives α−1
i Ek

i ≥
∑

t∈U :t≤τ−1

(dt − Lt). We thus

have:

S�
0π̂

�,t∗
i + α−1

i Ek
i +

∑

k<t≤t∗
φt

iY
t
0 ≥ α−1

i Ek
i + φτ

i Y τ
0 ≥

∑

t∈U

(dt − Lt)

Inequality (23) is thus valid in this case.
– Case 2: there is at least one production period on p = 0 over interval [k+1; τ−1]

Let θ be the last period of production on p = 0 over the interval [k+1; τ −1].
By definition of θ, we have: φθ

i =
∑

�<ν≤θ

(rν π̂ν,θ
i).

By summing up the inventory balance constraints (13) over periods k +
1,. . . ,τ − 1 and using the fact that variables Ek

i and Qt
i,∀t = k + 1, . . . , τ − 1,

are non-negative, we have:

α−1
i Ek

i +
τ−1∑

t=k+1

πt
iX

t
0 ≥

τ−1∑

t=k+1

(dt − Lt) (26)

By definition of τ , θ and �, we have:

τ−1∑

t=k+1

πt
iX

t
0 =

θ∑

t=k+1

πt
iX

t
0 ≤

θ∑

t=�+1

πt
iX

t
0 (27)

This gives:

α−1
i Ek

i +
θ∑

t=�+1

πt
iX

t
0α

−1
i ≥ Ek

i +
τ−1∑

t=k+1

πt
iX

t
0 (28)

≥
τ−1∑

t=k+1

(dt − Lt) (29)

≥
∑

t∈U :t≤τ−1

(dt − Lt) (30)

Valid Inequalities for Lot-Sizing with Remanufacturing 201

We now compute an upper bound of
∑θ

t=�+1 πt
iX

t
0. This one is obtained by first

computing the linear combination
∑θ

t=�+1

(
π̂t,θ

i

)
× (12)t. This gives:

θ∑

t=�+1

(
π̂t,θ

i

)
St
0 =

θ∑

t=�+1

(
π̂t,θ

i

)[
St−1
0 + rt − Xt

0 − Qt
0

]
(31)

By the non-negativity of variables Qt
0 and St

0 and the fact that π̂t,θ
i ≥ π̂t+1,θ

i , we
have:

θ∑

t=�+1

πt
iX

t
0 ≤

θ∑

t=�

π̂t,θ
i Xt

0 (32)

≤
θ∑

t=�+1

(
π̂t,θ

i

)
St−1
0 −

θ∑

t=�+1

(
π̂t,θ

i

)
St
0 +

θ∑

t=�+1

(
π̂t,θ

i

)
rt (33)

≤
(
π̂�,θ

i

)
S�
0 +

θ∑

t=�+1

(
π̂t,θ

i

)
rt (34)

≤
(
π̂�,t∗

i

)
S�
0 + φθ

i Y
θ
0 (35)

Replacing
∑θ

t=� πt
iX

t
0 in Inequalities (30) by its upper bound provided by

(35), we have:

α−1
i Ek

i +
(
π̂�,t∗

i

)
S�
0 + φθ

i Y
θ
0 ≥

∑

t∈U :t≤τ−1

(dt − Lt) (36)

Finally, we have:

S�
0π̂

�,t∗
i + α−1

i Ek
i +

∑

k<t≤t∗
φt

iY
t
0 ≥ S�

0π̂
�,t∗
i + α−1

i Ek
i + φθ

i Y
θ
0 + φτ

i Y τ
0

≥
∑

t∈U :t≤τ−1

(dt − Lt) +
∑

t∈U :t≥τ

(dt − Lt)

≥
∑

t∈U

(dt − Lt)

This concludes the proof of validity for Inequality (23). The same arguments can
be used to prove the validity of Inequalities (24) and (25). 	

It is worth mentioning that the (k, U) inequalities used in [12] to strengthen
the formulation (10)–(22) can be seen as a particular case of the more general
family of (�, k, U) inequalities (23)–(25) proposed in this work. Namely, by setting
� to 0 and by computing the value of φt without taking the returns into account
(i.e. by setting φt to

∑
ν∈U :t≤ν

dν), each (�, k, U) inequality (23)–(25) becomes a

(k, U) inequality.

202 F. Quezada et al.

Proposition 2. The linear relaxation of formulation (10)–(22) strengthened by
valid inequalities (23)–(25) is at least as tight as the linear relaxation strength-
ened by the (k, U) valid inequalities used in [12].

Proof. Let PLR be the linear relaxation of polyhedron given by inequalities (11)–
(22), (23)–(25) and P̃LR be the linear relaxation of polyhedron given by inequal-
ities (11)–(22) and the (k, U) inequalities. As any (k, U) inequality is a valid
inequality (23)–(25) with φt =

∑
ν∈U :t≤ν

dν and � = 0, we have PLR ⊆ P̃LR. 	

The main implication of Proposition 2 is that the lower bound obtained
by strengthening the formulation (10)–(22) with the (�, k, U) inequalities is at
least as tight as the lower bound obtained while using the single-echelon (k, U)
inequalities.

We now briefly discuss the resolution of the separation problem for the
(�, k, U) valid inequalities. Recall that this problem consists in finding an inequal-
ity (23)–(25) violated by a given solution (X̃, Ỹ , S̃, Ẽ, L̃, Q̃) of the linear relax-
ation of Problem (11)–(22) or prove that no such inequality exists. In the present
case, in order to find the most violated inequality among e.g. inequalities (23),
we should find, for each period k = 1, ..., T , the set U of time periods and the
period � that maximize the difference between the right-hand and the left-hand
side of the inequality. This is not trivial, in particular because the value of each
coefficient φt

i simultaneously depends on U and �. We thus consider a heuristic
separation algorithm in our computational experiments. This one can be sum-
marized as follows. For a given process p and time period k:

1. For each period t = k + 1, ..., T , add t to U if dt(1 −
∑t

τ=k+1 Ỹ τ
p) − L̃t > 0.

2. For each period � = 0, ..., k,
– compute the value of each coefficient φt

i = min
{∑

�<ν≤t rν π̂ν,t
i ,

∑
ν∈U :t≤ν dν

}

– compute the left-hand side of the inequality (23) (resp. (24) and (25)).
3. Set � to the period index which minimizes this left-hand side value.

This algorithm has a time complexity of O(T 2) as the computation of set U in
step 1 and of coefficients φi in step 2 both require O(T 2) operations.

5 Computational Experiments

In this section, we focus on assessing the performance of the proposed valid
inequalities when used within a customized branch-and-cut algorithm. We com-
pare the performance of this algorithm with the one of the generic branch-and-
cut algorithm embedded in a mathematical programming solver and the one of
a branch-and-cut algorithm using single-echelon (k, U) inequalities.

Valid Inequalities for Lot-Sizing with Remanufacturing 203

5.1 Instance Generation

We considered two sets of instances: Set 1 instances involve T = 25 periods
and I = 10 parts whereas Set 2 instances involve T = 35 periods and I = 10
parts. Within each set, the instances were randomly generated by adapting the
procedure presented in [6]. More precisely, we considered four values of the setup-
holding cost ratio f/h ∈ {600, 1200, 1800, 2400}, two values for the production-
holding cost ratio g/h ∈ {2, 4} and three values of the returns-demand quantity
ratio r/d ∈ {1, 2, 3}. For each set and each possible combination of f/h, g/h,
r/d, ten random instances were generated, resulting in a total of 480 instances.

For each instance, the value of each problem parameter was set as follows.

– Demand dt was uniformly distributed in the interval [0, 100] and the returns
quantity rt was uniformly distributed in the interval [0.8(r/d)d̄, 1.2(r/d)d̄],
where d̄ =

∑
dt

T is the average demand per period.
– The proportion of recoverable parts πt

i was uniformly distributed in the inter-
val [0.4, 0.6].

– The bill-of-materials coefficients αi = αi+I , i ∈ Ir, were randomly generated
following a discrete uniform distribution over [1; 6] and we set α0 = α2I+1 = 1.

– The holding cost ht
0 for the returned product i = 0 was fixed to 1. The

holding cost ht
i for each recoverable item i ∈ Ir was randomly generated

following a discrete uniform distribution over interval [2, 7]. Similarly, the
holding cost ht

i for each serviceable item i ∈ Is was randomly generated
following a discrete uniform distribution over interval [7, 12]. Finally, in order
to ensure non negative echelon costs, we set the value of the inventory holding
cost for the remanufactured product, ht

2I+1, to
∑I

i=1 αih
t
I+i + ε, where ε

follows a discrete uniform distribution over interval [80, 100].
– The production cost gt was uniformly distributed in the interval [0.8(g/h)h̄,

1.2(g/h)h̄], where h̄ =
∑

ht
2I+1
T is the average holding cost.

– The setup cost f t was uniformly distributed in the interval
[0.8(f/h)h̄, 1.2(f/h)h̄].

– Discarding costs were set to qt
i = 0.8h̄t

i, where h̄t
i = 1

T

∑T
κ=t hκ

i The unit
penalty cost for lost sales, ln, was fixed to 10000 per

5.2 Results

We carried out extensive numerical experiments in order to assess the compu-
tational performance of the proposed valid inequalities. This was achieved by
solving each considered instance using three alternatives branch-and-cut algo-
rithms:

– CPX: the generic branch-and-cut algorithm embedded in CPLEX 12.8 using
the echelon-stock formulation (11)–(22).

– (k, U): a customized branch-and-cut algorithm using the (k, U) inequalities
to strengthen the echelon-stock formulation (11)–(22) similarly to what was
done in [12].

204 F. Quezada et al.

– (�, k, U): a customized branch-and-cut algorithm using the newly introduced
(�, k, U) inequalities to strengthen the echelon-stock formulation (11)–(22).
This algorithm is based on the solver CPLEX 12.8. It generates inequalities
of type (23)–(25) through a cutting-plane generation algorithm at the root
node and at intermediate nodes of the branch-and-bound search tree using
the UserConstraints callbacks provided by the solver.

All related linear programs and mixed-integer linear programs were solved
using CPLEX 12.8 with the solver default settings. The algorithms were imple-
mented in C++ using the Concert Technology environment. All tests were run
on the computing infrastructure of the Laboratoire d’Informatique de Paris VI
(LIP6), which consists of a cluster of Intel Xeon Processors X5690. We set the
cluster to use two 3.46 GHz cores and 12 GB RAM to solve each instance. We
imposed a time limit of 3600 s.

Table 1. Performance of CPLEX and branch-and-cut methods over instance in Set 1.

r/d g/h Method R.LPgap R.MIPgap MIPgap C.Time R.Time T.Time

1 2 CPX 8.26 4.10 0.06 0.04 1.16 898.00

(k, U) 6.08 3.66 0.05 0.92 2.93 1, 011.79

(�, k, U) 4.17 3.55 0.03 0.97 2.35 792.64

4 CPX 5.38 2.49 0.06 0.03 0.97 1, 360.48

(k, U) 3.95 2.33 0.05 0.50 1.47 1, 088.78

(�, k, U) 2.84 2.22 0.04 0.85 1.98 1, 056.29

2 2 CPX 40.86 11.28 0.97 0.03 1.81 2, 570.62

(k, U) 19.36 9.17 0.46 0.35 2.74 1, 883.71

(�, k, U) 11.88 8.68 0.22 0.74 2.67 1, 558.09

4 CPX 37.79 10.71 2.29 0.03 1.59 3, 280.23

(k, U) 18.39 9.25 1.06 0.19 1.47 2, 856.09

(�, k, U) 11.89 8.48 0.94 0.62 2.27 2, 883.50

3 2 CPX 41.86 13.47 0.04 0.03 1.38 545.15

(k, U) 20.60 9.68 0.02 0.29 1.96 296.65

(�, k, U) 14.16 9.11 0.02 0.48 1.91 250.52

4 CPX 38.29 12.44 0.09 0.02 0.98 817.93

(k, U) 20.81 9.71 0.02 0.15 1.00 458.41

(�, k, U) 15.36 8.99 0.06 0.41 1.57 522.70

The corresponding results are displayed in Table 1 for Set 1 instances and
Table 2 for Set 2 instances. Column Method indicates the branch-and-cut algo-
rithm used to solve the instances. Column R.LPgap reports the gap between the
value of the linear relaxation strengthened by the corresponding valid inequali-
ties and the best feasible solution found through the branch-and-bound search.

Valid Inequalities for Lot-Sizing with Remanufacturing 205

Table 2. Performance of CPLEX and branch-and-cut methods over instance in Set 2.

r/d g/h Method R.LPgap R.MIPgap MIPgap C.Time R.Time T.Time

1 2 CPX 7.48 3.65 0.25 0.06 2.26 2, 544.42

(k, U) 5.09 3.08 0.25 8.08 13.32 2, 300.22

(�, k, U) 3.49 2.95 0.11 7.59 11.07 1, 764.24

4 CPX 4.96 2.33 0.19 0.06 1.91 2, 930.72

(k, U) 3.31 2.00 0.11 3.66 6.58 2, 529.28

(�, k, U) 2.40 1.91 0.10 5.09 7.95 2, 319.77

2 2 CPX 44.73 12.89 6.76 0.06 4.43 3, 599.07

(k, U) 20.10 10.00 4.34 0.94 5.71 3, 508.81

(�, k, U) 12.85 9.54 3.77 2.09 6.08 3, 362.24

4 CPX 43.15 12.54 7.29 0.06 3.57 3, 599.07

(k, U) 20.02 10.40 5.03 0.53 3.08 3, 599.54

(�, k, U) 13.14 9.49 4.61 2.42 6.01 3, 599.44

3 2 CPX 43.25 14.11 2.67 0.04 2.93 3, 044.18

(k, U) 18.97 9.48 0.55 0.87 4.26 1, 855.28

(�, k, U) 13.38 9.11 0.64 1.40 4.30 1, 614.35

4 CPX 37.56 11.83 1.60 0.04 2.55 2, 802.69

(k, U) 16.82 8.30 0.19 0.49 2.30 1, 035.84

(�, k, U) 12.67 7.86 0.20 1.21 3.67 1, 029.84

For the CPX method, it reports the gap between the value of the initial linear
relaxation and the best feasible solution found through the branch-and-bound
search. Column R.MIPgap reports the gap between the lower bound at the root
node (after the generation of CPLEX generic cutting planes) and the best feasi-
ble solution found through the branch-and-bound search. Column MIPgap reports
the gap between the best lower and the best feasible solution found through the
branch-and-bound search. The average CPU time for the cutting-plane gener-
ation of each method is reported in column C.Time, the CPU time spent at
the root node in Column R.Time and the average total CPU time in Column
T.Time. Note that each line corresponds to the average value of the correspond-
ing 40 instances.

In general, we observe that the customized branch-and-cut algorithms based
either on the (k, U) or on the (�, k, U) inequalities outperform method CPX,
providing solutions of better quality within shorter computation times. Specif-
ically, the total computation time is reduced on average by 20% when using
the branch-and-cut algorithm based on the (k, U) and by 26% when using the
branch-and-cut algorithm based on the (�, k, U) inequalities.

Regarding the relative performance of the (k, U) and (�, k, U) inequalities, we
note that the branch-and-cut algorithm based on the (�, k, U) outperforms the
algorithm based on (k, U) when the value of the demand-returns ratio is small,

206 F. Quezada et al.

i.e. when r/d ∈ {1, 2}. Thus, over the 160 instances corresponding to a value of
r/d equal to 1, the total average computation time is reduced from1732 s when
using (k, U) inequalities to1482 s when using (�, k, U) inequalities. Similarly, over
the 160 instances corresponding to a value of r/d equal to 2, the average MIP
gap is reduced from 2.72% when using (k, U) inequalities to 2.38% when using
(�, k, U) inequalities. We note however that the relative performance of the pro-
posed (�, k, U) inequalities deteriorates for the instances corresponding to the
largest considered value of the demand-returns ratio. Namely, when r/d is set
to 3, the branch-and-cut algorithm based on the (k, U) inequalities provides a
smaller MIP gap and/or smaller computation times. This might be explained
by the fact that the corresponding instances involve a large amount of returned
products so that the quantity processed on a resource at a given period is not
(or at least to a lesser extent) limited by the availability of the returned prod-
ucts. This means that the proposed refinements in the expression of the valid
inequalities are less relevant in this case.

6 Conclusion and Perspectives

We considered a lot-sizing problem aiming at planning production for a multi-
echelon remanufacturing system. This problem can be formulated as a mixed-
integer linear program. We focused on strengthening this formulation in order to
be able to provide optimal or near-optimal solutions of this problem. Our main
contribution is the development of a new set of valid inequalities which take into
account, at each production echelon, the limitations on the produced quantities
coming from the limited availability of the returned products. The results of
our computational experiments show that a branch-and-cut algorithm based on
these new valid inequalities performs well as compared to the generic branch-and-
cut algorithm of CPLEX solver and to a previously published branch-and-cut
algorithm based on less general valid inequalities.

A first possible research direction could be to develop an exact separation
algorithm for the (�, k, U) inequalities in the presented branch-and-cut algorithm
as this may further improve their performance when used in a branch-and-cut
algorithm. Moreover, it would also be worth studying whether valid inequalities
previously proposed for capacitated lot-sizing problems (see e.g. [3,7,9]) might
be useful to help solving our problem. Additional computational experiments are
also needed to assess the size of the largest instances that may be solved with
the proposed exact solution approach.

On a longer perspective, we could seek to extend the proposed valid inequal-
ities to lot-sizing problems with returns involving complicating features such
as a limited capacity, backlogging, safety stocks or minimum production levels.
Finally, extending the proposed valid inequalities and the cutting-plane genera-
tion to solve the stochastic version of the problem studied in [12] is also worth
investigating.

Valid Inequalities for Lot-Sizing with Remanufacturing 207

References

1. Akartunalı, K., Arulselvan, A.: Economic lot-sizing problem with remanufacturing
option: complexity and algorithms. In: Pardalos, P.M., Conca, P., Giuffrida, G.,
Nicosia, G. (eds.) MOD 2016. LNCS, vol. 10122, pp. 132–143. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-51469-7 11

2. Ali, S.A.S., Doostmohammadi, M., Akartunalı, K., van der Meer, R.: A theoretical
and computational analysis of lot-sizing in remanufacturing with separate setups.
Int. J. Prod. Econ. 203, 276–285 (2018)

3. Bansal, M.: Facets for single module and multi-module capacitated lot-sizing prob-
lems without backlogging. Discret. Appl. Math. 255, 117–141 (2019)

4. Brahimi, N., Absi, N., Dauzère-Pérès, S., Nordli, A.: Single-item dynamic lot-sizing
problems: an updated survey. Eur. J. Oper. Res. 263(3), 838–863 (2017)

5. Cunha, J.O., Konstantaras, I., Melo, R.A., Sifaleras, A.: On multi-item economic
lot-sizing with remanufacturing and uncapacitated production. Appl. Math. Model.
50, 772–780 (2017)

6. Guan, Y., Ahmed, S., Nemhauser, G.L.: Cutting planes for multistage stochastic
integer programs. Oper. Res. 57(2), 287–298 (2009)

7. Leung, J.M., Magnanti, T.L., Vachani, R.: Facets and algorithms for capacitated
lot sizing. Math. Program. 45(1), 331–359 (1989)

8. Loparic, M., Pochet, Y., Wolsey, L.A.: The uncapacitated lot-sizing problem with
sales and safety stocks. Math. Program. 89(3), 487–504 (2001)

9. Miller, A.J., Nemhauser, G.L., Savelsbergh, M.W.: On the capacitated lot-sizing
and continuous 0–1 knapsack polyhedra. Eur. J. Oper. Res. 125(2), 298–315 (2000)

10. Pochet, Y., Wolsey, L.A.: Polyhedra for lot-sizing with Wagner–whitin costs. Math.
Program. 67(1), 297–323 (1994)

11. Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming.
Springer Science & Business Media (2006). https://doi.org/10.1007/0-387-33477-
7

12. Quezada, F., Gicquel, C., Kedad-Sidhoum, S., Vu, D.Q.: A multi-stage stochastic
integer programming approach for a multi-echelon lot-sizing problem with returns
and lost sales. Comput. Oper. Res. 116, 104865 (2020)

13. Retel Helmrich, M.J., Jans, R., van den Heuvel, W., Wagelmans, A.P.: Economic
lot-sizing with remanufacturing: complexity and efficient formulations. IIE Trans.
46(1), 67–86 (2014)

https://doi.org/10.1007/978-3-319-51469-7_11
https://doi.org/10.1007/0-387-33477-7
https://doi.org/10.1007/0-387-33477-7

Interactive Multiobjective Optimization
in Lot Sizing with Safety Stock

and Safety Lead Time

Adhe Kania1,3(B) , Juha Sipilä2 , Bekir Afsar1 , and Kaisa Miettinen1

1 University of Jyvaskyla, Faculty of Information Technology,
P.O. Box 35 (Agora), 40014 University of Jyvaskyla, Finland

adhe.a.kania@student.jyu.fi
2 JAMK University of Applied Sciences, School of Technology, Jyvaskyla, Finland

3 Institut Teknologi Bandung, Faculty of Mathematics and Natural Sciences,

Jl Ganesha 10, Bandung 40132, Indonesia

Abstract. In this paper, we integrate a lot sizing problem with the
problem of determining optimal values of safety stock and safety lead
time. We propose a probability of product availability formula to assess
the quality of safety lead time and a multiobjective optimization model
as an integrated lot sizing problem. In the proposed model, we optimize
six objectives simultaneously: minimizing purchasing cost, ordering cost,
holding cost and, at the same time, maximizing cycle service level, prob-
ability of product availability and inventory turnover. To present the
applicability of the proposed model, we consider a real case study with
data from a manufacturing company and apply the interactive NAU-
TILUS Navigator method to support the decision maker from the com-
pany to find his most preferred solution. In this way, we demonstrate
how the decision maker navigates without having to trade-off among the
conflicting objectives and could find a solution that reflects his preference
well.

Keywords: Inventory management · Uncertain demand · Uncertain
lead time · Interactive decision making · NAUTILUS Navigator

1 Introduction

Lot sizing has emerged as one of the key factors for the effective supply chain
management. The purpose of lot sizing is to determine an optimal order quantity
that minimizes costs while satisfying demand. After Harris’s economic order
quantity concept for solving a simple lot sizing problem [10], there has been a
dramatic increase in interest over the last century in developing lot sizing models
to adapt to more complex situations [1,8].

Uncertainties complicate lot sizing problems. In fact, predicting the exact
demand for future needs is challenging. Commonly, many companies hold a
certain amount of stock, known as a safety stock (SS), as a buffer to cope when
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 208–221, 2021.
https://doi.org/10.1007/978-3-030-87672-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_14&domain=pdf
http://orcid.org/0000-0001-9586-6226
http://orcid.org/0000-0003-3146-9656
http://orcid.org/0000-0003-3643-2342
http://orcid.org/0000-0003-1013-4689
https://doi.org/10.1007/978-3-030-87672-2_14

Lot Sizing with Safety Stock and Safety Lead Time 209

demand exceeds the prediction [31]. Another source of uncertainty is the delivery
lead time [24]. Companies usually have an agreement with their suppliers for the
delivery time, but for many reasons, there can be delays. To overcome this issue,
an additional time period, known as a safety lead time (SLT), is defined [31].
During the SLT period, companies keep their stocks available to satisfy the
demand.

The problem of determining an optimal SS value has been studied by many
researchers [9]. Various methods have been developed [26] to find an optimal
value of SS that should be small enough to reduce costs while satisfying demand
and guaranteeing a high service level. Most studies expand the cycle service level
(CSL) formula [23] to adapt to various conditions. When lead time is uncertain,
the CSL formula takes into account the average and standard deviation of the
lead time [28]. On the other hand, the problem of finding an optimal SLT value
is not as popular as the previous one [7]. In [12], inventory costs are minimized
subject to a service level constraint to find an optimal SLT, and an optimization
model based on Markov Chain is proposed in [6]. However, there is a lack of
formula to control the quality of SLT.

The relationship between lot sizing problems with SS and SLT has been
studied in [22]. Keeping stock for SS and SLT increases order quantity, which
also increases the costs. Some researchers have studied lot sizing problems with
uncertainty on demand and lead time [7]. However, they mostly use statistical
tools to handle uncertainty in lot sizing models, but not simultaneously find SS
or SLT. Some of them use simulation to find an optimal SS and SLT. There
is a lack of integration of a lot sizing problem and problems of determining SS
and SLT values in the literature. The problem of integrating lot sizing and SS
determination is proposed in [18], but they consider SLT as the input value.

Lot sizing problems naturally include a conflict between minimizing costs and
satisfying demand simultaneously. Additional problems of determining SS and
SLT increase the conflict because holding more stock for SS and SLT makes the
costs higher. For this reason, multiobjective optimization [19] is a good tool to
solve lot sizing problems [2]. A multiobjective optimization problem has several
mathematically incomparable solutions, called Pareto optimal solutions. Solving
a multiobjective optimization problem can be understood as finding the most
preferred solution for a decision maker (DM), who has expertise in the problem
domain. Interactive methods [20] are regarded as promising because the solution
process is iterative and they allow the DM to gain insight into the problem and
change his/her preferences during the solution process, thanks to learning. So
far, however, there have been a few studies applying interactive multiobjective
optimization in lot sizing problems [29].

In this research, we consider a single item multi period lot sizing problem
with uncertainty on demand and lead time. The main contributions of this paper
are threefold. First, we propose a novel formula, named probability of product
availability (PPA), for measuring the quality of SLT to handle unpredicted lead
time. Second, we develop a multiobjective optimization model that determines
the optimal lot sizes for each period and simultaneously finds the optimal values

210 A. Kania et al.

of SS and SLT. Last but not least, we support a DM to find the most preferred
solution for the optimization model by applying an interactive NAUTILUS Nav-
igator method [25].

The proposed multiobjective optimization model has six objectives to opti-
mize simultaneously. Three of them are minimizing cost functions, i.e. purchasing
cost (PC), ordering cost (OC), and holding cost (HC). We consider them sep-
arately to see trade-offs between objectives. The CSL is maximized to improve
safety against demand uncertainty. We propose a PPA formula to assess the
quality of SLT to buffer lead time uncertainty, which is maximized in the model.
Lastly, inventory turnover (ITO) as the primary performance indicator for inven-
tory management [27] is maximized to measure the effectiveness of this model
in handling the inventory system.

Most lot sizing problems are difficult to solve because of their complexity [14].
In this paper, we use the interactive NAUTILUS Navigator method [25]. The
strength of this method in handling computationally expensive problems meets
the need of this kind of problem. Another strength of this method is allowing the
DM to find his/her most preferred solution without sacrifices, which meets the
needs of the DM. In this, the strategy is starting from a bad point and improving
all objectives simultaneously. We use real data from a manufacturing company
and a real DM to prove the validity of our proposed model. Finally, we support
the DM to find the most satisfying solution for him by using this method.

The remainder of the paper is organized as follows. Section 2 reviews the basic
concepts of multiobjective optimization and the NAUTILUS Navigator method.
Then, the proposed multiobjective optimization model is presented in Sect. 3. In
Sect. 4, the case study together with the real data from a manufacturing company
is described, following by results and analysis of the decision making process
using NAUTILUS Navigator. Finally, conclusions and discussions of possible
extensions are presented.

2 Background on Multiobjective Optimization

In this section, we briefly review the basic concepts and definitions related to
multiobjective optimization, followed by the NAUTILUS Navigator method.

2.1 Basic Concepts and Definitions

A multiobjective optimization problem can be formulated in the following form:

minimize f(x) = (f1(x), ..., fk(x))T

subject to x ∈ S,
(1)

where k ≥ 2 objective functions, fi : S → R for 1 ≤ i ≤ k, are simultaneously
optimized. The vector of decision variables x = (x1, ..., xn)T belongs to the
feasible region S ⊂ R

n, which is formed by constraints. The image of the feasible
region Z = f(S), Z ⊂ R

k is called a feasible objective region, which is formed
by the vectors of objective values z = f(x) = (f1(x), ..., fk(x))T , z ∈ Z, x ∈ S.

Lot Sizing with Safety Stock and Safety Lead Time 211

Because of the conflicting objectives, a multiobjective optimization problem
(1) has several different solutions, called Pareto optimal solutions, which reflect
the trade-offs among the conflicting objectives. A solution z1 ∈ Z is said to
dominate another solution z2 ∈ Z if z1i ≤ z2i for all i = 1, ..., k and z1j < z2j for
at least one j = 1, ..., k. A solution z ∈ Z is called a Pareto optimal solution if
z is not dominated by any other solution. The lower and upper bounds of the
Pareto optimal solutions are called an ideal point z∗ and a nadir point znad,
respectively, which reflect the best and the worst values that each objective
function in the Pareto optimal solutions can achieve.

Pareto optimal solutions are incomparable mathematically. Additional pref-
erence information from a DM is needed to identify the most preferred solution
as the final solution. A DM is an expert who has a responsibility to make a
decision in the problem domain, who is usually a supply chain manager in lot
sizing. The preference information from the DM can be incorporated before the
optimization process (a priori methods), after having generated a representative
set of Pareto optimal solutions (a posteriori methods), or during an iterative
optimization process (interactive methods) [19]. The advantages of interactive
methods, which allow the DM to learn different aspects of the problem during
the solution process and change their preferences during the solution process
if desired, are the main reasons we chose this type of methods. Many interac-
tive methods have been developed [20]. In this paper, we apply the NAUTILUS
Navigator method [25] because of its ability in handling computationally expen-
sive problems and the possibility to find the most preferred solution without
trading-off. This is important since DMs sometimes get anchored around the
initial solution and a trade-off free method avoids anchoring.

2.2 NAUTILUS Navigator

The NAUTILUS Navigator method combines the idea of NAUTILUS methods
[21] to avoid trading-off and navigation ideas elaborated in [11]. Due to the fact
that people do not respond similarly to losses and gains [15], trading-off among
Pareto optimal solutions causes some decisional stress to the DM [17]. Motivated
by this fact, NAUTILUS methods start from the worst possible objective func-
tion values and iteratively gain in all objectives without sacrificing any of the
current values. Methods in the NAUTILUS family [21] differ in the way used
to interact with the DM to find the final solution. NAUTILUS Navigator uses
navigation to direct the movement from the worst starting point, which is the
nadir point or any undesirable point provided by the DM, to a Pareto optimal
solution as the final solution. In this process, the DM specifies a desirable value
for each objective function, which are the components of a reference point, as
a search direction to direct the movement towards desired Pareto optimal solu-
tions. During the navigation process, the DM can change the reference point,
the movement speed, or even go backwards if he/she wishes so.

To handle computationally expensive problems, a set of Pareto optimal solu-
tions is generated before the interactive process starts. The generation may take
time because of expensive functions, but it is done without involving the DM.

212 A. Kania et al.

Any a posteriori methods can be used to generate a set of Pareto optimal solu-
tions or a set that approximates Pareto optimal solutions. When involving the
DM, the navigation process takes place using this set without solving the origi-
nal computationally expensive problem. This allows showing real-time movement
without waiting times to the DM. The detailed algorithm can be seen in [25].

Fig. 1. GUI of the NAUTILUS Navigator method

A graphical user interface (GUI) is important for NAUTILUS Navigator
to visualize the navigation process. Figure 1 shows the available GUI that can
be freely downloaded from https://desdeo.it.jyu.fi. The DM provides his/her
preferences using the sliders on the left side or inputs values in text boxes at
the top. The green area in the graph shows the reachable ranges, which are
the best and the worst objective function values, that each objective can reach
from the current step without sacrifices in any objectives. Thus, the reachable
ranges shrink when approaching Pareto optimal solutions. Whenever the DM
wants to change his/her preference, he/she can stop the process and change the
reference point. The black lines in the middle of the graphs show the positions
of the components of the reference point. The DM is allowed to jump to any
previous step using the radio button in the bottom right. He/she then needs to
provide which step to go to and re-specify his/her preferences in order to define
a new direction. The DM can navigate until he/she finds his/her most preferred
Pareto optimal solution at the end of the solution process. In that case, the
ranges shrink to a single point.

https://desdeo.it.jyu.fi

Lot Sizing with Safety Stock and Safety Lead Time 213

3 Problem Formulation

We study a lot sizing problem for a single item with a single supplier and in mul-
tiple time periods. We follow a periodic review policy, where orders are reviewed
over discrete time periods t = 1, ..., T . The order quantity (Q(t)) is reviewed at
the beginning of period t, and the order arrives after a stochastic lead time. The
following assumptions are made throughout this paper.

1. The predicted demand during period t (D(t)) follows a normal distribution
with a mean μ and a standard deviation σ. The demand in each period is
independent of other periods.

2. The lead time follows a normal distribution with a mean L and a standard
deviation s.

3. The price for purchasing one unit of item (p) is constant in all time periods
and does not depend on the order quantity.

4. The cost for a single order is c without any capacity limit.
5. The cost of holding one unit of item (h) is constant throughout all time

periods.
6. There is no backorder cost involved.
7. There is an agreement between the company and the supplier that the com-

pany must order with a minimum order quantity moq and it rounds up by
a rounding value r. Therefore, the order can only be placed by following the
formula moq + a r for any integer a ≥ 0.

3.1 Safety Stock and Safety Lead Time Formulation

As said, we focus on the lot sizing problem with uncertainty in demand and lead
time. Many researchers have utilized a SS to protect against demand uncertainty
and a SLT to handle lead time uncertainty [16]. A SS means keeping more stocks
as a buffer against demand fluctuations. To control the amount of SS, the cycle
service level (CSL) formula is applied [4]. CSL is the probability of not hitting
a stockout in a replenishment time (RT). A RT is a time needed to refill the
stock, that is from the arrival of one order to the arrival of the next one. We set
RT = 1+SLT since we order in each period and prepare for late delivery in the
SLT period. To prevent stockout during a RT, the difference between an actual
demand (D∗

RT) and a predicted demand (DRT) must be less than SS. We adopt
the CSL formula for demand and lead time uncertainty [28] with our definition
of RT, which can be written as follows:

CSL = P (D∗
RT ≤ DRT + SS)

= F (DRT + SS,DRT , σRT) = F

(
SS

σRT

)
, (2)

where F is the standard normal distribution function and σRT is the stan-
dard deviation of demand during a RT, which can be formulated as σRT =√

σ2(1 + SLT) + μ2s2.

214 A. Kania et al.

A SLT is assigned to handle unpredicted lead time. During the SLT period,
the availability of stock to cover predicted and unpredicted demand must be
guaranteed. Therefore, we consider an additional SLT period in the fill rate (FR)
constraint to secure the availability of the stock during SLT to cover the predicted
demand. A SLT period is also considered in CSL to buffer unpredicted demand
during SLT. However, if the order arrives after the SLT period, the stockout
may occur. Therefore, it is important to decide an optimal SLT value with a
low possibility of having stockout. In this paper, we propose the probability
of product availability (PPA) formula to measure the quality of SLT. PPA is
defined as the probability of not having stockout because of the late delivery,
which occurs when the actual order arrives during the period L+SLT . The PPA
formula can be written as follows:

PPA = P (actual delivery time ≤ L + SLT)

= F (L + SLT,L, s) = F

(
SLT

s

)
. (3)

This formula can be used to find the SLT value by defining an appropriate PPA
level.

3.2 Multiobjective Optimization Model

As said, we propose a multiobjective optimization model with six objectives,
three to minimize and three to maximize. The main goal of this model is to find
the order quantity of each period (Q(t), t = 1, ..., tn) together with SS and SLT
values with the best balance between the objective functions. We define I(t) as
the inventory level at the end of period t where I(t) = I(t−1)+Q(t−�L�)−D(t),
and Y (t) as the order indicator where Y (t) = 1 if the order is placed (Q(t) > 0),
otherwise Y (t) = 0. The proposed optimization model can be written as follows.

min PC =
∑
t

Q(t) p, OC =
∑
t

Y (t) c, HC =
∑
t

I(t − 1) + I(t)
2

h,

max CSL (2), PPA (3), ITO =
∑
t

D(t)
(I(t − 1) + I(t))/2

,

s.t.
I(t − 1) +

∑t
i=t−�L� Q(i) − SS∑t+�P�

j=t D(j) + (P − �P �)D(P
).
≥ 1, for t = 1, ..., T, (4)

Q(t) = Y (t) (moq + a r) , for any integer a ≥ 0 and t = 1, ..., T, (5)
SS ≥ 0 and SOT ≥ 0. (6)

Following the dynamic lot sizing problem [14,30], three types of cost are
considered: PC, OC, and HC. We consider them separately to see the trade-offs.
Minimizing PC implies minimizing HC, but OC has a trade-off with HC because

Lot Sizing with Safety Stock and Safety Lead Time 215

ordering the same amounts of items many times makes OC higher and HC lower.
For inventory management purposes, it is important to understand both HC and
OC. In order to prevent partial optimization, which could be the case if only
total costs were measured, it is important to separate them. When targeting at
low HC only, one can be misled, as then there could be a temptation to order
more often, resulting in higher OC.

We maximize CSL to prevent stockout because of the demand uncertainty
and maximize PPA to avoid stockout due to late delivery. Keeping a high value
of SS raises the CSL but PC and HC increase, which is a conflict as we need to
maximize CSL but minimize OC and HC. Having a long SLT increases the PPA
but decreases CSL with the same SS value. Then PPA has a trade-off with CSL,
PC and HC. Maximizing ITO is our last objective function. To have a high ITO,
the order must be as close to the demand as possible in order to hold less stock,
which has a trade-off with OC. Furthermore, ITO has a trade-off with CSL and
PPA as less stock is needed to have a high ITO, but CSL and PPA need more
stock to have better safety in handling uncertainties.

FR represents customer service for an inventory control system. It is defined
as the fraction of orders that are filled from stock [13]. It is an important indicator
in daily operations. In the proposed model, FR is the first constraint (4) to fulfill
the predicted demand. In each period, we guarantee that our stock (excluding
SS) can satisfy the predicted demand. The consideration period for one order
(P) in the periodic review policy is 1 + L [4], but an additional SLT period
is also considered to ensure the stock availability during SLT. Thus, we set
P = 1 + L + SLT . FR is a fraction between available stock without SS and
the predicted demand during P. When FR is at least one, the stock availability
to handle the predicted demand is guaranteed. Furthermore, we ensure that all
orders follow the agreement of minimum order quantity and rounding value in
constraint (5), while constraint (6) is defined to confine the lower bounds of SS
and SLT.

4 Computational Results

We consider a case study from a manufacturing company to demonstrate the
applicability of the proposed model. We apply the interactive NAUTILUS Nav-
igator method to support the supply chain manager of the said company, acting
as the DM, to find his most preferred solution without trading-off.

4.1 Information About the Case

We review a weekly single item lot sizing problem for 41 weeks. Thus, the opti-
mization model has 43 integer decision variables, including weekly order quan-
tities, SS and SLT. We received data of an item, which is a component of the
company’s product. The data is generated from the company’s planning system.
The data contains current inventory information for the item as well as a con-
sumption projection according to the company’s production plan. Based on the

216 A. Kania et al.

data, the price to purchase one unit of the item is e91.18, the cost for a single
order is e200, and the cost of holding one unit of item is ten percent of the
price annually. The lead time for this item is 6 weeks, with a standard deviation
s = 0.93 days. The company has made a prediction for the weekly demand data
based on its historical data, which varies with a mean μ = 116.22 and a standard
deviation σ = 29.04. The opening inventory is 312 units and the company has
made previous orders for the next six weeks, which are (48, 119, 120, 120, 48, 96).
Based on the agreement between the company and the supplier, the company
must place an order with a minimum of 48 units and round by 48 units.

As a request from the DM, bounds for SS and SLT were defined as additional
constraints. The DM was only interested in SS values lower than μ and SLT
values below four days. He also requested to see at least one day SLT or one
day’s worth of demand for SS, which is μ/5. Furthermore, low ITO values below
ten were not interesting for the DM.

As said, a GUI plays an important role in NAUTILUS Navigator. A few
modifications of the available GUI were done in this research to make the GUI
more useful for the DM in this case. The DM preferred to see the probability of
product unavailability (PPU) rather than PPA. Thus, we switched to minimize
PPU = 1 − PPA in the fifth objective. Furthermore, the DM wanted to see the
information of days of stock (DoS). DoS is an inventory performance indicator
describing the number of days needed to sell an item. DoS is calculated as the
number of days in one year (we use 254 working days) divided by ITO.

4.2 Computational Results

As described in Sect. 2.2, the starting point of the NAUTILUS Navigator method
is a set of pre-generated solutions. As said, lot sizing problems are computa-
tionally expensive problems. Because of their complexity, many researchers use
metaheuristic methods, like evolutionary algorithms, to solve various problems
of lot sizing [14]. In this paper, we applied NSGA-III [5] by using the pymoo
framework [3] because of its ability to solve constrained multiobjective optimiza-
tion problems with integer variables. Evolutionary algorithms cannot guarantee
Pareto optimality but can generate sets of solutions where no solution dominates
the others.

Some strategies were needed to generate a large amount of nondominated
solutions. Because a single run of NSGA-III was not able to generate enough
solutions, we ran the algorithm several times with different initial populations.
Furthermore, to get more solutions, various parameters of evolutionary opera-
tors were used that were available in the framework. Finally, all solutions were
combined, dominated solutions were deleted, and 1503 nondominated solutions
were obtained that approximate Pareto optimal solutions.

The DM started the navigation process by investigating the reachable ranges
for the first step, which were represented by the ideal point and the nadir point
initially derived from the set. With the bounds defined by the DM, the ideal
point was z∗ = (358 884.48, 1 000, 674.73, 0.9945, 0, 97.45) and the nadir
point was znad = (367 637.76, 6 800, 4 782.04, 0.5, 0.5, 10.19) (remember that

Lot Sizing with Safety Stock and Safety Lead Time 217

the fourth and sixth objectives are to be maximized and the others are to be
minimized). Initially, the DM wanted to set the ideal point as the reference point
to investigate how the navigation ran and which Pareto optimal solutions can
be found if he wanted all the objectives to navigate towards their best values.

Fig. 2. A Pareto optimal solution for the ideal point as the reference point

Because of the trade-offs among the objectives, getting the best possible val-
ues for all objectives is naturally impossible, but, the DM navigated till the
Pareto optimal solution z = (358 884.48, 4 400, 1 011.40, 0.7504, 0.1414, 47.67)
was reached. Thus, the reachable range was finally a single point. Figure 2 shows
this navigation. The DM analyzed that, in step 52, there was a significant
decrease of the upper bound for the reachable CSL values to 0.8116, and the
ITO reachable range shrunk with the upper bound 59.53. Because of this, the
DM decided to go backwards to step 50 and provided new preferences.

The DM wanted to keep the ITO in the best value at this step, which was
59.53. He then set the components of the reference point for PC and OC to
their worst values, and keep the other components as their best reachable values
at this step. Therefore, the new reference point was (367 637.76, 6 800, 901.98,
0.9835, 0, 59.53). He let the navigation continue until the end to check the Pareto
optimal solution that could be reached. The Pareto optimal solution obtained
was z = (363 261.12, 6 000, 1 108.19, 0.8437, 0.0159, 39.25). He found the CSL
value better but it was not satisfactory enough for him. He learned that the
upper bound of the CSL’s reachable values started to decrease at step 80. He
then decided to return to this step to set a new reference point.

The DM navigated with different desired values of ITO to observe how much
he needed to sacrifice in ITO to get better values for CSL. He returned to step
80 a few times with different desired values for ITO, but he only got 0.9041 as
the best value for CSL. He decided to go further backwards to step 16 because
the upper bound of ITO and HC in reachable values had a significant decrease

218 A. Kania et al.

after this step. He set all cost objectives in their worst reachable values, CSL and
PPU in their best reachable values, and ITO=48. He let the reachable ranges
shrink till the Pareto optimal solution z = (363 261.12, 6 400, 1 183.94, 0.9366,
0.0159, 35.68). The DM found that the CSL value was not satisfactory enough.

The DM realized that CSL had a trade-off with PPU, and he needed to relax
PPU to get better CSL. He decided to return to step 75 when the CSL decreased.
He then relaxed the ITO value to the worst reachable value, and got the Pareto
optimal solution z = (363 261.12, 5 800, 1 066.10, 0.9272, 0.1414, 42.69). He was
happy with the improvement of ITO but was still curious to find a better CSL
value.

The DM wanted to investigate how much he needed to sacrifice in ITO when
he desired to improve CSL. He then decided to go to the very first step and set his
preferences at the best reachable value for CSL and the worst reachable values
for costs and PPU. For ITO, he set 40 as the desired level. He let the navigation
converge to a single solution. He got the best CSL value and the Pareto optimal
solution was z = (367 637.76, 5 800, 1 061.90, 0.9945, 0.5, 42.94). He was very
happy with this solution. He thought that the CSL value was very good and the
other objective values were acceptable. He decided to accept this solution as the
final one.

Fig. 3. The decision variables corresponding to the final solution

The decision variables corresponding to the final solution for order quantities
can be seen in Fig. 3. The other decision variables were SS = 92 and SLT = 0.
The green line in Fig. 3 shows the incoming order quantities for each week,
which are the previously set order data for t = 1, ..., 6 and the optimized order
quantities Q(t − L) for t = 7, ..., 41. The inventory level in the blue line shows
that during the first six weeks, which cannot be controlled by the model due
to the lead time, the company had excess inventory. The inventory level then
decreased and followed the demand quantity to have a higher ITO, which is a
useful indicator for inventory management and planning purposes.

Lot Sizing with Safety Stock and Safety Lead Time 219

By deepening his understanding of the interdependencies between conflicting
objectives, the DM learned a lot from his own area of responsibility as a supply
chain manager and also gained the confidence to modify his original preferences.
At first, he was not willing to sacrifice on any objectives, but during the deci-
sion making process, there was a growing awareness that not everything can be
achieved, but sacrifices have to be made. These included, among other things,
the CSL and ITO. However, in his day-to-day operations, ITO is a goal set by
the company’s top management. Therefore, deviating from this objective must
be strongly justified to the management.

As a result of the learning process, the DM gained confidence in setting his
preferences, and thus multiobjective optimization and NAUTILUS Navigator
supported his understanding and ability to justify his decisions. The DM greatly
appreciated the fact that as the decision making process progressed, he con-
stantly saw the navigator’s results and understanding of achieving objectives,
which guided him in setting his preferences. The possibility to stop the process
at any time and the feature to go backwards in the navigator, were, in his view,
excellent opportunities to make decisions easily. The GUI of the navigation and
the real-time updating of the results also supported his decision making. The
navigator graphs and the sliders for setting the reference point were, in the DM’s
view, a clear advantage in support of decision making. The whole process was
so instructive and professionally useful.

As can be seen in Fig. 3, the inventory level was significantly reduced from
its original level. The DM commented that this is a typical example of decisions
being made in the past “for the sake of certainty”, where typically stock levels
tend to rise. NAUTILUS Navigator as a method responded precisely to the
need for decisions to be based on calculations rather than assumptions. The
DM was pleased with the result of the objective function values, as well as the
corresponding decision variables. Overall, the DM was satisfied with the results
and operation of NAUTILUS Navigator and found an interactive method very
suitable for learning. He is willing to adopt the method more widely for inventory
planning and control, especially for critical items.

5 Conclusions

In this paper, we considered a single item multi period lot sizing problem in a
periodic review policy under a stochastic environment on demand and lead time.
We used a SS to handle uncertainty on demand and CSL to measure the quality
of SS. To handle uncertainty on lead time, a SLT was used and we proposed
the PPA formula to measure the quality of SLT. The aim of this paper was
to integrate the lot sizing problem with the problem of determining the optimal
values of SS and SLT. We developed a multiobjective optimization model to solve
the integrated lot sizing problem. Six objectives were optimized simultaneously
to find the optimal order quantity in each period and at the same time determine
the optimal values of SS and SLT.

Real data from a manufacturing company was used to demonstrate the appli-
cability and usefulness of the proposed model. A supply chain manager from the

220 A. Kania et al.

said company acted as the DM to draw managerial insights into the decision
making process. The interactive NAUTILUS Navigator method was successfully
applied to solve our integrated computationally expensive lot sizing problem.
The DM appreciated the navigation process that allowed him to learn during
the decision making process and find the most satisfying solution for him. He
confirmed the validity of the solution and found it useful for his daily operation.

For future research, considering many items would present more computa-
tional challenges but meet the needs of real industrial problems. A company may
have thousands of items that are impossible to consider separately. Another pos-
sible future research topic is to address the variation of price based on the order
quantity, or integrating the model with the problem of determining minimum
order quantity and rounding value.

Acknowledgements. This research was partly funded by LPDP, the Indonesian
Endowment Fund for Education (grant number S-5302/LPDP.4/2020), and the
Academy of Finland (grants 322221 and 311877). The research is related to the thematic
research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective
Optimization, jyu.fi/demo) of the University of Jyväskylä.

References

1. Andriolo, A., Battini, D., Grubbström, R.W., Persona, A., Sgarbossa, F.: A century
of evolution from Harris’s basic lot size model: survey and research agenda. Int. J.
Prod. Econ. 155, 16–38 (2014)

2. Aslam, T., Amos, H.C.N.: Multi-objective optimization for supply chain manage-
ment: a literature review and new development. In: 8th International Conference
on Supply Chain Management and Informatio, pp. 1–8. IEEE (2010)

3. Blank, J., Deb, K.: Pymoo: multi-objective optimization in Python. IEEE Access
8, 89497–89509 (2020)

4. Chopra, S., Meindl, P.: Supply chain management: strategy, planning, and opera-
tion. Pearson, 6 edn. (2016)

5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, Part I: Solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

6. Dolgui, A., Ould-Louly, M.A.: A model for supply planning under lead time uncer-
tainty. Int. J. Prod. Econ. 78(2), 145–152 (2002)

7. Dolgui, A., Prodhon, C.: Supply planning under uncertainties in MRP environ-
ments: a state of the art. Annu. Rev. Control. 31(2), 269–279 (2007)

8. Glock, C.H., Grosse, E.H., Ries, J.M.: The lot sizing problem: a tertiary study. Int.
J. Prod. Econ. 155, 39–51 (2014)

9. Gonçalves, J.N., Sameiro Carvalho, M., Cortez, P.: Operations research models
and methods for safety stock determination: a review. Oper. Res. Perspectives 7,
100164 (2020)

10. Harris, F.W.: How many parts to make at once. Factory, The Magazine of Man-
agement 10, 135–136 (1913)

11. Hartikainen, M., Miettinen, K., Klamroth, K.: Interactive Nonconvex Pareto Nav-
igator for multiobjective optimization. Eur. J. Oper. Res. 275(1), 238–251 (2019)

Lot Sizing with Safety Stock and Safety Lead Time 221

12. Hegedus, M.G., Hopp, W.J.: Setting procurement safety lead-times for assembly
systems. Int. J. Prod. Res. 39(15), 3459–3478 (2001)

13. Hopp, W.J., Spearman, M.L.: Factory Physics. Waveland Press Inc, 3 edn. (2008)
14. Jans, R., Degraeve, Z.: Meta-heuristics for dynamic lot sizing: A review and com-

parison of solution approaches. Eur. J. Oper. Res. 177(3), 1855–1875 (2007)
15. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk.

Econometrica 47(2), 263–291 (1979)
16. van Kampen, T.J., van Donk, D.P., van der Zee, D.J.: Safety stock or safety lead

time: coping with unreliability in demand and supply. Int. J. Prod. Res. 48(24),
7463–7481 (2010)

17. Korhonen, P., Wallenius, J.: Behavioural issues in MCDM: neglected research ques-
tions. J. Multi-Criteria Decision Anal. 5(3), 178–182 (1996)

18. Kumar, K., Aouam, T.: Integrated lot sizing and safety stock placement in a net-
work of production facilities. Int. J. Prod. Econ. 195, 74–95 (2018)

19. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers (1999)

20. Miettinen, K., Hakanen, J., Podkopaev, D.: Interactive nonlinear multiobjective
optimization methods. In: Greco, S., Ehrgott, M., Figueira, J.R. (eds.) Multiple
Criteria Decision Analysis. ISORMS, vol. 233, pp. 927–976. Springer, New York
(2016)

21. Miettinen, K., Ruiz, F.: NAUTILUS framework: towards trade-off-free interaction
in multiobjective optimization. J. Bus. Econ. 86(1), 5–21 (2016)

22. Molinder, A.: Joint optimization of lot-sizes, safety stocks and safety lead times in
an MRP system. Int. J. Prod. Res. 35(4), 983–994 (1997)

23. New, C.: Safety stocks for requirements planning. Prod. Invent. Manag. 12, 1–18
(1975)

24. Pahl, J., Voß, S., Woodruff, D.L.: Production planning with load dependent lead
times: an update of research. Ann. Oper. Res. 153, 297–345 (2007)

25. Ruiz, A.B., Ruiz, F., Miettinen, K., Delgado-Antequera, L., Ojalehto, V.: NAU-
TILUS Navigator: free search interactive multiobjective optimization without
trading-off. J. Global Optim. 74(2), 213–231 (2019)

26. Schmidt, M., Hartmann, W., Nyhuis, P.: Simulation based comparison of safety-
stock calculation methods. CIRP Ann. 61(1), 403–406 (2012)

27. Silver, E.A., Pyke, D.F., Thomas, D.J.: Inventory and production management in
supply chains, 4 edn. CRC Press (2017)

28. Talluri, S., Cetin, K., Gardner, A.J.: Integrating demand and supply variability
into safety stock evaluations. Int. J. Phys. Distrib. Logist. Manag. 34(1), 62–69
(2004)

29. Torabi, S., Hassini, E.: An interactive possibilistic programming approach for mul-
tiple objective supply chain master planning. Fuzzy Sets Syst. 159(2), 193–214
(2008)

30. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model.
Manage. Sci. 5, 89–96 (1958)

31. Whybark, D.C., Williams, J.G.: Material requirements planning under uncertainty.
Decision Sci. 7(4), 595–606 (1976)

The Craft Beer Game and the Value
of Information Sharing

Joshua Grassel1, Alfred Craig Keller1, Alessandro Hill1(B) ,
and Frederik Schulte2

1 California Polytechnic State University, San Luis Obispo, CA 93407, USA
{jtgrasse,ackeller,ahill29}@calpoly.edu

2 Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
f.schulte@tudelft.nl

Abstract. The craft beer supply chain in the USA differs from the sup-
ply chain of macro breweries in its structure, handled volumes and prod-
uct shelf-life. In this work, we study how these smaller craft breweries can
benefit from transparency in their supply chain. We consider additional
information sharing of orders and inventories at downstream nodes. The
levels that we investigate grant the brewery incremental access to distrib-
utor, wholesaler, and retailer data. We show how this knowledge can be
incorporated effectively into the brewery’s production planning strategy.
Extending the well-known beer game, we conduct a simulation study
using real-world craft beer supply chain parameters and demand. We
quantify the impact of information sharing on the craft brewery’s sales,
spoilage, and beer quality. Our model is designed to directly support
the brewery when evaluating the value of downstream information and
negotiating data purchases with brokers. Through a computational anal-
ysis, we show that the brewery’s benefits increase almost linearly with
every downstream node that it gets data from. Full transparency allows
to halve the missed beer sales, and beer spoilage can even be reduced by
70% on average.

Keywords: Craft beer industry · Supply chain management ·
Information sharing · Production planning · Simulation

1 Introduction

The classic beer game of supply chain management (SCM) has received signif-
icant attention for demonstrating the bullwhip effect and the value of vertical
collaboration in supply chains. With the rising popularity of craft beers, the craft
beer game naturally emerges as a variant of the classic game with slightly altered
rules and different insights to be gained for SCM (education). In contrast to the
supply chains of the large breweries and many other supply chains, information
in craft beer supply chains (CBSCs) is mostly not shared directly between the
supply chain members but bought from data brokers [6]. Thus, the player of the

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 222–236, 2021.
https://doi.org/10.1007/978-3-030-87672-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_15&domain=pdf
http://orcid.org/0000-0003-4989-7587
https://doi.org/10.1007/978-3-030-87672-2_15

The Craft Beer Game and the Value of Information Sharing 223

craft beer game has to take two decisions: how many units of stock to order and
how much information to buy.

This, however, involves understanding a trade-off between the cost and the
value of shared information. As an integral element of self-thinking supply
chains [4], information sharing and its value for supply chains have been investi-
gated considering different scenarios. Lee et al. [11], for instance, investigated the
case of a simple two-stage supply chain and found that the manufacturer could
reduce inventory costs with information sharing. Ouyang [15], on the other hand,
showed that information sharing could improve the supply chain stability and
mitigate the bullwhip effect. Nevertheless, the value of information sharing in
CBSCs has not yet been investigated, and the impact of information sharing on
important metrics of the sector such as average beer age, spoilage, and missed
sales is not yet well understood. Existing CBSC literature rather focuses on
sustainability factors of the supply chain [1,5] or develops models for the inher-
ent supply uncertainty in these supply chains [19]. A general overview on the
craft beer industry is given by Biano [2] considering the special craft require-
ments in terms of food quality. Further works on craft beer address, amongst
other aspects, corporate social responsibility [9], sustainability objectives [8,14],
economies of scale [20], and craft beer as a means of economic developments [12].

In this work, we model different levels of information sharing in the craft
beer supply chain and develop a simulation approach based on real-world data
to understand the value of information sharing concerning the CBSC metrics,
average beer age, spoilage (in total and at each stage of the supply chain),
and missed sales. We observe that all of the above metrics are significantly
reduced when more information becomes available, and with more information,
this reduction becomes more significant. Moreover, we find that the variability in
the results over different scenarios is also clearly lowered with more information
sharing. These findings and the presented approach generally help to understand
the potential of information sharing platforms in CBSCs and related domains.
On top of that, they help to improve the product quality in the considered supply
chains.

2 The Craft Beer Supply Chain

The origins of beer can be traced as far back as 7000 BCE and the recipe has
basically been the same to this day: water, malt, hops and yeast. While the
ingredients have stayed constant over thousands of years, the US American Beer
Industry has been relatively short with some notable occurrences have altered
demand, manufacturing and supply chain operations. Most recently, the resur-
rection of US American Craft Breweries has changed the way that beer products
must be managed within the supply chain. While most supply chain analyses are
done under the model assumptions developed in the Beer Game [7], this model
does not consider modern quality standards and beer style preferences.

We consider the Craft Beer Supply Chain (CBSC) in the USA. The CBSC
is used by so-called craft breweries to supply end customers with craft beer.

224 J. Grassel et al.

The majority of the US beer industry is controlled by a small amount of macro-
breweries, or breweries that produce over 6,000,000 barrels (9.5 MM hL) of
beer, controlling over 87% of the market in 20201. On the other side, there are
thousands of craft breweries that provide the remaining volume2. Even though
the craft beer segment has seen dramatic growth over the past 30 years, it
still only controls a small portion of the market and has a strikingly different
relationship with the other agents in the supply chain. The US American beer
supply chain, also called the Three Tier System [13], consists of four echelons,
and is illustrated in Fig. 1. The Three Tier System dates back to the 1920s and
refers to a law that enforces breweries to sell their product to a distributor before
being sold to wholesale and retail locations.

Fig. 1. The Three-Tier beer supply chain used by both macro breweries and craft
breweries with its nodes (brewery, distributor, wholesaler, and retailer) down to the
consumers.

The main contrasts between the regular beer supply chain and the CBSC are
in ownership, information access and product shelf life. These differences directly
affect the breweries’ abilities to manage their production strategies efficiently,
as well as control their storage and spoilage costs. In the following, we explain
these differences in more detail.

Ownership and Information Access. Macro breweries’ distributing centers
exist around the country and are wholly owned by the breweries’ themselves. This
is a luxury that craft breweries rarely have. They rely on third party distributors
for additional warehousing. These inventory transactions with external parties
adds cost for the craft breweries.

Further, the Three-Tier Laws also dictate that breweries can have ownership
of no more that 5% of the wholesalers that sell its products. Though, due to the
sheer dominance that macro breweries have on the industry and benefits they
can provide (e.g., vehicles), they have nearly full control on the wholesalers’
operations for their products. These wholesalers are even barred from carrying
other macro brewery products and are referred to as ‘houses’ for their connected
1 https://www.brewersassociation.org/statistics-and-data/craft-brewer-definition.
2 A craft brewery is considered a micro brewery when producing less than 15,000

barrels (ca. 17900 hL) per year.

https://www.brewersassociation.org/statistics-and-data/craft-brewer-definition

The Craft Beer Game and the Value of Information Sharing 225

macro brewery. This control includes ordering strategy decision making and
information systems integration that allows full visibility of inventory movement.
Ownership structure and information access are depicted in Fig. 2.

At the retail level, the macro breweries are on a more similar playing field
with the craft breweries due to another set of laws called the Tied House Laws
which penalize manufacturers for influencing retailers. Though, where macro
and craft differ is in the access of information of direct consumer sales from the
retailers themselves. The cost of this data through third party data brokers is in
the six figures annually and while macros have no problem purchasing the data,
it is nearly impossible for craft breweries to justify the cost.

Fig. 2. Ownership relation, and paid and unpaid flow of information between supply
chain members and data brokers.

Shelf Life. Quality standards within the US beer industry have changed dra-
matically since the 1960s, mainly due to the advancements in brewing technology
and increased consumer product knowledge. These two changes have led to the
development of and adherence to shelf-life standards for beer products. These
standards designate how long products can age before they are deemed spoiled
and discarded. Quality focused breweries and consumers are keen to minimizing
the age of beer products as they make their way through the supply chain [16].
Aging speeds up with increasing exposure to oxygen and light. Beer becomes
oxidized when it is introduced to oxygen and produces off-flavors described as
cardboard or paper. Oxidation speed increases with heat and agitation, which
are common with transportation. Hops are the primary cause of oxidation and
thus beers with more hops are more susceptible to oxidation [10]. Beer becomes
‘light-struck’ when UV light reacts with hops producing a skunky smell. This
flavor is evident in many popular beer brands that are found in green or clear
glass bottles [3].

With increased visibility to information of their down line agents, macro
breweries have the ability to control inventory levels at each agent and monitor
the shelf-life of their products throughout. This ability becomes significantly

226 J. Grassel et al.

more important for products that have shorter and gradually decreasing shelf-
lives, which describes nearly all products produced by craft breweries. While
keeping larger days on hand inventory at each agent, can help maximize the
fulfillment rates to the consumer, this strategy can also lead to a longer aging of
product at time of consumer purchase. Therefore, craft breweries’ lower visibility
to information of their down line agents, decreases the quality of their product
and increases their cost.

The difference in shelf life standards and the corresponding cost factor are
illustrated in Fig. 3.

Fig. 3. Cost allocation for spoiled beer for macro and craft breweries based on the
corresponding shelf life standards.

The predominant cost factors to be considered in the craft beer supply chain
are as follows. Missed Beer Sales: The cost for the retailer of not fulfilling cus-
tomer orders. Beer Age: The cost of providing a customer a beer product that
is past its prime drinking age. Beer Spoilage: The cost of beer product that has
been destroyed due to reaching its beer spoilage age. Note that beer spoilage can
occur at any tier in the supply chain. The brewery is interested in minimizing
all three metrics to reduce costs and increase product quality.

We assume sufficient transport capacity since shipping in the CBSC is done
at lower quantities than for macro breweries. However, we account for shipping
times. We do not consider costs related to transportation and inventory since
they play a minor role in the CBSC.

The Craft Beer Game. The Beer Game is a well-known and heavily analyzed
model that is used for applications, not limited to, but including classrooms,
business management seminars and scientific research. The fundamental logic
of the game is based on a multi-player system where product orders are placed
upstream and fulfillment of these orders is completed downstream. Each player
has its own strategies on how to fulfill these orders while considering their own
limitations in storage capacity, transportation time and order quantities. The
objective of the Beer Game is to come up with strategies at the player level to
either minimize costs, maximize sales or a combination of the two.

In this work, we introduce the Craft Beer Game, which extends the Beer
Game. In addition to the fundamental four steps (check deliveries, check orders,

The Craft Beer Game and the Value of Information Sharing 227

deliver beer, make order decision), we consider a new acquire information step.
The latter is conducted in every round prior to making an order decision. The
obtained information includes insights into the other players’ operations. This is
so important in the CBSC because of both, the strong competition in the craft
beer industry, and the need to compete with larger breweries.

3 Information Sharing

Reordering strategies at the different tiers are key mechanisms in a supply chain.
We take the perspective of the manufacturer, i.e., the brewery, which does not
order but plan production instead. In practice, this operational planning step
takes into account historical demands, current inventories and the planners’
domain expertise. The main challenge is to predict future demands at the best
possible level of accuracy. These demands are dependent on the next node’s
requirements which stem from the demand that it is facing.

There is a difference between information sharing and transparency. Infor-
mation sharing leads to transparency. It can follow a mutual agreement between
two supply chain members, resulting in collaboration. Or, it can be asymmetric,
so that only one node obtains (partial) access to the node’s data. We focus on
the latter case and restrict ourselves to down-stream transparency resulting from
up-stream sharing. Moreover, information can be obtained after involuntary dis-
closure, possibly through third-parties. That is, a node might not be willing
to share information, but peripheral analysis could give insights into some of
its operations. For example, shipping companies delivering products from the
wholesaler to the retailer may provide insight into the corresponding order pat-
terns. Cooperation between competitors, also called coopetition, happens when
all involved parties expect benefits.

The information of interest in the CBSC can be categorized as order-related
and inventory-related. Information is closely related to parameters that can be
used to describe a supply chain. Both types can be static or dynamic (i.e.,
historical). Information can be stored in a centralized or a decentralized fashion.
Currently, information is available from free data consolidators (e.g., VIP3, GP-
Analytics4) providing data-analytics services to distributors, wholesalers, and
retailers. They commonly sell the data to breweries at a relatively high cost. They
are information-sharing platforms to the distributors etc., and a data broker to
the brewery.

We consider four information sharing models yielding different supply chain
transparency from the manufacturer’s (i.e., the brewery’s) perspective.

I. Baseline: No transparency at all. The brewery has no insights in current
or past downstream operations.
II. First-Level Transparency: The distributor’s inventory and historical
demand are known.

3 https://www.mysoftwaresolutions.com/vip-analytics.
4 https://www.gp-analytics.com.

https://www.mysoftwaresolutions.com/vip-analytics
https://www.gp-analytics.com

228 J. Grassel et al.

III. Second-Level Transparency: In addition to distributor data access,
the wholesaler’s inventory and historical demand are known.
IV. Third-Level Transparency: First and second-level transparency is
extended by retailers information.

Figure 4 illustrates the considered information sharing levels within the supply
chain. Note that the brewery always has access to its own inventory levels and
the current and historical orders submitted by the distributor. In this work, we
do not consider information sharing with other nodes than the manufacturer,
since we are interested in potential benefits for the brewery.

Fig. 4. The considered levels for information access for the brewery in the craft beer
supply chain: No Sharing (I), Distributor (II), Distributor+Wholesaler (III), Distribu-
tor+Wholesaler+Retailer (IV).

4 Reordering and Production Planning

We first describe the base reorder strategy used at each node. Afterwards, we
explain how the information sharing levels are used to adjust the brewery’s beer
production planning. All beer quantities in our model are measured using case
equivalents (CEs), the standard measure utilized in the U.S. Beverage Wholesale
industry. A CE is comparative to 24 cans of 12 fluid ounces.

4.1 Reorder Strategies

We build the reorder strategies for our Craft Beer Game based on the existing
strategies for beer supply chains in [17,18]. Let n ∈ {1, .., 4} denote the supply
chain node from the brewery to the retailer (increasing from left to right). Each
node places an order once per reorder cycle with node-dependent cycle time
(CTn) measured in days. The considered time periods t are the end times of the

The Craft Beer Game and the Value of Information Sharing 229

order cycles, which are different for the nodes. For every node n, reorders are
executed at times in {0, 1 · CTn, 2 · CTn, 3 · CTn, . . .}. In time period t at node
n, the suggested order quantity (SOQn,t) in CEs is calculated as follows:

SOQn,t = max{EDn,t + ASn,t + ASLn,t, 0} (1)

The expected demand is defined as

EDn,t = θ · INCn,t + (1 − θ) · EDn,t−CTn

where INCn,t stands for the total incoming orders over the last cycle to node n
(sent by node n+1), and θ ∈ [0, 1] is an expectation update The adjusted supply
is defined as

ASn,t = αS · (DINVn,t − INVn,t + BLn,t)

where DINVn,t is the node’s desired inventory; INVn,t is the actual inventory,
including the beer that is currently being transported to the corresponding node;
BLn,t the backlog; and αs ≥ 0 is a fractional adjustment rate. The Adjusted
supply line is defined as

ASLn,t = αSL · (−BLn−1,t)

where αSL is a fractional adjustment rate. Note that BLn−1,t is known because
node n knows both, what order was placed and how much of it was fulfilled by
up-stream node n−1. This equation slightly differs from [17] since we use reorder
cycle times that are longer than the summation of fulfillment and shipping times.
This is common for a CBSC because of low volume and short transportation dis-
tances. At the wholesaler and the distributor, the SOQn,t value will be rounded
up to the next suitable batch size (see also Sect. 5), whereas the retailer precisely
orders SOQt units. The reorder strategy defined above applies in particular to
the brewery, where orders correspond to production orders. In Sect. 4.2, we will
present a set of revised strategies that take into account the additional informa-
tion that is being shared when planning the beer production.

4.2 Brewery Reordering with Different Information Levels

In the following, we incorporate the additional information available at the dif-
ferent sharing levels into the brewery’s production planning. To this end, we
suggest effective demand forecasting methods for all scenarios. Under additional
information sharing using level L, the base strategy for the brewery node given
in Eq. (1) extends as follows.

SOQ1,t = max{ED1,t + AS1,t + ASL1,t + ATSL
1,t, 0} (2)

Here, the newly integrated level-dependent adjusted total supply is defined as

ATSL
1,t = αTS · (DTSL

1,t − TSL
1,t) (3)

230 J. Grassel et al.

Similar to the adjusted supply ASn,t, αTS functions as a fractional adjustment
rate. The total supply reflects the known actual amount of beer in all downstream
node inventories, dependent on the information level:

TSL
1,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if L = I
INV1,t + INV2,t if L = II
INV1,t + INV2,t + INV3,t if L = III
INV1,t + INV2,t + INV3,t + INV4,t if L = IV

(4)

We intentionally set the TSL
1,t to 0 (as we do for DTSL

1,t) in the case that
no additional information is available (Level I). Herewith, we ensure that the
adjustment term ATSL

1,t cancels out in this information sharing level. The desired
total supply corresponds to the desired amount of inventory contained in the
entire supply chain, the strategy we use is defined as

DTSL
1,t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if L = I

γL · INC2,t

CT2
if L = II

γL · INC3,t

CT3
if L = III

γL · INC4,t

CT4
if L = IV

(5)

where the parameter γL ∈ {1, 2, . . .} is used to specify the days of inventory
that the brewery desires to be available in the supply chain down to the last
node that it has data access to. A larger value typically results in an increased
adjustment (see Eq. (3)) and yields overproduction. Conversely, reducing γL
tends to decrease production. Note that for level I, this strategy reduces to the
base strategy defined in Eq. (1), since no desired downstream inventories and
total supply are included. ATSL

1,t can be negative, since it is used to adjust the
production quantities.

We point out that adjusting the production has an impact on the brewery’s
objectives in two ways. If the adjustment is negative (i.e., less is produced than
originally planned) then we will likely see less beer spoilage. If adjustment is
positive (i.e., we produce more) then we expect to reduce the missed beer sales.

In the base production planning, the brewery is dependent on the distribu-
tor’s estimation of downstream demand in form of the corresponding distributor
orders. This might not be ideal for the brewery’s objective to reduce the beer
age. In information sharing levels II-IV, the brewery’s planning can bypass the
distributor’s planning by adjusting according to an own real-data-based down-
stream demand estimation. Example: Consider the case that the distributor
overestimates the future demand. If this is reflected in low retailer demand (that
we have access to) then the brewery would adjust by reducing its production.
Even if this way it is not possible to meet the distributors orders, we expect to
avoid beer sitting in downstream inventories longer than needed.

Distributors are set up to hold large inventories with long shelf lives (Macro-
Beer), but that causes a problem for Craft Breweries whose product has shorter

The Craft Beer Game and the Value of Information Sharing 231

shelf-life. Distributors are focused on selling the product within the spoilage
window, which means they will focus on holding as much product, as possible as
long as it does not spoil. Whereas, breweries want their product sold as fresh as
possible, which would mean smaller inventories. Therefore, the Craft Breweries
are self-regulating the supply chain by not filling every distributor order.

5 A Simulation Approach

We use simulation to quantify the impact of availability of downstream data
for the brewery. The considered scenarios emanate from the information sharing
models and the corresponding brewery production planning strategies introduced
in Sect. 3 and Sect. 4. The used real and simulated market data is described in
Sect. 5. We develop a hybrid agent-based and discrete-event simulation system
to model the CBSC. We use AnyLogic5 as simulation modelling system. In the
following, we present our simulation approach including model logic, parameters,
data, and metrics which is inspired by [17].

Model and Logic. We model every supply chain node (brewery, distributor,
wholesaler, retailer, and customer) as a separate section of the agent flow logic.
Orders (in CEs) are explicitly modelled as agents on all levels. They originate
at distributor, wholesaler, retailer, and customer, and are terminated at the
preceding node (see Fig. 5). Moreover, backorder agents originate at distributor,
wholesaler, and retailer in case of insufficient inventory.

In Fig. 5, we illustrate the generic logic used to represent the supply chain
nodes using the wholesaler. A recurring event causes an order agent to be gener-
ated at the order source with a quantity parameter defined by the node’s reorder
strategy. The order agent then functions as a container and picks up the desired
quantity of CE agents from the previous node’s inventory. The order and CE
agents pass through a delay representing shipping, then the beer is dropped
into this node’s inventory while the order is disposed. In the case that an order
attempts to pick up more beer than the previous node has, a new back order
agent is put into a queue. The next time an order picks up from that node, it
will attempt to pickup the new order quantity in addition to the quantity on
back order.

The main events correspond to recurring customer demand (based on daily
stochastic market data), reorders, beer production, backorders (dropped after
one reorder cycle if not filled, which is common), and inventory quality control
(spoilage check).

5 www.anylogic.com.

www.anylogic.com

232 J. Grassel et al.

Fig. 5. The generic node logic with inventory queues, ordering, and shipping in our
AnyLogic simulation model illustrated by the wholesaler.

Parameters. The following parameters are used to configure the CBSC. The
beer production time is 21 days per batch (100 CE). Reorder cycle times are
1/14/14/7 days, and reorder quantities are rounded up to the next 100 (in CE)
at the distributor and the wholesaler (not rounded at the retailer). The reorder
parameters (used in Sect. 4) reflect industry standards: θ = 0.5, αS = 0.5, αSL =
1, αTS = 1, γII = 30, γIII = 45, γIV = 60. A desired inventory level for
node n in time period t (DINVn,t) is set to be a single order cycle’s expected
demand (EDn,t). The retailer holds twice this volume. The brewery’s production
quantities are rounded up to the next 100 (in CE). The corresponding production
limit is assumed to be 1000 CE; no limits at other nodes. The maximum beer age
in number of days before being discarded during the inventory quality control,
also called hold days, is 40 (brewery), 70 (distributor), 90 (wholesaler), and 120
(retailer). A spoilage check is performed on a daily base at every node. We set
the transportation times to one day and do not incorporate capacity or cost.
Moreover, we do not use inventory capacity limits.

Real-World Data. The customer demand is assumed to be stochastic. We
base our experiments on real-world data from a craft beer brewery. Using four-
year daily demand, we generate 19 randomly simulated time series. These are
derived by a time series decomposition approach in which we detect the error
distribution after subtracting linear trend and exponentially smoothed pattern.
The historical demand data for the four-year period is illustrated on a monthly
base in Fig. 6. Furthermore, the figure shows the simulated demands. A steady
demand growth can be seen that is typical for early-stage craft beer breweries.

Key Performance Indicators. The performance of the CBSC is measured
using the following metrics (see also Sect. 4).

1. Beer Sales: The relative missed beer sales in CE with respect to the overall
customer demand.

2. Average Beer Age: The average number of days that a CE spends in the
supply chain before reaching the end consumer.

3. Beer Spoilage: The relative beer in CE that is spoiled at any node due to an
excess of shelf life.

The Craft Beer Game and the Value of Information Sharing 233

Fig. 6. Real-world time series and 19 simulations of customer beer demand data over
the four-year horizon (monthly aggregation).

6 Computational Analysis

In this section, we present and analyze the results of our simulation study. We
quantify the impact of the four different information sharing levels (Sect. 4)
and the corresponding brewery planning strategies (Sect. 4) on the CBSC model
described in Sects. 2 and 5. The used simulation data and parameters are
described in Sect. 5.

We report our main results in Table 1 using the metrics introduced in Sect. 5:
Missed Beer Sales, Beer Age, and Beer Spoilage. These numbers correspond to
a breakdown of major cost factors associated to a craft brewery. Relative missed
beer sales are given with respect to the overall customer demand. The spoilage
at a node is compared to the overall beer volume that entered the node. The
average beer age is calculated over the beer that is delivered to the end customer,
not considering spoiled material. We recall that level I does not allow the brewery
to look into the other nodes’ operations at all.

We observe a significant reduction of missed beer sales when augmenting
the information shared in the different levels. When allowing full transparency,
the missed sales can almost be halved (4.9% → 2.5%). An even stronger impact
can be seen in terms of beer spoilage. The overall spoilage can be reduced from
24.0% to 7.1%. The node-dependent breakdown confirms this gradual improve-
ment. Brewery and distributor benefit the most since the corresponding detected
spoiled beer reduces to 0.8% and 1.8%, respectively. However, the beer age
remains consistently around 67%, indicating that the information levels do not
help. This minimal effect on the beer age could be due to the fact that each node
holds enough inventory to cover till their next shipment. Thus, the average beer
age is rather correlated to the sum of days between shipments for each node, i.e.,
the reorder cycles. The distributions for missed beer sales, average beer age and
beer spoilage are further described in Fig. 7. We observe some variation in missed
sales but only small changes for spoilage and beer age. Overall, the missed beer
sales range from 0.8% to 8.6%, whereas the average beer age is greater than
64.0% does not exceed 69.8%. Moreover, the standard deviation in all metrics
decreases as more information becomes available: 1.9 → 1.3% (missed sales);

234 J. Grassel et al.

2.2 → 1.7% (spoilage); 1.2 → 0.7 days (average beer age). To better understand
the beer production adjustments ATSL

1,t (Sect. 4), we illustrate the absolute val-
ues in Fig. 8. The data is presented in a monthly aggregated form for the original
beer demand. Note that there is a notable impact on the production volumes.

Table 1. The average missed beer sales, beer age and spoilage at different supply chain
nodes for information sharing models I-IV.

Metrics Information Sharing Level

I II III IV

Missed Sales (%) 4.9 4.5 3.5 2.5

Beer Age (∅) 67.7 66.0 66.2 68.1

Spoilage (%)

Total 24.0 15.8 8.1 7.1

Brewery 13.4 6.0 0.5 0.8

Distributor 8.4 7.3 5.5 4.6

Wholesaler 3.2 3.0 2.5 1.8

Retail 0.00 0.00 0.00 0.00

Fig. 7. The distributions of average relative missed beer sales (left), average beer age
(center), and relative beer spoilage (right) observed over the simulation repetitions.

7 Conclusion

We studied the US American craft beer supply chain from the brewery’s per-
spective in a beer game fashion. After defining its industry-specific properties,
we developed practically relevant scenarios for how availability of down-stream
information can be incorporated into production planning. Our main goal is to
help the brewery’s production planning regarding sales, product quality, and
spoilage. We conducted a simulation study based on real-world craft beer data,
in which we quantified the value of information sharing in the craft beer supply
chain. We showed that the acquisition of downstream information from third-
party brokers yields significant benefit. With every node for that the brewery

The Craft Beer Game and the Value of Information Sharing 235

Fig. 8. Adjustment in beer production (ATSL
1,t) at the brewery for the different infor-

mation sharing levels (I-IV); shown for original demand date in monthly aggregation;
level I indicates zero adjustment.

obtained data access, its planning improved near-linearly. In the case of complete
supply chain transparency, the missed beer sales could be reduced by 50% on
average. The costly beer spoilage could even be decreased by 70%.

From a managerial perspective, the developed approach can be used to sup-
port breweries when negotiating with data brokers. In addition, it can be used to
evaluate collaboration opportunities with respect to information sharing in the
platform economy. Based on these positive results, we suggest exploring further
adaptation of the brewery’s production planning strategy concerning demand
forecasting and collaboration. Also, the investigation of interplay of production
and reorder mechanisms could be of interest. Moreover, we see importance in
an in-depth formalization and study of the generic Beer Game with information
sharing.

References

1. Bahl, H.C., Gupta, J.N., Elzinga, K.G.: A framework for a sustainable craft beer
supply chain. Int. J. Wine Bus. Res. Online 33, 394–410 (2021)

2. Baiano, A.: Craft beer: an overview. Comprehensive Rev. Food Sci. Food Safety
20(2), 1829–1856 (2021)

3. Burns, C.S., Heyerick, A., De Keukeleire, D., Forbes, M.D.E.: Mechanism for for-
mation of the lightstruck flavor in beer revealed by time-resolved electron param-
agnetic resonance. Chem. Eur. J. 7(21), 4553–4561 (2001)

4. Calatayud, A., Mangan, J., Christopher, M.: The self-thinking supply chain. Supply
Chain Manage. Int. J. 24(1), 22–38 (2019)

5. Capitello, R., Todirica, I.C.: Concepts and practices of sustainable craft beer in
Italy: a case study analysis. In: Case Studies in the Beer Sector, pp. 313–326.
Elsevier (2021)

6. Clemons, E.K., Gao, G.G., Hitt, L.M.: When online reviews meet hyperdifferen-
tiation: a study of the craft beer industry. J. Manag. Inf. Syst. 23(2), 149–171
(2006)

7. Edali, M., Yasarcan, H.: A mathematical model of the beer game. J. Artif. Soc.
Soc. Simul. 17(4), 1–2 (2014)

8. Grunde, J., Li, S., Merl, R.: Craft Breweries and Sustainability: Challenges, Solu-
tions, and Positive Impacts. Master’s thesis, Blekinge Institute of Technology, Karl-
skrona, Sweden (2014)

236 J. Grassel et al.

9. Kawa, A., �Luczyk, I.: CSR in supply chains of brewing industry. In: Golińska, P.,
Kawa, A. (eds.) Technology Management for Sustainable Production and Logis-
tics, pp. 97–118. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-
33935-6 5

10. Kuchel, L., Brody, A.L., Wicker, L.: Oxygen and its reactions in beer. Packag.
Technol. Sci. 19(1), 25–32 (2006)

11. Lee, H.L., So, K.C., Tang, C.S.: The value of information sharing in a two-level
supply chain. Manage. Sci. 46(5), 626–643 (2000)

12. Miller, S.R., Sirrine, J.R., McFarland, A., Howard, P.H., Malone, T.: Craft beer as
a means of economic development: an economic impact analysis of the michigan
value chain. Beverages 5(2) (2019)

13. NABCA Research: The three-tier system: A modern view (2015). www.nabca.org/
sites/default/files/assets/files/ThreeTierSystem Mar2015.pdf

14. Ness, B.: Beyond the pale (ale): an exploration of the sustainability priorities and
innovative measures in the craft beer sector. Sustainability 10(11) (2018)

15. Ouyang, Y.: The effect of information sharing on supply chain stability and the
bullwhip effect. Eur. J. Oper. Res. 182(3), 1107–1121 (2007)

16. Stewart, G.: Beer shelf life and stability. In: Subramaniam, P. (ed.) The Stability
and Shelf Life of Food, pp. 293–309. Woodhead Publishing Series in Food Science,
Technology and Nutrition, Woodhead Publishing, 2nd edn. (2016)

17. Strozzi, F., Bosch, J., Zald́ıvar, J.: Beer game order policy optimization under
changing customer demand. Decis. Support Syst. 42(4), 2153–2163 (2007)

18. Thomsen, J.S., Mosekilde, E., Sterman, J.D.: Hyperchaotic phenomena in dynamic
decision making. In: Mosekilde, E., Mosekilde, L. (eds.) Complexity, Chaos, and
Biological Evolution. NAS, vol. 270, pp. 397–420. Springer, New York (1991).
https://doi.org/10.1007/978-1-4684-7847-1 30

19. Warsing, D.P., Jr., Wangwatcharakul, W., King, R.E.: Computing base-stock levels
for a two-stage supply chain with uncertain supply. Omega 89, 92–109 (2019)

20. Wells, P.: Economies of scale versus small is beautiful: a business model approach
based on architecture, principles and components in the beer industry. Organiza-
tion Environ. 29(1), 36–52 (2016)

https://doi.org/10.1007/978-3-642-33935-6_5
https://doi.org/10.1007/978-3-642-33935-6_5
www.nabca.org/sites/default/files/assets/files/ThreeTierSystem_Mar2015.pdf
www.nabca.org/sites/default/files/assets/files/ThreeTierSystem_Mar2015.pdf
https://doi.org/10.1007/978-1-4684-7847-1_30

Smarter Relationships? The Present and Future
Scope of AI Application in Buyer-Supplier

Relationships

Anna-Maria Nitsche1,2(B) , Markus Burger3, Julia Arlinghaus4 ,
Christian-Andreas Schumann2, and Bogdan Franczyk1,5

1 University of Leipzig, Augustusplatz 10, 04109 Leipzig, Germany
anna-maria.nitsche@uni-leipzig.de

2 University of Applied Sciences Zwickau, Kornmarkt 1, 08056 Zwickau, Germany
3 RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany

4 Otto von Guericke University, Universitätspl. 2, 39106 Magdeburg, Germany
5 Wrocław University of Economics, Komandorska 118/120, 53-345 Wrocław, Poland

Abstract. The last decade has seen rapid developments in the area of artificial
intelligence (AI). While research focuses on technical challenges and enablers of
AI, the number of publications examining application approaches at the buyer-
supplier interface is increasing. To accelerate the related discussion and to add
clarity and richness to this fragmented research field, a systematic overview of
the existing comprehensive body of literature is essential. We contribute to the
academic debate by applying a combined systematic literature review with a text
mining and machine learning-based literature review. Thus, we categorize and
cluster different research streams and analyze the application of AI at the buyer-
supplier interface. Subsequently,we identify gaps resulting from the comparisonof
the technology and the application domain and derive themain points of discussion
from the literature. As a result, we present ten central questions outlining future
requirements and research opportunities in the field of AI application at the buyer-
supplier interface.

Keywords: Artificial Intelligence ·Machine learning · Buyer-supplier
relationship · Literature review

1 Introduction

Artificial intelligence (AI) is often portrayed as an important factor for the digitalization
of future supply chain management (SCM).While the utilization of AI in SCM has been
low for decades [1], research interest significantly increased within the context of devel-
opment from technology-enabled to technology-centric SCM. At the interface between
buyer and supplier, AI provides various benefits, for instance in terms of cost analy-
sis and risk monitoring [2]. However, the practical implementation of AI and machine
learning (ML) technologies at buyer-supplier interface is still scarce. Although the adap-
tion rate has increased over the last years, still more than every second company has not

© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 237–251, 2021.
https://doi.org/10.1007/978-3-030-87672-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_16&domain=pdf
http://orcid.org/0000-0003-3164-5066
http://orcid.org/0000-0002-0287-2086
http://orcid.org/0000-0002-5740-2946
https://doi.org/10.1007/978-3-030-87672-2_16

238 A.-M. Nitsche et al.

implemented AI orML solutions within their procurement activities [3]. Further, current
research regarding AI at the buyer-supplier interface focuses on specific entities, such
as procurement [4] or on specific activities, such as risk management [2]. Consequently,
researchers and practitioners face the situation of a significantly increased number of
theoretical publications and a comparatively low rate of AI adoption at the practical
buyer-supplier interface. As a result, potential benefits, like enhanced decision making
and new business model opportunities [e.g. 2] remain untapped. This indicates a need to
structure the current research for gaining clarity about dominating research streams and
for identifying open questions for researchers and practitioners. Thus, the purpose of
this article is to define ten central questions for future research by providing a systematic
overview of the existing comprehensive body of literature of AI application at the buyer-
supplier interface. In doing so, we categorize and cluster different research streams by
conducting a text mining andmachine learning literature review (MLR) combinedwith a
systematic literature review (SLR). Compared to traditional SLRs, the applied combined
approach can handle large quantities of publications to conduct comprehensive reviews
while at the same time incorporating the benefits of manual reviews [5].

2 Theoretical Background

2.1 Industry 4.0 and AI in Buyer-Supplier Relationships

SCM and operations management are influenced by progressive digital developments
such as the Internet of Things and AI [6]. AI as a disruptive technology is widely consid-
ered to be of growing importance for supply networks [6–9]. Many definitions exist due
to the complexity of the field [10, 11], for example “the branch of computer science that
is concerned with the automation of intelligent behavior” [12, p.1]. AI applies method
sets including statistical learning and machine learning [10]. The terms AI and machine
learning are often used interchangeably as different research communities use themwith
varying meanings [10, 11]. While supply networks and operations management consti-
tute adequate data sources, it is argued that the potential of AI utilization in SCM has not
yet been fully exploited and is likely to expand [1]. The complex nature of SCM goes
along with a broad range of relationships between buyers and suppliers. Previous studies
identified several ways of classifying in Buyer-Supplier Relationships (BSRs), e.g. in
terms of competency [13], power relation [14] or degree of collaboration [15]. However,
a positive impact on performance is not related to a special type of BSR but to the context
of the specific supply chain [16].While several business processes like supplier selection
mark crucial milestones in every type of BSR, the depth of other business processes like
supplier risk management depend on the BSR classification. Several researchers [17, 18]
provide models for depicting andmeasuring business processes within BSRs.Within the
development towards Industry 4.0 experts observe a consolidation of the supply base.
While the relationships to key suppliers are getting evenmore intense, firms often refrain
from collaboration with non-strategic suppliers [19]. In doing so, both the implementa-
tion of Industry 4.0 technologies as well as classical processes, like supplier selection
or negotiations, are affected.

Smarter Relationships? The Present and Future Scope of AI Application 239

2.2 Research Gap

In this article we accelerate the related discussion and contribute to the research field of
AI in SCM by addressing the following research gap: The increasing amount of avail-
able information that goes along with the ongoing implementation of Big Data solutions
requires AI and ML approaches to analyze this information and to make it valuable for
daily business users. Research currently contributes to this issue by theoretical founda-
tions of AI, ML approaches and on knowledge representation and reasoning [4]. The
mentioned technologies are considered amongst others within supply chain integration
[20], procurement [4] and riskmanagement literature [2].Within the last years, the rising
interest in the topic has led to an increasing number of publications [4]. However, the
practical implementation of AI and ML technologies in firms is still scarce [3]. Conse-
quently, a low adaption rate faces a broad and comprehensive scope of literature. Thus,
the following questions regarding AI at buyer-supplier interface challenge researchers
and practitioners:

• What are the main research areas?
• Where is the research focus?
• What are the open research gaps?
• What publications are suitable starting points, when examining the gaps?

The purpose of this article is to answer these questions by analyzing the present scope
of AI research at buyer-supplier interface and exploring untapped potentials for future
research scope. Thus, we present a systematic overview of the comprehensive body of
literature of AI application at the buyer-supplier interface. We bring clarity and richness
to this fragmented research field by clustering related publications, identifying potential
research streams, and highlighting ten central questions for further research in terms of
AI at buyer-supplier interface.

3 Research Design

This paper applies a MLR [21] combined with a SLR and elements of scientometric
and bibliometric studies to provide the literature basis for the review (Fig. 1). Litera-
ture reviews provide a valuable source for policy, practice and academic research [22,
23] as they analyze and summarize the existing literature [24]. Traditional literature
review forms include narrative reviews [25], systematic reviews [26] as well as scien-
tometric and bibliometric studies [27–29]. Compared to traditional SLRs, the applied
combined approach can handle large quantities of publications to conduct comprehen-
sive reviews and incorporates the benefits ofmanual interventions, subjective experience,
and knowledge-based decisions [5]. This paper consequently does not aim at a deeper
understanding of individual research areas within the research field of AI application
in BSRs, but rather at the identification, consolidation, and combination of the main
research streams and at providing a bird’s eye perspective of the thematic developments
within the past few years at a higher level of abstraction. The SLR approach is based on
the steps proposed by management and information systems research [26, 30, 31]. Fol-
lowing the definition of the review scope and aim, the database search (Scopus, Google

240 A.-M. Nitsche et al.

Scholar) is executed. As a search phrase we applied two segments: 1. related to AI (“Ar-
tificial Intelligence”, “machine learning”, “machine intelligence”), 2. BSRs in a wider
sense (“buyer”, “supplier”, “seller”, “supply chain”, “purchasing” and “procurement”).
Only English language publications from a business, computer science, decision sci-
ence, or economics context are included. Data refers up to the search date March 2021.
The resulting list of 1,936 titles is then checked for duplicates, subsequently eliminating
34 publications. The MLR is processed with the help of the open-source ML and data
visualization software Orange [32] in terms of definition and analysis of clusters and
for aggregating the relating research streams. The principal Orange workflow included
in Fig. 1 applies the following steps for identifying the clusters: To prepare the text
for further analysis, the widget pre-processor splits the text into smaller units, uses the
Porter stemming algorithm to normalize the text and creates one-grams and two-grams
to start the text mining process (n-grams are contiguous sequences of n items from a
text). Next, the widget bag of words adds word counts for each data instance created in
the previous step, thus rearranging the data into rows of entities (i.e., individual titles)
and columns of features (i.e., every word that appears in all titles). The widget distances
subsequently calculates Euclidian distances between the rows of the dataset as a basis
for the hierarchical clustering. As a result, we identify 24 clusters of articles exhibiting
certain similarities in terms of the titles.

Fig. 1. Overview of the combined SLR and MLR research approach.

We further examine the identified clusters deeply by a three-step approach. First,
we analyze buzzwords, characterizing the cluster based on their frequency and content
within the cluster. Second, we aggregate thematically related clusters within research
streams. Third, we manually analyze the five most influential publications (according to
the average cite rate per article) of each research stream and thus, derive central questions
to guide future research.

Smarter Relationships? The Present and Future Scope of AI Application 241

4 Findings and Discussion

This chapter presents the main findings of the comprehensive literature review and
contains information regarding the main research streams examining AI approach at the
buyer-supplier interface and their development over time, the research focus, and the
prevalent methods within the research field.

What are the relevant research streams examining AI approaches at the buyer-
supplier interface? We identified a total of 1,902 published articles on AI application
in BSRs in the Scopus database and Google Scholar search engine. The hierarchical
cluster analysis using Orange resulted in the identification of 24 clusters. We summarize
these clusters within the following five main research streams as listed in Table 1:

Table 1. Research streams and cluster

Research stream Cluster

AI technologies in general C1 (AI – general, AI application in business and industry context),
C2 (Learning, deep learning, reinforcement learning), C4
(Machine Learning – general, ML as application technique), C13
(Ethics of AI – Role of human and society), C15 (Multi-agent
systems), C19 (Neural networks and demand forecasting), C21
(Fuzzy – logic, evaluation, model)

Industry 4.0 C6 (Internet of Things), C11 (Industry 4.0 general), C17
(Intelligent systems – CPS application for quality)

Data utilization C3 (Data for machine learning), C5 (Data analysis – Big data, data
intelligence, data mining)

Decision making C9 (Decision making supported by AI), C23 (Decision-support
systems), C24 (supplier selection based on fuzzy logic)

Procurement C12 (e-purchasing, e-commerce), C14 (Procurement – electronic,
public)

Further, several clusters can be summarized within Others. This category includes
a fuzzy cluster with 474 articles as well as clusters concerning research approaches
and methods. Each of the five main research streams aggregates thematic clusters that
apparently refer to similar topics. Within the research streams, the associated clusters
are sorted in ascending order. The cluster numbers indicate the closeness of the titles
contained in the clusters as related titles are sorted into adjacent clusters. Most of the
clusters seem clear regarding their thematic content and contain between 30 and 100
articles.

Figures 2 describes the research stream AI technologies in general. This is the oldest
and largest one of the identified research streams, containing articles published in the
1970s. Hence, the most cited publications within this stream are textbooks, summing
up the knowledge of decades [e.g. 33, 34]. Within this context AI technologies are
analyzed, especially from a technical point of view. Applications at the buyer-supplier

242 A.-M. Nitsche et al.

interface are examined within the context of smaller use cases, e.g., the application of
neural networks in demand forecasting. Important technologies are deep learning and
ML, neural networks, and fuzzy logic.

C1: AI - general, AI application in business and industry contexts

C2: Learning - Deep learning, reinforcement learning

C4: Machine learning - general, ML as AI application technique

C13: Ethics of AI - Role of human & society

C15: Multi-agent systems

C19: Neural networks for demand forecasting

C21: Fuzzy - Logic, evaluation, model

Total: 681 publications

C1

C2

C4

C13
C15

C19

Fig. 2. AI technologies in general: Clusters and sizes.

All other research streams are shown in Fig. 3: In comparison to the stream AI
technologies in general, the research stream Industry 4.0 is a relatively young research
stream that emerged in 2011 with the first announcement of this term [35]. Comparable
approaches are described by the term (industrial) Internet of Things. The parallel use
of this terms is reflected by the clusters C6 and C11 which are based on the respective
buzzwords. While Industry 4.0 brings multi-disciplinary opportunities for operations
management [36], it requires the integration of key suppliers with the help of digital
technologies. The application of AI includes all kinds of related processes such as sup-
plier selection [e.g. 37], data and information sharing [e.g. 38], planning, scheduling and
forecasting [e.g. 39], transportation [e.g. 40], and inventory management [e.g. 41].

C12: e-purchasing, e-
commerce

C14: Procurement -
electronic, public

Decision making
(201 publications)

Data utilization
(114 publications)

Procurement
(88 publications)

Industry 4.0
(82 publications)

C9: Decision making
supported by AI
C23: Decision support
systems
C24: Supplier selection
based on fuzzy logic

C6: Internet of Things

C11: Industry 4.0 general

C17: Intelligent systems -
CPS application for quality

C3: Data for machine
learning

C5: Data analysis - Big
data, data intelligence,
data mining

Fig. 3. Other research streams: Clusters and sizes.

As the average publication year within the research stream Data utilization is 2018,
it can be assumed that there is a growing interest in this area. The increasing amount of
available data goes along with the need to derive advantages from it. Cluster C5 covers
the issues of generating these data within the context of data and process mining as well

Smarter Relationships? The Present and Future Scope of AI Application 243

as the analysis of so-called Big Data. Cluster C4 puts a special emphasis on an iterative
process of data capturing, data analysis and a continuing adaption of processes based on
ML technologies. The research stream Data utilization covers all practice cases where
huge data sets are available, like the analysis of market data in terms of supplier selection
[42, 43] or price development [44]. The research stream Decision-making depicts how
AI can support decision making at the buyer-supplier interface, especially by decision-
support systems (DSS) that focus on the supplier selection process [45, 46]. In doing
so, several AI technologies are applied to evaluate different selection criteria. The AI
technologies fuzzy/ rough set theory, neural network, grey system theory, and genetic
algorithm are identified as major ones [45]. Various research projects combine these
technologies with multi-attribute decision making techniques like analytic hierarchy
process or analytic network process [47, 48]. Further, research within this area deals
with the factor ‘human’ by examining the risk-trust bias impact on the cognitive DSS
performance [49] and how AI can be used to enhance (team) collaboration [50]. The
research streamProcurement considersAI at the buyer-supplier interface especially from
a buyer’s point of view. First considerations concerning how AI can support purchasing
have been made in the 1990s within the context of e-procurement [51]. E-procurement
describes the support or replacement of paper or working intensive processes with the
help of IT systems [52]. While the terms e-procurement, purchasing or commerce still
characterize this research stream, research have developed away from e-procurement
towards Procurement 4.0. Within this context, a steady flow of data and information
between buyers and suppliers leads to a leap in productivity and performance [52]. AI is
applied for operational, tactical, and strategic procurement in terms of supplier selection,
cost analysis, and procurement strategy [4]. Several clusters of the category Others are
mainly characterized by buzzwords and prominent research methods. The largest cluster
covers optimization or simulation studies, followed by a cluster that mainly focuses on
case studies. Hence, researchers tend tomostly developAI concepts and validate them by
single or multiple case studies. Both literature reviews and quantitative research appear
to play a minor role.

Where is the research focus? Fig. 4 depicts the 24 identified clusters along the dimen-
sions cite rate, and total cites. A publication’s cite rate is calculated by dividing the
total cites by the number of years that have passed since the article was published, thus
avoiding disadvantaging more recent publications. The respective number of publica-
tions within a cluster is indicated by the size of the circle while the allocation to the
different research streams is indicated through color coding. Thus, the relevance of the
individual clusters is presented, and comparisons can be performed. Most of the clusters
have an average cite rate of up to 5.0 and an average of total cites of up to 40. Thus, they
form a rather homogenous group. Interestingly, the clusters C4: ML – general, ML as AI
application technique,C13: Ethics of AI – role of human& society andC1: AI – general,
application in business and industry context have comparably high average total cites
and cite rates and take up a special position. This might be due to the popularity of the
related buzzwords as these clusters are also primarily concerned with general aspects
and effects of AI and less with the application of specific technologies. The importance
of research into AI ethics and its impact on individuals and the society is shown by the
substantially higher average cite rate of C13.

244 A.-M. Nitsche et al.

How did research develop over the past years? Figure 5 brings the identified clusters
into a timely context by contrasting the average publication year with the year of the first
publication. Thus, a cluster’s age and development can be derived. Besides the fuzzy
cluster C18, the clusters C1: AI – general, application in business and industry context,
and C4: ML – general, ML as AI application technique can be seen as starting point and
basis for further research activities. The high cite rates of both clusters (Fig. 4) underline
their importance for subsequent AI research at buyer-supplier interface.

0

20

40

60

80

100

0 2 4 6 8 10 12

Av
g.

 c
ite

s
pe

r a
rt

ic
le

Avg. cite rate per article

C4

C1
C13

AI technologies in general Industry 4.0 Data utilization

Decision-making Procurement Others

Fig. 4. Average cite rates and total cites per cluster.

Within the 1990s first AI approach have been concretized within the context of
e-procurement (C14: Procurement – public, electronic). Further approaches refer to
decision-making, with the help of decision-support systems, e.g., in terms of supplier
selection, in the beginning of this century. Considering the year of the first publication
and the average publication year, the research streams Data utilization and Industry 4.0
are the youngest ones. Of course, the interrelationship between Industry 4.0 and creating
value from data go hand in hand. Cluster C11: Industry 4.0 general can be found in the
top right corner which highlights the novelty and growing relevance of this topic. The

2010

2012

2014

2016

2018

2020

1960 1970 1980 1990 2000 2010 2020

Av
g.

 p
ub

lic
at

io
n

ye
ar

First publication year

C18

AI technologies in general Industry 4.0 Data utilization

Decision-making Procurement Others

C1 C4

C14

C11

C7

Fig. 5. Average publication year and year of first publication per cluster

Smarter Relationships? The Present and Future Scope of AI Application 245

placement of C7: (Systematic) literature review indicates the current need for resuming
AI research at buyer-supplier interface and thus, strengthens or research goal.

Considering the publication date of each article, we remark a significant increase in
the number of articles within the past two decades (Fig. 6). While the utilization of AI
in the area of SCM has been low for decades [1], digitalization has led to a rapid devel-
opment of AI and ML-related approaches in theory and practice as tremendous changes
are expected in the logistics and SCM sector over the next years [6, 53]. Currently, the
literature points towards a development from technology-enabled to technology-centric
SCM as the advancing intertwinement of physical logistics with information and data
drives the increased use of technology within SCM and logistics [54].

0

100

200

300

400

<
20

00
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19
20

20
20

21

N
um

be
r o

f p
ub

lic
at

io
ns Others

Procurement

Decision Making

Data utilization

Industry 4.0

AI technologies in general

Fig. 6. Distribution of published articles during the years 2000 and 2021.

The total number of articles per year has been rising in all research streams. The
share of articles of the streams Industry 4.0 and Data utilization increased significantly
over the last ten years. Thus, both streams can be assumed to play a crucial role for
future AI research at the buyer-supplier interface. Despite the search date for this review
(March 2021), already 96 publications are found for 2021 compared to 383 publications
for 2020 and the total number of publications in 2021 is likely to surpass previous years.

5 Discussion of Future Research Directions

Based on the identified clusters and the subsequent in-depth analysis of the 25 most
influential papers from the sample (Fig. 1), the underlying research themes and the
synthesis of the findings are used to discuss ten central questions for future research in
the field of AI application at the buyer-supplier interface:

1. How can AI support business processes within a BSR?
To be effective and easily accessible to supply chain managers and others, practice

oriented BSR research needs to state what AI brings to the processes under consideration
of performance aspects. Besides a research focus in AI-based decision support processes
for supplier selection within the context of the Decision-making stream, there remains
untapped potential for AI implementation in further processes like order management,
risk management or supplier development. Research can be based on common models,
depicting relevant business processes in a BSR [e.g. 17, 55]. Within this content the type
of BSR plays a crucial role when evaluating costs and benefits of AI approaches. The

246 A.-M. Nitsche et al.

key objectives of readers from practice backgrounds, such as staying up to date with
methods and ensuring competitiveness [e.g. 45] and the transferability to other contexts
[e.g. 56], should be addressed.

2. Which research methods should be applied to further develop and examine the
possibilities of AI application for BSRs?
Within the sample, themain research approaches included simulation, case examples,

andmathematical and conceptual papers. Thenotable position of clusterC7: (Systematic)
literature review in Fig. 5 highlight an increasing relevance of literature reviews [e.g.
36] which may be useful to gain a better understanding of this complex research field
and to benefit from the aggregation of research findings.

3. How could AI-driven big data analysis drive BSR research and applications?
The application of AI to support big data analysis has emerged over the last years

while data analytics is increasing in relevance [e.g. 42], as depicted in the related Cluster
C5: Data analysis - Big data, data intelligence, data: Regarding future research, both
data quality and quantity needs to address the development of self-learning algorithms,
as related to C3: Data for machine learning. This cluster contains fewer articles but is
closely related to C5 and thus provides research opportunities to create added value out
of big data.

4. How could the use of AI influence risk and security within supplier networks?
Due to the increasing technological centricity of SCMandBSRs, the potential impact

of attacks and uncertainty is growing. This issue is especially considered in terms of
the increasing interlinkage of systems, processes, and companies within the context
of Industry 4.0 (C6: Internet of Things, C11: Industry 4.0 general, C17: Intelligent
systems – CPS application for quality) Thus, aspects of risk assessment [e.g. 57] and
security [e.g. 58] need to be incorporated in future research projects.

5. Which areas of BSRs should be considered in terms of decision support?
The analysis of the decision-support related clustersC9: Decision making supported

by AI, C23: Decision support systems, and C24: Supplier selection based on fuzzy logic
highlights a focus on the final evaluation and selection process step at the buyer-supplier
interface [e.g. 45, 46]. Thus, potential remains regarding the application of AI for an
ongoing BSR. Some relevant areas could be the consideration of the dynamics char-
acteristics of a long-term relationship [e.g. 59] and e-commerce [e.g. 60], and thus
built a bridge to procurement research in C12: e-purchasing, e-commerce, and C14:
Procurement – electronic, public.

6. How could AI alleviate or intensify biased decision-making in BSRs?
Previous research has shown that cognitive-biases [61] negatively affect human

decision-making processes in BSRs and consequently provide potential opportunities
for technical support systems. Similarly, the impact of risk-trust-bias on the cognitive
DSS performance should be considered [49] and contribute to the clusters C9: Decision
making supported by AI, C23: Decision support systems, and C24: Supplier selection
based on fuzzy logic.

Smarter Relationships? The Present and Future Scope of AI Application 247

7. What could be possible effects of AI on personal relationships and trust?
The investigation of social metrics needs to be increased as some more sensitive

processes such as product development require a more intense relationship [e.g. 62] and
might thus benefit from AI support. The manifold effects of AI on interpersonal inter-
action need to be examined. This question combines approaches concerning, amongst
others decision-making and procurement literature.

8. How could the interplay between human and artificial intelligence be shaped
successfully and ethically?
The omnipresence of AI and related technologies substantially changes our personal

and working lives and thus also affects BSRs. Future research needs to address this area
and can generate relevant insights as shown by some of the sample publications which,
for example, discuss how humans can develop trust in AI [e.g. 63]. The high cite rate
of cluster C13: Ethics of AI – role of human & society (see Fig. 4) underlines the major
interest in this question.

9. How could AI foster sustainability in BSRs?
Social, economic, and ecological sustainability are key aims of SCM research and

need to be incorporated within BSRs. The application of AI to foster strategic green and
sustainable relationships in BSRs andmore operative tasks such aswaste elimination and
decarbonization can be targeted. The term “sustainability” does not represent a distinct
cluster but can be found in each research stream [e.g. 46, 64].

10. How could enabling and future-oriented technologies advance BSR research?
Despite the suitability of the application area of BSRs, the use of AI appears to stay

behind its potential. Some AI technologies such as fuzzy logic are highly relevant within
BSR research [e.g. 47]. Technologies that have not been used frequently but also the
integration of hybrid techniques [e.g. 45] and the inclusion of emerging mobile tech-
nologies or cloud computing [e.g. 65] constitute interesting future directions. In general,
a development towards technology-centric SCM can be observed, as is highlighted by
research stream Industry 4.0 which contains C6, C12 and C17 and drives considerations
of platform economy and the Internet of Things.

6 Conclusion, Contributions and Limitations

This article provides critical insights into the present and future scope of AI research at
buyer-supplier interface.Weoutline a systematic overviewof the existing comprehensive
body of literature by clustering related publications with a MLR approach and identify
unexploited research topics. Thus, we theoretically contribute to this issue by facilitating
the navigation in this complex and heterogenous research field and by presenting ten
central questions as a clue on new research directions. This article will provide an
insightful understanding of the scope of AI research at buyer-supplier interface and set
impulses for relevant and practice-oriented future projects.

Findings of this review are limited by the choicemethodology, including the selection
of databases and search engines as well as by the selective literature search process.

248 A.-M. Nitsche et al.

The applied MLR is mainly limited by its overarching perspective instead of in-depth
analysis. The selected sample of the five most influential publications of each research
stream limits the transferability and generalizability of the findings. In addition, choosing
general keywords such as AI might eliminate methods, as for example cluster analysis or
artificial neural networks, which might not necessarily be connected or have previously
been used in relation to this umbrella term. Furthermore, the in-depth analysis of the top
five publications for each of the identified research streams reduces the generalizability
and transferability of the conclusions.

References

1. Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J.
Log. Res. Appl. 13, 13–39 (2010)

2. Baryannis, G., Validi, S., Dani, S., Antoniou, G.: Supply chain risk management and artificial
intelligence: state of the art and future research directions. Int. J. Prod. Res. 57, 2179–2202
(2019)

3. Bode, C., Vollmer, M., Burkhart, D.: 2020 CPO Survey. University of Mannheim (2020)
4. Spreitzenbarth, J.M., Stuckenschmidt, H., Bode, C.: Methods of artificial intelligence in pro-

curement: a conceptual literature review. In: International Purchasing and Supply Education
and Research Association Conference (IPSERA) (2021)

5. Feng, L., Chiam, Y.K., Lo, S.K.: Text-mining techniques and tools for systematic literature
reviews: a systematic literature review. In: Asia-Pacific Software Engineering Conference
(APSEC), pp. 41–50 (2017)

6. Backhaus, A., et al.: Logistik 2020: Struktur- und Wertewandel als Herausforderung. Gipfel
der Logistikweisen: Initiative zur Prognose der Entwicklung der Logistik in Deutschland
(2020)

7. Koutsojannis, C., Sirmakessis, S. (eds.): Tools and Applications with Artificial Intelligence,
Vol. 166 (2009)

8. Schill, K., Scholz-Reiter, B., Frommberger, L.: Preface: artificial intelligence and logistics.
In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1–2. Universität
Bremen, Universität Freiburg, (2011)

9. Anon: Digitalisierungsindex Mittelstand 2019/2020 - Der digitale Status Quo in deutschen
Transport- und Logistikunternehmen Telekom (2019)

10. Kühl, N., Goutier,M., Hirt, R., Satzger, G.:Machine learning in artificial intelligence: towards
a common understanding. In: Hawaii International Conference on System Sciences, Hawaii
(2019)

11. Wang, W., Siau, K.: Artificial intelligence, machine learning, automation, robotics, future of
work and future of humanity: A review and research agenda. J. Database Manage. (JDM) 30,
61–79 (2019)

12. Luger, G.F.: Artificial intelligence: Structures and Strategies for Complex Problem Solving.
Pearson Education, Inc. (2009)

13. Hvolby, H.H., Trienekens, J., Steger-Jensen, K.: Buyer–supplier relationships and planning
solutions. Prod. Plann. Control 18, 487–496 (2007)

14. Morsy, H.: Buyer-supplier relationships and power position: interchaning. Int. J. Supply Oper.
Manage. 4, 33–52 (2017)

15. Cooper, M.C., Gardner, J.T.: Building good business relationships: more than just partnering
or strategic alliances? Int. J. Phys. Distrib. Logist. Manage. 23, 15–26 (1993)

16. Håkansson, H., Persson, G.: Supply chain management: the logic of supply chains and
networks. Int. J. Logistics Manage. 15, 11–26 (2004)

Smarter Relationships? The Present and Future Scope of AI Application 249

17. Lambert, D.M., Schwieterman, M.A.: Supplier relationship management as a macro business
process. Supply Chain Manage.: Int. J. (2012)

18. Mahdikhah, S.,Messaadia,M.,Baudry,D., Evans,R., Louis,A.:Abusiness processmodelling
approach to improve OEM and supplier collaboration. J. Adv. Manag. Sci. 2, 246–253 (2014)

19. Veile, J.W., Schmidt, M.-C., Müller, J.M., Voigt, K.-I.: Relationship follows technology!
How Industry 4.0 reshapes future buyer-supplier relationships. J. Manuf. Technol. Manage.
31, 977–997 (2020)

20. Tremblay, M.C.: Uncertainty in the information supply chain: integrating multiple health care
data sources. In: Americas Conference on Information Systems (AMCIS) (2006)

21. Reuther, K.: A Systems Theory Perspective of Interconnected Influence Factors on Front-End
Innovation: The Role of Organisational Structures. School of Business and Enterprise, vol.
PhD Thesis. University of the West of Scotland, United Kingdom (2019)

22. Okoli, C., Schabram, K.: A guide to conducting a systematic literature review of information
systems research. Working Papers on Information Systems. Sprouts (2010)

23. Petticrew, M., Roberts, H.: Systematic reviews in the social sciences: a practical guide.
Blackwell, Malden, USA (2006)

24. Fink, A.: Conducting research literature reviews: From the internet to paper. Sage publications
(2019)

25. Baker, J.D.: The purpose, process, and methods of writing a literature review. AORN J. 103,
265–269 (2016)

26. Denyer, D., Tranfield, D.: Producing a systematic review. In: Bryman, B.a. (ed.) SAGE
Handbook of Organizational Research Methods. SAGE Publications Ltd., London, England
(2009)

27. Zupic, I., Čater, T.: Bibliometric methods in management and organization. Organ. Res.
Methods 18, 429–472 (2015)

28. Heilig, L., Voß, S.: A scientometric analysis of public transport research. J. Public Transp.
18, 8 (2015)

29. Chellappandi, P., Vijayakumar, C.: Bibliometrics, scientometrics, webometrics/cybermetrics,
informetrics and altmetrics–an emerging field in library and information science research.
Shanlax Int. J. Educ. 7, 5–8 (2018)

30. Tranfield, D., Denyer, D., Smart, P.: Towards a methodology for developing evidence-
informed management knowledge by means of systematic review. Br. J. Manag. 14, 207–222
(2003)

31. Schryen, G.:Writing qualitative is literature reviews—guidelines for synthesis, interpretation,
and guidance of research. Commun. Assoc. Inf. Syst. 37, 286–325 (2015)

32. Demsar, J., et al.: Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14, 2349–2353
(2013)

33. Murphy, R.R.: Introduction to Al robotics. The Mit Press, Cambridge, USA (2000)
34. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and soft computing-a computational

approach to learning and machine intelligence [Book Review]. IEEE Trans. Autom. Control
42, 1482–1484 (1997)

35. Kiel, D.: What do we know about “Industry 4.0” so far. Int. Assoc. Manage. Technol. 2, 1–22
(2017)

36. Ivanov, D., Tang, C.S., Dolgui, A., Battini, D., Das, A.: Researchers’ perspectives on Industry
4.0: multi-disciplinary analysis and opportunities for operations management. Int. J. Prod.
Res., 1–24 (2020)

37. Nejma, M., Zair, F., Cherkaoui, A., Fourka, M.: Advanced supplier selection: a hybrid multi-
agent negotiation protocol supporting supply chain dyadic collaboration. Decis. Sci. Lett. 8,
175–192 (2019)

250 A.-M. Nitsche et al.

38. Dominguez, R., Cannella, S., Barbosa-Póvoa, A.P., Framinan, J.M.: OVAP: a strategy to
implement partial information sharing among supply chain retailers. Trans. Res. Part E:
Logistics Trans. Rev. 110, 122–136 (2018)

39. Syntetos, A.A., Babai, Z., Boylan, J.E., Kolassa, S., Nikolopoulos, K.: Supply chain
forecasting: theory, practice, their gap and the future. Eur. J. Oper. Res. 252, 1–26 (2016)

40. Xu, S., Liu, Y., Chen, M.: Optimisation of partial collaborative transportation scheduling in
supply chain management with 3PL using ACO. Expert Syst. Appl. 71, 173–191 (2017)

41. Borade, A.B., Sweeney, E.: Decision support system for vendor managed inventory supply
chain: a case study. Int. J. Prod. Res. 53, 4789–4818 (2015)

42. Cavalcante, I.M., Frazzon, E.M., Forcellini, F.A., Ivanov, D.: A supervised machine learning
approach to data-driven simulation of resilient supplier selection in digital manufacturing.
Int. J. Inf. Manage. 49, 86–97 (2019)

43. Fallahpour, A., Olugu, E.U., Musa, S.N., Khezrimotlagh, D., Wong, K.Y.: An integrated
model for green supplier selection under fuzzy environment: application of data envelopment
analysis and genetic programming approach. Neural Comput. Appl. 27(3), 707–725 (2015).
https://doi.org/10.1007/s00521-015-1890-3

44. Yang, R., et al.: Big data analytics for financial market volatility forecast based on support
vector machine. Int. J. Inf. Manage. 50, 452–462 (2020)

45. Chai, J., Liu, J.N.K., Ngai, E.W.T.: Application of decision-making techniques in supplier
selection: a systematic review of literature. Expert Syst. Appl. 40, 3872–3885 (2013)

46. Zimmer, K., Fröhling, M., Schultmann, F.: Sustainable supplier management–a review of
models supporting sustainable supplier selection, monitoring and development. Int. J. Prod.
Res. 54, 1412–1442 (2016)

47. Kar, A.K.: A hybrid group decision support system for supplier selection using analytic
hierarchy process, fuzzy set theory and neural network. Journal of Computational Science 6,
23–33 (2015)

48. Pitchipoo, P., Venkumar, P., Rajakarunakaran, S.: Fuzzy hybrid decision model for supplier
evaluation and selection. Int. J. Prod. Res. 51, 3903–3919 (2013)

49. Lai, K., Oliveira, H.C., Hou, M., Yanushkevich, S.N., Shmerko, V.: Assessing risks of biases
in cognitive decision support systems. In: 2020 28th European Signal Processing Conference
(EUSIPCO), pp. 840–844. IEEE (2021)

50. Metcalf, L., Askay, D.A., Rosenberg, L.B.: Keeping humans in the loop: pooling knowledge
through artificial swarm intelligence to improve business decision making. Calif. Manage.
Rev. 61, 84–109 (2019)

51. Goch, B., Julien, P., Lias, J.: Intelligent network element software procurement and delivery.
IEEE International Conference on Communications, vol. 2, pp. 1189–1196. IEEE (1993)

52. Glas, A.H., Kleemann, F.C.: The impact of industry 4.0 on procurement and supply man-
agement: A conceptual and qualitative analysis. International Journal of Business and
Management Invention 5, 55–66 (2016)

53. Junge, A.L., Verhoeven, P., Reipert, J., Mansfeld, M.: Pathway Of Digital Transformation In
Logistics: Best Practice Concepts and Future Developments. Universitätsverlag TU Berlin,
Berlin (2019)

54. Witten, P., Schmidt, C.: Globale Trends und die Konsequenzen für die Logistik der letzten
Meile. In: Schröder, M., Wegner, K. (eds.) Logistik im Wandel der Zeit – Von der Pro-
duktionssteuerung zu vernetzten Supply Chains, pp. 303–319. Springer Gabler, Wiesbaden
(2019)

55. Burger, M., Arlinghaus, J.: Digital Supplier Integration - The Impact of Buyer-Supplier Rela-
tionships on Industry 4.0 Transaction Maturity. Wissenschaftliches Symposium des BME,
Online (2021)

56. BenOthman, S., Zgaya,H., Dotoli,M., Hammadi, S.: An agent-based decision support system
for resources’ scheduling in emergency supply chains. Control. Eng. Pract. 59, 27–43 (2017)

https://doi.org/10.1007/s00521-015-1890-3

Smarter Relationships? The Present and Future Scope of AI Application 251

57. Tsang, Y.P., Choy, K.L., Wu, C.-H., Ho, G.T., Lam, C.H., Koo, P.: An Internet of Things
(IoT)-based risk monitoring system for managing cold supply chain risks. Ind. Manage. Data
Syst. (2018)

58. He, H., et al.: The security challenges in the IoT enabled cyber-physical systems and
opportunities for evolutionary computing & other computational intelligence (2016)

59. Ferreira, L., Borenstein, D.: A fuzzy-Bayesian model for supplier selection. Expert Syst.
Appl. 39, 7834–7844 (2012)

60. Liu, G., et al.: Repeat buyer prediction for e-commerce. In: 22ndACMSIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 155–164 (2016)

61. Kahneman, D., Knetsch, J.L., Thaler, R.H.: Anomalies: the endowment effect, loss aversion,
and status quo bias. J. Econ. Perspect. 5, 193–206 (1991)

62. Santos, L.F.d.O.M., Osiro, L., Lima, R.H.P.: A model based on 2-tuple fuzzy linguistic rep-
resentation and analytic hierarchy process for supplier segmentation using qualitative and
quantitative criteria. Expert Syst. Appl. 79, 53–64 (2017)

63. Andras, P., et al.: Trusting intelligent machines: deepening trust within socio-technical
systems. IEEE Technol. Soc. Mag. 37, 76–83 (2018)

64. Kannan, D., Mina, H., Nosrati-Abarghooee, S., Khosrojerdi, G.: Sustainable circular supplier
selection: a novel hybrid approach. Sci. Total Environ. 722 (2020)

65. Ngai, E., Peng, S., Alexander, P., Moon, K.K.: Decision support and intelligent systems in the
textile and apparel supply chain: an academic review of research articles. Expert Syst. Appl.
41, 81–91 (2014)

The Effect of Order Batching on a
Cyclical Order Picking System

Flora Maria Hofmann(B) and Stephan Esterhuyse Visagie

Stellenbosch University, Stellenbosch 7600, South Africa
{fhofmann,svisagie}@sun.ac.za

Abstract. Order batching on a unidirectional cyclical picking system
implemented at a prominent South African retailer is investigated. Four
interdependent sub-problems are solved sequentially to optimise the
entire system. These sub-problems are (a) the picking line assignment
problem, (b) the stock keeping unit arrangement problem, (c) the sys-
tem configuration problem, and (d) the order sequencing problem. The
picking is performed in waves. The four sub-problems are viewed as deci-
sion tiers that must be solved to optimise each wave. The main objective
is to minimise overall walking distance and thus reduce total picking
time for a picking wave. Order batching is introduced to this picking
system to explore its effect on total completion time. Orders are formed
during the optimisation process and thus not known from the start. This
also raises the question of where in the optimisation process to include
order batching. Furthermore, the effect of increasing pick density to indi-
rectly improve order batching is analysed. The combination of all solu-
tion approaches for each of the four decision tiers including the additional
layer of order batching is evaluated. Three scenarios based on real-life
historical data of the retailer are tested. The best solution approach is
compared to a benchmark. The suggested batching approach saves up to
27.8% in total picking time.

Keywords: Order picking system optimisation · Assignment
problem · Unidirectional cyclical picking line · Order batching ·
Complex logistics system

1 Problem Background

The picking activities in a real life distribution centre (DC) is considered in
this study. The DC is owned by a large South African retailer (the Retailer).
The Retailer serves about 2 500 stores in Southern Africa. It sells apparel and
homeware to the low income population of South Africa. The main activity in
the Retailer’s DC is to transform bulk supply into customer (store) requirements.
This process accounts for 50% to 65% of the cost of operation [4,10]. Due to the
large number of stores and the economic situation in South Africa, the Retailer
developed a unique picking system for their DCs. The Retailer adopted a central

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 252–268, 2021.
https://doi.org/10.1007/978-3-030-87672-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_17&domain=pdf
http://orcid.org/0000-0002-0689-5736
https://doi.org/10.1007/978-3-030-87672-2_17

The Effect of Order Batching on a Cyclical Order Picking System 253

planning approach to stock stores. This kept the cost of operation low for such a
large number of stores. In this approach, planners assign stock, on a stock keeping
unit (SKU) level, to stores centrally, rather than store managers ordering or
requesting stock. The picking process that executes these central plans operates
in picking waves. A picking wave has four sub-processes: (1) taking stock to a
picking line, (2) locating stock on the picking line, (3) picking the orders, and
(4) clearing away stock (if any is left). This implies that all store requirements
for a SKU present in a wave are fulfilled during that wave. Similar SKUs, for
example the different sizes of the same product, are grouped into distributions
(DBNs). All SKUs in DBNs are schedule for picking in the same wave, once the
DBNs including pick instructions are released to the DC [25].

The DC independently operates unidirectional cyclical picking lines in par-
allel. On each of these physical picking lines a wave of picking will be executed.
In Fig. 1 this set up is displayed.

Locations

Locations

Conveyor belt

m
21

m i m
2 + 1

(a) A single picking line consisting of m loca-
tions. Source: [11].

(b) A combination of picking-
lines in the DC in Cape Town.

Fig. 1. The order picking system in the DC of the Retailer is represented schematically.
An individual picking line (picking locations around a conveyor belt) is shown on the
left. The dashed lines show how the pickers walk while picking. The picking line system
on the right has one line around a conveyor belt and three more lines without conveyor
belts.

The physical layout of a unidirectional cyclical picking line is schematically
depicted in Fig. 1(a). It contains m locations. Typically, a picking line includes
between 64 and 76 locations with the option of a conveyor belt. A unique location
is assigned to each SKU during a wave of picking. At each location up to five
pallets of stock can be stored avoiding replenishment during a picking wave. A
voice recognition system (VRS) leads pickers onto their pick path. There are
two configurations of the picking line, namely the U- and the Z-configuration.
Pickers walk in a clockwise direction while picking from the locations in a U-
configuration. Pickers are allowed to cross over the aisle to a picking location at
the opposite pick face in a Z-configuration [16].

The U-configuration resembles a unidirectional carousel system described in
literature if pickers are seen as static relative to moving SKUs. In carousels
pickers remain at a fixed location while the carousel presents stock to them,

254 F. M. Hofmann and S. E. Visagie

thus accommodating only one picker per picking line [21]. In the U-configuration
more pickers can be accommodated and for comparison purposes the number of
pickers was set to eight pickers [15]. However, the major difference between these
two systems are the presence of wave picking with deterministic orders that is
present in the U-configuration [25].

The DC in Cape Town is schematically displayed in Fig. 1(b). One picking
line has a conveyor belt in the middle, allowing only the U-configuration. The
other three lines (organised as a picking module) do not have conveyor belts and
thus allow both U- and Z-configurations. After picking, cartons are transported
via a main conveyor belt connecting all picking lines to a dispatching area.

2 Problem Description

Managing the picking waves requires the solution of four sequential and depen-
dent decision tiers. DBNs are allocated to picking lines in Tier 1. In Tier 2 SKUs
are assigned to locations. Only at this point can orders be calculated. In Tier 3
a picking-line configuration is determined and orders are sequenced in Tier 4.
The main objective over all four tiers is to minimise the total distance traversed
by pickers leading to a shorter total completion time for the picking wave.

The picking line assignment problem (SPLAP) allocates DBNs to available
picking lines in Tier 1. This tier is solved daily. The number of available (after
previous waves have ended) picking lines determines the number of waves starting
that day. As soon as DBNs are released, they are available for assignment to
waves of picking [27]. Picking-line managers assign DBNs according to in-house
rules. For example, they might try to minimise the number of different store
departments (like girls, boys, women, men) per wave. The SKU arrangement
problem (SAP) arranges SKUs on an available picking line during Tier 2. In
Fig. 2, the interaction between Tier 1 and 2 is illustrated [27]. Once again picking
line managers assign SKUs based on in-house rules, usually to spread out SKUs
with high volumes evenly to avoid picker congestion.

DBNs with SKUs

Picking lines

Fig. 2. The allocation of DBNs to picking lines during Tier 1 (left) and arrangement
of SKUs on a picking line in Tier 2 (right). A circle depicts a DBN and each shade
within a circle depicts a SKU. SKUs of the same DBN have different shades. Source:
[24].

The Effect of Order Batching on a Cyclical Order Picking System 255

The system configuration problem (SCP) selects the configuration in which
the picking line operates in Tier 3. Only picking lines that do not have a conveyor
belt, as depicted in Fig. 3, have this selection. The configuration determines the
logic of how pickers walk while picking. Figure 3(a) shows a U-configuration
in which all pickers move in a cyclical clockwise direction from one location to
another. Figure 3(b) depicts the Z-configuration in which a picker may move in a
single direction, while switching between both pick faces when picking an order.
A picker turns around at the end of the line and starts moving in the opposite
direction. The picker stays on the same side (pick face) if the next required SKU
on the same side is closer than the required SKU on the opposite side, but the
picker will cross if the SKU on the opposite side is closer [16]. Managers stick
to the in-house rule to use the Z-configuration if the pickers stop on average at
less than a third of the locations. The U-configuration is used if stops are above
this number.

10 9 8 7 6

54321

(a) U-configuration in
the module.

10 9 8 7 6

54321

(b) Z-configuration in
the module.

Fig. 3. Picker walking (dashed lines) compared in representation of U- and Z-
configuration. SKUs to be picked are illustrated by different shapes. An order is picked
if a picker visits all those locations.

The order sequencing problem (OSP) sequences orders of a wave before it
commences in Tier 4. Not all orders (often none) require all SKUs present in
a wave and after completing the previous order a picker can get assigned to
any order and start that order at any location [27]. Figure 4 displays the effect
of order sequencing. The coloured, dashed lines illustrate the pick path of the
same three orders, but in different sequences in a U-configuration. In the first
case picking starts with yellow, followed by green and blue. As displayed in
Fig. 4(a), this results in 27 locations passed. In Fig. 4(b) the blue order is picked
first, followed by the yellow and green orders with total length of 24 locations.
The objective is to find a sequence that minimise the total number of locations
passed.

The information flow while solving all tiers is depicted in Fig. 5. Essential to
optimising the picking system globally is the connection between all four decision
tiers [27]. On top of this system, that is already studied, for example in [25–27],
this paper introduces order batching in an attempt to further reduce the total
distance walked by all pickers.

Order batching allows a single picker to pick all orders in a batch simul-
taneously to reduce walking distance [9]. The influence of order batching on

256 F. M. Hofmann and S. E. Visagie

(a) Sequence 1: Yellow, green,
blue.

(b) Sequence 2: Blue, yellow,
green.

Fig. 4. Tier 4 is represented by differences in order sequencing with the picker passing
27 locations in the first option and 24 locations in the second. (colour figure online)

Assign DBNs
to waves

Tier 1:

Arrange
SKUs on the
picking line

Tier 2:

Choose
configurationTier 3:

Sequence
orders for
pickers

Tier 4:

The distance
walked for the

SKU arrangement

The distance
walked in the

best configuration

The distance walked
for the order sequence

A set of SKUs

An arrange-
ment of SKUs

A way in which
pickers should walk

Order batching

Fig. 5. The information flow between the four tiers represented schematically.

walking distance is depicted in Fig. 6. Walking distance is measured in cycles
traversed [25]. Each time a picker completes a full cycle, it counts as one more
cycle traversed. Consider a small example to illustrate the concept. In Fig. 6(a)
the yellow order is picked first, followed by green, blue, and red. This results in
four cycles traversed. In Fig. 6(b) yellow and red make up the orange batch, while
green and blue forms the purple batch. This introduction of batching reduces
the walking distance by 50% to only two cycles traversed.

The main objective of this paper is to use order batching to reduce the
total completion time (by minimising walking distance). This will also lead to
a reduction in total completion time of a wave of picking. After order batching
metrics have been developed in [14,17], the associated picking time reduction
through batching has been shown in [15], and the influence of batching on the
configuration choice has been evaluated in [16], order batching seems to influence
all four tiers directly or indirectly within the order picking system. Therefore,
order batching is now added as another layer to the optimisation problem as
depicted in Fig. 5. This paper thus aims at identifying a solution approach for

The Effect of Order Batching on a Cyclical Order Picking System 257

(a) A single order picking representation. (b) A batch picking representation.

Fig. 6. Schematic representation comparing the walking distance between single and
batch picking. (colour figure online)

each tier that supports order batching. The point when order batching should
be included in the decision-making process will also be investigated.

A brief literature review follows in the next section. In Sect. 4 all four decision
tiers with their possible solution approaches are presented. This is followed by
testing combinations of solution approaches in Sect. 5. This is performed on real-
life historical data that spans a full month of picking. A summary and possible
ideas for future research conclude this study in the final section.

3 Literature

The three decision tiers in the unidirectional cyclical picking system have been
addressed in literature, but without order batching [23,25–27]. The addition
of another tier in which the configuration is chosen has also been investigated
by [16]. A brief overview of the published research on each tier in this picking
system will be discussed. The discussion will follow the four decision tiers.
Decision Tier 1: Each picking line functions independently allowing picking
waves to be viewed as zones. Therefore, zone or modified non-zoned approaches
can be tested for solving the SPLAP. A framework based on assigning SKUs in
some order to locations was proposed [18,26]. DBNs may be assigned to picking
waves in a greedy insertion procedure reducing the walking distance by min-
imising the sum of maximal SKU sizes per picking line. The maximal SKU is
defined as the SKU that is needed by the largest number of stores. This number
of stores serves as a lower bound for the number of cycles that must be traversed
to pick all orders in a wave [25]. The cyclical layout and presence of multiple
pickers is not included in this approach [26]. A correlation measure calculat-
ing the number of orders that require two specific SKUs for non-zoned picking
systems was developed by [22]. A similarity measure with regards to SKU cor-
relations, a stock turn coefficient, and a Jaccard statistic improving throughput
at the DC was introduced by [5]. Simultaneously considering storage alloca-
tion and assignment, [1] suggested a top-down hierarchical solution procedure.
Four desirability scores based on these studies, combined with the greedy inser-
tion procedure, were developed by [23]. The authors recommended a desirability
score that considers the number of stores needed by the candidate DBN that

258 F. M. Hofmann and S. E. Visagie

includes at least one DBN already allocated. Store requirements were added to
zone and non-zoned assignment approaches. Identifying customer connections
to form batches was adopted by [7]. The apriori algorithm is applied to extract
association rules from large order sets. The indicated demand patterns can then
be extracted directly. A data mining approach by [8] generated SKU similarity
measures to develop an association index between a new SKU and an available
location.
Decision Tier 2: Minimising walking distance by arranging SKUs in the SAP
was presented by [27], who introduced modified heuristic approaches from litera-
ture to meet layout requirements, namely the organ pipe arrangement, assigning
SKUs to locations in a greedy sequential manner, placing SKUs close together
if the probability of them appearing in the same order is high, and the class-
room discipline heuristic [12,27,31,35,36]. However, order sequencing can reduce
walking distance by 15% as opposed to a 1% improvement for Tier 2 in terms of
optimisation possibility (Tier 4 far outweighs Tier 2). Therefore, a heuristic that
is easily implementable is recommended for this tier [27]. Storage assignment in
carousels was optimised with a branch-and-bound algorithm by [19], but order
sequencing was not included in the model assumptions.
Decision Tier 3: The pick density measure dm divides all picker stops by an
approximation of distance travelled by pickers [16]. This serves as a guide of
when to alternate between a Z- and U-configuration. This approach will be used
to choose a configuration in this paper.
Decision Tier 4: Investigations on the OSP by [25] introduced a novel maximal
cut approach, but the authors recommended a nearest end heuristic that provides
comparable results with less computational effort. In this heuristic, the order
with the nearest ending location is selected to be picked next, given the current
location of a picker [3].

The solution approaches reviewed here are adopted by incorporating a batch
of orders as a single big order to include order batching in the calculations. The
system is optimised globally by finding the best combination of approaches over
all four decision tiers resulting in the shortest total walking distance traversed
by pickers for the batched orders.

4 Incorporating Order Batching in the Four Decision
Tiers

In the following section the picking system’s four decision tiers are analysed.
Note that even though orders are not defined in the first tier yet, the effect of
order batching is already investigated in this tier.

4.1 DBN Assignment to Picking Waves

DBNs are assigned to picking waves in Tier 1. The maximal SKU forms a lower
bound on the number of pick cycles needed. With this in mind, the objective
can be reformulated to minimising the maximal SKU [20]. At this stage, orders

The Effect of Order Batching on a Cyclical Order Picking System 259

are not defined yet and thus order batching cannot be introduced here. However,
walking distance can be reduced by selecting DBNs to increase pick density thus
indirectly benefiting order batching even before orders are known [15,16].

Algorithm 1 describes the greedy insertion approach (GI) that is based on
ranking all items that have not been assigned yet from best to worst possible
allocation in decreasing order [34]. It is ensured that all DBNs are allocated by
holding out DBNs that only need one location and assigning them in a second
phase [26]. Furthermore, the picking density may increase if DBNs needed by a
large number of stores are added first.

Algorithm 1: Greedy insertion (GI)
Input: A set of picking lines L – ordered by number of locations. A set of DBNs D.
Output: Allocation of DBNs to picking lines.

1: while unassigned DBNs fit into l do
2: Assign DBN with largest maximal SKU to l.
3: end while

The desirability measure (DM) incorporating how many stores needed a par-
ticular DBN shows the best results amongst correlation approaches that min-
imise walking distance [24]. Therefore, the candidate DBN d is added to the set
Dl of DBNs already allocated to picking line l, that has the most stores in com-
mon with it. All assigned DBNs are used to compute the correlation between
this new DBN and the store set that needs the candidate DBN. The desirability
score A(Dl, d) is calculated as

A(Dl, d) = |Gl ∩ Gd|, (1)

with the set of stores G [24].
In Algorithm 2 this desirability score is added to the greedy insertion algo-

rithm (GIDM) as the greedy insertion heuristic. If the same store set requires a
DBN already assigned, the pick density may increase.

Algorithm 2: GI with desirability measure (GIDM)
Input: A set of picking lines L – ordered by number of locations. A set of DBNs D and a
pre-allocated set Dl for picking line l.
Output: Allocation of DBNs to picking lines.

1: while unassigned DBNs fit into l do
2: Assign DBN with largest desirability score A(Dl, d) to l.
3: end while

SKUs are linked with customer requirements before DBNs are allocated to
picking waves and can thus be used before waves are determined. The apri-
ori algorithm [2] uncovers relationships to form batches in a pattern mining
approach [7] and was extended further by [6]. Associations between DBNs are

260 F. M. Hofmann and S. E. Visagie

recognised with regards to support, confidence, and lift. Support is showing DBNs
requested together by stores. Confidence describes the likelihood of requesting
DBN 1 and 2. Correlation measures the degree to which requesting DBN 1
increases requesting DBN 2 [13]. Afterwards, a clustering procedure maximising
the sum of the support values is applied [6]. Algorithm 3 describes the pattern
mining approach (PMA). Until no significant association rules are generated any
more, the support value is lowered dynamically and unassigned DBNs are added
in a greedy manner. The pick density may increase if SKUs assigned to the same
picking line are required by the same stores.

Algorithm 3: Pattern mining (PMA)
Input: A set of picking lines L. A set of DBNs D together with the quantities going to each
store on a SKU level.
Output: DBNs allocated to picking lines.

1: while unassigned DBNs fit into l do
2: while The apriori algorithm generated association rules are not empty do
3: Allocate DBN with the highest support value to picking line l.
4: if Unassigned DBNs then
5: The support value is lowered and the association rule is updated.
6: end if
7: end while
8: The remaining DBNs are assigned in a greedy manner to l.
9: end while

A greedy random assignment approach (GRA) will be used to bench-
mark results. The proposed algorithms are also compared to historical assign-
ments (HA) to evaluate if increasing the pick density in Tier 1 supports batching.

4.2 Arranging SKUs on a Picking Line

It has been shown that arranging the set of SKUs in Tier 2 is less than 1% and
is outweighed by the gains in the final tier [27]. Therefore, quick approaches for
this tier are recommended. Order-to-route closeness metrics might be considered,
but cannot be applied because order routes have not been defined yet. Increasing
pick density thus remains the objective during this stage.

SKU arrangement is determined by means of a greedy random (GRL) and
greedy sequential (GSL) heuristic. The GRL assigns SKUs randomly to locations
and the GSL arranges according to the maximal SKU or pick frequency. GRL
provides a benchmark, while GSL may support batching later by assigning SKUs
on high demand close to each other.

4.3 Configuration Selection

In Tier 3 a decision is made between the U- or Z-configuration for each wave of
picking. This choice only influences batching metrics that use the actual picker
path. A configuration should thus be selected before introducing order batch-
ing, because picker paths are not known at this point yet. Selecting a Z- or

The Effect of Order Batching on a Cyclical Order Picking System 261

U-configuration can be determined by the pick density measure dm [16]. This
measure is based on the number of (a) stops s, (b) locations m, and (c) the
maximal SKU υ. This measure is computed as

dm =
s

m · υ
(2)

and will always lie between 0 and 1 [15].
Note that if the pick density is increased in Tier 1 and 2, it should make the

selection of the U-configuration more likely. Tier 3 on the other hand directly
influences selecting order batching metrics.

4.4 Order Sequencing Including Order Batching

In Tier 4 orders (or batches of orders) have to be sequenced. All information that
is necessary to introduce order batching is available in this tier. Several metrics
are available for consideration when batching orders.

The combination of stops metric and greedy random heuristic (RGR) [14]
reduces walking distance the most and will thus also be used here. The number
of non-overlapping stops nij between orders i and j is divided by the number of
overlapping stops tij to calculate this metric. The matrix R with elements rij is
computed by

rij =
nij

tij
, for all orders i, j and i �= j. (3)

Given a starting location, a span is the distance travelled to collect all items
needed by that order [25]. This layout specific measurement is incorporated in
the spans metric. The spans metric is combined with a greedy smallest entry
heuristic (ZGS) [17]. All stops for orders i and j are included in the sets Si and
Sj , respectively. Let the gap (in number of locations) between the ending and
starting points of order i’s minimum span be ˜Pmin

i . Let the number of locations
that overlaps between Pmin

i and Pmin
j be |Pmin

i � Pmin
j |. The greedy smallest

entry heuristic (GS) searches globally through elements zij of matrix Z which
can be computed with the formula

zij = (|Si|+ |Sj |−|Si ∩Sj |)+(| ˜Pmin
i |+ | ˜Pmin

j |−| ˜Pmin
i � ˜Pmin

j |), with i �= j. (4)

Finally, the nearest end heuristic (NE) is used to sequence the batches in
Tier 4 because it is proven to perform well [25]. It is a path construction app-
roach. Given the picker’s current position, the batch with the nearest end point
is added to the pick path. NE can be used to determine pick sequences in both
U- and Z-configurations.

5 Results

Evaluating the picking system’s performance (total completion time) globally
can only be achieved by solving all four decision tiers together. This entails

262 F. M. Hofmann and S. E. Visagie

to sequentially group DBNs into picking waves (in Tier 1), arrange these
waves/groups of SKUs on the available locations (in Tier 2), select a configura-
tion (in Tier 3), batch the newly composed orders, and finally sequence batches
(in Tier 4).

5.1 Data and Scenarios

The proposed combinations of approaches are evaluated using real data obtained
from the Retailer’s DC in Cape Town. The dataset runs over 27 work days and
includes 45 picking waves. There are between two and four picking waves oper-
ating simultaneously. The 2 212 unique SKUs are incorporated in 1 206 unique
DBNs. This master dataset is reorganised into 4 scenarios, because of different
numbers of scheduled picking lines per day. This helps to evaluate picking waves
that are not completed in a day and makes solution approaches more compara-
ble. Data are cleaned if they contain less than 15 SKUs for example. As described
in Table 1, a uniform set of instances is included in each scenario.

Table 1. Properties of the three test scenarios based on the DC in Cape Town.

Scenario Number of

Lines Days DBNs Waves

1 2 27 767 30

2 3 21 708 24

3 4 9 330 12

The numerical experiments were implemented in Python 3.6 [29]. It was
executed on a Dell Optiplex 5050 running the Microsoft Windows 10 Enterprise
2016 LTSB operating system [28]. The computer has a 3.6 GHz Intel Core i7-
7700 CPU, with a 1× 8 GB 2400 MHz DDR4 RAM. Results were analysed in
R [30].

Figure 7 describes all combinations of solution approaches for each tier. The
abbreviation of the methods applied along the path of choices are used to describe
an approach. For example, choosing GRA to solve the SPLAP, GRL to solve the
SAP, a U-configuration, and RGR to form batches would configure the abbrevi-
ation GRA-GRL-U-RGR-NE which is derived from Fig. 7. The total completion
time per wave is determined with a discrete event simulation (DES) making the
different solution approaches comparable [15,16].

For Scenario 1, the sum of completion times measured in seconds for 30 pick-
ing waves is depicted in Fig. 8. With on average 1 h per picking wave, the config-
uration choice (Tier 3) influences completion time the most. The shortest time
in the U-configuration is produced by ZGS, while RGR generates slightly lower
times in the Z-configuration. As expected from previous studies, Tier 2 does not
have a significant impact on completion time – influencing it less than 1%. GI
generates the lowest time, which is followed by GIDM and PMA for Tier 1.

The Effect of Order Batching on a Cyclical Order Picking System 263

GRATier 1: HA

···

...

GRLTier 2: GSL

UTier 3: Z U Z

RGRBatching method: ZGS NB

NETier 4: NE NE

RGR ZGS NB

NE NE NE

RGR ZGS NB

NE NE NE

RGR ZGS NB

NE NE NE

GRATier 1: HA

···

...

GRLTier 2: GSL

UTier 3: Z U Z

RGRBatching method: ZGS NB

NETier 4: NE NE

RGR ZGS NB

NE NE NE

RGR ZGS NB

NE NE NE

RGR ZGS NB

NE NE NE

Fig. 7. Different optimisation combinations that include batching are depicted in a
decision tree. Order batching is highlighted in blue, while newly introduced Tier 3 is
illustrated with a dashed line. (colour figure online)

GRA-GRL GRA-GSL HA-GRL HA-GSL GI-GRL GI-GSL GIDM-GRL GIDM-GSL PMA-GRL PMA-GSL
0

2 · 105

4 · 105

6 · 105

8 · 105

1 · 106

T
ot
al

co
m
pl
et
io
n
ti
m
e
fo
r
30

w
av

es
[s
]

U-RGR-NE U-ZGS-NE Z-RGR-NE Z-ZGS-NE

Fig. 8. All potential solution combination results for total completion time of Sce-
nario 1. Tier 1 and 2 are displayed on the x-axis label. Tier 3, batching, and Tier 4
are described in the key. Completing all 30 waves for each combination is illustrated
on the y-axis label.

For Scenario 2, Tier 3 contributes, with about 1.5 h difference, an even bigger
influence on the completion time of waves. In Scenario 2, batching has the same
effect as in the first scenario and in Tier 1 GI provided the shortest completion
times, with GIDM in second place.

For Scenario 3, the third tier influences the total completion time, with about
2 hours per picking wave, the most. All other tiers produce similar results as in
the first and second scenario.

The average pick density is computed after Tier 3 to investigate its interaction
with order batching. Scatter plots of the pick density measure dm vs the total
completion time for Scenario 1 is provided in Fig. 9. The red dashed lines indicate
a dm of 0.22 and 0.38, respectively. The Z-configuration performs better on
average at a dm below 0.22, while the U-configuration outperformed Z for a
dm larger than 0.38 in this dataset [16]. Few picking lines perform better when
applying the assignment approach of GRA and HA at dm > 0.22, since both

264 F. M. Hofmann and S. E. Visagie

approaches do not incorporate pick density. All average pick densities for GI,
GIDM and PMA are above 0.38. Therefore, they produce lower times in the U-
configuration, echoing the findings in [16]. The batching metric RGR is depicted
in Fig. 9(a), while ZGS is displayed in Fig. 9(b).

(a) Density and completion time using
RGR in Z- and U-configuration.

(b) Density and completion time using ZGS
in Z- and U-configuration.

Fig. 9. Times plotted against a pick density for Z- and U-configuration with RGR and
ZGS batching in Scenario 1 (colour figure online).

For all different combinations in Scenario 2, no picking wave has dm < 0.276.
The lowest completion times are thus achieved in the U-configuration. The high-
est dm is 0.680 supporting order batching that is produced by the GI assignment
approach.

For the third scenario, the lowest dm is 0.283. Therefore, the lowest total
completion times are achieved by the U-configuration. Again, the highest dm of
0.681 was produced by the GI assignment.

Analysing the three scenarios, the preferred solution approach per decision
tier can be selected. The GI assignment consistently increases pick density and
should thus be chosen in Tier 1. The easily implementable solution approach
GRL is suitable for Tier 2, since its influence on picking time is negligible.
An increased pick density favours the U-configuration in Tier 3. The lowest
completion time is generated applying batching metric ZGS. Tier 4 uses the
NE heuristic to sequence orders. Therefore, the lowest results in overall picking
time are generated by the GI-GRL-U-ZGS-NE combination. The time frame to
solve all decision tiers as determined by the Retailer can incorporate this holistic
solution approach.

A benchmark including historical assignment (HA) with GRL and a high
enough pick density for the U-configuration, but without order batching (NB)
is compared to GI-GRL-U-ZGS-NE and the completion times are illustrated for
all scenarios in Fig. 10. A saving of 28.4% on picking time is achieved in the first
scenario, in the second the saving is 27.9% and in the third 27.2%.

The Effect of Order Batching on a Cyclical Order Picking System 265

Scenario 1 Scenario 2 Scenario 3
0

2 · 105

4 · 105

6 · 105

8 · 105

1 · 106

1.2 · 106

T
ot
al

co
m
pl
et
io
n
ti
m
e
pe

r
sc
en

ar
io

[s
]

GI-GRL-U-ZGS-NE
HA-GRL-U-NB-NE

Fig. 10. Comparing the benchmark solution to the best performing solution approach
over all tiers.

5.2 Statistical Analysis

With the help of inferential statistics the influence on total completion time per
picking wave of Tier 1, Tier 2, Tier 3 and batching as the independent variables
is investigated. Tier 4 is excluded in this analysis because batching is performed
before Tier 4 is solved and thus does not influence batching. Per independent
variable a one-way ANOVA including a Tukey’s HSD post-hoc test and for all
variables a fractional ANOVA is applied to the scenarios. Thereby, the statistical
difference between the variables is investigated.

The ANOVA results, to check for statistical differences between variables,
are displayed in Table 2. For Tiers 1 and 2 the differences are not significant,
while batching, with F (2, 1 557) = 117.2, p = 0.000 is statistically significant.
The difference between ZGS and NB is also significant (difference between the
means is −21 418.8, with p = 0.000) as displayed in the Tukey’s HSD post-hoc
test. Furthermore, the Z- and U-configurations in Tier 3 are also statistically
significant (difference between the means is 12 148.67, with p = 0.000).

The Tukey’s HSD post-hoc test also concludes a significant difference in
means between RGR and NB (−21 449.4, with p = 0.000) and between ZGS
and NB (−21 418.8, with p = 0.000). Furthermore, the difference between the
two configurations in Tier 3 (12 148.67, with p = 0.000) is also statistically
significant [32].

In Table 2, the factorial ANOVA including Tier 1, Tier 2, Tier 3 and batch-
ing displays no significant influence through the interaction of all variables
(F (8, 1 500) = 0.002, p = 1.000) [33].

The configuration choice seems to influence total completion times the most.
Therefore, a strong focus on optimising the third tier and batching in an inte-
grated approach of optimising the picking system is recommended.

266 F. M. Hofmann and S. E. Visagie

Table 2. Results of the one-way ANOVA and the four-way ANOVA on variables.

Sum of squares df Mean square F p

One-way ANOVA

Tier 1 3.85E + 09 4 9.62E + 08 1.233 0.213

Tier 2 2.08E + 06 1 2 081 219 0.003 0.955

Tier 3 5.76E + 10 1 5.76E + 10 77.32 0.000**

Batching 1.59E + 11 2 7.96E + 10 117.2 0.000**

Four-way ANOVA

Tier 1 × Tier 2 5.48E + 07 4 1.37E + 07 0.021 0.999

Tier 1 × Tier 3 2.58E + 09 4 6.44E + 08 0.976 0.419

Tier 1 × Batching 2.19E + 09 8 2.74E + 08 0.414 0.913

Tier 2 × Tier 3 9.15E + 06 1 9.15E + 06 0.014 0.906

Tier 2 × Batching 2.26E + 07 2 1.13E + 07 0.017 0.983

Batching × Tier 3 1.36E + 09 2 6.80E + 08 1.031 0.357

Tier 1 × Tier 2 × Tier 3 5.09E + 07 4 1.27E + 07 0.019 0.999

Tier 1 × Tier 2 × Batching 9.38E + 06 8 1.17E + 06 0.002 1.000

Tier 1 × Batching × Tier 3 2.46E + 08 8 3.08E + 07 0.047 1.000

Tier 2 × Batching × Tier 3 7.91E + 07 2 3.96E + 07 0.060 0.942

Tier 1 × Tier 2 × Batching × Tier 3 1.17E + 07 8 1.47E + 06 0.002 1.000

Note: Two asterisks indicate significance at the 5% level or below.

6 Conclusion

This paper analyses the effects of order batching on a cyclical order picking
system. With batching metrics for this system developed by [14,17], the effect
of batching on completion times evaluated by [15], and the difference including
batching on different configuration options investigated in [16], this paper con-
cludes the optimisation of the unidirectional cyclical picking line by introducing
batching to all decision tiers in an effort to optimise the system holistically.

The main objective of minimising total completion time (by minimising walk-
ing distance) is achieved by incorporating the important layer of order batching.
On average 27.8% of total picking time can be saved using the algorithm sequence
GI-GRL-U-ZGS-NE that includes batching and comparing it to the benchmark
decision sequence HA-GRL-U-NB-NE as used in the historical data before the
introduction of batching. These findings could be generalised for application on
the unidirectional carousel for example.

The Z-configuration is outperformed by U if the pick density is high enough.
The optimisation effort could focus on the U-configuration exclusively. Therefore,
only three decision tiers would be in the centre of attention of future optimisa-
tion studies. Alternatively, for the Z-configuration a bidirectional option could
improve its competitiveness. Pickers could pick items that are placed in the oppo-
site direction of their current path. A bidirectional option could be introduced
and compared in future studies.

The Effect of Order Batching on a Cyclical Order Picking System 267

References

1. Accorsi, R., Manzini, R., Bortolini, M.: A hierarchical procedure for storage allo-
cation and assignment within an order-picking system. A case study. Int. J. Log.
Res. Appl. 15(6), 351–364 (2012)

2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 207–216 (1993)

3. Bartholdi, J.J.I., Platzman, L.K.: Retrieval strategies for a carousel conveyor. IIE
Trans. 18(2), 166–173 (1986)

4. Van den Berg, J.P., Zijm, W.H.: Models for warehouse management: classification
and examples. Int. J. Prod. Econ. 59(1–3), 519–528 (1999)

5. Bindi, F., Manzini, R., Pareschi, A., Regattieri, A.: Similarity-based storage allo-
cation rules in an order picking system: an application to the food service industry.
Int. J. Log. Res. Appl. 12(4), 233–247 (2009)

6. Chen, M.C., Huang, C.L., Chen, K.Y., Wu, H.P.: Aggregation of orders in distri-
bution centers using data mining. Exp. Syst. Appl. 28(3), 453–460 (2005)

7. Chen, M.C., Wu, H.P.: An association-based clustering approach to order batching
considering customer demand patterns. Omega 33(4), 333–343 (2005)

8. Chiang, D.M.H., Lin, C.P., Chen, M.C.: The adaptive approach for storage assign-
ment by mining data of warehouse management system for distribution centres.
Enterp. Inf. Syst. 5(2), 219–234 (2011)

9. De Koster, M., Van der Poort, E.S., Wolters, M.: Efficient order batching methods
in warehouses. Int. J. Prod. Res. 37(7), 1479–1504 (1999)

10. De Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse
order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)

11. De Villiers, A.P.: Minimising the total travel distance to pick orders on a unidirec-
tional picking line. Master’s thesis, Stellenbosch University (2012)

12. Hagspihl, R., Visagie, S.E.: The number of pickers and stock-keeping unit arrange-
ment on a unidirectional picking line. S. Afr. J. Ind. Eng. 25(3), 169–183 (2014)

13. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier
(2011)

14. Hofmann, F., Visagie, S.: Picking location metrics for order batching on a unidi-
rectional cyclical picking line. ORiON 35(2), 161–186 (2019)

15. Hofmann, F., Visagie, S.: The effect of order batching on a unidirectional picking
line’s completion time. Int. J. Logistics Syst. Manage. (2020, accepted to appear)

16. Hofmann, F., Visagie, S.: Configuration selection on a unidirectional cyclical pick-
ing line (2021, in the process of submission)

17. Hofmann, F., Visagie, S.: Route overlap metrics for order batching on a unidirec-
tional cyclical picking line (2021, in the process of submission)

18. Kim, B.S., Smith, J.S.: Slotting methodology using correlated improvement for a
zone-based carton picking distribution system. Comput. Ind. Eng. 62(1), 286–295
(2012)

19. Kress, D., Boysen, N., Pesch, E.: Which items should be stored together? A basic
partition problem to assign storage space in group-based storage systems. IISE
Trans. 49(1), 13–30 (2017)

20. Le Roux, G.J., Visagie, S.E.: A multi-objective approach to the assignment of stock
keeping units to unidirectional picking lines. S. Afr. J. Ind. Eng. 28(1), 190–209
(2017)

268 F. M. Hofmann and S. E. Visagie

21. Litvak, N., Vlasiou, M.: A survey on performance analysis of warehouse carousel
systems. Stat. Neerl. 64(4), 401–447 (2010)

22. Manzini, R.: Correlated storage assignment in an order picking system. Int. J. Ind.
Eng. Theor. Appl. Pract. 13(4), 384–394 (2006)

23. Matthews, J., Visagie, S.E.: SKU assignment to unidirectional picking lines using
correlations. ORiON 31(2), 61–70 (2015)

24. Matthews, J.: SKU assignment in a multiple picking line order picking system.
Ph.D. thesis. Stellenbosch University, Stellenbosch (2015)

25. Matthews, J., Visagie, S.E.: Order sequencing on a unidirectional cyclical picking
line. Eur. J. Oper. Res. 231(1), 79–87 (2013)

26. Matthews, J., Visagie, S.E.: Assignment of stock keeping units to parallel unidi-
rectional picking. S. Afr. J. Ind. Eng. 26(1), 235–251 (2015)

27. Matthews, J., Visagie, S.E.: SKU arrangement on a unidirectional picking line. Int.
Trans. Oper. Res. 26(1), 100–130 (2019)

28. Microsoft (2018). https://www.microsoft.com/
29. Python Software Foundation: Python 3.6 (2018). https://www.python.org/
30. R Core: The R Project for Statistical Computing (2019). https://www.r-project.

org/
31. Stern, H.: Parts location and optimal picking rules for a carousel conveyor auto-

matic storage and retrieval system. In: Proceedings of the 7th International Con-
ference on Automation in Warehousing, pp. 185–193 (1986)

32. STHDA: One-way ANOVA Test in R (2020). http://www.sthda.com/english/wiki/
one-way-anova-test-in-r#relaxing-the-homogeneity-of-variance-assumption

33. STHDA: Two-way ANOVA Test in R (2020). http://www.sthda.com/english/
wiki/two-way-anova-test-in-r

34. Toth, P., Martello, S.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, Hoboken (1990)

35. Vickson, R.G., Fujimoto, A.: Optimal storage locations in a carousel storage and
retrieval system. Locat. Sci. 4(4), 237–245 (1996)

36. Vickson, R., Lu, X.: Optimal product and server locations in one-dimensional stor-
age racks. Eur. J. Oper. Res. 105(1), 18–28 (1998)

https://www.microsoft.com/
https://www.python.org/
https://www.r-project.org/
https://www.r-project.org/
http://www.sthda.com/english/wiki/one-way-anova-test-in-r#relaxing-the-homogeneity-of-variance-assumption
http://www.sthda.com/english/wiki/one-way-anova-test-in-r#relaxing-the-homogeneity-of-variance-assumption
http://www.sthda.com/english/wiki/two-way-anova-test-in-r
http://www.sthda.com/english/wiki/two-way-anova-test-in-r

Bi-objective Optimization for Joint Production
Scheduling and Distribution Problem

with Sustainability

Ece Yağmur and Saadettin Erhan Kesen(B)

Konya Technical University, Selcuklu, Konya, Turkey
{ecyagmur,sekesen}@ktun.edu.tr

Abstract. This paper considers joint production and distribution planning prob-
lem with environmental factors. While the production phase of the problem con-
sists of job shop production environment running under Just-In-Time (JIT) philos-
ophy, the distribution phase involves a heterogeneous fleet of vehicles with regards
to capacity and fuel consumption rate. Therefore, we tackle two well-known prob-
lems in Operations Research terminology which are called machine scheduling
and vehicle routing problems. The joint problem is formulated as a bi-objective
structure, the first of which is to minimize the maximum tardiness, the second of
which aims to minimize the total amount of CO2 emitted by the vehicles. Orders
are required to be consolidated to reduce the traveling time, distance, or cost. An
increase in the vehicle capacity results in a higher possibility of consolidation, but
in this case, the amount of CO2 emission that the vehicle emits into the air will also
increase. Having shown that two objectives are conflicting in an illustrative exam-
ple, we formulate the problem as a mixed integer programming (MIP) formulation
and use an Augmented Epsilon ConstraintMethod (AUGMECON) for solving the
bi-objective model. On randomly generated test instances, the applicability of the
MIP model through the use of AUGMECON is reported.

Keywords: Joint production and distribution scheduling · Vehicle routing · Job
shop · Sustainability · Heterogeneous fleet · Mixed integer model

1 Introduction

Joint decisions for production and distribution operations in supply chain management
have been essential for many applications. Especially in make-to-order business, orders
are ready for distribution as soon as their production is completed, since there is no reason
to keep finished product in stock. As customers can customize their orders to meet their
own needs in make-to-order businesses, production can start as soon as demand arrives.
Therefore, the joint approach is vital for this business to respond to customer requests
immediately.

In this study, we examine the joint production and distribution scheduling problem
for job shop production environment in which each job undergoes multiple operations
which need to be performed in different machines. In the distribution phase, we consider

© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 269–281, 2021.
https://doi.org/10.1007/978-3-030-87672-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_18&domain=pdf
http://orcid.org/0000-0001-5865-3483
http://orcid.org/0000-0001-9994-5458
https://doi.org/10.1007/978-3-030-87672-2_18

270 E. Yağmur and S. E. Kesen

a heterogeneous fleet that consists of different vehicle types in terms of capacity and
fuel consumption rate. In addition, vehicles can be used more than once for delivery. We
formulate the joint problem as a bi-objective structure. It is very important for customer
satisfaction to deliver the orders by considering the specified due dates. So, the first
objective of the problem is minimizing the maximum tardiness in order to meet required
service level. In the globalizing world, the importance of environmental factors is on the
rise. Besides the efficient use of resources, making environmentally friendly decisions
is among the new goals of businesses. For this reason, the other objective of the problem
is structured as the minimization of the total amount of CO2 emission.

The main contributions of the paper can be summarized as follows:

•We examine one of the most complex production environments (i.e., job shop) which is
only studied byMohammadi et al. (2019) in the field of joint production and distribution
scheduling.
•In the distribution phase, a fleet of limited heterogeneous vehicles with multiple use is
studied, which is rarely studied in even vehicle routing literature.
•We also consider multiple objectives, one of which deals with environmental factors.

To the best of our knowledge, the considered problem is examined for the first time
in terms of both production and distribution settings. It is obvious that the considered
joint problem is NP-hard because standalone problems namely job shop scheduling and
heterogeneous multiple tour vehicle routing belong to NP-hard problem class.

The remainder of this paper is constructed as follows: In Sect. 2, we present a
literature survey of related works. In Sect. 3, we describe the problem with a formal
definition and develop aMixed Integer Programming (MIP) formulation for the problem.
Following the problem description, we demonstrate an illustrative example to show the
conflicting objectives. In Sect. 4, the application ofAUGMECONmethod on the problem
is givenon the illustrative example.While computational experiments are given inSect. 5,
conclusions and future research directions are stated in Sect. 6.

2 Literature Survey

The coordination of supply chain functions is a small but growing subject for man-
agement science [1]. Many researchers have paid special emphasis to joint decisions
for production and distribution functions at the operational level [2] and many differ-
ent variants have been encountered relating to both production and distribution phases.
When assessing the related literature according to the production environment, we can
see that simpler production environments (single machine, parallel machine) are studied
frequently. Scholz-Reiter et al. [3] is the first paper addressing the joint production and
distribution scheduling problem where jobs having multiple operations. Meinecke and
Scholz-Reiter [4] examine a real-world job shop problem with inventory stage between
the production and distribution functions. Ramezanian et al. [5] compare two differ-
ent delivery policies (direct delivery and delivery with routing) for permutation flow
shop environment. Wang et al. [6] study three-stage hybrid flow shop scheduling prob-
lem, which also includes distribution decisions. Mohammadi et al. [7] address a case

Bi-objective Optimization for Joint Production Scheduling 271

study from a furniture manufacturer with flexible job shop environment. More recently,
Yağmur and Kesen [8] examine a permutation flow shop environment and develop a
memetic algorithm for the joint problem.

According to [2], majority of the studies only aims to optimize a single objective,
mainly focusing on cost minimization or service level maximization. While cost-related
objectives may include production cost, distribution cost, and penalty costs, time-related
objectives have usually been used for service level maximization. Additionally, very
few researchers examined the joint problem with multiple objectives. Farahani et al. [9]
investigate how the quality of perishable foods can be improved both cost and quality
decay functions. Jamili et al. [10] optimize the customer’s service level, measured as
the mean delivery time and the total transportation cost. In the study of Ganji et al.
[11], environmental objectives such as fuel consumption minimization and traditional
objectives (i.e., cost) were considered together.

To conclude, this paper fills some gap in the literature as it tackles unstudied variant
of joint production and distribution problem.

3 Problem Description

In this section, we first develop an MIP model for joint production and distribution
scheduling problem and subsequently give an illustrative example for a clear and lucid
account. For formal description, we consider a make-to-order production environment
in which any order has multiple operations, each of which is performed on different
machines to become a finished product. The job sequence on any machine and the
machine sequence of any job can be different (i.e., job-shop). When processing of all
orders in a particular batch completes, a vehicle with sufficient capacity delivers them
to the related customers. There are three different types of vehicles in a fleet and any
vehicle can be usedmore than once. Additionally, the amount of CO2 emissions released
into the air varies depending on the vehicle size.

3.1 MIP Formulation

Using the symbols given in Table 1, we propose a MIP formulation for the considered
problem in this section.

min f1 = Tmax (1)

min f2 =
∑

i∈N

∑

j∈N

∑

k∈V

(
ρ0
k Xijk + ρ∗

k − ρ0
k

Qk
uijk

)
tij (2)

Subject to

Sim − Sjm + HOijm ≥ pjm ∀(i,m) → (j,m) ∈ DA (3)

Sjm − Sim + H
(
1 − Oijm

) ≥ pim ∀(i,m) → (j,m) ∈ DA (4)

272 E. Yağmur and S. E. Kesen

Table 1. Definitions of symbols used in MIP formulation

Symbol Definition

Indices

i, j : Job

m, l : Machine

k : Vehicle

Sets

NC : Set of jobs

N : Set of nodes

M : Set of machines

V : Set of vehicles

DA : Set of disjunctive arcs

CA : Set of conjunctive arcs

LM : Set of the machines on which the last operations of jobs are processed

Parameters

di : Demand of customer i

pim : Processing time of order i on machine m

tij : Travel distance between customers i and j

dd j : Due date for order j

Qk : Capacity of vehicle k

H : Sufficiently large number

ρ0k : Fuel consumption rate of vehicle k (empty load)

ρ∗
k : Fuel consumption rate of vehicle k (full load)

Decision Variables

Oijm =1 if operation of order i is processed before operation of order j on machine m, 0
otherwise

Xijk =1 if vehicle k goes directly from node i to node j, 0 otherwise

Wijk =1 if vehicle k completes preceding tour with node i and starts succeeding tour with
node j, 0 otherwise

uijk : The total load of vehicle k when vehicle goes from customer i to customer j

Sim : Production starting time of order i on machine m

Cim : Production completion time of order i on machine m

Bi : Production completion time of the last operation for job i

(continued)

Bi-objective Optimization for Joint Production Scheduling 273

Table 1. (continued)

Symbol Definition

Ai : Delivery time to customer i

Yi : Production completion time of a batch to which order i belongs

Ti : Tardiness for customer i

Oijm + Ojim = 1 ∀(i,m) → (j,m) ∈ DA (5)

Sjm − Sjl ≥ pjl ∀(j, l) → (j,m) ∈ CA (6)

Cjm − Sjm = pjm ∀j ∈ NC;m ∈ M (7)

Bj = Cjm ∀j ∈ NC;m ∈ LM (8)

∑

k∈V

∑

i∈NC

Xijk = 1∂ ∀j ∈ NC (9)

∑

j∈N
Xijk =

∑

j∈N
Xjik ∀i ∈ N ; k ∈ V (10)

uiok = 0 ∀i ∈ NC; k ∈ V (11)

∑

j∈N
ujik −

∑

j∈N
uijk =

∑

j∈N
Xijkdi ∀i ∈ NC; k ∈ V (12)

uijk ≤ (Qk − di)Xijk ∀i, j ∈ N ; k ∈ V (13)

∑

j∈NC

Wijk ≤ Xi0k ∀i ∈ NC; i �= j; k ∈ V (14)

∑

i∈NC

Wijk ≤ X0jk ∀j ∈ NC; i �= j; k ∈ V (15)

∑

j∈NC

X0jk −
∑

i∈NC

∑

j∈NC ;i �=j

Wijk ≤ 1 ∀k ∈ V (16)

Yi ≥ Bi ∀i ∈ NC (17)

Yj − Yi ≤ H

(
1 −

∑

k∈V
Xijk −

∑

k∈V
Xjik

)
∀i, j ∈ NC; i �= j (18)

274 E. Yağmur and S. E. Kesen

Ai − Aj + H
∑

k∈V
Xijk + (

H − tij − tji
) ∑

k∈V
Xjik ≤ H − tij ∀i, j ∈ NC; i �= j

(19)

Ai − Aj + H
∑

k∈V
Wijk ≤ H − ti0 − t0j ∀i, j ∈ NC; i �= j (20)

Aj ≥ H
∑

k∈V
Wijk − H + Yj + t0j ∀i, j ∈ NC; i �= j (21)

Aj ≥ Yj + t0j − H

⎛

⎝1 − X0jk +
∑

i∈NC

Wijk

⎞

⎠ ∀j ∈ NC; i �= j; k ∈ V (22)

Aj ≤ Yj + t0j + H

⎛

⎝1 − X0jk +
∑

i∈NC

Wijk

⎞

⎠ ∀j ∈ NC; i �= j; k ∈ V (23)

Ti ≥ Ai − ddi ∀i ∈ NC (24)

Tmax ≥ Ti ∀i ∈ NC (25)

uijk ≥ 0 ∀i, j ∈ N ; k ∈ V (26)

Ai, Sim,Cim,Yi,Ti ≥ 0 ∀i, j ∈ NC;m ∈ M (27)

Xijk ∈ {0, 1} ∀i, j ∈ N ; k ∈ V (28)

Wijk ∈ {0, 1} ∀i, j ∈ NC; k ∈ V (29)

Oijm ∈ {0, 1} ∀i, j ∈ NC;m ∈ M (30)

The first objective of the model which is defined in Eq. (1) minimize the maximum
tardiness. The second objective shown in Eq. (2) minimize the total amount of CO2
emission that the vehicles emit into the air. As seen from the Eq. (2) the amount of
emission is a functionof fuel consumption (formoredetails interested readers are referred
to the works of Xiao et al. [12] and Zhang [13].

The studies in which fuel consumption function is handled in more detail by eval-
uating different parameters can be found in Bektaş and Laporte [14], Kirschstein and
Meisel [15], Franceschetti et al. [16]. The reasonwhywe choose the function determined
by the traveling distance and the load of vehicles is that the integrated problem under
consideration is already quite complex even under a single objective as it contains two
NP-hard problems and we intend to simplify the second objective function.

While Eqs. (3) - (8) are related to the production constraints, remaining equations
are related to distribution constraints. Equations (3) and (5) are called as disjunctive

Bi-objective Optimization for Joint Production Scheduling 275

constraints which determines the sequence of jobs processed on the same machine.
Equation (6) determines the production starting times of consecutive operations of each
job by conjunctive arcs which reflect the precedence constraints (i.e., machine sequence
for any job).

Equation (7) guarantees that the production completion time of any operation is
equal to the sum of production starting time of this operation and processing time of
this operation on destinated machine. Equation (8) guarantees that the production of any
jobs completes at the time when production of the last operation of that job completes.

While Eq. (9) states that each customer is served exactly once with a particular vehi-
cle, Eq. (10) provides the input and output balance of any nodes. Equations (11)–(13) are
associated with sub-tour elimination and capacity constraint. Equation (11) guarantees
that the amount of load on any vehicle when returning to the depot must be equal to
zero. Equation (12) determines the total load of any vehicle on any arc. Equation (13)
indicates the boundaries of the ui variable which is used for sub-tour elimination. Equa-
tion (14) and Eq. (15) are the constraints that provide tour combination for any vehicle.
Equation (16) ensures that the number of consecutive tour combinations of any vehicle
is always less than or equal to the total number of tours of that vehicle. Equation (17) and
Eq. (18) calculate the production finish time of each batch. Equation (19) determines
the order delivery time (i.e., service time) for consecutive customers in the same tour.
Equation (20) and Eq. (21) determine the order delivery time for the first customer in
any tour following another tour. Equation (20) is used when the next production batch to
be distributed by a vehicle is ready before the vehicle returns to the depot. Equation (21)
is active when a vehicle returns to the depot before the next production batch to be
distributed by the vehicle is ready. Equation (22) and Eq. (23) state the order delivery
time for the first customer in the first tour of each vehicle. Equation (24) determines the
tardiness in the case of late delivery of the orders, considering the due date predeter-
mined by the customers. Equation (26) - Eq. (30) are the non-negative and 0–1 integer
constraints of the variables in the model.

3.2 Illustrative Example

In this section, we introduce an illustrative example for clear understanding of the prob-
lem. The parameters of the problem which covers six customers, three machines and
three heterogenous vehicles are given in Table 2.

The first column of Table 2 represents the depot node and customers. While second
and third column defines the coordinates of each customer on the two-dimensional plane,
the fourth column represents the demand of each customer. The processing times of each
job on each machine are given in the following three columns. The machine sequence
of each job is given in Machine sequence column. And finally, the last column defines
the due date parameter of each customer. The vehicle capacities are set to 140, 210 and
280 for small, medium, and large vehicle types, respectively. While fuel consumption
rates for empty load situation are defined as 0.2, 0.3 and 0.4; for full load situation are
defined as 0.26, 0.39 and 0.52 for three vehicle types, respectively.

We use lexicographic optimization to form a payoff table for the illustrative example.
According to lexicographic optimization, first, the first objective function is optimized,
then, by adding the optimal solution obtained from the first optimization as a constraint

276 E. Yağmur and S. E. Kesen

Table 2. The parameters of illustrative example

i X Y di pi1 pi2 pi3 Machine sequence ddi

0 0 0 – – – – – –

1 52 11 60 69 58 55 2,3,1 319

2 −14 –76 80 70 90 91 3,1,2 471

3 15 –24 95 77 102 109 2,1,3 395

4 −45 –37 52 44 60 53 3,1,2 271

5 −3 68 85 88 70 80 2,1,3 319

6 27 35 50 44 51 54 1,2,3 275

7 −49 10 84 70 82 71 3,1,2 395

2

1

6

0-1-0

1

5

0-4-2-0

4

2

0-6-5-0

7

2

1

0-3-0

4

0-7-0

6

4

5

5

6 3

3

3

7

7

0 100 200 300 400 500 600 700 800 900

V3

V2

V1

M3

M2

M1

4

5

6

0-3-0

0-4-0

0-6-1-0

7

1

0-7-0

6

4

0-5-0

1

3

5

6

4

1

0-2-0

2

7

7

5

3

3

2

2

0 100 200 300 400 500 600 700 800

V3

V2

V1

M3

M2

M1

Fig.1. Gantt chart of Pareto solutions obtained by lexicographic optimization

Bi-objective Optimization for Joint Production Scheduling 277

the second objective function is optimized. In Fig. 1we can show theGantt chart of Pareto
optimal solutions obtained by lexicographic optimization. According to the first solution,
the available vehicles in the system are used simultaneously to minimize maximum
tardiness. However, in this case, the total amount of emission is found to be larger
than the second solution in which only a small vehicle is used. As seen from the non-
dominated solutions, while one objective improves, the other worsens in multi objective
optimization problems.

4 Augmented Epsilon Constraint Method

Epsilon constraint is one of the most common methods for multi-objective optimization
problems due to its simplicity and easy applicability to many problems. It has been used
effectively as the solution procedure in the field of supply chain management Talaei et al.
[17], Toro et al. [18], as in other OR problems.

Mavrotas [19] states that some scaling problems may occur in the classical Epsilon
Constraint method [20] as the only slack variable is used as an additional term in the
objective function. So, a new version called as Augmented Epsilon Constraint Method is
formed as seen in Eq. (31)–(33) where si is the slack variable of i. th objective function,
ri is the range of the i th objective function as calculated from the payoff table and δ is
an sufficiently small number which is usually selected between 10−3 and 10−6 in the
literature.

min
(
f1(x) − δ

(
s2/r2 + s3/r3 + · · · + sp/rp

))
(31)

fi(x) + si = eii = 2, .., p (32)

x ∈ S, si ∈ R+ (33)

In this section, we apply the AUGMECON method to illustrative example which
is demonstrated in previous section. After generating the payoff table, we calculate the
range of the first objective function as 107. Then, we divide this range into 10 equal
sub-ranges from more relaxed to tighter as right-hand side and obtain 11 grid points as
seen in the first column of Table 3. Thus, if an infeasible solution is obtained with the
given right-hand side, the algorithm is stopped, and unnecessary runs are avoided.

CPLEX solver embedded to GAMS 24.2 is used as theMILP-solver.We easily adapt
the sample code in [21] to our bi-objective model and we can obtain 9 Pareto optimal
solutions with 11 grid points as seen in Fig. 2 in 624.07 s. The number of intervals can
be increased so, a denser Pareto surface can be obtained, but this will also increase the
computation time.

5 Computational Results

In order to evaluate the AUGMECON performance for bi-objective joint production and
distribution scheduling problem, we generate test problems which covers three levels

278 E. Yağmur and S. E. Kesen

Table 3. Grid points for AUGMECON

Grid points f1 f2

≤398 398 136.50

≤375 367 139.88

≤352 303 141.33

≤329 303 141.33

≤306 303 141.33

≤283 280 144.17

≤260 252 146.55

≤237 211 158.25

≤214 211 158.25

≤191 182 167.59

≤168 168 187.34

1 2 5,4,36 7

9,8
10

11

120
130
140
150
160
170
180
190

150 200 250 300 350 400

C
O
2

Tmax

Fig. 2. Pareto optimal solutions of illustrative example

for number of customers (5,6 and 7 customers); two levels for number of machines (2
and 3 machines) and one level for number of vehicles (small, medium and large sized
vehicles). In addition, while the due date parameter is selected three levels as wide, tight,
and common due date (i.e., all orders have same due date) and the vehicle capacity is
selected two levels to see the effect of vehicle capacity on bi-objective model. So, 36 test
instances (3 × 2 × 1 × 3 × 2) are randomly generated based on the instance generation
procedure in [8].

We examine the effects of the due date and vehicle capacity levels on the problem in
terms of average objective functions, the number of non-dominated solutions and CPU
times. When we examine the Table 4 the number of non-dominated solutions found by
CPLEX increase from wide to tight and from tight to common due date. In addition to
this we can say that as the number of non-dominant solutions found increases, the CPU

Bi-objective Optimization for Joint Production Scheduling 279

time also increases. Especially when the size of the problem increases with the number
of customers, the number of non-dominant solutions found has more impact on CPU
time. Other remarkable result from the Table 4 is that average Tmax values increase as
the due date parameter gets tighter.

Table 4. CPLEX solutions based on due-date parameter

Due date N Tmax CO2 # Non-dominated solutions CPU
(s)

Wide 5 36.7 128.7 4.3 9.9

6 70.4 155.5 4.3 24.1

7 118.1 144.7 3.5 268.2

Tight 5 150.8 132.1 5.5 12.1

6 206.7 161.4 5.3 85.4

7 257.4 147.9 5.3 284.5

Common 5 123.0 134.1 5.8 14.3

6 162.9 171.3 6.0 103.6

7 187.0 153.4 6.0 601.8

In table 5 we assess the effect of vehicle capacity on the problem. The average CPU
times increase as the vehicle capacity increase due to increasing solution space. Another
finding from Table 5 is that average Tmax values decrease as the vehicle capacity gets
larger because of the consolidation ability.

Table 5. CPLEX solutions based on capacity parameter

Capacity N Tmax CO2 # Non-dominated solutions CPU
(s)

Small 5 103.6 132.1 5.0 11.5

6 174.5 164.5 6.0 39.2

7 188.1 149.3 4.8 296.1

Large 5 103.4 131.2 5.3 12.7

6 118.9 160.9 4.3 102.9

7 186.9 148.0 5.0 473.5

As seen from the results in this section we can say the problem complexity has
exponentially increased by the number of customers. Therefore, for medium and large
sized instance, bespoke multi-objective solution methods such as NSGA-2, PLS can be
developed.

280 E. Yağmur and S. E. Kesen

6 Conclusions

In this paper, we proposed a new mathematical model for a joint production and dis-
tribution problem which covers job shop scheduling and multiple tour heterogenous
vehicle routing. The objectives of the model are structured as minimizing the maximum
tardiness and the total amount of CO2 emission. After we show that the objectives are
conflicting through an illustrative example, we use AUGMECON method for solving
the small sized randomly generated instances.

In further research, heuristic algorithms can be developed for the problem for
more practical big sized instances and different performance metrics of multi-objective
optimization such as hypervolume, spacing metric.

References

1. Chandra, P., Fisher, M.L.: Coordination of production and distribution planning. Eur. J. Oper.
Res. 72(3), 503–517 (1994)

2. Moons, S., Ramaekers, K., Caris, A., Arda, Y.: Integrating production scheduling and vehicle
routing decisions at the operational decision level: a review and discussion. Comput. Ind.
Eng. 104, 224–245 (2017)

3. Scholz-Reiter, B., Makuschewitz, T., Novaes, A.G., Frazzon, E.M., Lima, O.F., Jr.: An app-
roach for the sustainable integration of production and transportation scheduling. Int. J. Logist.
Syst. Manag. 10(2), 158–179 (2011)

4. Meinecke, C., Scholz-Reiter, B.: A heuristic for the integrated production and distribution
scheduling problem. Int. Sci. Index 8(2), 290–297 (2014)

5. Ramezanian, R., Mohammadi, S., Cheraghalikhani, A.: Toward an integrated modeling app-
roach for production and delivery operations in flow shop system: trade-off between direct
and routing delivery methods. J. Manuf. Syst. 44, 79–92 (2017)

6. Wang, S., Wu, R., Chu, F., Yu, J.: Variable neighborhood search-based methods for integrated
hybrid flow shop scheduling with distribution. Soft. Comput. 24(12), 8917–8936 (2019).
https://doi.org/10.1007/s00500-019-04420-6

7. Mohammadi, S., Al-e-Hashem, S.M., Rekik, Y.: An integrated production scheduling
and delivery route planning with multi-purpose machines: a case study from a furniture
manufacturing company. Int. J. Prod. Econ. 219, 347–359 (2019)

8. Yağmur, E.,Kesen, S.E.:Amemetic algorithm for joint production and distribution scheduling
with due dates. Comput. Ind. Eng. 142, 106342 (2020)

9. Farahani, P., Grunow,M., Günther, H.-O.: Integrated production and distribution planning for
perishable food products. Flex. Serv. Manuf. J. 24(1), 28–51 (2012)

10. Jamili, N., Ranjbar, M., Salari, M.: A bi-objective model for integrated scheduling of produc-
tion and distribution in a supply chain with order release date restrictions. J. Manuf. Syst. 40,
105–118 (2016)

11. Ganji, M., Kazemipoor, H., Molana, S.M.H., Sajadi, S.M.: A green multi-objective integrated
scheduling of production and distribution with heterogeneous fleet vehicle routing and time
windows. J. Clean. Prod. 259, 120824 (2020)

12. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption optimization model
for the capacitated vehicle routing problem. Comput. Oper. Res. 39(7), 1419–1431 (2012)

13. Zhang, S., Lee, C., Choy, K., Ho, W., Ip, W.: Design and development of a hybrid artificial
bee colony algorithm for the environmental vehicle routing problem. Transp. Res. Part D:
Transp. Environ. 31, 85–99 (2014)

https://doi.org/10.1007/s00500-019-04420-6

Bi-objective Optimization for Joint Production Scheduling 281

14. Bektaş, T., Laporte, G.: The pollution-routing problem. Transp. Res. Part B: Methodol. 45(8),
1232–1250 (2011)

15. Kirschstein, T., Meisel, F.: GHG-emission models for assessing the eco-friendliness of road
and rail freight transports. Transp. Res. Part B: Methodol. 73, 13–33 (2015)

16. Franceschetti, A., Demir, E., Honhon, D., Van Woensel, T., Laporte, G., Stobbe, M.: A meta-
heuristic for the time-dependent pollution-routing problem.Eur. J.Oper. Res.259(3), 972–991
(2017)

17. Talaei, M., Moghaddam, B.F., Pishvaee, M.S., Bozorgi-Amiri, A., Gholamnejad, S.: A robust
fuzzy optimization model for carbon-efficient closed-loop supply chain network design
problem: a numerical illustration in electronics industry. J. Clean. Prod. 113, 662–673 (2016)

18. Toro, E.M., Franco, J.F., Echeverri, M.G., Guimarães, F.G.: A multi-objective model for the
green capacitated location-routing problem considering environmental impact. Comput. Ind.
Eng. 110, 114–125 (2017)

19. Mavrotas, G.: Effective implementation of the ε-constraint method in multi-objective
mathematical programming problems. Appl. Math. Comput. 213(2), 455–465 (2009)

20. Haimes, Y.: On a bicriterion formulation of the problems of integrated system identification
and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)

21. Mavrotas, G.: Generation of efficient solutions in multiobjective mathematical program-
ming problems using GAMS. Effective implementation of the ε-constraint method. Lecturer,
Laboratory of Industrial and Energy Economics, School of Chemical Engineering. National
Technical University of Athens (2007)

On the Effect of Product Demand Correlation
on the Storage Space Allocation Problem

in a Fast-Pick Area of a Warehouse

Felipe I. Gré Carafí1, Alberto Ossa-Ortiz de Zevallos1,
Rosa G. González-Ramírez1(B), and Mario C. Velez-Gallego2

1 Universidad de los Andes, 12455 Santiago, RM, Chile
{figre,aossa}@miuandes.cl, rgonzalez@uandes.cl

2 Universidad EAFIT, Medellin, Colombia
marvelez@eafit.edu.co

Abstract. The storage location assignment problem (SLAP), also known as the
slotting problem involves the decisions of how much and where should be stored
each stock keeping unit (SKU) in the fast-pick area with the aim to minimize total
order-picking and replenishment costs associated to the distance traveled by the
picking operators. Motivated by this, we propose to analyze the impact of SKUs
demand correlation on the slotting decisions. Based on an experimental design,
the effects of SKUs with correlated demand are analyzed. Results show that the
most significant factor with respect to the total distance traveled is the number
of orders, followed by the capacity of the bins and the number of bins in each
location. Results of an instance solved to optimality by a commercial solver and
a greedy heuristic in which the latter does not consider the demand correlation
illustrate the impact that demand correlation has on the solution obtained.

Keywords: Warehousing · Slotting problem · Order-picking · Demand
Correlation · Fast-pick area

1 Introduction

Warehousing and its basic functions (receiving, storage, order picking and shipping) have
a significant impact on the efficiency of the supply chains (Gu et al. 2007; Bartholdi and
Hackman 2008; Boysen et al. 2019). A warehouse can be defined as a material handling
station dedicated to receiving, storing, order-picking, accumulating, sorting and shipping
goods (Van den Berg 1999). Among the different functions of warehousing, storage
has a direct impact on direct variable costs, and it also improves delivery times and
reliability. For this reason, efficient management systems are required (Gu et al. 2007;
Revillot-Narváez et al. 2020).

Given that order-picking operations are one of the most labor-intensive activities, it
is quite common that many warehouses concentrate the picking activities in a compact
area to reduce the distance traveled by the pickers. This is known as the fast-pick area,
and items at the fast-pick area are replenished from the reserve area of the warehouse

© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 282–295, 2021.
https://doi.org/10.1007/978-3-030-87672-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_19

On the Effect of Product Demand Correlation 283

(Bartholdi and Hackman 2019). Order-picking can be improved in several ways: assign-
ing appropriate storage locations to items; routing appropriately the picking tour; and
picking orders in batches (Boysen et al. 2019; van Gils et al. 2019; Zhang et al. 2019).

The storage location assignment problem (SLAP), also known as the slotting prob-
lem involves the decisions of how much and where should be stored each stock keeping
unit (SKU) in the fast-pick area so as to minimize the total order picking costs (Yingde
and Smith 2012; Zhang et al. 2019). If this problem is solved for the fast-pick area, then
it is necessary to include the replenishment costs as well. Several models and method-
ologies have been proposed in the literature to address this problem. However, not all the
approaches have considered the demand correlation among the SKUs. Under a dynamic
demand system setting, the SKUflow patterns change dynamically or periodically due to
factors such as turnover rate, seasonality, life cycle, etc. Hence, the slotting of the SKUs
should be adjusted to reflect this change over time. In these cases, demand correlation
of SKUs in each order may have a significant impact on the slotting decisions (Yingde
and Smith 2012).

Motivated by this, we propose to analyze the impact of demand correlation on the
slotting decisions for a company inwhich thewarehouse is divided into a reserve area and
several fast-pick areas, each one dedicated to a given product category. Velez-Gallego
and Smith (2018) proposed a mathematical model to address this problem and presented
preliminary results based on a computational experiment that used randomly generated
instances that were not generated with intrinsic demand correlation among the SKUs.

In this work we consider the model proposed by Velez-Gallego and Smith (2018)
to evaluate the effects of SKUs with correlated demand on the solution obtained. The
proposed model not only allows to support storage allocation but also the size of the
layout. A factorial design is proposed, evaluating the impacts on the objective function
that the different parameters of the model have on the total distance traveled. In order to
evaluate the effect of correlation, we generated instances that present correlation among
the SKUs. Results show that the most significant factor with respect to the total distance
traveled is the number of orders, followed by the capacity of the bins and the number
of bins in each location. Results of an instance solved to optimality by a commercial
solver and by a greedy heuristic in which the latter does not consider demand correlation
illustrate the impact that demand correlation of SKUs has on the solution obtained.

The remainder of this paper is organized as follows. Section 2 presents a literature
review regarding the storage space allocation and order-picking problems in warehous-
ing. Section 3 describes the mathematical model. Section 4 presents the experimental
design and numerical results. Conclusions and recommendations for future research are
given in Sect. 5.

2 Literature Review

We can find several contributions that deal with the design of a fast-pick area, and
particularly the SLAP. Hackman et al. (1990) and Bartholdi and Hackman (2008) are
some of the earlier contributions in the literature that proposed fluid models to address
the problem of assigning storage space to SKUs. Subramanian (2013) introduces some
heuristic algorithms to address this problem. As indicated by Velez-Gallego and Smith

284 F. I. G. Carafí et al.

(2018), the main drawback of such contributions is that they do not consider a discrete
assignment of bins or storage positions to the SKUs and accordingly, they propose
a mathematical model that considers a discrete assignment. Other related approaches
are proposed by Walter et al. (2013) and Gu (2005) in which they also determine the
optimal size of the fast-pick area that also consider a discrete assignment of bins or
storage positions to the SKUs. However, they neglect traveling time within the fast-pick
area.

In contrast, in a situation in which the size of the fast-pick area is not small and thus,
the time that pickers spend preparing customer orders is hence, not negligible. These
aspects are considered in (Thomas andMeller 2014; Velez-Gallego and Smith 2018;Wu
et al. (2020). Thomas and Meller (2014) address the forward-reserve problem, in which
traveling times for the replenishment from of the fast-pick area is considered. They
present analytical models for put-away, order picking and replenishment operations for
random storage and two class-based storage policies. In the same line, Velez-Gallego
and Smith (2018) considered also the traveling times within the fast-pick area and in
contrast to previous contribution, they propose a mathematical model in which total
traveling distance is minimized. This is then, the main contribution in their proposed
model. On the other hand, Wu et al. (2020) present an analysis to quantify the benefits
of forward-reserve strategies. They conclude that in a Forward-Reserve storage system
where forward and reserve stocks are stored in the same rack, this policy results beneficial
if the ratio of average picks per replenishment is sufficiently larger than 1. The response
time savings can go up to 50% when it is larger than 10.

None of the previous works take into consideration demand correlation among the
SKUs, including the contribution of Velez-Gallego and Smith (2018). Demand corre-
lation among SKUs have been considered in some contributions in the literature (Xiao
and Zheng 2010; Chuang et al. 2012; Chiang et al. 2014), by a clustering-assigning
approach. In this case, highly correlated items are grouped and then the storage space is
assigned to those groups. To develop the storage strategies, a pairwise correlation scheme
is considered. In contrast, Zhang et al. (2019) consider demand correlation patterns of
SKUs and propose a non-linear and non-convex mathematical model to solve the SLAP.
Due to the difficulty in solving the model, they propose two heuristics, one based on a
simulated annealing framework. None of the previous research considered a fast-pick
area of the warehouse and hence, they do not incorporate into their traveling distance
computation, the traveling distance required for replenishment. A comprehensive review
of the storage allocation problem is presented by Rojas Reyes et al. (2019).

Although the correlation of SKUs has been identified as an important factor to be
considered when assigning storage locations, none of the previous research has studied
the impacts that such correlationsmay have in the efficiency of the order-picking. Hence,
this paper aims to fill this gap and propose a factorial design to evaluate it along with
the illustration of some instance’s solutions to contrast the effects of SKUs demand
correlation.

3 Mathematical Formulation

We consider the mathematical formulation to solve the slotting problem or storage space
allocation to SKUs in the fast-pick area in a warehouse proposed by Velez-Gallego and

On the Effect of Product Demand Correlation 285

Smith (2018). The warehouse is divided into two areas: the fast-pick area, where the
processes of selection and collection of products are carried out manually by the pickers
who processes a single order at a time, and the reserve area, which fulfills the function
of restocking the fast-pick area. To complete each order, the pickers follow a U-shaped
route through the warehouse aisle, as it is illustrated in Fig. 1. They go down the first
side of the aisle in search of the products ordered until they reach the SKU stored in
the furthest position from the starting point; then they cross to the other side of the aisle
and take the same route in the opposite direction and continue with the search for the
requested products until they reach point O. The distance between every position is 2 m
and the aisle width is not considered as the picker always follows a U-shaped route. The
size of the fast-pick area also requires to be defined.

Fig. 1. Picking process. Source: Velez-Gallego and Smith (2018).

For the Velez-Gallego and Smith (2018) model it is important to take into
consideration three key factors:

1. The smaller the fast-pick area, the shorter the distance each picker has to travel,
however, they will have to go more times to the reserve area.

2. The warehouse used for the formulation of this model is already designed and
operational, therefore, it is not possible to make structural changes.

3. Only the distances traveled by the picking operators are considered, neglecting the
picking times at both the reserve and the fast-pick area.

3.1 Problem Formulation

The sets, parameters and variables are listed below, followed by the model formulation.

Sets

O: Customer orders.
S: SKUs.
Qk : SKUs in customer order k ∈ O.
L: Storage locations.

Parameters

hi: Distance to storage location i ∈ L.

286 F. I. G. Carafí et al.

r: Distance between the fast-pick and reserve areas.
qs: Units of SKU s ∈ S that can be stores in one bin.
ds: Demand of SKU s ∈ S in customer order O.
ni: Number of bins at location i ∈ L.
f ist : Distance traveled to replenish SKU s ∈ S if assigned to t bins at location i ∈ L.

Decision Variables

yist : Binary variable. yist = 1 if SKU s ∈ S is assigned to t bins at location i ∈ L, and.
yist = 0 otherwise.
zk : Distance traveled to prepare customer order k ∈ O.

Objective Function

Minimize
∑

k∈O zk +
∑

i∈L
∑

k∈O
∑

t=1
fist ∗ yist (1)

Constraints
∑

i∈L
∑ni

t=1
yist = 1 ∀ s ∈ S (2)

∑

s∈S

∑ni

t=1
t · yist ≤ ni ∀ i ∈ L (3)

zk ≥
∑ni

t=1
2 · hi · yist ∀ i ∈ L, k ∈ O, s ∈ Qk (4)

yist ∈ {0, 1} ∀ s ∈ S, i ∈ L, 1 ≤ t ≤ ni (5)

The expression (1) is the objective function that aims to minimizing the distance
traveled by the picker due to picking and replenishment activities. The first term is the
distance traveled by the picker during the picking process and the second term is the
distance traveled during replenishment activities. The possible values of the distance
traveled to replenish each SKUmust be computed based on the number of bins assigned
to it, assuming that an operator replenishes one SKU at a time. The values of parameter
fist are computed prior to solve the model as in expression (6). This parameter is defined
assuming a constant distance r between the fast-pick area and the reserve area, which in
turn implies that this distance is large enough to make the particular storage position of
an SKU in the reserve is negligible.

fist = 2 · r ·
⌈

ds
t · qs

⌉
∀ i ∈ L, s ∈ S, 1 ≤ t ≤ ni (6)

Constraint (2) ensures that a SKU partially or totally occupies a location and that
it is not distributed in more than one location. Constraint (3) ensures that the number
of storage bins assigned to a SKU does not exceed the number of bins available at that
storage location. Constraint (4) defines the distance traveled by the picker to prepare the
order k. Finally, constraint (5) determines the binary domain of the decision variable yist .

On the Effect of Product Demand Correlation 287

4 Instance Generation

4.1 Experimental Design

In order to measure the effect that some parameters have on the location chosen to store
the products, an experiment design is proposed. For this, 5 factors are varied in 2 levels
(low and high), resulting in a 25 factorial experiment, that is, 32 treatments. For each
treatment, 5 replicates were created. The factors to vary are the following:

• Orders: Number of customer orders.
• Nº Bins: Number of storage bins in the location i ∈ L.
• Bins Capacity: Capacity of the storage bins, that is, how much of the SKU s ∈ S can
be stored in a bin. All bins are identical, this means they are the same in shape and
volume and can only hold one SKU.

• Nº Locations: Number of storage locations in the fast-pick area.
• Pairing: Parameter that considers the percentage of appearance of the different SKUs
and the combinations between them in the customer orders. The higher this value, the
more SKUs are expected to be correlated in the instance generation.

Table 1 presents the values of the parameters for the low and high levels. The values
were defined arbitrarily based on Velez-Gallego and Smith (2018).

Table 1. Low and high level of factors in the design of experiments.

Parameter Level

Low (−1) High (+1)

Orders 1,000 2,000

Nº Bins 5 10

Bins Capacity 20–50 70–100

Nº Locations 10 20

Pairing 1% 5%

4.2 Orders Generation Procedure

To generate orders in which the SKUs are correlated, we considered the instance genera-
tor proposed byAnsari et al. (2018) andAnsari et al. (2020) using the sameFruithut order
database used by the authors to test their algorithm. This database is publicly available
by (Mitchell 2016). This database is composed by the ticket number (order number), the
name of the products requested in each order, the requested quantity of each product in
each order and the category to which each product belongs to, and additional information
that was not used for the instance generation procedure.

288 F. I. G. Carafí et al.

The procedure consists of two phases. As indicated by Ansari et al. (2018), the
instance generator “mimics the essence of real order data and generates a new set with
an unlimited number of orders and SKUs”. As the instance generator does not indicate
the amount of each product that is requested in each order, which is something required
in our model, we extended the proposed procedure to determine these values. So, it was
necessary to incorporate a third phase to generate such values, extending the instance
generator proposed by Ansari et al. (2018) and Ansari et al. (2020). A description of the
three-phase procedure is presented in Fig. 2.

Fig. 2. Instance Generator. Source: Adapted from Ansari et al. (2018) and Ansari et al. (2020).

5 Numerical Results

During these tests, an MSI computer with an Intel Core i5-8250U 1.80 GHz CPU pro-
cessor, with 8 GB of memory installed and Windows 10 with a 64-bit system is used.
The algorithm is executed in Python version 3.9.1 using Pulp, Pandas, Math and Numpy
libraries in conjunction with the Gurobi 9.1 solver.

For this paper, instead of using each product as an SKU, the category to which these
products belong is used as the SKU. This is done to reduce the number of SKUs in
the test instance and thus, generate an instance that can be solved to optimality within a
reasonable amount of time. This is justified as the maximum number of orders generated
for an instance is 2,000, and we need to be able to generate synthetic databases whose
products can satisfy the characteristics of the original database.

The maximum computational time was set to 3,600 seconds and a maximum gap
to 5%. Table 2 presents the general results for the distance traveled by the picker to

On the Effect of Product Demand Correlation 289

complete the activities of picking and replenishment, as well as the computational times,
indicating the minimum, maximum, average and median values of the five replicates of
the instances that were solved.

Table 2. General results.

General results

Minimum Maximum Average Median

Distance (m) 13.380 78.668 34.773 34.204

Time (s) 3 3.600 1.645 1.022

Gap (%) 4,4% 9,1% 5,4% 5,0%

Figure 3presents the box-plots of the total distance traveledby the picker,with respect
to the levels of each factor that were evaluated. We can observe that when moving from
a low level to a high level in the number of customers orders, the distance traveled by
the picker increases considerably. On the other hand, it can be noted that by varying the
level of pairing, number of bins and bins capacity the distance traveled by the picker
to complete the picking and replenishment activities tends to decrease. Finally, when
moving from a low level to a high level in the number of locations available in the
warehouse the distance traveled by the picker does not present a significant variation.

Nº Orders Pairing N° Bins Bins Capacity N° Locations
0,00

10.000,00

20.000,00

30.000,00

40.000,00

50.000,00

60.000,00

70.000,00

80.000,00

90.000,00

Results per Factor and Level

- +

Fig. 3. Numerical results per factor and level.

290 F. I. G. Carafí et al.

We performed an analysis to determine the factors that are more relevant in the
variation of the distance traveled by the picker. According to the results, themost relevant
factors were the number of orders, the bins capacity, the number of available bins and
the pairing (see Fig. 4). This means that a change in the level of any of the factors will
have a significant effect on the distance traveled by the picker.

Fig. 4. Pareto chart of the standardized effects on the experimental design.

The levels of each factor that minimize and maximize the distance traveled by the
picker are considered to generate two new instances. Table 3 presents such levels.

Table 3. Parameter levels that minimize and maximize the distance.

Nº orders Pairing Nº bins Bins cap Locations

Minimize − + + + +
Maximize + − − − −

With the generation of the new instances, the distance traveled by the picker is
computed aswell as the location chosen to store each SKUand the number of storage bins
that each one occupies. These results are generated from the percentage of appearance
of each SKU in the customer orders and the correlation between them.

The solution for the instance that minimizes total distance traveled by the picker is
illustrated in Fig. 5, that shows the position that each SKU occupies in the warehouse.
This instance is characterized by being less restricted in terms of the number of locations
available and the decision maker can also conclude that instead of 20 locations, it is

On the Effect of Product Demand Correlation 291

necessary only 10 locations as part of the layout sizing decisions. So, the proposed
mathematical model not only can be used to define the storage location assignments to
the SKUs but also the size of the fast-pick area if required.

Fig. 5. Location of SKUs in the warehouse when minimize distance traveled. Source: Own
elaboration.

From the design of experiments, the factor that has a greater effect on the variation of
the distance traveled is the number of orders and accordingly, the SKUs that are ordered
a higher number of times should be located at the most privileged positions (positions
closest to the start and end-point of the tour) in the warehouse.

To contrast the effect of the SKUs correlation, the results obtained for an instance
with SKUs that show demand correlation are analyzed. For this, an instance solved to
optimality by a commercial solver and a greedy heuristic that assigns storage space
considering only the frequency in which the SKUs appear in an order are compared. The
greedy heuristic basically orders the SKUs in a descendant list based on the number of
appearances in custom orders. Table 4 and Fig. 6 describes the notation and pseudocode
of the heuristic.

In the algorithm presented above, as a first step, SKUs are sorted in descendent order
with respect to the number of times that appear in the orders. Then, the SKU at the top
of the list is selected and assign it to the first location which corresponds to the most
preferred one (closest to the entry point). In this way, the better locations are assigned to
SKUs with a higher number of times being ordered. Next, for each SKU the algorithm
computes the minimum value for the parameter f , to determine the required number of
bins to assign to the selected SKU.

To do this assignment, the algorithm analyzes the available number of bins with
respect to the required bins by the SKU. The assignment of the bins is performed ran-
domly verifying if the available number of bins is higher than those required. In this case
the number of bins is determined based on a random number between 1 and the required

292 F. I. G. Carafí et al.

Table 4. Table of notation.

Q Binary matrix with SKUs per order with size O ×S

NBi,s Necessary bins in location i to store SKU s

ABi Available bins in location i

OBi Occupied bins in location i

TBi Total bins in location i

f i,s Distance traveled to replenish SKU s ∈S if assigned to location i ∈L
yi,s,t 1 if SKU s ∈S is assigned to t bins at location i ∈L, and 0 otherwise; where t ≤ (TBi−

OBi)

Algorithm: Descendant list of SKUs by N° of appearances in customer orders
1 sort Q.sum desc.
2 i=1
3 OBi =0
4 for s=1…. S do
5 NBi,s = min(fi,s)
6 if ABi > NBi,s then
7 t = Rand(1, NBi,s)
8 else
9 t = Rand(1, ABi)
10 yi,s,t = 1
11 OBi+= t
12 if OBi = TBi then
13 i++
14 end for s

Fig. 6. Greedy heuristic pseudocode. Source: Own elaboration.

number of bins. Otherwise, this is determined randomly between 1 and the available
number of bins. This procedure is repeated while there are available bins in the selected
location considering the next SKU at the top of the ordered list. When no bins are left
in the location, the algorithm selects the next location to continue assigning bins to the
remaining SKUs. The procedure is repeated until all the SKUs have been assigned to a
location with a determined number of bins.

Figure 7 presents the solutions obtained by the mathematical model and greedy
heuristic. The solution to the left corresponds to the optimal solution whose objective
function is equal to a total distance of 41,436 m. The solution to the right is obtained
by a greedy heuristic with an objective function value of 65,680 m. As observed in the
heat maps of each solution, the optimal solution not only considers the number of times
that the SKU appears in the orders, but also its demand correlation with other SKUs
in the instance. The greedy heuristic on the other hand, assigns storage space to SKUs
based only on the number of times that an SKU appears in an order. The greedy solution

On the Effect of Product Demand Correlation 293

distance value is 59% higher than the optimal, as it does not take into consideration the
demand correlation among the SKUs.

Location bins sku y Location bins sku y
l01 1 s09 111 l01 1 s18 238
l01 1 s16 184 l01 4 s05 258
l01 2 s17 102 l02 1 s02 180
l01 1 s19 160 l02 2 s15 186
l02 1 s08 84 l02 2 s16 184
l02 1 s10 177 l03 1 s09 111
l02 1 s13 85 l03 1 s10 177
l02 1 s20 83 l03 1 s19 160
l02 1 s22 47 l03 2 s03 138
l03 2 s05 258 l04 2 s17 102
l03 3 s18 238 l04 3 s14 99
l04 1 s02 180 l05 1 s13 85
l04 2 s14 99 l05 1 s26 97
l04 2 s15 186 l05 1 s27 85
l05 1 s21 46 l05 2 s08 84
l05 1 s27 85 l06 1 s01 76
l05 1 s29 66 l06 1 s20 83
l05 1 s31 38 l06 1 s24 70
l05 1 s36 64 l06 2 s11 76
l06 1 s04 54 l07 1 s04 54
l06 1 s12 49 l07 1 s29 66
l06 1 s24 70 l07 1 s30 59
l06 1 s28 33 l07 1 s33 63
l06 1 s32 37 l07 1 s36 64
l07 2 s01 76 l08 1 s12 49
l07 2 s03 138 l08 1 s21 46
l07 1 s40 18 l08 1 s22 47
l08 2 s26 97 l08 1 s25 49
l08 2 s33 63 l08 1 s31 38
l08 1 s35 25 l09 1 s07 21
l09 2 s11 76 l09 1 s28 33
l09 1 s23 15 l09 1 s32 37
l09 1 s41 14 l09 1 s35 25
l09 1 s42 14 l09 1 s40 18
l10 1 s07 21 l10 1 s23 15
l10 3 s25 49 l10 1 s41 14
l10 1 s30 59 l10 1 s42 14

Optimal Solution OF: 41,436 Greedy Solution OF: 65,680

Fig. 7. ComparativeHeatMap of two solutions: optimal (left) and greedy solution (right). Source:
Own elaboration.

294 F. I. G. Carafí et al.

6 Conclusions

In this work, we address the allocation problem within a small warehouse for fruits and
vegetables composed of a fast-pick area with a single aisle and a reserve area that only
fulfills the function of replenishing the former. A mixed integer linear programming
(MILP) model presented by Velez-Gallego and Smith (2018) is considered. The model
aims to minimize the distance traveled for the picking and replenishment of products
in the fast-pick area. We propose an experimental design to evaluate the factors that are
more significant for the distance traveled by a picker, being the number of orders and
the most important, followed by the capacity of the bins and the number of bins at each
location. The instances were generated by the synthetic instance generator proposed by
Ansari et al. (2018) and Ansari et al. (2020), incorporating a third phase to determine
the quantity of each SKU that is requested in each order.

We also illustrate the differences among the solutions found by the mathematical
model and a greedy heuristic that considers only the number of times that an SKU
appears in an order, observing clear differences in the solutions as the mathematical
model not only considers the number of times that an SKU appears in the orders, but
also the demand correlation among SKUs.

For future research, the mathematical model can be adjusted, so that the distance
traveled during the replenishment process may be modeled with more detail according
to the storage strategy. In addition, we propose to consider different warehouse config-
urations and evaluate the impacts of SKU correlations accordingly. This may consider
some adjustments in the traveling distance estimation. It is also possible to consider
traveling times instead of distance, by assuming an average speed of the pickers. In this
way we can incorporate in the workload computation the picking times in the reserve
area for the replenishment operations.

Different slotting policies could be considered such as the possibility to assignmulti-
ple positions (scattered or dispersed storage strategy) proposed byWeidinger andBoysen
(2018) and evaluate the impact of SKUs correlation under different slotting policies. The
effects of assigning a unique storage location to SKUs versus multiple locations as it is
allowed in this strategy can be assessed. Furthermore, it is possible to evaluate under
which conditions one or the other strategy provides lower traveling times or distances.

Another research avenue can consider a heuristic solution approach, given that the
problem is NP-Hard and it is possible to solve only small instances to optimality. As in
practice, a warehouse can have thousands of SKUs, efficient solution methodologies are
required to be able to solve real-size instances.

References

AnsariM., RasoolianB., Smith J.: Synthetic order data generator for picking data. In: 15th IMHRC
Proceedings, Savannah, Georgia, USA (2018)

Ansari M., Smith J., Rasoolian B.: Hybrid Synthetic Order Data Generator: A Two-Phase Process
in Generating Correlated Order Picking Data. Working paper

Bartholdi, J.J., III., Hackman, S.T.: Allocating space in a forward pick area of a distribution center
for small parts. IIE Trans. 40(11), 1046–1053 (2008)

On the Effect of Product Demand Correlation 295

Bartholdi, J.J., Hackman, S.T.: Warehouse and distribution science. Version 0.98.1 (2019). https://
www.warehouse-science.com/

Boysen, N., De Koster, R., Weidinger, F.: Warehousing in the e-commerce era: a survey. Eur. J.
Oper. Res. 277(2), 396–411 (2019)

Chuang, Y.F., Lee, H.T., Lai, Y.C.: Item-associated cluster assignment model on storage allocation
problems. Comput. Ind. Eng. 63(4), 1171–1177 (2012)

Gu, J.: The forward reserve warehouse sizing and dimensioning problem. Doctoral dissertation,
Georgia Institute of Technology (2005)

Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: a comprehensive
review. Eur. J. Oper. Res. 177(1), 1–21 (2007)

Hackman, S.T., Rosenblatt,M.J., Olin, J.M.: Allocating items to an automated storage and retrieval
system. IIE Trans. 22(1), 7–14 (1990)

Ming-Huang Chiang, D., Lin, C.P., Chen, M.C.: Data mining based storage assignment heuristics
for travel distance reduction. Exp. Syst. 31(1), 81–90 (2014)

Mitchell, D.: Fruithut order data (2016). https://data.world/digitalbias/operationsanalysis/worksp
ace/file?filename=fruithut_data_ordered_csv_file_1_1.csv

Reyes, J., Solano-Charris, E., Montoya-Torres, J.: The storage location assignment problem: a
literature review. Int. J. Ind. Eng. Comput. 10(2), 199–224 (2019)

Revillot-Narváez, D., Pérez-Galarce, F., Álvarez-Miranda, E.: Optimising the storage assignment
and order-picking for the compact drive-in storage system. Int. J. Prod. Res. 58(22), 6949–6969
(2020)

Subramanian, S.: Managing space in forward pick areas of warehouses for small parts. Doctoral
dissertation, Georgia Institute of Technology (2013)

Thomas, L.M., Meller, R.D.: Analytical models for warehouse configuration. IIE Trans. 46(9),
928–947 (2014)

VanDen Berg, J.P.: A literature survey on planning and control of warehousing systems. IIE Trans.
31(8), 751–762 (1999)

van Gils, T., Caris, A., Ramaekers, K., Braekers, K., de Koster, R.B.: Designing efficient order
picking systems: the effect of real-life features on the relationship among planning problems.
Transp. Res. Part E Logist. Transp. Rev. 125, 47–73 (2019)

Velez-Gallego, M.C., Smith, A.E.: Optimization of a fast-pick area in a cosmetics distribution
center. In: 15th IMHRC Proceedings, Savannah, Georgia, USA (2018)

Walter, R., Boysen, N., Scholl, A.: The discrete forward–reserve problem–allocating space, select-
ing products, and area sizing in forward order picking. Eur. J. Oper. Res. 229(3), 585–594
(2013)

Weidinger, F., Boysen, N.: Scattered storage: how to distribute stock keeping units all around a
mixed-shelves warehouse. Transp. Sci. 52(6), 1412–1427 (2018)

Wu, W., de Koster, R.B., Yu, Y.: Forward-reserve storage strategies with order picking: when do
they pay off? IISE Trans. 52(9), 961–976 (2020)

Xiao, J., Zheng,L.:Acorrelated storage location assignment problem in a single-block-multi-aisles
warehouse considering BOM information. Int. J. Prod. Res. 48(5), 1321–1338 (2010)

Yingde, L.I., Smith, J.S.: Dynamic slotting optimization based on SKUs correlations in a zone-
based wave-picking system. In: 12th IMHRC Proceedings, Gardanne, France (2012)

Zhang, R.Q., Wang, M., Pan, X.: New model of the storage location assignment problem
considering demand correlation pattern. Comput. Ind. Eng. 129, 210–219 (2019)

https://www.warehouse-science.com/
https://data.world/digitalbias/operationsanalysis/workspace/file%3Ffilename%3Dfruithut_data_ordered_csv_file_1_1.csv

Urban Transport and Collaborative
Logistics

Real-Time Dispatching with Local Search
Improvement for Dynamic Ride-Sharing

Martin Pouls1(B) , Anne Meyer2 , and Katharina Glock1

1 FZI Research Center for Information Technology, 76131 Karlsruhe, Germany
{pouls,kglock}@fzi.de

2 TU Dortmund University, 44221 Dortmund, Germany
anne.meyer@lfo.tu-dortmund.de

Abstract. Dynamic ride-sharing services such as UberPool or MOIA
are becoming increasingly popular as they offer a cheap and flexible
mode of transportation and reduce traffic compared to traditional taxi
and ride-hailing services. One key optimization problem when operat-
ing ride-sharing services is the assignment of trip requests to vehicles
to maximize the service rate while minimizing operational costs. In this
work, we propose a real-time dispatching algorithm capable of quickly
processing incoming trip requests. This dispatching algorithm is com-
bined with a local search that aims to improve the current routing plan.
Both algorithms are embedded into a planning and simulation frame-
work for dynamic ride-sharing and evaluated through simulation studies
on real-world datasets from Hamburg, New York City, and Chengdu.
The results show that the local search improvement phase can improve
the request acceptance rate as well as vehicle travel times. We achieve
an average reduction of the request rejection rate by 1.62% points and a
decrease in vehicle travel time per served request of 6.5%. We also study
the influence of pre-booked rides and show that the local search yields
even larger benefits when part of the trip requests are known in advance.

Keywords: Vehicle routing · Ride-sharing · Dial-a-ride-problem

1 Introduction

Ride-sharing services such as UberPool, Moia and GrabShare have recently
emerged as suitable new modes of transportation for highly urbanized areas.
They offer increased convenience and flexibility compared to public transporta-
tion as well as lower fares than classical taxi or ride-hailing services. At the same
time, the increased usage of ride-sharing may serve as a tool to reduce traffic
congestion as well as emissions.

Planning vehicle routes for such dynamic ride-sharing services has proven to
be a difficult optimization problem that has attracted a significant amount of
research attention (e.g. [1,10,12,15]). From a modelling perspective, the problem
may be seen as a dynamic dial-a-ride problem with its standard constraints on

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 299–315, 2021.
https://doi.org/10.1007/978-3-030-87672-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_20&domain=pdf
http://orcid.org/0000-0002-9258-719X
http://orcid.org/0000-0001-6380-1348
http://orcid.org/0000-0003-0670-6269
https://doi.org/10.1007/978-3-030-87672-2_20

300 M. Pouls et al.

vehicle capacities, customer pickup time windows and customer ride times [5].
The particular challenges in this application setting arise mainly from the large
number of trip requests (up to 20,000 per hour in this study) and the real-
time requirements regarding computational times as customers expect a near
instantaneous response to their requests.

In this paper, we propose a new algorithmic approach for tackling the vehi-
cle routing problem in dynamic ride-sharing applications. So far, most existing
approaches either sequentially process singular requests and therefore leave lit-
tle room for optimization or are batch-based and therefore do not provide an
immediate assignment of trip requests to a vehicle. In this work, we propose
an approach that combines a sequential cheapest insertion heuristic (similar to
[11,12]) with a local search. Our main contributions are:

– A cheapest insertion dispatching algorithm that processes incoming trip
requests and facilitates fast response times for customers.

– A local search algorithm to improve the current plan via simple operators.
– A comprehensive simulation & planning framework to evaluate the perfor-

mance of our algorithms on real-world data.

To cope with the running time requirements, we try to minimize shortest path
calculations on the road network and use pre-calculated travel time estimations
when possible. In contrast to many prior works in this field, we also allow for
pre-booked trip requests. In this case customers do not desire immediate service
but rather want to book a ride for some future point in time. We evaluate
our approach through extensive simulation studies on four real-world datasets
from Hamburg, New York City, Manhattan and Chengdu. Across all datasets,
our results show that the local search yields improvements regarding the total
vehicle travel times and thereby operational costs as well as the acceptance rate
of trip requests. This effect is even more pronounced in scenarios with large
portions of pre-booked trips.

The remainder of this work is structured as follows. In Sect. 2 we present
an overview of related work regarding vehicle routing algorithms for dynamic
ride-sharing. Section 3 introduces a formal problem description as well as our
framework for evaluating dynamic ride-sharing services. Subsequently, Sect. 4
details our vehicle routing algorithms consisting of (1) the online dispatching
algorithm and (2) the local search improvement phase. We present the results
of our computational studies in Sect. 5. Finally, Sect. 6 summarizes our contri-
butions and illustrates potential future research topics.

2 Related Work in Vehicle Routing for Dynamic
Ride-Sharing

There is a large amount of extant research concerning dynamic dial-a-ride prob-
lems or more generally pickup-and-delivery vehicle routing problems summarized
in several reviews (e.g. [3,13]). However, most classical applications differ signif-
icantly from the dynamic ride-sharing setting considered in this paper. In par-
ticular, they tend to consider significantly smaller instance sizes and have more

Real-Time Dispatching with Local Search 301

lenient requirements concerning response times. Therefore, we focus our liter-
ature review on prior work concerning vehicle routing algorithms for dynamic
ride-sharing. Existing approaches may be roughly divided into two groups (see
also [10]): (1) sequential algorithms that process trip requests individually, and
(2) batch-based algorithms that collect trip requests over a given time period
and process them in batches.

An insertion-based sequential approach is presented in [11,12]. The authors
first find suitable vehicles for an incoming trip request and subsequently deter-
mine the cheapest feasible insertion. Similar insertion-based approaches have
been proposed by several authors. For instance, in [8], the authors present a
combination of cheapest insertion with a kinetic tree data structure that main-
tains a set of potential routes for each vehicle. When inserting a new trip request
they may evaluate the insertion into several feasible routes besides the one cur-
rently in execution. To cope with the complexity they propose a hotspot clus-
tering algorithm that clusters similar nodes in their search tree. The authors of
[4] also use this combination of cheapest insertion and kinetic trees but extend
the approach in such a way that multiple non-dominated options are offered to
customers that may differ in the promised pickup time or the proposed price.

In contrast to sequential algorithms, batch-based approaches promise a better
solution quality at the expense of an increased computational complexity and
the lack of instantaneous customer responses. One of the earliest batch-based
approaches for dynamic ride-sharing was proposed in [1]. The authors utilize a
graph-based approach that matches potential combinations of trip requests with
vehicles. In a follow-up work [2], the authors propose a non-myopic algorithm
including sampled future trip requests to ensure that the vehicle fleet is well-
positioned to serve these anticipated trip requests. Several works have built upon
the graph-based algorithm in [1]. In [9], the authors utilize a clustering algorithm
to aggregate multiple pickup and drop-off locations. Subsequently, they build
paths through these zones and match suitable vehicles to these so called zone
paths. In an extended version of the algorithm [10], the same authors present a
non-myopic variant of their algorithm that incorporates future anticipated trip
requests. A neural-network based approximate dynamic programming (ADP)
algorithm is proposed in [16]. The approach also builds on the graph-based app-
roach in [1]. The authors utilize a trained neural network to score feasible trips
and subsequently assign trips to vehicles in such a way that they maximize the
scores. In [15] a column generation approach is presented. It utilizes an anytime
algorithm for solving the pricing problem that is guaranteed to return a fea-
sible solution even if interrupted by a time limit. In contrast to our approach
the authors do not allow for the rejection of trip requests, but rather use an
increasing penalty term that penalizes the delay of trip requests.

Our local search algorithm employs common operators for vehicle routing
problems. There are countless works using local search methods on different
VRP variants, for a thorough overview concerning the usage of local search
techniques for vehicle routing we refer the reader to [7].

302 M. Pouls et al.

3 Dynamic Ride-Sharing: Problem Description and
System Design

In this section, we first introduce the vehicle routing problem for dynamic ride-
sharing along the necessary notation and subsequently give an overview of our
overall system design for evaluating a dynamic ride-sharing service.

3.1 Problem Description and Notation

From a modelling perspective, the problem at hand may be formulated as a
dynamic dial-a-ride-problem. Hence, our notation is largely consistent with the
DARP formulation in [5]. Let r be an incoming trip request for a given number
of passengers qr, a pickup location pr, and a drop-off location dr. We denote the
direct travel time between pickup and drop-off as ttdr . For the purpose of this
work, we assume qr ∈ {1, 2}, as larger groups are generally requested to resort
to ride-hailing services offered by the same company (see e.g. UberPool [17]).
Each request is associated with a creation time tr that denotes the time at
which it enters the system. In addition, it has a pickup time window given by an
earliest pickup time er and a latest pickup time lr. The size of this time window,
i.e. lr − er is also referred to as the maximum waiting time wr of a customer.
Customers either want to be served immediately, i.e. er = tr or they submit
a pre-booked request. In the latter case they want to reserve a ride for some
future point in time. Thus, er corresponds to tr plus a pre-booking time ar. In
this study, we focus on short pre-booking times. In general, ar may range from a
couple of minutes to several days. In addition to the time window on the pickup
of a customer, there is also a temporal constraint on the customer’s ride time
given by the maximum ride time Lr. This is motivated by the fact that, although
ride-sharing allows for detours compared to direct taxi services, these detours
should be limited. In practice, the acceptable detour could either be specified by
the customer or determined by the operator. In this work, the maximum ride
is determined as Lr = max(ttdr · α, ttdr + Lmin). Here α corresponds to a detour
factor and Lmin denotes a minimum acceptable detour. The latter is required for
trip requests covering very short distances as otherwise few feasible combinations
with other trip requests would be possible. To serve the trip requests, we need a
fleet of vehicles K. Each vehicle k ∈ K is associated with a maximum capacity
Qk equivalent to the maximum number of passengers.

The hierarchical objective of our problem is to primarily maximize the num-
ber of served trip requests and secondarily minimize the total travel time of the
vehicle fleet. These travel times serve as a proxy for the operational cost of the
vehicles. In addition, the constraints concerning pickup time windows of requests
[er, lr], maximum ride times Lr and vehicle capacities Qk must be met.

3.2 A System Design for Dynamic Ride-Sharing

Our overall system for evaluating dynamic ride-sharing services is illustrated in
Fig. 1. It is partitioned into two parts: (1) the planning service encompassing all

Real-Time Dispatching with Local Search 303

relevant planning components, and (2) the discrete-event simulation that mimics
the behavior of real-world vehicles and customers.

Fig. 1. Planning service, simulation and relevant communication.

Planning Service. The planning service maintains the current system state and is
responsible for handling incoming trip requests and planning vehicle movements.
All communication with the simulation takes place via the status manager. In
addition, this component stores the current state of the vehicle fleet and all trip
requests.

Vehicle routing is handled by two components. First, the dispatching algo-
rithm handles incoming trip requests and assigns them to a suitable vehicle or
rejects them if no feasible insertion into a route is possible. Second, the local
search improves the current routing plan. In case of a centralized real-world
vehicle operator, the local search could operate continuously whenever no trip
request is being processed by the dispatching algorithm. However, in our sim-
ulation studies we perform the local search with a given time limit after a trip
request is processed by the dispatching module. The vehicle routing algorithms
are detailed in Sect. 4.

The repositioning component is responsible for repositioning idle vehicles.
For details regarding this optimization problem, we refer the reader to our prior
work [14]. For the remainder of this paper, we use a simple reactive repositioning
algorithm inspired by [1]. Given a rejected trip request r, we greedily reposition
the nearest idle vehicle to the pickup location pr. The assumption behind this
is that trip requests are highly spatially and temporally correlated. Hence, we
may assume that additional trip requests may arise near a rejected request.

Lastly, the main purpose of the routing engine is to calculate realistic travel
times on the road network which are used by the planning components. In this
study we work with road networks based on OpenStreetMap (OSM) data and use
a contraction-hierarchy based routing solver [6]. As these shortest path queries
on the road network are expensive when performed at high volumes, we also use
pre-computed travel times as an approximation. This is described in Sect. 4.

304 M. Pouls et al.

Simulation. Our discrete-event simulation operates on a demand database con-
taining historic trip requests. Each request consists of the request time, pickup
and destination coordinates, and the number of passengers. In this work, we
operate on trip requests obtained from real-world taxi services. The simulation
engine replays all trip requests and enriches them with simulation-specific set-
tings such as the maximum waiting time and maximum ride-time. The simulation
then submits each trip request to the planning backend and obtains new vehicle
routes. These routes are subsequently simulated and relevant events regarding
pickup and drop-off of customers as well as current vehicle positions are sent to
the planning service. In order to realistically model the movement of vehicles,
we work with paths on the road network obtained from the routing service.

4 Vehicle Routing for Dynamic Ride-Sharing

Our solution approach for vehicle routing for dynamic ride-sharing consists of
two algorithms. First, a sequential real-time dispatching component that handles
incoming trip requests and assigns them to a suitable vehicle if possible. Each
new trip request is processed by the dispatching algorithm and either inserted
into a route or rejected if no feasible insertion was found. Second, a local search
that tries to improve the current routing plan via simple search operators. The
local search is run for a given time period after each trip request was processed in
order to exploit available computational time between requests. In the following,
we present these two algorithms in detail.

4.1 Real-Time Dispatching

The aim of the real-time dispatching step is to quickly insert an incoming trip
request into the current routing plan if possible and otherwise reject the request.
For this purpose, we utilize a cheapest insertion heuristic similar to the one
proposed in [11,12]. Our approach consists of three steps:

1. Find a set of candidate vehicles Kc
r ⊆ K for a given trip request r.

2. Sort the candidate vehicles according to their estimated suitability for r.
3. Find the cheapest insertion.

Vehicle Selection. To select suitable vehicles for a given trip request r, we
utilize a grid-based index data structure similar to the one proposed by [11,12].
We partition the area under study into a set of grid cells G as depicted in Fig. 2a.
Each grid cell g ∈ G covers an area of 750 m × 750 m and has a center cg defined
as the road node closest to the centroid of the cell. We pre-calculate and store a
matrix of travel times ttg,h between the centers of each pair of cells g and h. This
pre-calculated travel time matrix is used at several points in our algorithm to
estimate travel times and save computational time. Furthermore, we store and
continuously update a set of vehicles currently situated in a given cell g denoted
as Kg.

Real-Time Dispatching with Local Search 305

Given a trip request r, we first determine the grid cell gr in which the desired
pickup location pr is situated. Subsequently, we determine the neighborhood
Ngr of gr as the set of grid cells from which gr could be reached before the
end of the pickup time window according to our pre-calculated travel times, i.e.
Ngr = {g ∈ G|ttg,gr ≤ lr − tr}. We now select all vehicles situated within this
neighborhood as our set of candidates Kc

r for inserting r, i.e. Kc
r =

⋃
g∈Ngr

Kg.
As we only utilize our pre-computed travel time matrix in this vehicle selection
step, we avoid expensive shortest path queries.

Vehicle Sorting. After selecting the candidate vehicles Kc
r , we sort these vehi-

cles according to their estimated suitability for the trip request r. Given a vehicle
k ∈ Kc

r , we estimate the increase in total travel time incurred by inserting r into
the current route of k. For this purpose, we calculate a representative pickup
time tpavgr as the middle of the pickup time window [er, lr]. Similarly we calcu-
late a representative drop-off time tdavgr as the middle of the feasible drop-off
time window [er + ttdr , lr + Lr]. As illustrated in Fig. 2b, we now determine a
suitable index i in the current route of k for inserting the pickup location of r.
We select i in such a way that tpavgr lies in the interval between the departure
time tdi−1 at the preceding stop and the arrival time tai at the following stop. If
no such position is found, the pickup location is inserted at the end of the route.
The same procedure is performed for the drop-off location of r and index j.

The estimated detour (i.e. additional travel time) by inserting r into the route
of k is denoted as Δ̂+

r,k and determined via our pre-calculated travel time matrix.
Hence, in this step we approximate the actual travel time via the grid cells in
which the tour stops are located and do not perform shortest path queries. The
set of candidate vehicles Kc

r is now sorted according to Δ̂+
r,k and the resulting

list is denoted as Ks
r .

(a) Grid partitioning. (b) Detour estimation.

Fig. 2. (a) Grid partitioning of an area with blue points representing the grid cell
centers. The neighborhood Ng of the red grid cell is marked in green. (b) Detour
estimation during vehicle sorting. (Color figure online)

306 M. Pouls et al.

Cheapest Insertion. In the third and final step of our dispatching algorithm
we iterate over k ∈ Ks

r and determine the cheapest feasible insertion position of
pr and dr into the current route of k. For this purpose, we evaluate all potentially
feasible combinations to insert pr and dr while leaving the order of the existing
stops intact. If all constraints defined in Sect. 3 are satisfied, a feasible insertion
was found. Feasible insertion are ranked by their increase in vehicle travel time
Δ+

r,k. In contrast to the prior steps, we now use travel times from our routing
solver to guarantee that time window and ride time constraints are met. The
insertion with the minimal Δ+

r,k among all evaluated vehicles is performed. After
checking kmax vehicles, we abort the search if a feasible insertion has been found.
Due to our prior sorting phase, we have checked the most promising vehicles at
this point. Otherwise, we continue the search until a feasible insertion is found
or all vehicles have been evaluated. If no feasible insertion is found, r is rejected.
At this stage the customer is notified that the trip request is either accepted or
rejected. Therefore, the local search cannot change this decision.

4.2 Local Search

The aim of our local search is to use available computational time and improve
the current routing plan. Hence, it is triggered after a request was processed by
the dispatching algorithm and consists of several separate phases:

1. Inter-route search: modifies two routes simultaneously.
(a) Inter-route move: moves a single request from one vehicle to another.
(b) Inter-route swap: swaps two requests between vehicles.

2. Intra-route search: improves the route of a single vehicle.

Inter-route Search. The inter-route phase utilizes two simple operators: the
move operator moves a single trip request from its current route to another one,
and the swap operator exchanges two trip requests between their current routes.
These operators are applied sequentially, i.e. we first apply the move operator
until a time limit Tm is reached or the search space has been exhausted and
subsequently the same is done for the swap operator with a time limit T s. To
improve and speed up the search, we use two important data structures which
we will first explain before detailing the move and swap operators themselves.

Request Queue. The request queue contains the set of trip requests that are
currently planned but have not yet been picked up. The queue is ordered in
decreasing order by the travel time contribution of each request Δ−

r,kr
. This

corresponds to the travel time that would be saved if the trip request r were
removed from its current vehicle kr and is determined based on the travel times
from our routing engine. The request queue is updated every time a trip request
is inserted into or removed from a route. The reasoning for this is that we want
to prioritize requests with a large Δ−

r,kr
during our search, as they offer the most

potential for improvement and we may not be able to evaluate all requests due to
running time restrictions. Our two inter-route search neighborhoods each utilize

Real-Time Dispatching with Local Search 307

a separate request queue RQm (move) and RQs (swap) to determine the next
request for evaluation. The usage of separate queues is necessary due to the tabu
mechanism described in the next paragraph.

Tabu List. In addition to the request queue, our inter-tour operators each use
a tabu list denoted as TSm (move) and TSs (swap). These contain requests
that have recently been evaluated without finding an improving move or swap
respectively. For a given tabu interval itabu, a request on the tabu list is not
evaluated for a potential move or swap again.

Algorithm 1. Move Operator
1: Finds the first improving move and performs it. Repeats until the request queue is

empty. Terminates at any point, if the time limit Tm was reached.
2: for r1 ∈ RQm do
3: Kt ← K \ {k1}
4: Kt ← sort(Kt, r1) � Sorts k2 ∈ Kt by Δ̂+

r1,k2
(ascending)

5: Kt ← {k2 ∈ Kt|Δ̂+
r1,k2

≤ β · Δ−
r1,k1

}
6: for k2 ∈ Kt do
7: m ← findBestMove(r1, k1, k2)
8: if m is an improving move then
9: perform m, update RQm and go to line 2

10: end if
11: end for
12: TSm ← TSm ∪ r1 � No improving move found, add r1 to tabu list
13: end for

Move Operator. The move operator is outlined in Algorithm1. It tries to move
a single request from its currently assigned vehicle to another one and improve
the overall vehicle travel time. We first select the next request r1 from RQm

(line 2). The corresponding vehicle to which r1 is assigned is denoted as k1.
In lines 3–5 we select a set of potential target vehicles and subsequently sort
and filter this set. Sorting is performed according to the estimated travel time
increase Δ̂+

r1,k2
for k2 ∈ Kt with the same procedure as in Sect. 4.1. We filter

vehicles where the estimated detour by inserting r1 exceeds the saved travel
time from removing r1 from the route of k1 significantly. For this purpose, we
define a factor β > 1. Hence, Kt only contains vehicles k2 with Δ̂+

r1,k2
≤ β ·

Δ−
r1,k1

. Subsequently, in lines 6–10, we iterate over Kt and find the best feasible
move for each vehicle with the same approach as in Sect. 4.1. We follow a first-
improvement scheme. Hence, the first move that reduces the overall travel time
is performed, i.e. Δ+

r1,k2
< Δ−

r1,k1
. If no improving move is found, r1 is added to

TSm (line 12). The move operator is applied iteratively to all requests in RQm.
The procedure is interrupted whenever the time limit Tm has been reached.

308 M. Pouls et al.

Algorithm 2. Swap Operator
1: Finds the first improving swap and performs it. Repeats until the request queue is

empty. Terminates at any point, if the time limit T s was reached.
2: for r1 ∈ RQs do
3: Kt ← K \ {k1}
4: Kt ← sort(Kt, r1) � Sorts k2 ∈ Kt by Δ̂+

r1,k2
(ascending)

5: Kt ← {k2 ∈ Kt|Δ̂+
r1,k2

≤ β · Δ−
r1,k1

}
6: for k2 ∈ Kt do
7: for r2 ∈ Rk2 do
8: s ← findBestSwap(r1, r2, k1, k2)
9: if s is an improving swap then

10: perform s, update RQs and go to line 2
11: end if
12: end for
13: end for
14: TSs ← TSs ∪ r1 � No improving swap found, add r1 to tabu list
15: end for

Swap Operator Subsequently, we apply the swap operator as outlined in Algo-
rithm2. This operator tries to exchange two requests between their current vehi-
cles and improve the overall vehicle travel time. In the same manner as with the
move operator, we select the next trip request r1 from RQs and sort and filter
the potential target vehicles Kt (lines 2–5). Let k1 denote the vehicle to which
r1 is currently assigned. Proceeding with the next target vehicle k2 ∈ Kt, let
Rk2 denote all requests assigned to k2 that have not been picked up yet. These
are the potential swap partners. In lines 7–8, we iterate over r2 ∈ Rk2 and find
the best swap for the pair of requests (r1, r2). The first swap that decreases the
overall travel time is performed, i.e. Δ+

r1,k2
+ Δ+

r2,k1
< Δ−

r1,k1
+ Δ−

r2,k2
(lines

9–11). If no improving swap is found for r1, it is added to the tabu list TSs (line
14). The procedure terminates when the request queue is empty or the time limit
T s was reached.

Intra-route Search. The intra-route search improves the order of stops within
a single route. It is applied to all vehicles whose routes have been modified since
the last run either by the inter-route search or the dispatching algorithm. We
use two operators: (1) an intra-route stop move that re-inserts a single stop
into the route, and (2) an intra-route request move that re-inserts all stops
associated with a single trip request r into the route. Insertion is performed
with the same approach as in Sect. 4.1. If an improvement over the old route is
found, the insertion is performed. The intra-route search has no time limit and
is applied exhaustively until no improvements are found. However, due to the
small search space and the small number of vehicles that need to be evaluated in
each iteration, the running time is negligible compared to the inter-route search
and the dispatching algorithm.

Real-Time Dispatching with Local Search 309

5 Computational Results

We evaluate our algorithms on multiple real-world datasets. In the following,
we first introduce these datasets and subsequently the specific scenarios and
algorithms settings for this study. Finally, we present our results and findings.

5.1 Data and Setup

We perform simulation studies with real-world datasets from Hamburg (HH)1,
New York City (NYC)2 and Chengdu (CH)3. In addition, we build a fourth
dataset based on the one from NYC that only contains trips within Manhattan
(MANH). The Manhattan dataset is considered separately to evaluate scenarios
with high demand in a small area. In contrast, the other datasets also include
suburban areas with relatively low demand. All these datasets contain the same
basic information: trip requests with the desired pickup and drop-off coordinates
and the pickup time. Moreover, the NYC dataset contains the number of passen-
gers per trip request. As the HH and CH datasets are missing this information,
we assume the same distribution as in the NYC data. We perform some basic
data filtering and cleaning by removing records with missing information. More-
over, we only consider trip requests within the respective area of study and with
at most two passengers as mentioned in Sect. 3.1. Our software components are
implemented in C++. We use RoutingKit [6] as our routing engine and OSM
data to derive the road network. All experiments are performed on the same
computer with an Intel i7-6600U CPU and 20 GB of RAM.

5.2 Scenarios and Algorithm Settings

For each dataset we generate a set of scenarios by varying the following: weekday
and pre-booking probability. We consider two weekdays, Wednesday and Sunday.
The precise dates are given in Table 1. Note that our simulation uses a warm-up
phase of 6 h in simulated time that immediately precedes the selected dates.

Our settings for maximum waiting times, maximum ride times, and pre-
booking times are given in Table 2. For the pre-booking time we use a single
value of ar = 20min. A given fraction of 0%, 25% or 50% of requests is pre-
booked, all other requests desire immediate service. Unless noted otherwise, the
default setting of 0% is used. We performed preliminary test to determine an
adequate fleet size per dataset: 75 (HH), 1175 (NYC), 700 (MANH), and 1150
(CH). With this fleet size we should be able to serve roughly 90% of all requests.

The parameter settings for our dispatching and local search algorithms are
summarized in Table 2. These were selected based on preliminary tests to work
well with all datasets. Theoretically, these parameters could be tuned specifically
for each dataset. All scenarios are run with two algorithm settings: (1) only with

1 Provided by PTV Group, Haid-und-Neu-Str. 15, 76131 Karlsruhe, Germany.
2 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
3 https://outreach.didichuxing.com/appEn-vue/KDD CUP 2020.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://outreach.didichuxing.com/appEn-vue/KDD_CUP_2020

310 M. Pouls et al.

Table 1. Temporal scenario settings per dataset with dates and trip requests.

Wednesday Requests Sunday Requests

HH 20 Mar 2019 13,556 24 Mar 2019 10,669

NYC 16 Mar 2016 376,526 20 Mar 2016 368,508

MANH 16 Mar 2016 297,457 20 Mar 2016 269,346

CH 16 Nov 2016 239,037 20 Nov 2016 237,037

Table 2. Scenario and algorithm settings.

Fraction of pre-booked requests [%] [0, 25, 50]

Pre-booking time (ar) [min] 20

Maximum waiting time (wr) [s] 600

Detour factor (α) 1.5

Minimum allowed detour (Lmin) [s] 300

Vehicle capacity (Qk) 4

Vehicle limit (kmax) 50

Time limit inter-route move (Tm) [ms] 80

Time limit inter-route swap (T s) [ms] 120

Tabu interval (itabu) [min] 3

Grid cell size [m] 750 × 750

Vehicle filtering factor (β) 1.5

the dispatching algorithm from Sect. 4.1 (“DIS”), and (2) with the dispatching
algorithm followed by the local search improvement phase described in Sect. 4.2
(“DIS+LS”). The time limit of 200 ms on the inter-route search ensures that
even during peak demand times all trip requests may be processed in real time.

5.3 Performance Indicators

We use several performance measures to assess the impact of our local search.
Firstly, the trip request rejection rate (“Rej”) measures the fraction of trip
requests that could not be served. Our main goal is to minimize this rejec-
tion rate. Secondly, to gauge the operational cost we consider the average travel
time per vehicle (“TTv”). As this value is distorted by serving more requests,
we also consider the average vehicle travel time per served trip request (“TTr”).
Lastly, we introduce metrics to measure the customer satisfaction, in particular
the average waiting time (“Wait”) and average delay (“Del”). This delay corre-
sponds to the increase compared to the direct travel time between pickup and
drop-off of a trip request. In addition, we also report the total running time
(“RT”).

Real-Time Dispatching with Local Search 311

5.4 Results Overview

Table 3. Average results for all datasets and vehicle routing modes.

Data Mode Rej [%] Wait [s] Del [s] TTv [min] TTr [s] RT [min]

HH DIS 10.01 397.68 148.98 1012.97 419.42 2.38

DIS+LS 9.24 389.74 145.45 985.81 404.45 2.94

NYC DIS 8.09 494.27 170.04 1127.35 232.14 373.38

DIS+LS 7.41 496.72 163.63 1030.04 210.58 1218.41

MANH DIS 6.21 496.53 161.87 1061.27 168.05 187.58

DIS+LS 3.98 490.51 149.94 981.62 151.78 453.81

CH DIS 10.17 465.76 200.64 1030.70 351.66 128.78

DIS+LS 7.37 461.02 194.91 992.23 328.30 303.33

ALL DIS 8.62 463.56 170.38 1058.07 292.82 173.03

DIS+LS 7.00 459.50 163.48 997.43 273.78 494.62

Table 3 summarizes the results for all datasets and vehicle routing modes with the
default scenario settings. The values for each dataset correspond to the average of
the two weekday scenarios. The rows denoted as “ALL” contain averages across
all datasets. The results show that our local search manages to improve the
results in several ways. Firstly, the rejection rates are reduced by an average of
1.62% points. At the same time vehicle routes become more efficient. Despite the
increase in served trip requests, the average travel time per vehicle is reduced by
5.73% (60.64 s). The effect is even more pronounced when considering the travel
time per served request with a reduction of 6.5% (19.04 s). Besides improving the
vehicle fleet performance, the local search also provides minor benefits concerning
the customer convenience by reducing the average waiting time and in-car travel
delay. As expected, the local search increases the running times. However, these
are still manageable and the algorithm may be used in real-time even with large-
scale scenarios. The overall running time is still lower than the simulated time
period of 30 h. In particular, even on the NYC dataset, the average running
time for processing one trip request in the dispatching algorithm is 6.70 ms.
Even during peak demand times with up to 20,000 trip requests per hour, we
have roughly 200 ms to process a single request. Given the performance of our
dispatching algorithm and the time limit on the local search, our approach is
able to process requests in real-time while leaving enough computational time
for the local search to improve the solution.

5.5 Impact of Pre-booking

One factor that has a large impact on the performance of DIS+LS compared to
DIS is the percentage of pre-booked requests. Figure 3 shows the average trip

312 M. Pouls et al.

request rejection rates by different percentages of pre-booked requests. Note that
the values are again averages of the two weekdays. The performance with DIS
deteriorates on some datasets (HH and CH) as the percentage of pre-booked
requests increases. We assume that the dispatching algorithm takes sub-par
decisions given the limited information when inserting a pre-booked request.
In contrast, with DIS+LS an increased fraction of pre-booked requests leads to
a decrease in rejection rate across all datasets. This is due to the fact that the
local search has more trip requests to work with and therefore the search space
is larger, providing more room for improvements.

Fig. 3. Average rejection rate by pre-booking probability.

5.6 Vehicle Utilization

As a last analysis, we take a look at the utilization of the vehicle fleet throughout
the day. Figure 4 shows the vehicle utilization throughout the day for a single
scenario (MANH, 50% pre-booking) compared between DIS and DIS+LS. It
illustrates the fraction of vehicles that are serving a route (active), repositioning
or idle. In addition, we show the number of total and rejected requests over time.

Fig. 4. Vehicle utilization over time.

Real-Time Dispatching with Local Search 313

In a similar manner, Fig. 5 shows the passenger occupation of the vehicle fleet,
i.e. the fraction of vehicles that have a certain number of passengers aboard. The
two figures clearly show that by using the local search we utilize the vehicle fleet
more efficiently and the number of rejected requests is reduced. At the same
time, the percentage of idle vehicles is increased and we have a larger fraction
of vehicles with 3 or 4 customers aboard.

Fig. 5. Passengers per vehicle over time.

6 Conclusions and Outlook

In this work, we presented a real-time dispatching algorithm for dynamic ride-
sharing enhanced by a local search phase. Our approach provides quick response
times for incoming trip requests as well as an improved solution quality through
the local search. We embed our algorithm into a simulation framework and
perform extensive computational evaluations on several real-world datasets. The
results show that we are able to reduce the rejection rates of trip requests by
an average of 1.62% points and at the same time reduce the vehicle travel times
and thereby operational costs. With a large fraction of pre-booked requests the
improvement regarding the rejection rate increases up to almost 10% points in
some datasets.

In the future, we would like to improve our algorithm by including more
complex local search operators and search strategies such as simulated annealing.
Moreover, we see potential for a more detailed study regarding the incorporation
of pre-booked requests into dynamic ride-sharing services. In use cases where a
significant portion of requests is pre-booked or we are working with longer pre-
booking times of several days, we could solve a static routing vehicle problem in
advance and use this solution as a starting point. We would also like to address
additional real-world requirements such as the consideration of traffic congestion
or the possibility of cancellations.

314 M. Pouls et al.

References

1. Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D.: On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad.
Sci. 114(3), 462–467 (2017). https://doi.org/10.1073/pnas.1611675114

2. Alonso-Mora, J., Wallar, A., Rus, D.: Predictive routing for autonomous mobility-
on-demand systems with ride-sharing. In: 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 3583–3590. IEEE, Vancouver
(September 2017). https://doi.org/10.1109/IROS.2017.8206203

3. Berbeglia, G., Cordeau, J.F., Laporte, G.: Dynamic pickup and delivery problems.
Eur. J. Oper. Res. 202(1), 8–15 (2010). https://doi.org/10.1016/j.ejor.2009.04.024

4. Chen, L., Gao, Y., Liu, Z., Xiao, X., Jensen, C.S., Zhu, Y.: PTrider: a price-and-
time-aware ridesharing system. Proc. VLDB Endow. 11(12), 1938–1941 (2018).
https://doi.org/10.14778/3229863.3236229

5. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann.
Oper. Res. 153(1), 29–46 (2007). https://doi.org/10.1007/s10479-007-0170-8

6. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. J. Exp.
Algorithmics 21(1), 1–49 (2016). https://doi.org/10.1145/2886843

7. Funke, B., Grünert, T., Irnich, S.: Local search for vehicle routing and scheduling
problems: review and conceptual integration. J. Heuristic 11(4), 267–306 (2005).
https://doi.org/10.1007/s10732-005-1997-2

8. Huang, Y., Bastani, F., Jin, R., Wang, X.S.: Large scale real-time ridesharing with
service guarantee on road networks. Proc. VLDB Endow. 7(14), 2017–2028 (2014).
https://doi.org/10.14778/2733085.2733106

9. Lowalekar, M., Varakantham, P., Jaillet, P.: ZAC: A zone path construction app-
roach for effective real-time ridesharing. In: Proceedings of the International Con-
ference on Automated Planning and Scheduling, vol. 29, no. 1, pp. 528–538 (2019)

10. Lowalekar, M., Varakantham, P., Jaillet, P.: Zone pAth Construction (ZAC) based
approaches for effective real-time ridesharing. J. Artif. Intell. Res. 70, 119–167
(2021). https://doi.org/10.1613/jair.1.11998

11. Ma, S., Zheng, Y., Wolfson, O.: T-share: a large-scale dynamic taxi ridesharing
service. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE),
Brisbane, QLD, pp. 410–421. IEEE(April 2013). https://doi.org/10.1109/ICDE.
2013.6544843

12. Ma, S., Zheng, Y., Wolfson, O.: Real-time city-scale taxi ridesharing. IEEE Trans.
Knowl. Data Eng. 27(7), 1782–1795 (2015). https://doi.org/10.1109/TKDE.2014.
2334313

13. Molenbruch, Y., Braekers, K., Caris, A.: Typology and literature review for dial-
a-ride problems. Ann. Oper. Res. 259(1–2), 295–325 (2017). https://doi.org/10.
1007/s10479-017-2525-0

14. Pouls, M., Meyer, A., Ahuja, N.: Idle vehicle repositioning for dynamic ride-sharing.
In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020. LNCS, vol. 12433, pp. 507–
521. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4 33

15. Riley, C., Legrain, A., Van Hentenryck, P.: Column generation for real-time ride-
sharing operations. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 472–487. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-19212-9 31

https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1109/IROS.2017.8206203
https://doi.org/10.1016/j.ejor.2009.04.024
https://doi.org/10.14778/3229863.3236229
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1145/2886843
https://doi.org/10.1007/s10732-005-1997-2
https://doi.org/10.14778/2733085.2733106
https://doi.org/10.1613/jair.1.11998
https://doi.org/10.1109/ICDE.2013.6544843
https://doi.org/10.1109/ICDE.2013.6544843
https://doi.org/10.1109/TKDE.2014.2334313
https://doi.org/10.1109/TKDE.2014.2334313
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/s10479-017-2525-0
https://doi.org/10.1007/978-3-030-59747-4_33
https://doi.org/10.1007/978-3-030-19212-9_31
https://doi.org/10.1007/978-3-030-19212-9_31

Real-Time Dispatching with Local Search 315

16. Shah, S., Lowalekar, M., Varakantham, P.: Neural approximate dynamic program-
ming for on-demand ride-pooling. Proc. AAAI Conf. Artif. Intell. 34(01), 507–515
(2020). https://doi.org/10.1609/aaai.v34i01.5388

17. Uber: Uberpool (2021). https://www.uber.com/us/en/ride/uberpool. Accessed 08
Jan 2021

https://doi.org/10.1609/aaai.v34i01.5388
https://www.uber.com/us/en/ride/uberpool

A Learning and Optimization Framework
for Collaborative Urban Delivery

Problems with Alliances

Jingfeng Yang(B) and Hoong Chuin Lau

School of Computing and Information Systems, Singapore Management University,
80 Stamford Road, Singapore 178902, Singapore

jfyang.2018@phdcs.smu.edu.sg, hclau@smu.edu.sg

Abstract. The emergence of e-Commerce imposes a tremendous strain
on urban logistics which in turn raises concerns on environmental sustain-
ability if not performed efficiently. While large logistics service providers
(LSPs) can perform fulfillment sustainably as they operate extensive
logistic networks, last-mile logistics are typically performed by small
LSPs who need to form alliances to reduce delivery costs and improve
efficiency and compete with large players. In this paper, we consider a
multi-alliance multi-depot pickup and delivery problem with time win-
dows (MAD-PDPTW) and formulate it as a mixed-integer programming
(MIP) model. To cope with large-scale problem instances, we propose
a two-stage approach of deciding how LSP requests are distributed to
alliances, followed by vehicle routing within each alliance. For the for-
mer, we propose machine learning models to learn the values of delivery
costs from past delivery data, which serve as a surrogate for deciding how
requests are assigned. For the latter, we propose a tabu search heuris-
tic. Experimental results on a standard dataset show that our proposed
learning-based optimization framework is efficient and effective in out-
performing the direct use of tabu search in most instances. Using our
approach, we demonstrate that substantial savings in costs and hence
improvement in sustainability can be achieved when these LSPs form
alliances and requests are optimally assigned to these alliances.

Keywords: Alliances · Collaboration · Machine learning ·
Pickup-and-delivery · Tabu search

1 Introduction

With rapid urbanization, urban delivery systems need to be optimized for capac-
ity and efficiency. High delivery demands not only bring challenges to large LSPs
such as Amazon and Cainiao, but also create more intense competition among
small and medium-sized LSPs. Due to the high uncertainty of demands and
locations in daily delivery, LSPs face operational issues from one end of the
spectrum (idle capacity) to the other hand (vehicle and manpower shortage).

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 316–331, 2021.
https://doi.org/10.1007/978-3-030-87672-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_21

A Framework for Collaborative Delivery Problems with Alliance 317

To overcome these issues, one approach is to establish collaboration with fellow
logistics players. As described by Savelsbergh and Woensel [20], collaboration or
cooperation is often regarded as a useful path to consolidating freight volumes,
leading to a higher and efficient utilization of resources. An alliance by two or
more companies offers opportunities for sharing of information and resources to
jointly handle delivery tasks. Collaboration in city logistics systems has been
widely studied during past few years.

In this paper, we study the pickup and delivery routing problem in a collab-
orative setting. In particular, we consider the problem that frequently occurs in
urban delivery: LSPs perform their daily operations to pickup goods from one
location and deliver to another location, and each request has a delivery time
window. In an uncooperative setting, each LSP make route plans with their
respective requests. For collaborative routing, we assume there exists multiple
alliances in the market, and LSPs in the same alliance can share requests and
execute the joint routing decision. For simplicity, we assume LSPs in a given
alliance will share the same depot to locate their vehicles. Furthermore, an LSP
may participate in more than one alliances (perhaps to service different types of
goods). Note that this paper is not concerned with the coalition structure gen-
eration problem, which focuses on partitioning the set of agents into mutually
disjoint coalitions so that the overall total reward is maximized in the long haul.
Rather, we assume that the structure of the alliances (composition of LSPs in
each alliance) is given as input parameters for our model, and deal with the
operational problem of efficient deliveries in an environment where an LSP may
belong to multiple alliances.

From the sustainability perspective, it would be ideal to consider the set-
ting where the LSPs are co-operative, and the problem of how planning can
be performed on an existing alliance structure that maximizes the system wide
objective of total travel cost. We formulate this problem as a multi-alliance multi-
depot pickup and delivery problem with time windows (or MAD-PDPTW).

The main contributions of this work are summarized as follows: (1) We pro-
pose a MIP model to formulate the MAD-PDPTW; (2) We develop a tabu search
based heuristic method to solve the problem on large instances; (3) To solve the
problem more efficiently, we decompose MAD-PDPTW to a two-stage problem,
which first learns the delivery cost from data and then optimizes the request
reassignment and vehicle routing; (4) We demonstrate the significance of the
proposed learning and optimization framework (achieve lower delivery cost with
less computational time) and obtain managerial insights for LSPs.

2 Related Work

This section provides a summary of existing studies which focus on collabora-
tion in logistics and distance approximation in vehicle routing problems (VRP).
Collaboration in logistics industry has been a prevalent topic in urban logistics
studies which normally can be achieved in two ways: vertically and horizontally
[20]. In this paper, we focus on the horizontal collaboration which involves logis-
tic service providers (LSPs) at the same level in supply chains. A comprehensive

318 J. Yang and H. C. Lau

description about the opportunities and impediments of horizontal collabora-
tive logistic service was conducted by [3]. They did a survey include 1537 LSPs
in Belgium, and the results shows that most of LSPs believe collaboration will
increase their profits and improve service quality.

Horizontal Collaboration: Various studies for horizontal collaboration in
logistic systems have been published in last decades. Readers can refer to [7],
[22] for more details. Two main themes can be further summarized: (1) develop
optimization models and mechanisms for collaborative network planning and
design problems to help LSPs increase profits or decrease costs; and (2) propose
cooperative and non-cooperative game theory methods for cost/gain sharing to
establish and keep better collaborations. This study will focuses on the optimiza-
tion models for collaborative multi-LSP delivery problem, the literature review
is conducted accordingly. Berger et al. [1] proposed a decentralized control and
auction exchange mechanisms to maximize total profits through collaboration
among individuals carriers. Similar research has been conducted by Lai et al. [12],
which focus on a centralized control with iterative auction to minimize empty
traveling miles. Dahl and Derigs [4] studied a pickup and delivery vehicle routing
problem with time windows (PDVRPTW) to minimize total delivery cost. Li et
al. [14] also studied the pickup and delivery problem with requests exchange to
maximize total profits. [19] solved a multi-depot vehicle routing problem to min-
imize the total distance traveled with a local search method. Unlike exchange
requests or vehicle sharing, [6] introduced a new vehicle routing problem that
customers can be served by more than one carrier. It aims to minimize overall
operational cost by such collaboration. For more various vehicle routing prob-
lem in a collaborative setting, readers can refer to the survey investigated by
Gansterer and Hartl [9].

Approximations of Routes: The VRP has been well studied from the last
decade. Many exact and heuristic algorithms have been investigated to solve
it optimally or in a short computational time. Different from the optimization
algorithms which aims to get the optimal or good solutions, the continuum
approximation (CA) models are used to approximate the travel distance of routes
without solve the complex routing problem. Those CA models can provide faster
and good approximation of route distance, which are developed and applied for
many applications, such as terminal design problem [18], supply chain distribu-
tion network design [15] and collaboration mechanisms design [8]. While, in the
face of large-scale complex problems, most CA approaches hold a low accuracy
performance. Recently, few studies [16,17] use machine learning approaches to
direct estimate the total travel distance of routes. In this paper, we develop a
machine learning approach to estimate the delivery cost for pickup and delivery
problem with time windows (PDPTW). And with the help of the learned cost,
we can further integrate it in requests assignment procedure, and decide which
alliance the order should be allocate to.

As discussed above, most studies have devoted to optimize collaborative plan-
ning and operation problems from a perspective of entire coalition, whereas
all LSPs take part in a single coalition. Zhang et al. [23] investigated the

A Framework for Collaborative Delivery Problems with Alliance 319

less-than-truck collaboration decision making problem for the e-commerce logis-
tic network, which objective is to maximize the total profit of the entire alliance.
To our best of knowledge, Guajardo et al. [11] is the first work that studied the
coalition configuration problem which allows company can collaborate in more
than one coalition (we prefer to use the term ‘alliance’ in this paper) in collab-
orative transport. They developed optimization model to help finding the best
coalition configuration. Hence, research gaps are identified from the review of
extant literature. In our paper, alliances have been established as inputs in our
model, and LSPs in one alliance can share requests and do centralized planning
for urban delivery services. More specifically, we focus on optimizing collabora-
tive urban delivery service, with some LSPs can collaborate in more than one
alliance.

3 Problem Formulation

In this section, we present our collaborative urban logistic delivery problem in the
context of multiple LSPs and multiple alliances. Since each LSP may specialize
in fulfilling different types of goods (e.g. groceries and electronics) which may
or may not be loaded in the same vehicle, and each may have their own trusted
partners, it is plausible to have multiple alliances with overlapping participants.

Fig. 1. Multiple alliances with overlapping LSPs

Figure 1 gives an example comprising 8 LSPs and 3 alliances. Each node is
defined as a LSP, and if two nodes are connected with an edge, it represents
those two LSPs that can share requests. So the alliance is defined as a complete
sub-graph, in which a unique edge connects every pair of distinct vertices. Here,
we have alliances [2, 3, 4], [1, 2, 5, 6] and [1, 7, 8] in this example. This study aims
to assess the potential benefits of collaborative routing among LSPs by sharing
requests and joint planning, which means a centralized platform will decide the
optimal assignment of requests among each alliance with the constraint that
requests cannot be shared between different alliances.

Note that if this problem were to be treated as a whole, one will need to simul-
taneously decide how LSPs’ own requests are distributed to different alliances,
and how routing is performed on the assigned requests within each alliance. It
is worth noting that even for a small-scale problem instance, a straightforward
meta-heuristic approach such as Tabu Search may not be computationally effi-
cient and may not provide an effective solution, as our experiment would show.

320 J. Yang and H. C. Lau

Fig. 2. A two-stage learning and optimization framework to solve the MAD-PDPTW

Before presenting our mathematical programming model, we first introduce
notations in Table 1.

Table 1. Notations

Notation Description

G A complete direct graph

N Set of all LSPs

A Set of all alliances as well as depots

K Set of vehicles

R Set of all requests, each request r has a pickup node and delivery node

P Set of pickup nodes

D Set of delivery nodes

V Set of all nodes in graph G

Ka Set of vehicles only belong to alliance a

da Depot node for alliance a

[ei, li] Time windows for node i, earliest pickup time and latest delivery time

si Service time at location i

qi Weight of goods to pickup or delivery at node i

cij Travel cost between node i and node j

tik Time node i served by vehicle k

wik Weight of vehicle k after visit node i

Q Vehicle capacity

yijk Binary variable, 1 if the vehicle k visited node j directly after visited node i, 0 otherwise

A Framework for Collaborative Delivery Problems with Alliance 321

Given the above notations, we formulate the multi-alliance multi-depot vehi-
cle routing problem with pickup and delivery (MAD-PDPTW) as follows:

minimize
∑

i∈V

∑

j∈V

∑

k∈K

cijyijk (1)

subject to
∑

i∈V

∑

k∈K

yijk = 1 ∀j ∈ P ∪ D (2)

∑

i∈V

yijk −
∑

i∈V

yjik = 0 ∀j ∈ P ∪ D,∀k ∈ K (3)

∑

i∈V

yidak =
∑

j∈P∪D

ydajk ≤ 1 ∀a ∈ A,∀k ∈ Ka (4)

∑

j∈P∪D

yijk −
∑

j∈P∪D

y(i+|R|)jk = 0 ∀i ∈ R,∀k ∈ K (5)

tik + si + cij − M(1 − yijk) ≤ tjk ∀i, j ∈ P ∪ D (6)
ei ≤ tik ≤ li ∀i ∈ P ∪ D,∀k ∈ K (7)
tik ≤ t(i+|R|)k ∀i ∈ P (8)
tak = 0 ∀a ∈ A,∀k ∈ K (9)
wjk ≤ wik + qj + M(1 − yijk) ∀i, j ∈ V,∀k ∈ K (10)
wjk ≥ wik + qj − M(1 − yijk) ∀i, j ∈ V,∀k ∈ K (11)
wik ≤ Q ∀i ∈ V,∀k ∈ K (12)
yijk = 0 ∀i /∈ Ka,∀j /∈ Ka,∀k ∈ Ka (13)

We divide constraints into four groups. The first group of constraints deals
with the in and out flow between each pickup and delivery node. Constraint (2)
guarantees that each pickup or delivery node will be visited exactly once. Con-
straint (3) ensures that each pickup or delivery node, it must be served by the
same vehicle k. Constraint (4) imposes constraints on each depot and ensures
that each vehicle k belongs to depot Kl will start and back to depot d with at
most once. Constraint (5) guarantees the pickup node i and delivery node i+ |R|
belonging to one request will be served within the same tour.

The second group of constraints deals with visiting precedence of pickup
nodes, delivery nodes and time windows. And constraint (6) is the Miller-Tucker-
Zemlin (MTZ) sub-tour elimination constraint. If yijk = 1, then we have tik+si+
cij ≤ tjk, otherwise we have a constraint with right hand side (RHS) is a enough
big positive value. Constraint (7) is time windows constraints, which guarantee
the delivery time for each request must in the time window. Constraint (8) is
precedence constraint that ensure each request is serviced at its pick up node
first before the delivery. Constraint (9) denotes the arriving time for each vehicle
at the depots equals to 0.

The third group of constraints are the capacity constraints. Constraints (10)
and (11) calculate the vehicle weight after visiting each node. In addition, we
have qi = −qi+r for i ∈ Rp. And constraint (12) means for each vehicle k after
serve node i, the weight of it cannot exceed the capacity.

322 J. Yang and H. C. Lau

The final constraint is the request assignment constraint. It ensures that
vehicles belonging to one alliance cannot deliver a request belonging to other
alliance. In other words, each alliance is responsible for its own requests.

4 Two-Stage Learning and Optimization Framework

The above section introduces a MIP model to determine the optimal request
assignment as well as routing of multiple alliances. In the MIP model, the deci-
sion variable yijk not only decide the delivery sequence from node i to node j, but
also make decision for LSPs participating in multiple alliances on request assign-
ment (choose the alliance to share requests). However, the underlying problem
is NP-hard, which is computationally intractable to cope with larger instances.
In this section, we propose a learning and optimization framework consisting
of two stages from requests assignment to vehicle routing. Specifically, the first
stage makes decisions for LSPs participating in multiple alliances, which alliance
each request should be assigned to (Sect. 4.1). The second stage adopts a tabu
search based heuristic algorithm to solve the PDPTW for each alliance with the
assigned requests (Sect. 4.2). The whole framework is depicted in Fig. 2.

4.1 Delivery Cost Prediction and Request Assignment

In this subsection, we first discuss the prediction model for the delivery cost for
each alliance. Second, we use the estimated delivery cost as input parameters
for requests assignment.

Cost Prediction: Previous research has proposed approximate analytic for-
mulas for TSP and VRP under various application scenarios as described in
the literature review. However, those analytic based methods always have poor
performance on larger problems or complex real-world constraints (e.g., capac-
ity vehicle routing problem with time windows). Here, we use machine learning
models to predict the delivery cost for PDPTW (in this paper, we take the deliv-
ery cost as the total travel distance). We first generate the promising features
for the total travel distance. The general classes of predictors are based on the
number of locations, visiting area, the distance between nodes, node dispersion,
time windows, and the number of routes. Table 2 lists all the features included
in our learning model, and there is a total of 19 features used in our prediction
model.

After extracting the features of the PDPTW, the second step is to get the
actual solutions to the problem instances as labeled data. Since PDPTW is an
NP-hard problem, it would be computationally challenging to generate a large
number of exact solutions to be used as label data. In this paper, we find a
proxy for the best solution by applying our tabu search algorithm (presented in
the next section) instead. Experimental results show that our algorithm comes
within a 5% gap on average compared with the best known solutions, and this
gives the assurance that the labeled data generated by this approach is accurate
and precise. The next step is to select the appropriate machine learning model

A Framework for Collaborative Delivery Problems with Alliance 323

Table 2. Features for total travel distance prediction

Features Definitions

f1 Number of locations need to be visited

f2, f3 Min/max distance between customers and depots

f4, f5 Min/max x distance between customers and depots

f6, f7 Min/max y distance between customers and depots

f8 Average distance between customers and depots

f9 Average x distance between customers and depots

f10 Average y distance between customers and depots

f11 Standard deviation of distance between customers (and depots)

f12 Area of the smallest rectangle covering customer locations

f13 Area of the smallest rectangle covering customer and depot locations

f14 Sum of the length of time windows

f15 Standard deviation of the length of time windows

f16 Sum of the length of overlap time windows

f17 Standard deviation of the length of overlap time windows

f18 Total demand/vehicle capacity ratio

f19 Vehicle capacity/average demand ratio

compatible with the request assignment optimization. We tried a wide range of
machine learning regression models in this work, including linear models, such as
ordinary least square, LASSO and ridge regression, and nonlinear models, e.g.,
decision trees and random forest. In summary, we want to identify prediction
models that can achieve both good performance and interpretability. In the
numerical experiments of Sect. 5, we show the selection details considering the
above criteria.

Request Assignment: Note that in MAD-PDPTW, each request can only be
assigned to one alliance. Since requests belong to LSPs that may participate in
more than one alliances (e.g., LSP 1 in Fig. 1), we need to assign each request
to an alliance. Assume there are I = {1, 2, . . . , |I|} requests to be assigned to
the set of alliances A = {1, 2, . . . , |A|}. Assume each request must be served
and there is no limit on how many requests each alliance can have. The request
assignment problem is to find a partition of the requests with the minimum total
cost, which can be modelled as the set partitioning problem. Let the subset j of
locations assigned to an alliance a ∈ A be associated with an estimated delivery
cost cj , whose value can be predicted by our machine learning models. Since
this predicted cost may contain errors, we handle the prediction uncertainly via
adding an error term ẽ which represents the prediction error. Similar to the
method use in [16], we use the empirical distribution of ẽ to generate scenarios
for our sample average approximation (SAA) scheme.

324 J. Yang and H. C. Lau

minimize Eξ

[∑

j∈Z

(cj + ẽj(ξ))vj

]
(14)

subject to
∑

j∈Z

δijvj = 1 ∀i ∈ I (15)

∑

j∈J

vj = |A| (16)

vj ∈
{
0, 1

}
(17)

Z is the set of all possible partition of requests. Decision variable vj equals
to 1 if subset j is selected. δij equals to 1 if request i belongs to subset j,
and 0 otherwise. Here, we can convert the objective function into a mean value
formulation 1

|ξ| ·
∑

ξ

∑
j∈Z(cj + ẽj(ξ))vj . As stated in [5], the expected value

(solution of the mean value problem) can provide a robust solution to original
stochastic problem. Constraints (15) ensure that every request is assigned to
an alliance and constraint (16) ensures the number of selected subsets equal to
the number of alliances |A|. The problem involves an exponential number of
variables (columns) since the number of possible subsets grows exponentially
in the number of requests waiting for assignment. And predict the cost cj of all
possible partition of request is also very time-consuming. Instead of enumerating
all the possible partitions, we provide a simply greedy heuristic approach to
solve the request assignment iteratively. We randomly rank requests sequence
of unassigned requests, and assign one request to one alliance at each iteration.
Here, cia denotes the cost for request i assigned to alliance a, which equals
to the predict expected cost: c̃j = 1

|ξ| ·
∑

ξ

∑
j∈Z(cj + ẽj(ξ))vj . Predicted by

our machine learning models introduced in cost prediction. In this case, the
problem becomes a simple facility location problem and we can simply assign
each request i to the alliance a with lowest cost cia. Then the total cost equals
to

∑
i∈I,j∈J cia.

4.2 Tabu Search Algorithm

In this subsection, we first develop an efficient tabu search algorithm to solve
the PDPTW for each alliance. Furthermore, we make minor adjustments by
including constraint (13) into the tabu search algorithm in Step 3 when we do
insertion and removal operations. It makes sure that the candidate requests can
only be inserted or removed to routes (denoted by k) that belong to the same
alliances. We can use the adjusted tabu search algorithm to directly solve the
MAD-PDPTW as a baseline method in our numerical experiments in Sect. 5.

Tabu search [10] is one of the well-known meta-heuristics. It takes a potential
solution and search its neighborhood iteratively to find improved solutions. It
has been applied successfully to various routing problems [2,21]. In what fol-
lows, we introduce the full framework of our algorithm, including initial solution
construction and the tabu search algorithm. The procedure to construct an ini-
tial solution s0 is described here. We construct the initial solution s0 where not
all the constraints defined in PDPTW need be satisfied. Given requests set R,

A Framework for Collaborative Delivery Problems with Alliance 325

pickup node set P , delivery node set D, and available vehicles K as inputs, for
each vehicle k ∈ K, we iteratively select request c from the pickup set P , and
check whether it satisfy the earliest pickup time constraint ei ≤ ec ≤ ei+1. If
yes, we add the both the pickup node and delivery node of requests c to vehicle
k, otherwise, we put it in a new vehicle k + 1. When there are no requests in set
P , we end up with the initial solution s0.

Algorithm 1. Tabu search algorithm
Input: s0, best solution s∗ = s0, tabu list L = ∅
Output: Best solution s∗

1: Let current solution sc = s0
2: while i ≤ Imax do
3: Do insertion and removal operation
4: Get the neighborhood solution Ns of sc
5: for si ∈ Ns do
6: Calculate fitness function f(si)
7: if si /∈ L and f(si) ≤ f(sc) then
8: sc = s0
9: end if

10: end for
11: if f(sc) ≤ f(s∗) then
12: s∗ = sc
13: end if
14: if Size of L ≥ Lmin then
15: Update L
16: end if
17: end while

Based on the initial solution found, the tabu search based heuristic algo-
rithm is described in Algorithm1. In our paper, the termination condition is
that the maximum number of iterations Imax is reached. And the fitness func-
tion is described as f(s) = C(s) + α · Q(s) + β · T (s), where C(s) is the value of
objective function (1), Q(s) denotes the total amount of weights that exceed the
vehicle capacity and T (s) represents the total unit of times that violate the time
windows constraint. As can be seen, the fitness function consists of two parts: the
original objective function and the penalty cost. Parameters α and β are both
positive penalty terms that make the solution s become more likely to meet the
capacity and time windows constraints, respectively. To achieve this, we intro-
duce a new parameter θ with small value (e.g., 0.1) as step size to adjust the
value of α and β. If either Q(s) or T (s) not equals to 0, we multiply it by (1+θ)
in the next iteration. Another important part is the tabu list, which represents a
set of solutions that have been visited in the recent past. In this paper, we define
the maximum length of tabu list is Lmax and use it to memorize the insertion
operations when we insert the pickup node i and delivery node i + r to route k.

326 J. Yang and H. C. Lau

In order to solve the MAD-PDPTW, we only need to add constraint (12) before
doing insert and remove operation, to ensure that nodes i and i + r can only be
added to or removed from route k ∈ Ka that belongs to the same alliance.

5 Numerical Experiments

This section presents experimental setup for problem instance generation, deliv-
ery cost prediction and compares our learning and optimization framework
against tabu search in solving the MAD-PDPTW. Computational experiments
are conducted to validate the developed framework’s performance for multiple
alliances under different kinds of settings. All computational experiments are
conducted on a desktop computer with Intel Core i5 2.3 GHz with 16 GB RAM.
The tabu search algorithm are implemented in Java, while the machine learning
models are coded in Python 3.7.

5.1 Problem Instance Generation

The dataset proposed by [13] is a popular standard dataset in the study of
PDPTW, and is used to generate sampled PDPTW instances in our paper.
We need to construct two types of instances, which are synthesized from the
PDPTW benchmark dataset, with the first one used as a training and testing
dataset for delivery cost prediction, while the second one is prepared for running
MAD-PDPTW. For the first type of instances, we randomly sample with the
total number of requests of each instance are in the range of 100 to 200. The
labeled data of each PDPTW instance is computed by the tabu search algorithm
described in Sect. 4. We obtain 500 instances in total, of which 400 are randomly
selected as the training set, and the remaining 100 serve as the test set. To
set up the multiple alliance structures, we construct a second type instance
by sampling from the original data and randomly reallocating the requests to
LSPs and alliances. Compared to the first type of instances, the second type

Table 3. Instances generated from the PDPTW benchmark dataset

Notations Description

x The x coordinate of the pickup/delivery locations

y The y coordinate of the pickup/delivery locations

qi Demand of node i

ei Earliest pickup/delivery time of node i

li Latest pickup/delivery time of node i

si Service time of node i

pi Pickup (index to sibling) of node i

di Delivery (index to sibling) of node i

Li LSP index of node i

A Framework for Collaborative Delivery Problems with Alliance 327

has one more column with request ownership information. Table 3 gives a brief
description of the second type of sampled instances. Table 4 and Fig. 3 list the
detailed parameters and shows the alliance structures for all second type test
instances.

Fig. 3. Alliances structure setting for the case study

Table 4. Detail parameters setting for all test instances

No. Structure Alliance LSPs Requests Size Request configuration

1 1 2 3 9 Small [3, 3, 3]

2 1 2 3 18 Small [6, 6, 6]

3 1 2 3 20 Small [7, 7, 6]

4 1 2 3 24 Small [8, 8, 8]

5 3 3 6 30 Small [5, 5, 5, 5, 5, 5]

6 1 2 3 65 Medium [30, 10, 25]

7 1 2 3 65 Medium [20, 15, 30]

8 1 2 3 65 Medium [25, 5, 35]

9 2 2 6 60 Medium [10, 10, 10, 10, 10, 10]

10 3 3 6 105 Large [30, 10, 20, 10, 20, 15]

11 3 3 6 105 Large [40, 5, 25, 10, 15, 10]

12 3 3 6 120 Large [30, 15, 30, 20, 15, 10]

13 4 4 8 135 Large [20, 10, 5, 30, 15, 10, 15, 30]

14 4 4 8 135 Large [15, 15, 5, 20, 25, 15, 20, 20]

15 4 4 8 135 Large [30, 5, 15, 25, 10, 20, 10, 20]

16 5 5 10 150 Large [20, 10, 20, 5, 15, 10, 15, 15, 20, 20]

17 5 5 10 180 Large [30, 15, 25, 20, 15, 30, 10, 10, 10, 15]

18 5 5 10 185 Large [25, 5, 25, 30, 10, 20, 15, 20, 10, 25]

328 J. Yang and H. C. Lau

Table 5. Performance evaluation of the machine learning models

Model 5-CV R2 5-CV MAPE Test R2 Test MAPE

LR 0.969 0.067 0.904 0.140

LASSO 0.966 0.072 0.972 0.066

Ridge 0.967 0.071 0.953 0.095

Elastic Net 0.947 0.101 0.939 0.099

Decision Tree 0.937 0.089 0.961 0.085

Random Forest 0.965 0.068 0.966 0.069

5.2 Prediction Model Selection

We test 5 different machine learning models: linear regression, LASSO regres-
sion, ridge regression, elastic net, decision trees, and random forest. To achieve
the best performance, we implement 5-fold cross-validation (5-CV) to select the
best hyper-parameters (e.g., coefficient value for the regulation term, maximum
depth of the tree) for all models. All the training and validation procedures are
implemented in Python 3.7. Table 5 summarizes the average cross-validation R2

value and the mean absolute percentage value (MAPE). Let ls denotes the best
solutions we get by tabu search, l̂s denotes the predicted delivery cost for a sam-
ple s in each fold S of the training set. The MAPE is defined as: 1

|S|
∑

t∈S
|ls−l̂s|

ls
.

Based on the evaluation results, all the above machine learning models
achieve reasonably good performance on delivery cost prediction. In particu-
lar, the LASSO regression model has the lowest test error and highest R2 score.
Besides, LASSO estimates sparse coefficients that reduce the number of features
in the model and maintain good interpretability. Hence, we decide to use LASSO
as the prediction model in our framework.

5.3 Performance Comparison

This subsection, we compare the results on delivery costs obtained by (1) self-
routing by LSPs without collaboration, (2) collaborative routing with alliances
solving by tabu search heuristic alone, (3) collaborative routing with alliances
solving by proposed learning-based optimization framework and (4) collaborative
routing with fully collaboration, which means each LSP can cooperate with each
other and exchange requests from both the computational and management
perspectives. And experiments results of all instances are shown in Table 6 (small
instances) and Table 7 (medium and large instances).

We find our Tabu search method, learning method with and without error
term estimation for small size instances can obtain solutions with small optimally
gap compared with Gurobi. As we state previously in Sect. 4.1, errors will always
exist in cost prediction. Here, to better evaluate the benefits of our learning-
based approach, we also investigate the influence of error cascade. In Table 6,
the last column shows the results of the learning method which incorporates the

A Framework for Collaborative Delivery Problems with Alliance 329

errors in request assignment. This indicates that the learning method considering
the prediction error is more accurate.

Table 6. Experimental results for small size test instances

No. Gurobi Tabu Learning Learning + error

1 996 1026 996 996

2 1609 1609 1642 1621

3 1709 1715 1724 1715

4 1934 2035 2012 1987

5 2838 2972 2851 2851

For medium and large size instances, Gurobi fails to give feasible solutions
in 3600 s, while both our tabu search and learning-based framework can find
good solutions in less than 1 min. Columns I, F and L denote the delivery costs
obtained by self-routing without collaboration, collaborative routing with fully
collaboration (represents the upper bound of the cost savings via collaboration)
and collaborative routing with alliances solving by our learning-based approach,
respectively. Columns Amin, Amax denotes the minimal and maximal delivery
cost obtained for collaborative routing with alliances after run the tabu search
alone 5 times. Columns S1 is the cost savings in percentage achieved by collab-
orative routing with alliance compare to self-routing.

Table 7. Experimental results for medium and large size test instances

No. I F L Amin Amax S1 (%) Smin (%) Smax (%) T1 (s) T2 (s)

6 5699 4165 4660 4915 5096 18.23 5.18 8.50 20 50

7 5263 3958 4706 4587 4784 10.58 −2.59 1.63 21 51

8 5067 3855 4804 4747 4887 5.19 −0.64 1.67 19 47

9 5659 3705 4550 4678 4785 18.45 2.81 5.16 18 49

10 8990 5685 7337 7805 7935 18.39 5.99 7.17 43 57

11 8499 5711 7342 7613 7763 13.61 3.79 5.65 40 62

12 12857 8955 11058 11286 11886 13.99 2.02 6.96 59 94

13 14978 9472 12856 13434 13628 14.17 4.30 5.66 65 93

14 14969 10187 12711 13205 13676 15.08 3.74 7.06 64 102

15 14416 10536 12302 13313 13700 14.66 7.59 10.20 55 104

16 17060 10572 14005 14986 15241 17.91 6.55 8.11 81 134

17 21029 11375 16802 17512 20297 20.10 4.05 17.22 106 226

18 19850 13645 16550 17166 17576 16.62 3.58 5.83 87 223

As shown in the table, we can find that both collaboration with alliance
and fully collaboration always lead to fewer delivery costs compares to

330 J. Yang and H. C. Lau

self-routing. Column Smin and Smax are the minimum and maximum savings
that the learning framework can achieve compare to the direct use heuristic
method (tabu search) alone. We find that for the small size of instances (No. 1
to No. 5), our learning and optimization framework can obtain solutions as good
as tabu search. While for moderate or larger test instances with denser alliance
structure graph (No. 6 to No. 18), our learning framework is about 2% to 10%
better than use heuristic method (tabu search) alone, and it can achieve up to
17% cost savings. We also compare the running times of our proposed learning
and optimization framework and directly using heuristic method (tabu search),
as shown in column T1 and T2. It shows that the our new approach needs less
computing resources compare to the heuristic method (tabu search), especially
in large scale cases.

6 Conclusion

This paper attempted to address an emerging concept in a collaborative urban
delivery problem involving multiple alliance structures. Compared to individ-
uals performing optimal planning by LSPs themselves, our experiments show
that centralized collaborative routing can potentially reduce the total operat-
ing cost by about 20%. Compared to centralized collaborative routing with the
direct use of a heuristic algorithm, our experiments show that our learning-based
optimization approach can reduce the total operating cost up to 17% with the
less computational time required. Furthermore, the learning-based approach is a
framework so methodologically, which means we can replace tabu search with any
other heuristic methods to improve the results. We observe that (1) more LSPs
joining alliances generally produces more cost savings; (2) the alliance structure
has a significant impact: the denser the alliance structure is, the more substan-
tial savings we can achieve, which suggests that overlapping alliance structure
allows us to perform logistics more sustainably. This saving can be translated into
profit-sharing schemes among participating LSPs, thereby incentivizing them to
join such an alliance structure. Profit sharing mechanisms are another topic wor-
thy of future works which fall outside the scope of this paper. In the future, we
also aims to provide a robust optimization model to handle the errors for cost
prediction in the first stage.

References

1. Berger, S., Bierwirth, C.: Solutions to the request reassignment problem in collabo-
rative carrier networks. Transp. Res. Part E Logistics Transp. Rev. 46(5), 627–638
(2010)

2. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001)

3. Cruijssen, F., Cools, M., Dullaert, W.: Horizontal cooperation in logistics: opportu-
nities and impediments. Transp. Res. Part E Logistics Transp. Rev. 43(2), 129–142
(2007)

A Framework for Collaborative Delivery Problems with Alliance 331

4. Dahl, S., Derigs, U.: Cooperative planning in express carrier networks–an empirical
study on the effectiveness of a real-time decision support system. Decis. Support
Syst. 51(3), 620–626 (2011)

5. Delage, E., Arroyo, S., Ye, Y.: The value of stochastic modeling in two-stage
stochastic programs with cost uncertainty. Oper. Res. 62(6), 1377–1393 (2014)

6. Fernández, E., Roca-Riu, M., Speranza, M.G.: The shared customer collaboration
vehicle routing problem. Eur. J. Oper. Res. 265(3), 1078–1093 (2018)

7. Ferrell, W., Ellis, K., Kaminsky, P., Rainwater, C.: Horizontal collaboration: oppor-
tunities for improved logistics planning. Int. J. Prod. Res. 58(14), 4267–4284 (2020)

8. Gansterer, M., Hartl, R.F.: Request evaluation strategies for carriers in auction-
based collaborations. OR Spectrum 38(1), 3–23 (2015). https://doi.org/10.1007/
s00291-015-0411-1

9. Gansterer, M., Hartl, R.F.: Collaborative vehicle routing: a survey. Eur. J. Oper.
Res. 268(1), 1–12 (2018)

10. Glover, F., Laguna, M.: Tabu search. In: Handbook of Combinatorial Optimization,
pp. 2093–2229. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4613-
0303-9 33

11. Guajardo, M., Rönnqvist, M., Flisberg, P., Frisk, M.: Collaborative transportation
with overlapping coalitions. Eur. J. Oper. Res. 271(1), 238–249 (2018)

12. Lai, M., Cai, X., Hu, Q.: An iterative auction for carrier collaboration in truckload
pickup and delivery. Transp. Res. Part E Logistics Transp. Rev. 107, 60–80 (2017)

13. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time
windows. Int. J. Artif. Intell. Tools 12(02), 173–186 (2003)

14. Li, J., Rong, G., Feng, Y.: Request selection and exchange approach for carrier
collaboration based on auction of a single request. Transp. Res. Part E Logistics
Transp. Rev. 84, 23–39 (2015)

15. Lim, M.K., Mak, H.Y., Shen, Z.J.M.: Agility and proximity considerations in sup-
ply chain design. Manage. Sci. 63(4), 1026–1041 (2017)

16. Liu, S., He, L., Max Shen, Z.J.: On-time last-mile delivery: order assignment with
travel-time predictors. Manage. Sci. 67, 3985–4642 (2020)

17. Nicola, D., Vetschera, R., Dragomir, A.: Total distance approximations for routing
solutions. Comput. Oper. Res. 102, 67–74 (2019)

18. Ouyang, Y., Daganzo, C.F.: Discretization and validation of the continuum approx-
imation scheme for terminal system design. Transp. Sci. 40(1), 89–98 (2006)

19. Pérez-Bernabeu, E., Juan, A.A., Faulin, J., Barrios, B.B.: Horizontal cooperation
in road transportation: a case illustrating savings in distances and greenhouse gas
emissions. Int. Trans. Oper. Res. 22(3), 585–606 (2015)

20. Savelsbergh, M., Van Woensel, T.: 50th anniversary invited article–city logistics:
challenges and opportunities. Transp. Sci. 50(2), 579–590 (2016)

21. Taillard, É., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.Y.: A tabu search
heuristic for the vehicle routing problem with soft time windows. Transp. Sci.
31(2), 170–186 (1997)

22. Verdonck, L., Caris, A., Ramaekers, K., Janssens, G.K.: Collaborative logistics
from the perspective of road transportation companies. Transp. Rev. 33(6), 700–
719 (2013)

23. Zhang, M., Pratap, S., Huang, G.Q., Zhao, Z.: Optimal collaborative transporta-
tion service trading in b2b e-commerce logistics. Int. J. Prod. Res. 55(18), 5485–
5501 (2017)

https://doi.org/10.1007/s00291-015-0411-1
https://doi.org/10.1007/s00291-015-0411-1
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/978-1-4613-0303-9_33

Analysis of Schedules for Rural First
and Last Mile Microtransit Services

Christian Truden1(B) , Mario Ruthmair2 , and Martin J. Kollingbaum1

1 Lakeside Labs GmbH, Lakeside 04b, 9020 Klagenfurt, Austria
{truden,kollingbaum}@lakeside-labs.at

2 Department of Mathematics, Alpen-Adria-Universität Klagenfurt,
Universitätsstraße 65-67, 9020 Klagenfurt, Austria

mario.ruthmair@aau.at

Abstract. Low and infrequent demand in rural areas poses a problem
for public transport providers to run cost-effective services and individual
car use is usually the main means of transportation. We investigate how
microtransit services can be integrated with existing public transport
solutions (bus, train) as a flexible shared mobility alternative in rural
areas and how to make them attractive alternatives to individual car
use. We combine large neighborhood search with agent-based modeling
and simulation to validate generated schedules for a microtransit service
in terms of vulnerability to tardiness in passenger behavior or service
provision. This includes the study of how disturbances, such as delays
in service provision or late arrivals of passengers affect the stability of
a transport schedule concerning a reliable timely delivery to transfer
stops. We explore how simulation can be utilized as a means to fine-tune
provider policies, e.g., how long vehicles may wait for late passengers
before they depart.

Keywords: Mobility · Agent-based simulation · Ride-sharing

1 Introduction

Demand for transport in rural areas arises from the need to reach urban centers
for work, schools, and the utilization of various services. Due to low population
density, this demand usually peaks at particular times of a day. As a result,
public transport provisions are concentrated around these times and otherwise
operate with low frequency, and with transport services covering few select loca-
tions only. Individual car use is the main (and, often, only) means of transport
available when ad-hoc demand arises. In particular, there is a lack of trans-
port provisions for the first/last mile to/from public transport system corridors,
where timetabled services are available at high frequency. There is a need to
integrate microtransit services with existing (timetabled, high-volume) public
transport systems to increase adoption of shared mobility solution in areas with
low population density [6]. Improving access to and use of public transporta-
tion by refining the quality of the first/last mile connections is in the focus of
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 332–346, 2021.
https://doi.org/10.1007/978-3-030-87672-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_22&domain=pdf
http://orcid.org/0000-0001-9018-4269
http://orcid.org/0000-0002-2318-6667
http://orcid.org/0000-0001-8170-8374
https://doi.org/10.1007/978-3-030-87672-2_22

Analysis of Schedules for Rural First and Last Mile Microtransit Services 333

many transport authorities around the globe [9]. New demand-responsive forms
of transport gain popularity, in particular in urban centers, where ride-hailing
services are now widely used. Microtransit systems are a demand-responsive
ride-sharing option that are flexible in their service provision and are deployed
in regions where public transport is not (or scarcely) available.

We investigate sustainable and reliable forms of rural passenger mobility.
Shared transport modes are regarded as one of the measures to reduce carbon
emissions in daily commuter traffic [4,7,10]. We are, therefore, interested in how
to provide shared transportation in rural areas that can compete with private
car use in terms of availability and convenience. This poses a challenge as using
a car is typically the fastest and most convenient mode of transportation in rural
areas.

In the modeling of transport scenarios, two complementary perspectives, cap-
turing the passenger’s and the service provider’s view, respectively, can be dis-
tinguished, a) the usage behavior of customers using a transport system, which
is captured in the form of basic transport requests or more complex activities
(transport request chains). The main concern of a customer is to be transported
without delay and in a reliable fashion; b) the service provision, where trans-
port services may vary in terms of modality, purpose, flexibility (on-demand,
timetabled), etc. The concern of a service provider is to optimize transport pro-
vision so that demand can be met. For demand-responsive services, customers
may choose to request transport well ahead of the actual journey start time (pre-
booked), or make ad-hoc requests that may occur close to the actual required
travel time.

In our study, we investigate how microtransit systems can be integrated with
existing public transport operations to meet transport demand. Certain behav-
iors in a population, such as passengers being late at agreed pickup locations,
may lead to delays that make such a transport service unreliable. A balance has
to be found in terms of providing a convenient service (all transport requests,
including delayed departures for late passengers, are serviced) and a reliable
service provision (reaching destinations in time). Whereas passenger behavior is
beyond the control of a service provider, a provider can make particular deci-
sions about its own service provision, such as allowing a certain waiting policy at
stops that may influence the number of successfully serviced transport requests.
This waiting policy may have to be calibrated to balance convenience with reli-
able service provision. We use agent-oriented simulation as a means to calibrate
demand-responsive services in terms of convenience and reliability. Microtransit
solutions follow a trip-sharing model, where multiple passengers are transported
together on-demand to particular destinations. These systems are either flexi-
ble in terms of pickup and delivery locations (door-to-door) or operate within a
network of possible, albeit fixed, locations (stops), where passengers can board
and leave vehicles. We assume in our investigation a rural area with low pop-
ulation density, where a microtransit solution is introduced as a shuttle service
to transfer people from their homes to a public transport system (train). In our
rural transport scenario, therefore, people will conduct journeys with multiple
legs and transfers in their commute, and where on-demand service elements are

334 C. Truden et al.

combined with timetabled public transport systems. Important aspects of ser-
vice provision are customer satisfaction – a service provider has the capacity to
provide a service when ad-hoc demand arises, and trust – customers can reach
a destination in time (avoid being late for transfer to other modes of trans-
port, or being late to work or school). We consider two performance indicators
for microtransit systems to capture these two customer-specific notions, a) the
percentage of transport requests made for a particular time horizon that can
actually be serviced (capacity-related issue), and b) how many of these serviced
transport requests are fulfilled in time (the passengers arrive at their destina-
tion at the specified time). Additional considerations are whether a customer
with delayed pickup can still be delivered to their destination in time, or how
much delay of a transport customers may accept before they switch to alterna-
tive modes of transportation. The main concern in this study is how lateness of
customers or transport services has an impact on service provision and customer
acceptance of these new transport modes. Given these considerations regarding
performance, we distinguish passengers either arriving at a pickup location in a
timely manner, or them being late. We consider passenger populations with a
mix of these two behaviors and analyze how our planning approach can cope with
late arrivals. We modeled this scenario as a multi-objective variant of the dial-a-
ride-problem (DARP) [2,3], and developed a planning system based on a large
neighborhood search heuristic for creating transport schedules for microtransit
systems. The problem formulation aims at finding routes for a fleet of vehicles
that satisfy transport requests of passengers. These requests are defined by a)
a pickup location where passengers may board a microtransit vehicle and an
associated pick-up time, and b) a destination location with an associated arrival
time window. In our scenario, the destination location is a public transport stop,
therefore, the time tables of the public transport services frequenting this stop
may influence the chosen size of the arrival time window. We use agent-based
modeling [16] to develop a simulation of a rural commuter scenario with a micro-
transit shuttle service. With this agent-based modeling and simulation (ABMS)
approach, lateness of passengers or road disturbances can be simulated to verify
whether a transport schedule can cope with these kinds of problems. With such a
microsimulation approach, we investigate how planning results perform in terms
of sensitivity to disturbances and in terms of stability with respect to arriving in
time for transfers between modalities at stops, or in terms of transport capacities
made available.

2 Related Work

Mobility solutions that are demand-responsive, such as ride-sharing or car pool-
ing, are promoted as new forms of transport in urban and wider metropolitan
areas to meet transport demand [7]. Riley et al. [12] present a real-time dis-
patching solution for a ride-sharing service with a rolling horizon that utilizes a
column-generation approach. A computational study shows that their approach
scales very well in practice. However, their approach is tailored towards large-
scale systems used for highly populated urban areas such as New York City. In

Analysis of Schedules for Rural First and Last Mile Microtransit Services 335

contrast to our approach, where pickup and drop-off time windows are essential
for scheduling trips, the approach presented in [12] can neglect time windows due
to a large number of available vehicles and, typically, relatively short travel times
in the urban environment. In our study, a flexible microtransit service shuttles
passengers to a train or bus station where they may transfer to a timetabled
public service. Therefore, the choice of arrival time may be influenced by the
time tables of public transport services that passengers want to reach. How-
ever, this is taken into account in a pre-processing phase where a set of typical
transport requests are generated (synthetic population data), and not a concern
of the actual planning and optimization algorithm we developed (variants of
DARP, such as IDARP [11], in contrast, include a mix of flexible (bookable) and
fixed timetabled services in the model). We use agent-based modeling [16] and
microsimulation to investigate how a demand-responsive transportation service
can be delivered efficiently ([1] provide a review of agent-based transportation
systems). Microsimulation allows the modeling of individual behavior of agents
(passengers, vehicles, etc.) in a particular transport system. Ronald et al. [13]
discuss agent-based simulations for studying demand-responsive transportation
systems.

3 Rural Commuter Scenario

A rural commuter scenario forms the basis for the investigation presented in
this paper. This scenario is situated in an assumed rural area where a central
transport corridor, consisting of a major motorway and a rail line, connects
two urban centers. Public transport is concentrated in this corridor, whereas
outside in the wider rural region, no such services are available. In this scenario,
inhabitants of a rural area commute to a workplace in an urban center. They
either use a car, leading to congestion and pollution, or find a way to use the
rail line. There is usually no service for the first/last mile of daily commutes.

3.1 Transportation Network

In the modeling of this scenario, we assume that a demand responsive mobility
system is available for servicing the first/last mile travel of a rural population.
A microtransit service will serve fixed locations where passengers may be picked
up or transported to. We assume that there are stops specific to the microtransit
service, but that also existing public transport stops (e.g. railway stations, bus
stations) are frequented by such a service. This is necessary to allow a transition
of passengers from a demand-responsive to a public transport system. We, there-
fore, distinguish two types of stops: i) Public Transport (PT) stops are provided
by transit authorities; ii) Microtransit (MT) stops specific to such a mobility
service. Microtransit stops are used on-demand – they are only frequented when
passengers request transport from such a location. There are two main reasons
that drive the creation of a network of such stops, a) it is demand-oriented –
because of a certain population density, or through the initiative of local author-
ities, MT stops are established, or b) there are special points of interest that

336 C. Truden et al.

warrant good accessibility. In the considered region, there are 5 PT (train sta-
tions) and 97 MT stops. The road network of the rural region under consideration
is represented by a travel matrix with distances and travel times (computed by
OSRM [5] based on OpenStreetMap) between each pair of PT and MT stops
with the default OSRM car profile.

3.2 Vehicle Fleet

The vehicle fleet of the microtransit service is comprised of small buses with
limited seating. Vehicles are specified by the following parameters: a) number of
passenger seats, and b) availability, i.e., earliest start time, latest end time, depot
location. This microtransit fleet is deployed demand-responsive and, therefore, is
not subject to fixed service times. However, we assume that the complementary
public transport system is deploying services according to fixed timetables and,
therefore, the scheduling of public transport resources cannot be changed.

3.3 Transport Demand

Transport demand arises through passengers (alone or in groups) issuing trans-
port requests. A transport request is characterized through an OD-pair, describ-
ing a single journey from an origin to a destination location. In our current
study, a passenger may issue multiple transport requests in one booking. Such
a set of transport requests is then regarded as related and either all of them
can be scheduled for transport at the requested times and from/to the requested
locations, or all of them are rejected (no partial scheduling of a set of requests
is allowed). Several such requests may form a transport request chain, if the des-
tination of one request is the origin of the next and there is a timely correlation
between arrivals and departures. However, they can also be unrelated in terms
of timing and locations. In principle, transport requests are either pre-booked
well before a defined planning horizon, or they are placed on short notice (ad-
hoc transport requests). For now, we consider only a set of pre-booked requests.
In our study, a pre-processing step is generating a set of such request chains
(synthetic population) that represent the typical travel behavior of a particular
rural population as close as possible. Such a pre-processing step is necessary as
data about actual transport demand is not available. In the generation of such
a synthetic population, we assume that passengers book a chain of requests,
describing situations where passengers are taken from an MT stop to the closest
PT stop (representing the commute from a rural microtransit stop to a selected
public transport stop), from where the public transport system will get them to
their work place (or any other destination), and the corresponding return request
between these chosen stops. Passengers will start their journey at an MT stop,
and, with a scheduled return request, also end their journey at the same MT
stop.

For generating the first (outgoing) OD-pair in such a transport request chain
(passengers commute to a train station), we assume that a) each origin stop in
a generated OD-pair is a randomly chosen MT stop in the pilot region, b) each

Analysis of Schedules for Rural First and Last Mile Microtransit Services 337

destination stop in a generated OD-pair is the PT stop closest to the MT stop
(shortest Euclidean distance). In order to use these scenarios in the planning and
simulation work, we limit what public transport is available to commuters. We
assume that passengers start their commute in a time period between 05:00 and
09:00 in the morning from Monday to Friday. Timetable information at public
transport stops is used in the calculation of the required arrival time windows for
the microtransit services at such a PT stop. The arrival time window is currently
set to 10 min and is correlated with timetabled departures of transport services at
the PT stop. The pick-up time of the microtransit service is calculated from this
arrival time window, using minimal duration of a transport request as well as its
maximum allowed duration (ride time limit) between the two selected stops. For
the generation of the corresponding return transport request, we assume that
the origin and destination of the first request are used in reverse. Commuters
returning from a train station to the original MT stop are assumed to do this in
a time period from 15:00–19:00 in the evening from Monday to Friday.

The approach for generating a synthetic population presented here is cur-
rently limited to commuter trips, as no reliable data about other types of trips
exist in the chosen rural area of study. Given that our work aims at showing the
use of agent-based simulation for shaping policies for mobility service provision
in general, we do not consider this focus on a particular type of trips a limi-
tation. Clearly, in the long run, for a successful service also trips for shopping
or recreational activities and trips leading to journeys local to the rural area
(coordinated with the timetabled services) have to be included in policy-shaping
procedures.

3.4 Constraints

The following constraints are considered in planning and execution of the trans-
port schedules: a) the number of used seats in a vehicle cannot be exceeded,
and b) the time windows and ride time limit defined by the passengers can-
not be exceeded. Currently, multi-modality and, consequently, transfer times for
changes between different modes of transportation are not considered by the
optimization algorithm.

4 Approach

For the study of demand responsive transport systems, we use a combination
of combinatorial optimization and microsimulation. In a first step (Fig. 1), an
optimization algorithm takes a set of transport requests of customers and con-
structs a transport schedule for a fleet of vehicles. For each vehicle, a route is
defined as a timed sequence of stops with additional information about per-
formed transport requests. Currently, we only consider transport requests that
are pre-booked in advance of the actual journey. In a second step, this trans-
port schedule is executed in a simulation environment and tested under various
conditions, introducing stochastic events such as late arrivals or disturbances.

338 C. Truden et al.

Optimization
Algorithm

Simulation

Synthetic Population
(OD-Pairs)

Experimental
Results

Transport
Schedules

Fig. 1. Evaluation of transport schedules.

Agent-based modeling [16] is used to create a simulation of the rural area where
passengers request transport at particular times and microtransit systems oper-
ate on a network of stops (pickup and delivery locations for passengers).

4.1 Optimization Algorithm

We generate feasible vehicle schedules by solving the considered DARP vari-
ant with a greedy heuristic to construct initial solutions, followed by a large
neighborhood search (LNS) to improve them with respect to the following three
objectives: i) maximizing the number of accepted requests, ii) minimizing the
total distance driven by all vehicles, and iii) minimizing the total excess ride time
of passengers exceeding their request’s direct travel time. These goals have been
selected to achieve both high customer satisfaction and carbon emission reduc-
tion in service provision. The latter is based on the assumption of a linear rela-
tionship between emissions and the total distance driven that is widely accepted
in the literature [4,10]. Since we are dealing with three potentially conflicting
objective functions, we need to adapt classical single-objective meta-heuristics
to work with multiple objectives. We decided to use a large neighborhood search
(LNS) similar to the one in [14], since it is considered to be one of the state-
of-the-art heuristics for a wide class of vehicle routing problems. Additionally,
we use some ideas from a bi-objective LNS in [8]. To preserve diversification
throughout the search, we maintain a pool of non-dominated vehicle schedules
that is continuously improved and updated. Initial schedules are constructed as
follows: i) we sort all transport requests by ascending latest arrival times, ii)
iteratively select the (initially empty) best schedule in our pool (based on the
objective ordering above), iii) extend it with the current request in all feasible
ways, and iv) add all obtained solutions to our pool. Deciding the feasibility of
an insertion is non-trivial for the DARP and done by using the method described
in [2]. The obtained solutions are then iteratively improved via LNS by i) ran-
domly selecting one of the schedules in our pool, ii) removing random transport
request chains from it, iii) trying to insert to it as many not yet served request
chains as possible (by using greedy and regret insertion), and iv) feeding all
intermediately obtained schedules back to the pool. These steps are repeated for
100 iterations.

4.2 Agent-Based Modeling

Microsimulation is used for the evaluation of the transport schedule gener-
ated by the optimization algorithm. In a process of agent-based modeling, we

Analysis of Schedules for Rural First and Last Mile Microtransit Services 339

identify the stakeholders in the chosen rural transport scenario, such as passen-
gers and vehicle fleets of service providers. In the execution of a transport sched-
ule, concerns regarding delivery (passengers reach their connections in time) are
investigated through simulation.

The following agent types are considered: i) passengers who require transport
(and issue single transport requests or book whole transport chains), ii) vehicles
that conduct these transports (following the transport schedule), iii) stops (PT
and MT) that are agentified in this scenario, in order to model and control
arrival, pickup and delivery procedures of passengers and vehicles at PT and MT-
transit stops, respectively, and a iv) disturbance agent that is used to introduce
randomness into the execution of the transport schedules.

Passenger and Vehicle Agents. Both passenger and vehicle agents execute
information derived from the transport schedule. Vehicle agents receive a sched-
ule comprised of a sequence of stops where passengers are either picked up or
delivered at particular times. Assuming a microtransit system using a fleet of
mini-buses, such a vehicle usually has a capacity of around eight seats. In addi-
tion, mini-buses require, in contrast to city buses with large seating and standing
capacities, a one-to-one seat assignment. Passenger agents receive information
about their chain of transport requests (scheduled according to the passenger’s
transport requests), they are required to arrive at a specified stop at a given
time (within a time window) so that they can board a mini-bus. Vehicle agents,
passenger agents and stop agents interact when arrival events occur at a particu-
lar stop. Vehicle agents perform the following actions: a) transfer between stops
(starting from a depot), such a transfer ends with an arrival event at a stop, b)
arrive/register at a stop, c) start waiting time at stop (wait for a period of time
or until arrival events of registered passenger agents occur), d) drop off passenger
agents according to transport schedule (seats become available, passenger agent
is un-registered from the vehicle agent), e) pickup of all registered passenger
agents (passenger agent is regarded as occupying a seat on the mini-bus and is
registered by the vehicle agent), f) depart/un-register from stop when all pickup
requests fulfilled or waiting time expires. Passenger agents perform the following
actions at the pickup location: a) depart from home; b) arrive/register at stop;
c) start waiting time at stop (record waiting time); d) wait for arrival event of
vehicle that fulfills transport request (information received from stop agent); e)
board vehicle (register with vehicle, occupy seat); f) un-register from stop; g)
start recording transfer time. Passenger agents perform the following actions at
the drop-off location: a) stop recording transfer time; b) arrive/register at stop
(stop agent acknowledges arrival). At this point in the process, passenger agents
either leave the stop (they un-register) to reach their final destination on foot,
or they start the next leg of their request chain, where the current stop is the
next pickup location.

Stop Agents. Stop agents act as arbitrators between passenger and vehi-
cle agents and keep track of the registration and waiting of both agents at a

340 C. Truden et al.

particular stop of the transport network. Agents that are not registered with
stop agents, are regarded “in transit”. A stop agent keeps track of the passen-
gers arriving, waiting, and departing at this stop.

4.3 Disturbance Events

A separate system agent, the so-called Disturbance Agent, generates disturbance
events. In the first instance, two events are considered: a) longer (or shorter)
travel times than expected, leading to delays or early arrival, and b) tardiness
of passenger or vehicle agents when leaving from a location. Arrival delays are
modeled implicitly. Each time a vehicle is in transit between two locations of the
transport network, the disturbance agent adds a random delay (or reduction)
to the travel times. Hence, a vehicle can arrive later (or earlier) than planned
at its next destination. We assume that the travel times recorded in the travel
matrix (representing the transport network) are not biased, i.e., they represent
the expected value of the underlying (unknown) distribution of the travel times,
where travel times for each vehicle and each trip are independent, which is a
reasonable assumption in case that travel times depend on the condition of the
vehicles, a driver’s skills, or minor roadside obstacles (slower vehicles impeding
the traffic, red lights) [15]. For now, extreme events such as traffic accidents,
blocked roads, or mechanical failures of the vehicles are not considered.

Influences on Passenger Agents. We distinguish two types of passenger
agents: a) punctual, showing little to no tardiness, b) tardy, being late most
of the time. Assuming that a passenger has a scheduled pickup time α at a
MT-stop that is β walking minutes from his/her home address, the arrival of the
passenger is determined by two random processes. a) Departure from home/work.
follows a normal distribution X ∼ N (μ, σ2). Punctual (tardy) passengers leave
at μ = α − β − γ with a standard deviation of σ2 = 2 min, where γ defines
the “slack” of the passenger leaving earlier. Punctual passengers allow a slack of
γ = 5 min, while tardy passengers only allow γ = 3.5 min. b) Walking time to
the stop deviates from the expected walking time following a truncated normal
distribution X ∼ N (μ, σ2, a, b), where a, b ∈ R define upper/lower bounds. For
punctual customers we assume the parametrization μ = 0, σ2 = 10%, a = −5%,
b = 5% and for tardy customers we assume μ = 0, σ2 = 15%, a = −5%, b = 5%.
The actual arrival time at the pick-up location α̂ is determined by adding up both
random values. In Fig. 2 we show the empirical density of the punctuality (α̂−α)
of passengers at the pick-up locations. We notice that 0.65% of the punctual and
5.38% of the tardy passengers arrive later than the scheduled pick-up time α.
Further, we assume that passengers wait up to 5 min after the scheduled pick-up
time for the vehicle to arrive before they abort the request.

Influences on Vehicle Agents. Vehicle agents have the following behavior.
The vehicles leave from a location towards the next location according to their
schedule once a) all passengers that are scheduled for pick-up have arrived, or,

Analysis of Schedules for Rural First and Last Mile Microtransit Services 341

Fig. 2. Empirical density of punctuality for the two passenger types punctual and tardy ,
n = 100 000 samples each. The punctuality is determined as the difference between the
scheduled pick-up time α and the actual arrival time at the pick-up location α̂.

b) the scheduled boarding time (plus a waiting time ω ≥ 0) of the passenger(s)
has passed and the passenger(s) have not arrived. However, their arrival times
are subject to random influence through the disturbance agent. Clearly, travel
times must always have positive values. In our experiments, we assume that they
follow a truncated Normal distribution. X ∼ N (μ, σ2, a, b, where a, b ∈ R define
upper/lower bounds. The bounds ensure that only “reasonable” values are sam-
pled. The expected values mu (for each edge of the travel matrix) are obtained
from the OSRM routing engine [5]. For now, we assume the following parameters
μ = 0, σ2 = 15%, a = −10%, b = 20%. Obviously the parameterization must
be individually adjusted for other rural regions of study for which simulations
would be done.

5 Analysis

We study how disturbances, such as tardiness of passengers and delayed services,
affect the provision of a transport service with respect to transfers at stops and
timely delivery at destinations. In the analysis performed, the focus is on the
effect of passenger tardiness on service lateness at destinations and the number
of transport requests that are aborted (rather than determining appropriate fleet
sizes through simulation). Clearly, the punctuality of the passengers affects the
efficiency and stability of the service. In particular, services should not arrive
late at destinations. However, service providers may have a choice to wait for
tardy passengers in order to maximize the number of transport requests that are
serviced. Of interest is the sensitivity of a transport schedule for a microtran-
sit service to a population of tardy passengers and delays in service provision.
A proper management of a demand responsive mobility system, in particular
timely delivery at transfer stops to other modes of transport, is important to
ensure customer satisfaction and to establish trust in the reliability of the micro-
transit service. Demand-responsive services have a certain flexibility in terms of
departure from stops as they are not bound to a fixed time table and may leave
as soon as all booked passengers have boarded. Time savings like these may

342 C. Truden et al.

compensate for delays occurring further downstream of the remaining journey.
This allows service providers to operate according to a waiting policy at depar-
tures. The present analysis shows the effect of a waiting time policy on numbers
of transport requests serviced and what kind of lateness at destinations can be
expected.

5.1 Experimental Setup

For our analysis, we consider 10 randomly sampled instances that contain 100
transport request chains each that are served by a fleet of 10 vehicles (minibuses),
each with a capacity of 8 passenger seats. For each instance, we consider all those
transport schedules from the pool of solutions for which all 100 chains have been
accepted. Further, we perform 100 simulation runs for each transport schedule.

Passenger Agent Populations. The punctuality of the passengers affects the
efficiency and stability of a transport service. To elaborate this point in more
detail, we run our simulations with different “populations” of passenger, i.e.,
different mixes of punctual and tardy passengers. We compare the simulation
results for the following three population types: a) 20% punctual passengers (and
80% tardy passengers), b) 50% punctual passengers, c) 80% punctual passengers.
For each population, a total of around 1.34 million transport request chains have
been generated in our experiments.

Lateness at the Destination. A late departure at pick-up locations, caused
by vehicles being late or waiting for tardy passengers may lead to late arrivals at
destinations. We measure this as the lateness �, which is the difference between
the actual (maybe late) arrival of the passenger at the destination and the end
of the arrival time window (of 10 min length). We report this late arrival time (in
minutes and seconds) at the destination for all requests (outgoing and return).
In that sense, � = −10 min means arriving at the beginning of the arrival time
window, while � = 5 min means arriving 5 min after the end of the time window
(being late).

Results - Vehicles with Zero Waiting Time. At first, we assume that
vehicles do not wait for the passengers beyond the scheduled pick-up time, i.e.,
waiting time ω = 0 min. We summarize the aborted transport requests in Table 1
and report the lateness (passengers arriving late at their destinations) in Table 2.
Additionally, we illustrate the lateness in Fig. 3. We notice that there are between
5.4% and 10% incomplete transport chains, depending on the population mix,
while the q95 quantiles for the lateness range from 1 min 27 s to 1 min 40 s. The
25% quantile q95 is around −13 min meaning that these passengers arrive 3 min
prior to the arrival time window. Also, there is no excessive lateness with the
q95 being at around 4 min. Overall, the rate of aborted requests seems to be
inversely proportional to the percentage of punctual passengers. Similarly, we

Analysis of Schedules for Rural First and Last Mile Microtransit Services 343

notice that the passenger population mix also influences the lateness. Although
we can clearly observe this effect in Fig. 3, it is limited as we can only report
lateness for completed transport requests. Depending on how much slack for
transferring to the next means of transportation at the destination was added
when defining the arrival time windows, these results seem very promising due
to the absence of excessive lateness or overly early arrivals. However, with the
percentage of aborted requests being rather high the reliability of the service
(even if this is induced by the tardiness of the passengers) is not guaranteed.
In an effort to reduce the number of aborted requests, the service provider may
introduce a waiting policy such that the drivers, who are represented by the
vehicle agents in the ABM, may wait for the passenger to arrive past the schedule
arrival time, i.e., ω > 0 min. If such a policy is put in place, it is pertinent to
provide additional date what a driver may allow in terms of lateness and still
will be able to compensate for the passenger’s lateness up to a certain amount
of time.

Table 1. Percentage of aborted transport request chains reported for the three popula-
tion types, ω = 0 min. We report the percentages of transport request chains aborted at
the outgoing or return transport request, and the completed transport chains. A chain
being aborted at the return transport request prerequisites that the corresponding
outgoing transport request was successful.

punctual Aborted outgoing Aborted return Both completed

(%) (%) (%) (%)

80 3.56 1.82 94.6

50 4.74 3.06 92.2

20 5.83 4.22 90.0

Table 2. Lateness � reported for the three population types, ω = 0 min. The percentage
of (completed) transport requests with � > 0 is reported, and the 25%, 50%, 75%, 95%,
99% quantiles are reported as well. Given are combined numbers for all completed
outgoing and return transport requests (if completed).

punctual � > 0 q25 q50 q75 q95 q99

(%) (%) (mm.ss) (mm.ss) (mm.ss) (mm.ss) (mm.ss)

80 10.80466 −13.53 −7.58 −2.45 1.27 4.07

50 12.11865 −13.20 −7.31 −2.15 1.34 4.10

20 13.26574 −12.52 −7.10 −1.51 1.40 4.14

344 C. Truden et al.

−30

−20

−10

−5

0

5

10

l
(m

in
ut

es
)

0e+00

3e−04

6e−04

9e−04

−30 −20 −10 −5 0 5 10
l (minutes)

Population
80% punctual

50% punctual

20% punctual

Fig. 3. Illustration of the lateness � for the three population types (for the completed
transport requests). The green (red) line marks the beginning (end) of the arrival time
windows of the requests. All time windows are of 10 min length. (Color figure online)

Results - Vehicles with Waiting Times up to 10min. We repeat our
experiments with waiting times ω = {1 min, 2 min . . . , 10 min}. The data show
that the quantile values for � increase for growing ω. However, this effect is rather
modest as the values grow no more than a minute when ω is increased from 0 min
to 10 min. In Fig. 4, we illustrate the percentages of aborted requests for chang-
ing ω. However, we notice a minimum for the return requests at ω = 2 min, that
is followed by an increase for ω > 2 min. The outgoing requests show a similar
behavior but the increase for ω > 3 min is less strong. In that sense, the tardi-
ness of passengers at pickup influences arrival times at destinations, depending
on the chosen waiting time ω. All later arrivals lead to aborted requests (chains).
Overall, we observe a consistent effect of the passenger population mix in terms
of punctuality across all experiments, i.e., lateness at passenger destinations and
percentage of aborted requests is always negatively affected by a lack of punctu-
ality of the passengers. Passengers being tardy at their pickup location usually
lead to aborted transport requests, which can be counteracted by introducing a
vehicle waiting policy that increases the number of serviced requests. In sum-
mary, we see that introducing a waiting policy is beneficial to avoid aborted
transport requests, while the effect on the lateness � is rather small and there-
fore acceptable. The above results suggest that our approach can be a valuable
decision-support tool for mobility providers that want to fine-tune their vehicle
waiting policy in order to maximize the number of serviced transport requests.

Analysis of Schedules for Rural First and Last Mile Microtransit Services 345

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

0 1 2 3 4 5 6 7 8 9 10
ω (minutes)

ab
or

te
d

re
qu

es
ts

Request
outgoing

return

Population
80% punctual

50% punctual

20% punctual

Fig. 4. Percentages of aborted transport request chains compared for different vehicle
wait times ω = 0, 1, . . . , 10 min. We distinguish if a transport request chain is aborted
at the outgoing or the return request.

6 Conclusion

We modeled a rural commuter scenario as a set of agents, where transport
resources, passengers and elements of the transportation network (stops) are
modeled as agents. At this stage of the project, generated requests represent pas-
senger travel between dedicated stops of different mobility systems (on-demand
transit, public transport). In a process of generating representative sets of pas-
senger transport requests, these transport system stops are selected according
to criteria such as whether they are the most plausible entry/exit points into a
transport system that are closest to a person’s start or to their vicinity to a per-
son’s intended destination, or their reachability from rural population centers,
or whether they are public transport stops that allow a transfer from a micro-
transit system to a public transport system. We analyzed how late arrival of
passengers and/or transport impacts on service quality (reaching transfer stops
or final destinations in time). Our study shows that introducing a vehicle wait-
ing policy is beneficial for service provision, resulting in less aborted trips. In
future research, agent-based modeling and simulation (ABMS) will be used to
investigate additional aspects, such as bottlenecks in service provision, how to
optimize traffic and passenger flows, or how changes in procedures impact on
the performance of an overall mobility system.

Acknowledgements. This work is supported by Lakeside Labs GmbH, Klagen-
furt, Austria, and funding from the European Regional Development Fund and the
Carinthian Economic Promotion Fund (KWF) under grant 20214/31942/45906.

References

1. Chen, B., Cheng, H.H.: A review of the applications of agent technology in traf-
fic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11(2), 485–497
(2010). https://doi.org/10.1109/TITS.2010.2048313

https://doi.org/10.1109/TITS.2010.2048313

346 C. Truden et al.

2. Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-
a-ride problem. Transp. Res. Part B Methodol. 37(6), 579–594 (2003). https://doi.
org/10.1016/S0191-2615(02)00045-0

3. Ho, S.C., Szeto, W., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W.: A survey
of dial-a-ride problems: literature review and recent developments. Transp. Res.
Part B Methodol. 111, 395–421 (2018). https://doi.org/10.1016/j.trb.2018.02.001

4. Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y.: Survey of green vehicle
routing problem: past and future trends. Expert Syst. Appl. 41(4, Part 1), 1118–
1138 (2014). https://doi.org/10.1016/j.eswa.2013.07.107

5. Luxen, D., Vetter, C.: Real-time routing with openstreetmap data. In: Proceed-
ings of the 19th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pp. 513–516. ACM (2011). https://doi.org/10.1145/
2093973.2094062

6. Macfarlane, G.S., Hunter, C., Martinez, A., Smith, E.: Rider perceptions of an on-
demand microtransit service in Salt Lake County, Utah. Smart Cities 4(2), 717–727
(2021). https://doi.org/10.3390/smartcities4020036

7. Martins, L.d.C., de la Torre, R., Corlu, C.G., Juan, A.A., Masmoudi, M.A.: Opti-
mizing ride-sharing operations in smart sustainable cities: challenges and the need
for agile algorithms. Comput. Ind. Eng. 153, 107080 (2021). https://doi.org/10.
1016/j.cie.2020.107080

8. Matl, P., Nolz, P.C., Ritzinger, U., Ruthmair, M., Tricoire, F.: Bi-objective ori-
enteering for personal activity scheduling. Comput. Oper. Res. 82, 69–82 (2017).
https://doi.org/10.1016/j.cor.2017.01.009

9. Mohiuddin, H.: Planning for the first and last mile: a review of practices at selected
transit agencies in the United States. Sustainability 13(4) (2021). https://doi.org/
10.3390/su13042222

10. Nocera, S., Ruiz-Alarcón-Quintero, C., Cavallaro, F.: Assessing carbon emissions
from road transport through traffic flow estimators. Transp. Res. Part C Emerg.
Technol. 95, 125–148 (2018). https://doi.org/10.1016/j.trc.2018.07.020

11. Posada, M., Andersson, H., Häll, C.H.: The integrated dial-a-ride problem with
timetabled fixed route service. Public Transp. 9(1), 217–241 (2016). https://doi.
org/10.1007/s12469-016-0128-9

12. Riley, C., Legrain, A., Van Hentenryck, P.: Column generation for real-time ride-
sharing operations. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 472–487. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-19212-9 31

13. Ronald, N., Thompson, R., Winter, S.: Simulating demand-responsive transporta-
tion: a review of agent-based approaches. Transp. Rev. 35(4), 404–421 (2015).
https://doi.org/10.1080/01441647.2015.1017749

14. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472
(2006). https://doi.org/10.1287/trsc.1050.0135

15. Topaloglu, H.: A parallelizable dynamic fleet management model with random
travel times. Eur. J. Oper. Res. 175(2), 782–805 (2006). https://doi.org/10.1016/
j.ejor.2005.06.024

16. Wilensky, U., Rand, W.: An Introduction to Agent-Based Modeling. MIT Press,
Cambridge (2015)

https://doi.org/10.1016/S0191-2615(02)00045-0
https://doi.org/10.1016/S0191-2615(02)00045-0
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/j.eswa.2013.07.107
https://doi.org/10.1145/2093973.2094062
https://doi.org/10.1145/2093973.2094062
https://doi.org/10.3390/smartcities4020036
https://doi.org/10.1016/j.cie.2020.107080
https://doi.org/10.1016/j.cie.2020.107080
https://doi.org/10.1016/j.cor.2017.01.009
https://doi.org/10.3390/su13042222
https://doi.org/10.3390/su13042222
https://doi.org/10.1016/j.trc.2018.07.020
https://doi.org/10.1007/s12469-016-0128-9
https://doi.org/10.1007/s12469-016-0128-9
https://doi.org/10.1007/978-3-030-19212-9_31
https://doi.org/10.1007/978-3-030-19212-9_31
https://doi.org/10.1080/01441647.2015.1017749
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1016/j.ejor.2005.06.024
https://doi.org/10.1016/j.ejor.2005.06.024

The Share-A-Ride Problem with
Integrated Routing and Design Decisions:

The Case of Mixed-Purpose Shared
Autonomous Vehicles

Max van der Tholen, Breno A. Beirigo, Jovana Jovanova,
and Frederik Schulte(B)

Delft University of Technology, Delft, The Netherlands
{m.p.vandertholen,b.alvesbeirigo,j.jovanova,f.schulte}@tudelft.nl

Abstract. The shared autonomous vehicle (SAV) is a new concept that
meets the upcoming trends of autonomous driving and changing demands
in urban transportation. SAVs can carry passengers and parcels simul-
taneously, making use of dedicated passenger and parcel modules on
board. A fleet of SAVs could partly take over private transport, taxi,
and last-mile delivery services. A reduced fleet size compared to conven-
tional transportation modes would lead to less traffic congestion in urban
centres. This paper presents a method to estimate the optimal capacity
for the passenger and parcel compartments of SAVs. The problem is
presented as a vehicle routing problem and is named variable capacity
share-a-ride-problem (VCSARP). The model has a MILP formulation
and is solved using a commercial solver. It seeks to create the optimal
routing schedule between a randomly generated set of pick-up and drop-
off requests of passengers and parcels. The objective function aims to
minimize the total energy costs of each schedule, which is a trade-off
between travelled distance and vehicle capacity. Different scenarios are
composed by altering parameters, representing travel demand at differ-
ent times of the day. The model results show the optimized cost of each
simulation along with associated routes and vehicle capacities.

Keywords: Shared autonomous vehicles · Capacity optimization ·
Vehicle routing problem

1 Introduction

Urbanization is a phenomenon that is becoming ever more apparent across the
world. Already in 2018, over 55% of the world’s population was located in urban
areas with prospects of an increase to almost 70% mid-21st century [22]. The
ongoing demographic changes within cities give cause for new developments in
the transportation of people and goods. Other trends too will have an impact
on transport within urban centres. E-commerce is growing fast, with a massive
demand for business-to-customer movements. On top of that comes a desire for
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 347–361, 2021.
https://doi.org/10.1007/978-3-030-87672-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_23

348 M. van der Tholen et al.

quick deliveries, sometimes even as fast as a couple of hours. Another trend is
that of the sharing economy, in which customers and businesses share resources,
potentially reducing freight movements and fleet sizes. Finally, climate change
awareness and sustainability play an ever-increasing role in reducing emissions
and improve quality of life in heavily congested areas [20]. With these aspects
in mind, new approaches to vehicle design are taken.

The development of autonomous vehicles is expected to bring significant
changes to the mobility patterns of vehicle users. Connecting vehicles through
an internet of autonomous vehicles enables services such as intelligent transporta-
tion and ridesharing [10]. The concept of ridesharing promises to improve the
efficiency of individual, on-demand transportation in densely populated areas.
Combining the benefits of autonomous driving and ridesharing allows for the
introduction of autonomous mobility-on-demand (AMoD). This approach con-
sists of fully autonomous driving vehicles that can combine multiple traveling
requests into one journey. AMoD has the potential to reduce traffic congestion
and parking problems while offering fast, on-demand mobility, relieving passen-
gers from the task of driving, and improving safety [24].

Naturally, not only the transport of passengers in urban areas is growing.
Transportation of goods through parcel delivery is increasing and is required to
become faster and cheaper. Short trips through cities, such as last-mile delivery
services, could potentially be done by purpose-built autonomous vehicles (AV) [4].

While AMoD can already be more efficient and sustainable than a con-
ventional approach, the results heavily depend on traveller demand. Passenger
request numbers are typically much higher at day time than at night and peak
during morning and afternoon rush hours [3]. As a result, large portions of the
fleet of vehicles will be idle or inefficiently occupied during low-demand periods.
Unifying the separate vehicle fleets for passenger and parcel transport into one
fleet with mixed-purpose vehicles can be a solution to improve occupancy lev-
els and further reduce the number of vehicles on the roads. This share-a-ride
approach was introduced by Li et al. [12], where taxis can combine single parcel
and rider requests, and later expanded by Beirigo et al. [1] in the context of the
share-a-ride with parcel lockers problem (SARPLP).

The SARPLP considers autonomous vehicles with passenger compartments
and parcel lockers, such that both commodity types can be transported simulta-
neously on single journeys. The effectiveness of this concept has been proven, and
92% of simulated scenarios result in higher profit with one mixed-purpose fleet
rather than two single-purpose fleets [1]. However, the model relies on a fixed
vehicle capacity. While proving effective, this approach hardly links the logistic
challenges of shared autonomous driving to the design of shared autonomous
vehicles (SAV). Varying the capacity of SAVs is still an unexplored area.

This study seeks to create a model for a people and freight integrated trans-
portation system (PFIT) in an AMoD setting with variable vehicle capacity.
We aim to find the optimal capacity for mixed purpose SAVs whose internal
space can be outfitted to simultaneously transport passengers and parcels. This
optimal capacity can then be used to constrain the design and give an early

The Share-A-Ride Problem with Integrated Routing and Design Decisions 349

approximation of the dimensions and features of SAVs according to the demand
patterns of the service area. The outcome shows whether the SAV will look like
an ordinary passenger car, a large bus, or anything in between. From this point
on, the problem will be referred to as the variable capacity share-a-ride problem
(VCSARP).

This paper will continue by mentioning some of the relevant literature that is
related to the subject. After that, the problem definition and model formulation
are explained. Next, the experimentation section will picture the scenarios and
give the results of the simulations. The final section will summarize the findings,
conclude the current research and give recommendations for further research.

2 Related Work

The vehicle routing problem (VRP) is a classical optimization problem that
aims to determine the optimal set of routes to be taken by a fleet of vehicles to
serve a set of customers [21]. The first mathematical programming formulation
and algorithmic approach for the VRP was the truck dispatching problem by
Dantzig and Ramser [7] from 1959. Ever since, efforts have been made to extend
VRPs and make them more realistic. The VCSARP is based on a combina-
tion of previous VRPs. The Dial-a-Ride Problem (DARP) is a well-known VRP
variation that consists of designing vehicle routes for on-demand pick-up and
delivery requests. The DARP is built up from a combination of existing VRPs,
including the Pick-up and Delivery Vehicle Routing Problem and the Vehicle
Routing Problem with Time Windows [6]. With the popularization of app-based
transportation services, the DARP has been the basis for passenger ridesharing
services (see, e.g., [13,19]). More recently, the advantages of autonomous vehi-
cles for ridesharing have been explored, for instance, considering service quality
improvements when platforms activate idle/ parked vehicles [2].

However, short-haul integration of passenger and good flows is hardly
observed both in practice [20] and in the literature [15], especially in a rideshar-
ing context. Among the few models for PFIT systems is the SARP, an extension
of the DARP introduced by Li et al. [12] that allows taxis to transport one pas-
senger and one parcel simultaneously. This problem has been further covered by
Nguyen et al. [16] and Do et al. [8], where a taxi is able to carry one passenger
and multiple parcels. A more flexible version of the SARP is the SARPLP [1],
in which the vehicles consist of passenger compartments and parcel lockers, thus
being able to serve several customers at once. This study shows that a shared,
mixed-purpose fleet proves more profitable to the transport company. More work
on passenger and parcel ridesharing was done by Ronald et al. [18]. Their model
considers passengers requesting transport between homes and activity locations
and parcels that are transported from shops to homes. Ultimately, they find
that ridesharing resources in vans and taxis results in shorter waiting and travel
times. Finally, to the best of our knowledge, the only noteworthy contribution
considering variable capacity and VRPs is by Louveaux and Salazar-González
[14]. Their model, however, does not consider any ridesharing.

350 M. van der Tholen et al.

3 Problem Description

The VCSARP aims to create the most cost-effective routing schedule for SAVs
across a city with a known set of transport requests. The requests consist of pick-
up and delivery points and need to be satisfied within a certain time window.
The SAVs start and end their routes at a centrally located depot. The output
of the model gives the total cost of the routing and the optimal vehicle capacity
that is needed to achieve this. The MILP model is explained in the remainder
of this section.

3.1 Model Formulation

The virtual city in which the SAVs operate is expressed as a 20 by 20 grid
structure with intervals of 100 m between each node. Within this grid structure,
a total of n transport requests is generated, split up into nh passenger and
np parcel requests. V represents the complete set of nodes, including requests
and start/end depot, while A represents the arcs connecting all those nodes.
The distances and travel times between all nodes are captured by di,j and ti,j
respectively.

The requests are characterised by their quantity qri , where resource r is 0 for
a passenger request or 1 for a parcel request. Pick-up quantities qri are generated
as positive amounts and drop-off quantities qri+n are of the same magnitude but
negative, representing a loss of load. Each request has a pickup time window
[ei, li], which is T r wide, and a maximum travel time delay δr. Both must be
satisfied for a feasible solution. All requests are generated within a time horizon
H. Each pick-up and delivery stop has a service time delay s.

The set of vehicles is K. Each vehicle has a capacity Qr, which is variable
but constrained by an upper and lower bound [Qr

min, Qr
max] for realism and

computational speed. The velocity of the vehicles is assumed to be constant and
the same across each arc in A.

The model seeks to minimize the total costs of a routing schedule. The total
costs are calculated as the product of travelled distance and cost per unit of dis-
tance that varies with vehicle type). The vehicle capacity impacts the travel cost
per kilometer because larger-capacity vehicles are heavier and bulkier, thus con-
suming more energy. This relationship between vehicle capacity and operating
costs is visualized in Fig. 1. A complete overview of variables, parameters, sets,
and indices needed for the formulation of the VCSARP can be seen in Table 1.

Figure 2 shows some examples of how the VCSARP model works. Each sce-
nario has two passenger and two parcel requests. When requests are positioned
close together and very few detours have to be made, the model will most
likely choose a larger capacity vehicle to serve multiple requests simultaneously.
Figure 2a shows this case. Assuming that each request quantity is equal to 1,
the minimum vehicle capacity for the vehicle in this scenario must be 2 for pas-
sengers and 2 for parcels. Figure 2b shows a case where the requests are not all
located favourably. Here one large vehicle is not able to fulfill all the requests

The Share-A-Ride Problem with Integrated Routing and Design Decisions 351

within their time windows. Using smaller vehicles covering slightly larger dis-
tances might even be more efficient. The vehicle capacity in this scenario is 1 for
passengers and 2 for parcels.

Fig. 1. Linear relation between vehicle capacity and operating cost per unit of distance.
Constants α and βr are explained in Sect. 4.

)b)a

Fig. 2. Two examples of the VCSARP. Blue nodes are pick-ups and green nodes are
drop-offs. Example a) shows a scenario in which only one vehicle (solid path) is deployed
from the depot. Example b) shows a situation where one vehicle is not sufficient to
meet all the constraints, such that two vehicles are deployed (solid and dashed paths).
Vehicle loads along each path are displayed for each resource, where qri is the amount
of resources that must be loaded at node i and wk

i is the load of resources on vehicle
k after node i. (Color figure online)

352 M. van der Tholen et al.

Table 1. Sets, indices, parameters and variables of the VCSARP.

Sets and indices

Ph = {1, ..., nh}. Human pickup nodes

Pp = {nh + 1, ..., n}. Parcel pickup nodes

P = Ph ∪ Pp. All pickup nodes

Dh = {n + 1, ..., n + nh}. Human drop-off nodes

Dp = {n + nh + 1, ..., 2n}. Parcel drop-off nodes

D = Dh ∪ Dp. All drop-off nodes

V = {0} ∪ P ∪ D ∪ {2n + 1}. All nodes including start/end depots

A = {i, j : i ∈ V, j ∈ V, i �= j}. Arcs connecting all nodes

K = {1, ..., nk}. Vehicles

R = {0, 1}. Resources (0 = human, 1 = parcel)

Parameters

nh Number of passenger requests

np Number of parcel requests

n = nh + np. Total number of requests

nk Number of vehicles

vavg Average vehicle velocity

di,j Shortest distance between nodes i and j

ti,j Shortest travel time between nodes i and j

qri Amount of resource r that must be loaded at node i

{ei, li} Time window for request i

T r Pickup time window width for each resource r

H Time horizon

δr Maximum ride time delay for each resource r

s Service time

Qr
min Lower bound of vehicle capacity for each resource r

Qr
max Upper bound of vehicle capacity for each resource r

α Constant of the objective function

βr Slope of the objective function for each resource r

pph Passenger pickup probability [residential, industrial, campus]

dph Passenger delivery probability [residential, industrial, campus]

ppp Parcel pickup probability [residential, industrial, campus]

dpp Parcel delivery probability [residential, industrial, campus]

Variables

xk
i,j Traveled arcs (i, j) of each vehicle k

τk
i Arrival time of vehicle k at node i

wr,k
i Load of each resource r on vehicle k after node i

trki Ride time of pickup i on vehicle k

Qr Vehicle capacity for each resource r

The Share-A-Ride Problem with Integrated Routing and Design Decisions 353

3.2 Model Formulation

The MILP formulation of the model is as follows:

Minimize:

C =
∑

i,j∈A

∑

r∈R

∑

k∈K

(α + βrQr)di,jxk
i,j (1)

Subject to:
∑

j∈V
j �=i

∑

k∈K

xk
i,j = 1 ∀i ∈ P (2)

∑

j∈V
j �=0

xk
0,j =

∑

i∈V
i�=2n+1

xk
i,2n+1 = 1 ∀k ∈ K (3)

∑

j∈V
j �=i

xk
i,j =

∑

j∈V
j �=i+n

xk
i+n,j ∀i ∈ P,∀k ∈ K (4)

∑

j∈V
j �=i

xk
j,i =

∑

j∈V
j �=i

xk
i,j ∀i ∈ N,∀k ∈ K (5)

τk
j = (τk

i + ti,j + s)xk
i,j ∀i, j ∈ A,∀k ∈ K (6)

τk
i+n ≥ τk

i ∀i ∈ P,∀k ∈ K (7)

ei ≤ τk
i ≤ li ∀i ∈ P,∀k ∈ K (8)

wr,k
j ≥ (wr,k

i + qrj)x
k
i,j ∀i, j ∈ A,∀r ∈ R,∀k ∈ K (9)

max(0, qri) ≤ wr,k
i ≤ Qr ∀i ∈ V,∀r ∈ R,∀k ∈ K (10)

Qr
min ≤ Qr ≤ Qr

max ∀r ∈ R (11)

trki = τk
i+n − τk

i ∀i ∈ P,∀k ∈ K (12)

ti,i+n ≤ trki ≤ ti,i+n + δr ∀i ∈ P,∀r ∈ R,∀k ∈ K (13)

xk
i,j ∈ {0, 1} ∀i, j ∈ A,∀k ∈ K (14)

τk
i ∈ N ∀i ∈ V,∀k ∈ K (15)

wr,k
i ∈ Z ∀i ∈ V,∀r ∈ R,∀k ∈ K (16)

trki ∈ N ∀i ∈ V,∀k ∈ K (17)
Qr ∈ Z ∀r ∈ R (18)

The objective function (1) aims to minimize the total cost, which is calculated
as (cost/km)*(travelled distance). Based on [11] and [23], we consider the energy
consumption and running costs (denoted by cost/km) increase linearly with vehi-
cle capacity. Parameters α and βr are the intercept and slope of the linear func-
tion and are quantified in Sect. 4. Equation (2) guarantees that each request is
served once. Each vehicle must start and end its route at the depot, which is con-
trolled by (3), while (4) ensures that pick-up and delivery of one request are done

354 M. van der Tholen et al.

by the same vehicle. The final routing constraint (5) guarantees conservation of
flow, meaning that a vehicle entering a node must also leave that node again.
The definition of the arrival time of SAVs at nodes is given by (6). Vehicles must
first complete the pick-up of a request before the drop-off, which is guaranteed
by (7). Equation (8) ensures that arrival at the pick-up nodes is on time and
within the required time window. The vehicle load or weight after each node is
defined by Eq. (9). This load must never become negative, be always larger than
the previous request quantity, and never exceed the maximum loading capacity,
of which (10) makes sure. The vehicle capacity has a lower and upper bound,
which are imposed by (11). Each request has a total time spent on the vehicle.
The minimum ride time is given by (12). The actual ride time cannot exceed
this by more than the maximum ride time delay, which is guaranteed by (13).
The model’s five decision variables are traveled arcs, arrival times, compartment
loads, ride times, and vehicle capacities. These are defined respectively by (14),
(15), (16), (17), and (18).

4 Experimental Study

Once traffic flows and transportation demand fluctuate throughout the day, we
carry out an experimental study to obtain insights into the ideal capacity of
an SAV considering different demand scenarios. Ideally, an SAV system should
function efficiently at any time, consistently featuring high occupancy rates and
low idleness. First, to simulate the various times of day in which an SAV operates,
the following scenarios have been considered:

– Morning rush hour: During morning hours, there is a high density of pas-
senger requests from homes to workplaces. This causes traffic to flow from
residential areas to industrial and commercial areas. The amount of parcel
movements is significantly smaller.

– Afternoon: A well-mixed blend of parcel and passenger movements. Parcels
tend to move from industrial areas towards residential areas, while passenger
travel patterns are more evenly distributed across the city.

– Late-afternoon rush hour: Similar to the morning hours, passenger
demand is higher than parcel demand. However, passenger traffic flow is
reversed from industrial/commercial areas to residential areas.

– Evening: The time of day at which most people are at home creates great
opportunities for parcel deliveries. This scenario is dominated by parcel trans-
port requests from industrial to residential areas, but some scattered passen-
ger transport occurs too.

Considering that previously the city map was formulated as a rather abstract
grid structure without any information on the function of each node, neighbour-
hoods are added to the grid. These are described as four rectangular sections
on the map. Two sections are representing residential areas, one section is an
industrial area, and the final section is a campus with a university and offices.
These sections or neighbourhoods can now be used to create scenarios. Request

The Share-A-Ride Problem with Integrated Routing and Design Decisions 355

locations are generated using a probability distribution that can shape the traffic
flow patterns of the scenario. For example, in the morning scenario, there will be
a high probability that passenger pick-ups will occur on any of the nodes within
the residential areas and a much lower probability of them occurring at indus-
trial or campus nodes. Likewise, passenger destinations will more likely occur in
the industrial or campus neighbourhood, rather than in one of the residential
areas. A visual representation of the map with the different neighbourhoods is
shown in Fig. 3.

Fig. 3. City grid divided into neighbourhoods with different functions. The depot is
located in the middle.

The general parameters of the VCSARP are constant across all scenarios. The
total number of requests and available vehicles are set to 8 and 4, respectively.
These relatively low numbers are needed to limit computation times, which can
become very large due to the complexity of the model. To make up for the
low number of requests, request quantities are chosen randomly from a U(4, 8)
distribution. The case of a few large requests (quantities between 4 and 8) can be
considered analogous to a larger number of smaller requests with similar origin
and destination, essentially creating a scenario that serves much more customers.
The parcel and passenger capacity lower and upper bounds are both set to 4 and
24, respectively. Assuming that one passenger seat takes up the space of about
4 large parcels, that results is a total “passenger size” capacity between 4 and
30. Passenger time windows and delivery delays are set quite tight once most
people would not want to experience much delay during their trip. Conversely,
parcel time constraints are much less strict, allowing for a maximum delay of 1 h

356 M. van der Tholen et al.

at delivery. The average speed is set at 20 km/h, which is realistic in cities with
short stopping intervals [17]. A short 10-min total time horizon is chosen because
of the small number of requests. To simulate the (un)loading of resources, a 1-
min service time at each node is added. The objective function parameters α and
βr are retrieved from real-life electricity costs and consumption data of electric
vehicles (see [9] and [5]) (Tables 2 and 3).

Table 2. General parameter values.

Parameter Value

n 8

nk 4

q0i U(4, 8)

q1i U(4, 8)

[Q0
min, Q0

max] [4,24]

[Q1
min, Q1

max] [4,24]

T 0 3 min

T 1 30 min

δ0 10 min

δ0 10 min

vavg 20 km/h

H 10 min

s 1 min

α 0.022 euro/km

β0 0.00308 euro/(km × passenger)

β1 0.00077 euro/(km × parcel)

Table 3. Scenario specific parameter values.

Scenario

Parameter Morning Afternoon Late-afternoon Evening

Number of requests

nh 6 4 6 2

np 2 4 2 6

Pickup and delivery probabilities [res, ind, cam]

pph [1, 0, 0] [1/3, 1/3, 1/3] [0, 1/2, 1/2] [1/3, 1/3, 1/3]

dph [0, 1/2, 1/2] [1/3, 1/3, 1/3] [1, 0, 0] [1/3, 1/3, 1/3]

ppp [0, 1, 0] [1/5, 4/5, 0] [0, 1, 0] [1/5, 4/5, 0]

dpp [1, 0, 0] [4/5, 1/5, 0] [1, 0, 0] [4/5, 1/5, 0]

The Share-A-Ride Problem with Integrated Routing and Design Decisions 357

5 Results

The computations were performed by an Intel Core i7 @ 2.20 GHz processor,
16 GB RAM computer. The programming was done in Python, and the MILP
model was solved using Gurobi Optimizer 9.0.2.

Table 4 shows for each scenario the average optimal vehicle capacity for both
resources and the total vehicle capacity (i.e., the combination of passenger and
parcel capacities). One passenger space is considered the same size as 4 parcel
spaces. A vehicle with a passenger capacity of 4 and a parcel capacity of 8
would thus have a total capacity of 6. This value determines the overall interior
volume of the vehicle, which can be of use for the design of the vehicle, and,
ultimately, the number of vehicles used. Simulations that did not converge to a
0% optimality gap, thus not reaching the most optimal solution, within a 30-min
time limit were discarded. In total, at least 30 simulations with optimal solutions
were generated for each of the four scenarios. Table 5 shows the average total
costs, distance travelled, and cost/km across scenarios and Fig. 4 illustrates the
outcome routes of a single simulation for each scenario.

Table 4. The results of each scenario that are related to vehicle capacity and design.
These are average values from 30 instances on each scenario.

Scenario Passenger cap. Parcel cap. Total cap. # of vehicles

Morning 12.8 8.23 14.9 3.60

Afternoon 8.50 11.9 11.5 3.31

Late-afternoon 12.9 8.93 15.2 3.50

Evening 6.75 17.6 11.1 2.05

Table 5. Average costs, distance travelled, and cost/km for each scenario across 30
different instances.

Scenario Costs [e] Distance travelled [km] Cost/km [e /km]

Morning 1.84 20.6 0.0898

Afternoon 1.46 18.3 0.0793

Late-afternoon 1.67 18.5 0.0907

Evening 1.14 15.1 0.0783

Table 4 shows that the optimal vehicle composition and fleet size differ
markedly for each scenario. As input parameters heavily influence the model’s
outcome, engineers can take multiple approaches to design suitable SAVs that
ultimately match the operational requirements. The most straightforward app-
roach would be designing vehicles using the maximum capacity for each resource

358 M. van der Tholen et al.

across all scenarios, resulting in a vehicle with around 15 passenger seats and
18 parcel spaces. Naturally, these vehicles would end up under-occupied most of
the time, and costs would be higher than calculated, but most requests could be
satisfied easily. Another approach consists of repeating the simulations for the
afternoon and evening scenarios with adjusted capacity constraints. Considering
that vehicles tend to be idler in these scenarios, using a smaller parcel capacity
and deploying more vehicles would also satisfy the conditions. This results in
higher overall costs but more efficient vehicle occupation.

Fig. 4. The results of 4 simulations, where a) is a morning scenario, b) is an afternoon
scenario, c) is a late-afternoon scenario, and d) is an evening scenario. The red node
is the depot, the blue nodes are human pick-ups, the cyan nodes are human drop-offs,
the green nodes are parcel pick-ups and the yellow nodes are parcel drop-offs. Different
colour dotted lines represent different vehicles in operation. The neighbourhoods are
also displayed, as rectangles (see Fig. 3). (Color figure online)

6 Conclusions

This research paper presented a MILP formulation for the variable capacity
share-a-ride problem. The SARP was reformulated to set vehicle capacity as a
decision variable and allow for shared autonomous vehicles. The objective was
to find the optimal capacity of SAVs to give insights into the design of such
vehicles given several operational scenarios, featuring various parcel and people
demand patterns.

The Share-A-Ride Problem with Integrated Routing and Design Decisions 359

Overall, the model provides a basis for estimating the optimal capacity of
SAVs in a static scenario. The parameter inputs are flexible and allow for a wide
variety of scenarios. A point of critique is the limited number of requests that
the model is able to solve within a reasonable time. This was countered by using
larger quantity requests, each representing multiple single requests that have
similar origins and destinations.

The results show that the optimal capacity is highly dependent on the sce-
nario parameters. Scenarios with high passenger transport demand call for vehi-
cles with large passenger capacity and smaller parcel capacity. Scenarios with
more parcel movements have an opposite effect on both capacities. While this is
to be expected, it makes it hard to find an optimum capacity that will satisfy
all scenarios and be cost-efficient at the same time. The concept of SAV in this
paper uses separate compartments for passenger and parcel transport. Empty
passenger spaces cannot be used for parcels and vice versa. One could rethink
this concept and go for a more flexible utilization of interior space. Possible
solutions include foldable seats for additional parcel storage, under-seat stor-
age of parcels, or a simple flat floor with standing/leaning space for passengers
and freely usable space for parcels. These concepts could easily be implemented
into the current model with simple reformulations. Alternatively, a more flexible
solution could be considered, where AVs are dynamically outfitted at service
points, having their people and parcel compartment capacity adjusted to match
the demand changes. Future work will focus on modeling such a flexible setting
considering additional operational characteristics such as different revenues for
passengers and parcels, penalties for extended ride time, premiums for private
travel requests, vehicle and compartment purchasing costs.

References

1. Beirigo, B.A., Schulte, F., Negenborn, R.R.: Integrating people and freight
transportation using shared autonomous vehicles with compartments. IFAC-
PapersOnLine 51(9), 392–397 (2018). https://doi.org/10.1016/j.ifacol.2018.07.064

2. Beirigo, B.A., Schulte, F., Negenborn, R.R.: A learning-based optimization app-
roach for autonomous ridesharing platforms with service level contracts and on-
demand hiring of idle vehicles. Transp. Sci. (2021, in press). https://doi.org/10.
1287/trsc.2021.1069

3. Boesch, P.M., Ciari, F., Axhausen, K.W.: Autonomous vehicle fleet sizes required
to serve different levels of demand. Transp. Res. Rec. 2542, 111–119 (2016).
https://doi.org/10.3141/2542-13

4. Buchegger, A., Lassnig, K., Loigge, S., Mühlbacher, C., Steinbauer, G.: An
autonomous vehicle for parcel delivery in urban areas. In: Proceedings of the IEEE
Conference on Intelligent Transportation Systems, pp. 2961–2967 (2018). https://
doi.org/10.1109/ITSC.2018.8569339

5. Černý, J.: Testing of five different types of electric buses. In: Proceedings of the
CIVITAS Forum Conference 2015, Ljubljana, Slovenia (2015)

6. Cordeau, J.F., Laporte, G.: The dial-a-ride problem (DARP): variants, modeling
issues and algorithms. 4OR 1(2), 89–101 (2003). https://doi.org/10.1007/s10288-
002-0009-8

https://doi.org/10.1016/j.ifacol.2018.07.064
https://doi.org/10.1287/trsc.2021.1069
https://doi.org/10.1287/trsc.2021.1069
https://doi.org/10.3141/2542-13
https://doi.org/10.1109/ITSC.2018.8569339
https://doi.org/10.1109/ITSC.2018.8569339
https://doi.org/10.1007/s10288-002-0009-8
https://doi.org/10.1007/s10288-002-0009-8

360 M. van der Tholen et al.

7. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manage. Sci. 6(1),
80–91 (1959)

8. Do, P.T., Nghiem, N.V.D., Nguyen, N.Q., Nguyen, D.N.: A practical dynamic
share-a-ride problem with speed windows for Tokyo city. In: Proceedings of the
8th International Conference on Knowledge and Systems Engineering, pp. 55–60.
IEEE (2016). https://doi.org/10.1109/KSE.2016.7758029

9. Electric Vehicle Database: Energy consumption of full electric vehicles cheatsheet
- EV Database (2020). https://ev-database.uk/cheatsheet/energy-consumption-
electric-car, https://ev-database.uk/cheatsheet/energy-consumption-electric-car.
Accessed 15 Jan 2021

10. Jameel, F., Chang, Z., Huang, J., Ristaniemi, T.: Internet of autonomous vehicles:
architecture, features, and socio-technological challenges. IEEE Wirel. Commun.
26(4), 21–29 (2019)

11. Jung, H., Silva, R., Han, M.: Scaling trends of electric vehicle performance: driving
range, fuel economy, peak power output, and temperature effect. World Electr. Veh.
J. 9(4), 1–14 (2018). https://doi.org/10.3390/wevj9040046

12. Li, B., Krushinsky, D., Reijers, H.A., Van Woensel, T.: The share-a-ride problem:
people and parcels sharing taxis. Eur. J. Oper. Res. 238(1), 31–40 (2014). https://
doi.org/10.1016/j.ejor.2014.03.003

13. Lin, Y., Li, W., Qiu, F., Xu, H.: Research on optimization of vehicle routing prob-
lem for ride-sharing taxi. Procedia Soc. Behav. Sci. 43, 494–502 (2012). https://
doi.org/10.1016/j.sbspro.2012.04.122

14. Louveaux, F.V., Salazar-González, J.J.: Solving the single vehicle routing prob-
lem with variable capacity. Transp. Sci. 50(2), 708–719 (2016). https://doi.org/10.
1287/trsc.2014.0556

15. Mourad, A., Puchinger, J., Chu, C.: A survey of models and algorithms for opti-
mizing shared mobility. Transp. Res. Part B Methodol. 123, 323–346 (2019)

16. Nguyen, N.Q., Tuan, K.L., Nghiem, N.V.D., Nguyen, M.S., Thuan, P.D., Mukai,
N.: People and parcels sharing a taxi for Tokyo city. In: Proceedings of the Sixth
International Symposium on Information and Communication Technology, pp. 90–
97 (2015). https://doi.org/10.1145/2833258.2833309

17. Oskarbski, J., Birr, K., Miszewski, M., Zarski, K.: Estimating the average speed
of public transport vehicles based on traffic control system data. In: Proceedings
of the 2015 International Conference on Models and Technologies for Intelligent
Transportation Systems, pp. 287–293 (2015). https://doi.org/10.1109/MTITS.
2015.7223269

18. Ronald, N., Yang, J., Thompson, R.G.: Exploring co-modality using on-demand
transport systems. Transp. Res. Procedia 12, 203–212 (2016). https://doi.org/10.
1016/j.trpro.2016.02.059

19. Santos, D.O., Xavier, E.C.: Taxi and ride sharing: a dynamic dial-a-ride problem
with money as an incentive. Expert Syst. Appl. 42(19), 6728–6737 (2015). https://
doi.org/10.1016/j.eswa.2015.04.060

20. Savelsbergh, M., Van Woensel, T.: 50th anniversary invited article-city logistics:
challenges and opportunities. Transp. Sci. 50(2), 579–590 (2016). https://doi.org/
10.1287/trsc.2016.0675

21. Toth, P., Vigo, D.: The vehicle routing problem. SIAM (2002)
22. United Nations; Department of Economic and Social Affairs; Population Divi-

sion: World Urbanization Prospects: The 2018 Revision. United Nations, New York
(2019)

https://doi.org/10.1109/KSE.2016.7758029
https://ev-database.uk/cheatsheet/energy-consumption-electric-car
https://ev-database.uk/cheatsheet/energy-consumption-electric-car
https://ev-database.uk/cheatsheet/energy-consumption-electric-car
https://doi.org/10.3390/wevj9040046
https://doi.org/10.1016/j.ejor.2014.03.003
https://doi.org/10.1016/j.ejor.2014.03.003
https://doi.org/10.1016/j.sbspro.2012.04.122
https://doi.org/10.1016/j.sbspro.2012.04.122
https://doi.org/10.1287/trsc.2014.0556
https://doi.org/10.1287/trsc.2014.0556
https://doi.org/10.1145/2833258.2833309
https://doi.org/10.1109/MTITS.2015.7223269
https://doi.org/10.1109/MTITS.2015.7223269
https://doi.org/10.1016/j.trpro.2016.02.059
https://doi.org/10.1016/j.trpro.2016.02.059
https://doi.org/10.1016/j.eswa.2015.04.060
https://doi.org/10.1016/j.eswa.2015.04.060
https://doi.org/10.1287/trsc.2016.0675
https://doi.org/10.1287/trsc.2016.0675

The Share-A-Ride Problem with Integrated Routing and Design Decisions 361

23. Weiss, M., Cloos, K.C., Helmers, E.: Energy efficiency trade-offs in small to large
electric vehicles. Environ. Sci. Eur. 32(1), 1–17 (2020). https://doi.org/10.1186/
s12302-020-00307-8

24. Zhang, R., Spieser, K., Frazzoli, E., Pavone, M.: Models, algorithms, and eval-
uation for autonomous mobility-on-demand systems. In: Proceedings of the 2015
American Control Conference, pp. 2573–2587. American Automatic Control Coun-
cil (2015). https://doi.org/10.1109/ACC.2015.7171122

https://doi.org/10.1186/s12302-020-00307-8
https://doi.org/10.1186/s12302-020-00307-8
https://doi.org/10.1109/ACC.2015.7171122

Algorithms for the Design of Round-Trip
Carsharing Systems with a

Heterogeneous Fleet

Pieter Smet1(B), Emmanouil Thanos1, Federico Mosquera1,
and Toni I. Wickert1,2

1 Department of Computer Science, KU Leuven, Leuven, Belgium
pieter.smet@kuleuven.be

2 Institute of Informatics, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil

Abstract. Carsharing has become a viable mode of transport which not
only contributes to improving the environment and traffic congestion, but
is often also cheaper for its users. It is a challenging task for carsharing
providers to design an effective system which meets user demand while
at the same time limiting expenses. This paper introduces an integer pro-
gramming formulation and a simulated annealing metaheuristic to opti-
mize the location of vehicles for round-trip systems with a heterogeneous
fleet. An extensive computational study is carried out to understand the
impact of fleet heterogeneity, request generality and the number of possi-
ble vehicle locations on the algorithms’ performance. Problem instances
derived from a case study are shown to be edge cases in terms of fleet
heterogeneity and request generality, for which the proposed integer pro-
gramming formulation performs exceptionally well. Finally, solutions of
the case study are analyzed to demonstrate the effect of spatial flexibility
on the system’s costs.

Keywords: Carsharing · Vehicle location · Integer programming ·
Simulated annealing

1 Introduction

Carsharing systems have existed since the 1970s and have become increasingly
popular in recent years as a consequence of increased congestion and environ-
mental concerns [15]. Carsharing is based on shared usage of a fleet of vehicles
by users who pay a monthly or yearly subscription fee to a carsharing provider.
In return, users may make use of the available vehicles for a cost which typically
depends on trip duration or distance. Many studies have shown that carsharing
users tend to drive less, thereby directly contributing to improving some of the
pressing mobility issues currently faced by society [18].

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 362–376, 2021.
https://doi.org/10.1007/978-3-030-87672-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_24

Algorithms for the Design Round-Trip Carsharing Systems 363

Carsharing systems are categorized as either round-trip or one-way1. In
round-trip systems, users should return the vehicle to the same station where it
was picked up. One-way systems offer more flexibility to their users by allowing
vehicles to be picked up and dropped off at different locations. A further dis-
tinction is made between station-based and free-floating one-way systems. The
former uses fixed locations for its vehicles while in free-floating systems, vehi-
cles are bound only by a fixed geographic area. Despite the increased flexibility
offered by one-way systems, round-trip systems are still predominantly used in
practice. A recent survey reported that globally, 69% of carsharing users make
use of round-trip systems, while only 31% use one-way systems [19].

Optimizing the design of round-trip systems, more specifically deciding where
to place vehicles, is crucial to ensure a high quality of service. The problem
studied in this paper addresses this strategic optimization problem for a round-
trip carsharing systems operating with a fixed heterogeneous fleet. The quality of
a solution is determined by how well user demand is matched. This is quantified
by solving a subproblem in which the expected user demand is considered. User
demand is determined by the users’ requests for a specific type of vehicle, for
example a small city car or an SUV, during a fixed period of time. These requests
should be representative of future demand, and are typically generated based on
historical data. The objective is to maximize the number of serviced requests
while taking into account proximity of users to vehicles. Costs associated with
opening stations for the vehicles are also minimized in the objective function.

This paper investigates the impact of three problem characteristics on the
performance of two solution approaches: an integer programming (IP) formula-
tion and a simulated annealing metaheuristic. A computational study is carried
out using a dataset consisting of 415 problem instances, which have been made
publicly available. The proposed solution approaches are also used to solve prob-
lem instances from practice which have been provided by a carsharing company.
These real-world problem instances take extreme values for two of the three stud-
ied problem characteristics. Because of this, the IP formulation is able quickly to
find optimal solutions for these instances. Finally, the optimal solutions to two
problem instances from practice are analyzed in detail to demonstrate how user
spatial flexibility can decrease operational costs for the carsharing provider.

The remainder of this paper is organized as follows. Section 2 provides an
overview of related work. Section 3 defines the problem which is solved in this
paper. Section 4 proposes two solution approaches for the considered problem:
an IP formulation and a simulated annealing metaheuristic. Section 5 analyzes
the performance of the different solution approaches and investigates the impact
of various problem characteristics. This section also analyzes the impact of user
spatial flexibility on operational costs. Finally, Sect. 6 concludes the paper and
outlines directions for future research.

1 A third, less common type of carsharing is peer-to-peer carsharing in which users
rent out their private vehicle to other users.

364 P. Smet et al.

2 Related Work

The design of carsharing systems has been the subject of many studies in the
academic literature [3]. Three categories of solution approaches can be distin-
guished: exact methods using integer programming, (meta)heuristic algorithms
and simulation. The following discussion on related work is limited to strate-
gic optimization problems related to station location and vehicle allocation. For
a recent literature survey on models and algorithms for operational problems
related to carsharing, we refer to [9].

The problem addressed in [22] considers both spatial and temporal flexibility
when determining which vehicle to use to serve a user. It is shown that these
two types of flexibility are highly complementary and lead to cost reduction of
almost 20%. By limiting the degree of flexibility and considering a scheduling
period of one week, the problem could be solved as an IP problem using state of
the art solvers. Integer programming is also used in [8] to determine the number
of vehicle depots, their location and fleet size for a one-way system. Three IP
formulations are introduced which model different request rejection policies. [8]
extended these models by allowing spatial flexibility for the system’s users. A
bi-objective integer programming problem is solved in [2] to optimize the design
of a one-way system with electric vehicles. [5] use Benders decomposition to
determine the location of recharging stations for a one-way electric car sharing
system.

The time-dependent IP formulation proposed in [4] is used to optimize the
location of charging stations in electric carsharing systems. While state of the art
IP solvers are able to solve small and medium-sized instances, a heuristic method
is required to address larger problem instances. Heuristics and metaheuristics are
also commonly used when the objective function involves complex calculations.
[6] use simulated annealing to determine fleet size and its allocation to stations.
The goal is to minimize user waiting time which is computed using simulation.
Other examples of complex objective functions are discussed in [14] and [7].
In these papers, regression models are used to estimate trip demand and user
membership, which are then optimized using heuristic algorithms.

Simulation has also been used as a stand-alone tool in the literature to eval-
uate design decisions, thereby allowing some problem characteristics to be mod-
eled as stochastic variables. In [10], solutions from a deterministic IP model are
used to analyze the impact of vehicle relocation operations in between users’
requests, while considering demand variability. The methodology proposed in
[1] uses simulation to evaluate the performance of two approaches which aim to
increase the utilization of vehicles.

3 Problem Description

This section formally defines the optimization problem addressed in the remain-
der of this paper. The set of vehicles in the system is denoted by V . It is common
for carsharing companies to have multiple vehicles of the same type. Let T be

Algorithms for the Design Round-Trip Carsharing Systems 365

the set of types by which the individual vehicles may be grouped. Let Vt ⊆ V be
the set of vehicles of type t, with qt = |Vt| the total number of vehicles of type t.
The geographic area within which the vehicles must be placed is discretized into
a set of non-overlapping zones Z. Two zones z and z′ are considered adjacent
if a user is able to walk from z to z′ without having to pass through another
intermediary zone.

Let R be the set of requests made during a planning horizon consisting of days
D. A request r is defined by its start time sr, end time fr, duration ur = fr − sr
and day dr on which the request begins. Two requests are said to be overlapping
in time if the intersection of their time intervals is non-empty. The home zone
of request r is the zone in which the request is made and is denoted by hr. Let
Zr ⊆ Z be a subset of zones consisting of the home zone of request r and all
zones adjacent to hr. The subset of vehicle types to which request r may be
assigned is denoted by Tr ⊆ T . The subset of individual vehicles suitable for
request r is denoted as the set Vr ⊆ V . We refer to Vr as the set of feasible
vehicles for request r.

The primary objective is to find an assignment of vehicles to zones such that
as many requests as possible are assigned to a feasible vehicle. A request may be
feasibly assigned to a vehicle if it is located in the request’s home zone or in an
adjacent zone. Requests which overlap in time cannot be assigned to the same
vehicle. If request r is not assigned to any vehicle, a cost C1

r is incurred. If request
r is assigned to a vehicle in a zone adjacent to hr, a cost C2

r is added to the total
solution cost. Finally, there is also a cost C3

vz associated with placing vehicle v
in zone z. This third cost component corresponds to expenses for the carsharing
company incurred by, for example, commissions to the city administration for
reserving parking spaces. The objective function to be minimized is the weighted
sum of these three costs.

4 Solution Approaches

This section introduces two solution approaches for the considered problem.
First, an IP formulation of the problem is presented which is solved using a
general purpose IP solver. Second, a problem-specific simulated annealing meta-
heuristic is discussed.

4.1 Integer Programming Formulation

The IP formulation uses two main sets of decision variables. For each t ∈ T and
z ∈ Z, an integer variable xtz equals the number of vehicles of type t assigned
to zone z. For each r ∈ R, t ∈ Tr and z ∈ Zr, a binary variable yrtz equals
one if request r is assigned to a vehicle of type t in zone z, and zero otherwise.
Additionally, for each r ∈ R, an auxiliary binary variable pr equals one if request
r is unassigned, and zero otherwise.

Request overlap is modeled using sets Ct = {K1, . . . ,Kn}, ∀t ∈ T . Each set
Ki ∈ Ct consists of requests for which t ∈ Tr and which pairwise overlap in time.

366 P. Smet et al.

Moreover, each Ki is maximal in the sense that there does not exist any request
in R\Ki which overlaps with all requests in Ki. Note that the same request r
for which t ∈ Tr may appear in multiple sets in Ct. The complete set Ct can
be constructed by finding all maximal cliques in a conflict graph where nodes
correspond to requests for which t ∈ Tr, and where two nodes are connected by
an edge if their corresponding requests overlap in time. Given that this conflict
graph is an interval graph, all maximal cliques can be found in polynomial time
by the algorithm described in [12]. The formulation also uses the set Z̃r ⊆ Z
consisting of only those zones adjacent to hr, that is, Zr\{hr}. The IP model
may now be formulated as follows:

min
∑

r∈R

C1
rpr +

∑

r∈R

∑

t∈Tr

∑

z∈Z̃r

C2
ryrtz +

∑

t∈T

∑

z∈Z

C3
tzxtz (1)

s.t.
∑

z∈Z

xtz = qt ∀t ∈ T (2)

yrtz ≤ xtz ∀r ∈ R, t ∈ Tr, z ∈ Zr (3)
∑

t∈Tr

∑

z∈Zr

yrtz + pr = 1 ∀r ∈ R (4)

∑

r∈K

yrtz ≤ xtz ∀t ∈ T, z ∈ Z,K ∈ Ct (5)

xtz ∈ {0, 1, ..., qt} ∀t ∈ T, z ∈ Z (6)
yrtz ∈ {0, 1} ∀r ∈ R, t ∈ Tr, z ∈ Zr (7)
pr ∈ {0, 1} ∀r ∈ R (8)

Objective function (1) minimizes the three aforementioned objective terms
in a weighted sum. Constraints (2) ensure that the assigned number of vehicles
of each type matches the available number of vehicles. Constraints (3) require
that requests are only assigned to a vehicle type in a zone if at least one vehicle
of that type is available in that zone. Constraints (4) make sure each request is
assigned to at most one vehicle and sets the binary penalty variable pr accord-
ingly. Constraints (5) ensure overlapping requests are assigned to different vehi-
cles. Constraints (6)–(8) enforce bounds on the decision variables.

Given that model (1)–(8) aggregates individual vehicles into types, a post-
processing procedure is required to obtain an assignment of individual vehicles
to zones and requests. Our proposed methodology for doing so consists of two
steps. First, the vehicle-to-zone assignments are determined. For each zone z ∈ Z
and type t ∈ T , exactly xtz vehicles of type t are assigned to zone z. Vehicles
are randomly selected in such a way that each vehicle is assigned to exactly one
zone. Second, the request-to-vehicle assignments are derived from the formula-
tion’s solution. Request r is assigned to a vehicle of type t in zone z based on
the value of decision variable yrtz and the assignments made during the first
step. This corresponds to solving a fixed interval scheduling problem [13]. If
the sets Tr are disjoint, this problem may be solved in polynomial time by first
sorting all requests based on their start time and then assigning them to the

Algorithms for the Design Round-Trip Carsharing Systems 367

first available vehicle. However, if the sets Tr are non-disjoint, something which
may occur if, for example, vehicle types are defined in a hierarchical structure,
then deriving the request-to-vehicle assignments becomes an NP-hard problem.
Typically, Vr will be relatively small due to the vehicle-to-zone assignments and
this subproblem may thus be solved in acceptable computation time using IP or
problem-specific algorithms from the literature [17,20].

4.2 Simulated Annealing

Simulated annealing is a single solution, iterative metaheuristic in which one
neighboring solution is sampled per iteration. Algorithm1 outlines the main
steps of the algorithm which takes as input parameters an initial solution S0, a
starting temperature T0, a minimum temperature T s, a cooling rate α and the
number of equilibrium iterations I. In the function accept(S′), the probability
of accepting a neighboring solution S′ depends on the difference in solution cost
Δ between the current and neighboring solution, and the current temperature
T , calculated as exp(−Δ/T) [11]. A fixed number of iterations I is performed at
each temperature level before decreasing the temperature using an exponential
cooling schedule αT , with 0 < α < 1. When the minimum temperature level T s

is reached the algorithm stops and the best solution S∗ is returned.

Algorithm 1: Simulated annealing
Data: S0, T0, T s, α, I
Result: S∗

1 S∗ ← S0;
2 T ← T0;
3 while T ≥ T s do
4 i ← 0;
5 while i ≤ I do
6 S′ ← N(S);
7 if accept(S′) then
8 S ← S′;
9 if S′ < S∗ then

10 S∗ ← S′;

11 i ← i + 1;

12 T ← αT ;

13 return S∗;

A direct solution representation is used based on two data structures corre-
sponding to the two main assignment decisions. The first is a set of vehicle-to-
zone assignments V which consists of |V | tuples of the form (v, z), indicating
that vehicle v ∈ V is assigned to zone z ∈ Z. The second is a set of request-
to-vehicle assignments R which consists of |R| tuples of the form (r, v) or (r, ∅),
indicating that request r ∈ R is assigned to vehicle v ∈ Vr or remains unassigned,
respectively.

368 P. Smet et al.

The initial solution S0 is constructed by first assigning each vehicle to a
random zone. Then, each request is assigned to a randomly selected feasible
vehicle, that is, a vehicle with no overlapping requests and which is assigned
to the request’s home zone or an adjacent zone. If no such vehicle exists, the
request remains unassigned.

In each iteration of the algorithm, one of two possible neighborhoods is ran-
domly sampled for a new solution. The first neighborhood modifies assignments
in both V and R while the second only modifies the set R. The neighborhoods
are defined by the following two operators:

– move(v, z): move vehicle v to a new zone z. Each request r previously assigned
to v for which z /∈ Zr initially becomes unassigned. These requests are then
either immediately re-assigned to a different feasible vehicle without causing
overlap conflicts and with minimal cost increase, or they remain unassigned
if no such assignment exists. Additionally, each request r′ for which z ∈ Zr′

is assigned to vehicle v if this leads to a lower cost without incurring any
conflicts.

– assign(r, v): assign request r to a new vehicle v ∈ Vr which is currently
assigned to a zone in Zr. All requests which were previously assigned to v
and which overlap with r become unassigned and are re-assigned to a different
feasible vehicle which leads to the minimal cost increase, or remain unassigned
if no such feasible vehicle exists.

5 Computational Study

This section presents the results of a computational study on the performance of
the two proposed solution approaches. Section 5.1 provides details regarding the
used data sets and computational environment. Section 5.2 analyzes the impact
of three problem characteristics on algorithm performance. Section 5.3 compares
and evaluates the performance of the two approaches on real-world cases.

5.1 Data Generation and Experimental Setup

A set of problem instances was generated based on properties identified in real-
world data provided by an industry partner which described the available fleet
and users’ requests during the first six months of 20172. Request start day, start
time and duration were sampled from distributions fitted to the probability
density functions observed in the real-world data. Further analysis of the data
revealed a recurring pattern concerning where exactly requests are made. There
are typically a few zones with a high number of requests which are located close
to each other. The number of requests per zone then decreases as one moves away
from this high-density cluster. This pattern was replicated in the generated data
set. Figure 1 shows the number of requests per zone in six example problem
instances.
2 The generated instances can be downloaded at https://people.cs.kuleuven.be/

∼pieter.smet/carsharing.

https://people.cs.kuleuven.be/~pieter.smet/carsharing
https://people.cs.kuleuven.be/~pieter.smet/carsharing

Algorithms for the Design Round-Trip Carsharing Systems 369

Example 4 Example 5 Example 6

Example 1 Example 2 Example 3

Number of requests 0 100 200 300

Fig. 1. Number of requests per zone in randomly generated instances with an 8 × 8
grid zone layout.

Two parameters are introduced to quantify fleet heterogeneity and varia-
tion in the requested vehicle types. First, let σs = 1 − |T |/|V | be a metric for
the degree of fleet heterogeneity. Low values for σs indicate that the fleet is
strongly heterogeneous whereas high values indicate that the fleet is strongly
homogeneous and mainly consists of vehicles of the same type. Second, let
φr =

∑
r∈R(|Tr|/|T |)/|R| be a metric for the level of request generality. Specifi-

cally, it represents how many of the different vehicles types are considered feasible
for a request, averaged over all requests. If φr = 1, then requests can be assigned
to all vehicle types. By contrast, low values for φr indicate that requests can
only be assigned to a limited number of vehicle types.

All terms in the objective function are expressed in the same unit (Euro),
which allows them to be summed directly without having to include any addi-
tional multipliers. The first cost C1

r , associated with leaving request r unassigned,
is determined by multiplying the duration of request r by the price per minute
of use. This value was determined based on a survey of carsharing providers
in Belgium and was set to e0.30/min. The second cost C2

r corresponds to the
incentive given by the provider to users whose requests are assigned to vehicles
in adjacent zones, thus requiring spatial flexibility. This cost is calculated as
0.5 × C1

r . The third cost C3
tz is associated with placing vehicle of type t in zone

z and is set to e2/day. Note that, in practice, this cost may vary depending
on the zone and type of vehicle. For example, a large parking space in the city
center will cost more than a small space located at the edge of the city. For the
purpose of the present computational study, a random increase or decrease of at
most 10% was applied to the average to simulate such variations.

All experiments were conducted on a Dell Poweredge T620, 2x Intel Xeon
E5-2670 with 128 GB RAM. Gurobi 8.1 was used as IP solver with default set-
tings and configured to use one thread. A time limit of five hours was imposed for

370 P. Smet et al.

each experiment. The minimum temperature level for simulated annealing was
fixed to T s = 0.1. The remaining parameters were set using irace after deter-
mining suitable ranges in preliminary experiments [16]. This process resulted in
the following parameter settings: α = 0.9998, T0 = 329 and I = 1775. Each
experiment involving simulated annealing was repeated ten times to account for
the algorithm’s non-deterministic nature.

5.2 Problem Hardness

The impact of three problem characteristics on the performance of the proposed
algorithms is analyzed. The considered characteristics are fleet heterogeneity,
request generality and number of zones. Algorithm performance is quantified as
the gap of the final solution to the lower bound. Note that reported optimality
gaps are all calculated using the lower bound of the IP formulation, and thus
depend on the solver’s performance.

For each experiment, a set of instances was generated with a planning horizon
of 28 days. The number of requests was varied between 700 and 4200 in incre-
ments of 700, while the number of vehicles was calculated as |V | = α(|R|/|D|)
where α ∈ {0.8, 1.3} in order to vary vehicle occupancy rates.

Fleet Heterogeneity. The level of fleet heterogeneity σs was varied between
0 and 1 in increments of 0.1, considering 64 zones organized in an 8× 8 grid and
a request generality of φr = 0.3. Table 1 shows the average optimality gap for
the two solution approaches. The performance of the IP formulation is inversely
correlated with σs. For instances with a strongly homogeneous fleet, the IP for-
mulation is able to quickly find optimal solutions. Less fleet heterogeneity results
in fewer vehicle types and thus smaller IP problems. However, for instances with
a more heterogeneous fleet, the IP formulation is unable to find good solutions,
with average optimality gaps of up to 48% for σs ≤ 0.1. Simulated annealing fol-
lows a similar pattern for the optimality gaps, however, its gaps are, on average,
smaller. Overall, simulated annealing proves to be more suited for addressing
instances with varying levels of fleet heterogeneity, independent of their size.

Table 1. Optimality gaps for varying levels of fleet heterogeneity.

Fleet heterogeneity σs Average

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Integer programming 48% 48% 44% 42% 41% 40% 37% 31% 24% 6% 0% 33%

Simulated annealing 31% 31% 25% 24% 24% 22% 21% 17% 14% 7% 0% 20%

Request Generality. The level of request generality φr was varied between 0.1
and 1 in increments of 0.1, considering 64 zones and a fleet heterogeneity of σs =
0.6. Table 2 again reports the average optimality gap for the two approaches.

Algorithms for the Design Round-Trip Carsharing Systems 371

The IP formulation is clearly affected by varying request generality. Problem
instances with high values for φr are generally easy to solve for the IP solver.
The most computationally challenging instances are those where φr ∈ [0.2, 0.5].
When only a few vehicle types are considered feasible, the instances again become
easier to solve. The IP formulation is able to find all optimal solutions when φr

is close to one. However, on average, simulated annealing finds solutions which
are closer to the optimum.

Table 2. Optimality gaps for varying levels of request generality.

Request generality φr Average

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Integer programming 14% 25% 36% 34% 31% 15% 5% 1% 0% 0% 16%

Simulated annealing 9% 17% 20% 19% 16% 11% 8% 6% 5% 0% 11%

Zone Size. From the user’s perspective, a zone’s size has a major impact on
how convenient they experience the carsharing system. If zones are too large,
users will have to walk far to access their vehicle, even if it is located in their
home zone. However, small zones increase the size of the problem, making it
more difficult for algorithms to find good solutions. This section investigates the
impact of the number of zones on the performance of the proposed approaches.

The number of zones was varied from 64 to 900, with φr = 0.3 and σs =
0.6. All instances considered zones that are organized in a square grid. Table 3
shows the average optimality gap for the two solution approaches. For both
approaches, the number of zones does not significantly affect the optimality
gaps. Nevertheless, there is a clear difference in performance overall between the
approaches, which follows the previously identified trends. Simulated annealing
finds the best solutions overall, with a gap of 21% to the best lower bounds
obtained by the IP formulation.

Table 3. Optimality gaps for varying number of zones.

Number of zones Average

64 81 100 121 144 169 196 225 400 625 900

Integer programming 33% 37% 35% 35% 37% 34% 37% 36% 37% 36% 36% 36%

Simulated annealing 19% 21% 19% 20% 21% 20% 21% 22% 21% 21% 23% 21%

5.3 Real-World Instances

A set of problem instances was also derived from real-world data concerning two
cities, denoted here by A and B. These two cities cover an area of 3.9 km× 4.9 km
and 9.6 km× 10.5 km, respectively. Both areas were divided into zones by over-
laying a grid of ten by ten rectangles resulting in 100 zones of approximately

372 P. Smet et al.

0.2 km2 and 1 km2 each, respectively. By varying the length of the planning hori-
zon, nine instances were constructed for each city, labeled A1-A9 and B1-B9.

The fleet available in city A is considerably smaller compared to city B, both
in terms of number of vehicles and vehicle types. However, in both cases, the fleet
is rather homogeneous, with σs = 0.77 and σs = 0.93 for A and B, respectively.
In terms of request generality, the two cities are identical: each request can only
be serviced by one type of vehicle, that is, |Tr| = 1 for all requests r ∈ R.
In city A, |T | = 3 and φr = 0.33 while in city B |T | = 13 and φr = 0.08.
As demonstrated by the results in Sect. 5.2, model (1)–(8) is very effective for
solving instances with these characteristics.

Table 4 compares the performance of the IP formulation and simulated
annealing. For both approaches, the final solution cost (Cost), optimality gap
(Gap) and computation time in seconds (Time) are shown. For simulated anneal-
ing, the reported solution cost is the average of ten repeated runs with different
seed values for the algorithm’s random number generator.

The IP formulation found optimal solutions for all instances in very limited
computation time. Even for the largest instance with 5306 requests and 193
vehicles, the solver found an optimal solution in under two seconds. In general,
computation time increased with problem size (number of requests and vehi-
cles). For simulated annealing, the average optimality gap was 0.8%, with a
small relative standard deviation which varied between 0.02% and 0.31%. How-
ever, the required computation time was significantly larger compared to the IP
formulation.

Table 5 shows details of the optimal solutions for two of the real-world
instances, A9 and B9. In addition to the results for the proposed problem, values
are also shown for a scenario without spatial user flexibility, that is, in which
requests can only be assigned to vehicles located in their home zones. First,
data related to the number of assigned requests is shown. Second, details on the
solutions’ objective values are given. Finally, the average vehicle utilization rate
is reported which is defined here as the average of the total time a vehicle is
used divided by the total time the vehicle may potentially be used. This value
is calculated as shown in Eq. (9), with Av ⊂ R the subset of requests assigned
to vehicle v and δ the duration of one day in the planning horizon expressed in
the same unit as request duration ur.

Avg. vehicle utilization rate =
1

|V |
∑

v∈V

∑
r∈Av

ur

|D| × δ
(9)

When allowing spatial flexibility, most of the requests can be assigned. More-
over, the majority of these requests are assigned to vehicles in their home zones.
In the larger city (B9), relatively more requests can be assigned and home zones
can be better matched compared to the smaller city (A9). Analyzing the objec-
tive values, the largest component comes from the incentives paid by the car-
sharing provider to users who are serviced in an adjacent zone. The reported
utilization rates are in line with those found in the literature [21]. Without
spatial flexibility, a considerable drop in solution quality is observed. This is

Algorithms for the Design Round-Trip Carsharing Systems 373

Table 4. Characteristics and algorithm performance for IP and simulated annealing.
All computation times are reported in seconds.

Instance IP formulation Simulated annealing

Id |D| |R| |T | |V | σs ρr Cost Gap Time Cost Gap Time

A1 84 470 3 13 0.77 0.3 20718 0.0% 0.4 20832.0 0.5% 365.8

A2 84 474 3 13 0.77 0.3 20487 0.0% 0.4 20653.0 0.8% 379.8

A3 84 473 3 13 0.77 0.3 18161 0.0% 0.4 18494.8 1.8% 386.1

A4 126 709 3 13 0.77 0.3 31166 0.0% 0.5 31397.0 0.7% 590.1

A5 126 699 3 13 0.77 0.3 31555 0.0% 0.6 31789.0 0.7% 587.0

A6 126 695 3 13 0.77 0.3 30584 0.0% 0.4 30865.0 0.9% 579.5

A7 168 943 3 13 0.77 0.3 43728 0.0% 0.4 44129.6 0.9% 777.5

A8 168 945 3 13 0.77 0.3 43402 0.0% 0.4 43836.0 1.0% 779.9

A9 168 937 3 13 0.77 0.3 42067 0.0% 0.4 42298.0 0.5% 761.7

B1 21 3081 13 193 0.93 0.1 26753 0.0% 1.0 26962.6 0.8% 3945.1

B2 21 3169 13 193 0.93 0.1 29149 0.0% 0.9 29431.4 1.0% 3966.2

B3 21 2763 13 193 0.93 0.1 17544 0.0% 0.8 17612.0 0.4% 3360.3

B4 28 3934 13 193 0.93 0.1 37440 0.0% 1.4 37643.8 0.5% 5069.8

B5 28 4061 13 193 0.93 0.1 43075 0.0% 1.2 43656.6 1.3% 5130.4

B6 28 4095 13 193 0.93 0.1 50300 0.0% 1.3 50563.0 0.5% 5358.0

B7 35 5218 13 193 0.93 0.1 51498 0.0% 1.7 52001.0 1.0% 6952.6

B8 35 5306 13 193 0.93 0.1 74174 0.0% 2.0 74576.4 0.5% 7062.0

B9 35 5181 13 193 0.93 0.1 51669 0.0% 1.8 52164.4 0.9% 6900.5

Table 5. Solution details for two instances.

Instance A9 Instance B9

Spatial flexibility Only home zones Spatial flexibility Only home zones

Total number of requests 937 937 5181 5181

Requests assigned 93.4% 62.2% 98.4% 88.4%

Assigned in home zone 58.2% 62.2% 87.4% 88.4%

Assigned in adjacent zone 35.2% 0.0% 11.0% 0.0%

Requests unassigned 6.6% 37.8% 1.6% 11.6%

Total objective value e42,067 e105,046 e51,669 e149,084

Unassigned requests cost e18,060 e102,400 e15,510 e143,220

Adjacent-assigned requests cost e21,570 e0 e30,585 e0

Vehicle location cost e2,437 e2,646 e5,574 e5,864

Avg. vehicle utilization rate 10.9% 8.2% 17.6% 16.3%

especially noticeable in the smaller city (A09) as there are fewer vehicles avail-
able for the same number of zones. As fewer requests are assigned in total, the
vehicle utilization rates also decrease.

374 P. Smet et al.

6 Conclusions and Future Work

Increased traffic congestion and environmental concerns have motivated the use
of a variety of shared mobility systems. Carsharing is one such system in which
different users make use of a shared fleet of vehicles. Different types of carsharing
systems may be distinguished depending on whether they operate using stations
or free-floating zones and whether they allow one-way trips or require users to
return their vehicle to the pickup location.

For round-trip systems, the location of vehicles is one of the primary design
decisions which impacts service quality. The quality of a solution is determined
by how well users’ requests can be fulfilled. This paper models this as a schedul-
ing subproblem in which individual requests are assigned to allocated vehicles.
To solve the resulting optimization problem, two solution approaches were pre-
sented: an IP formulation and a simulated annealing metaheuristic.

A computational study on a new publicly available dataset investigated how
the algorithms’ performance is affected by three problem characteristics: fleet
heterogeneity, request generality and the number of possible vehicle locations.
First, it was demonstrated that the IP formulation is well-suited for problems
with a strongly homogeneous fleet or when requests can be fulfilled by only
a limited number of vehicle types. Second, simulated annealing outperformed
the IP solver when considering a broad range of instances. Finally, increasing
the number of possible vehicle locations in a geographic area did not affect the
approaches’ performance. Problem instances derived from real-world data were
shown to be edge cases in terms of fleet heterogeneity and request generality.
As a result, these instances could be solved to optimality in very limited time
using IP. Simulated annealing, while requiring more computation time, did find
near-optimal solutions.

Future research may challenge some of the assumptions in the proposed prob-
lem in order to arrive at a more realistic model. Possible extensions include
stochastic demand, dynamic arrival of requests, choice-based optimization or dif-
ferent types of time discretization for request duration. These extensions would
prove useful when it comes to understanding the trade-offs which exist when
implementing carsharing systems in practice. From a computational perspec-
tive, an analysis of our algorithms’ performance revealed that many of the gen-
erated instances could not be solved to optimality. The performance of simulated
annealing may be further improved by using an alternative solution represen-
tation which avoids possible symmetries in a manner similar to the proposed
IP formulation. Furthermore, previous research has demonstrated that decom-
position approaches such as Benders decomposition are well-suited for solving
challenging large-scale problems and may therefore prove useful in addressing
these open instances.

Acknowledgements. This research was supported by the Strategic Basic Research
project ‘Data-driven logistics’ (S007318N), funded by the Research Foundation Flan-
ders (FWO). Editorial consultation provided by Luke Connolly (KU Leuven).

Algorithms for the Design Round-Trip Carsharing Systems 375

References

1. Balac, M., Ciari, F.: Enhancement of the carsharing fleet utilization. In: 15th Swiss
Transport Research Conference, Ascona, Switzerland (2015)

2. Boyacı, B., Zografos, K.G., Geroliminis, N.: An optimization framework for the
development of efficient one-way car-sharing systems. Eur. J. Oper. Res. 240(3),
718–733 (2015)

3. Brandstätter, G., et al.: Overview of optimization problems in electric car-sharing
system design and management. In: Dawid, H., Doerner, K.F., Feichtinger, G.,
Kort, P.M., Seidl, A. (eds.) Dynamic Perspectives on Managerial Decision Making.
DMEEF, vol. 22, pp. 441–471. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39120-5 24

4. Brandstätter, G., Kahr, M., Leitner, M.: Determining optimal locations for charg-
ing stations of electric car-sharing systems under stochastic demand. Transp. Res.
Part B Methodol. 104, 17–35 (2017)

5. Çalık, H., Fortz, B.: A benders decomposition method for locating stations in a
one-way electric car sharing system under demand uncertainty. Transp. Res. Part
B Methodol. 125, 121–150 (2019)

6. Cepolina, E.M., Farina, A.: A new shared vehicle system for urban areas. Transp.
Res. Part C Emerg. Technol. 21(1), 230–243 (2012)

7. Ciari, F., Weis, C., Balac, M.: Evaluating the influence of carsharing stations’
location on potential membership: a Swiss case study. EURO J. Transp. Logist.
5(3), 345–369 (2016)

8. Correia, G., Jorge, D.R., Antunes, D.M.: The added value of accounting for users’
flexibility and information on the potential of a station-based one-way car-sharing
system: an application in Lisbon, Portugal. J. Intell. Transp. Syst. 18(3), 299–308
(2014)

9. Illgen, S., Höck, M.: Literature review of the vehicle relocation problem in one-way
car sharing networks. Transp. Res. Part B Methodol. 120, 193–204 (2019)

10. Jorge, D., Correia, G., Barnhart, C.: Testing the validity of the MIP approach
for locating carsharing stations in one-way systems. Procedia Soc. Behav. Sci. 54,
138–148 (2012)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

12. Krishnamoorthy, M., Ernst, A., Baatar, D.: Algorithms for large scale shift minimi-
sation personnel task scheduling problems. Eur. J. Oper. Res. 219, 34–48 (2012)

13. Kroon, L.G., Salomon, M., Van Wassenhove, L.N.: Exact and approximation algo-
rithms for the tactical fixed interval scheduling problem. Oper. Res. 45(4), 624–638
(1997)

14. Kumar, P., Bierlaire, M.: Optimizing locations for a vehicle sharing system. In:
Proceedings of the Swiss Transport Research Conference, pp. 1–30 (2012)

15. Laporte, G., Meunier, F., Wolfler Calvo, R.: Shared mobility systems: an updated
survey. Ann. Oper. Res. 271(1), 105–126 (2018). https://doi.org/10.1007/s10479-
018-3076-8

16. López-Ibánez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

https://doi.org/10.1007/978-3-319-39120-5_24
https://doi.org/10.1007/978-3-319-39120-5_24
https://doi.org/10.1007/s10479-018-3076-8
https://doi.org/10.1007/s10479-018-3076-8

376 P. Smet et al.

17. Niraj Ramesh, D., Krishnamoorthy, M., Ernst, A.T.: Efficient models, formulations
and algorithms for some variants of fixed interval scheduling problems. In: Sarker,
R., Abbass, H.A., Dunstall, S., Kilby, P., Davis, R., Young, L. (eds.) Data and
Decision Sciences in Action. LNMIE, pp. 43–69. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-55914-8 4

18. Shaheen, S., Cohen, A.: Carsharing and personal vehicle services: worldwide market
developments and emerging trends. Int. J. Sustain. Transp. 7(1), 5–34 (2013)

19. Shaheen, S., Cohen, A., Jaffee, M.: Innovative mobility: Carsharing outlook. UC
Berkeley: Transportation Sustainability Research Center (2018). https://doi.org/
10.7922/G2CC0XVW

20. Smet, P., Wauters, T., Mihaylov, M., Vanden Berghe, G.: The shift minimisation
personnel task scheduling problem: a new hybrid approach and computational
insights. Omega 46, 64–73 (2014)

21. Sprei, F., Habibi, S., Englund, C., Pettersson, S., Voronov, A., Wedlin, J.: Free-
floating car-sharing electrification and mode displacement: travel time and usage
patterns from 12 cities in Europe and the United States. Transp. Res. Part D
Transp. Environ. 71, 127–140 (2019)

22. Ströhle, P., Flath, C.M., Gärttner, J.: Leveraging customer flexibility for car-
sharing fleet optimization. Transp. Sci. 53(1), 42–61 (2019)

https://doi.org/10.1007/978-3-319-55914-8_4
https://doi.org/10.1007/978-3-319-55914-8_4
https://doi.org/10.7922/G2CC0XVW
https://doi.org/10.7922/G2CC0XVW

Exact Separation Algorithms
for the Parallel Drone Scheduling

Traveling Salesman Problem

Tobias Klein(B) and Peter Becker

Hochschule Bonn-Rhein-Sieg (H-BRS) - University of Applied Sciences,
Sankt Augustin, Germany

tobias.klein@smail.inf.h-brs.de, peter.becker@h-brs.de

Abstract. The joint delivery of parcels by trucks and drones is a futur-
istic scenario that already started. As a result of this development, new
optimization problems are defined and studied. In this paper, exact sep-
aration algorithms for the Parallel Drone Scheduling Traveling Salesman
Problem are presented. Known separation algorithms for subtour elimi-
nation constraints and 2-matching inequalities are modified and applied
to the new context. In addition, a new valid inequality for an invalid
drone-truck subtour is given. For this inequality, a simple separation
algorithm with a runtime of O(n2) for n nodes (customers) is presented.
It is shown that this problem specific separation algorithm reduces the
total runtime of problem instances more effectively compared to mod-
ified TSP approaches, especially for instances with a large number of
customers that can be served by a drone. These separation algorithms
are used to solve instances with up to 127 customers by a branch and
cut algorithm.

Keywords: Parallel drone scheduling traveling salesman problem ·
PDSTSP · Integer programming · Branch and cut · Separation
algorithm

1 Introduction

In the last few decades, a truck has been the vehicle to cover the route from
a depot to the final customer. But in the last years, the development of drone
technology opened an additional option for parcel delivery on the “last mile”.
The german company DHL created the Parcelcopter and tested it around the
Lake Victoria for medicine shipment over a period of six month [7]. The com-
pany WING, a subsidiary of Alphabet Inc., uses autonomous drones already in
Helsinki, Canberra, Logan, and Christiansburg to deliver parcels and food to
customers1.

1 https://wing.com.

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 377–392, 2021.
https://doi.org/10.1007/978-3-030-87672-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_25&domain=pdf
http://orcid.org/0000-0003-4448-023X
http://orcid.org/0000-0002-9649-4839
https://wing.com
https://doi.org/10.1007/978-3-030-87672-2_25

378 T. Klein and P. Becker

In urban areas or in areas without a road network as in a coastal environment,
drones have a navigational advantage over trucks due to their ability to fly. They
are able to avoid heavy traffic and natural obstacles like lakes, rivers, and parks.
However, trucks have a higher capacity and can therefore carry more and heavier
parcels.

The development of drones for parcel delivery leads to the creation of new
optimization problems for drones and trucks. Murray and Chu [20] were one of
the first to define such optimization problems like the Flying Sidekick Travel-
ing Salesman Problem (FSTSP) and the Parallel Drone Scheduling Traveling
Salesman Problem (PDSTSP), where a fixed set of customers must be sup-
plied by either a drone or a truck. Following their paper, other authors adapted
and modified the FSTSP or PDSTSP to new problems like the Traveling Sales-
man Problem with Drone (TSP-D) [1] and solved them mostly with heuristic
approaches. However, these optimization problems are not deeply studied, as the
focus is mainly on the creation of new problems and not on further algorithmic
investigations.

This paper aims to provide exact separation algorithms for the PDSTSP on
basis of exact approaches for the Traveling Salesman Problem (TSP) in combi-
nation with the branch and cut algorithm. First, an overview over the current
research for optimization problems with drones and trucks is given in Sect. 2. In
Sect. 3, the PDSTSP by Murray and Chu is presented, modified, and a relaxation
of this problem is described. Section 4 covers the creation of valid inequalities.
Separation algorithms for these inequalities are given in Sect. 5 and they are
applied in a computational experiment in Sect. 6. This paper summarizes the
key findings of the unpublished german master’s thesis by one of the authors
[16].

2 Related Literature

Murray and Chu [20] defined the PDSTSP in addition to the Flying Sidekick
Traveling Salesman Problem (FSTSP) and created mixed integer linear program
(MILP) models for both of them. Moreover, the authors developed a two-phase
heuristic algorithm to solve the PDSTSP. Initially, they assign all customers to
drone delivery if they can be supplied by one, the other customers are supplied by
the truck. In the first phase, they solve the truck route as a TSP and the routes
of the drone as a Parallel Machine Scheduling Problem (PMS). In the second
phase, they improve the actual solution iteratively by swapping the delivery type
of customers, if that reduces the overall delivery time. Through the reduction
of the PDSTSP to a TSP and a PMS they reduce the complexity and use well
known algorithms for both of these problems.

Based on this work, Saleua et al. [19] created a similar approach to solve the
PDSTSP through a two-phase heuristic. In contrast to Murray and Chu, they
use dynamic-programming in the first phase to partition the customers between
the truck and the drones. With this algorithm, they are able to improve the
runtime for problem instances that Murray and Chu used in their experiment.

Exact Separation Algorithms for the PDSTSP 379

A more detailed view on heuristic algorithms for the PDSTSP is provided by
Dell’Amico, Montemanni, and Novellani [6]. The authors developed four differ-
ent heuristics to analyze the trade-off between runtime and the gap to an optimal
solution. In contrast to the work of Saleua et al., they change the MILP formu-
lation of the PDSTSP for problem instances with more than 20 customers. They
add additional inequalities to the MILP that increase the number of iterations
for solving a problem. However, the added inequalities reduce the overall run-
time of the heuristic. They report more exact solutions in 28 out of 90 problem
instances that were used by Saleu et al. in the analyzation.

The master’s thesis by Klohn [17] uses exact separation algorithms to solve
the PDSTSP and the FSTSP in addition to heuristics. The author reuses the
known subtour elimination constraints (SEC) from the TSP and applies them to
a simplified version of the MILP formulation from Murray and Chu. The author
showed that the use of SECs in addition to heuristic algorithms reduces the total
runtime of both optimization problems.

Similar to the thesis from Klohn, the master’s thesis by van Dijck [22] uses
also exact separation algorithms for SECs and comb inequalities to solve the
Traveling Salesman Problem with Drone (TSP-D) through a branch and cut
approach. A heuristic algorithm to separate the comb inequalties by Padberg
and Rinaldi is used by the author in addition to an exact approach through
the solution of a mixed integer program (MIP). The separation algorithm was
applied in different combinations to analyse the optimal configuration for solving
the TSP-D exactly.

A variant of the PDSTSP was developed by Ham [11]. The author defines
the PDSTSP with “drop and pickup” (PDSTSP+DP). In the PDSTSP+DP
the customers themselves can send parcels to the depot via drones as a return.
Further, customers can order multiple parcels Constraint programming (CP)
was used in order to solve the PDSTSP+DP exactly. Ham concludes that more
CP should be used for such optimization problems instead of MILPs.

In the master’s thesis of Klein [16] exact separation approaches for the
PDSTSP were created. In addition to modified separation approaches from the
TSP for SECs and 2-matching inequalities, a new valid inequality and a corre-
sponding exact separation algorithm is given. This paper summarizes the key
findings of this master’s thesis.

3 The Parallel Drone Scheduling TSP

The first description and MILP model of the PDSTSP was given by Murray and
Chu [20]. With the PDSTSP, a fixed set of known customers must be supplied
with a parcel. A truck and a fleet of homogeneous drones are available for deliv-
ery. The goal is to minimize the total delivery time, that is either determined by
the truck or the drones, whichever is longer. Related problems that use trucks
as mobile stations as the FSTSP or the Hybrid Vehicle-Drone Routing Prob-
lem (HVDRP) [13] minimize the total operational cost, similar to the Ring Star
Problem (RSP) [18] and the Capacitated m-Ring-Star Problem (CmRSP) [4].

380 T. Klein and P. Becker

As the drones fly directly between a customer and the depot, the total opera-
tional cost can be simplified to the total delivery time as it is done by Hà, Vu
and Vu [10].

A drone can only carry one parcel at a time. Therefore, a drone always has
to return to the depot before delivering a new parcel. Also, not all customers
can be served by a drone due to flight range limitations or other restrictions like
no-fly zones. The truck, on the other hand, can carry an unlimited amount of
parcels and can access every customer. The route of the truck starts and ends
at the depot.

In this paper, only the distances between the customers and the speed of the
truck and the drones have influence on the total delivery time. The conditions
for the truck are identical to the conditions for a TSP. Therefore, the truck tour
can be seen as a TSP tour. Furthermore, the speed of the truck can differ from
that of the drones.

(a) TSP solution

0

1

2
3

4

5

6

7

(b) PDSTSP solution

0

1

2
3

4

5

6

7

Fig. 1. Comparison of a TSP and a PDSTSP solution (Color figure online)

Figure 1(b) shows a feasible solution to a PDSTSP with two drones. The
depot where the drones and the truck start is marked by the node 0. The green
area around the depot symbolizes the flight range of the drones. Therefore, the
customers 1 to 4 can be supplied by a drone. But in the solution, only the
customers 1 to 3 are supplied by a drone, whereas the truck delivers parcels to
the customers 4 to 7. Customer 1 is served by drone 1, customers 2 and 3 are
served by drone 2.

Compared to the PDSTSP solution, the total delivery time of the TSP tour in
Fig. 1(a) is longer. In the TSP solution the truck delivers parcels to the customers
1 to 7, in the PDSTSP only to the customers 4 to 7. If the total delivery time
could be reduced in the PDSTSP solution by changing one of the drone customers
1 to 3 to a truck customer, it would have already happened, since this is the
optimal solution with respect to the total delivery time.

Exact Separation Algorithms for the PDSTSP 381

MILP Formulation
We use a modified version of the MILP model created by Murray and Chu [20].
Our model only uses symmetrical distances, similar to the modification done
in [17]. The set D is the set of all drones, C the set of all customers. The set
C ′′ ⊆ C represents the customers that can be served by a drone and are in flight
range.

In our model the flight range of a drone must be halved initially, as a drone
route consists of the flight from the depot to a customer and a flight back to
the depot. The depot is modelled by node 0. As the depot is not a customer but
part of the truck and drone tour, the set V = {0}∪C is the set of all nodes. Let
E be the set of edges of the complete graph with V as node set. For a proper
node subset S ⊂ V with S �= ∅ the set

δ(S) = {{i, j} ∈ E|i ∈ S, j /∈ S} ⊂ E

is the cut-set that is induced by S, i. e. the set of edges that connect a node
i ∈ S with a node j ∈ V \S. We simply write δ(i) instead of δ({i}), if S consists
of a single node i. So the MILP model is:

min z (1)

subject to z ≥
∑

e∈E

τexe (2)

z ≥ 2
∑

i∈C′′
τ ′
iyi,d ∀d ∈ D (3)

∑

e∈δ(i)

xe + 2
∑

d∈D

yi,d = 2 ∀i ∈ C ′′ (4)

∑

e∈δ(i)

xe = 2 ∀i ∈ V \ C ′′ (5)

∑

e∈δ(S)

xe ≥ 2 ∀S ⊂ C, 2 ≤ |S| ≤ |C| − 1 (6)

xe ∈ {0, 1} ∀e ∈ E (7)
yi,d ∈ {0, 1} ∀i ∈ C ′′, d ∈ D (8)

The MILP model contains to different sets of decision variables. The decision
variables xe, with e = {i, j} ∈ E, represent, whether the route between node i
and node j is part of the truck tour. If xe = 1, the edge e, i. e. the route from
i to j, is part of the truck tour, otherwise not. For a graph-theoretical point of
view, we call the edge e of a decision variable xe a truck edge.

Setting the decision variable yi,d to 1 represents, that customer i ∈ C ′′ is
served by drone d ∈ D. Otherwise, customer i is served by the truck. We call
the edge {0, i} of a decision variable yi,d a drone edge.

The parameter τe is the travel time of a truck edge e. In contrast, τ ′
i is the

flight time of a drone edge {0, i}.
We want to minimize the total delivery time z (1) which is lower bounded

by the delivery time of the truck (2) and the flight time of each individual drone

382 T. Klein and P. Becker

(3). Any customer node that can be served by a drone must be incident with
two truck edges or one drone edge (4). Customers who cannot be supplied by
a drone must be incident with two truck edges (5). This also applies to the
depot. Finally, we have to eliminate truck subtours, which is done by subtour
elimination constraints (6).

In contrast to the MILP model by Murray and Chu, we simplified the time
bound of the truck tour in (2) and the drone flight time in (3), as we use only
symmetric distances. We also reduced the condition, that a truck must leave
every customer it visits, to the condition, that the truck must start and end at
the depot (5). Based on our symmetric assumption in combination with (4), (5),
and (6) the truck tour is fully bounded. Further, we use in (6) a formulation for
subtour elimination, that matches with the separation algorithms in this paper.
This formulation states that the minimum cut between two nodes in the graph
that represents the truck tour must be at least 2. Our relaxation of this MILP
excludes the constraint (6), (7), and (8).

4 Valid Inequalities for the PDSTSP

The TSP can be interpreted as a special PDSTSP where only the truck is allowed
to deliver parcels to customers. Therefore, known TSP separation algorithms
can be modified and used for the truck route in a PDSTSP. To analyze invalid
structures in a relaxed solution of the PDSTSP, we modified the TSP instance
d493 from the TSPLIB [21] to a PDSTSP instance. We moved the depot node
0 to a more centered location and added parameters for the drone count, drone
speed, truck speed, flight range, and a set of customers that can be accessed by
a drone. We set the speed of the drones to double the speed of the truck, that
is τ ′

i = τ0,i/2 for i ∈ C ′′. Moreover, all drones have an unlimited flight range.
Finally, we created a number of problems with varying amounts of customers
that can be served by a drone. For example, in the PDSTSP instance d493 10
only the first 10% of the customers (1 to 49) can be served by a drone2. The
Gurobi solver version 9.1.1 was used to calculate relaxed solutions.

The solution of the relaxed d493 10 problem instance contained subtours in
the truck route that are addressed in the TSP through SECs and 2-matching
inequalities. As d493 10 is close to the corresponding TSP instance d493, this
result met our expectations. Consequently, SECs and 2-matching inequalities
can be used for the separation of relaxed PDSTSP instances.

But with an increasing number of customers that can be served by a drone,
another invalid structure occurred in the relaxation solutions. As far as we know,
this structure is not described in other papers. This structure can be interpreted
as a subtour consisting of truck and drone routes. Therefore, we call this structure
Drone-Truck SEC (DT-SEC) in relation to the known SEC. The graph in Fig. 2
shows a simplified DT-SEC.

2 All problem instances used in this paper can be found at https://github.com/to-
klein/PDSTSP Instances.

https://github.com/to-klein/PDSTSP_Instances
https://github.com/to-klein/PDSTSP_Instances

Exact Separation Algorithms for the PDSTSP 383

0 1 2

3

4 5

6

Fig. 2. DT-SEC with SECs and 2-matching-inequalities (Color figure online)

In this figure, the blue dashed line represents a drone edge (variable y1,d for
some d ∈ D) with a value of 0.5, the black lines represent truck edges (variables
xe) with a value of 1 and the red dotted lines represent truck edges with a value
of 0.5. Although no relaxed inequality constraint of the MILP model is violated,
this structure is invalid for a feasible solution as customer 1 cannot be served
half by a drone and half by a truck. Additionally, the nodes 3 to 6 form a subtour
and the nodes 1 to 6 violate a 2-matching inequality.

Definition 1. Let G be the graph that consist of all truck edges e with xe > 0
and all drone edges {0, i} with yi,d > 0 for some d ∈ D. A DT-SEC is then a
connected component of nodes where at least one node is incident with at least
one truck and one drone edge.

A quadratic node based inequality as in Theorem1 can be used to detect
such invalid structures, as all customer nodes in a feasible solution fulfill this
inequality.

Theorem 1. All nodes i ∈ C ′′ of a feasible solution fulfill the following inequal-
ity: ⎛

⎝
∑

e∈δ(i)

xe − 2
∑

d∈D

yi,d

⎞

⎠
2

≥ 4.

Proof. The validity of this inequality for optimal solutions can be proven by
using the MILP formulation. Every customer i ∈ C ′′ is either served by a drone
or the truck, as the edges must have a value of either 0 or 1 as described in (7)
and (8).

Due to constraint (4) we get: If customer i is served by the truck the minuend
equals 2 and the subtrahend is 0. Therefore, the left side of the inequality equals
4. If a customer is served by a drone the minuend equals 0 and the subtrahend
equals −2, so the left side is also 4.

Corollary 1. The quadratic DT-SEC inequality can be split into two disjoint
linear cases.

Case 1. Only one truck edge e = {i, j}is incident to node i:

xe +
∑

d∈D

yi,d ≤ 1.

384 T. Klein and P. Becker

Case 2. More than one truck edge is incident to node i:
∑

e∈δ(i)

xe + 2
∑

d∈D

yi,d ≤ 2.

In the first case of Corollary 1, only one truck edge is incident to node i. In the
given example in Fig. 2, this is the case for node 1. This case can be interpreted
that either the truck edge or the drone edge is part of a feasible solution, but
not both. The second case can be seen as a more compact node degree condition
from the MILP (4). Here, δ(i) contains only the truck edges e that have a value
xe > 0, while in (4) all truck edges of the complete graph that are incident with
node i are part of the constraint. This inequality can never be violated as this
would also violate (4).

DT-SECs can also include SECs and 2-matching inequalities as shown in
Fig. 2. Instead of adding all these inequalities during the branch and cut algo-
rithm, the DT-SEC can be used to forbid the complete structure. The DT-SEC
specifies that either the drone edge {0, 1} or the truck edge {1, 2} can be part
of a feasible solution. If one of these edges is removed, the rest of the structure
can not occur in a solution of a relaxation, because then one of the nodes would
violate (4).

Theorem 2. Drones can be arranged to reduce the set of feasible solutions
through the following inequality:

∑

j∈C′′
yj,d ≥

∑

j∈C′′
yj,d+1 ∀d ∈ {1, . . . , |D| − 1}. (9)

Proof. This theorem is proven by the problem description itself. Since the fleet
of drones is homogenous, the time to deliver a set of customers only depends on
their location, but not on which drone is used for this purpose. Two different
situations can occur in a solution: All drones deliver the same count of parcels
or the number varies. If the number varies, any drone can be selected to deliver
parcels to the largest customer set. By this theorem, always the first drone will
delivery the most parcels.

Arranging the drones as in Theorem 2 can drastically reduce the count of feasi-
ble solutions. Assume two sets A and B of customers, with |A| > |B|, are waiting
for their parcels and two identical drones can be used. The drones can be assigned
to either set A or set B. Therefore, two different solutions exist. As the assignment
has no impact on the objective function value (total delivery time), both assign-
ments lead to the same solution. By stating that drone 1 always delivers the most
parcels, the number of solutions is halved in this example. For instances with more
customers and more drones, the reduction can be even greater.

5 Separation Algorithms

A known strategy for the separation of SECs is to calculate all minimum cuts in
a graph. A cutset of a cut with a capacity less than 2 violates a SEC inequality.

Exact Separation Algorithms for the PDSTSP 385

We use a Gomory-Hu tree [9] to reduce the total number of all cut calculations
from n(n−1)

2 to n − 1. Before calculating the Gomory-Hu tree, we apply the
graph reduction of Padberg and Crowder [5] to reduce the size of the graph.
To implement this algorithm, we use an union-find data structure with path
compression.

Two different algorithms were implemented to compute the minimum cuts
from the Gomory-Hu tree. Since in [15] the cut computation was determined
to be a bottleneck, we would like to analyze the impact of the minimum cut
calculation. The first algorithm we use is the exact preflow-push algorithm with
the highest-label strategy (HLPP) [8]. This algorithm has a runtime of O(n2

√
m)

for a graph with n nodes and m edges [2]. Newer preflow-push algorithms like
the variant from Henzinger, Rao, and Wang [12] with a theoretical runtime of
O(m log(n) log(log(n))) are faster than the highest-label preflow-push algorithm,
but these runtimes are in practice hard to achieve. In addition to this exact
minimum cut algorithm, we choose the Karger-Stein algorithm as a heuristic
algorithm for comparison [14]. This algorithm can be seen as a recursive variant
of the graph reduction algorithm from Padberg and Crowder, as the graph is
heuristically reduced to only two nodes, where the edges between them represent
the minimum cut.

(a) relaxed PDSTSP solution

0

1

2
3

4

5

6

7

(b) optimal PDSTSP solution

0

1

2
3

4

5

6

7

Fig. 3. SECs in a relaxed PDSTSP solution compared with the optimal solution (Color
figure online)

In contrast to a TSP instance, not all cuts with a capacity less than 2 rep-
resent an invalid subtour. In Fig. 3(a) a solution of a relaxed PDSTSP instance
is shown. A black edge represents a truck edge, a dotted arc is a drone edge,
where each drone has its own colour. As the minimum cut between node 1 and 5
equals 0 in this example, the node sets {0, 1, 4} and {5, 6, 7} form a subtour. But
as shown in Fig. 3(b), the truck route between the nodes {0, 1, 4} is part of the

386 T. Klein and P. Becker

optimal solution. Therefore, the route between the nodes {0, 1, 4} cannot be con-
sidered invalid. Consequently, in order to find only invalid subtours, all DT-SEC
structures and drone customers must be removed, before reducing the graph
with the algorithm by Padberg and Crowder. All cutsets of a minimum cut from
the calculated Gomory-Hu tree with a capacity less than 2 are also removed, if
they include the depot. The remaining subsets form invalid subtours.

For the separation of 2-matching inequalities, we implemented the separation
algorithm by Aráoz, Fernandez, and Meza [3]. This algorithm with a runtime of
O(|V |4) is one of the fastest algorithms for the exact separation of 2-matching
inequalities. In contrast to SECs, no modification of this algorithm is needed to
be used on truck routes for the PDSTSP.

Pseudocode 1.1. Separation of DT-SECs
1: function separate(Set of DroneEdges ED(V,D), Set of TruckEdges ET (V, V))
2: Let Sdtsec be an empty set
3: for all i ∈ V, i �= 0 do
4: Let Sd be an empty set of drone edges and St an empty set of truck edges
5: for all Drones d ∈ D do
6: if Capacity of ei,d < 1 and ei,d > 0 then
7: Add e(i, d) to Sd

8: for all k ∈ V, k �= i do
9: if Capacity of e(i, k) > 0 then

10: Add e(i, k) to St

11: Add (Sd, St) to Sdtsec

12: Return Sdtsec

DT-SECs can consist of many nodes and can contain subtours and other
invalid structures. However, to detect them and to construct an inequality that
forbids this structure, only one node has to be found that is served by both a
drone and the truck. To identify a violated DT-SEC, we check the capacity of all
drone edges for a value above 0 and below 1. If we find such an edge, we check
the node for any incident truck edge.

Our presented pseudocode is able to detect nodes that are served by both
a drone and the truck. It generates a set consisting of pairs of drone and truck
edges that are needed to formulate a DT-SEC inequality. This pseudocode has
a runtime of O(n2) as it can be understood as a simple iteration over all drone
and truck edges in the graph. It usually results in a sparse graph if we internally
store only the truck and drone edges that have a positive value. This will allow
us to further improve the runtime.

6 Computational Results

The presented separation approaches were analyzed on the Platform for Scientific
Computing at Bonn-Rhein-Sieg University3. As hardware a Gigabyte R182-Z92
3 https://wr0.wr.inf.h-brs.de/wr/.

https://wr0.wr.inf.h-brs.de/wr/

Exact Separation Algorithms for the PDSTSP 387

server was used with a limit to 200 GB RAM and 32 threads with 2 GHz. The
separation algorithms were programmed in Java in combination with the Gurobi
solver version 9.1.1. The time limit for all calculations was set to 5 h.

The impact of each separation algorithm was analyzed by combining them in
different variants. These different variants present the impact of each approach
on the total runtime. A total of eight variants were constructed:

1. Separation of all SECs (HLPP) in integer solutions
2. Separation of every SEC (HLPP) and DT-SEC for integer and non-integer

solutions, one violated 2-matching inequality is added if no violated SEC is
found, the MILP is expanded with inequality (9) to arrange the drones

3. Separation of every SEC (Karger-Stein) and DT-SEC for integer and non-
integer solutions, one violated 2-matching inequality is added if no violated
SEC is found, the MILP is expanded with the inequality (9) to arrange the
drones

4. Identical with variant 3 but without the inequality (9) to arrange the drones
5. Separation of every SEC (Karger-Stein) in integer solutions, separation of

every DT-SEC, inequality (9) to arrange the drones
6. Identical with variant 3 but without the separation of DT-SECs
7. Separation of every SEC (Karger-Stein) for integer and non-integer solutions
8. Identical with variant 3 but without 2-matching inequalities

The first variant can be seen as the worst-case variant, as only SECs are
used in integer solutions. That is the minimum of separation needed to find an
optimal solution for the presented MILP.

For an analyzation, we modified seven different TSP instances to PDSTSP
instances. For each TSP instances, six PDSTSP instances were created, three of
them with 4 drones and the other with 8 drones. Each of the three instances have
a different percentage of customers that can be served by a drone. For example,
in rd100 50 the customers 1 to 49 can be served by a drone.

A first overview of the impact of the implemented algorithms is given in
Table 1. In this table, variant 1 is compared with the fastest variant for each
problem instance. We see that the instances where 50% of the customers can be
served by drones are the most complex, as no solution could be calculated with
variant 1 in 5 h. Further, in all cases expect hk48 25 with 8 drones variant 1
is the slowest variant. The instance bier127 35 with 8 drones was solved with
variant 2 in less than 1% of the time of variant 1.

Additionally, it can be stated that the PDSTSP instances become more com-
plex with a higher number of customers that can be served by drones. It also
becomes clear that there is no one variant that is best for all problem instances.
The analysis of all runtimes showed that variants 2 and 3, although not always
the fastest, were always close to the fastest for each problem instance. Thus, we
can consider these variants as the ones with the best performance.

388 T. Klein and P. Becker

Table 1. Excerpt of runtime comparisons of different separation variants for the
PDSTSP

Instance 4 drones 8 drones

Variant 1 Fastest variant Variant 1 Fastest variant

hk48 25 19.62 s 1.93 s (Var. 4) 3.27 s 3.90 s (Var. 2)

hk48 35 2.39 s 0.69 s (Var. 3) 1.25 s 0.56 s (Var. 4)

hk48 50 >5 h 446.36 s (Var. 2) >5 h 1181.02 s (Var. 2)

pr76 25 1210.45 s 29.76 s (Var. 5) 2399.78 s 32.81 s (Var. 4)

pr76 35 210.35 s 58.76 s (Var. 5) 319.16 s 25.49 s (Var. 5)

pr76 50 >5 h 916.66 s (Var. 2) >5 h 1492.77 s (Var. 8)

gr96 25 7.06 s 2.04 s (Var. 4) 4.05 s 3.37 s (Var. 6)

gr96 35 2.95 s 1.97 s (Var. 2) 6.47 s 2.67 s (Var. 6)

gr96 50 >5 h >5 h >5 h 6740.66 s (Var. 2)

eil101 25 0.76 s 0.46 s (Var. 3) 1.04 s 1.04 s (Var. 1)

eil101 35 18.00 s 3.66 s (Var. 4) 53.24 s 12.80 s (Var. 3)

eil101 50 >5 h 560.33 s (Var. 8) >5 h 648.50 s (Var. 4)

bier127 25 450.05 s 23.65 s (Var. 7) 98.29 s 35.65 s (Var. 3)

bier127 35 448.34 s 17.81 s (Var. 8) 2922.57 s 22.04 s (Var. 2)

bier127 50 >5 h 145.08 s (Var. 3) >5 h 118.80 s (Var. 8)

The highest positive impact on the total runtime is achieved by the use of DT-
SEC separation as shown in Table 2. As the number of DT-SECs increase with
an increasing amount of customers that can be served by a drone, the separation
of DT-SECs has a higher impact. With variant 6 the instance rd100 50 cannot
be solved in under 5 h, whereas variant 3 needs less than one minute to find an
optimal solution. For most other analyzed problem instances a similar reduction
in runtime was observed, especially for instances with a larger amount of drone
customers. However, in some cases with just a few seconds of runtime variant 6
was the fastest. This can be argued by the low amount of DT-SECs in non-integer
solutions for these instances. This table further shows, by comparing variants 3
and 5, that the overall impact of 2-matching inequalities is neither positive nor
negative.

The separation of SECs without the separation of DT-SECs is not an advis-
able strategy for PDSTSP instances with a high percentage of drone customers.
In most cases, the runtime of variant 7 is a multiple of the runtime of variant 3.
In 13 out of 42 instances, variant 7 fails to find a solution within the 5-hour time
limit. In contrast, with variant 3 only one instance cannot be solved within the
time limit. The difference in the runtime can be explained by the effectiveness of
the DT-SECs. As mentioned in Sect. 4, a DT-SEC structure can include multi-
ple SECs and 2-matching inequalities. Instead of adding all these inequalities to
the MILP, only one short inequality consisting of only one node and its incident

Exact Separation Algorithms for the PDSTSP 389

Table 2. Impact of DT-SEC separation on the total runtime

Instance Variant 3 Variant 5 Variant 6 Variant 7

hk48 25 (8 drones) 4.48 s 8.20 s 537.71 s 17.87 s

hk48 35 (8 drones) 0.91 s 1.91 s 1.34 s 1.08 s

hk48 50 (8 drones) 3066.65 s 3374.23 s >5 h >5 h

pr76 25 (4 drones) 55.05 s 29.76 s 3481.91 s 1260.61 s

pr76 35 (4 drones) 71.34 s 58.76 s 11500.34 s 14420.18 s

pr76 50 (4 drones) 1012.01 s 4496.30 s >5 h >5 h

gr96 25 (8 drones) 4.44 s 5.01 s 3.37 s 3.79 s

gr96 35 (8 drones) 2.86 s 2.78 s 2.67 s 6.33 s

gr96 50 (8 drones) 10773.79 s 6645.40 s >5 h >5 h

eil101 25 (8 drones) 1.15 s 1.46 s 1.46 s 1.63 s

eil101 35 (8 drones) 12.80 s 29.70 s 6904.91 s 2.72 s

eil101 50 (8 drones) 1331.42 s 1897.05 s >5 h >5 h

rd100 25 (4 drones) 72.36 s 7.46 s 11.70 s 15.08 s

rd100 35 (4 drones) 28.65 s 23.93 s 13.26 s 14.38 s

rd100 50 (4 drones) 53.80 s 188.77 s >5 h >5 h

bier127 25 (4 drones) 37.30 s 49.54 s 164.30 s 23.65 s

bier127 35 (4 drones) 32.59 s 85.53 s 41.56 s 55.11 s

bier127 50 (4 drones) 145.08 s 184.60 s >5 h >5 h

edges needs to be added to the MILP. For instances like hk48 35 and gr96 25,
which only have a runtime of a few seconds, the difference in runtimes between
the variants is also small. The number of DT-SEC structures during the branch
and cut is small here and therefore has only a minor impact on the total runtime.

A comparison between variant 2 and variant 3 reveals the impact of the
choosen cut algorithm, as in variant 2 the HLPP and in variant 3 the Karger-
Stein algorithm is applied. The difference between these two algorithm is, that
the Karger-Stein algorithm is capable of finding SEC structures faster than the
HLPP, although the HLPP is supported by Gomory-Hu trees and by the graph
reduction by Crowder and Padberg. However, the SECs found by the Karger-
Stein algorithm contain in most cases more nodes than the SECs found by the
HLPP. As the runtime of a branch and cut algorithm is influenced by the size of
added inequalities, both algorithms have their advantages and disadvantages. In
the analyzed instances, variant 3 with the Karger-Stein algorithm calculates the
optimal solution faster than variant 4 for a majority of instances. Nevertheless,
with variant 2 some instances can be solved in a fraction of the time needed with
variant 3.

The inequalities (9) for arranging the drones have a positive impact on aver-
age over all analyzed instances. Although these inequalities enlarge the MILP

390 T. Klein and P. Becker

model, these restrictions reduce the total runtime for the majority of analyzed
instances.

Some of the PDSTSP instances like pr76 25 with 8 drones can be split up into
a TSP and a PMS instance and solved separately. With the described separation
of SECs and 2-matching inequalities the TSP for pr76 25 is solved in 8.29 s.
The PMS is solved in 1.88 s by the Gurobi-Solver. In total the splitted pr76 25
instance is solved in around 10 s, whereas the PDSTSP instances has a runtime
of around 82 s.

7 Conclusion

In this paper, the DT-SEC was presented as a new inequality for the PDSTSP.
Previously published papers with the aim of solving this problem exactly by
branch and cut applied only separation approaches from the TSP. DT-SECs are
a special type of subtour where at least one node is served by both the truck and
a drone. With an increasing number of customers that can be served by a drone,
the total number of DT-SECs in a relaxed solution rises. DT-SECs can include
multiple truck subtours and 2-matching inequalities. As the DT-SEC inequality
only consists of incident edges from a node that is served by both the truck and
a drone, large invalid structures can be forbidden efficiently.

The computational results show that only applying TSP separation
approaches take a multiple of runtime compared to the addition of DT-SECs.
An instance with 127 nodes, where 50% customers can be served by a drone,
could not be solved by the Gurobi-Solver using only TSP separation approaches
within 5 h. With the additional use of DT-SECs, the instance is solved in under
3 min. This shows that this problem specific separation approach is far more
effective compared to modified TSP separation approaches.

Inspired by Dell’Amico, Montemanni, and Novellani [6] the MILP formula-
tion from Murray and Chu for the PDSTSP was extended with an additional
inequality for arranging the homogenous drones. The results show that the total
runtime was reduced by around 30% on average by adding the inequality to the
MILP.

Further research on additional problem specific inequalities for the PDSTSP
or related problems is recommended. Other problems like the FSTSP could
include similar invalid structures that can be handled by DT-SECs. Although
the TSP can be interpreted as a PDSTSP where no drone can deliver a customer,
TSP separation approaches should not be used exclusively for the PDSTSP as
they only consider invalid structures in the truck-route without any drones.

References

1. Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling
salesman problem with drone. Transp. Sci. 52(4), 965–981 (2018). https://doi.org/
10.1287/trsc.2017.0791

https://doi.org/10.1287/trsc.2017.0791
https://doi.org/10.1287/trsc.2017.0791

Exact Separation Algorithms for the PDSTSP 391

2. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Appli-
cations. Prentice-Hall, Englewood Cliffs (1993)

3. Aráoz, J., Fernández, E., Meza, O.: A simple exact separation algorithm for
2-matching inequalities (2007). http://www.optimization-online.org/DB FILE/
2007/11/1827.pdf

4. Baldacci, R., Dell’Amico, M., González, J.S.: The capacitated m -ring-star problem.
Oper. Res. 55(6), 1147–1162 (2007). https://doi.org/10.1287/opre.1070.0432

5. Crowder, H., Padberg, M.: Solving large-scale symmetric travelling salesman prob-
lems to optimality. Manage. Sci. 26(5), 495–509 (1980). https://doi.org/10.1287/
mnsc.26.5.495

6. Dell’Amico, M., Montemanni, R., Novellani, S.: Matheuristic algorithms for the
parallel drone scheduling traveling salesman problem. Ann. Oper. Res. 289(2),
211–226 (2020). https://doi.org/10.1007/s10479-020-03562-3

7. Deutsche Post DHL Group: Schnelle Hilfe aus der Luft: Medikamentenversorgung
mit Paketdrohne in Ostafrika erfolgreich erprobt, 04 Oct 2018. https://www.
dpdhl.com/content/dam/dpdhl/de/media-relations/press-releases/2018/pm-dhl-
paketkopter-tansania-20181004.pdf mit Paketdrohne in Ostafrika erfolgreich
erprobt, 04 Oct 2018. https://www.dpdhl.com/content/dam/dpdhl/de/media-
relations/press-releases/2018/pm-dhl-paketkopter-tansania-20181004.pdf

8. Goldberg, A., Tarjan, R.: A new approach to the maximum-flow problem. J. ACM
35(4), 921–940 (1988). https://doi.org/10.1145/48014.61051

9. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind. Appl. Math.
9(4), 551–570 (1961). https://doi.org/10.1137/0109047

10. Hà, M., Vu, L., Vu, D.: The two-echelon routing problem with truck and drones
(2020)

11. Ham, A.: Integrated scheduling of m-truck, m-drone, and m-depot constrained
by time-window, drop-pickup, and m-visit using constraint programming. Transp.
Res. Part C Emerg. Technol. 91, 1–14 (2018). https://doi.org/10.1016/j.trc.2018.
03.025

12. Henzinger, M., Rao, S., Wang, D.: Local flow partitioning for faster edge connec-
tivity (2017). https://doi.org/10.1137/1.9781611974782.125

13. Karak, A., Abdelghany, K.: The hybrid vehicle-drone routing problem for pick-up
and delivery services. Transp. Res. Part C Emerg. Technol. 102, 427–449 (2019).
https://doi.org/10.1016/j.trc.2019.03.021

14. Karger, D., Stein, C.: A new approach to the minimum cut problem. J. ACM
43(4), 601–640 (1996). https://doi.org/10.1145/234533.234534

15. Klein, T.: Konzeption und Realisierung von Separationsalgorithmen für das Trav-
eling Salesman Problem. Master’s project, Hochschule Bonn-Rhein-Sieg (2019)

16. Klein, T.: Konzeption und Implementierung von Separationsverfahren für das
Parallel-Drone-Scheduling-Problem. Master’s thesis, Hochschule Bonn-Rhein-Sieg
(2021)

17. Klohn, H.: Optimierung von TSP-Varianten mit Drohnen durch Branch and Cut
Verfahren. Master’s thesis, Hochschule Bonn-Rhein-Sieg (2019)

18. Labbé, M., Laporte, G., Mart́ın, I., González, J.: The ring star problem: polyhedral
analysis and exact algorithm. Networks 43(3), 177–189 (2004). https://doi.org/10.
1002/net.10114

19. Mbiadou Saleu, R., Deroussi, L., Feillet, D., Grangeon, N., Quilliot, A.: An iterative
two-step heuristic for the parallel drone scheduling traveling salesman problem.
Networks 72(4), 459–474 (2018). https://doi.org/10.1002/net.21846

http://www.optimization-online.org/DB_FILE/2007/11/1827.pdf
http://www.optimization-online.org/DB_FILE/2007/11/1827.pdf
https://doi.org/10.1287/opre.1070.0432
https://doi.org/10.1287/mnsc.26.5.495
https://doi.org/10.1287/mnsc.26.5.495
https://doi.org/10.1007/s10479-020-03562-3
https://www.dpdhl.com/content/dam/dpdhl/de/media-relations/press-releases/2018/pm-dhl-paketkopter-tansania-20181004.pdf
https://www.dpdhl.com/content/dam/dpdhl/de/media-relations/press-releases/2018/pm-dhl-paketkopter-tansania-20181004.pdf
https://www.dpdhl.com/content/dam/dpdhl/de/media-relations/press-releases/2018/pm-dhl-paketkopter-tansania-20181004.pdf
https://www.dpdhl.com/content/dam/dpdhl/de/media-relations/press-releases/2018/pm-dhl-paketkopter-tansania-20181004.pdf
https://www.dpdhl.com/content/dam/dpdhl/de/media-relations/press-releases/2018/pm-dhl-paketkopter-tansania-20181004.pdf
https://doi.org/10.1145/48014.61051
https://doi.org/10.1137/0109047
https://doi.org/10.1016/j.trc.2018.03.025
https://doi.org/10.1016/j.trc.2018.03.025
https://doi.org/10.1137/1.9781611974782.125
https://doi.org/10.1016/j.trc.2019.03.021
https://doi.org/10.1145/234533.234534
https://doi.org/10.1002/net.10114
https://doi.org/10.1002/net.10114
https://doi.org/10.1002/net.21846

392 T. Klein and P. Becker

20. Murray, C., Chu, A.: The flying sidekick traveling salesman problem: optimization
of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Technol. 54, 86–109
(2015). https://doi.org/10.1016/j.trc.2015.03.005

21. Reinelt, G.: Tsplib (2021). http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/

22. van Dijck, E.: A branch-and-cut algorithm for the traveling salesman problem with
drone. Master’s thesis, Erasmus University Rotterdam (2018). https://thesis.eur.
nl/pub/44107/Dijck-van.pdf

https://doi.org/10.1016/j.trc.2015.03.005
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://thesis.eur.nl/pub/44107/Dijck-van.pdf
https://thesis.eur.nl/pub/44107/Dijck-van.pdf

A Multi-start VNS Algorithm
for the TSP-D with Energy Constraints

Giovanni Campuzano(B) , Eduardo Lalla-Ruiz , and Martijn Mes

University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands
{g.f.campuzanoarroyo,e.a.lalla,m.r.k.mes}@utwente.nl

Abstract. The Traveling Salesman Problem (TSP) is a well-known
optimization problem with a wide range of extensions and applications
in delivery systems. In this paper, we consider a recent extension of the
TSP where a truck in collaboration with a single drone should visit a
set of customers while minimizing the transportation times. We pro-
pose a Variable Neighbourhood Search (VNS) and a Multi-Start VNS
(MS-VNS) algorithm, develop new neighbourhood structures, and com-
pare the solutions against an existing mixed-integer linear programming
(MILP) formulation. We take a set of instances based on existing bench-
marks from the related literature. Results point out that the new neigh-
bourhood structures substantially improve the performance of the VNS
algorithms. Furthermore, results also show that the exact method is only
able to find competitive solutions for small sets of instances, whereas our
MS-VNS approach reaches better solution quality for large instances.

Keywords: Traveling salesman problem · Drones · UAV · Last-mile
delivery · Multi start · Variable neighbourhood search

1 Introduction

Logistics plays an important role in today’s economy. It controls the forward and
reverse flows of goods from producers to consumers. In this context, the logistic
sector is currently facing an era of unprecedented change with developments in
digitization, autonomous vehicles, urbanization, increasing customers demands,
and the rise of e-commerce. These changes have led companies to search for more
efficient and sustainable management of urban freight distribution, in order to
improve their service’s quality, diminish greenhouse gas emissions, and reduce
operational costs. Specifically in last-mile delivery, companies are seeing many
opportunities to improve their business by incorporating autonomous vehicles
into their logistic operations, giving rise to a wide range of new optimization
problems in parcel distribution.

In this context, the Traveling Salesman Problem with Drone (TSP-D) is a
recent extension of the TSP, in which a truck should work in collaboration with
a single drone to serve a predefined group of customers while minimizing the
transportation times or makespan. The TSP-D has shown distinct advantages
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 393–409, 2021.
https://doi.org/10.1007/978-3-030-87672-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_26&domain=pdf
http://orcid.org/0000-0001-6808-9230
http://orcid.org/0000-0002-7286-9501
http://orcid.org/0000-0001-9676-5259
https://doi.org/10.1007/978-3-030-87672-2_26

394 G. Campuzano et al.

in last-mile operations, due to the drone’s ability to transport parcels, food,
medicine, and several other goods [8]. These autonomous vehicles have gained
the attention of international companies, being involved in promising projects
such as Zookal’s project, Wing’s project, and Parcelcopter, among others [20].
Additionally, drones have also shown strong applicability in other fields, such as
energy, agriculture, forestry, environmental protection, and emergency [4].

The research community has also paid close attention to truck-and-drone
problems. For example, [20] introduce the Flying Sidekick Traveling Salesman
Problem (FSTSP) and the Parallel Drone Scheduling TSP (PDSTSP). They
develop mathematical formulations and a two-phased heuristic approach to solve
these problems. They show that the mathematical formulations are able to find
efficient solutions for small-size instances, while the heuristic provides better
solutions for large-size instances. [1] introduce the TSP-D and face this prob-
lem by developing a mathematical formulation and a heuristic approach. They
also provide insights into the savings from the incorporation of a drone into
the delivery system, showing the advantages of the truck-and-drone approach
increase with faster drone speeds. [25] develop a compact formulation and sev-
eral extensions for the TSP-D. They solve these problems by implementing a
Branch-and-Price scheme, which is able to find solutions for instances of up to
39 customers. Branch-and-Cut procedures have been proposed in [6,9,26], and
[2]. A Bender’s Decomposition algorithm is developed in [28], reaching solu-
tions for instances of up to 20 customers. In [21], authors study an extension
of the FSTSP called the Multiple Flying Sidekicks Traveling Salesman Prob-
lem (mFSTSP). They develop a mathematical formulation and a three-phased
heuristic, demonstrating that by incorporating more drones into the delivery sys-
tem, it is possible to reduce the makespan for instances involving a large number
of customers. The same authors study another extension, namely the mFSTSP
with Variable Drone Speeds (FSTSP-VDS; [24]) in which the drone is able to fly
at slower speed levels. They solve this problem by adapting the heuristic from
[21]. They demonstrate that by allowing the drone to fly at slower speed levels,
it is able to visit more customers due to a reduction in energy consumption.
To provide a realistic representation of the delivery system, most of the works
on truck-and-drone problems limit the drone flying range by using an energy
consumption function, a maximum flying time, or a maximum flying distance
([6,11,12,16,19,27]). The reader is referred to [29], for a comparison of several
energy consumption models used in truck-and-drone related problems.

In this paper, we propose two meta-heuristic approaches: a Variable Neigh-
bourhood Search (VNS) and a Multi-Start Variable Neighbourhood Search (MS-
VNS), which use 11 neighbourhood structures to explore the solution space.
Those structures are a combination of neighbourhoods from the literature with
some of our own. We take existing benchmarks from the literature to conduct
the experiments and compare the results with the MILP formulation proposed
in [25]. Furthermore, we provide insights into the heuristic performance improve-
ments when incorporating the two new neighbourhood structures. Accordingly,
we adapt to our algorithms the neighbourhood structures of the hybrid gen-
eral VNS algorithm proposed in [13] and analyse the results. In addition, we

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 395

study these algorithms for the case where the drone flying range is infinite and
when the drone has a limited energy endurance. Consequently, we show that the
effectiveness of the MS-VNS is not only suitable for a theoretical version of the
TSP-D, but also for a more realistic representation of the problem.

The remainder of this paper is organized as follows. Section 2 provides a
detailed description of the TSP-D. In Sect. 3, the VNS and MS-VNS heuristics
are presented. The experiments are conducted and analyzed in Sect. 4. Finally,
Sect. 5 provides the main conclusions and suggests several directions for further
research.

2 The Traveling Salesman Problem with Drone

The TSP-D is a problem that has gained increasing attention in last-mile deliv-
ery, due to the advantages that the incorporation of a drone provides. In this
sense, the drone flies faster than the truck is able to drive and it avoids traffic
congestion, however, its flying range is particularly restricted due to the battery
endurance. Especially in urban areas, last-mile delivery faces crowded places
with a high customers density, stimulating the collaboration between a truck
and a drone. Figure 1 provides an illustrative example of a delivery schedule
carried out by a truck and a drone. Here, solid arcs represent the truck arcs,
dashed arcs represent the drone arcs, and double-solid arcs represent those that
are traversed by the truck with the drone on board. Hence, in the example,
there are customers that are served only by the truck (e.g., {8, 1}), customers
that are visited by the drone (e.g., {4, 6}), and customers that are served by the
truck with the drone on board (e.g., {3, 5, 7, 2}). We refer to those customers (or
nodes) as truck nodes, drone nodes, and combined nodes, respectively.

Fig. 1. Description of a feasible TSP-D route.

In real implementation scenarios, the TSP-D is a problem characterized by
the restricted drone flying range. Therefore, when the drone is serving a given

396 G. Campuzano et al.

customer, the energy consumed by the trip cannot exceed the energy capacity
constraints. For this reason, it is important to properly coordinate the launching
and landing times of the drone. Thus, we assume that every time the drone
meets the truck in a combined node, the drone swaps the battery and loads a
new package on board. Furthermore, to avoid feasibility issues, the vehicle that
arrives first at a combined node should wait for the other vehicle before leaving
to serve a new customer. To face the TSP-D described in [25], the following
assumptions are made:

1. The truck capacity is large enough to carry all the packages and the drone
batteries for the route.

2. The drone can only carry one package on board. For this reason, every time
the drone is launched to serve a given customer, the drone should fly back
after delivering the package, to meet the truck at a combined node.

3. The drone cannot take off and land in the same location. Therefore, once the
drone is launched from a combined node, the truck cannot wait for the drone
in the same place.

4. The drone has a fixed battery capacity and the drone’s trips cannot exceed
its battery’s endurance. Furthermore, every time the drone meets the truck,
it is assumed that the drone either is kept on the truck or swaps the battery
and loads a new package on board.

3 Metaheuristic Algorithms

This section introduces two metaheuristic approaches to solve the TSP-D as pre-
sented in [25]. We first present two new neighbourhood structures and develop a
Variable Neighbourhood Search algorithm in Sect. 3.1. Then, we extend the VNS
heuristic to propose a Multi-Start Variable Neighbourhood Search algorithm in
Sect. 3.2.

3.1 Variable Neighborhood Search Algorithm

VNS is a metaheuristic approach that systematically changes neighbourhood
structures within a local search procedure to escape from local optima [15]. The
first VNS algorithm was proposed in [14] and, ever since, a wide body of litera-
ture on VNS approaches has shown successful implementations in several rout-
ing problems, e.g., the Asymmetric Traveling Salesman Problem [3], the Vehicle
Routing Problem [5], the VRP with Multi-Depot [17], the VRP with Time Win-
dows [7], the Flying Sidekick Traveling Salesman Problem [11], and so forth.
In this section, we present a VNS approach to solve the TSP-D, which uses
eleven neighbourhoods to explore the solution space. We combine several neigh-
bourhood structures from the literature with some of our own. The neighbour-
hoods Make flying, Push left and Push right are proposed in [1]. The neighbour-
hoods Two optimality, Exchange 1.1, Exchange 2.1, Exchange 2.2, Reinsertion
and Relocate customer are proposed in [11]. The structures Exchange 3.1 and
Exchange 3.2 are developed in this research and are defined as follows:

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 397

– Exchange 3.1 : This neighbourhood exchanges one node that is visited by the
drone with another node that is visited by the truck.

– Exchange 3.2 : This operator swaps two nodes that are visited by the drone.

A description for the VNS scheme developed in this research is provided in
Algorithm 1. The input data of Algorithm 1 are the number of iterations, the
number of shaking applications (stopping), the drone time matrix tD, and the
truck time matrix tT . The output is the best TSP-D solution found in the search
space S∗ (incumbent). The objective function value of each solution is given by
f(·), Si stores the solution found when exploring the search space, and S

′
i is used

as a transition variable that stores the solution from the previous iteration. The
index i represents the current iteration, l identifies the neighbourhood Nl(·), p
provides the number of shaking procedures applied during the search, and lm
gives the number of neighbourhoods.

Algorithm 1 consists of an initialization phase in which an initial TSP-D
solution is built, and an iterative phase in which the solution space of the TSP-
D is explored. An initial TSP solution is built in SolveTSP (·) by using the
truck’s time matrix tT and applying a nearest neighbour search that starts from
the depot (line 2). The TSP route is stored in S. Next, MakeF lying(·) builds
a TSP-D solution by using the drone time matrix tD and TSP route (line 3).
This operation selects three consecutive nodes and builds a TSP-D solution in
such a way that the truck visits the first and last node of the operation and the
remaining node is visited by the drone. Therefore, given three selected nodes,
the MakeF lying movement creates a TSP-D operation leaving as a drone node
the one that minimizes the costs the most. On the other hand, if the TSP-D
operation does not reduce the transportation costs, the three selected nodes
remain as a TSP section of the route within the TSP-D solution, i.e., visited by
the truck and drone at the same time.

The iterative phase begins once an initial TSP-D solution has been con-
structed (line 6). This phase is repeated until either i or p reaches the maximum
number of iterations or the maximum number of shaking procedures, respectively
(line 7). The set of neighbourhoods is explored within the second while-loop until
the current solution Si is improved or all the neighbourhoods in Nl are checked
(lines 9–11). To explore the solution space, the VNS algorithm applies the set
of neighbourhoods Nl starting from the structure with the smallest search space
to the neighbourhood with the largest one. Further, a given neighbourhood Nl

is explored until its best solution is found. Once the algorithm finishes exploring
the set of neighbourhoods, if Si is better than S

′
i and in addition the current

solution is better than the incumbent (Si < S∗), the incumbent is updated and
p is set to zero (lines 12–15). Additionally, every time Si is better than the pre-
vious solution S

′
i , l is set to 0 (lines 16). Otherwise, if the current solution Si is

worse than the previous solution S
′
i , it means the algorithm has found a local

optimum, so the shaking procedure is applied and the solution is stored in Si

(lines 17–19). Finally, Si+1 and S
′
i+1 store the solution from the current iteration

Si (line 20).

398 G. Campuzano et al.

Algorithm 1: Variable Neighbourhood Search
Data: (iterations, stopping, tD, tT)
Result: (S∗)

1 Initialization phase:

2 S ← SolveTSP (tT)

3 Si, S
′
i , S

∗ ← MakeF lying(S, tD)
4 f(S∗) ← +∞
5 i, p ← 0
6 Iterative phase:
7 while i < iterations || p < stopping do
8 l ← 0

9 while f(Si) ≥ f(S
′
i) and l ≤ lm do

10 Si ← Nl(Si)
11 l ← l + 1

12 if f(Si) < f(S
′
i) then

13 if f(Si) < f(S∗) then
14 S∗ ← Si

15 p ← 0

16 l ← 0

17 else
18 Si ← Shaking(Si)
19 p ← p + 1
20 if p then
21 =

22 =

23 S
′
i+1, Si+1 ← Si

24 i ← i + 1

In a TSP-D solution, every time the drone visits a customer, the part of
the route between the combined take-off and landing nodes is referred to as an
Operation. In this context, the shaking procedure consists of firstly taking apart
two operations to let the truck visit the customers and then applying three
nested neighbourhoods, which are selected randomly. When applying a given
random neighbourhood, the solution selected from this neighbourhood is chosen
randomly without considering the objective function value.

3.2 Multi-Start Variable Neighborhood Search Algorithm

The VNS approaches have been broadly accepted by the research community
and, over the years, several VNS schemes with additional mechanisms have been
developed to improve their performances, for instance, Descent Search, Reduced
VNS, Basic VNS, General VNS, Skewed VNS, Decomposition Search, Paral-
lel, and Primal-Dual, among others [15]. In addition, multi-start mechanisms

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 399

are applied to add diversification to the heuristic optimization process by re-
starting the search once a certain criterion is met [23]. Consequently, with the
purpose of exploring deeply promising areas of the search space, we incorpo-
rate a multi-start mechanism into the VNS heuristic of Sect. 3.1. As such, we
develop an effective multi-start VNS which, after a certain number of iterations
without improving the solution, re-starts the search from those solutions that
were chosen as incumbents throughout the optimization process. As a result,
we re-start the exploration from previous local optima, which are adjusted by a
Shaking procedure, to explore new regions of promising areas already identified.
A description of the MS-VNS heuristic is provided in Algorithm 2. The input
data of Algorithm 2 is the same as Algorithm 1 plus the number of consecutive
shakings until a re-starting procedure is applied (Restarting). The output is the
best TSP-D solution found in the search space S∗. The counter i represents the
iteration number, p shows the number of re-starting procedures applied, and h
displays the number of shakings.

As mentioned, Algorithm 2 is an adaptation of Algorithm 1, which incor-
porates a multi-start method. Note that different from the VNS, the MS-VNS
randomizes the order in which the neighbourhoods Nl are explored in every
iteration i (line 9). Therefore, in order to re-start the search, the MS-VNS uses
list(), which is a list that stores each new incumbent found in the iterative phase
(line 16). Every time the incumbent is updated, the number of shaking proce-
dures h is set at zero (line 17). On the other hand, if after exploring the set
of neighbourhoods Nl the solution from the previous iteration is not improved,
one shaking procedure is applied and the counter h is increased by one (lines
19–21). Additionally, when h reaches the number of consecutive iterations with-
out improving Si (Restarting), the re-starting mechanism is activated (line 22).
Consequently, Si randomly takes one of the solutions stored in list() and a
shaking procedure is applied to this new solution in Si (lines 23–24). Then, the
counter of shakings h is set at zero and the counter of re-starting procedures
p is increased by one (lines 25–26). Furthermore, it is worth mentioning that
the MS-VNS heuristic also adjusts the Shaking procedure. The shaking proce-
dure consists of firstly taking apart seven operations, if possible, and then three
nested neighbourhoods, which are selected randomly, are applied. After that,
the shaking uses the MakeF lying() neighbourhood structure to create a new
operation. Finally, similarly as done in the VNS heuristic, the solutions selected
from the neighbourhoods in the shaking procedure are randomly chosen.

4 Numerical Experiments

In this section, we provide the computational experiments on the TSP-D. A
detailed description of the computational settings, instances, heuristic tuning,
and MILP model parameters are presented in Sect. 4.1. Computational results
are presented in Sect. 4.2.

400 G. Campuzano et al.

Algorithm 2: Multi-Start Variable Neighbourhood Search
Data: (iterations, stopping, tD, tT)
Result: (S∗)

1 Initialization phase:

2 S ← SolveTSP (tT)

3 Si, S
′
i , S

∗ ← MakeF lying(S, tD)
4 f(S∗) ← +∞
5 i, p ← 0
6 Iterative phase:
7 while i < iterations || p < stopping do
8 l ← 0
9 Nl() ← randomize()

10 while f(Si) ≥ f(S
′
i) and l ≤ lm do

11 Si ← Nl(Si)
12 l ← l + 1

13 if f(Si) < f(S
′
i) then

14 if f(Si) < f(S∗) then
15 S∗ ← Si

16 list(S∗)
17 h ← 0

18 l ← 0

19 else
20 Si ← Shaking(Si)
21 h ← h + 1
22 if h == Restarting then
23 Si ← randomize(list())
24 Si ← Shaking(Si)
25 h = 0
26 p ← p + 1

27 S
′
i+1, Si+1 ← Si

28 i ← i + 1

4.1 Experimental Settings

This section describes the parameters used by the heuristics from Sect. 3 as well
as the computational settings. To conduct the experiments, we take the single
center set of benchmark instances from [1], and execute the test on a computer
equipped with a 2.29 GHz Intel(R) Xeon(R) Gold 5218 CPU with 64 GB of
RAM. The algorithm was coded in C++ and solved using CPLEX 12.10. The
truck and drone speeds considered are 7 and 15 [m/s], respectively.

Given two locations i and j, and their corresponding x−y coordinates (xi, yi),
the time it takes the drone to go from i to j is computed as tDij = ttki + thij + tlj ,
where thij is the horizontal flying time, ttki the takeoff time, and tlij the landing
time. ttki and tli are constant parameter of values 60 an 30 [s], respectively. The

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 401

horizontal flying time is computed as thij =
√

(xj−xi)2+(yj−yi)2

vD
ij

∀(i, j) ∈ A (i.e.,

considering Euclidean distance). Likewise, when the truck is traversing the arc
(i, j) ∈ A, at a given speed vT

ij , the time it takes the truck to go from i to

j is computed as tTij = �|xj−xi|+|yj−yi|�
vT
ij

∀(i, j) ∈ A (i.e., considering Manhattan

distance). We expand the x−y coordinates by 100 to compute the transportation
times.

We base the calculations of the energy consumption of the drone on the
consumption model of [18], which depends on the selected drone speed, taking
off speed, landing speed, and payload. The consumption model is described by
Eqs. (1)–(3). Further, [18] propose an energy model f(·) = ptl+pc+ph, where ptl

is the induced power of the vertical flow (either take off or landing), pc represents
the profile power consumption during the horizontal cruise, and ph is the energy
consumed during hover. In this regard, when the drone is traversing the arc
(i, j) ∈ A, transporting a load equal to weight wj of customer j ∈ N , at a
vertical drone speed (vve), and at a selected drone speed level vD

ij , the time tDij
to traverse the arc (i, j) is given by: tDij = ttki + thij + tlj . Consequently, by making
use of these different flying times of the drone, the battery consumption is set by
Eqs. (1)–(2) as: bij(wj , v

D
ij) = ttki · ptli (wj , vve)+ thij · pcij(wj , v

D
ij)+ tlj · ptlj (wj , vve).

Note, when traveling to meet the truck without a parcel on board, the same
Eqs. (1)–(3) are used to compute bij with the payload wj equal to 0.

ptl
ij = k1

(
W + wj

)
g

[
vve

2

√
(vve

2

)2
+

(W + wj)g

k2
2

]

+ c2
(
(W + wj)g

)3/2
(i, j) ∈ A (1)

pc
ij =

(
c1 + c2

)((
(W + wj)g − c5(v

D
ij cos θ)2

)2
+

(
c4(v

D
ij)

2
)2

)3/4
+ c4(v

D
ij)

3 (i, j) ∈ A (2)

ph
ij =

(
c1 + c2

)(
(W + wj)g

)3/2
(i, j) ∈ A (3)

In Eqs. (1)–(3), c1, c2, c4 c5, k1, k2, W , θ, g, and vve are model coefficients,
whose values are derived from [18] and provided in Table 1. This way, c1, c2, c4
c5, k1 and k2 are model constant, W represents the drone frame weight, θ is
the angle of attack, i.e., the vertical angle with which the drone faces the wind,
and g is the gravitational constant. Note that the model of [18] assumes a fixed
angle of attack for a certain range of payloads. Depending on the type of drone
considered, other models could be applicable here.

Table 1. Coefficient values for the energy consumption models presented in [24] and
[18].

Coefficient: k1 k2 c1 c2 c4 c5 W g θ Vve(takeoff) Vve(landing)

Value: 0.8554 0.3051 2.8037 0.3177 0.0296 0.0279 1.5 9.8 10 5 10

Units: [unitless]
√

kg/m
√

m/kg
√

m/kg kg/m Ns/m kg m/s2 Degrees m/s m/s

To properly select the parameter values of the algorithms presented in Sect. 3,
the Friedman non-parametric statistical test is applied over the performance of

402 G. Campuzano et al.

the heuristic approaches [22]. Table 2 shows the parameters assessed in the Fried-
man’s test to state the most suitable settings, where iterations represents the
number of iterations, stopping establish the maximum number of shaking proce-
dures allowed for the VNS and the maximum number of re-starting procedures
allowed for the MS-VNS, and Restarting is the maximum number of shaking
procedures before the re-starting mechanism is activated for the MS-VNS. In
this regard, the multiple parameters Friedman’s test is performed in those cases
in which the null hypothesis is rejected. A total of 5 representative instances for
the combination of the parameters from Table 2 are solved by the VNS and MS-
VNS algorithms. A significance level of αfriedman = 0.05 is used for the objec-
tive functions to indicate a significant difference among the parameter assessed.
After applying the Friedman non-parametric statistical test, we decided to use
the parameter settings Iterations = 9000 and Stopping = 70 for the VNS and
Iterations = 21000, Stopping = 200, and Restarting = 90 for the MS-VNS.

Table 2. Parameter values used to configure heuristics VNS and MS-VNS.

Parameter VNS MS-VNS

Iterations {11000, 9000, 7000} {42000, 21000, 7000}
Stopping {90, 70, 50} {4000, 300, 200}
Restarting – {150, 90, 30}

4.2 Computational Results

In this section, we conduct three sets of experiments with the purpose of mea-
suring the effectiveness of our algorithms. The first set of experiments provides
a comparison of the heuristic approaches with infinite energy capacity in the
drone’s battery. More precisely, we compare our VNS and MS-VNS algorithms
using both the original 9 neighbourhoods (as used in the hybrid general VNS
proposed in [10]) and the 11 neighbourhoods that include the 2 neighbourhoods
proposed in this work. We denote the neighbourhood structures using 9 or 11
as subscript. The second set of experiments presents the results of the exact
formulation and the metaheuristic from the first set of experiments with the
best performance, for the TSP-D with infinite energy capacity. The third set
shows the results of the TSP-D where the drone flying range is restricted by a
limited energy capacity, using the same methods as used in the second set of
experiments.

The tables presented below report the results of the optimization model and
the metaheuristics VNS and MS-VNS, for instances of up to 75 nodes. The tables
show the best solution found of 10 runs for each heuristic. The experiments are
carried out with a time limit of 3600 (s) for the MILP model. The columns
show the objective function value (Z), initial constructive TSP-D solution that
the metaheuristic algorithms use to explore the solution space (Zinit), Gap (%),
average computation time in seconds of the experiments for each instance, a

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 403

percentage difference of the heuristic objective function Z compared to the MILP
formulation as: ΔZ(%) = 100 · ZMILP −Z

ZMILP
, and a percentage difference of the

heuristic objective function compared to the initial constructive TSP-D solution
as: ΔZTSP−D(%) = 100 · ZTSP−D−Z

ZTSP−D
.

Assessment of the Neighbourhood Structures for VNS Algorithms.
Table 3 reports the results of the two new neighbourhood structures when study-
ing the performance of the VNS and MS-VNS algorithms for the TSP-D with
unlimited battery capacity. Best values are bold-faced. In addition, Fig. 2 pro-
vides a summary of the results, where for every heuristic algorithm the set of
instances is averaged by size n.

Table 3. Comparison of the VNS and MS-VNS algorithms for the TSP-D.

Instance VNS9 VNS11 MS-VNS9 MS-VNS11

Name n Z Time (s) Z Time (s) Z Time (s) Z Time (s)

51 10 4695 0.02 4118 0.03 3793 1.95 3625 2.12

52 6480 0.03 5280 0.02 5280 2.02 5280 1.94

53 4388 0.04 5629 0.03 8022 3.23 3608 1.73

54 6485 0.03 3883 0.03 4759 1.74 3833 1.54

55 6429 0.03 5023 0.02 4897 2.23 4787 2.09

61 20 7586 0.07 6345 0.12 6232 8.16 4884 7.57

62 7840 0.12 5087 0.07 5859 7.20 4500 6.98

63 11832 0.06 7603 0.08 6072 6.99 5818 7.09

64 7079 0.05 5112 0.07 5859 6.87 4343 6.24

65 7767 0.07 5592 0.06 4715 6.35 4707 6.41

71 50 9828 0.86 8344 1.66 7660 83.50 7513 88.25

72 12810 1.40 9799 1.12 8569 76.67 8402 83.21

73 8777 1.20 7271 1.87 6566 82.81 6521 87.66

74 13794 0.68 10502 1.15 9699 79.04 9183 83.41

75 14331 1.38 10430 1.43 12263 78.90 9349 82.95

81 75 19308 4.06 14226 12.32 14318 315.94 12704 323.11

82 16282 5.67 11776 10.87 10660 310.28 10134 337.81

83 16449 5.95 13050 7.20 12878 334.56 11646 335.94

84 18089 3.67 14068 6.89 12666 309.05 12434 333.00

85 15070 3.92 12413 12.05 12022 325.37 10682 336.90

Avg. 10765.95 1.47 8277.55 2.85 8139.45 102.14 7197.65 106.80

Results highlight the effectiveness of the multi-start mechanism in the perfor-
mance of heuristic MS-VNS11, although obviously at the expense of increasing
computational time. As such, we can see that MS-VNS11 is the algorithm that
finds the best solution for all the instances studied, where only for instance 52 the
heuristics VNS11 and MS-VNS9 were able to find the same result as MS-VNS11.

404 G. Campuzano et al.

Moreover, results also point out the effect of the two new neighbourhoods, which
help the heuristics algorithms VNS and MS-VNS perform a better exploration
of the solution space.

0
2000
4000
6000
8000
10000
12000
14000
16000
18000

10 20 50 75

Z

N

VNS9 VNS11 MS-VNS9 MS-VNS11

Fig. 2. Comparison of VNS9, VNS11, MS-VNS9, and MS-VNS11 for unlimited drone
flying range.

Assessment of Optimization Approaches for Unlimited Drone Flying
Range. Table 4 reports the results of the MILP formulation and the MS-VNS11

algorithm for the TSP-D when considering unlimited battery capacity. Best val-
ues are bold-faced.

Results point out that the TSP-D formulation is able to find good qual-
ity solutions for the small instance set (10–20 nodes) in computational times
under 50 s. The formulation reaches optimality for all the instances of 10 nodes
and gaps under 17% for the instances of 20 nodes. With respect to the MS-
VNS11 algorithm, the MS-VNS11 is able to reach optimal solutions for all the
instances of 10 nodes and improve the performance of the MILP formulation
for instances 61 and 64 by 2.3% and 0.84%, respectively. Further, the MILP
formulation present better solutions than the MS-VNS11 for instances 62, 63,
and 65 by 1.99%, 0.14%, and 0.84%, respectively. Additionally, the MS-VNS11

improves the initial constructive TSP-D solution that the algorithm uses to start
the iterative search by at least 21%.

When conducting the experiments on the large set of instances, we see that
the optimization model finds feasible solutions with gaps over 74% for all the
instances. Nevertheless, MS-VNS11 presents better results by at least 64% for all
the instances of the large set and improves the constructive initial solution by
at least 35%. Furthermore, the initial constructive TSP-D solution shows bet-
ter solutions than the final value of the MILP model for all the instances. This

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 405

Table 4. Comparison of the MILP formulation and the MS-VNS11 algorithm for the
TSP-D with unrestricted drone flying range.

Instance MILP Constructive MS-VNS11

Name n Z Gap (%) Time (s) ZTSP−D Z Time (s) ΔZMILP (%) ΔZTSP−D (%)

51 10 3625 0.00 25.45 8653 3625 2.12 0.00 58.11

52 5280 0.00 17.80 6754 5280 1.94 0.00 21.82

53 3608 0.00 20.38 5901 3608 1.73 0.00 38.86

54 3833 0.00 18.19 6988 3833 1.54 0.00 45.15

55 4787 0.00 49.00 6913 4787 2.09 0.00 30.75

61 20 4999 17.12 3620.92 8504 4884 7.57 2.30 42.57

62 4412 3.38 3600.59 9603 4500 6.98 −1.99 53.14

63 5810 8.58 3632.08 9479 5818 7.09 −0.14 38.62

64 4380 9.34 3631.00 7819 4343 6.24 0.84 44.46

65 4668 4.20 3616.73 8913 4707 6.41 −0.84 47.19

71 50 33597 84.24 3613.98 12370 7513 88.25 77.64 39.26

72 57116 89.64 3656.48 17595 8402 83.21 85.29 52.25

73 18608 74.83 3670.56 12994 6521 87.66 64.96 49.82

74 52287 88.18 3615.36 14444 9183 83.41 82.44 36.42

75 45991 85.72 3618.97 20191 9349 82.95 79.67 53.70

81 75 87452 90.12 3601.52 22590 12704 323.11 85.47 43.76

82 76357 90.63 3600.64 17403 10134 337.81 86.73 41.77

83 75689 90.09 3601.08 20393 11646 335.94 84.61 42.89

84 84827 90.74 3600.59 19173 12434 333.00 85.34 35.15

85 70425 89.79 3602.06 16787 10682 336.90 84.83 36.37

Avg. 32387.55 45.83 2720.67 12673.35 7197.65 106.80 40.86 42.60

demonstrates that, for the large set, the initialization phase of the algorithm gen-
erates solutions that are more effective than the optimization model. According
to this, we conclude that the MS-VNS11 presents competitive behaviour for the
small and large set of instances, where for the majority of the instances the
VM-VNS11 reaches the same or better solutions than the MILP formulation in
smaller computational times.

Assessment of the Optimization Approaches for Limited Drone Flying
Range. Table 5 reports the results of the MILP formulation and the MS-VNS11,
considering a battery capacity of 600 [KJ]. Best values are bold-faced.

When studying the TSP-D with a restricted drone energy capacity, results
show that the MILP model is able to reach optimality for all the instances of 10
nodes under 49 s, and present gaps under 17% for instances of 20 nodes. In this
regard, when studying the heuristic, we see that the MS-VNS11 is able to reach
the optimal solution for all instances of the small set and it finds better solutions
than the MILP model for instances 62 and 64 by 3.97% and 5.21%, respectively.
The MILP formulation reaches better solutions than the MS-VNS11 for instances
61 and 65 by 0.48% and 0.45%. In addition, the MS-VNS11 improves the initial
TSP-D solution by at least 21% for the small set.

406 G. Campuzano et al.

Table 5. Comparison of the MILP formulation and the MS-VNS algorithm for the
TSP-D with restricted drone flying range.

Instance MILP Constructive MS-VNS11

Name n Z Gap (%) Time (s) ZTSP−D Z Time (s) ΔZMILP (%) ΔZTSP−D (%)

51 10 3793 0.00 24.16 8653 3793 1.95 0.00 56.17

52 5280 0.00 10.02 6754 5280 2.02 0.00 21.82

53 8022 0.00 10.19 8760 8022 3.23 0.00 8.42

54 4759 0.00 12.53 9028 4759 1.74 0.00 47.29

55 4897 0.00 5.52 7144 4897 2.23 0.00 31.45

61 20 6202 21.94 3600.83 10556 6232 8.16 −0.48 40.96

62 6101 14.21 3682.98 9027 5859 7.20 3.97 35.09

63 6072 8.05 3607.05 10921 6072 6.99 0.00 44.40

64 6181 27.86 3600.63 7819 5859 6.87 5.21 25.07

65 4694 5.03 3600.30 10529 4715 6.35 −0.45 55.22

71 50 46679 88.53 3615.20 12939 7660 83.50 83.59 40.80

72 54923 89.37 3607.88 17905 8569 76.67 84.40 52.14

73 27755 83.11 3648.28 12994 6566 82.81 76.34 49.47

74 40209 84.46 3609.17 19496 9699 79.04 75.88 50.25

75 64628 88.13 3606.97 20191 12263 78.90 81.03 39.27

81 75 85509 89.15 3600.78 24700 14318 315.94 83.26 42.03

82 73198 90.25 3601.31 17403 10660 310.28 85.44 38.75

83 285228 97.19 3601.47 22404 12878 334.56 95.49 42.52

84 89872 91.18 3600.95 19173 12666 309.05 85.91 33.94

85 56462 86.94 3601.67 22083 12022 325.37 78.71 45.56

Avg. 44023.20 48.27 2712.39 13923.95 8139.45 102.14 41.91 40.03

On the other hand, we see that the MILP model provides feasible solu-
tions with gaps over 83% for all the instances of the large set. In this
respect, the MS-VNS11 algorithms report better solutions than the MILP model,
improving the initial TSP-D solution by at least 33%. Besides, results show that
the initial TSP-D solutions are better than the solutions provided by the opti-
mization model. Consequently, this demonstrates that the initialization phase
of the VNS scheme reaches better solutions than the MILP model for these
instances when studying the TSP-D with a restricted drone flying range. Sim-
ilarly as for the previous set of experiments, we conclude that for the small
and large set of instances the MS-VNS11 presents competitive solutions for the
TSP-D with a restricted drone flying range and small computational times. This
shows that the effectiveness of the multi-start mechanism does not only apply
to the unrestricted drone flying range, but also to the case in which limited
energy capacity is considered. Consequently, the multi-start mechanism allows
the MS-VNS to effectively explore the reduced solution space given the energy
constraints, which provides a more realistic representation of the last-mile deliv-
ery operations.

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 407

5 Conclusions and Future Work

In this paper, we studied the Traveling Salesman Problem with Drone (TSP-D),
with the objective of minimizing the makespan. Because of the NP-Hardness of
the TSP-D, we proposed two heuristic approaches, a VNS and a MS-VNS, and
compared their performance with a formulation from the literature [25]. Our
heuristic schemes consist of two phases, where up to 11 neighbourhoods can be
explored in every iteration of the search. We proposed two new neighbourhood
structures and studied their effectiveness by comparing with the neighbourhoods
from [13]. We showed that the MS-VNS algorithm presents competitive solutions
for a small and large set of instances when comparing the solutions with the
MILP formulation, with smaller computational times. Moreover, we demonstrate
that the two neighbourhood structures substantially improve the performance of
the heuristic approaches, finding better solutions in all the considered instances.
In addition, we also demonstrate that the multi-start approach improves the
performance of the VNS algorithm, finding better solutions for all the considered
instances, but at the expense of higher computational times. Consequently, we
conclude that the effectiveness of the two new neighbourhoods and the multi-
start approach holds for the theoretical version of the TSP-D as well as for the
more realistic representation of the problem including energy constraints.

With regards to future research, more emphasis should be placed on devel-
oping more efficient algorithms to reach better results in smaller computational
times. Hence, algorithms that include learning, such as look ahead, arrangement
of neighbourhoods based on their performance, and selection of a subgroup of
neighbourhoods in different stages of the optimization process, seem particularly
interesting as an object of study.

References

1. Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling
salesman problem with drone. Transp. Sci. 52(4), 965–981 (2018)

2. Boccia, M., Masone, A., Sforza, A., Sterle, C.: A column-and-row generation app-
roach for the flying sidekick travelling salesman problem. Transp. Res. Part C
Emerg. Technol. 124, 102913 (2021)

3. Burke, E.K., Cowling, P.I., Keuthen, R.: Effective local and guided variable neigh-
bourhood search methods for the asymmetric travelling salesman problem. In:
Boers, E.J.W. (ed.) EvoWorkshops 2001. LNCS, vol. 2037, pp. 203–212. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45365-2 21

4. Carlsson, J.G., Song, S.: Coordinated logistics with a truck and a drone. Manage.
Sci. 64(9), 4052–4069 (2018)

5. Chen, P., Huang, H., Dong, X.: Variable neighborhood search algorithm for fleet
size and mixed vehicle routing problem. J. Syst. Simul. 23(9), 1945–1950 (2011)

6. Dell’Amico, M., Montemanni, R., Novellani, S.: Drone-assisted deliveries: new for-
mulations for the flying sidekick traveling salesman problem. Optim. Lett. 15(5),
1617–1648 (2019). https://doi.org/10.1007/s11590-019-01492-z

7. Dhahri, A., Mjirda, A., Zidi, K., Ghedira, K.: A VNS-based heuristic for solving
the vehicle routing problem with time windows and vehicle preventive maintenance
constraints. Procedia Comput. Sci. 80, 1212–1222 (2016)

https://doi.org/10.1007/3-540-45365-2_21
https://doi.org/10.1007/s11590-019-01492-z

408 G. Campuzano et al.

8. Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S.: Vehicle routing problems
for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 70–85 (2016)

9. El-Adle, A.M., Ghoniem, A., Haouari, M.: Parcel delivery by vehicle and drone. J.
Oper. Res. Soc. 1–19 (2019)

10. de Freitas, J.C., Penna, P.H.V.: A randomized variable neighborhood descent
heuristic to solve the flying sidekick traveling salesman problem. Electron. Notes
Discrete Math. 66, 95–102 (2018)

11. de Freitas, J.C., Penna, P.H.V.: A variable neighborhood search for flying sidekick
traveling salesman problem. Int. Trans. Oper. Res. 27(1), 267–290 (2020)

12. Gonzalez-R, P.L., Canca, D., Andrade-Pineda, J.L., Calle, M., Leon-Blanco, J.M.:
Truck-drone team logistics: a heuristic approach to multi-drop route planning.
Transp. Res. Part C Emerg. Technol. 114, 657–680 (2020)

13. Ha, Q.M., Deville, Y., Pham, Q.D., Hà, M.H.: On the min-cost traveling salesman
problem with drone. Transp. Res. Part C Emerg. Technol. 86, 597–621 (2018)

14. Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In:
Voß S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-heuristics, pp. 433–
458. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-5775-3 30

15. Hansen, P., Mladenović, N., Pérez, J.A.M.: Variable neighbourhood search: meth-
ods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)

16. Jeong, H.Y., Song, B.D., Lee, S.: Truck-drone hybrid delivery routing: Payload-
energy dependency and no-fly zones. Int. J. Prod. Econ. 214, 220–233 (2019)

17. Kocatürk, F., Tütüncü, G.Y., Salhi, S.: The multi-depot heterogeneous VRP with
backhauls: formulation and a hybrid VNS with GRAMPS meta-heuristic approach.
Ann. Oper. Res. 1–26 (2021). https://doi.org/10.1007/s10479-021-04137-6

18. Liu, Z., Sengupta, R., Kurzhanskiy, A.: A power consumption model for multi-rotor
small unmanned aircraft systems. In: 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 310–315. IEEE (2017)

19. Marinelli, M., Caggiani, L., Ottomanelli, M., Dell’Orco, M.: En route truck-drone
parcel delivery for optimal vehicle routing strategies. IET Intell. Transport Syst.
12(4), 253–261 (2017)

20. Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: opti-
mization of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Technol.
54, 86–109 (2015)

21. Murray, C.C., Raj, R.: The multiple flying sidekicks traveling salesman problem:
parcel delivery with multiple drones. Transp. Res. Part C Emerg. Technol. 110,
368–398 (2020)

22. Oda, T., Liu, Y., Sakamoto, S., Elmazi, D., Barolli, L., Xhafa, F.: Analysis of
mesh router placement in wireless mesh networks using Friedman test consider-
ing different meta-heuristics. Int. J. Commun. Netw. Distrib. Syst. 15(1), 84–106
(2015)

23. Qi, X., Fu, Z., Xiong, J., Zha, W.: Multi-start heuristic approaches for one-to-one
pickup and delivery problems with shortest-path transport along real-life paths.
PloS One 15(2), e0227702 (2020)

24. Raj, R., Murray, C.: The multiple flying sidekicks traveling salesman problem with
variable drone speeds. Transp. Res. Part C Emerg. Technol. 120, 102813 (2020)

25. Roberti, R., Ruthmair, M.: Exact methods for the traveling salesman problem with
drone. Transp. Sci. 55(2), 315–335 (2021)

26. Schermer, D., Moeini, M., Wendt, O.: A branch-and-cut approach and alternative
formulations for the traveling salesman problem with drone. Networks 76(2), 164–
186 (2020)

https://doi.org/10.1007/978-1-4615-5775-3_30
https://doi.org/10.1007/s10479-021-04137-6

A Multi-start VNS Algorithm for the TSP-D with Energy Constraints 409

27. Tu, P.A., Dat, N.T., Dung, P.Q.: Traveling salesman problem with multiple drones.
In: Proceedings of the Ninth International Symposium on Information and Com-
munication Technology, pp. 46–53 (2018)

28. Vásquez, S.A., Angulo, G., Klapp, M.A.: An exact solution method for the TSP
with drone based on decomposition. Comput. Oper. Res. 127, 105127 (2020)

29. Zhang, J., Campbell, J.F., Sweeney, D.C., II., Hupman, A.C.: Energy consumption
models for delivery drones: a comparison and assessment. Transp. Res. Part D
Transp. Environ. 90, 102668 (2021)

Formal Methods to Verify and Ensure
Self-coordination Abilities in the Internet

of Vehicles

Vahid Yazdanpanah(B), Enrico H. Gerding, and Sebastian Stein

Agents, Interaction and Complexity Research Group, University of Southampton,
Southampton, UK

v.yazdanpanah@soton.ac.uk, {eg,ss2}@ecs.soton.ac.uk

Abstract. The emerging Internet of Vehicles (IoV) is a distributed mul-
tiagent network that utilises the potentials for collaboration of vehicles
with the aim to improve the reliability and safety of transportation
and logistic systems. IoV systems require operational methods to rea-
son about the capacity of the involved (human and artificial) agents to
form strategically capable coalitions as a means to ensure safety. In this
work, we (1) develop a logic-based machinery to represent and reason
about strategic abilities in IoV systems, (2) provide a process to verify
whether a given IoV system is capable to safely self-coordinate, and (3)
introduce a mechanism to ensure such an ability in a temporal, strategic,
and normative setting.

Keywords: Multiagent systems · Computational logic · Smart
logistics · Self-coordination · Internet of Vehicles · Formal reasoning

1 Introduction

With the increasing need for safe transportation, the rapid development of com-
munication technologies, and the ongoing race for developing autonomous vehi-
cles, the Internet of Vehicles (IoV) is emerging as one of the hottest topics in the
AI research community with high relevance and potential impact in the trans-
portation industry. The IoV is a distributed multiagent network that utilises
the potentials for collaboration of vehicles (via coalition forming, information
sharing, or collaborative task execution) with the overarching aim to improve
the reliability and safety of transportation and logistic systems [9,12]. Realising
such a form of collaboration can be reduced to classic optimisation problems
with standard solution concepts when we deal with obedient non-autonomous

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 410–425, 2021.
https://doi.org/10.1007/978-3-030-87672-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_27&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_27

Formal Methods to Verify and Ensure Self-coordination Abilities in the IoV 411

vehicles (as tools) that merely follow instructions. However, in IoV systems1

that involve autonomous (human, vehicular, and infrastructure) agents, it leads
to new forms of coordination and control problems. In principle, giving more
autonomy raises the challenging problem of whether and to what extent such
autonomous systems are capable of collaboration and self-coordination towards
collective-level safety concerns. For instance, in an intersection, it is crucial to
realise whether the set of involved IoV agents can collaboratively self-coordinate
towards ensuring the safety of the intersection.

To that end, IoV systems require operational methods to reason about the
capacity of the involved (human and artificial) agents to form feasible and capable
coalitions as a means to ensure safety. Here, feasibility refers to the absence
of potential incompatibilities of involved agents (i.e., their preference to get
involved or avoid collaborating with one another) and capability refers to being
able to strategically ensure safety (i.e., having a chain of actions—a strategy—to
guarantee safety regardless of what agents outside the coalition do). We argue
that such methods should satisfy the following desiderata:

– Expressivity: to capture the temporal, strategic, and normative aspects of IoV
systems in coalitional settings. The behaviour of the IoV evolves over time
(temporal dimension) and is a result of the interaction of various agents where
the combination of their actions (strategic dimension) may result in desirable
outcomes such as safety or undesirable ones such as a collision (normative
dimension). A reasonable analysis of whether an IoV system can maintain
such desirable outcomes requires modelling what different groups of agents,
and not merely individuals, are able to ensure collectively (coalitional dimen-
sion). E.g., the collective-level safety is a property that in most multiagent
IoV cases is achievable not by an individual but is a result of group-level
coalitional strategies.

– Coalitional Feasibility: it is not realistic to assume that any subset of involved
(human, vehicle, and infrastructure) agents in an IoV system can and is will-
ing to collaborate. So, even if a subgroup is theoretically capable of ensuring
a desirable outcome, it is crucial to verify whether it is a feasible coalitional
collaboration2. For instance, two vehicles may be close enough to communi-
cate, share information, and as a coalition find a way to coordinate who goes

1 We say “IoV system” to refer to a particular instance, e.g., a multiagent intersection
scenario, in the IoV as a whole (with millions of nodes). In the following, whenever
it is clear from the context that we are focused on a specific IoV system, we may
simply refer to it as the “IoV (case/scenario)”. Indeed, one may approach the IoV in
a granular level, with all the nodes and sensors, but this work approaches the topic
on a system level and focuses on reasoning about the self-coordination abilities of
coalitions in IoV systems.

2 Coalitional feasibility is different from stability in cooperative games and coalition
structure generation (see e.g., [19,21]). There, the focus is mainly on post-conditions
and what agents gain as a result of coalition formation while what we call coali-
tional feasibility is about pre-conditions on inherent incompatibilities of agents and
verifying whether the formation of a collaborative coalition is feasible.

412 V. Yazdanpanah et al.

first in an intersection but not willing to do so due to privacy concerns avoid-
ing them to share information with vehicles from other manufactures. In this
case, we say the coalition is not feasible to form. We argue that contextual
requirements such as privacy, and in turn the feasibility of coalitions, need to
be integrated into smart IoV coordination frameworks.

– Generality: to be generic enough for reasoning about various forms of nor-
mative outcomes and not hard-wired to a given safety concern. E.g., a safe
behaviour in a T-shape intersection may be unsafe in crossroads.

Reviewing the literature on IoV coordination and control, no method capable
of capturing all these principles currently exists [8,14,16,22,24]. In [22], the
authors use a graph theoretical representation that is temporally expressive.
However, the results are specific to platoon formation cases in a static topology
with no room for expressing scenarios in which the set of available actions to
each agent varies over time and with respect to the state of the IoV system.
The presented approach in [8] removes the need for traffic lights and solves the
coordination problem in crossroads but under the strong assumption that the
involved vehicles are fully collaborative and that all the potential two-member
coalitions are feasible to form in order to avoid pairwise collisions. Finally, in
[14,16], the safety can be guaranteed under the assumption that vehicles share
information regardless of their potential incompatibilities, e.g., caused by being
designed by different manufacturers with justifiable conflicts of interests.

For the first time in this work, we present a formally evaluated methodol-
ogy to verify the self-coordination capacity of IoV systems using formal strate-
gic reasoning and develop a mechanism to ensure it. We employ the semantic
machinery of Alternating-time Temporal Logic (ATL) [1] as the basis for reason-
ing about strategic abilities in the IoV and employ its coalitional extension [4] to
model endogenous and exogenous constraints in terms of argumentative notions
of incompatibility and priority. In practice, this framework can be embedded
in the IoV infrastructure as a safety-ensuring coordination service. In IoV sce-
narios, e.g., in an intersection, it is common that vehicles communicate with a
trusted Infrastructure Agent (IA) a short time before reaching the intersection.
Using our presented methods, an IA can evaluate the self-coordination ability of
the agents and if needed apply the mechanism to ensure it.

2 Conceptual Analysis and Game Structures

In the IoV, we encounter situations in which the traditional forms of coordina-
tion may be ineffective. For instance, think of an intersection with a fixed interval
traffic light. When two vehicles—both travelling from east to west—arrive at the
intersection, they have to wait for the green light even if there is no harm if they
pass. In the IoV, given the possibility of communication among the involved
agents, such inefficiencies can be handled using smart and dynamic forms of
self-coordination techniques. Thus, this paper focuses on developing reasoning
methods to verify whether self-coordination is feasible in an IoV system and
establishing a framework to coordinate IoV scenarios to ensure safety. We later
elaborate on safety as a principle to guide the process of designing coordination

Formal Methods to Verify and Ensure Self-coordination Abilities in the IoV 413

mechanisms for IoV systems. If one aims to replace static external coordina-
tion techniques (e.g., traditional traffic lights) with a dynamic self-coordination
mechanism, safety is the main concern. Imagine the simple two-agent scenario
in Fig. 1(a). Having no external signal, how can they decide to go or to stop?
They can stop at the intersection forever or may cause a crash.

Even with full awareness about the environment and observability over the
surrounding traffic, ensuring the safety of the intersection requires verifying if
the group of vehicles (in this case blue and red) can come up with a plan to pass
the intersection safely. Here, no single one of them is able to ensure that both
a crash and a deadlock is avoided. The only safe way is if one goes before the
other—which requires them acting together as a group, i.e., taking a coalitional
action. Then it is crucial to consider that, e.g., for privacy concerns, they may
avoid sharing information with one another, hence cannot form a coalition and
execute a collective plan. This necessitates capturing what we introduced as the
coalitional feasibility condition while verifying self-coordination abilities in the
IoV.

(a)

A

B

(b)

Fig. 1. The Intersection Scenario: Vehicles (red, blue, green) and pedestrians (A and
B) can form coalitions in order to self-coordinate and ensure safety. (Color figure online)

Note that many intersections and traffic junctions currently operate without
any traffic light and merely rely on the self-coordination capacity of human-
driven vehicles (e.g., in roundabouts). To keep them operational and safe for a
mixed group of human-driven and autonomous vehicles, we argue that the IoV
infrastructure needs to be enriched with computational methods to (1) verify
whether—in a given scenario—involved agents are able to safely self-coordinate
and (2) when they are not able to do so, to ensure safety using verifiably reliable
coordination techniques.

Using multiagent strategic reasoning semantics (e.g., [1]), one can evaluate
whether an agent or agent group is able to avoid the crash or to ensure that no
deadlock takes place. For instance, we can verify whether the coalition of agents
{red, blue} is capable of ensuring that neither a crash nor a deadlock takes place.
However, such a realisation (that such a group with a successful strategy exists)

414 V. Yazdanpanah et al.

does not necessarily imply that such a group will form and accordingly will exe-
cute their collective strategy to avoid undesirable situations. In the context of
the IoV—with vehicles from different manufacturers and with different priority
levels—it is not a reasonable assumption that all agents can communicate, form
such coalitions, and successfully execute actions in a particular order. There
might be incompatibilities among agents. These are mostly caused by inherent
characteristics of the involved agents (endogenous constraints). E.g., differences
in the technologies or manufacturers may prevent agents from forming a collab-
orative coalition with each other3. Moreover, in real-life and physically bounded
multiagent systems such as the IoV, there exist external conditions that may
require them to do specific actions or to form coalitions (exogenous constraints).
For instance, consider regulatory rules and road priorities that expect agents to
give way if an ambulance arrives at the intersection.

To model the external as well as internal constraints of coalition formation in
real-life applications of the IoV, we capture inherent incompatibilities of agents
(e.g., being produced by competing manufacturers) using the argumentative
notion of “attack” relations [17]. We follow [4] and consider potential priori-
ties among vehicles (e.g., ambulances, bicycles, or fire trucks over other vehicles)
using a preorder on the involved agents. A formal account of these notions will be
presented in upcoming sections. These elements act as constraints over the fea-
sibility of coalitions in an IoV system. Then, a feasible coalition that possesses a
strategy to ensure safety in an IoV scenario is realistically able to self-coordinate
the scenario in a safe manner. The first part of work presents logic-based meth-
ods to formally verify whether such a coalition exists in a given IoV scenario and
the second part provides a mechanism to ensure it. For instance, in Fig. 1(a),
the coalition {red, blue} is able to self-coordinate only if it is a feasible coalition.
Taking feasibility into account distinguishes our work from methods that merely
focus on the availability of strategies to agent groups. While such a perspective
is applicable for closed worlds with benevolent and cooperative agents (e.g., soft-
ware agent systems in [18]), physically bounded IoV systems demand methods
capable of addressing feasibility constraints. Our concern to capture feasibility
of coalitions in the IoV relates to the notion of natural abilities in [11], where the
authors formalise natural strategies as those with a feasible degree of complex-
ity. Then it is a question whether a feasible coalition to ensure safety necessarily
exists. Do we fail to self-coordinate if red and blue cannot form a feasible coali-
tion? In real-life scenarios, e.g., traffic handling in intersections with no traffic
light, priority rules act as predesigned mechanisms for coordination. Inspired

3 We would like to emphasise that ensuring the safety and reliability of dynamic
systems such as the IoV needs to balance the trade-offs between strict, design-time,
offline standardisation (e.g., see [20]) and flexible run-time online coordination (e.g.,
see the interdisciplinary study in [15]). While standardisation is effective for parts
of the IoV with less complexity and more predictability, for other parts in which
standardisation is out of reach, the IoV requires flexible techniques able to capture
the characteristics of specific scenarios and able to be exploited at the run time. This
work focuses on such instances where incompatibilities are probable and provides a
base for verifying and ensuring self-coordination in the run-time.

Formal Methods to Verify and Ensure Self-coordination Abilities in the IoV 415

by this, we introduce a model-updating mechanism to ensure the existence of a
minimal coalition, feasible to be formed and capable of ensuring the safety of an
IoV system.

To reason about the abilities of agents and agent coalitions in a multiagent
system such as the IoV, we employ Concurrent Game Structures (CGS). CGS, as
the semantics machinery of Alternating-time Temporal Logic (ATL) [1], enables
modelling the behaviour of IoV systems over time (capturing temporality) and is
expressive for representing the ability of individual agents as well as coalitions to
ensure/avoid a given situation (strategic abilities). Moreover, CGS-based notions
can be implemented using established model-checking tools [5,13]. Using CGS,
we reason about coalitional aspects of the IoV and model the temporal and
strategic aspects of IoV scenarios.

Concurrent Game Structures: Formally, a Concurrent Game Structure (CGS)
is a tuple M = 〈Σ,Q,Π, π,Act, d, o〉 where: Σ = {a1, . . . , an} is a finite, non-
empty set of agents; Q is a finite, non-empty set of states; Π is a set of atomic
propositions; π : Q �→ P(Π) is a valuation of propositions; Act is a finite set
of atomic actions; function d : Σ × Q �→ P(Act) specifies the sets of actions
available to agents at each state; and o is a transition function4 that assigns the
outcome state q′ = o(q, α1, . . . , αn) to state q and a tuple of actions αi ∈ d(ai, q)
that can be executed by Σ in q. To represent strategies and outcomes we make
use of the following auxiliary notions.

Successors and Computations: For two states q and q′, we say q′ is a successor
of q if there exist actions αi ∈ d(ai, q) for ai ∈ {1, . . . , n} in q such that q′ =
o(q, α1, . . . , αn), i.e., agents in Σ can collectively guarantee in q that q′ will be the
next system state. A computation of a CGS M is an infinite sequence of states
λ = q0, q1, . . . such that, for all i > 0, we have that qi is a successor of qi−1. We
refer to a computation that starts in q as a q-computation. For k ∈ {0, 1, . . . },
we denote the k’th state in λ by λ[k].

Strategies and Outcomes: A memoryless strategy5 for an agent a ∈ Σ is a func-
tion ζa : Q �→ Act such that, for all q ∈ Q, ζa(q) ∈ d(a, q). For a coalition
of agents C ⊆ Σ, a collective strategy ZC = {ζa | a ∈ C} is an indexed set of
strategies, one for every a ∈ C. Then, out(q, ZC) is defined as the set of potential
q-computations that agents in C can enforce by following their corresponding
strategies in ZC .

CGS is expressive to capture complex scenarios where we are interested in
a combination of temporal, coalitional, and strategic properties. Note that rea-
soning about normative (un)desirable properties in IoV scenarios, e.g., to verify
4 CGS can be extended to probabilistic forms by adding probabilities to transitions.

For the purpose of this work, our approach can be applied after a standard deter-
minisation procedure [23]. If one focuses on finite traces (as argued for in [2,7]), a
probabilistic automaton can be reduced to a deterministic one.

5 We focus on memoryless strategies to avoid the strong assumption that agents nec-
essarily recall the evolution of the IoV system.

416 V. Yazdanpanah et al.

whether a crash is possible, avoidable, or inevitable, requires going beyond single-
shot properties in contrast to merely analysing whether a crash happens in the
immediate next state of the system. For instance, our running example with two
vehicles can be modelled as a 3-state CGS (Fig. 2).

start

: Safe
: Safe: Unsafe

Fig. 2. We model the scenario presented in Fig. 1(a) as M = 〈Σ, Q, Π, π, Act, d, o〉
where: Σ = {red, blue}; Q = {q0, q1, q2}; Π = {ϕ} (ϕ represents the breach of safety,
i.e., the crash, in the intersection); Act = {f, s} to represent going forward “f” and
stopping “s”; d(ai, q) = Act for all ai ∈ Σ and q ∈ Q; and π and o are represented in
the automaton.(Color figure online)

Being concerned about the occurrence of a crash or passing safely, we use the
unique proposition ϕ to represent a crash (in general, we can represent a finite
set of propositions, relevant to our scenario, in Π). Then, we are interested
in verifying if individual agents or coalitions of agents are capable of avoiding
such a crash using their available actions or sequences of actions. To reason
about agents’ potentials, we have that in q0, red and blue may each stop or go
forward. With no communication, hence no coordination, the two vehicles may
remain in a deadlock situation in q0 or cause a crash in q2. However, coalition
{red, blue} has a strategy to avoid this (e.g., red goes first and blue second).
But the question is whether such a coalition is a reasonable one to form in the
context of IoV systems and given potential incompatibilities among the involved
agents. In real-life IoV scenarios, we cannot assume benevolent agents but need
to restrict theoretically formable coalitions to a subset of feasible ones.

3 Coalitional IoV Systems

Inspired by the presented approach in [4], we build on the CGS machinery, adopt
elements from the literature on formal argumentation theory [17], and model
coalitional IoV systems in Definition 1. The first element, adopted from argu-
mentation theory, is a relation to represent potential incompatibilities between
agents (known in the formal argumentation community as the attack relation).
Furthermore, the second adopted element is a preorder to represent priorities
among agents in the IoV context, e.g., an ambulance has priority over a truck.
Note that notions of computation and strategy are syntactic elements of CGS
and do not capture the feasibility of coalitions. In a CGS, a group C may have
a collective strategy to enforce a particular form of computation. This merely
means that there exists a chain of collective actions to do so and disregards that

Formal Methods to Verify and Ensure Self-coordination Abilities in the IoV 417

some agents in C may hesitate to (form a collaborative coalition and) execute the
collective strategy. By adding new elements to CGS, we can distinguish groups
with a strategy from feasible groups with a strategy. This allows capturing, not
only the existence of a collective strategy but also, the feasibility of forming a
coalition to execute the strategy.

Definition 1 (Coalitional IoV). A coalitional IoV is given by a tuple I =
〈Σ,Q,Π, π,Act, d, o,�,≺〉 where 〈Σ,Q,Π, π,Act, d, o〉 is a CGS modelling the
behaviour of the IoV, � ⊆ Σ × Σ is an antireflexive relation representing the
potential incompatibilities between agents, and ≺ is a preorder on Σ representing
priorities between agents.

Here, relation � reflects potential incompatibilities not as misalignment in
goals but in terms of inherent characteristics, e.g., competing manufacturers of
vehicles. Making incompatibilities explicit in the modelling relaxes the common
assumption that IoV systems are operating either in a cooperative or fully non-
cooperative setting and enables modelling realistic scenarios, where some agent
groups (but not necessarily all) may be able to form coalitions. Furthermore, the
ordering ≺ is a contextual element in the IoV system that models priorities. In
real-life cases—e.g., in applying our method to traffic coordination scenarios—
priorities act as regulatory norms and override potential incompatibilities. For
instance, regardless of the brand of an ambulance, other vehicles collaborate
with it as it has a higher priority. Using CGS for specifying IoV systems enables
capturing the temporal, strategic, and normative aspects. In addition, it is imple-
mentable using computationally affordable model-checking tools, e.g., [5,13].

Definition 2 (Feasibility). Let I be a coalitional IoV and C ⊆ Σ an agent
group in I. We say C is a feasible coalition if and only if for all ai, aj ∈ C we
have that (ai, aj) ∈ � ⇒ ai ≺ aj. The set of all feasible coalitions is denoted
with F.

Notice that the feasibility of a coalition is defined in terms of incompatibili-
ties that are not overruled by priorities. Moreover, note that we do not assume
symmetry on the incompatibility relation �. This reflects the reality of the IoV
context. For instance, vehicles from a manufacturer A may avoid forming coali-
tions with others from B while vehicles from B are not necessarily concerned
with being in a coalition with vehicles from A. This is also the case when we
consider vehicle-human or vehicle-infrastructure relations. For instance, imagine
extending our two-vehicle scenario with � = {(red, blue)} and red ≺ blue. Then
we have an incompatibility but it is “overruled” by the priority preorder. Thus,
the grand coalition is feasible and able to safely self-coordinate towards q1. By
the corollary to Definition 2, we have:

Corollary 1. Let I be a coalitional IoV. Then we have: 1. (conflict-freeness)
Any C ⊆ Σ is a feasible coalition (i.e., a member of F) if � = ∅; and 2.
(maximality) If C is a feasible coalition (C ∈ F), then any C ′ ⊆ C is a feasible
coalition.

418 V. Yazdanpanah et al.

The first point shows that in a conflict-free IoV—i.e., with no incompatibility
among the agents—all potential coalitions are feasible. Then the second point
shows that being feasible is a maximal quality for a coalition. The latter is
crucial to presenting the first main result of our work on the ability of an IoV
to safely self-coordinate (Theorem 1). The former point relates to what we later
discuss as weak homogeneity in IoV systems. Note that the feasibility of coalitions
does not reflect the post-conditions in the IoV (i.e., what they can ensure via
their actions) but is defined with respect to their inherent characteristics (e.g.,
potential manufacturer differences and type of the vehicle) and the context of the
IoV (i.e., what priorities and codes of conduct are in place). Next, we move to our
focal question on “whether agents in an IoV system can safely self-coordinate”.
This is to verify if agents can feasibly ensure a given S that represent safe states
and maintain it over time. In a CGS, the capacity of a set of agents C to ensure
a subset of states S from a state q requires C to have a strategy ZC such that
all q−computations in out(q, ZC) include a state in S. In other words, all such
computations should meet a state in S at least once. Then, maintaining S is
a specific form of ensuring as it requires that all such computations consist of
states in S and only states in S. Note that it is not necessary that computations
C enforces (using ZC) consist of identical states but any state in S. In other
words, even if q ∈ S, group C does not need to enforce the system to remain in q
but can enforce computations that go through other states in S. In the following,
we use the term “to ensure and maintain” to convey the point that maintaining
S (even from a q ∈ S) can be achieved by ensuring other states in S and not
necessarily by remaining in q.

Theorem 1. Let I be a coalitional IoV and S ⊆ Q a safety state of affairs
represented by a set of states in the IoV. From a safe state q ∈ S, the IoV I
can safely self-coordinate w.r.t. S if (1) there exists a C ⊆ Σ with a collective
strategy ZC to ensure and maintain S, (2) C is a feasible coalition, and (3) no
C ′ ⊂ C satisfies both (1) and (2).

Proof. To guarantee that I can ensure and maintain S, agents in Σ should have
the capacity to do so. A minimal (part 3) and feasible (part 2) sup-group of agents
C ⊆ Σ with a collective strategy ZC (part 1) is capable of forming C (thanks
to its feasibility) and ensuring that all the q-computations λ in out(q, ZC) are
merely composed of states that are in S. This is thanks to its capacity to ensure
and in addition maintain (i.e., remaining in) S. As I is safe in the first place (in
q) and any potential q-computation remains in S if C executes ZC , we have the
coordination capacity within I. �

From an implementability point of view, note that the problem to verify
whether an IoV is capable of self-coordination in a safe manner reduces to a
model-checking problem, that takes the set of feasible coalitions as its input,
and hence is implementable using standard tools (e.g., using [5,13]). First, any
state of affairs S translates to a valid proposition in ϕ ∈ LATL (see [25] for a
similar approach). Basically, S consists of those states in Q that satisfy ϕ. Then
we have a straightforward process to verify if in q, any feasible coalition has a

Formal Methods to Verify and Ensure Self-coordination Abilities in the IoV 419

strategy to minimally ensure S. As shown in Corollary 1, subsets of a feasible
coalition preserve the feasibility. Hence, instead of model-checking on possible
coalitions in Σ, we only consider feasible coalitions.

Based on Theorem 1, the presented 2-vehicle IoV can safely self-coordinate
as the grand coalition is feasible and is the only minimal coalition capable of
ensuring and maintaining q1. In the scenario displayed in Fig. 1-b, we have vehi-
cles blue and green; pedestrians Alice (A) and Bob (B); and the following action
space, incompatibilities, and priorities: d(a, q) = {s, f} meaning that any agent
a can either stop (s) or go forward (f) in any state q; � = {(green, blue)} mean-
ing that green is incompatible with blue; green ≺ blue, green ≺ A, blue ≺ A
meaning that blue has priority over green and Alice has priority over both the
vehicles. The partial CGS in Fig. 3 models this scenario. Here, the three-member
coalition of Alice, green, and blue satisfies the conditions of Theorem 1. Their
coalition is feasible thanks to the priority of green over blue and minimal as no
member can be excluded.

start

Fig. 3. This CGS represents various paths which the coalition composed by A, green,
and blue can ensure and maintain safety in q1. E.g., q0, q4, q2, q1, Action profiles on
each arrow are actions for A, B, blue, and green, respectively. Dashed lines represent
other paths that may result from unrepresented actions. (Color figure online)

Building feasible coalitions (i.e., expecting to collaborate with others) is not
necessarily required in all the IoV cases. Our framework can capture such cases
too. For instance, imagine Fig. 1-(b) with only the two vehicles green and blue–
with neither Alice nor Bob. Then all the potential outcomes are safe, hence the
empty set is the feasible and minimal coalition capable of ensuring a safe state.
In general:

Proposition 1. For any incompatibility relation � and priority ≺, I can safely
self-coordinate w.r.t. S if S = Q.

420 V. Yazdanpanah et al.

Proof. If all states are in S, any successor of any q ∈ Q is a safe state. Formally,
for any strategy Z∅, all the states in out(q, Z∅) are in S. Hence the empty set
is the unique minimal coalition capable of ensuring safety from any q. �

While we use a state-based formalisation of safety in the IoV, our approach
is not limited to state-based normativity and safety on the state level but has
behavioural connotations. Basically, a state of affairs in Q represents all the
states that satisfy a ϕ ∈ LATL (e.g., see Fig. 2). Using the state-based notation
is more intuitive and enables colour-based visual labelling. To see the behavioural
aspect, notice that our notion of strategy is a multi-step temporal notion as it
involves chains of actions to reach a q ∈ S. Moreover, verifying if such a strategy
is available to a group requires model-checking the potential evolution/behaviour
of the MAS using the semantic notion of path/computation (in contrast with
the purely syntactic notions of action and state). As observed, adding agents to
an IoV does not preserve the self-coordination ability.

Proposition 2. Coalitional IoV systems are non-monotonic regarding their
ability to safely self-coordinate.

Proof. We show that given an IoV I capable of self-coordination w.r.t. to S,
adding a new agent ai does not preserve the self-coordination ability of the newly
formed I ′. Basically, there exists a feasible coalition C in I with a strategy ZC

to ensure and maintain S. To be able to ensure S in I ′, C ∪ {ai} should be
feasible, which is not the case in general due to potential incompatibilities. As a
counterexample, imagine adding a new vehicle brown (going from east to west)
to Fig. 1. If brown is incompatible with both red and blue, and we have that
red ≺ brown and blue ≺ brown, then the IoV system will be unable to safely
self-coordinate. �

4 Self-coordinating IoV Classes

The IoV has the potential to be deployed in various contexts with domain-
specific characteristics. For instance, in the context of rail freight transport, one
may face a homogeneous set of autonomous train vehicles operating with no
incompatibility. This form of context-dependent homogeneity arises when we
deal with collaborative agents with negligible incompatibilities. E.g., when we
are dealing with a set of vehicles from the same manufacturer. This translates
into having � = ∅ in our formalisation. In this section, we focus on the ability
of such sub-classes to safely self-coordinate. This has direct implications for
deployability of real-life IoV systems.

Proposition 3. Let I be an IoV with � = ∅, S ⊆ Q be a non-empty safety
state of affairs, and q be a state in S. I can safely self-coordinate from q if there
is a safe path in S that contains a loop.

Proof. The antecedent is identical to saying that S is reachable from q and
maintainable; formally, that for a q-computation λ, there exists a finite prefix

Formal Methods to Verify and Ensure Self-coordination Abilities in the IoV 421

λ[j] = q0, . . . , qi, . . . , qj s.t. all the states in the prefix are in S and qi = qj .
To prove, we show how such an IoV satisfies the three conditions of Theorem
1 on: (1) S-ensuring and maintenance ability, (2) coalitional feasibility, and (3)
minimality. For part one, the existence of safe finite prefix implies that Σ can
ensure qi in the non-empty S. Given that S has a loop, Σ can maintain S by
ensuring that I loops back to qi. Then, for part two, relying on the conflict-
freeness of I (see Corollary 1), we have that Σ is feasible. Finally, for part three,
either Σ is minimal or by excluding excess agents, we reach to a minimal subset C
where we have that C necessarily preserve the feasibility condition (maximality
term in Corollary 1). �

Having no incompatibility relaxes the feasibility check, but observe that the
ability to ensure and to maintain S are independent. For instance, in Fig. 3,
{Bob} can ensure S but has no strategy to maintain it. Moreover, a group may
be capable of maintaining S in a state q′ but not in a different state q, e.g., the
empty set can preserve S in q1 but has no strategy to ensure it from q0. Our
notion of self-coordination in the IoV is essentially a local notion as it is about
the ability of the IoV to remain safe from a given safe state. In the context of the
IoV, we deem that safety is a requirement that is necessary to be respected in all
the possible outcomes. In IoVs, one cannot be satisfied with a path of states that
reaches a safe state via unsafe states. For instance, in the intersection scenario,
given that q0 is a safe state itself, we are interested to see if agents can self-
coordinate towards q1 via a safe path. One may argue that Alice can stop and
individually avoid going into a red state. Note that she can only ensure that
the next state after q0 is either q0 or q4 but cannot maintain remaining in a
safe state. We need to consider that the capacity to self-coordinate (Theorem
1) is in terms of and bounded to a given set of states, without imposing any
requirements on these states, and here we are focused on q1. Next, we focus on
how the global self-coordination capacity (in contrast to a state-bounded local
capacity) can be verified.

Theorem 2. IoV I can safely self-coordinate w.r.t. S ⊆ Q if in all q ∈ S, there
is a coalition C ∈ F with a strategy ZC such that in any λ ∈ out(q, ZC), we have
that λ[1] is in S.

Proof. To prove, we show how such an IoV satisfies the local conditions of The-
orem 1 in any q ∈ S. In any q, if a feasible coalition C with such a S-ensuring
strategy exists, then the set of possible next immediate states that C can ensure
consists of either only q itself or has other states q′ �= q in S. In the former case,
C can make a loop in S that satisfies the maintaining condition. Such a C is
either minimal or by excluding excess members we reach to a minimal subset.
In the later case, when we may have q′ �= q in the set of possible next immediate
states that C can ensure, we have a coalition C ′ to ensure S by looping on q′ or
by reaching another state in S. Note that we are not extending C to C∪C ′ hence
coalitional feasibility is not an issue. Intuitively, each C,C ′, · · · ∈ F is responsible
just to ensure that the next state is in S. The antecedent indicates that in all
q ∈ S, such a coalition exists. This ensures the maintenance condition. �

422 V. Yazdanpanah et al.

In this class of IoVs, I is capable of self-coordination globally only if in every
safe state, there exists at least a feasible coalition capable of ensuring at least an
immediate safe state. For instance, imagine the scenario in Fig. 1-b but without
green ≺ blue. Then, blue has no priority over green and their incompatibility
results in the infeasibility of their coalition with Alice. Such practical concerns in
the context of the IoV make self-coordination in coalitional IoVs distinguishable
from strategic reasoning in software systems, with fully-collaborative agents, and
motivates using mechanisms to update priority rules in order to ensure safety
properties.

5 A Safety-Ensuring Mechanism

In cases where the conditions of Theorem 1 are not satisfied, the IoV is incapable
of self-coordination in a safe manner, thus requires intervening mechanisms to
ensure safety. Next, we show that in our formalisation of IoV systems, this can
be ensured using a mechanism that minimally introduces priority rules. In this
context, minimality refers to the introduction of l new priority rules such that the
IoV is incapable of safe self-coordination under any k < l added rules. Mechanism
MS (Algorithm 1) is designed to ensure safety concern S as a function that takes
I and updates it to I ′ capable of self-coordination with respect to S.

Theorem 3. Let I be an IoV and non-empty S ⊆ Q a safety state of affairs.
If S is reachable and maintainable from q ∈ Q (in the sense of Proposition 3),
mechanism MS ensures the self-coordinating capacity of the updated IoV I ′ to
ensure S via minimal priority updates.

Proof. To prove, we show the correctness of Algorithm 1 using the following
lemmas. In Lemma 1 and 2, we respectively establish the non-emptiness of ĈS

q

and that I ′ satisfies the self-coordinating conditions of Theorem 1. �
Lemma 1. If S is reachable and maintainable from q ∈ Q (in the sense of
Proposition 3), then ĈS

q �= ∅.

Proof. Building on Proposition 3, we have that for such a S, the grand coalition
Σ is a member of ĈS

q as it is necessarily capable of ensuring and maintaining S.
Note that in this stage, the mechanism is merely focused on the strategic ability
of groups regardless of their coalitional feasibility. �

By focusing on the class of reachable and maintainable S from q, we are
making the assumption that it is not reasonable to specify an inevitable situa-
tion with S. An IoV neither can nor is expected to avoid inevitable situations.
Moreover, for generating ĈS

q , using standard model-checking tools, we highlight
that the notion of state of affairs in terms of a subset of Q is translatable to an
ATL-based verifiable proposition. ϕ corresponds to a fixed set of states S ⊆ Q.
From a computational complexity point of view, verifying whether a group is
able to ensure a ϕ is P -complete w.r.t. the size of I and ϕ [3].
Lemma 2. From q, IoV I ′ generated by MS, can safely self-coordinate w.r.t. S.

Formal Methods to Verify and Ensure Self-coordination Abilities in the IoV 423

Algorithm 1: Safety Ensuring Mechanism MS

Input: IoV I; state q ∈ Q; state of affairs S ⊆ Q.
Result: I′ capable of safe self-coordination w.r.t. S.

1 Initialisation: ϕ ← ATL formula (from LATL) corresponding to S; ĈS
q ←

indexed set of groups Ck able to ensure and maintain ϕ from q (standard ATL
model-checking [3]); index ← 0; u ← |�|;

2 forall the Ck ∈ ĈS
q do

3 uk ← 0; Uk ← ∅;
4 forall the (i, j) ∈ � do
5 if i ∈ Ck and j ∈ Ck and j ⊀ i then
6 uk ← uk + 1;
7 Uk ← Uk ∪ {(i, j)};

8 if uk = 0 then
9 return I;

10 else
11 if uk ≤ u then
12 u ← uk;
13 index ← k;

14 ≺′←≺;
15 forall the (i, j) ∈ Uindex do
16 if j ≺ i �∈≺′ then
17 ≺′←≺′ ∪{k ≺ j : k ≺ i ∈≺′};

18 return I′ = 〈Σ, Q, Π, π, Act, d, o, �, ≺′〉;

Proof. We show that I ′ satisfies the conditions of Theorem 1. The first condi-
tion is fulfilled because ĈS

q is non-empty (Lemma 1). For the second condition,
Algorithm 1 finds Cindex ∈ ĈS

q with the least number of unresolved intra-group
incompatibilities and introduces the required priorities. For the third condition,
as coalitional feasibility is a maximal notion (Corollary 1), excluding excess
members leads to the minimal group without harming the feasibility. �

As presented, this approach aims at intervening as little as possible as we
focus on the coalition in ĈS

q with the smallest number of incompatibilities.
If there exists a feasible group to form a coalition (that is capable of ensur-
ing safety), we say the IoV system is capable of safe self-coordination without
any external intervention. This is a crucial background for reasoning about (1)
whether intervention, and applying the presented mechanism, is necessary (i.e.,
by introducing external rules) and (2) as a secondary outcome, whether we can
see agents responsible for an unsafe behaviour, i.e., we can justifiably see them
responsible if they could ensure safety but failed to do so [26].

6 Conclusions

We proposed a coalitional representation of IoV systems rooted in a logic for
strategic reasoning in multiagent systems. In our approach, integrating elements
from formal argumentation theory resulted in a contextual representation and

424 V. Yazdanpanah et al.

reasoning framework that captures key aspects of the IoV. For the first time, this
work enables automated reasoning about the temporal, strategic, and normative
aspects of the IoV using logic-based methods. Specifically, it enables verifying
whether a given IoV system is capable of self-coordination with respect to a safety
concern. We designed an algorithmic mechanism that guarantees this ability in
IoV systems and formally evaluated our results. In this work, we focused on the
availability of strategies to coalitions. An interesting extension is to rank groups
based on the hardness of their strategy. E.g., in some traffic contexts, a strategy
is useful only if it can be executed fast. We aim to integrate the notion of “natural
strategy” [11] to address this in terms of the number of state transitions. Another
direction is to formulate agents’ responsibility for an undesirable situation, e.g., a
crash. We aim to link our approach to epistemic strategic logics [10] and integrate
it with multiagent responsibility reasoning tools [6,25].

Ethical Statement. For an effective deployment of trustworthy IoV systems,
verifiable computational models to capture and preserve social values, safety
concerns, and ethical norms play a key role. The results of this study can be
embedded in the IoV infrastructure as a safety-ensuring coordination service and
are adaptable for preserving social values and ethical norms in human-centred
AI systems.

Acknowledgements. This work is supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) through the Trustworthy Autonomous Systems
Hub (EP/V00784X/1), the platform grant entitled “AutoTrust: Designing a Human-
Centred Trusted, Secure, Intelligent and Usable Internet of Vehicles” (EP/R029563/1),
and the Turing AI Fellowship on Citizen-Centric AI Systems (EP/V022067/1).

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Brafman, R.I., Giacomo, G.D.: Planning for ltlf /ldlf goals in non-markovian fully
observable nondeterministic domains. Proc. IJCAI 2019, 1602–1608 (2019)

3. Bulling, N., Dix, J., Jamroga, W.: Model checking logics of strategic ability: com-
plexity, pp. 125–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-
4419-6984-2 5

4. Bulling, N., Dix, J., Chesñevar, C.I.: Modelling coalitions: ATL + argumentation.
In: Proceedings of AAMAS’08, pp. 681–688 (2008)

5. Cermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Proceedings of the
26th International Conference on Computer Aided Verification, pp. 525–532 (2014)

6. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-
roach. J. Artif. Intell. Res. 22, 93–115 (2004)

7. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for büchi word
automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)

8. Ghaffarian, H., Fathy, M., Soryani, M.: Vehicular ad hoc networks enabled traffic
controller for removing traffic lights in isolated intersections based on integer linear
programming. IET Intell. Transp. Syst 6(2), 115–123 (2012)

https://doi.org/10.1007/978-1-4419-6984-2_5
https://doi.org/10.1007/978-1-4419-6984-2_5

Formal Methods to Verify and Ensure Self-coordination Abilities in the IoV 425

9. Hammoud, A., Sami, H., Mourad, A., Otrok, H., Mizouni, R., Bentahar, J.: Ai,
blockchain, and vehicular edge computing for smart and secure iov: Challenges and
directions. IEEE Internet Things Mag. 3(2), 68–73 (2020)

10. van der Hoek, W., Wooldridge, M.J.: Cooperation, knowledge, and time:
alternating-time temporal epistemic logic and its applications. Studia Logica 75(1),
125–157 (2003)

11. Jamroga, W., Malvone, V., Murano, A.: Natural strategic ability. Artif. Intell. 277
(2019)

12. Kaiwartya, O., et al.: Internet of vehicles: motivation, layered architecture, network
model, challenges, and future aspects. IEEE Access 4, 5356–5373 (2016)

13. Kurpiewski, D., Jamroga, W., Knapik, M.: STV: model checking for strategies
under imperfect information. In: Proceedings of AAMAS’19, pp. 2372–2374 (2019)

14. Lee, J., Park, B.: Development and evaluation of a cooperative vehicle intersection
control algorithm under the connected vehicles environment. IEEE Trans. Intell.
Transp. Syst 13(1), 81–90 (2012)

15. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Comput. Surv. (CSUR) 26(1), 87–119 (1994)

16. Milanés, V., Alonso, J., Bouraoui, L., Ploeg, J.: Cooperative maneuvering in close
environments among cybercars and dual-mode cars. IEEE Trans. Intell. Transp.
Syst 12(1), 15–24 (2011)

17. Modgil, S., Prakken, H.: A general account of argumentation with preferences.
Artif. Intell 195, 361–397 (2013)

18. Mohamed, A.M., Huhns, M.N.: Benevolent agents in multiagent systems. In: Pro-
ceedings Fourth International Conference on MultiAgent Systems, pp. 419–420.
IEEE (2000)

19. Perez-Diaz, A., Gerding, E., McGroarty, F.: Coordination of electric vehicle aggre-
gators: a coalitional approach. In: Proceedings of AAMAS’18, pp. 676–684 (2018)

20. Priyan, M., Devi, G.U.: A survey on internet of vehicles: applications, technologies,
challenges and opportunities. Int. J. Adv. Intell. Paradigms 12(1–2), 98–119 (2019)

21. Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure
generation: a survey. Artif. Intell 229, 139–174 (2015)

22. Santini, S., Salvi, A., Valente, A.S., Pescapè, A., Segata, M., Cigno, R.L.: A
consensus-based approach for platooning with inter-vehicular communications. In:
2015 IEEE Conference on Computer Communications, pp. 1158–1166 (2015)

23. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: 26th Annual Symposium on Foundations of Computer Science, Port-
land, Oregon, USA, 21–23 October 1985, pp. 327–338 (1985)

24. Yang, F., Li, J., Lei, T., Wang, S.: Architecture and key technologies for internet
of vehicles: a survey. J. Communi. Inform. Netw. 2(2), 1–17 (2017)

25. Yazdanpanah, V., Dastani, M., Jamroga, W., Alechina, N., Logan, B.: Strategic
responsibility under imperfect information. In: Proceedings of AAMAS ’19, pp.
592–600 (2019)

26. Yazdanpanah, V., Gerding, E.H., Stein, S., Dastani, M., Jonker, C.M., Norman,
T.J.: Responsibility research for trustworthy autonomous systems. In: Proceedings
of AAMAS’21, pp. 57–62 (2021)

Routing, Dispatching, and Scheduling

Equipment Dispatching Problem
for Underground Mine Under Stochastic

Working Times

Nour El Houda Hammami, Amel Jaoua, and Safa Bhar Layeb(B)

LR-OASIS, National Engineering School of Tunis, University of Tunis El Manar, Tunis, Tunisia
nourelhouda.hammami@etudiant-enit.utm.tn, safa.layeb@enit.utm.tn

Abstract. This work investigates an underground mine equipment dispatching
problem under equipment stochastic working times. First, a mathematical model
is developed for solving the Equipment Dispatching problem while considering
the machines working times as deterministic parameters. Then, Monte Carlo sim-
ulation is implemented in order to assess the reliability of the deterministic dis-
patching under stochastic environment, i.e. stochastic working times that include
travel times between stopes, settlement times, and breakdown times. For this chal-
lenging problem, an illustrative variability effect analysis is proposed. Promising
preliminary results highlight the importance of considering machines working
times as stochastic parameters in the case of medium and high variability levels.

Keywords: Underground mine equipment dispatching · Stochastic working
times · Monte Carlo simulation

1 Introduction

With a worldwide high consumption of mineral products, and with a huge resurgence
to “Open pit to underground mining transition” (King et al. 2017) in mining industry,
underground mining projects are considered among the most significantly rewarding
businesses (Campeau and Gamache, 2020). Consequently, it is crucial for underground
mining companies to optimize their processes, mainly, their equipment dispatching pro-
cess in cited rigid environments (Yu et al. 2017). A real fact leading to controlling several
uncertain parameters related to machines performance, that can be tracked and recorded
easily by IoT sensors in the context of mining 4.0 era.

In a real-world context, the uncertainty of underground mining equipment parame-
ters, particularly machine working times, have a significant impact on the dispatching
process and themining activities short-term planning. However, such stochastic process-
ing times have not been clearly investigated in the existing literature on underground
mine dispatching problems, as highlighted in the recent study of Hou et al. (2020). It is
worthy to note that machines working times could include effective processing times,
machines settlement times and mobile equipment traveling times between stopes etc.
(Samatemba et al. 2020). In fact, the work of Hou et al. (2020) is among the very few

© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 429–441, 2021.
https://doi.org/10.1007/978-3-030-87672-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_28

430 N. E. H. Hammami et al.

works that have considered uncertainty and in particular only breakdowns are taken as
uncertain, and not the other parameters affecting the mining dispatching problem.

Undergroundminemobile equipment dispatching is defined as the process of allocat-
ing available equipment of the mine to the different developed stopes, for the execution
of the production operations, and schedulingworking times of the allocatedmachines for
every phase of the same production sequence (Hou et al. 2020). In this context, our study
aims at quantifying the effect of stochastic processing times on an underground mine
mobile equipment dispatching problem, in order to highlight the risk of not considering
stochastic equipment working times. For that purpose, we first develop a mathemati-
cal model to solve the equipment dispatching problem while considering the machines
working times as deterministic. Then, Monte Carlo simulation (MCS) is implemented to
assess the reliability of the deterministic dispatching under stochastic environment. This
relevant resolution scheme has been recently used in transportation context (Elgesem
et al. 2018; Guimarans et al. 2018; Layeb et al. 2018) to measure the risk of ignoring
the real stochastic nature of the environment.

The rest of the paper is structured as follows. Section 2 reviews themost related work
on machines dispatching issues in underground mines, and highlights the importance
of considering stochastic working times for such problems. Section 3 presents the main
characteristics of the considered equipment dispatching problem. Section 4 reports the
deployed mathematical model as well as the MCS-based approach. Section 5 discusses
our preliminary experimental results. Finally, Sect. 6 draws conclusions and avenues for
future research.

2 Related Work

Mobile equipment dispatching is defined as the process of allocating available equip-
ment of the mine to the different developed stopes, mining production sites, for the
execution of the production operations, and scheduling working times of the allocated
machines for every phase of the same production sequence (Hou et al. 2020). During
the last decades, some studies were conducted in order to treat dispatching issues in the
mining industry, especially in the context of mining short-term scheduling. Beaulieu and
Gamache (2006) implemented an enumeration tree based algorithm for solving a fleet
management problem in underground mines. The sequence of the tree’s states presents
the shortest routes for the vehicles. The proposed dynamic algorithm showed efficiency
in controlling underground mines’ fleet system at the short-term level. Paduraru and
Dimitrakopoulos (2019) worked differently on real time dispatching and scheduling
issues in mining complex. Precisely, the authors introduce the reinforcement learning
to respond to the insertion of new information that can be related to geological charac-
teristics, availability of material transportation; i.e. mobile equipment availability, and
processing characteristics. Geostatistical simulations were used to model these features
in order to determine adequate destinations policy of extracted material, in real time.
After determining several causes of uncertainty related to mines’ processing activities
(material extraction and transportation), Paduraru and Dimitrakopoulos (2019) state that
this uncertainty is triggered by the interactions between several field’s activities such
as relations of cause effect between equipment queuing times and cycle times, extrac-
tion rates etc. Recently, Manríquez et al. (2020) introduced a Simulation-Optimization

Equipment Dispatching Problem 431

framework for the consideration of operational uncertainty in the generation of the
mine’s short-term schedule based on equipment KPIs: Availability and Utilization as
introduced by Mohammadi et al. (2015). The yielding underground mine short-term
schedule includes mobile machines allocation to stopes while considering uncertainty
affecting their performance indicators.

Hou et al. (2020) investigated the problem of simultaneously dispatching the mobile
equipment and sequencing stopes. The authors established a link between production
process and dynamic resource scheduling. A multi-objective optimization model was
proposed to minimize the gap time between two consecutive phases of mining produc-
tion as well as the makespan of the stopes’ production cycle. For the problem resolution,
Hou et al. (2020) used a stope production phase algorithm that allows having possible
scenarios of stopes schedule. The algorithm helps finding a coherent equipment assign-
ment responding to the problem dynamic properties. After preparing different scenarios
of stopes sequencing with equipment assignment, a genetic algorithm is introduced to
reach the best solution meeting the two objectives of the main model, with the initial
individuals being the established scenarios of the equipment assignment algorithm.

Differing from (Hou et al. 2020), our work considers clearly stochastic working
times for the dynamic mobile equipment dispatching problem in underground mines
and assesses the effect of their variability on the generated deterministic solution.

In the context of transportation, Jaoua et al. (2020) considered urban vehicles travel
times as stochastic variables, fittedwith the skewedLognormal distribution, to investigate
the effect of the flow pattern on the reliability of routes planning. They measured the
risk of missing predefined time windows for vehicles when stochastic travel times are
not considered. They found that at high variability levels, the deterministic solution is no
longer efficient, thereby the need to consider stochastic work times for route planning.

Analogically to the transportation context, underground mining equipment working
times are herein fitted with the unimodal Lognormal distribution. Their impact on the
reliability of the deterministic dispatching is evaluated using Monte Carlo simulation.

3 Problem Description

3.1 Production Sequences in Underground Mines

Let’s begin by presenting underground mines production main characteristics. Although
several methods of ore extraction are used within underground mines, the production
cycle remains the same and is based on six-unit operations: Rock drilling, charging,
blasting, ventilation support, stope supporting, ore extraction, loading and transporting
(Åstrand et al. 2018a,2018b; Hou et al. 2020; Song et al. 2015).

Fig. 1. A stope’s production sequence

432 N. E. H. Hammami et al.

Figure 1 presents the six phases of production sequences. In an underground mine,
every existing stope is in one of these six phases. Moreover, underground mining pro-
duction sequence defines stopes’ states or phases. The equipment dispatching realized
in the present study is based on these phases.

3.2 Hypotheses Consideration

This study aims at resolving the problem of mobile equipment dispatching in an under-
ground mine which consists of assigning machines executing the different phases of a
stope production cycle to the different stopes being operated or planned to beoperated.
This is a process evoked by the short-term planning of the mine under consideration.

Precisely, to solve the yielding equipment dispatching problem, the following
assumptions are considered:

• The undergroundmine is composed of N stopes planned to be-operated for ore extrac-
tion. Every stope is operated according to the above mentioned six-phase production
sequence.

• For each phase of the production cycle, a specific fleet of mobile equipment is dedi-
cated. For each of the first five phases, a particular fleet of Jumbos is associated and
for the extracting phase, a set of Load Haul Dumps (LHDs) is dedicated.

• For every phase, the machines are not identical. In fact, every single machine of a
certain phase is characterized by its capacity, expressed in mass unit per time unit. It
is worth to mention that capacity differs from one equipment to another which leads
to variations in machines working times. For the computational experimentation, we
used the average working times of the machines per stope and per phase.

• Each machine can break down during working time. breakdowns are possible at any
time during the effective work in the mine and are part of the factors that create
uncertainty in the working times of the machines.

• Based on the ore reserve and average machine working times, a predetermined set of
machine types required for each stope is established.

• It is assumed that the work of the machines in each stope cannot be interrupted by
moving to other stopes.

• Each machine cannot be operated in two or more stopes in parallel, and when a
machine is inactive, it is considered to be available for each stope that requires it.

• It is possible to have many stopes of a same phase being operated at the same time.

3.3 Equipment Stochastic Working Times

Underground mines have always been known for their rigid environment due mainly
to natural factors. This fact makes underground mining a difficult process, since its
rigidity leads to uncertainty in production cycles, affecting the working times of mobile
machines, the travel times of machines between stopes, and the human teams carrying
out the different processing tasks.

In our study, we focus on the uncertainty associated to mobile equipment in under-
ground mines. According to Mohammadi et al. (2015) and Samatemba et al. (2020), for
underground mining equipment, the time to complete its assigned task, which refers to

Equipment Dispatching Problem 433

the machine’s working time, is equal to the sum of the effective processing time, the
machine’s settlement time, and delays. Precisely, the equipment effective processing
time is the time of executing the real task for which the machine is constructed; for
example, for a drilling jumbo, it is the real time spent in drilling stopes. Here, the notion
of effective processing time is considered as presented byManríquez et al. (2020). Then,
the settlement time is the time spent setting up the machine to perform a specific task. It
can be considered in the case of the samemobile machine ensuring two or more different
tasks. Finally, delays present the time spent waiting for the start time of the processing.
For our case, delays can include machines failure or breakdowns or travel times between
the different stopes of the underground mine. All of these parameters related to the
machine’s working time are considered as uncertain. It is assumed that working times
are stochastic input parameters to our problem.

At this stage, it is worthy to note that when fitting an equipment working times, for a
specific production phase at a specific stope, with the Lognormal distribution at different
variability levels (as defined later in Sect. 4.2), the higher the coefficient of variation (CV),
the greater the variability in equipmentworking time. Illustrative histograms are reported
in Fig. 2.

Fig. 2. Histogram of the working time of machine 1 of phase 1 at stope 1, respectively from the
left: CV = 20%, CV = 40%, and CV = 70%

4 Problem Formulation

4.1 Mathematical Model

Now, let’s turn our attention to proposing a mathematical model for this challenging
equipment dispatching problem.
Sets
I = {1…, N}:Set of N stopes,
P = {1…, L}:Set of L possible phases,
Kp = {1…,E}:Set of available equipment for phase p.
Indices
i refers to stope i.
p refers to phase p.
p′refers to the phase following the phase p. For example, if phase p is “charging”, p′is
“blasting”.
k refers to machine k of the set Kp of phase p.

434 N. E. H. Hammami et al.

Parameters
PRipk : Working time of machine k of phase p at stope i,
Nip: Number of required machines for the execution of phase p at the stope i,
B: Big positive number.
Decision Variables
Sipk : continuous non-negative variable that reflects the start time of the execution of
phase p at stope i by equipment k,
Eipk: continuous non-negative variable that reflects the end time of the execution of
phase p at stope i by equipment k,
Wipk : continuous non-negative variable that reflects the start time of phase p at stope i
of assigned equipment k,
V ipk : continuous non-negative variable that reflects the end time of phase p at stope i of
assigned equipment k,
ST ip: continuous non-negative variable that reflects the start time of phase p at stope i,
ETip: non-negative variable that reflects the end time of phase p at stope i,
Xipk : binary decision variable that takes value 1 if equipment k is assigned to phase p at
stope i, 0 otherwise,
H: continuous non-negative variable that reflects the completion time of the execution
of the planned stopes.

Using these notations, a mathematical formulation can be derived as follows:

min Z = w1

N∑

i=1

L−1∑

p=1

(STi(p+1) − ETip) + w2H (1)

The objective function (1) minimizes the weighted sum of the non-productive time
between two consecutive phases and the end time of stopes processing completion H.
Expression (1) should be minimized subject to the following constraints:

Eipk = Sipk + PRipk ∀i ∈ I , p ∈ P, k ∈ Kp (2)

Constraints (2) express the end working time of each machine k of phase p at stope
i.

Either (Ei′pk ≤ Sipk) Or (Eipk ≤ Si′pk) ∀i, i′ ∈ I/i′ �= i, p ∈ P, k ∈ Kp (3)

To express the prohibition of a same machine parallel work in two different stopes
or more, an “either-or” relationship is defined in (3). It avoids overlapping both intervals
of working times of the same machine k at two different stopes.

Np∑

k=1

Xipk = Nip ∀i ∈ I , p ∈ P (4)

Constraints (4) ensure that the sum of machines operating at phase p for every stope
is equal to the defined required number of machines per specific phase, for the same
stope.

If (Xipk = 1) Then (Wipk = Sipk) ∀i ∈ I , p ∈ P, k ∈ Kp (5)

Equipment Dispatching Problem 435

In order to define working start times of assigned machines, “If, then” relationships
are introduced in (5).

If (Xipk = 0) Then (Wipk = B) ∀i ∈ I , p ∈ P, k ∈ Kp (6)

Relationships (6) allow the start time of equipment that is not assigned to a specific
stope at a phase p to be ignored when calculating the start time of that phase at that stope.

If (Xipk = 1) Then (Vipk = Eipk) ∀i ∈ I , p ∈ P, k ∈ Kp (7)

Relationships (7) express the working end times of the assigned equipment.

If (Xipk = 0) Then (Vipk = 0) ∀i ∈ I , p ∈ P, k ∈ Kp (8)

Relationships (8) enable the end time of equipment that is not assigned to a specific
stope at a phase p to be ignored when calculating the end time of that phase at that stope.

STip ≤ Wipk ∀i ∈ I , p ∈ P, k ∈ Kp (9)

Constraints (9) define the start time of each phase per stope.

ETip ≥ Vipk ∀i ∈ I , p ∈ P, k ∈ Kp (10)

Constraints (10) define the end time of each phase per stope.

H ≥ ETip ∀i ∈ I , p ∈ P, k ∈ Kp (11)

Constraints (11) establish the end time of stopes process completion time as it is the
maximum of different phases end times of all planned stopes.

STip′ ≥ ETip ∀i ∈ I , p ∈ P, p′ ∈ {2...L − 1} (12)

Constraints (12) ensure that the start time of the next phase is necessarily greater
than or equal to the end time of the current phase.

Sipk ,Wipk , STip ≥ 0 ∀i ∈ I , p ∈ P, k ∈ Kp (13)

Xipk ∈ {0, 1} ∀i ∈ I , p ∈ P, k ∈ Kp (14)

Constraints (13)-(14) define the nature of the decision variables.
To conclude, Model (1)-(14) is a valid formulation for the considered mobile

equipment dispatching Problem in underground mine.

4.2 Monte Carlo Simulation-Based Sampling Approach

To analyze the effect of equipment stochastic working times on the underground mine
machines dispatching problem, a MCS-based sampling approach is used. It consists
of introducing stochastic input parameters, i.e. stochastic machines working times,
to Model (1)–(14), for generating objective functions values of different stochastic

436 N. E. H. Hammami et al.

instances. More precisely, M independent scenarios of equipment working times per
instance are considered. A scenario is composed of machines sets of working times per
phase and stope. Let f 1l, f 2l…, f Ml denote stochastic objective functions of the problem,
for instance l. For scenarios generation, the Lognormal distribution is adopted with three
different coefficients of variation. After obtaining stochastic objective functions values
of the problem, the absolute gap between both, the deterministic objective function value
Zl and the stochastic one, is calculated for every scenario realization. The absolute gap
and the mean absolute gap are defined as follows:

Gapjl = |Zl − f jl

∣∣∣ ∀ j ∈ {1...M } (15)

MeanGapl = 1

M

M∑

j=1

Gapjl (16)

Moreover, let T be the vector of random working times variables of machine per
phase and per stope. Actually, each machine working time per phase and per stope is a
random variable following the Lognormal distribution. Thus, T is defined as follows:

T= (T1,…,Ts) where s =
L∑

p=1
KpN .

Then, the location and the scale parameters of the lognormal distribution are
calculated as follows:

μt = ln(E[Tt]) − 0.5 ln(1 + Var[Tt]
(E[Tt])2) ∀t ∈ {1...s} (17)

σ 2
t = ln(1 + Var[Tt]

(E[Tt])2) ∀t ∈ {1...s} (18)

where E[Tt] is the arithmetic mean of Tt, and Var[Tt] is its variance.

5 Results and Discussion

The mathematical model (1)–(14) was implemented in OPL language and solved using
the commercial state-of-the-art solver CPLEX, version 12.6 with its default settings, on
a computer processor intel Core i5, 7th generation running at up to 3.1GHz. In order to
understand the utility of the mathematical formulation, an illustrative example is first
introduced. Then, the results of six different instances of equipment dispatching problem
for an underground mine are presented. Results for the stochastic case are reported to
extract some useful insights about its effect on the proposed dispatching solution.

5.1 The Deterministic Case

Let’s begin by treating an illustrative example that presents the case of three to-be-
operated phases for three different stopes. We assume having as number of available
machines K1 = 3, K2 = 3, K3 = 4 (and as weights in the objective function (1) w1 =
w2 = 0.5).

Equipment Dispatching Problem 437

For the first phase’s execution, 3 machines are required for the different stopes. For
the second phase, 3 machines are required at the first stope, and 2 machines are needed
at stopes 2 & 3. And finally, for the third phase’s execution, 2 machines are required
at the different stopes. Mean equipment working times are extracted from (Hou et al.
2020).

The optimal assignment for this illustrative example is deployed in Fig. 3.

Fig. 3. Diagram of stopes production phases for the illustrative example of 3 phases & 3 stopes

Considering the execution of Phase 2, it is noticed that Stope 2 and Stope 3 use both
the same equipment, namely Machine 2. In fact, Machine 2 starts operating Phase 2 at
Stope 2 (the priority is for the second stope for this case), at time h1 = 10.5 h. It finishes
its job at time h2 = 14.75 h, and becomes then “Available”. At h3 = 15.75 h, Machine 2
starts operating Phase 2 at Stope 3, and finishes its work at h4 = 19 h. It is also the same
case for Machines 1, 2, and 3 of Phase 1. The priority is first considered for the first
stope, after that the second stope is processed, and the three assigned machines finish
their work at the third stope. We do not have overlapping working intervals for a same
machine proceeding at two different stopes. It is the case for all of the shared machines
of different phases. The end completion time of stopes processing H is equal to 27.25 h.

Depending on the start and end times of the phases per stope, the production cycles
of the phases differ from one stope to another. This can be due to the difference between
the working times of the machines for the same phase and the different stops, and to
the dispatching generated. For example, the first phase’s execution lasts 5.25 h for both
Stopes 1 and 3, whereas it lasts 6h for the second stope. The second phase lasts 3.75 h,
4.25 h and 3.5 h for stopes 1, 2, and 3, respectively. For the first and second phase, the
gap between phases’ production cycles for many stopes is not large when compared with
the gap between stopes phase 3 execution times. In fact, a gap of 4.5 h is found between
the execution times of Phase 3 for Stope 3 and Stope 2.

Now, based on this illustrative example and the case of “Sanshandao” gold mine
in china treated by Hou et al. (2020), six realistic instances are derived by varying the
number of stopes and phases. Deterministic results are as reported in Table 1. Precisely,
Model (1)–(14) was solved to optimality while taking the mean values as the machines
working times, for each instance. The column headings of Table 1 are as follows: Inst.
= name of the instance; Z* = value of the optimal solution in hours, H* = end time of
the stopes processing in hours, CPU Time = CPU time required to compute Z*.

Recall that the objective function presents the equally weighted sum of the total
production end time and between-phases gaps. Table 1 shows that Model (1)–(14) were
successful in achieving equipment dispatching with zero inter-phase deviations. This

438 N. E. H. Hammami et al.

Table 1. Results of the deterministic case

Inst Z* H* CPU time

1 7.000 14.000 1.27 s

2 8.625 17.250 4.27 s

3 10.375 20.750 70.53 s

4 10.750 21.500 0,52 s

5 13.625 27.250 4 min 30,78 s

6 16.250 32.500 5 min 14,8 s

fact may be due to the limited size of the considered instances. Not surprisingly, by
increasing the constraints and variables of the model (i.e., increasing the number of
stops and phases), its CPU time increases.

5.2 The Stochastic Case

In order to measure the variability effect of stochastic machines working times on the
underground mine equipment dispatching problem, we use the MCS Sampling. This
method is tested on instances Inst.1- Inst.6. 100 stochastic objective functions are gen-
erated, for every variability level, and for every instance, basing on the absolute gap
between the stochastic and the deterministic optimal solutions, and the mean absolute
gap are calculated. Numerical results showed that the higher the variability level is,
the higher the Mean Absolute Gap (MeanGap) is, for all of the instances. The highest
MeanGap is noticed for Inst.4, for an arithmetic coefficient of variability CV = 70%;
MeanGap = 5.329 h. It presents 50% of the instance’s deterministic objective function.
For low variability level, MeanGap is of low values indicating that for low working
times variability rate, the objective function of the dispatching problem lightly varies.
For medium variability levels (CV= 40%), MeanGap values present higher values when
compared toMeanGap of low variability. The impact of variability is clearer at the high
level.

For a detailed study of the absolute gap between stochastic and deterministic
solutions, Box & Whisker plots representation are used, as shown in Fig. 4.

For a low variability level (CV = 20%), maximum values of absolute gap (Gap) do
not exceed 1.8 h for Inst.1, Inst.2 and Inst.3 instances. For a medium variability level
(CV = 40%), 50% of Gap values do not exceed 1.6 h, and 75% of the Gaps data do
not exceed the value of 2 h for the three first instances. However, for a high variability
level (CV = 70%), 75% of the first instanceGap values are below 4 h (below 46% of the
deterministic objective function of Inst.2), and maximumGap values can reach 8.3 h for
the first instance and 5.5 h for the Inst.3 instance. As for the last three instances, for low
variability level, 75% of absolute gap is below 2 h. For high variability, maximum Gap
can reach 44% of the objective function for Inst.5, and 49% of the deterministic objective
function of Inst.6. For medium variability level, maximum Gap values can reach 27%
of the deterministic solution. So as a first conclusion, for the medium variability (CV

Equipment Dispatching Problem 439

Fig. 4. Box & Whisker Plots

= 40%) and high variability (CV = 70%), it may be necessary to consider stochastic
equipment working times for the dispatching problem: The problem’s deterministic
solution is no longer optimal, so there is a need to use other approaches for solving the
problem such as the simulation-based optimization approach (Jaoua et al. 2020).

Beside their effect on the variation of the objective function, equipment stochastic
working times affect the assignment of machines within the underground mine. This
effect can be illustrated in the case of the illustrative example by comparing one of
its stochastic solutions to the optimal deterministic solution. The example of the 76th
stochastic generation at a high variability level (CV = 70%) is displayed in Fig. 5. The
gap between stochastic and deterministic solutions is equal to 7.94 h. Ac: for this specific
generation, the end time of the total production cycle has increased up to 43.12 h and the
assignment has changed too for specific stopes at phase 2 and phase3. With the change
of assignment, clearly considering this stochasticity level induces a complete change of
priorities as well as phases start and end times per stope.

Fig. 5. Diagram of stopes production phases for the illustrative example at the 76th stochastic
working times generation

These preliminary computational results illustrate the validity of the implemented
model and confirm the intuitive outcomes of the proposed approach. It is clearly seen,
that at low variability levels, the solution of the mathematical program is robust, which is
not the case for higher variability levels. For enhancing the effectiveness of the planning
system optimization, it may be necessary for underground mines planners to refer to the

440 N. E. H. Hammami et al.

historical data analysis of the machines working times. Precisely, if the coefficient of
variation is of low value, the optimal solution remains valid. Otherwise, if the coefficient
of variation is of high value (superior to 70%), it is necessary to use another appropri-
ate approach such as the simulation-based optimization approach, as detailed in (Jaoua
et al. 2020) and (Layeb et al. 2018) in the context of transportation planning. Besides, the
simulation-based optimization approach is consequently validated for the deterministic
case, with our mathematical program. In the same context, extensive empirical experi-
ments should be conducted on larger dataset that could be derived from big data analytics
within a Mining 4.0 framework.

6 Conclusion

This work investigated the variability effect of the equipment working times on the
equipment dispatching in the context of underground mines. It underlines the disadvan-
tages of not taking into account the stochastic working times of the mobile equipment
on the quality of the equipment dispatching solution, for the short-term planning of an
underground mine.

The proposed approach consists of first, generating the fleet dispatching by solving
a mathematical model that considers deterministic mean values of the equipment work-
ing times. Then, MCS is used to assess the reliability of the deterministic dispatching
under stochastic environment, i.e. under stochastic working times. In the present work,
mobile equipment working times of six realistic instances are fitted with the skewed
unimodal Lognormal distribution. Preliminary computational results illustrative that for
high variability level of the equipment working times, themean absolute gap between the
stochastic solution and the deterministic one, can exceed the value of the deterministic
objective function, by 50% of its value. Whereas for low variability level, the determin-
istic objective function of the dispatching problem lightly varies. Furthermore, results
reveal that for high variability level, absolute gap per scenario can reach 49% and 27% of
the deterministic objective function, for respectively high and medium variability levels.
In the case of low variability level, i.e. for CV = 20%, objective functions of generated
scenarios lightly vary when compared to the deterministic solution. In consequence, for
low variability, the deterministic dispatching, that is obtained by using mean values of
equipment working times, remains efficient.

However, for higher variability levels, it is recommended to use the simulation-
based optimization approach to handle stochastic mobile equipment working times. The
decision of the appropriate approach, simulation-based optimization or mathematical
programming, for different variability intensity is based on the analysis of the equipment
historical data.

As a future work, we aim to conduct an extensive computational experimentation
on larger dataset to assess the proposed approach. Such larger sets of data could be
obtained using big data analytics in the new mining era: Mining 4.0. In the same vein,
the stochastic waiting and queuing times of mobile machines, which are included in
stochastic working times, could be obtained from real-time records of connected IoT
sensors in the mining environment.

Equipment Dispatching Problem 441

References

Åstrand, M., Johansson, M., Greberg, J.: Underground mine scheduling modelled as a flow shop:
a review of relevant work and future challenges. J. South Afr. Inst. Min. Metall. 118(12),
1265–1276 (2018a)

Åstrand, M., Johansson, M., Zanarini, A.: Fleet scheduling in underground mines using constraint
programming. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 605–613.
Springer, Cham (2018b). https://doi.org/10.1007/978-3-319-93031-2_44

Beaulieu, M., Gamache, M.: An enumeration algorithm for solving the fleet management problem
in underground mines. Comput. Oper. Res. 33(6), 1606–1624 (2006)

Campeau, L.P., Gamache, M.: Short-term planning optimization model for underground
mines. Comput. Oper. Res. 115, 104642 (2020)

Elgesem, A.S., Skogen, E.S., Wang, X., Fagerholt, K.: A traveling salesman problemwith pickups
and deliveries and stochastic travel times: An application from chemical shipping. Eur. J. Oper.
Res. 269(3), 844–859 (2018)

Guimarans, D., Dominguez, O., Panadero, J., Juan, A.A.: A simheuristic approach for the two-
dimensional vehicle routing problemwith stochastic travel times. Simul. Modell. Pract. Theory
89, 1–14 (2018)

Hou, J., Li, G., Wang, H., Hu, N.: Genetic algorithm to simultaneously optimise stope sequencing
and equipment dispatching in underground short-term mine planning under time uncertainty.
Int. J. Min. Reclam. Environ. 34(5), 307–325 (2020)

Jaoua,A., Layeb, S.B., Rekik,A., Chaouachi, J.: The shared customer collaborationwith stochastic
travel times for urban last-mile delivery. In: Sustainable City Logistics Planning: Methods and
Applications, vol. 1, chapter III, pp. 63–96. Nova science publishers (2020)

King, B., Goycoolea,M., Newman, A.: Optimizing the open pit-to-undergroundmining transition.
Eur. J. Oper. Res. 257(1), 297–309 (2017)

Layeb, S.B., Jaoua,A., Jbira,A.,Makhlouf,Y.:A simulation-optimization approach for scheduling
in stochastic freight transportation. Comput. Ind. Eng. 126, 99–110 (2018)

Manríquez, F., Pérez, J., Morales, N.: A simulation–optimization framework for short-term under-
ground mine production scheduling. Optim. Eng. 21(3), 939–971 (2020). https://doi.org/10.
1007/s11081-020-09496-w

Mohammadi,M., Rai, P.,Gupta, S.: Performancemeasurement ofmining equipment. Int. J. Emerg.
Technol. Adv. Eng. 5(7), 240–248 (2015)

Paduraru, C., Dimitrakopoulos, R.: Responding to new information in a mining complex: fast
mechanisms using machine learning. Min. Technol. 128(3), 129–142 (2019)

Samatemba, B., Zhang, L., Besa, B. Evaluating and optimizing the effectiveness of mining
equipment; the case of Chibuluma South underground mine. J. Cleaner Prod. 252, 119697
(2020)

Song, Z., Schunnesson, H., Rinne, M., Sturgul, J.: Intelligent scheduling for underground mobile
mining equipment. PLoS One, 10(6), e0131003 (2015)

Yu, X., Zhou, L., Zhang, F.: Self-localization algorithm for deep mine wireless sensor networks
based onMDSand rigid subset. In: 2017 IEEE2nd InternationalConference onOpto-Electronic
Information Processing (ICOIP), pp. 6–10. IEEE, July 2017

https://doi.org/10.1007/978-3-319-93031-2_44
https://doi.org/10.1007/s11081-020-09496-w

Vertical Stability Constraints
in Combined Vehicle Routing and 3D

Container Loading Problems

Corinna Krebs1(B) and Jan Fabian Ehmke2

1 Department of Management Science, Otto von Guericke University Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany

Corinna.Krebs@ovgu.de
2 Department of Business Decisions and Analytics, University of Vienna,

Kolingasse 14-16, 1090 Vienna, Austria
Jan.Ehmke@univie.ac.at

Abstract. The vertical stability of the cargo is one of the most impor-
tant loading constraints, since it ensures parcels from falling on the
ground. However, frequently considered constraints either lead to unsta-
ble positions, are too restrictive or have high complexity. This paper
focuses on the evaluation of different vertical stability constraints, anal-
yses corner cases and introduces a new improved constraint. For the first
time, constraints based on the science of statics are considered in the
context of combined Capacitated Vehicle Routing Problem with Time
Windows and 3D Loading (3L-VRPTW). All constraints are embedded
in an established hybrid heuristic approach, where an outer Adaptive
Large Neighbourhood Search tackles the routing problem and an inner
Deepest-Bottom-Left-Fill algorithm solves the packing problem. For the
computational tests, we use a well-known instance set enabling a com-
parison w.r.t. the number of customers, the number of items and the
number of item types. Based on the impact on the objective values and
on the performance, we give recommendations for future work.

Keywords: Vehicle Routing Problem · 3D loading · Vertical stability

1 Introduction

Fueled by the Corona pandemic, the number of shipped parcels worldwide has
increased significantly. In 2019, the worldwide parcel volume exceeded the mark
of 100 billion parcels for the first time. However, it is estimated to be even
between 115 and 132 billion parcels worldwide in 2021. High growth rates are
also forecasted for the coming years. Within the next six years, the parcel volume
could double (220 to 262 billion) according to PitneyBowes [2020]. Along with
this, the daily challenges of packing parcels into cargo spaces are intensifying.
As a result, the number of conciliation applications to the Bundesnetzagentur
(Federal Network Agency for Electricity, Gas, Telecommunications, Post and
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 442–455, 2021.
https://doi.org/10.1007/978-3-030-87672-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_29&domain=pdf
http://orcid.org/0000-0003-3417-6832
http://orcid.org/0000-0001-8474-7483
https://doi.org/10.1007/978-3-030-87672-2_29

Vertical Stability Constraints for 3D VRPs 443

Railway) in Germany increased by 28% to 1.861 applications in the year 2020
(see BNetzA [2020]). Thereby, 25.3% of applications accounted for damaged con-
signments. Consequently, the stable loading of parcels is still a major challenge
in the planning process and will continue to be an important constraint in the
future.

This paper evaluates vertical stability constraints in the field of the 3L-
VRPTW, which is a combination of the Vehicle Routing with Time Windows
and the 3D Container Loading Problem. In practice, high stability requirements
are met by forbidding the parcels to overhang (Full Base Support). Due to this
restrictive constraint, other solutions that also achieve stable positions and incur
less costs are excluded. For ensuring vertical stability, most approaches require
the support of a certain ratio of the base area by directly underlying items.
As stated in Ceschia et al. [2013] and in Krebs et al. [2021], this requirement
can lead to unstable stacks so that two new vertical stability constraints are
regarded. Hence, this paper compares five vertical stability approaches from the
literature, which are based on the support of the base area and/or on the sci-
ence of statics. The latter is evaluated for the first time in the context of the
3L-VRPTW. By indicating common weaknesses and corner cases, we introduce
a new vertical stability constraint which enlarges the solution space and is based
on the support ratio of the base area and on the science of statics.

We use an established hybrid heuristic for tackling the Vehicle Routing and
the Container Loading Problem. The routing heuristic is based on the Adaptive
Large Neighbourhood Search (ALNS) by Koch et al. [2018] calling for each route
a modified packing heuristic based on the Deepest-Bottom-Left-Fill (DBLF)
algorithm proposed by Krebs et al. [2021]. For the computational tests, we use
a well-known instance set from the literature, where the number of items, item
types and customers varies systematically, and evaluate the received results in
terms of performance and solution quality in comparison to the established Full
Base Support constraint.

The related literature is reviewed in Sect. 2. The considered problem (3L-
VRPTW) is formulated in Sect. 3. In Sect. 4, the vertical stability constraints are
described in detail. The hybrid heuristic is briefly explained in Sect. 5. Section 6
presents computational results analysing the impact of the vertical stability
approaches on the 3L-VRPTW. Finally, conclusions are drawn in Sect. 7.

2 Literature Review

In this section, we provide a brief literature overview over different constraints
dealing with vertical stability. First, we show the relevant literature in the context
of the 3D Container Loading Problem (3D CLP). Then, we present the literature
for its combination with the Vehicle Routing Problem (3L-CVRP).

2.1 3D Container Loading Problem

Vertical stability constraints prevent items from falling down on the ground,
on top of other items or at the operator while (un-)loading. Various approaches

444 C. Krebs and J. F. Ehmke

have been formulated in the 3D Container Loading Problem, where a set of items
has to be arranged within a container. Most approaches consider the support
of the base area, which must be supported either with a defined ratio (Partial
Base Support) or completely (Full Base Support) by directly underlying items.
This support ratio ranges between 0.55 (Mack et al. [2004]) and 1.0 (Full Base
Support, e.g. Ngoi et al. [1994], Fanslau and Bortfeldt [2010], Ceschia and Schaerf
[2010]). Since these constraints can lead to either unstable stacks (Partial Base
Support) or are too restrictive (Full Base Support), other constraints based on
the science of statics have been introduced, where in general the center of gravity
of an item or a stack must be supported (e.g. in De Castro Silva et al. [2003],
Lin et al. [2006] and Ramos [2015]). Mack et al. [2004] use a combination of the
support of the center of gravity and of the item base area w.r.t. items laying at
the ground. However, the support of the center of gravity does not guarantee
highly stable item stacks as will be demonstrated in Sect. 4.

2.2 3L-CVRP and Extensions

When introducing the combined Vehicle Routing and the 3D Container Loading
Problem (namely “3L-CVRP”), Gendreau et al. [2006] use the Minimal Support-
ing Area (aka Partial Base Support) constraint to ensure stable item positions
with a support ratio of 0.75. Therefore, this constraint is the most established
one in the 3L-CVRP and its extensions. However, Ceschia et al. [2013] show
that unstable item stacks can occur when using the Minimal Supporting Area
constraint and propose therefore the Multiple Overhanging constraint. In Krebs
et al.[2021], several vertical stability constraints, such as the Minimal Supporting
Area and the Multiple Overhanging, are examined, and the Top Overhanging
constraint is introduced. So far, vertical stability constraints based on the science
of statics have not been considered yet in this problem field. Hence, this paper
is intended to fill this area.

3 Problem Formulation

Following the formulation as used in Krebs et al. [2021], the 3L-VRPTW is
described as follows: Let G = (N,E) be a complete, directed graph, where N is
the set of n+1 nodes including the depot (node 0) and n customers to be served
(node 1 to n), and E is the edge set connecting each pair of nodes. Each edge
ei,j ∈ E (i �= j, i, j = 0, ..., n) has an associated routing distance di,j (di,j > 0).
The demand of customer i ∈ N \ {0} consists of ci cuboid items. Let m be the
total number of all demanded items. Moreover, time windows are considered by
assigning three times to each node i: the ready time RTi, which is the earliest
possible start time of service, the due date DDi, the latest possible start time,
and the service time STi, which specifies the needed time to (un-)load all ci

items of a customer i.
Each item Ii,k (k = 1, ..., ci) is defined by mass mi,k, length li,k, width wi,k

and height hi,k. Each item has a fragility flag fgi,k, grouping items into fragile

Vertical Stability Constraints for 3D VRPs 445

items (fgi,k = 1) or not fragile items. The items are delivered by at most vmax

available, homogenous vehicles. Each vehicle has a maximum load capacity D
and a cuboid loading space defined by length L, width W and height H.

The point of origin of a Cartesian coordinate system is assumed to be located
in the deepest, bottom, leftmost point of the loading space. The driver’s cab is
located behind it accordingly. The length, width and height of the loading space
are parallel to the x-, y- and z-axes. The placement of an item Ii,k is defined by
(xi,k, yi,k, zi,k) of the corner which is closest to the point of origin.

It is assumed that each vehicle has a constant speed of 1 distance unit per
time unit. If a vehicle arrives at a node before its ready time, it has to wait until
the ready time is reached.

Let vused be the number of used vehicles in a solution. A solution is a set
of vused pairs of routes Rv and packing plans PPv, whereby the route Rv (v =
1, ..., vused) is an ordered sequence of at least one customer and PPv is a packing
plan containing the position within the loading space for each item included in
the route. The total number of items in a route Rv is described by tv.
A solution is feasible if

(S1) All routes Rv and packing plans PPv are feasible (see below);
(S2) Each customer is visited exactly once;
(S3) The number of used vehicles vused does not exceed the number of available

vehicles vmax;
(S4) Each packing plan PPv contains all tv items.

A route Rv must meet the following routing constraints:

(R1) Each route starts and terminates at the depot and visits at least one cus-
tomer;

(R1) The vehicle does not arrive after the due date DDi of any location i.

Each packing plan must the following loading constraints.

(C1) Geometry : The items must be packed within the vehicle without overlap-
ping;

(C2) Orthogonality : The items can only be placed orthogonally inside a vehicle;
(C3) Rotation: The items can be rotated 90◦ only on the width-length plane;
(C4) Load Capacity : The sum of masses of all included items tv of a vehicle does

not exceed the maximum load capacity D;
(C5) LIFO : No item is placed above or in front of item Ii,k, which belongs to a

customer served after customer i;
(C6) Vertical Stability : Each item is placed stable either on the vehicle ground

or on top of other items;
(C7) Fragility : No non-fragile items are placed on top of fragile items.

The 3L-VRPTW aims at determining a feasible solution minimizing the
objective values, e.g. number of used vehicles vused and the total travel distance
ttd, and meeting all constraints.

446 C. Krebs and J. F. Ehmke

4 Vertical Stability Constraints

In this section, we first explain the calculation of the center of gravity and
then, we summarize six constraints for the consideration of vertical stability
and present the new Static Stability constraint. Each constraint has been imple-
mented in our solution validator, which can check the feasibility of solutions1.
The implementation for Ramos [2015] is available here2.

4.1 Calculation of Center of Gravity

For the approaches based on the science of statics, the center of gravity of an
item (CGi,k) must be calculated. It is supposed that the mass of an item is
homogeneously distributed so that the center of gravity corresponds to the center
of volume. Therefore:

CGi,k = (xi,k +
li,k
2

, yi,k +
wi,k

2
, zi,k +

hi,k

2
). (1)

Moreover, the center of gravity of a group of items can be calculated. Let
G be a set of items belonging to a group. The center of gravity of the group of
items is calculated by weighting the center of gravity of each item r (r ∈ G).
The equation is as follows:

CGgroup = (
∑

r∈G(xCGr
· mr)

∑
r∈G(mr)

,

∑
r∈G(yCGr

· mr)
∑

r∈G(mr)
,

∑
r∈G(zCGr

· mr)
∑

r∈G(mr)
).

(2)

4.2 Minimal Supporting Area

The Minimal Supporting Area (aka Partial Base Support) constraint is one of
the most considered vertical stability constraints in the field of the combined
Vehicle Routing and 3D Container Loading Problem (3L-CVRP), since it is
included in the original problem formulation by Gendreau et al. [2006]. For the
Minimal Supporting Area constraint, a certain ratio α of the base area of an
item must be supported by the upper surface of the directly underlying items.
The parameter α is set to 0.75 in the field of the 3L-CVRP.

However, corner cases can occur leading to theoretically feasible, but actually
unstable item arrangements, since it is assumed that all items have the same
density. From one level to another, the item’s length (or width) is enlarged
by 1

α . This may lead to an item stack as visualized in Fig. 1. Since the support is
calculated based on the directly underlying items, the stack is feasible. However,
when calculating the center of gravity of the stack (see Eq. 2), the dimensions
lay outside of the first item. Therefore, the stack would topple.

1 see https://github.com/CorinnaKrebs/SolutionValidator.
2 see https://github.com/CorinnaKrebs/StaticStabilityRamos.

https://github.com/CorinnaKrebs/SolutionValidator
https://github.com/CorinnaKrebs/StaticStabilityRamos

Vertical Stability Constraints for 3D VRPs 447

Fig. 1. Feasible, but unstable stack

4.3 Full Base Support

As the name suggests, the base area of each item must be fully supported in
this constraint. Consequently, overhanging items are not allowed. The approach
is the same as for the Minimal Supporting Area though the support parameter
α must be one (α = 1.0). Apparently, this constraint is the most restrictive one.

4.4 Multiple Overhanging

This constraint has been introduced in Ceschia et al. [2013] and is described in
more detail in Krebs et al. [2021]. Hereby, all items of a stack are allowed to
overhang. However, the Minimal Supporting Area must be obeyed at each level
of the stack.

Let Ii,k be an item for which the constraint should be checked. First, it is
necessary to determine all items which directly or indirectly support item Ii,k

and store them in set U . An item Iu supports Ii,k directly if the upper surface of
item Iu has direct contact with the base area of item Ii,k. An item Iu supports
Ii,k indirectly if Iu directly supports any placed item which directly supports
Ii,k. Based on the set U , the levels are created. Each upper surface of an item Ia

(Ia ∈ U) defines a level (see Fig. 2b). Another item Ib (Ib ∈ U, Ia �= Ib) counts
to the level if the upper surface of Ib is at the same level as of the level or if the
upper surface of Ib is above the level and the base area of Ib is below the level
(see Fig. 2c). The supporting area units of each level are summed to calculate
the total support for item Ii,k for each level. Then, it can be checked if each level
obeys the Minimal Supporting Area constraint.

(a) Situation (b) First Level (c) Second Level

Fig. 2. Creation of Levels for Support Area Calculation, exemplary for I1,5

448 C. Krebs and J. F. Ehmke

4.5 Top Overhanging

This constraint proposed in Krebs et al. [2021] combines the Full Base Support
and the Minimal Supporting Area constraint: For all items except the topmost
item of a stack, the Full Base Support constraint is applied, while for the topmost
item, the Minimal Supporting Area constraint must be obeyed. Consequently,
only the topmost item of a stack is allowed to overhang.

The implementation is rather simple: when placing an item Ii,k on top of
another one, the distance between the upper surface of the last placed item and
the vehicle ceiling is calculated. Then, the item with the smallest height of all
items not packed yet is determined. If the distance to the ceiling is smaller than
the smallest height, it is not possible to pack another item on top of that stack.
Therefore, the item Ii,k is allowed to overhang obeying the Minimal Supporting
Area constraint. Otherwise, another item could be stacked on top of item Ii,k

and therefore, Ii,k must fulfil the Full Base Support constraint.

4.6 Static Stability by Mack et al. [2004]

In the Static Stability constraint introduced by Mack et al. [2004], the center of
gravity of each item is calculated according to Eq. 1 and must be supported by
the directly underlying items. Moreover, it is required that a certain ratio of the
base area of an item is supported indirectly by the items laying on the ground.

Fig. 3. Example for a feasible stack applying Mack et al. [2004]

Figure 3 indicates that the item supporting the center of gravity could be
infinitesimally small. This leads to theoretically feasible, but rather unstable
stacks. The extreme case where the center of gravity is only supported by an
edge is called the “unstable equilibrium” in the science of statics.

4.7 Static Stability by Ramos [2015]

Ramos [2015] introduces a Static Stability constraint based on the science of
statics. In contrast to the Static Stability constraint by Mack et al. [2004], the
mass of all items placed above the current placed item Ii,k is considered, which
can shift the center of gravity. This new acting point can be calculated as shown
in Eq. 2.

Vertical Stability Constraints for 3D VRPs 449

Then, two cases can occur: If the acting point is supported by directly under-
lying items, then the position of item Ii,k is stable. If the acting point is not sup-
ported, then all supporting edges between the item Ii,k and its directly under-
lying items are determined and stored in set T . Based on set T , a convex hull
representing the support polygon is calculated. This enables a point-in-polygon
to check if the application point lies within the support polygon indicating a
stable position for item Ii,k. If item Ii,k is stable according to one of the two
cases, the check of the Static Stability constraint is recursively repeated starting
from all items directly supporting item Ii,k to the items placed on the ground
(Fig. 4).

(a) Situation (b) Convex Hull

Fig. 4. Example for the convex hull determination

Similarly to the constraint by Mack et al. [2004], relatively small items lead
to rather unstable stacks.

4.8 New Static Stability

In this paper, we want to introduce a new Static Stability constraint. It is inspired
by encountered corner cases in the Minimal Supporting Area constraint, science
of statics based approaches, and by the Multiple Overhanging constraint. The
main idea is that the center of gravity of an item must be supported at each
level of the stack. A level is created in the same way as described in Sect. 4.4.
For each level, the minimum and maximum edges of the level are determined. In
particular, the rightest edge, the leftest edge, the foremost edge and the rearmost
edge of all items belonging to the level are searched. Then, it is checked whether
the center of gravity is within the frame spanned by the edges (see Fig. 5).
Therefore, it is not required that the center of gravity is directly supported as
shown in Fig. 5c, Level 1. Due to the support of the center of gravity at each
level, item stacks as in Fig. 1 are prevented.

As shown before, the sole support of the center of gravity does not ensure
highly stable stacks. Therefore, the Minimal Supporting Area constraint with
α = 0.75 must also be obeyed. This prevents arrangements as shown in Fig. 3.

450 C. Krebs and J. F. Ehmke

(a) Situation (b) Infeasible (c) Feasible

Fig. 5. Example for Consideration of Static Stability

4.9 Summary

The following Table 1 gives an overview over the worst-case complexity of the
constraints, the role of the support area and the use of the science of statics.
Note that tv corresponds to the number of items in route Rv. As the table
indicates, the complexity of the constraints ranges between O(tv2) and O(tv3).
However, the restrictiveness and thus the impact on the objective values for each
constraint must be determined by means of computational experiments.

Table 1. Comparison of vertical stability constraints

Worst Case Consideration of Corner

Complexity Support area Science of statics Cases

Minimal supporting area O(tv
2) � �

Full base support O(tv
2) �

Multiple overhanging O(tv
3) �

Top overhanging O(tv
2) �

Static stability by Ramos [2015] O(tv
2 log(tv)) � �

Static stability by Mack et al. [2004] O(tv
2) � � �

New static stability O(tv
2) � �

tv = total number of items in Rv

5 Hybrid Algorithm

We implement the previously described vertical stability constraints in a hybrid
heuristic approach, which is described in detail in Krebs et al. [2021] and in Koch
et al. [2018]. In the following, we briefly describe the algorithm and focus on the
extensions required.

Since the 3L-VRPTW is a combination of the Capacitated Vehicle Routing
Problem with Time Windows (VRPTW) and the 3D Container Loading Prob-
lem, the problem is decomposed and separate algorithms are used to solve each
subproblem. The routing part is tackled with an Adaptive Large Neighbourhood
Search as proposed in Krebs et al. [2021] and in Koch et al. [2018], which is a
modification of the heuristic by Ropke and Pisinger [2006a] and by Ropke and
Pisinger [2006b]. The algorithm is shown in Algorithm 1.

The initial solution is constructed by using the Savings Heuristic proposed
by Clarke and Wright [1964]. In every iteration, it is tried to improve the current

Vertical Stability Constraints for 3D VRPs 451

Algorithm 1. Hybrid Heuristic Algorithm
Input: Instance Data, parameters
Output: best feasible solution sbest

1: construct sinit by Savings Heuristic
2: sbest := scurr := sinit

3: do
4: select number of customers to be removed nrem

5: select destroy operator dest and repair operator rep
6: determine next feasible3 solution snext := rep(dest(scurr, nrem))
7: for each route Rv in snext do
8: feasible := true
9: if Deepest-Bottom-Left-Fill(Rv) not feasible then

10: feasible := false
11: break
12: end if
13: end for
14: if feasible AND Simulated Annealing (snext) then
15: scurr := snext

16: update sbest
17: end if
18: update selection probabilities of operators after defined number of iterations
19: while no Stopping Criterion reached
20: return sbest

solution. Hereby, a set of vused routes is created. The set of routes is feasible if
the routing constraints as described in Sect. 3 are obeyed. Each feasible set of
routes is evaluated concerning the objective values, whereby the minimization
of the number of used vehicles has the highest priority, the total travel distance
the second highest priority. A Simulated Annealing approach as proposed by
Kirkpatrick et al. [1983] enables the acceptance of inferior feasible solutions in
order to enlarge the search.

For each feasible route, the packing algorithm (Deepest-Bottom-Left-Fill
algorithm) is called, which is shown in Algorithm 2. As the name suggests, the
items are placed in the deepest, bottommost, leftmost position. Hereby, a list of
possible placement spaces is sorted according to the DBL policy. Then, for every
item of the route, it is tried to find a feasible position by checking every space
of the list until a feasible position is found. A position is feasible if all loading
constraints are obeyed. If no feasible position can be found, the Adaptive Large
Neighbourhood Search must find a new set of routes in the next iteration. If
feasible positions for every item of the set of routes can be found, the feasible
solution is stored. The entire algorithm stops either when reaching a defined run
time limit, after conducting a defined number of total iterations, or after a total
number of iterations without improvement (Stopping Criteria). In the end, the
overall best solution is presented.

3 According to Routing Constraints, see Sect. 3

452 C. Krebs and J. F. Ehmke

Algorithm 2. Deepest-Bottom-Left-Fill with Spaces
Input: Instance data
Output: Feasibility, Packing Plan PPv

1: initialize sorted sequence of items IS
2: initialize set of unique available spaces S
3: for each item Ic ∈ IS do
4: for each space sp ∈ S do
5: for each permitted orientation do
6: if item Ic fits in space sp AND placement is feasible then
7: save placement for Ic
8: create new spaces
9: sort spaces based on DBL

10: erase space sp and too small spaces
11: continue with next item
12: end if
13: end for
14: end for
15: if no feasible position found then return false
16: end for
17: return true

6 Computational Studies

In this section, we evaluate the impact of the vertical stability constraints
and show their performance in comparison. Hereby, we use our instance set4

enabling the evaluation w.r.t. the number of customers, items and item types.
The instances have either 20, 60 or 100 customers, which demand either 200
or 400 items in total. These items differ in their homogeneity: Either there are
only three item types (very homogeneous), 10 item types or 100 different item
types (very heterogeneous). Each instance is tested five times and we present
the average results. All results along with detailed packing plans are available
via Github5. The hybrid algorithm is implemented in C++ as single-core, x64-
application and is compiled using the GCC version 4.8.3 compiler. The exper-
iments were executed on a High Performance Cluster, Haswell-16-Core with
2.6 GHz. In terms of the routing parameters, the same are used as described
in Koch et al. [2018]. The loading parameters are set according to the values
used in the literature.

As shown before, the Full Base Support constraint is the most restrictive
one but ensures stable arrangements. The target of this paper is to find a ver-
tical stability constraint that guarantees highly stable positions of items and is
less restrictive. Therefore, we exclude approaches where the unstable equilib-
rium can occur. Consequently, the impact of the constraints Full Base Support,
Multiple Overhanging, Top Overhanging and the new Static Stability is investi-
gated. The following Table 2 shows the impact of these constraints w.r.t. to the
4 see https://doi.org/10.24352/UB.OVGU-2020-139.
5 see https://github.com/CorinnaKrebs/Results.

https://doi.org/10.24352/UB.OVGU-2020-139
https://github.com/CorinnaKrebs/Results

Vertical Stability Constraints for 3D VRPs 453

average number of used vehicles (vused), total travel distance ttd and run time
in comparison to the Full Base Support constraint. Nevertheless, we tested all
approaches described in in Sect. 4 and provide the results online.

Table 2. Average results per vertical stability constraint

n m Item types Total

20 60 100 200 400 3 10 100

Full base

support

Sum vused 549.20 4,392.40 4,713.60 3,449.40 6,205.80 2,677.40 3,186.40 3,791.40 9,655.20

Sum ttd 54,956.51 340,558.21 406,434.31 326,656.33 475,292.70 233,987.06 267,122.94 300,839.03 801,949.03

Avg. time [s] 1,809.61 1,435.49 2,559.26 1,658.60 2,261.04 1,680.67 2,103.83 2,094.97 1,959.82

Multiple

Overhanging

Diff. vused –6.34% –11.86% –1.95% 0.61% –10.78% 1.53% –4.80% –14.13% –6.71%

Diff. ttd –2.28% –6.90% –1.71% 0.55% –7.05% 1.99% –3.31% –9.14% –3.95%

Diff. time 59.51% 147.96% 40.67% 101.79% 56.35% 102.47% 61.14% 68.51% 75.58%

Top

Over-hanging

Diff. vused –0.95% –8.36% 1.35% 3.50% –6.93% 2.14% –2.24% –7.78% –3.20%

Diff. ttd 0.00% –4.49% 0.62% 2.29% –4.26% 2.30% –1.25% –4.92% –1.59%

Diff. time 61.94% 147.84% 40.55% 102.74% 56.27% 102.64% 61.08% 69.43% 75.93%

Static stability Diff. vused –5.79% –9.05% –7.29% –4.91% –9.73% –0.63% –6.20% –14.73% –8.01%

Diff. ttd –2.07% –6.31% –5.31% –3.60% –6.83% –0.48% –4.65% –10.20% –5.51%

Diff. time 24.81% 25.06% 12.71% 24.08% 14.52% 31.94% 14.74% 11.67% 18.56%

As expected, the enlargement of the solution space leads to better objec-
tive values (lower number of used vehicles and the total travel distance) for all
constraints. Regarding the total level of restrictiveness (impact on the objective
values), the following descending order occurs: Full Base Support, Top Over-
hanging, Multiple Overhanging and Static Stability. Hereby, the Static Stability
constraint creates route plans with 8% fewer vehicles and a shorter total travel
distance by 5.5% on average. However, compared to the Full Base Support con-
straint, the Static Stability constraint causes an increase of the run time by
18.56% on average.

Regarding the number of customers or items, the correlations between these
instance features and the impact on the objective values are not evident. How-
ever, the Static Stability constraint shows significantly smaller fluctuations than
the Multiple Overhanging and the Top Overhanging constraint.

Concerning the number of item types, the Top Overhanging and the Multiple
Overhanging constraints lead to an increase in the number of used vehicles and
total travel distance by around 2% for instances with three item types. This is
due to the fact that the constraints enable overhanging and therefore prevent
homogeneous item stacks at the same time. Therefore, gaps between items can
occur. Consequently, more vehicles are needed, which also results in a longer
total travel distance. As the Static Stability constraint is less restrictive than
the Top Overhanging and the Multiple Overhanging constraint, gaps are more
likely to be filled. However, as the number of item types increases, the reduction
of the objective values is achieved by all constraints. In terms of the Multiple
Overhanging constraint, 14.13% fewer vehicles are used, the Top Overhanging
shows a decline of 7.78%, the Static Stability of even 14.73%.

All constraints have in common that the average run time increases signifi-
cantly compared to the Full Base Support constraint. On average, the Multiple
Overhanging and the Top Overhanging constraints lead to an increase of the

454 C. Krebs and J. F. Ehmke

run time of around 75%; for the Static Stability constraint, the increase is only
18.5%. In general, the higher the number of customers or items, the higher the
run time. However, according to the results, this is not the case (see n = 100 or
m = 400). The reason is that at the same time, the difference to the maximum
run time gets smaller or is exploited.

Based on the described effects, we generally recommend using the Static
Stability constraint. However, for time critical or highest stability requirements,
the Full Base Support constraint should be used.

7 Conclusion

In this paper, we compared six vertical stability constraints and introduced a
new one (Static Stability) in the context of combined Vehicle Routing Problem
with Time Windows and 3D Container Loading (3L-VRPTW). The constraints
from the literature are based on a defined support ratio of the base area and/or
on the support of the center of gravity of each item. We showed that most
approaches can lead to unstable item stacks for specific corner cases. Therefore,
we introduced a new approach in this paper, which covers common corner cases.
This constraint is based on the science of statics and on the support ratio of the
base area of an item. As the computational experiments show, the new Static
Stability constraint is less restrictive than most of the other approaches and
therefore achieves a reduction of the number of used vehicles by 8% and the
total travel distance by 5.5% on average, compared to the most restrictive con-
straint – the Full Base Support. However, the run time increases by almost 19%.
Therefore, we recommend the new Static Stability constraint if the reduction of
the objective values is of first priority. If the run time or a high stability of items
is more important, the Full Base Support constraint should be used.

References

BNetzA. Tätigkeitsbericht schlichtungsstelle post 2020. Technical report, Bundesnetza-
gentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen, Tulpenfeld
4, 53113 Bonn (2020)

Ceschia, S., Schaerf, A.: Local search for a multi-drop multi-container loading problem.
J. Heurist. 19, 01 (2010). https://doi.org/10.1007/s10732-011-9162-6

Ceschia, S., Schaerf, A., Stützle, T.: Local search techniques for a routing-packing
problem. Comput. Ind. Eng. 66(4), 1138–1149 (2013). https://doi.org/10.1016/j.
cie.2013.07.025. ISSN 0360–8352

Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12(4), 568–581 (1964). http://www.jstor.org/stable/
167703. ISSN 0030364X, 15265463

De Castro Silva, J.L., Soma, N.Y., Maculan, N.: A greedy search for the three-
dimensional bin packing problem: the packing static stability case. Int. Trans. Oper.
Res. 10(2), 141–153 (2003). https://doi.org/10.1111/1475-3995.00400

Fanslau, T., Bortfeldt, A.: A tree search algorithm for solving the container loading
problem. INFORMS J. Comput. 22, 222–235 (2010). https://doi.org/10.1287/ijoc.
1090.0338

https://doi.org/10.1007/s10732-011-9162-6
https://doi.org/10.1016/j.cie.2013.07.025
https://doi.org/10.1016/j.cie.2013.07.025
http://www.jstor.org/stable/167703
http://www.jstor.org/stable/167703
https://doi.org/10.1111/1475-3995.00400
https://doi.org/10.1287/ijoc.1090.0338
https://doi.org/10.1287/ijoc.1090.0338

Vertical Stability Constraints for 3D VRPs 455

Gendreau, M., Iori, M., Laporte, G., Martello, S.: A tabu search algorithm for a routing
and container loading problem. Transp. Sci. 40(3), 342–350 (2006). https://doi.org/
10.1287/trsc.1050.0145. ISSN 0041–1655

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci-
ence 220(4598), 671–680 (1983)

Koch, H., Bortfeldt, A., Wäscher, G.: A hybrid algorithm for the vehicle routing prob-
lem with backhauls, time windows and three-dimensional loading constraints. OR
Spectr. 40(4), 1029–1075 (2018). https://doi.org/10.1007/s00291-018-0506-6

Krebs, C., Ehmke, J.F., Koch, H.: Advanced loading constraints for 3D vehicle routing
problems. OR Spectr. 4, 1–41 (2021). https://doi.org/10.1007/s00291-021-00645-w

Lin, J.-L., Chang, C.-H., Yang, J.-Y.: A study of optimal system for multiple-constraint
multiple-container packing problems. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006.
LNCS (LNAI), vol. 4031, pp. 1200–1210. Springer, Heidelberg (2006). https://doi.
org/10.1007/11779568 127

Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorithm for the
container loading problem. Int. Trans. Oper. Res. 11(5), 511–533 (2004). https://
doi.org/10.1111/j.1475-3995.2004.00474.x

Ngoi, B.K.A., Tay, M.L., Chua, E.S.: Applying spatial representation techniques to the
container packing problem. Int. J. Prod. Res. 32(1), 111–123 (1994). https://doi.
org/10.1080/00207549408956919

PitneyBowes. Pitney bowes parcel shipping index reports continued growth as global
parcel volume exceeds 100 billion for first time ever. Pitney Bowes Parcel Shipping
Index (2020). https://www.pitneybowes.com/au/newsroom/press-releases/pitney-
bowes-parcel-shipping-index-reports-continued-growth-as-global-parcel.html

Ramos, A.G.: Analysis of cargo stability in container transportation (2015)
Ropke, S., Pisinger, D.: A unified heuristic for a large class of vehicle routing problems

with backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006). https://doi.org/10.1016/
j.ejor.2004.09.004. ISSN 0377–2217

Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006).
https://doi.org/10.1287/trsc.1050.0135

https://doi.org/10.1287/trsc.1050.0145
https://doi.org/10.1287/trsc.1050.0145
https://doi.org/10.1007/s00291-018-0506-6
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/11779568_127
https://doi.org/10.1007/11779568_127
https://doi.org/10.1111/j.1475-3995.2004.00474.x
https://doi.org/10.1111/j.1475-3995.2004.00474.x
https://doi.org/10.1080/00207549408956919
https://doi.org/10.1080/00207549408956919
https://www.pitneybowes.com/au/newsroom/press-releases/pitney-bowes-parcel-shipping-index-reports-continued-growth-as-global-parcel.html
https://www.pitneybowes.com/au/newsroom/press-releases/pitney-bowes-parcel-shipping-index-reports-continued-growth-as-global-parcel.html
https://doi.org/10.1016/j.ejor.2004.09.004
https://doi.org/10.1016/j.ejor.2004.09.004
https://doi.org/10.1287/trsc.1050.0135

Automated Tour Planning for Driving
Service of Children with Disabilities:

A Web-Based Platform and a Case Study

Mahdi Moeini(B) and Lukas Mees

Chair of Business Information Systems and Operations Research (BISOR),
Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

mahdi.moeini@wiwi.uni-kl.de, lmees@rhrk.uni-kl.de

Abstract. In this paper, we focus on a real-world problem called
Kindergarten Tour Planning Problem (KTPP), which corresponds to a
case study. In the KTPP, the objective consists in running a driving ser-
vice for a group of children with disabilities to a central kindergarten.
We formulate this problem as a Mixed-Integer Linear Program (MILP),
which can be solved by any standard MILP solver. However, for practi-
cal use, we designed a simple yet effective heuristic to find good-quality
solutions in short computation time. We conducted computational exper-
iments, on randomly generated instances, to verify effectiveness of our
heuristic by benchmarking it versus the state-of-the-art solver Gurobi
Optimizer. Moreover, we introduce and present a publicly-available web-
based platform that we have developed for practical use.

Keywords: Transportation on Demand · Open vehicle routing
problem · School bus routing problem · Health care services · Heuristic

1 Introduction

Transportation systems are essential and non-negligible parts of our daily life. In
this context, Transportation on Demand (ToD) is defined based on the request
of users for transporting passengers and/or goods from some specified points to
destinations [13]. A well-known example of ToD is dial-a-ride services which can
be provided for a set of handicapped or elderly people [8,12]. In fact, in such a
dial-a-ride service, based on the requests of passengers, each of them is picked
up from a point to be dropped off at another location.

In a similar context, a regional branch of the Deutsches Rotes Kreuz (DRK),
the German Red Cross, located in the city of Landstuhl (Rhineland Palatinate,
Germany), offers a driving service to multiple facilities that take care of people
with disabilities. More precisely, the driving service picks up people in an area
of about 25 km radius covering these facilities, and then drives them to their
respective destinations. One of these facilities is an integrative kindergarten in
the city of Landstuhl, where about 70 children are currently served by the driving

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 456–470, 2021.
https://doi.org/10.1007/978-3-030-87672-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_30&domain=pdf
http://orcid.org/0000-0001-6940-7691
https://doi.org/10.1007/978-3-030-87672-2_30

Driving Service for Children with Disabilities 457

service of the DRK. Indeed, there are currently 13 equipped vans such that
each van can provide enough space and equipment for up to six passengers in
addition to a driver and a co-driver or supervisor. Even though the number
of vans is relatively flexible, the amount of passengers per vehicle may change
due to different restrictions, e.g., respecting social distance during a pandemic.
The main task is twofold: determining optimal allocations of passengers to the
vans and optimizing driving routes from pickup positions to the kindergarten.
In addition, the drivers are volunteers who keep the vans at home and start and
end each tour at their respective private address. Finally, because of the limited
patience of disabled children, the travel time should be as short as possible.
Consequently, it is important to take this fact into consideration to generate
short driving tours.

Fig. 1. A visualization of the Kindergarten Tour Planning Problem.

Figure 1 visualizes the general setup of the problem, where the central school-
like building mimics the referred kindergarten, the little graduation hats sym-
bolize the locations of children to be picked up, and the yellow school buses
represent the location of the available drivers. While the black arrows illustrate
the routes on which each child is picked up and brought to the facility, the
dashed arrows represent the empty way back for the driver after dropping off
the children.

Currently, all the planning of the tours is done manually, which is quite time
consuming, and without a distinctive approach to minimize operational costs.
Even though the planning might be suitable for a time horizon of one year, any
fluctuation, e.g., absence or sickness of a driver, the planning requires a mainte-
nance, which make a challenge for the responsible employees because the process
requires considerable additional time and energy. Moreover, the recent Corona
pandemic, with its direct contact restrictions, showed that new circumstances
can impose a full rescheduling of all tours in a short amount of time. Such a
situation can not only affect the group of children that need to be transported

458 M. Moeini and L. Mees

or the available drivers, but also the permitted capacity of each van. Conse-
quently, for the cooperating branch of the DRK, it is quite advantageous to
have an assistant software/tool that allows for fast and efficient tour planning of
the driving service. The current paper is the result of our cooperation with the
DRK through which we solve their tour planning problem that we call Kinder-
garten Tour Planning Problem (KTPP). For this purpose, we have designed and
implemented a heuristic solution method as well as a web-based platform that
has problem solving and visualization features to address the practical chal-
lenges and the context of the KTPP. Moreover, with the objective of verifying
efficiency of the heuristic, we have conducted computational experiments on
randomly-generated instances. The results of the heuristic are compared with
those of the state-of-the-art solver Gurobi Optimizer [17]. The numerical results
show the effectiveness of the heuristic.

The remainder of this paper is organized as follows. After this introduction,
Sect. 2 presents a short literature overview on the relevant existing literature,
and we give a formal description of the KTPP. In Sect. 3, we formulate the
KTPP an a Mixed-Integer Linear Program (MILP). Section 4 is devoted to the
presentation of the heuristic that we suggest for solving the KTPP. In Sect. 5, we
describe our web-based platform, and in Sect. 6, we report our computational
experiments and their numerical results. Finally, in Sect. 7, we present some
concluding remarks.

2 Literature Review

A detailed literature review on the ToD problems can be found in [13]. In this
section, we present a short overview on some problems which are quite similar
to the KTPP, and we provide its formal description.

The Dial-a-Ride Problem concerns a typical ToD service, where a set of users
(customers) has pickup and delivery requests for two distinct points, e.g., from
home to a hospital. The requests are fulfilled by a set of vehicles with the aim
of minimizing the total cost [8,12].

Another ToD problem is the School Bus Routing Problems (SBRP), where
the general purpose consists in picking up students to bring them to their respec-
tive schools [15,16,18–20]. In this context, a school represent a predetermined
location, which can be any other central institution, e.g., a kindergarten.

Thereby, the SBRP can be divided into several sub-problems, e.g., the bus
stop selection, bus route generation, or bus route scheduling problems [16]. In
fact, the bus stop selection problem copes with selecting the right locations for
picking up students, based on the number of students nearby. The bus route
generation problem deals with finding the optimal routes to pick up the respec-
tive students in the best way, while the bus route scheduling problem considers
ensuring specific time windows [16]. Further, different kinds of SBRPs can be
classified along various attributes. For example. Ellegood et al. (2019) classify
such problems into seven different categories, ranging from the actual type of
sub-problem over the number of schools, service environment, load type, fleet
mix, different objectives, and up to various kinds of constraints [16].

Driving Service for Children with Disabilities 459

Indeed, the core of the SBRP might be the route planning, which can be
seen as a Vehicle Routing Problem (VRP) [14], where a set of vehicles start their
journey from a depot to serve a given set of customers, and to return to the depot
by the end of mission. The objective of a VRP can be serving all customers in
shortest possible time or just by the smallest number of vehicles. In this context,
among all variantes of the VRPs, the routing part of the SBRP can actually be
modelled by a specific form of the VRP, i.e., the Open Vehicle Routing Problem
(OVRP) [9].

The OVRP considers a VRP where the vehicles do not need to return to
their depot, but all tours end at the last stop, which transforms the tours into
trips or more precisely into paths and open tours. To illustrate the similarity
of the OVRP to the SBRP, consider an empty bus that starts from an origin
point, e.g., the bus depot, picks up students by visiting bus stops, and ends at
a destination point, where all students are dropped off at the school [16,21].

In this paper, with a motivation from a real-world context, we study a prob-
lem that we name the Kindergarten Tour Planning Problem (KTPP). To define
the KTPP, assume that a set of children (kids) with disabilities, a central kinder-
garten, and a set of volunteer drivers as well as their equipped vans are given.
The objective of the KTPP consists in finding the shortest possible tours to pick
up all registered children and to bring them to the kindergarten. More precisely,
in each tour, a driver starts at his/her private address (home), picks up a subset
of disabled children, and drives them to the kindergarten. Once the children are
dropped off, the driver returns to his/her private address. As soon as the kinder-
garten time is over, the same driver picks up the same group of children as in
the morning to drive them back to their home, after which the driver returns
to his/her private address. Once we have the tours and their length (in terms
of time), the scheduling is done easily because there is no specific time windows
and the children are available at the requested time.

Finally, in the KTPP, we make the following additional assumptions:

– We assume that each child is picked up at his/her respective home individu-
ally.

– The vans, which are used by the drivers, are standardized and all vans have
a same limited capacity.

– Even though there might be more vans and drivers than necessary to trans-
port the children, there is no need to use all of the vans.

– The drivers start their tours according to the assigned schedule and the chil-
dren are ready to be picked up when they are told to be.

In the next section, we provide a mathematical formulation for route gener-
ation in the KTPP.

3 Mathematical Formulation of the KTPP

To present the mathematical formulation for the route generation of the KTPP,
let us start with the notation that we require. Assume that a graph G = (V,A)

460 M. Moeini and L. Mees

is given where V is the set of nodes and A is the set of arcs. Moreover, the
symmetric matrix D := [dij] contains the distance values dij between each pair
of nodes i, j ∈ V . In addition, the set of nodes is partitioned into V = {0} ∪ I,
where node 0 being the central depot, or in the case of KTPP the kindergarten,
and I is the set of all child locations. We assign to each node i ∈ I a positive
integer number qi, which indicates the number of children that must be picked up
at node i. In case of the KTPP, we assume that qi = 1 for all i ∈ I. Nevertheless,
it could also happen that multiple children from the same address want go to a
same kindergarten, e.g., this can happen in the case of brothers or sisters with
close age, twins or multi-apartment buildings.

Furthermore, we consider a set of k vans, each with identical capacity of Q,
to pick up the children to bring them to the kindergarten. A route solution to
the KTPP is a planar graph with star-shaped topology composed of k paths
(open tours) that originate from the central depot (kindergarten). In fact, this
graph corresponds to an OVRP solution.

Moreover, to simplify the modeling, we introduce an auxiliary “dummy”
node d into the graph G [9]. The new graph G′ is defined by the set of nodes
V ′ = V ∪ {d} and the set of arcs A′, where each node in I is connected to the
dummy node d by using the following arc weights:

d′
ij =

⎧
⎨

⎩

0 : if i ∈ I and j ≡ d,
M : if i ≡ 0 and j ≡ d,
dij : otherwise,

(1)

where M is a sufficiently large positive number.
To complete all required notation for the mathematical model, we define the

decision variables ui indicating the total number of children picked up by a van
once leaving node i, and the binary decision variables xij as follows:

xij =
{

1 : if the arc (i, j) is part of the route,
0 : otherwise. (2)

Using the presented notation, similar to the case of the SBRP [9], the following
Mixed-Integer Linear Program (MILP) serves at finding routes to pick up the
children.

min

⎛

⎝
∑

i∈V ′

∑

j∈V ′
cijxij + f · k

⎞

⎠ (3)

subject to
∑

i∈I

x0i ≤ k, (4)

∑

i∈I

xid ≤ k, (5)

∑

j∈I∪{d}
xij = 1 : ∀i ∈ I, (6)

∑

i∈I∪{0}
xij = 1 : ∀j ∈ I, (7)

Driving Service for Children with Disabilities 461

ui − uj + Qxij + (Q − qi − qj)xji ≤ Q − qj : ∀i, j ∈ I where i �= j, (8)
ui ≥ qi : ∀i ∈ I, (9)

ui − qix0i + Qx0i ≤ Q : ∀i ∈ I, (10)
xij ∈ {0, 1} : ∀i ∈ I, (11)

ui ∈ Z≥0 : ∀i ∈ I. (12)

In this MILP formulation, objective function (3) defines the total traveling
costs and fixed costs for all vans in use. Here, cij represents the costs for travers-
ing arc (i, j) and is defined by cij := α · dij , where α is the traveling cost per
distance unit. In the objective function, the second term represents the fixed
costs for having used the k vans, where f is the actual fixed costs per van.
Constraints (4) and (5) guarantee that at most k vans depart from the depot
node 0 and end their tour at the “dummy” node d. The flow-conservation condi-
tions, described by Constraints (6) and (7), assure that each intermediate node
is traversed exactly once. Finally, Constraints (8)–(10) deal with the capacity of
the vans and, in particular, certify that the capacity restrictions of vans are not
exceeded (for more details, refer to [9] and references therein).

Fig. 2. The MILP solution for an instance of size 20 nodes, solved by the solver Gurobi
Optimizer (with time limit of 1 h).

The MILP formulation (3)–(12), which allows to generate routes for the
KTPP, can be solved by any standard MLIP solver, e.g., Gurobi Optimizer
[17]. Figure 2 shows a sample solution that is obtained by solving MILP model
(3)–(12). On this figure, we solve a randomly-generated instance composed of
20 children. The depicted set of open routes needs still assignment of drivers
to become a complete solution to the KTPP. In Fig. 2, each red dot represents
a pickup location of children, and the black links between the red dots are the
selected paths for the vans to traverse. Furthermore, the kindergarten (central

462 M. Moeini and L. Mees

depot) is visible at (500, 500) to which all open tours are connected. The afore-
mentioned “dummy” node is located at (0, 0), which, as intended, none of the
tours are actually connected to.

As a variant of the VRP and the OVRP, the KTPP is an NP-hard problem.
Consequently, solving KTPP is only possible for small-sized instances. To solve
larger instances in reasonable computation time, we need to utilize heuristics and
metaheuristics. Additionally, for the case study of the DRK, we cannot employ
commercial solvers. Hence, for the practical use, we have designed a simple and
fast heuristic to solve the KTPP, and we present the heuristic in the next section.

4 A Heuristic for Solving the KTPP

The algorithm that we suggest for solving the KTPP is composed of two main
phases: route generation and driver assignment.

Due to large similarity of the KTPP to the bus route generation problem and
the OVRP, a natural heuristic choice for creating KTPP routes consists in using
similar heuristics that are used for solving the VRPs [14,16]. In this context,
the VRP heuristics are classified as construction and improvement heuristics
[14]. In fact, while the goal of construction heuristics is to build up initial feasi-
ble solutions, improvement heuristics use existing feasible solutions and refining
techniques to obtain better solutions.

As stated in [16], for the route construction, algorithms based on the Clarke
& Wright [11] savings method as well as two-phase algorithms perform well and
they are commonly accepted approaches. Hence, we use a variant of the Clarke &
Wright savings algorithm [11], adjusted for the OVRP [10], to construct KTPP
routes. Indeed, due to the fact that in an OVRP and in the KTPP, there is no
need to return to the central depot by the end of each tour, an adjustment to
the Clarke & Wright savings algorithm is required to generate open tours [10].

According to [16], more than half of the SBRP-related literature use improve-
ment heuristics to enhance algorithms. For this purpose, intra-route; in partic-
ular, k-opt operators, for 2 ≤ k ≤ 4, as well as inter-route operations are com-
monly used. Following this approach, to solve the KTPP, we use 2-opt heuris-
tic for intra-route along with inter-route optimization techniques. Algorithm 1
summarizes all steps of the route generation phase for solving the KTPP. More
precisely, once a set of k routes is generated, where k is the number of available
vans/drivers, the heuristic improves the routes by a sequence of intra-route and
inter-route operations.

Once open tours, i.e., OVRP routes, for the KTPP are generated, we need
to assign adequate drivers to the vans for which we use a simple heuristic. More
precisely, once the open tours are constructed, we compute a distance matrix of
all endpoints of these tours and the positions of the available drivers. Afterwards,
for each open tour, we pick up the closest available driver in regard to the
endpoint of the corresponding tour, and assign it to the tour. Once a driver
gets assigned, he/she is then removed from the list of available drivers. This
procedure is repeated until all tours receive a driver. The pseudocode of the
heuristic is given in Algorithm 2.

Driving Service for Children with Disabilities 463

Algorithm 1. Route Generation Heuristic (RGH)
1: procedure generate and improve(Routes)
2: Inputs: set of nodes (V), vans’ number (k), vans’ capacity (Q), Routes = {}
3: Output: Routes
4: Routes ← use the adjusted savings algorithm of Clarke & Wright to create k

OVRP tours
5: improvedRoutes = {}
6: for each tour in Routes do
7: new = swapTwoNodes()
8: if distance(new) < distance(tour) then
9: improvedRoutes.append(new)

10: end if
11: end for
12: Routes ← imporvedRoutes
13: for each tour in Routes do
14: for each nextTour in Routes do
15: newRoutes = swapNodesBetweenTours(tour, nextTour)
16: if distance(newRoutes) < distance(Routes) then
17: improvedRoutes = newRoutes
18: end if
19: end for
20: end for
21: return imporvedRoutes
22: end procedure

Algorithm 2. Driver Assignment Heuristic (DAH)
1: procedure Assign(tourEndpoints, driversSet)
2: assignments = {}
3: for each endpoint in tourEndpoints do
4: for each driver in driversSet do
5: if distance(endpoint,driver) < best then
6: best = driver
7: end if
8: end for
9: assignments.update({endpoint:best})

10: drivers.remove(best)
11: end for
12: return assignments
13: end procedure

464 M. Moeini and L. Mees

5 A Web-Based Platform

For the case study, which motivates this contribution, we designed and imple-
mented a web-based platform for which we provide a concise description in this
section1.

5.1 Architecture of the Platform

The implemented web-based platform permits an installation on a central web-
server. Hence, even though all users will have access to the provided information,
all possible future changes can only to be deployed to a single server. In other
words, if multiple people use the application, possible changes in the applica-
tion data do not need to be synchronized among many clients as all changes
should happen on a single central database. However, this functionality might
seem as a disadvantage because the current implementation does not provide
any automated session management. Consequently, while different employees
may work with the platform, no simultaneous change should be permitted; oth-
erwise, there might be incorrect data in the database. To avoid such an issue,
for each database, the tool should be installed on a server and get assigned to an
administrator as the session manager. These conditions are fulfilled in our case
study at the DRK.

We implemented the platform in Python through the web-framework
Flask [2]. Further, the platform uses a MySQL database to store various infor-
mation. As usual for web applications, the graphical user interface (frontend)
is written in HTML, CSS, and JavaScript. Further, the CSS-framework Boot-
strap [1] was used in implementing the frontend design, and through JavaScript,
the library jQuery [4] is used to handle user interactions.

Another important technology used on the frontend is a Python library called
Folium [3] that uses the JavaScript library Leaflet [5], which helps creating inter-
active maps, which are displayed to the user on the frontend. The last technology
that we have used, and should be mentioned is the Openrouteservice, which is a
geo-coding API [6]. It is used for retrieving important geo-data, which provides
the longitude and latitude indices for locations of children and drivers.

For the end-user application, there are only two kinds of information that
need to be stored in the database: children (or passengers to be transported)
and drivers, where both groups share most of their respective information types.
More precisely, next to a unique ID, personal data, e.g., name, address, and
availability are stored for each object. Additionally, for both entities, the Open-
routeservice API is used to automatically retrieve the geo-data in form of latitude
and longitude indices for the given address to be stored in the database for the
respective objects.

The actual core functionality provided by the platform is to apply the pre-
viously presented algorithms to the stored data and to determine which drivers

1 The full package of the platform, including the source codes, is publicly available on:
https://github.com/moeini-mahdi/AutomatedTourPlanning.git.

https://github.com/moeini-mahdi/AutomatedTourPlanning.git

Driving Service for Children with Disabilities 465

are supposed to drive which group of children and in which order. In addition
to the stored active drivers and children, the only input that is given for each
calculation is the amount of passengers that each van can transport. Once the
algorithms are executed, their results are then fed to the Openrouteservice API.
Afterwards, a route on real-world roads is displayed on an interactive map. More-
over, additional information about the length of the respective tour in kilometers
as well as an estimated driving time are provided.

5.2 Design of the Platform

With the goal of developing an easy-to-use application with a clear design struc-
ture, we have selected a simple two-column design with a menu bar on the left-
hand-side to switch between the different views and the actual content, which
is on the right-hand-side. In terms of color scheme, the platform aligns with the
official corporate design of the DRK [7].

In the following, we describe briefly different features of the platform. In
particular, as it is shown in Fig. 3, the information of the children as well as the
available drivers can be inserted into, edited, or deleted from the database in a
simple way.

Fig. 3. A view of database object to insert the corresponding information. This view
looks exactly the same for both, the children as well as the drivers, because they share
the same set of attributes.

Figure 4 illustrates a sample output of a routing plan, which is created by
the platform. The user can select the desired vehicle capacity and then start the
calculation. Once the calculation is done (by the heuristic), the resulting tours
are displayed on the same window. Figure 5 shows, in more detail, how an output
tour is visualized and what information about the tour are given. The visualized
map combines multiple functional features and information:

466 M. Moeini and L. Mees

Fig. 4. A sample output view, where the name of the driver (Fahrer 1), the list of the
registered children (to be picked up) together with their respective home address, a
detailed map of the route, and its length (Distanz) as well as its duration (Daurer) are
reported.

– The user can move the map around, zoom in, or zoom out.
– The position of each passenger is highlighted with markers. By hovering over

a marker, information of the corresponding passenger is given (see Fig. 5).
– The suggested driving route is marked in the map. Additionally, there are

three different kinds of markings. The red-dashed line represents the part of
the tour concerning either the segment between the starting location and the
position of the first or the last passenger depending on if it is the route to or
from the destination, respectively. The solid-black line represents the route
between the passengers and the black-dashed line the part of the tour that
the van operates with a full load of passengers.

– Finally, at the bottom of the window, there are further information about the
overall distance of the tour as well as the estimated time it takes to drive it.
From this information and the knowledge of when the destination needs to
be reached as well as how long it takes to pick up a passenger, the starting
time is calculated easily.

Driving Service for Children with Disabilities 467

Fig. 5. A sample zoomed output, where by hovering over a marker, we observe the
address of the corresponding child as well as his/her address.

6 Computational Experiments

From mathematical point of view, we have verified the model and the results
by visualizing them and investigating the solutions numerically, in particular, by
comparing the results of heuristic versus those of the MILP solver. From practical
perspective, we had several discussion sessions with the DRK to incorporate
exactly their assumptions in the model and to design the web-based tool to
cover entirely the objectives of the DRK. The model is checked with real-world
data, provided by the DRK; however, for the sake of privacy protection, their
detailed results cannot be presented in this paper. Nevertheless, Figs. 4 and 5
illustrate some results after removing private data of the children.

Since we had the plan to provide the web-based platform at the service of the
German Red Cross, we could not use a commercial solver for solving the MILP
model. Hence, we designed and implemented a simple two-phase heuristic to
solve the KTPP. Even though a heuristic does not guarantee global optimality
of the solution, it is important to verify the quality of the solutions provided
by the heuristic. For this purpose, we conducted computational experiments on
randomly-generated instances, and compared the results of the heuristic versus
those of the standard solver Gurobi Optimizer, which solves the MILP model
(3)–(12). Hence, in our computational experiments, the driver-assignment phase
is not taken into consideration because it is identical for both approaches.

6.1 Test Setting

We generated random instances with five different sizes, i.e., 10, 25, 50, 75, and
100 passengers (children). Each child is a node of the graph instance, generated
by the Python’s random class in an area of 1000 × 1000 distance units, where
the kindergarten (depot) is located at the center of the area. In addition, we

468 M. Moeini and L. Mees

considered two capacity levels for the vans: 4 and 8 passengers. Moreover, in the
objective function (3), we set f = 1000 and α = 1.

We implemented the model (3)–(12) and solved it by the MILP solver Gurobi
Optimizer 9.0.1 [17]. To have a fair comparison, we used the solver with two
different time limits: once with only 5 s, i.e., treating the solver as a kind of
heuristic, and once more with a time limit of 10 min with the aim of obtaining
sufficiently good-quality solutions. The results of the heuristic are obtained by
the algorithm of Clarke & Wright, which are then improved by intra-route as well
as inter-route operations. Despite Gurobi, there is no time limit on the heuristic,
i.e., it stops as soon as all operations are accomplished.

For each test run, we computed the sum of the total distance covered by all
tours, and record the processing time, which is required by the heuristic or the
solver to reach the corresponding results. Furthermore, we note different gap
values for each experiment. More precisely, for the solver results, the Gaps is the
MIP gap provided by the solver. However, regarding the heuristic, we compute
the gap, in percent and denoted by Gaph, as follows:

Gaph =
result of the heuristic − result of the solver

result of the heuristic
(%). (13)

All experiments have been conducted on a laptop under Windows 10 with an
Intel Core i5-5200U CPU @ 2,20 GHz and 8 GB of RAM.

6.2 Numerical Results

Tables 1 and 2 show the results of the experiments for vehicle capacities of 4 and
8 children, respectively, where for each van capacity Q ∈ {4, 8}, we have five
different instance sizes |I| ∈ {10, 25, 50, 75, 100}. These tables provide, for each
instance, the required distance L to be traveled (according to the solutions of
the solver and the heuristic), the MIP gap of the solver Gaps (in percent), the
relative gap of the heuristic Gaph (in percent), and the runtime t (in seconds)
required to each approach to obtain the corresponding solutions.

Comments on the Numerical Results:

– Due to the NP-hardness of the KTPP, it is not surprising that solving the
problem is a challenging task. In fact, as we observe in Tables 1 and 2, the
optimality gap of the solver remains high even for medium-sized instances.

– By comparing the results of the solver with 5 s runtime versus the presented
heuristic, we see that our heuristic outperforms the internal heuristic of the
solver in most of the instances.

– By benchmarking the heuristic, the results show that the relative gap of the
solutions found by the heuristic are in average smaller than 7% and 14% for
KTPP with van capacity of Q = 4 and Q = 8, respectively.

– In terms of computation time, as it is expected, the heuristic solves the
instances almost instantly.

Driving Service for Children with Disabilities 469

Table 1. Results of the experiments with the van capacity Q = 4.

Gurobi (5 s) Gurobi (10min) Heuristic

|I| L Gaps(%) t(s) L Gaps(%) t(s) L Gaph(%) t(s)

10 2231.86 30 5.04 2220.18 0 17.34 2574.45 14 0.04

25 5091.17 63 5.05 4719.56 49 600.59 5344.50 12 0.01

50 9137.79 75 5.15 8187.42 71 600.36 9061.72 10 0.05

75 13816.29 81 5.46 11990.60 75 600.34 12008.86 0 0.13

100 16683.10 84 5.47 14838.79 82 600.51 14901.19 0 0.29

Average 67 55 7

Table 2. Results of the experiments with the van capacity Q = 8.

Gurobi (5 s) Gurobi (10min) Heuristic

|I| L Gaps(%) t(s) L Gaps(%) t(s) L Gaph(%) t(s)

10 2422.26 21 5.03 2422.26 0 22.07 2866.62 16 0.008

25 4122.26 51 5.06 3722.92 43 600.76 4769.62 22 0.03

50 10184.83 67 5.26 6417.14 57 600.53 7865.61 18 0.14

75 11226.29 68 5.32 9726.21 65 600.37 10564.12 8 0.20

100 12858.80 71 5.46 11582.36 69 600.51 12159.60 5 0.33

Average 56 47 14

7 Conclusion

In this paper, we introduced the Kindergarten Tour Planning Problem (KTPP),
which is motivated by a practical case study in cooperation with the regional
branch of the Deutsches Rotes Kreuz (DRK), the German Red Cross, located
in the city of Landstuhl. A valid KTPP solution is composed of two parts: a
set of routes (to pick up passengers) and driver assignment to the routes. After
a short literature review on similar problems, e.g., the OVRP and the SBRP,
we formulated route planing part of the KTPP as a MILP and presented a
two-phase heuristic to solve the KTPP. In addition, we presented the results of
our computational experiments on randomly generated instances to verify the
quality of the solutions obtained by the heuristic. The preliminary results show
that the heuristic can find promising solutions, but they can still be improved.

Moreover, we have designed and implemented an open-access web-based plat-
form to solve the KTPP, and to provide an assistance service to the DRK (the
branch that is located at Landstuhl). We dedicated a full section to describe
main features of the platform.

We have several research plans for the future; in particular, an enhanced
heuristic or metaheuristic should be designed, implemented, and integrated into
the platform to solve not only the current instances but also the ones with
asymmetric distance matrix D. In addition, it would be interesting and useful
to implement or integrate an exact algorithm (or free exact solver) into the

470 M. Moeini and L. Mees

platform. To give an international dimension to the platform, we need to equip it
with several languages. The research and work in these directions are in progress,
and the results will be reported in the future.

References

1. Bootstrap. https://getbootstrap.com/. Accessed 15 Apr 2021
2. Flask. https://flask.palletsprojects.com/en/1.1.x/. Accessed 15 Apr 2021
3. Folium. python-visualization.github.io/folium/. Accessed 15 Apr 2021
4. jquery. https://jquery.com/. Accessed 15 Apr 2021
5. Leaflet. https://leafletjs.com/. Accessed 15 Apr 2021
6. Openrouteservice. https://openrouteservice.org/. Accessed 15 Apr 2021
7. Styleguide Deutsches Rotes Kreuz. https://styleguide.drk.de/deutsches-rotes-

kreuz/basiselemente/farben. Accessed 15 Apr 2021
8. Baugh, J.W., Jr., Kakivaya, G.K.R., Stone, J.R.: Intractability of the dial-a-ride

problem and a multiobjective solution using simulated annealing. Eng. Optim.
30(2), 91–123 (1998)

9. Bektas, T., Elmastas, S.: Solving school bus routing problems through integer
programming. J. Oper. Res. Soc. 58, 1599–1604 (2007)

10. Bodin, L., Golden, B., Assad, A., Ball, M.: Routing and scheduling of vehicles and
crews: the state of the art. Comput. Oper. Res. 10(2), 63–211 (1983)

11. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of
delivery points. Oper. Res. 12(4), 568–581 (1964)

12. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann.
Oper. Res. 153, 29–47 (2007)

13. Cordeau, J.F., Laporte, G., Potvin, J.Y., Savelsbergh, M.W.: Transportation on
Demand, vol. 14. Elsevier (2007)

14. Cordeau, J.F., Laporte, G., Savelsbergh, M.W., Vigo, D.: Vehicle Routing, vol. 14.
Elsevier (2007)

15. Dulac, G., Ferland, J., Forgues, P.: School bus routes generator in urban surround-
ings. Comput. Oper. Res. 6(3), 199–213 (1980)

16. Ellegood, W., Solomon, S., North, J., Campbell, J.: School bus routing problem:
Contemporary trends and research directions. Omega 95 (2020)

17. Gurobi Optimization: Gurobi Optimizer Reference Manual (2019)
18. Jaradat, A., Shatnawi, M.: Solving school bus routing problem by intelligent water

drops algorithm. J. Comput. Sci. 16(1), 25–34 (2020)
19. Lekburapa, A., Boonperm, A., Sintunavarat, W.: A new integer programming

model for solving a school bus routing problem with the student assignment. In:
Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2020. AISC, vol. 1324, pp. 287–
296. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68154-8 28

20. Ozmen, M., Sahin, H.: Real-time optimization of school bus routing problem in
smart cities using genetic algorithm. In: 6th International Conference on Inventive
Computation Technologies (ICICT), pp. 1152–1158 (2021)

21. Sariklis, D., Powell, D.: A heuristic method for the open vehicle routing problem.
J. Oper. Res. Soc. 51, 564–573 (2000)

https://getbootstrap.com/
https://flask.palletsprojects.com/en/1.1.x/
https://python-visualization.github.io/folium/
https://jquery.com/
https://leafletjs.com/
https://openrouteservice.org/
https://styleguide.drk.de/deutsches-rotes-kreuz/basiselemente/farben
https://styleguide.drk.de/deutsches-rotes-kreuz/basiselemente/farben
https://doi.org/10.1007/978-3-030-68154-8_28

A Multi-objective Biased Random-Key
Genetic Algorithm for Service Technician

Routing and Scheduling Problem

Ricardo de Brito Damm(B) and Débora P. Ronconi

University of São Paulo, Polytechnic School, São Paulo, Brazil
dronconi@usp.br

Abstract. Every day many service companies need to plan the tasks
that will be carried out by its field staff. Maintenance service technicians
have to perform a set of jobs at different locations in a city or state. This
problem can be defined as the Service Technician Routing and Schedul-
ing Problem in which tasks have different priorities and time windows,
and technicians have different skills and working hours. Scheduling must
account for technicians’ lunch breaks, which must be respected. Each
task is performed by only one technician. To ensure quality customer
service and consumer rights are upheld, a novel approach is proposed:
to address the problem in a multi-objective context aiming to execute
the priority tasks and, simultaneously, to serve the customers at the
beginning of their time windows. A Multi-objective Biased Random-
Key Genetic Algorithm (BRKGA) was customized to tackle this NP-
hard optimization problem and then compared with the Non-dominated
Sorting Genetic Algorithm II (NSGA-II). The analyzed methods showed
similar performance for small instances, but for medium- and large-sized
instances the proposed method presented superior performance and more
robust results.

Keywords: Multiple objective programming · Routing and scheduling
technicians · Time windows · Biased Random-Key Genetic Algorithm ·
NSGA-II

1 Introduction and Background

This paper proposes a multi-objective integer programming (MOIP) model and
heuristic methods for a version of the Service Technician Routing and Scheduling
Problem (STRSP), which involves daily planning of technicians’ activities (such
as installing a device or providing equipment maintenance to houses or businesses
in a medium-sized or big city). In this version of the problem, each task is
assigned a priority level, representing the importance of the customer, how urgent

This research has been partially supported by FAPESP (Grants 13/07375-0 and
16/01860-1) and CNPq (grant 311536/2020-4).

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 471–486, 2021.
https://doi.org/10.1007/978-3-030-87672-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_31&domain=pdf
http://orcid.org/0000-0002-9979-7739
http://orcid.org/0000-0001-7647-2328
https://doi.org/10.1007/978-3-030-87672-2_31

472 R. de B. Damm and D. P. Ronconi

the job is or whether it has been postponed for some time. Time windows are
also assigned to represent customer availability in a range of hours. Deterministic
times are stipulated for service and travel times. Technicians have a set of skills
that allow them to perform each task; technicians’ working hours and lunch
breaks must be respected. Although technicians obviously need lunch breaks or
rest breaks, it is not usual to find studies that take this parameter into account.
According to Kovacs et al. [1], Xu and Chiu [2] and Pillac et al. [3], the STRSP
is a generalization of the Vehicle Routing Problem with Time Windows, which is
NP-hard. Considering the complexity of the problem and its practice relevance,
in this paper, heuristics are developed. The problem was modeled to prioritize
one customer service quality aspect, punctuality, which is highly relevant both
to companies and customers in a large city.

Tsang and Voudouris [4] and Xu and Chiu [2] were among the first authors
to study the STRSP. In 2007, the French Operational Research Society and
France Telecom launched this problem as a challenge to researchers and Cordeau
et al. [5] and Hashimoto et al. [6] won this contest. Other important publications
are worth mentioning: Kovacs et al. [1], who studied an extension of the two pre-
viously mentioned research studies; Pillac et al. [3], who analyzed the similarity
between the STRSP and the Vehicle Routing Problem with Time Windows.; and
Souyris et al. [7] and Fikar et al. [8] who analyzed the problem in a stochastic
context. In the literature, several real-life business problems have been studied,
involving companies such as British Telecom [4], United Technologies Corpora-
tion [9], military maintenance scheduling [10], repair services for printers and
copiers [7,11], and, as mentioned earlier, France Telecom [5,6].

Many different objective functions were found in the literature for the
STRSP: to maximize the number of performed tasks [2,10,12,13]; to minimize
the weighted sum of the completion time of task sets [5,6] and to minimize the
completion time of the last task [14]; travel costs, overtime, and outsourcing
[1,4]; to optimize the number of instances where time windows are violated, the
number of customers served and the total travel time [11]. As it can be observed,
most authors studied the problem by grouping different objectives into a single
function. This occurs because, for this problem, several objectives are important
in the decision-making process so they should be considered simultaneously. For
this reason, we propose the use of multi-objective optimization techniques to
study the STRSP. As far as we know, these techniques have never been applied
to this problem.

Two objectives are proposed for the STRSP: to maximize the sum of priority
values associated with the tasks performed and to serve priority customers as
soon as possible. The first objective is based on Damm et al. [12] and the second
one was inspired by the works of Cordeau et al. [5], Hashimoto et al. [6], Cortés
et al. [11], and Xu et al. [15].

A Multi-objective BRKGA for STRSP 473

In the literature, heuristics and metaheuristics are the main methods adopted
to solve the STRSP. Xu and Chiu [2], and Hashimoto et al. [6] applied
the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic;
Cordeau et al. [5], Kovacs et al. [1], and Pillac et al. [3] developed constructive
heuristics and customized the Adaptive Large Neighborhood Search (ALNS);
Tsang and Voudouris [4] developed two constructive heuristics for the problem;
Tang et al. [9] developed a tabu search metaheuristic; Dohn et al. [13] and Cortés
et al. [11] used a branch-and-price approach; Xu et al. [15] a Genetic Algorithm
and Damm et al. [12] the Biased Random-Key Genetic Algorithm (BRKGA).

In this work, a multi-objective version for the BRKGA was developed, try-
ing to properly explore the characteristics of the problem and its search space.
We chose the BRKGA because it can solve several combinatorial optimization
problems successfully, e.g. divisible load scheduling [16], constrained clustering
problem [17,18], multiproduct capacitated facility location problem [19], and
tool switches problem [20]. In particular, BRKGA was successfully applied to
routing-related problems such as the STRSP [12], the problem of routing and
wavelength assignment in optical networks [21], the family traveling salesman
problem [22], and traffic congestion in road networks [23].

The main contributions of this paper are described below. First, a MOIP
model for the STRSP is proposed. The objective is to perform the priority tasks
in a day and also to serve customers as soon as possible, within their time win-
dows. In addition, the model considers technicians’ lunch breaks and respects the
time windows assigned for this purpose. Note that, as far as we know, this feature
has never been considered in an integer programming model of the SRTSP with
time windows. Taking into account the good results obtained by the BRKGA in
mono-objective combinatorial problems, a multi-objective version was developed
for this GA. Although it is a natural candidate to be applied to multi-objective
problems while working with a population of solutions, there is only one research
that proposes a multi-objective version for the BRKGA (see Tangpattanakul
et al. [24,25]). This is a promising area of research that remains largely unex-
plored. We intend to customize the main components of BRKGA to propose a
method that can effectively tackle the multi-objective SRTSP.

This paper is organized as follows. Section 2 presents the mathematical model
of the problem. Section 3 introduces the Biased Random-Key Genetic Algorithm
BRKGA and its components. Section 4 describes the computational experiments
performed and the analysis of their results. The last section summarizes the main
results and presents possible future works.

474 R. de B. Damm and D. P. Ronconi

2 Problem Description and a Multi-objective Integer
Programming Model

The STRSP problem involves a set S = {1, . . . , n} of n tasks or services and a
set K = {1, . . . , m} of m technicians. A dummy task 0 represents the origin or
the home base of the company. Each pair of tasks i and j is associated with a
travel time cp

ij , which is equal to the Euclidean distance between the coordinates
of points i and j. It is worth mentioning that this parameter can assume a value
associated with a distance derived from a real road network without any draw-
back for the model. Each task i ∈ S has a positive integer value wi representing
its priority (indicating the importance or urgency of the task), a processing time
pi, and a time window [ei, �i] within which the task must be executed. A techni-
cian is allowed to reach the location of a task i before the beginning of its time
window, but he/she should wait for time ei to start processing the task. Each
technician k ∈ K has a daily work schedule defined by [ak, bk] and must leave
the base after the start and return before the end of the working hours. The skill
of a technician k to perform a task i is given by sik, a binary parameter, where 1
means “being capable to perform the task” and 0 means “unable to perform it”.
The lunch break of each technician k ∈ K is represented by a dummy task n+k
with duration or processing time pn+k, time window [en+k, �n+k], and such that
sn+k,k = 1 and sn+k,ν = 0 for all ν �= k. We define J = S ∪{n+1, . . . , n+m}. It
should be noted that the flexibility of the time windows for this activity can be
established in the definition of en+k and �n+k. In addition, we assume that since
the technician must perform the selected tasks, this activity will likely occur
near some of these tasks.

Seven types of decision variables are adopted: yik is a binary variable that
equals 1 if task i is assigned to technician k and 0, otherwise; xijk is also a binary
variable which takes value 1 when task i precedes task j in the route of technician
k and 0, otherwise; uk is a binary variable that is equal to 1 when technician k
has their lunch break at the location of the task that precedes task n + k and
it is equal to 0 when the lunch break happens at the location of the task that
succeeds task n+k; ti is the start time of the execution of task i; cij is the travel
time between two tasks i, j ∈ J (that coincides with cp

ij when i, j ∈ S ∪{0}); and
cb
k and ca

k are the travel times between task n + k (lunch break of technician k)
and its predecessor and successor tasks, respectively. The model is given by:

max f1 =
1
W

∑

i∈S

∑

k∈K

wiyik − 1
C

∑

k∈K

⎛

⎝
∑

i∈V

∑

j∈V

cp
ijxijk + cb

k + ca
k

⎞

⎠ (1)

max f2 =
1
W

∑

i∈S

wiγi (2)

A Multi-objective BRKGA for STRSP 475

Subject to:

yik ≤ sik k ∈ K, i ∈ J (3)
∑

k∈K

yik ≤ 1 i ∈ J (4)

yn+k,k = 1 k ∈ K (5)
∑

j∈J∪{0}\i

xijk =
∑

j∈J∪{0}\i

xjik = yik k ∈ K, i ∈ J (6)

∑

i∈J

x0ik ≤ 1 k ∈ K (7)

ei ≤ ti ≤ li − pi + M(1 −
∑

k∈K

yik) i ∈ J (8)

ti ≥ li − pi − M
∑

k∈K

yik + ε i ∈ J (9)

ti ≤ li − pi + M
∑

k∈K

yik + ε i ∈ J (10)

ti + pi + cij ≤ tj + M(1 −
∑

k∈K

xijk) i �= j ∈ J (11)

∑

k∈K

x0jkak + c0j ≤ tj + M(1 −
∑

k∈K

x0jk) j ∈ J (12)

ti + pi + ci0 ≤
∑

k∈K

xi0kbk + M(1 −
∑

k∈K

xi0k) i ∈ J (13)

cij = cp
ij i, j ∈ S ∪ {0} (14)

cj,n+k ≥
∑

i∈J∪{0}\j

xn+k,i,k cp
ji − Muk j ∈ S, k ∈ K (15)

cn+k,i ≥
∑

j∈J∪{0}\i

xj,n+k,k cp
ji − M(1 − uk) i ∈ S, k ∈ K (16)

cb
k ≥ ci,n+k − M(1 − xi,n+k,k) i ∈ S, k ∈ K (17)

ca
k ≥ cn+k,i − M(1 − xn+k,i,k) i ∈ S, k ∈ K (18)

cj,n+k ≥ 0 j ∈ S, k ∈ K (19)
cn+k,i ≥ 0 i ∈ S, k ∈ K (20)

cb
k ≥ 0 k ∈ K (21)

ca
k ≥ 0 k ∈ K (22)

γi =
(li − ti − pi + ε)
(li − ei − pi + ε)

i ∈ S (23)

xijk, yik, uk ∈ {0, 1} i, j ∈ J, k ∈ K (24)
ti ∈ R+ i ∈ J, k ∈ K (25)

476 R. de B. Damm and D. P. Ronconi

where:

ε is a small number
W = min

i∈J
wi

C =
∑

k∈K(bk − ak)

M = max
(

max
i∈J

li,max
k∈K

ak

)
+ max

i,j∈J∪{0}
cp
ij

J = {1, ..., n, n + 1, ..., n + m}
S = {1, ..., n}

The first objective (1) aims to maximize the sum of priority values associated
with the tasks performed each day and to minimize the total travel time. The
purpose of the denominator is two-fold: to obtain dimensionless values of the
sum and ensure that it is always better to perform a task and increase the total
travel time, but never vice versa. Note that, when a task is associated with a
technician (yik = 1), the expression wiyik

W will always be greater than or equal
to one, whereas the term C guarantees that the second term of f1 will be always
strictly less than one.

The second objective aims to prioritize the most important customers by
placing them at the beginning of their time windows. Thus, a variable gap (γ)
is defined between 0 and 1, representing the fraction of idle time between the
end of a task and the end of its time window, indicating how early the task is
performed. For example, when task i is performed exactly at the beginning of its
time window (ti = ei), then its gap reaches its maximum value (γi = 1); when
it has finished exactly at the end of the time window (ti = li − pi), the gap is
equal to a very small number; the gap is null (γi = 0) only when a task is not
performed. Thus, the variable gap is defined as γi = (li−ti−pi+ε)

(li−ei−pi+ε) , where ε is a
very small number. Note that parameter ε also ensures that the denominator
of γ is never equal to zero, which can occur when the time window of a task
is equal to its processing time (pi = li − ei). Thus, the second objective weighs
the priorities of the tasks (wi) with their respective gaps (γi), so that higher
priority tasks have larger values associated with their gaps. Denominator W was
included so that the second objective has the same order of magnitude of the
first one (1).

Constraints (3), (4) and (5) ensure that each task can only be performed by
a skilled technician, assigned at most to one technician, and that the task that
represents the lunch break of each technician is scheduled. In (6), when a task
i is assigned to a technician k, there is only one predecessor and one successor
of i. Each technician must leave the origin at most once, as indicated by (7).
Constraints (8) guarantee that each task is performed within its time window
while the constraints (9–10) guarantee that, when a task is not executed, the
gap variable γ is null. Constraints (11–13) define the relationship between the
beginning of the processing time of a task and the execution of its predecessor
or the beginning of the working day of a technician; these restrictions avoid the

A Multi-objective BRKGA for STRSP 477

subtour. The travel time between two tasks is determined by constraint (14) and,
between the dummy task (lunch break) and its predecessor (cb

k) and successor
(ca

k), by constraints (15–22). Note that when uk = 1, technician k has a lunch
break right after performing task j and then goes to the next task i (then ca

k = 0
and cb

k > 0); otherwise, after performing task j, the technician goes to the site
where task i will be performed, but has a lunch break before starting it (then
ca
k > 0 and cb

k = 0). It should be noted that the positioning of the lunch break
(before or after a task) in some situations may influence the objective values
of the function (e.g., allowing a priority customer to be served earlier or taking
advantage of idle time before a task). The variable γ is defined by (23), while
the domain of the remaining variables is defined by (24) and (25).

3 Multi-objective Biased Random Key Genetic
Algorithm

For the proposed problem, a GA was applied that uses random keys and pre-
vents the generation of new infeasible solutions. The Random-Key Genetic Algo-
rithm (RKGA) was proposed by Bean [26] to improve the performance of the
traditional GA in combinatorial problems. The RKGA exploits the feasible
region indirectly through a search in the space of the random keys (problem-
independent) and uses a decoder (problem-dependent) to solve the problem [22].
It should be emphasized that an essential part of the RKGA is the decoder,
which should be developed to avoid the generation of unfeasible solutions to
the optimization problem. The latest version of this algorithm was called Biased
Random-Key Genetic Algorithm (BRKGA), which differs from the previous ver-
sion particularly in the generation of new solutions: one of the best (elite) solu-
tions always participates in the crossover and this elite solution is more likely to
transmit its genes. Comparisons between standard GA, RKGA, and BRKGA for
different optimization problems can be found in [27,28]; the authors concluded
that the BRKGA is more effective than the RKGA.

Here is a brief overview of a mono-objective BRKGA. The initial population
is composed of vectors (λ) of random real numbers (random keys) in the interval
(0; 1], which will be transformed by an algorithm (decoder) into feasible solutions
of the problem. Constructive heuristic solutions can be coded and included in
the initial population. The current population is divided into two groups: a
first smaller group with the best solutions (elite) and a second larger group
with the other solutions (non-elite). The next generation is formed by all elite
solutions of the previous generation, by some new solutions (mutants) randomly
generated (thus increasing population diversity), and by solutions created by
the parameterized uniform crossover. In this kind of crossover, one offspring is
generated by two chromosomes (one selected from the elite and other, from the
non-elite group). To decide if each gene of the new chromosome comes from the
elite or non-elite solution, a real number between 0 and 1 is randomly generated
and the probability of the elite solution transmitting its gene is greater than that
of the non-elite solution; in other words, the random keys of the elite solution

478 R. de B. Damm and D. P. Ronconi

tend to predominate in the new offspring generated. Once a new population
is formed, all operations are repeated until a stopping criterion is reached. A
detailed description of the BRKGA can be found Morán-Mirabal et al. [22] and
in Damm et al. [12].

3.1 Elite Set

The main question that arises when adapting the mono-objective BRKGA for
a multi-objective BRKGA is how to determine an order for solutions of each
population to select the elite group. As far as we know, only Tangpattanakul et
al. [24,25] developed a multi-objective BRKGA, which was used to select and
schedule observations for an agile Earth-observing satellite. In [25], the authors
chose to include only the non-dominated solutions in the elite set and, therefore,
to adopt a variable size for the elite set (dependent on the cardinality of the set
of non-dominated solutions). While in another paper [24], these authors adopted
traditional multi-objective GA methods to construct the elite set of the BRKGA:
the crowding distance (Non-dominated Sorting Genetic Algorithm II – NSGA-
II), the metric selection (Evolutionary Multi-objective Optimization Algorithm
– EMOA), and the indicator based on the hypervolume concept (Indicator-Based
Evolutionary Algorithm – IBEA). The authors concluded that the three methods
performed similarly and have not identified any superior method. Therefore, in
our research, one strategy of each previous paper (the non-dominated solutions
[25] and crowding distance [24]) was adopted. Furthermore, two other meth-
ods (fitness sharing and cell-based density) were analyzed. These methods are
described below.

Deb et al. [29] proposed the Crowding distance, which is an approach for
the Non-dominated Sorting Genetic Algorithm (NSGA-II) where chromosomes
are classified by the non-dominated fronts and solutions in the same front are
ordered by the distance of the nearest solutions.

Fitness sharing was proposed by Goldberg and Richardson [30]. This strategy
penalizes solutions located in a region of high concentration of solutions so that
the most isolated solutions (i.e., areas less exploited by the search) are favored,
thus increasing diversity in the Pareto set throughout the GA generations.

In Cell-based density the objective function space is divided into cells or
hypercubes: each axis of the objective function is divided into equal sizes. Solu-
tions of the first fronts and in lower densities cells are favored.

3.2 Decoder

This section presents the decoder applied in the proposed BRKGA. The decoder
has n+1 random keys. Each of the n tasks has one random key and the last one
(λ[n+1]) is a weighted factor between the objectives, which allows to decide if a
new task can or cannot be included in the route of a skilled technician, based on
the weighted sum of the objectives. The main details of the decoder are listed
below.

A Multi-objective BRKGA for STRSP 479

1. Task Ordering: Sort the tasks in decreasing order of random keys.
Select the first task i. For each technician k, do fk = 0.

2. Evaluation of candidate technicians: for each technician k capable of
performing task i (i.e. sik = 1), evaluate all the possible positions
of this task in their route. Choose the position that provides a feasi-
ble solution with the greatest value of fk

w (if fk
w ≥ fk), where fk

w is
given by:

fk
w = λ[n + 1] · fk

1 + (λ[n + 1] − 1) · fk
2 (26)

where fk
1 and fk

2 are the objective function values associated with
technician k.

3. Selection of a technician: if Step 2 provides no solution, go to the next
step. Otherwise, select the technician who can perform task i with the
greatest value of fk

w − fk. If more than one technician has the same
greatest value, the second and the third decision criteria are lowest
total travel time (from the beginning until return to the home base)
and the identification number of the technician, respectively. Add task
i to the route of technician k and do fk = fk

w.
4. Stop condition: if task i is the last task sorted in Step 1, stop. Other-

wise, select the next task i classified in the first step and go back to
Step 2.

3.3 Initial Population

The initial population of the BRKGA for the STRSP includes random chromo-
somes and a number of solutions found by a constructive heuristic (ncs) similar
to the decoder (Sect. 3.2), except for two issues.

In the first step, tasks are ordered by:

ρi = wi − NST i

m + 1
(27)

where NST i is the number of skilled technicians for task i. In Step 2, instead of
λ[n + 1] in formula (26), the constructive heuristic uses values between 0 and 1
to generate different solutions. To include the constructive heuristic solutions in
the initial population, do λ[i] = ρi

ρmax
, for i = 1, ..., n where ρmax = max{ρi|i =

1, ..., n}.

4 Computational Results

Initially, this section describes the instances and the performance measures
used to compare heuristic methods. Then, the results obtained by the proposed
BRKGA and a comparison with traditional GA approach (NSGA-II) are pre-
sented. Codes were written in C programming language and tests were conducted
on an Intel (R) Core (TM) i7-5500U CPU 2.40 GHz with 8 GB of RAM memory.
The MOIP model was solved on a 2.93 GHz Intel processor with 16 GB of RAM
memory.

480 R. de B. Damm and D. P. Ronconi

4.1 Instances

A total of 90 instances were generated in the experiments, with considerably
diverse parameters that can impact on the behavior of the heuristics: geograph-
ical distribution of customers, length of time windows of tasks (short, long, or
random), processing time, task priority, number of tasks and technicians. Three
different geographical distributions were used for tasks: random uniform dis-
tribution (R), clustered distribution (C), and semi-clustered distribution (RC).
These distributions were suggested by Solomon [31]. For each geographical dis-
tribution, 3 instances were generated for 10 different numbers (or cases) of tasks
and technicians. Table 1 shows the number of tasks and technicians for each case.

Table 1. Dimension of the instances generated

Case #tasks (n) #technicians (m)

1 16 2

2 26 2

3 30 3

4 39 3

5 45 7

6 64 5

7 80 13

8 100 10

9 150 15

10 200 33

Instance parameters were generated in the following range of discrete uniform
distribution:

– Priority of tasks (wi): 1 (low), 2, . . . , 10 (high).
– Processing time of each task (pi): 30, 35, . . . , 120 min.
– Beginning of time windows of tasks (ei): 7, . . . , 19 h.
– Length of time windows of tasks: short (1.5, . . . , 3.5 h.), long (6.5, . . . , 9.0 h.),

and random (1.5, . . . , 9.0 h.).
– End of time windows of tasks (li): ei plus the length of the window.
– Beginning of time windows of technicians (ak): 7, 7.5, 8, . . . , 12 h.
– End of time windows of technicians (bk): ak + 9 h.
– Lunch break of each technician: duration (60 min.), beginning (ei = ak + 3

h.) and end of time window (li = bk − 3 h.).
– Skill level of technician k to perform task i (sik): 0 (not allowed) or 1 (can

execute).

Taillard’s random number generator and seeds were used to generate random
numbers for the discrete uniform distribution of the parameters described above
(see [32]).

A Multi-objective BRKGA for STRSP 481

4.2 Performance Measures

To evaluate the analyzed methods, three comparative measures were adopted:
Proportion of Pareto-optimal objective vectors found (only for small instances),
Hypervolume Indicator, and Epsilon Multiplicative Indicator (for all instances)
[33].

The indices obtained by each method were compared with the indices of
the reference set (the set of the best results among all methods compared) for
the medium and large cases and the indices of the Pareto-optimal set for small
instances. To find the Pareto-optimal set in cases 1 to 4, the MOIP model pre-
sented in Sect. 2 was solved by the ε-constraint method, using the ILOG CPLEX
software, version 12.6, with a limited processing time of forty hours. To obtain
as many Pareto-optimal sets as possible, complete enumeration was also applied.
In total, the Pareto-optimal sets of 29 instances were found. Table 2 gives some
details of the obtained results. The first column identifies the case. The follow-
ing columns show (for instances with short, long, and random time windows of
tasks) the number of instances in which the Pareto-optimal set was found, their
average cardinality (Avg. Card.), and the average CPU time to find the Pareto-
optimal set by CPLEX (the “-” character indicates that optimal solutions were
not found within the time limit and the Pareto-optimal set was obtained by
complete enumeration).

Table 2. Pareto-optimal set known for small instances

Case Short time windows Long time windows Random time windows

#instances Avg. card CPU (s) #instances Avg. card CPU (s) #instances Avg. card CPU (s)

1 3 5.3 3.3 3 19.0 – 3 7.7 2200.3

2 3 8.3 35.3 3 20.3 – 3 14.3 –

3 3 8.7 169.9 2 25.0 - 3 17.3 –

4 3 11.7 1105.9 – – – – – –

Average 8.5 21.4 13.1

Avg. Card. is the average cardinality Pareto-optimal set

4.3 BRKGA

Performance of different elite strategies. The four methods of solution clas-
sification and construction of the elite set were applied to the BRKGA, for cases
1 to 9, for 5 runs of each instance. Table 3 show the performance measures (the
numbers shown in bold in this table and in the following tables indicate the best
result of each row). For small instances, the performance of the classification
methods is similar. For medium and large instances, the performance measures
indicate that the classification of solutions and elite strategies affect results dif-
ferently and the average indices show that the best strategy is fitness sharing.
The method that includes only non-dominated solutions (F1) in the elite set,
adopted by Tangpattanakul et al. [25], had a below-average performance when
compared to all other strategies. This result supports the hypothesis that, by

482 R. de B. Damm and D. P. Ronconi

Table 3. Average (Avg.) and Standard Deviation (σ) of the performance of the
BRKGA for different elite strategies

(a) For small instances (cases 1 to 4) in relation to the Pareto-optimal set.

F1 Crowding distance Fitness sharing Cell-based density

Avg σ Avg σ Avg σ Avg σ

IP F (%) 89.2 15.0 95.0 8.2 94.7 8.3 91.4 16.2

IP H (%) 99.6 1.1 100.0 0.1 100.0 0.1 99.8 0.7

Iε 0.995 0.008 0.999 0.004 0.998 0.004 0.998 0.004

(b) For medium and large instances (cases 5 to 9) in relation to the Reference set.

F1 Crowding distance Fitness sharing Cell-based density

Avg σ Avg σ Avg σ Avg σ

IP H (%) 84.7 16.9 94.5 4.9 94.7 6.6 94.0 8.5

Iε 0.977 0.014 0.988 0.008 0.989 0.007 0.989 0.007

including some selected dominated solutions in the elite set, the performance of
the BRKGA is likely to improve. In the following sections, the BRKGA will use
the best classification method.

4.4 Comparison with Multi-objective GAs of the Literature

Genetic Algorithms are popular among the metaheuristics used in multi-
objective optimization. Since 1985, many multi-objective GAs have been pro-
posed. In this paper, the BRKGA is compared with the NSGA-II, which is
widely used and particularly well-suited for many combinatorial problems. The
same representation of the chromosomes was used to compare only the differ-
ences between the BRKGA and other GA. Therefore, the NSGA-II algorithm
was also customized with chromosomes of n+1 random numbers between 0 and
1, which are transformed into solutions of the STRSP using the decoder.

Table 4. Average (Avg.) and Standard Deviation (σ) of the performance measures of
the BRKGA and NSGA-II

(a) For small instances (cases 1 to 4) in relation to the Pareto-optimal set.

BRKGA NSGA-II

Avg σ Avg σ

IP F (%) 94.0 12.3 95.0 11.6

IP H (%) 99.8 1.2 99.8 1.0

Iε 0.998 0.005 0.999 0.005

(b) For medium and large instances (cases 5 to 10) in relation to the Reference set.

BRKGA NSGA-II

Avg σ Avg σ

IP H (%) 92.3 6.4 90.4 8.5

Iε 0.988 0.007 0.986 0.009

Table 4 presents the average performance indices of the BRKGA and NSGA-
II, with 20 runs of each instance. For small instances, these methods show similar

A Multi-objective BRKGA for STRSP 483

performance. Note that, if the average cardinality of the Pareto-optimal set is
14.3 (see Table 2), then the BRKGA can find 13.5 (94.0%) of these solutions,
on average. For medium and large instances, the BRKGA obtained an average
performance superior to the NSGA-II.

Statistical analysis of the performance indices confirmed these results, which
allows us to conclude that the BRKGA shows superior performance indeed. In
order to perform this analysis, the Kolmogorov-Smirnov test (with a significance
level α = 5%) was initially applied to accept or reject the hypothesis of normality
of the distribution of the Hypervolume and Epsilon indices (and Proportion of
Pareto-optimal Objective vectors Found for small instances). As a result, we used
the statistical technique Analysis of Variance (ANOVA) or the nonparametric
Wilcoxon rank-sum test, both methods with a significance level α = 5%.

For small instances, the hypothesis of normality was rejected for all per-
formance measures and, according to the Wilcoxon test, the null hypothesis is
accepted. Therefore, it was concluded that there is no difference between the
averages presented in Table 4a.

For medium and large instances, the hypothesis of normality for performance
measures was rejected too and, in the comparison of the BRKGA with other
methods, the null hypothesis for the Wilcoxon test was rejected for the two per-
formance indices and, therefore, it was concluded that, on average, the BRKGA
indices are superior.

Aiming to identify if these conclusions can be applied to all instances with
more than 45 tasks, a detailed analysis was carried out. The average values of
Hypervolume for cases 5 and 6 are similar for all methods, and in four larger
cases, the BRKGA has significantly higher average results.

5 Conclusions and Future Works

This paper addressed the multi-objective Service Technician Routing and
Scheduling Problem (STRSP). In addition to the usual characteristics of the
problem at hand, technicians’ lunch breaks were included in the schedule. As
far as we know, lunch breaks have never been considered in an integer program-
ming model of SRTSP with time windows. A multi-objective Biased Random-
Key Genetic Algorithm (BRKGA) was customized to tackle this problem and
a comparison with the latest developments in Non-dominated Sorting Genetic
Algorithm II (NSGA-II) was presented.

In a comparison made with the optimal Pareto for small problems (up to
39 tasks and 3 technicians), on average, the BRKGA found 94% of the Pareto-
optimal solutions, achieving 99.8% of the optimal Hypervolume and 0.998 of the
Epsilon Multiplicative Indicator.

In a comparison with the NSGA-II algorithm, for problems up to 64 tasks
and 5 technicians, the performance of the BRKGA was similar. For medium- and
large-sized instances (more than 80 tasks and 10 technicians), statistical tests
indicated that, on average, BRKGA outperformed NSGA-II.

484 R. de B. Damm and D. P. Ronconi

Suggestions for future work include developing new decoders and applying
the multi-objective BRKGA proposed in this paper to other combinatorial prob-
lems. Furthermore, considering the practical relevance of the considered problem,
different strategies for solving this bi-objective problem can be investigated, such
as the one proposed in [34].

References

1. Kovacs, A.A., Parragh, S.N., Doerner, K.F., Hartl, R.F.: Adaptive large neigh-
borhood search for service technician routing and scheduling problems. J. Sched.
15(5), 579–600 (2012)

2. Xu, J., Chiu, S.Y.: Effective heuristic procedures for a field technician scheduling
problem. J. Heurist. 7(5), 495–509 (2001)

3. Pillac, V., Guéret, C., Medaglia, A.L.: A parallel matheuristic for the technician
routing and scheduling problem. Optim. Lett. 7(7), 1525–1535 (2012). https://doi.
org/10.1007/s11590-012-0567-4

4. Tsang, E., Voudouris, C.: Fast local search and guided local search and their appli-
cation to British Telecom’s workforce scheduling problem. Oper. Res. Lett. 20(3),
119–127 (1997)

5. Cordeau, J.F., Laporte, G., Pasin, F., Ropke, S.: Scheduling technicians and tasks
in a telecommunications company. J. Sched. 13(4), 393–409 (2010)

6. Hashimoto, H., Boussier, S., Vasquez, M., Wilbaut, C.: A GRASP-based approach
for technicians and interventions scheduling for telecommunications. Ann. Oper.
Res. 183(1), 143–161 (2011)

7. Souyris, S., Cortés, C.E., Ordóñez, F., Weintraub, A.: A robust optimization app-
roach to dispatching technicians under stochastic service times. Optim. Lett. 7(7),
1549–1568 (2012). https://doi.org/10.1007/s11590-012-0557-6

8. Fikar, C., Juan, A.A., Martinez, E., Hirsch, P.: A discrete-event driven metaheuris-
tic for dynamic home service routing with synchronised trip sharing. Eur. J. Ind.
Eng. 10(3), 323–340 (2016)

9. Tang, H., Miller-Hooks, E., Tomastik, R.: Scheduling technicians for planned main-
tenance of geographically distributed equipment. Transp. Res. Part E Logist.
Transp. Rev. 43(5), 591–609 (2007)

10. Overholts, D.L., II., Bell, J.E., Arostegui, M.A.: A location analysis approach
for military maintenance scheduling with geographically dispersed service areas.
Omega 37(4), 838–852 (2009)

11. Cortés, C.E., Gendreau, M., Rousseau, L.M., Souyris, S., Weintraub, A.: Branch-
and-price and constraint programming for solving a real-life technician dispatching
problem. Eur. J. Oper. Res. 238(1), 300–312 (2014)

12. Damm, R.B., Resende, M.G., Ronconi, D.P.: A biased random key genetic algo-
rithm for the field technician scheduling problem. Comput. Oper. Res. 75, 49–63
(2016)

13. Dohn, A., Kolind, E., Clausen, J.: The manpower allocation problem with time win-
dows and job-teaming constraints: A branch-and-price approach. Comput. Oper.
Res. 36(4), 1145–1157 (2009)

14. Chen, X., Thomas, B.W., Hewitt, M.: The technician routing problem with
experience-based service times. Omega 61, 49–61 (2016)

15. Xu, Z., Ming, X.G., Zheng, M., Li, M., He, L., Song, W.: Cross-trained workers
scheduling for field service using improved NSGA-II. Int. J. Prod. Res. 53(4),
1255–1272 (2015)

https://doi.org/10.1007/s11590-012-0567-4
https://doi.org/10.1007/s11590-012-0567-4
https://doi.org/10.1007/s11590-012-0557-6

A Multi-objective BRKGA for STRSP 485

16. Brandão, J.S., Noronha, T.F., Resende, M.G., Ribeiro, C.C.: A biased random-key
genetic algorithm for scheduling heterogeneous multi-round systems. Int. Trans.
Oper. Res. 24(5), 1061–1077 (2017)

17. de Oliveira, R.M., Chaves, A.A., Lorena, L.A.N.: A comparison of two hybrid
methods for constrained clustering problems. Appl. Soft Comput. 54, 256–266
(2017)

18. Chaves, A.A., Goncalves, J.F., Lorena, L.A.N.: Adaptive biased random-key
genetic algorithm with local search for the capacitated centered clustering problem.
Comput. Ind. Eng. 124, 331–346 (2018)

19. Mauri, G.R., Biajoli, F.L., Rabello, R.L., Chaves, A.A., Ribeiro, G.M., Lorena,
L.A.N.: Hybrid metaheuristics to solve a multiproduct two-stage capacitated facil-
ity location problem. Int. Trans. Oper. Res. (2021)

20. Chaves, A.A., Lorena, L.A.N., Senne, E.L.F., Resende, M.G.: Hybrid method with
CS and BRKGA applied to the minimization of tool switches problem. Comput.
Oper. Res. 67, 174–183 (2016)

21. Noronha, T.F., Resende, M.G., Ribeiro, C.C.: A biased random-key genetic algo-
rithm for routing and wavelength assignment. J. Glob. Optim. 50(3), 503–518
(2011)

22. Morán-Mirabal, L.F., González-Velarde, J.L., Resende, M.G.: Randomized heuris-
tics for the family traveling salesperson problem. Int. Trans. Oper. Res. 21(1),
41–57 (2014)

23. Stefanello, F., Buriol, L.S., Hirsch, M.J., Pardalos, P.M., Querido, T., Resende,
M.G.C., Ritt, M.: On the minimization of traffic congestion in road networks with
tolls. Ann. Oper. Res. 249(1–2), 119–139 (2015). https://doi.org/10.1007/s10479-
015-1800-1

24. Tangpattanakul, P., Jozefowiez, N., Lopez, P.: Biased random key genetic algo-
rithm for multi-user earth observation scheduling. In: Fidanova, S. (ed.) Recent
Advances in Computational Optimization. SCI, vol. 580, pp. 143–160. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-12631-9 9

25. Tangpattanakul, P., Jozefowiez, N., Lopez, P.: A multi-objective local search
heuristic for scheduling Earth observations taken by an agile satellite. Eur. J.
Oper. Res. 245(2), 542–554 (2015)

26. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994)

27. Gonçalves, J.F., Resende, M.G., Toso, R.F.: An experimental comparison of biased
and unbiased random-key genetic algorithms. Pesquisa Operacional 34(2), 143–164
(2014)

28. Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combi-
natorial optimization. J. Heurist. 17(5), 487–525 (2011)

29. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197
(2002)

30. Goldberg, D. E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In Genetic Algorithms and their Applications: Proceed-
ings of the Second International Conference on Genetic Algorithms, pp. 41–49.
Lawrence Erlbaum, Hillsdale (1987)

31. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

32. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

https://doi.org/10.1007/s10479-015-1800-1
https://doi.org/10.1007/s10479-015-1800-1
https://doi.org/10.1007/978-3-319-12631-9_9

486 R. de B. Damm and D. P. Ronconi

33. Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approxima-
tions. In: Branke, J., Deb, K., Miettinen, K., S�lowiński, R. (eds.) Multiobjective
Optimization. LNCS, vol. 5252, pp. 373–404. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88908-3 14

34. Matl, P., Hartl, R.F., Vidal, T.: Leveraging single-objective heuristics to solve bi-
objective problems: heuristic box splitting and its application to vehicle routing.
Networks 73, 382–400 (2019)

https://doi.org/10.1007/978-3-540-88908-3_14
https://doi.org/10.1007/978-3-540-88908-3_14

Optimization of Green Pickup
and Delivery Operations in Multi-depot

Distribution Problems

Alejandro Fernández Gil1(B), Eduardo Lalla-Ruiz2, Martijn Mes2,
and Carlos Castro1

1 Departamento de Informática, Universidad Técnica Federico Santa Maŕıa,
Valparáıso, Chile

affernan@jp.inf.utfsm.cl, carlos.castro@inf.utfsm.cl
2 Department of Industrial Engineering and Business Information Systems,

University of Twente, Enschede, The Netherlands
{e.a.lalla,m.r.k.mes}@utwente.nl

Abstract. In this work, the Multi-Depot Green VRP with Pickups and
Deliveries (MDGVRP-PD) is studied. It is a routing optimization prob-
lem in which the objective is to construct a set of vehicle routes consider-
ing multiple depots and one-to-one pickup and delivery operations that
minimize emissions through fuel consumption, which depends on weight
and travel distance. In one-to-one problems, goods must be transported
between a single origin and its single associated destination. Practical
considerations imply addressing the pickup and delivery of customers
from multiple depots, where a logistics service company can efficiently
combine its resources, thus reducing environmental pollution. To tackle
this problem, we develop a mathematical programming formulation and
matheuristic approach based on the POPMUSIC (Partial Optimization
Metaheuristic under Special Intensification Conditions) framework. The
results show that if the weight carried on the routes as part of the fitness
measure is considered, our matheuristic approach provide an average
percentage improvement in emissions of 30.79%, compared to a fitness
measure that only takes into account the distances of the routes.

Keywords: Multi-depot · Green VRP · PDVRP · Matheuristic

1 Introduction

Road freight transportation is crucial for societies’ economic and industrial devel-
opment [13]. However, the distribution of goods negatively affects local air qual-
ity, generates noise and vibration, causes accidents, and contributes to global
warming [25,26]. Thus, reducing emissions in the road transport sector has
been a central topic in international agreements on climate change since green-
house gases (GHGs) are considerably associated with environmental pollution.
Moreover, the main source of energy used by the global transport sector has
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 487–501, 2021.
https://doi.org/10.1007/978-3-030-87672-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_32&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_32

488 A. F. Gil et al.

been petroleum products (e.g., gasoline, diesel, etc.), whose demand is expected
to increase by 30% and 82% between 2010 and 2050. The CO2 emissions are
expected to increase from 16% to 79% [6]. As a result, logistics and freight
transportation companies are investigating sustainability concepts around sev-
eral dimensions such as financial, environmental, and social [1].

Several researchers mainly focused on complex planning and routing prob-
lems that address the challenges mentioned above for road freight transporta-
tion, which is one of the main sources of CO2 emissions [37]. More specifically,
in the supply chain design scope, the green distribution network planning leads
to the Green Vehicle Routing Problems (GVRPs), which is a variant of the
well-known operational problem in transportation, namely the Vehicle Rout-
ing Problem (VRP, [10]). The GVRP considers environmental issues in routing
problems [14,24,27]. The routing process involves designing routes for a fleet
of vehicles and customers, subject to given constraints. The customers must be
served according to particular features (e.g., delivery time, priority, low delivery
costs, etc.). In GVRPs, besides optimizing cost or profit, environmental costs
are also explicitly considered (e.g., CO2 emission, fuel consumption, energy min-
imization, etc.). The emissions of CO2 are directly proportional to the amount
of fuel consumed by a vehicle and this amount depends on several factors such as
the environment, traffic congestion, roadway gradient, curb-weight, and payload
[12].

One way to reduce the carbon footprint of vehicles is using better operational
strategies and establishing sustainable supply chains in the logistics industry.
Therefore, it is essential to achieve efficient vehicle routing plans that properly
considers sustainability factors. In the related literature, several variants of the
VRP have been considered in the field of green logistics. The cumulative vehicle
routing problem (CumVRP) introduced by [18,19] is a widely studied optimiza-
tion problem that involves a weighted load function (load multiplied by distance).
Another variant is the pickup and delivery vehicle routing problem (PDVRP)
[33], which involves satisfying a set of pickup and delivery requests between loca-
tion pairs. According to the type of demand and route structure, the PDVRP can
be done in the following forms [5]: many-to-many (multiple products are trans-
ported between multiple origins and destinations), one-to-many-to-one (multiple
products are transported from one depot to many clients and vice-versa), and
one-to-one (each product is transported from a single origin to a single desti-
nation). An interesting aspect of the PDVRP is the influence of the load on
fuel consumption when the delivery trip is made to a certain location. In addi-
tion, the multi-depot vehicle routing problem (MDVRP) has received increasing
attention [28], because is it essential for companies with a wide range of business
fields and having multiple depots, because the solution of the MDVRP could
support these companies decrease their transport costs and improve their eco-
nomic fulfillment. In the MDVRP, vehicles serve customers from several depots
and return to the same depot. There are a few studies that consider MDVRPs
combined with environmental factors (see [15,17,23,37]). However, to the best
of our knowledge, the multi-depot green vehicle routing problem with pickups
and deliveries (MDGVRP-PD) has not yet been investigated in the literature.

Optimization of Green Pickup and Delivery Operations 489

In this work, we study the MDGVRP-PD that consists of a one-to-one vari-
ant of the PDVRP in a multi-depot context considering the load on each arc,
with the objective to minimize fuel consumption. For this one-to-one variant, we
only work with the restriction that goods must first be picked up before they
can be delivered, but these processes do not have to be carried out consecu-
tively. To provide feasible solutions for the MDGVRP-PD, this study proposes
a POPMUSIC matheuristic approach [21]. POPMUSIC is capable of addressing
large scenarios by decomposing them into subsets of parts. Subsets of parts are
bundled and used to create sub-problems, which are then solved by means of a
mathematical programming approach.

The remainder of the paper is organized as follows. Section 2 reviews related
works. Section 3 describes the mathematical formulation of the MDGVRP-PD.
The POPMUSIC approach is presented in Sect. 4. Computational experiments
and results are given in Sect. 5, and finally, we present the conclusions and future
work in Sect. 6.

2 Related Works

Freight transportation is a significant component in logistic distribution activ-
ities and inevitably the largest consumer of fuel compared to other forms of
transportation [6]. Therefore, the importance of achieving optimal routing plans
that include sustainability factors is increasing as societies need transportation
services that are economical, societal, but also environmentally sustainable. Fur-
thermore, the green routing problems are characterized by achieving a sustain-
able supply chain network design and have attracted the scientific community’s
interest, especially in Operations Research and Artificial Intelligence fields (e.g.,
[6,14,24,27]).

Several authors have proposed diverse optimization models and solution
approaches for green vehicle routing problems (GVRPs), considering the effects
of vehicle’s load on fuel consumption to reduce environmental pollution. The
studies [18] and [19] present the energy minimizing vehicle routing problem and
cumulative vehicle routing problem (CumVRP), which are the first vehicle rout-
ing studies proposing a cost function as a sum of the product between vehicles’
load and distance for each arc in the vehicles’ routes. The authors of [8] present
a two-phase constructive heuristic approach to solve the CumVRP with lim-
ited duration restrictions and minimizing the fuel consumption. In this work, we
use the fuel consumption parameters of vehicle categories proposed in [20]. In
[7], the authors present the pollution routing problem, which seeks to minimize
both operational and environmental costs by taking into account customers’
time-windows constraints. The total travel distance, the amount of load carried
per distance unit, the vehicle speeds, and the duration of the routes are the main
costs.

While the GVRPs are suitable for solving single depot problems, supply chain
networks primarily consist of multi-depots and multiple delivery points, which
require more practical approaches such as the multi-depot vehicle routing prob-
lems (MDVRP) [9]. Furthermore, there exists a requirement for transportation

490 A. F. Gil et al.

and logistics businesses to minimize their environmental footprints. In compar-
ison to the MDVRP, the MDGVRP considers more factors that might affect
emissions (e.g., load, speed, traffic congestion, etc.), which, at the same time,
increases the complexity of the problem and the difficulty of solving it. In [23],
the authors study the MDGVRP maximizing the income (multiplication between
the total demand for a product and the price) and minimizing costs, time, and
emissions using an improved ant colony optimization algorithm. The authors
of [37] propose a bi-objective model for the MDGVRP to minimize total car-
bon emissions and operational cost by considering the sharing of transportation
resources within the same depot and among multiple depots. Similarly, to solve
the MDGVRP efficiently, [17] presents a hybrid approach based on ant colony
optimization and variable neighborhood search approaches to minimize cost and
emission.

MDGVRP variants are considered in several studies, e.g., [15,30,38], but they
do not take into account the influence of the vehicle’s weight during the course
of its route on fuel consumption. In this work, we estimate the fuel consumption
using the approach defined by [32], where the weight of the vehicle is considered
in the objective function. According to [20] and [34], the effect of vehicle payload
on fuel consumption can be characterized by a linear function dependent on the
payload, the consumption per unit of distance for the empty vehicle, and the
consumption of moving the unit weight of goods per unit distance.

Besides the aforementioned works, some authors investigate PDVRPs, in
which a set of pickup and delivery requests between customer couples are sat-
isfied. In [5], the authors classify three different forms of pickup and delivery:
one-to-one, one-to-many-to-one, and many-to-many. The PDVRP is classified as
a NP-hard problem due to complexity and the excessive consumption of com-
putational time in its resolution. There are a few PDVRP studies where the
emissions are taking into account [4,33,36]. However, as far as we know, the
green PDVRP variant has not yet been investigated in a multi-depot scenario.
In this study, we present a green variant of the multi-depot one-to-one pickup
and delivery problem, where the objective is to design a set of optimal routes
starting and ending at different depots to satisfy pickup and delivery requests
under minimal emissions.

Other than in previous works, we develop a matheuristic that relies on
the Partial Optimization Metaheuristic under Special Intensification Conditions
(POPMUSIC, [35]) matheuristic proposed in [21] to solve the MDGVRP-PD.
Matheuristics have been used successfully in routing problems [3]. In this con-
text, POPMUSIC has been successfully utilized in various studies associated
with the VRP (see [2,22,29]) for address large instances by decomposing them
into a set of parts.

3 Problem Definition

The Multi-Depot Green VRP with Pickups and Deliveries (MDGVRP-PD) can
be defined as follows. Let G = (V,A) be a complete directed graph, where

Optimization of Green Pickup and Delivery Operations 491

V = {N ∪ M} is the node set that contains all customer and depot nodes,
and A = {(i, j) : i, j ∈ V, i �= j} is the arc set. Node set N = {P ∪ D} with
P = {1, . . . , n} represents the set of pick-up nodes and D = {n + 1, . . . , 2n} the
sets of delivery nodes, whereas node set M = {1, 2, . . . ,m} represents the set of
m uncapacitated depots. Furthermore, we have a homogeneous set of vehicles
K = {1, 2, . . . , k}, each with capacity Q. The following parameters and decision
variables are defined in the problem:

Parameters:

– dij , the travel distance between each arc (i, j) ∈ A,
– qi, the demand of each node,
– Q, the maximum load weight for each vehicle,
– tl, the time limit duration of the each subtour,
– α, the cost of moving an empty vehicle per unit of distance,
– β, the cost of moving the unit weight of goods per unit distance, respectively.

Decision variables:

– xk
ij , 1 if a vehicle k travels from node i ∈ V to node j ∈ V , and 0 otherwise,

– wk
ij , the total load transported from node i to node j by vehicle k for i, j ∈ V .

We estimate the fuel consumption following the approach of [32]. Also, we
consider the total vehicles’ weight, represented by a carried load wk

ij on arc
(i, j), and it is a measure that helps reducing fuel consumption and environmen-
tal pollution. The objective function (1) of MDGVRP-PD minimizes the fuel
consumption based on traveled distance dij , the load wk

ij carried by the vehicle
k on each arc i, j ∈ V , and fuel consumption parameters (see [20]). The param-
eters α and β represent the cost of moving an empty vehicle per unit of distance
and the cost of moving the unit weight of goods per unit distance, respectively.

Objective function:

Minimize
|V |∑

i=0

|V |∑

j=0

|K|∑

k=0

dij(αxk
ij + βwk

ij) (1)

In the MDGVRP-PD, the following constraints are considered:

(a) Each node has to be served exactly by one vehicle.
(b) Each vehicle visits a delivery location once it has visited the corresponding

pickup location.
(c) Each vehicle starts and finishes at a depot.
(d) For each tour, the flow on the arcs accumulates as much as preceding node’s

supply in the case of pickup or diminish as much as preceding node’s demand
in the case of delivery.

(e) For each pickup or delivery node, the required demand must be satisfied.
(f) For each node, the in-degree must the equal to the out-degree.
(g) Total demand must not exceed vehicle capacity.
(h) For each vehicle, the maximum tour duration is not exceeded.

492 A. F. Gil et al.

4 Proposed Algorithm

The POPMUSIC approach is a decomposition-based method, originally pro-
posed by [35] as a metaheuristic and revised as a matheuristic in [21]. This app-
roach divides a problem into smaller subproblems. Some or all of these subprob-
lems are solved through metaheuristics or mathematical programming methods
to optimality or suboptimality (i.e., matheuristic version).

To be precise, POPMUSIC works on an initial generated solution of the
problem S, which then will be decomposed into t parts {s1, . . . , st}. Each part
corresponds to a subtour of S. Next, some of these parts will be joined to build a
subproblem SP using a proximity measure between parts. Subproblems are built
by first selecting one of the t parts (called seed-part) and taking into account
the r nearest parts (SP = {sseed, s1, s2, . . . , sr}) according to the lexicographic
strategy. The parameter r delimits the size of the subproblems. A mathematical
programming method is used to optimize SP , and if there is an improvement
over SP , then this improvement contributes to the total solution S.

Algorithm 1 shows our matheuristic approach for solving the MDGVRP-PD.
Initially, a feasible starting solution is constructed by a greedy strategy consisting
of a set of parts or subtours (line 1). After the initial solution has been generated,
the solution S is divided into t parts creating the set H = {s1, . . . , st} (line 2). A
set U is created to control the set of parts that have not been used as seed-part
for building a subproblem (lines 3 and 4). Then, a seed-part is selected randomly
(line 5). A subproblem SP is constructed by considering its r closest parts and
is locally optimized by an exact method (lines 6 and 7). If the solution has been
improved, then the solution S is updated (lines 8-10). Once U contains all the
parts of the complete solution (line 4), the process ends as all sub-problems have
been explored without improved results.

Algorithm 1: POPMUSIC pseudocode
1 Generate an initial solution S;
2 Decompose S into t parts, H = {s1, . . . , st};
3 Set U = ∅;
4 while (U �= {s1, . . . , st}) do
5 Select a seed-part, sseed ∈ H, at random and sseed /∈ U ;
6 Build a sub-problem SP composed of the r parts of S which are the closest

to sseed;
7 Optimize SP by using a mathematical programming approach;
8 if (SP improved) then
9 Update solution S with SP ;

10 U = ∅;

11 else
12 Insert sseed in U ;
13 end

14 end
15 return S;

Optimization of Green Pickup and Delivery Operations 493

Solution Representation. To represent a solution, we use a solution structure
based on a two-dimensional vector of parts si, where each item represents a set of
routes belonging to the same depot (see Fig. 1). Furthermore, each route must
comply with the pickup and delivery constraints. That is, the delivery nodes
must be visited after visiting the corresponding pickup nodes.

We consider three types of nodes in our problem. Each route is represented
by a depot node (o), pickup node (p), and delivery node (d) (see Fig. 1). The
sequencing of visiting is related to the one-to-one variant of the PDVRP; for
example, the visiting order can be done by firstly visiting a pickup node then
going directly to deliver the goods to their corresponding delivery node and then
performing another pickup, or first all pickups and then all deliveries; any other
form of mixed pickup and deliveries satisfying the sequencing restrictions.

s1
s2

st

o1, p1, d11 , o1, p2, d12, p5, d15 . . . o1, pi, d P i, . . .
o2, p7, p11, d17, d21 , o2, p6, d16 . . . o2, pi, d P i, . . .

om, p13, d23 , om, p16, d26 . . . om, p P , dD , . . .

Fig. 1. Solution structure composed of parts.

Initial Solution Strategy. For the operation of POPMUSIC, a key point is
the generation of an initial solution. To do this, we have developed and tested a
greedy construction method that considers the haversine distance of each node
to each depot.

Algorithm 2 shows the pseudocode of the initial greedy solution. Initially,
for each node, the closest depot is determined (lines 1–3). Next, a pickup node
and its corresponding delivery node, as well as its closest depot, are obtained
(lines 7–11). With this, a check is performed whether the trip’s time duration
and the vehicle’s capacity restriction are satisfied (lines 12 and 13). If the nodes
can be assigned to the vehicle, then a tour is built until it is part of the prob-
lem’s solution (lines 14 and 15); otherwise, we proceed with another vehicle and
construct a new tour (lines 17–20). Finally, the assignment of the nodes to the
tour is performed by fulfilling the sequencing restrictions of pickup and delivery
nodes.

Subproblem Generation Strategy. The lexicographic strategy presented in
[22] is used to group the parts of a subproblem. This strategy consists of ran-
domly selecting a seed-part sseed and r parts of increasing index concerning
the index θ of the seed-part. For example, if the initial solution is divided into
4 parts, and we consider r = 2, then we can have the following subproblems:
SP = {s1, s2, s3}, SP = {s2, s3, s4}, and SP = {s3, s4, s1}. The previous strat-
egy can be grouped as a disjoint set and can be generalized by ·⋃θ+r

p=θ.

494 A. F. Gil et al.

Algorithm 2: Greedy algorithm pseudocode
1 for i ∈ N do
2 for j ∈ M do
3 minD[i] = argmin(dij);
4 end

5 end
6 currentvehicle = 1;
7 for (i ∈ M) do
8 for (j ∈ N

2
) do

9 p node = N [j];
10 d node = N [|P | + j];
11 if (minD[j]==i) then
12 time = calculate travel time;
13 if (time ≤ tl and p node.qj ≤ Q) then
14 Q = Q − p node.qj ;
15 p node, d node addeed to route S[currentvehicle]

16 else
17 currentvehicle = currentvehicle + 1;
18 Q = max payload;
19 time = 0;
20 i = i − 1;

21 end

22 end

23 end

24 end

5 Computational Results

This section is devoted to analyzing the performance of the POPMUSIC app-
roach for solving the MDGVRP-PD variant. All implementations were done in
C++11 using Visual Studio v15.9.2 IDE and IBM ILOG CPLEX v12.9.0 API
on Windows 10 OS. The tests were performed on an Intel(R) Xeon(R) E3-1220L
(Sandy Bridge) CPU 2.20 GHz with 16GB RAM memory. The matheuristic app-
roach was tested for 10 executions for each instance. The POPMUSIC approach
was run in single-thread mode.

5.1 Instances

To test our matheuristic approach for the MDGVRP-PD, we modified subsets
of the n100 and n200 groups of instances proposed in [31], where the authors
consider real urban locations, and where a set of routes can be performed in a
single labor day (eight hours). An example of these modified instances can be
seen in Fig. 2.

The modified instances have n+m locations. There are n customer locations
and m depots. The n locations are paired to form a total of n requests (pickup

Optimization of Green Pickup and Delivery Operations 495

and delivery couples). The n locations for pickup (P) and other n locations for
delivery (D) are paired, where |P | = |D| = n, in a one-to-one way. The instance
set consists of three different groups, ranging from 10 to 200 customers and are
classified in three different complexity levels: small-scale with the first 10 or 50
customers from the original n100 group from [31]; medium-scale with the first
70 or 100 customers from {n100;n200}, and the last group for the large-scale
with the first 150 or 200 customers. For all instances considered in this section,
the time limit of the tour duration is 240 min, and we add four depot locations
from the remaining locations that were not used in the generated instances. The
customers’ demands and the capacity of the vehicles are considered in kilogram.
Also, the vehicle parameters are based on light-duty type with a curb-weight of
3500 kg and a maximum payload of 4000 kg, known as the gross vehicle weight
rating.

5.2 Parameter Setting

A parameter tuning process was performed by executing them on all problem
set instances. The only tuned parameter for POPMUSIC is r, with r ∈ {1, 2}.
We have run a Friedman-k Related Samples test [16] to show the importance of
our results. The test indicates no significant differences for both samples, with
mean rank r = 1 (1.44) and r = 2 (1.56), showing both parameters have a small
difference. Due to this, an analysis of the results will be carried out, considering
the case of r = 1 (POPMUSICr1) and r = 2 (POPMUSICr2).

5.3 Results

This section compares the performance of the POPMUSICr1 and POPMUSICr2.
In doing so, we assess the performance of these variants on all problem instances
in terms of objective function values of all iterations performed. Table 1 shows
the results provided by the POPMUSICr1 and POPMUSICr2.

In this table, the first column reports the instance studied, and columns
Zr1

min, Zr2
min and Zr1

max, Zr2
max provide the minimum and maximum objective

function values found, respectively. Columns Zr1
start and Zr2

start show the objective
values of the initial solution provided by the greedy algorithm. Columns λr1

and λr2 represent the improvement between the best objective value and the
initial solution value for each instance. The values of λr1 and λr2 are calculated
using 100×(Zr

min-Zr
start)/Zr

start, with r = r1 ∨ r2. Columns t(s)r1 and t(s)r2

represent the computational times. The last column shows the relative difference
Gap(%) between POPMUSICr1 and POPMUSICr2. It is calculated according
to 100 × (Zr1

min − Zr2
min)/Zr2

min, where POPMUSICr1 represents the best values
for fuel consumption provided by our matheuristic approach. A negative value
in columns λr1, λr2, and Gap % shows improvements.

The results show that POPMUSICr1 generally obtains better objective func-
tion values (Zr1

min) than POPMUSICr2 (Zr2
min), having 9 best values obtained

from a total of 14 instances with different complexities. The difference between
the minimum and maximum values (Zr1

max, Zr2
max) obtained shows that the

496 A. F. Gil et al.

(a) with 10 locations. (b) with 50 locations.

Fig. 2. Example of two modified instances. Blue and red circles are pickups and delivery
locations, respectively. The black circles are the depots. (Color figure online)

Table 1. Computational results for the POPMUSIC variants with r = 1 and r = 2 on
modified instances. The best values are given in bold face.

Instance POPMUSICr1 POPMUSICr2

Zr1
min Zr1

max Zr1
start λr1(%) t(s)r1 Zr2

min Zr2
max Zr2

start λr2(%) t(s)r2 Gap (%)

n10–1 6.44 7.00 11.53 –44.15 127.60 11.53 11.53 11.53 0.00 213.84 –44.15

n10–2 6.54 6.70 7.83 –16.48 276.16 4.89 7.07 7.83 –37.55 204.65 33.74

n30–1 42.12 56.37 51.48 –18.18 212.16 45.70 61.51 51.48 –11.23 208.8 –7.83

n30–2 41.66 50.26 53.08 –21.51 201.08 41.92 53.08 53.08 –21.02 206.25 –0.62

n50–1 151.19 175.05 166.58 –9.24 202.41 152.48 178.05 166.58 –8.46 207.32 –0.85

n50–2 120.66 133.51 133.42 –9.56 230.14 114.45 139.15 133.42 –14.22 211.56 5.43

n70–1 99.11 137.89 121.55 –18.46 204.68 105.05 132.46 121.55 –13.57 206.21 –5.65

n70–2 138.73 189.44 159.74 –13.15 249.90 137.8 161.18 159.74 –13.72 217.80 0.65

n100–1 108.17 111.82 110.71 –2.29 206.64 103.42 113.19 110.71 –6.58 289.79 4.59

n100–2 112.87 120.27 112.87 0.00 417.72 112.87 112.87 112.87 0.00 339.57 0.00

n150–1 214.44 234.04 219.40 –2.26 205.02 214.07 238.38 219.40 –2.43 205.53 0.17

n150–2 288.96 301.30 299.82 –3.62 232.79 297.19 304.79 299.82 –0.88 201.81 –2.77

n200–1 271.66 324.21 287.94 –5.65 201.93 272.03 289.09 287.94 –5.53 205.36 –0.14

n200–2 418.66 429.19 432.08 –3.11 202.58 422.33 439.84 432.16 –2.27 202.46 –0.87

Avg. 144.37 162.65 154.86 –11.98 226.49 145.41 160.16 154.87 –9.82 222.93 –1.31

matheuristic generally maintains a stable behavior. The initial solution values
(Zr1

start, Zr2
start) concerning the best values obtained (Zr1

min, Zr2
min) are always

improved during the POPMUSIC process (see λr1 and λr2). Only for instance
n10–2, the gap value of 33.74% is significant. Furthermore, these results also
indicate, as discussed in [21], the suitability of the matheuristic POPMUSIC for
using and exploiting the exact optimization method for subproblems that allow
solving them to optimality within reasonable computational times.

Optimization of Green Pickup and Delivery Operations 497

5.4 Effects of Loading on Fuel Consumption

To analyze the effect of the load on fuel consumption and emissions and bearing
in mind the previous results, we made a trade-off between the objective function
(see Eq. (1)) and one of the most used objective functions in the literature for
VRPs, i.e., the minimization of travel distances.

First, the set of values Zr1
min and Zr2

min for all instances with the estimation
of the amount of fuel consumption using the objective function (1), in which the
load carried over an arc wij was showed in Table 1. Second, let Z

′r1
min and Z

′r2
min

denote the set of values for all instances with the estimation of the amount of
fuel consumption considering a modified objective function considering only the
distance dij traveled by the vehicle as

∑V
i=0

∑V
j=0

∑K
k=0 dijx

k
ij and keeping the

flow restrictions.
Table 2 shows a comparison of the experiments between fuel consumption and

emission values. Columns Zr1
min and Zr2

min are the same as used for Table 1. The
amount of fuel consumption without considering the weight component in the
objective function is represented in columns Z

′r1
min and Z

′r2
min. Also, we calculate

the emissions of CO2 for all fuel consumption values using the emission factor
defined as 2.72 kg/L of fuel consumption [11], see columns COr1

2 , CO
′r1
2 , COr2

2 ,
and CO

′r2
2 . Furthermore, columns Imp.r1 and Imp.r2 show the environmental

percentage of improvement between (COr1
2 and CO

′r1
2), and (COr2

2 and CO
′r2
2)

in terms of emissions. The average percentage of improvement for POPMUSICr1

and POPMUSICr2 is 30.79% and 25.50%, respectively.

Table 2. Computational results of the POPMUSIC approaches for the MDGVRP-PD
considering fuel consumption with and without the weight component in the objective
function. The environmental improvement average % values are given in boldface.

Instance POPMUSICr1 POPMUSICr2

Zr1
min COr1

2 Z
′r1
min CO

′r1
2 Imp.r1 Zr2

min COr2
2 Z

′r2
min CO

′r2
2 Imp.r2

n10–1 6.44 17.52 20.73 56.39 –68.93 11.53 31.36 20.73 56.39 –44.38

n10–2 6.54 17.79 31.80 86.50 –79.43 4.89 19.31 19.31 52.52 –63.24

n30–1 42.12 114.57 91.22 248.12 –53.83 45.70 124.30 91.22 248.12 –49.90

n30–2 41.66 113.32 77.76 211.51 –46.42 41.92 114.02 77.76 211.51 –46.09

n50–1 151.19 411.24 170.58 463.98 –11.37 152.48 414.75 170.58 463.98 –10.61

n50–2 120.66 328.20 180.65 491.37 –33.21 114.45 311.30 136.79 372.07 –16.33

n70–1 99.11 269.58 143.81 391.16 –31.08 105.05 285.74 143.81 391.16 –26.95

n70–2 138.73 377.35 197.30 536.66 –29.69 137.80 374.82 213.29 580.15 –35.39

n100–1 108.17 294.22 150.26 408.71 –28.01 103.42 281.30 122.17 332.30 –15.35

n100–2 112.87 307.01 145.95 396.98 –22.67 112.87 307.01 145.95 396.98 –22.67

n150–1 214.44 583.28 226.13 615.07 –5.17 214.07 582.27 225.66 613.80 –5.14

n150–2 288.96 785.97 293.39 798.02 –1.51 297.19 808.36 293.39 798.02 1.30

n200–1 271.66 738.92 319.23 868.31 –14.90 272.03 739.92 319.23 868.31 –14.79

n200–2 418.66 1138.76 439.86 1196.42 –4.82 422.33 1148.74 439.86 1196.42 –3.99

Avg. 144.37 392.69 177.76 483.51 –30.79 145.41 395.94 172.84 470.12 –25.25

498 A. F. Gil et al.

n1
0-1

n1
0-2

n3
0-1

n3
0-2

n5
0-1

n5
0-2

n7
0-1

n7
0-2

n1
00
-1

n1
00
-2

n1
50
-1

n1
50
-2

n2
00
-1

n2
00
-2

0

100

200

300

400

6.44 6.54

42.12 41.66

151.19

120.66
99.11

138.73

108.17112.87

214.44

288.96
271.66

418.66

20.73
31.8

91.22
77.76

170.58180.65

143.81

197.3

150.26145.95

226.13

293.39

319.23

439.86

Instances

F
u
e
l
c
o
n
su

m
p
ti
o
n

v
a
lu
e
s

Zr1
min Z r1

min

Zr2
min Z r2

min

Fig. 3. Comparison between fuel consumption values for Zr1
min, Z

′r1
min, and Zr2

min, Z
′r2
min

for all instances.

Figure 3 shows the values of Zr1
min, Z

′r1
min, Zr2

min, and Z
′r2
min, for all instances.

The blue and red line represents the values for Zr1
min and Z

′r1
min, which show a

decrease in the fuel consumption values concerning Z
′r1
min. The black and gray

line represents the values for Zr2
min and Z

′r2
min, which shows similar behavior as

the previous one. This illustration remarks the significance of considering the
fuel consumption depending on weight and travel distance as it is proportional
to the reduction in emissions.

6 Conclusion and Future Research

This work addresses the Multi-Depot Green Vehicle Routing Problem with Pick-
ups and Deliveries (MDGVRP-PD). To solve this problem, we have designed
a POPMUSIC matheuristic approach to take advantage of the efficiency of
exact solutions to solve simple subproblems. We designed a set of instances for
(MDGVRP-PD) based on real urban locations to test our approach. A parame-
ters setting was conducted for POPMUSIC, showing minor differences in terms
of the fitness function.

The results show that POPMUSIC can provide feasible solutions for all
instances in reasonable computational times. POPMUSIC can use and exploit
the exact optimization method for subproblems that allow solving them to opti-
mality, showing that the decomposition methods can offer adequate and robust
solutions for routing problems with several depots.

Furthermore, an analysis of the effect of the weight on fuel consumption which
is proportional to the emissions showed a trade-off when it is considered that

Optimization of Green Pickup and Delivery Operations 499

the weight carried by the routes with the fitness measure can produce significant
reductions in the emissions as compared to the case when only distances are
taken into account. As a result, our approach can provide an average percentage
of improvement in the emission of almost 30.79%.

Finally, as future work, we want to investigate the heterogeneous fleet and
speed variation in multi-depot green routing problems. Another issue concerns
the consideration of clustering algorithms to improve the initial solution proce-
dures of POPMUSIC.

Acknowledgments. This work has been partially supported by ANID-PFCHA/
Doctorado Nacional/2020-21200871, and in part by Proyectos de Ĺınea de Investi-
gación Regular (PI LIR 2020 67, UTFSM) and Programa de Incentivo a la Iniciación
Cient́ıfica (PIIC, UTFSM).

References

1. Abdullahi, H., Reyes-Rubiano, L., Ouelhadj, D., Faulin, J., Juan, A.A.: Modelling
and multi-criteria analysis of the sustainability dimensions for the green vehicle
routing problem. Eur. J. Oper. Res. 292(1), 143–154 (2021)

2. Alvim, A.C.F., Taillard, É.D.: Popmusic for the world location-routing problem.
EURO J. Transp. Logist. 2(3), 231–254 (2013)

3. Archetti, C., Speranza, M.G.: A survey on matheuristics for routing problems.
EURO J. Comput. Optim. 2(4), 223–246 (2014). https://doi.org/10.1007/s13675-
014-0030-7

4. Asghari, M., Mirzapour Al-e-hashem, S.M.J.: A green delivery-pickup problem for
home hemodialysis machines; sharing economy in distributing scarce resources.
Transp. Res. Part E Logist. Transp. Rev. 134, 101815 (2020)

5. Battarra, M., Cordeau, J.-F., Iori, M.: Chapter 6: pickup-and-delivery problems
for goods transportation, chapter 6, pp. 161–191. SIAM (2014)

6. Bektaş, T., Ehmke, J.F., Psaraftis, H.N., Puchinger, J.: The role of operational
research in green freight transportation. Eur. J. Oper. Res. 274(3), 807–823 (2019)

7. Bektaş, T., Laporte, G.: The pollution-routing problem. Transp. Res. Part B
Methodol 45(8), 1232–1250 (2011)

8. Cinar, D., Gakis, K., Pardalos, P.M.: A 2-phase constructive algorithm for cumula-
tive vehicle routing problems with limited duration. Expert Syst. Appl. 56, 48–58
(2016)

9. Cordeau, J.-F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic
and multi-depot vehicle routing problems. Networks 30(2), 105–119 (1997)

10. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1),
80–91 (1959)

11. U. DBEIS. Greenhouse gas reporting: Conversion factors 2018. Technical report,
UK Department for Business, Energy and Industrial Strategy (2018). Accessed 01
June 2021

12. Demir, E., Bektaş, T., Laporte, G.: The bi-objective pollution-routing problem.
Eur. J. Oper. Res. 232(3), 464–478 (2014)

13. Demir, E., Bektaş, T., Laporte, G.: A review of recent research on green road
freight transportation. Eur. J. Oper. Res. 237(3), 775–793 (2014)

14. Erdelić, T., Carić, T.: A survey on the electric vehicle routing problem: Variants
and solution approaches. J. Adv. Transp. 2019, 5075671 (2019)

https://doi.org/10.1007/s13675-014-0030-7
https://doi.org/10.1007/s13675-014-0030-7

500 A. F. Gil et al.

15. Fan, H., Zhang, Y., Tian, P., Lv, Y., Fan, H.: Time-dependent multi-depot green
vehicle routing problem with time windows considering temporal-spatial distance.
Comput. Oper. Res. 129, 105211 (2021)

16. Friedman, M.: A comparison of alternative tests of significance for the problem of
m rankings. Ann. Math. Stat. 11, 86–92 (1940)

17. Jabir, E., Panicker, V.V., Sridharan, R.: Design and development of a hybrid ant
colony-variable neighbourhood search algorithm for a multi-depot green vehicle
routing problem. Transp. Res. Part D Transp. Environ. 57, 422–457 (2017)

18. Kara, İ, Kara, B.Y., Yetis, M.K.: Energy minimizing vehicle routing problem. In:
Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 62–71.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4 9

19. İ. Kara, B. Y. Kara, and M. K. Yetiş. Cumulative vehicle routing problems. In:
Vehicle Routing Problem, pp. 85–98. IntechOpen (2008)

20. Kopfer, H.W., Schönberger, J., Kopfer, H.: Reducing greenhouse gas emissions of
a heterogeneous vehicle fleet. Flex. Serv. Manuf. J. 26(1), 221–248 (2014)

21. Lalla-Ruiz, E., Voß, S.: Popmusic as a matheuristic for the berth allocation prob-
lem. Ann. Math. Artif. Intell 76(1), 173–189 (2016)

22. Lalla-Ruiz, E., Voß, S.: A popmusic approach for the multi-depot cumulative capac-
itated vehicle routing problem. Optim. Lett. 14, 1–21 (2019)

23. Li, Y., Soleimani, H., Zohal, M.: An improved ant colony optimization algorithm for
the multi-depot green vehicle routing problem with multiple objectives. J. Cleaner
Prod. 227, 1161–1172 (2019)

24. Lin, C., Choy, K.L., Ho, G.T., Chung, S.H., Lam, H.: Survey of green vehicle
routing problem: past and future trends. Expert Syst. Appl. 41(4), 1118–1138
(2014)

25. Macrina, G., Laporte, G., Guerriero, F., Di Puglia Pugliese, L.: An energy-efficient
green-vehicle routing problem with mixed vehicle fleet, partial battery recharging
and time windows. Eur. J. Oper. Res. 276(3), 971–982 (2019)

26. McKinnon, A.: Environmental sustainability: a new priority for logistics managers.
Kogan (2015)

27. Moghdani, R., Salimifard, K., Demir, E., Benyettou, A.: The green vehicle routing
problem: a systematic literature review. J. Cleaner Prod. 279, 123691 (2021)

28. Montoya-Torres, J.R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H.,
Herazo-Padilla, N.: A literature review on the vehicle routing problem with multiple
depots. Comput. Ind. Eng. 79, 115–129 (2015)

29. Ostertag, A., Doerner, K.F., Hartl, R.F., Taillard, E.D., Waelti, P.: Popmusic for
a real-world large-scale vehicle routing problem with time windows. J. Oper. Res.
Soc. 60(7), 934–943 (2009)

30. Sadati, M.E.H., Çatay, B.: A hybrid variable neighborhood search approach for the
multi-depot green vehicle routing problem. Transp. Res. Part E Logist. Transp.
Rev. 149, 102293 (2021)

31. Sartori, C.S., Buriol, L.S.: A study on the pickup and delivery problem with time
windows: Matheuristics and new instances. Comput. Oper. Res. 124, 105065 (2020)

32. Singh, R.R., Gaur, D.R.: Cumulative VRP: a simplified model of green vehicle
routing. In: Cinar, D., Gakis, K., Pardalos, P.M. (eds.) Sustainable Logistics and
Transportation. SOIA, vol. 129, pp. 39–55. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69215-9 3

33. Soysal, M., Çimen, M., Demir, E.: On the mathematical modeling of green one-to-
one pickup and delivery problem with road segmentation. J. Cleaner Prod. 174,
1664–1678 (2018)

https://doi.org/10.1007/978-3-540-73556-4_9
https://doi.org/10.1007/978-3-319-69215-9_3
https://doi.org/10.1007/978-3-319-69215-9_3

Optimization of Green Pickup and Delivery Operations 501

34. Suzuki, Y.: A new truck-routing approach for reducing fuel consumption and pol-
lutants emission. Transp. Res. Part D Transp. Environ. 16(1), 73–77 (2011)

35. Taillard, É.D., Voß, S.: Popmusic – partial optimization metaheuristic under special
intensification conditions, pp. 613–629. Springer, Boston (2002). https://doi.org/
10.1007/978-1-4615-1507-4 27

36. Wang, J., Yu, Y., Tang, J.: Compensation and profit distribution for cooperative
green pickup and delivery problem. Transp. Res. Part B Methodol. 113, 54–69
(2018)

37. Wang, Y., Assogba, K., Fan, J., Xu, M., Liu, Y., Wang, H.: Multi-depot green
vehicle routing problem with shared transportation resource: integration of time-
dependent speed and piecewise penalty cost. J. Cleaner Prod. 232, 12–29 (2019)

38. Zhang, W., Gajpal, Y., Appadoo, S.S., Wei, Q.: Multi-depot green vehicle routing
problem to minimize carbon emissions. Sustainability 12(8), 3500 (2020)

https://doi.org/10.1007/978-1-4615-1507-4_27
https://doi.org/10.1007/978-1-4615-1507-4_27

Solving the Shipment Rerouting Problem
with Quantum Optimization Techniques

Sheir Yarkoni1,2(B), Andreas Huck3, Hanno Schülldorf3, Benjamin Speitkamp3,
Marc Shakory Tabrizi3, Martin Leib1, Thomas Bäck2, and Florian Neukart1,2

1 Volkswagen Data:Lab, Munich, Germany
sheir.yarkoni@volkswagen.de

2 LIACS, Leiden University, Leiden, The Netherlands
3 Deutsche Bahn AG, Berlin, Germany

Abstract. In this work we develop methods to optimize an industrially-
relevant logistics problem using quantum computing. We consider the
scenario of partially filled trucks transporting shipments between a net-
work of hubs. By selecting alternative routes for some shipment paths,
we optimize the trade-off between merging partially filled trucks using
fewer trucks in total and the increase in distance associated with ship-
ment rerouting. The goal of the optimization is thus to minimize the total
distance travelled for all trucks transporting shipments. The problem
instances and techniques used to model the optimization are drawn from
real-world data describing an existing shipment network in Europe. We
show how to construct this optimization problem as a quadratic uncon-
strained binary optimization (QUBO) problem. We then solve these
QUBOs using classical and hybrid quantum-classical algorithms, and
explore the viability of these algorithms for this logistics problem.

1 Introduction

Quantum computing has garnered increased interest in recent years in both
research and industrial settings. This novel technology holds the promise of solv-
ing computationally intractable problems asymptotically faster than their clas-
sical counterparts in a variety of application areas [1–3]. The public availability
of quantum devices from commercial entities such as D-Wave Systems, Google,
and IBM have produced a variety of results showcasing novel algorithms and
potential use-cases for quantum computing in fields such as quantum machine
learning [4,5], logistics/scheduling [6,7], quantum chemistry [8,9], and more [10].
Of particular interest is the potential of quantum processing units (QPUs) to
affect the field of optimization, making the technology attractive to both research
and industry experts. Currently, variational quantum optimization techniques
are the main targets of promising research, and hold the highest potential of
gaining advantage using quantum processors. For more details about the differ-
ent paradigms of quantum computing and their mathematical backgrounds we
refer the reader to [11–13].

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 502–517, 2021.
https://doi.org/10.1007/978-3-030-87672-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_33&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_33

Solving the SRP with Quantum Optimization Techniques 503

Optimization problems for quantum algorithms and other similar heuristics
are typically formulated as either Ising Hamiltonians (posed in a {−1, 1} basis)
or quadratic unconstrained binary optimization (QUBO) problems (in a {0, 1}
basis). Finding the minimum of an Ising Hamiltonian, or its equivalent QUBO, is
known to be an NP-hard problem in the worst case [14], meaning many difficult
and well-known optimization problems have such representations [15]. For our
work, we focus on the QUBO formulation of optimization problems:

Obj(Q,b) = b · Q · bT . (1)

Here, Q is an N × N matrix representing interaction terms between variables in
the binary vector b with N variables. Therefore, the first step in using quantum
optimization algorithms is finding a valid QUBO representation of the problem
to be solved. In this paper we focus on designing a QUBO representation for an
industrially motivated logistics optimization problem, and attempt to optimize
the QUBOs using both hybrid quantum-classical and purely classical QUBO
solvers. Additionally, we consider a representation by a mixed integer program
(MIP) which we optimize by the standard solver Gurobi.

We investigate a problem motivated by an application in logistics: the less-
than-truckload network service design. Less-than-truckload (LTL) denotes ship-
ments not exceeding a maximum weight significantly below a full truck load.
The transport of a single shipment follows the sequence of (a) a collecting truck
run, followed by (b) one or several linehaul truck runs (including handling of the
shipment) and ending with (c) a distributing truck run to the shipment’s final
destination. Our work focuses on the design of the linehaul network, step (b).
The linehaul network for LTL is made up by the set of terminals and timetable
based truck runs, connecting the terminals and thereby producing the long-hauls
of all the shipments entering the network. Taking limitations on transport times
into account, the forwarding of the shipments shall be as cost efficient as possi-
ble. One key factor for cost efficiency is the consolidation of multiple shipments
in jointly utilized trucks, at least regarding parts of their individual linehaul
paths through the network. This measure targets an increase of truck utiliza-
tion. However, the consolidation of multiple shipments with different origins and
destinations in jointly utilized trucks requires detours of shipments. As detours
come at a cost, the network design searches for an optimal trade-off between
detour costs and the benefit of increased truck utilization. We focus on this
central trade-off decision and call the reduced problem the shipment rerouting
problem (SRP). We provide an illustrative example with two shipments in Fig. 1.

The input to the SRP includes a set of terminals, their distances to each other,
and the numbers of available trucks connecting the terminals. Moreover, we have
a set of shipments, each with a set of possible routes of intermediate terminals.
These possible routes already comply with constraints like maximum transport
time or maximum detour factor. They include the direct route from the origin to
the destination of the shipment, which are the default for all shipments. Other
candidate routes for rerouting are constructed in a pre-processing step based
on the graphical structure of the terminals and the distances between them.

504 S. Yarkoni et al.

Fig. 1. An example of the SRP with two shipments. The default routing (Trucks 1 and
2 carrying their respective shipments at 50% capacity each) is optimized by replacing
Trucks 1 and 2 with a single truck (Truck 3) which can be fully utilized. The cost of
rerouting each shipment to the route serviced by Truck 3 is offset by the removal of
Trucks 1 and 2, thereby reducing the overall distance travelled to deliver the shipments.

Thus, a subset of shipments may be rerouted through alternate routes in order
to reduce the overall distance all trucks travel to deliver the shipments. Each
shipment has a size (volume, weight, etc.), and each truck has a corresponding
capacity, i.e. an upper bound for the total shipment size that can be loaded. For
our purposes, we denote the shipment sizes and truck capacities with respect to
volume, and refer to them as such throughout the rest of this work. We note
that our mathematical formulations equally admit other quantities.

A shipment cannot be split across different routes. However, for transporting
a shipment between two terminals, we may split it to distribute it on multiple
trucks (this is necessary especially for shipments with a large volume). Given
the input, the task is to decide on a route for each of the given shipments, which
may include overlaps between shipments. Consequently, the result includes the
number of required trucks in the network and which terminals are connected by
truck runs in which frequency.

The rest of this paper is organized as follows: Sect. 2 discusses previous lit-
erature relevant to this analysis, and Sect. 3 motivates the QUBO construction
for this problem based on a MIP representation and details the specifics of the
QUBO construction used throughout this work. Section 4 outlines the input data,
solvers, and experimental design of our analysis. Section 5 presents the results
from those experiments, and Sect. 6 summarizes the conclusions derived from
our work.

2 Previous Works

In [16], Ding et al. solve a network design problem with a quantum annealing
approach. However, this problem is different as it searches for the best terminal
locations while the arc costs are linear (a hub location problem). In [6] it is shown
how to form QUBO representation of a simple traffic flow combinatorial opti-
mization problem. In that work, individual vehicles are given multiple candidate

Solving the SRP with Quantum Optimization Techniques 505

routes whose intersection needs to be minimized. This route-generation proce-
dure is used in our work, but with opposite intent, our objective is to consolidate
as many routes as possible.

Other examples of logistics and scheduling applications in quantum comput-
ing include flight-path conflict resolution [17] and railway train rescheduling [18].
Both examples use elements from a generic job-shop scheduling formulation for
quantum annealing [7]. While these applications are qualitatively similar to some
aspects of our work, the shipment rerouting problem is unique for quantum
annealing as not only the selection of routes for each shipment is variable, but
also the number of trucks used on each edge along the path is selected by the opti-
mization. Typically, for example in job-shop scheduling, the number of machines
and jobs are inputs to the QUBO construction. Our formulation thus incorpo-
rates elements from both scheduling (route selection in [6] and [18]) and packing
problems (canonical problems in NP [15]).

Because of its cost structure, the SRP problem is closely related to the fixed-
charge multi-commodity network design (FCMND) problem which has not been
investigated in the field of quantum computing. However, it has been studied
extensively in the past. Exact algorithms are usually based on branch-and-cut
approaches and Bender’s decomposition– see [19] for an overview. A particu-
lar problem for exact algorithms is that the lower bound is hard to improve.
There are also heuristic approaches to solve this problem, using evolutionary
algorithms [20] and simulated annealing [21], among others.

3 Constructing MIP and QUBO Representations

The MIP representation of the SRP is straightforward to formulate, as we can
use multiple kinds of variables (binary, integer, real) and constrain the solu-
tions explicitly. Therefore, we start with a MIP representation which we then
transform to a QUBO.

3.1 Constructing the MIP Representation

We assume that the connectivity of the terminals can be represented as a
weighted directed graph G where the vertices V are the terminals and the edges
E between them represent the ability to transport shipments from any single
terminal to another; in other words, we have an edge e ∈ E from a terminal a
to a terminal b if there are trucks available driving from a to b. These trucks are
called the trucks on e and their number is denoted by tmax(e). The weight of e is
the distance from a to b and is denoted by d(e). For each shipment s, v(s) denotes
its volume and R(s) denotes the set of all routes that can be used to transport s
(candidate routes of s). For each edge e, R(e) denotes the set of all candidate
routes containing e. A shipment s is scheduled on some edge e if s is transported
using an associated candidate route r containing e, i.e. r ∈ R(s) ∩ R(e).

In our scenarios, all trucks have the same volume capacity, denoted by cvol.
Moreover, all shipments have different origin-destination pairs so that no two

506 S. Yarkoni et al.

different shipments have common candidate routes (however, their candidate
routes may overlap). Therefore, for each candidate route r, we have a unique
shipment s(r) that can be transported using r.

We want to transport each shipment on an associated candidate route such
that the total distance of all used trucks in the network is minimized. To represent
this problem by a MIP, we introduce a binary decision variable yr for each
candidate route r that is 1 if r is used to transport s(r), and 0 otherwise. For
each edge e, we introduce a non-negative integer variable te with maximal value
tmax(e) representing the number of used trucks on e. We represent the problem
by the following MIP:

Objective: Minimize the total truck distance
∑

e∈E

d(e) · te (2)

with respect to the following constraints:
Route-shipment constraints: For each shipment s, exactly one associated
candidate route is used, i.e.

∑

r∈R(s)

yr = 1. (3)

Capacity constraints: For each edge e, the total volume of all shipments
scheduled on e does not exceed the total volume capacity of the used trucks
on e, i.e. ∑

r∈R(e)

v(s(r)) · yr ≤ cvol · te. (4)

The capacity constraints ensure that on each edge e, enough trucks are used
to transport all shipments scheduled on e because we can split shipments to
optimally exploit the truck capacities. Note that in an optimal solution, each
truck number te is as small as possible, namely

⌈∑
r∈R(e) v(s(r)) · yr/cvol

⌉
. In

that case, for each edge e, we can completely fill all used trucks on e except
possibly one truck that is partially filled.

3.2 Constructing the QUBO Representation

Contrary to a MIP, a QUBO only contains binary variables and an objective
function to be minimized without explicit constraints. However, the quadratic
summands arising from Eq. (1) allow us to include penalty terms that emulate
the MIP constraints.

Our QUBO formulation uses the binary variables yr for the candidate
routes r. In replacement of the integer variables te for the edges e, we use mod-
ified binary representations of their values in the QUBO based on a concept
in [15]: for each edge e, we define T (e) to be the set of all powers of two less than
or equal tmax(e), and for each n ∈ T (e), we introduce a binary variable te,n in

Solving the SRP with Quantum Optimization Techniques 507

order to represent the number of used trucks on e by
∑

n∈T (e) n·te,n. In this way,
we can represent at least each number up to tmax(e), i.e. each allowed truck num-
ber. However, the maximal representable number is 2nmax −1 where nmax is the
maximal value in T (e). Therefore, to avoid representations of numbers greater
than tmax(e), we reduce the coefficient nmax in

∑
n∈T (e) n · te,n by the surplus

s := 2nmax − 1 − tmax(e). The new expression is denoted by
∑

n∈T (e)

n · te,n, (5)

i.e. we have nmax = nmax − s = 1+ tmax(e)−nmax and n = n for each n �= nmax.
Now we can still represent each number up to tmax(e) but no other numbers. In
our QUBO, we reformulate the total truck distance (2) as

∑

e∈E

d(e) ·
∑

n∈T (e)

n · te,n. (6)

To encode the route-shipment constraints (3), note that they are linear equa-
lities of the form A = B where only binary variables occur. Each such constraint
is implemented in our QUBO by adding the summand M · (A − B)2 where M
is a large penalty factor ensuring that the constraint is fulfilled at least in all
optimal solutions of our QUBO. We will later discuss how to define a suitable
penalty factor.

The capacity constraints (4) cannot be implemented in that way (after refor-
mulation using the representations (5)) because they are inequalities of the form
A ≤ B. However, such a constraint can be transformed into an equality A+� = B
by using a non-negative slack variable �. Note that the slack of the capacity con-
straint for each edge e is the wasted volume in the used trucks on e (volume
capacity slack on e). Unfortunately, contrary to the numbers of used trucks,
these slacks might be large or fractional values so that their representations
might require many binary variables, making our QUBO intractable.

To overcome this problem, we discretize the shipment volumes into bins: We
virtually divide the loading area of each truck into the same number cbin of
equally sized bins. cbin is called the bin capacity of the trucks. Each bin can only
be used for transporting one shipment and has the volume capacity cvol/cbin.
Hence, for each shipment s, the number b(s) of bins needed to transport s is
given by b(s) = �v(s) · cbin/cvol�. Instead of the volume capacity slacks, we now
have to represent the bin capacity slack on each edge e, i.e. the number of unused
bins in the used trucks on e. These slacks are more tractable because they are
integers that can be assumed to be less than cbin (we will see this later).

On the other hand, if cbin is too small, then the bin volume capacity cvol/cbin
is large so that we may obtain several partially filled bins in the trucks, especially
if shipments exist that are smaller than the bin volume capacity (recall that we
cannot use a bin for transporting more than one shipment). Hence, we may not
optimally exploit the truck capacities any more which may increase the number
of used trucks. We can improve the situation by multiplying the bin capacity,

508 S. Yarkoni et al.

i.e. by subdividing each bin into the same number of smaller bins.1 Therefore,
cbin is a crucial parameter for the QUBO construction: more bins may lead to a
better exploitation of the truck capacities, but at the cost of larger bin capacity
slacks to be represented. In our experiments, we used the bin capacity 10, which
was an empirically-determined compromise.

For each edge e, we introduce a non-negative integer variable �e representing
the bin capacity slack on e. Then we obtain a new discretized MIP by modifying
the capacity constraints (4) as follows:

Capacity Constraints: For each edge e, we have
∑

r∈R(e)

b(s(r)) · yr + �e = cbin · te. (7)

These constraints imply the former ones (because v(s) ≤ b(s) · cvol/cbin for each
shipment s) and may even be stronger (due to a worse exploitation of the truck
capacities). Similar to the former MIP, in an optimal solution of the new MIP,
each truck number te is as small as possible, namely

⌈∑
r∈R(e) b(s(r)) · yr/cbin

⌉
.

Therefore, each bin capacity slack �e is less than cbin so that we can represent
these values in the QUBO as follows: we define L to be the set of all powers
of two less than cbin, and for each edge e and for each m ∈ L, we introduce a
binary variable �e,m such that the bin capacity slack of e is

∑

m∈L

m · �e,m. (8)

In this way, we can represent at least each number less than cbin, i.e. each relevant
bin capacity slack (it doesn’t matter if we can represent further numbers).

Using the representations (5) and (8), we can reformulate the capacity con-
straints (7) as follows:

Capacity Constraints: For each edge e, we have
∑

r∈R(e)

b(s(r)) · yr +
∑

m∈L

m · �e,m = cbin ·
∑

n∈T (e)

n · te,n. (9)

Similar to the route-shipment constraints, these capacity constraints are imple-
mented in the standard way by summands of the form M · (A−B)2. Putting all
components together, we obtain the following formulation of the QUBO:

1 Simply increasing the bin capacity may worsen the situation. For instance, suppose
that v(s) = cvol/2 for each shipment s so that b(s) = �cbin/2� . If cbin = 2, then
b(s) = 1 so that we can put two shipments into a truck. But if cbin = 3, then b(s) = 2
so that we can put only one shipment into a truck.

Solving the SRP with Quantum Optimization Techniques 509

∑

e∈E

d(e) ·
∑

n∈T (e)

n · te,n + M ·
∑

s∈S

⎛

⎝
∑

r∈R(s)

yr − 1

⎞

⎠
2

+M ·
∑

e∈E

⎛

⎝
∑

r∈R(e)

b(s(r)) · yr +
∑

m∈L

m · �e,m − cbin ·
∑

n∈T (e)

n · te,n

⎞

⎠
2

. (10)

Here, all variables are as before, and S is the set of all shipments in the problem.
We now choose the penalty factor M to ensure that only feasible solutions

are present in the global optimum of the QUBO objective, so that it is never
energetically favorable to violate one of the constraints in favor of minimizing
the total track distance. In general, we may choose any M greater than the total
truck distance d(feas) of any known feasible solution feas (for instance, the solu-
tion transporting each shipment on its direct route). To see the correctness of M ,
consider an optimal solution opt and suppose that opt violates a constraint. Then
the opt-value of the QUBO objective is at least M and thus greater than d(feas).
But since feas is feasible, d(feas) is also the feas-value of the QUBO objective,
contradicting the optimality of opt.

The QUBO requires many more variables than the MIP in Sect. 3.1. For
each truck number variable te in the MIP, we have |T (e)| = �log2(tmax(e) + 1)�
variables te,n to represent its values. Additionally, we have |L| · |E| = �log2 cbin� ·
|E| variables �e,m to represent the bin capacity slacks.

3.3 Improvements to the QUBO

To make our QUBO more tractable to a QUBO solver, we now construct
improvements which do not necessarily reduce the QUBO size but the range
of the coefficients for implementing certain capacity constraints. We define the
potential shipments on an edge e to be the shipments with a candidate route
containing e (i.e. these shipments can be scheduled on e) and we denote by S(e)
the set of all these shipments. For each shipment set S, we define tvol(S) to be
the minimal number of trucks that are sufficient to transport all shipments in S
referring to the volume capacity, i.e. tvol(S) =

⌈∑
s∈S v(s) / cvol

⌉
.

Note that we must use at least one truck on an edge e if at least one shipment
is scheduled on e. Moreover, if tvol(S(e)) = 1, then that truck is sufficient to
transport all that shipments. Therefore, we can replace the corresponding capa-
city constraints in (9) by simpler ones which do not require the bin discretization:

Simple Capacity Constraints : For each edge e with tvol(S(e)) = 1 and for
each r ∈ R(e), we have

yr ≤ te,1. (11)

This constraint can be implemented by adding the summand M · (yr − yr · te,1)
to our QUBO. Note that yr − yr · te,1 = 0 if yr ≤ te,1, and that yr − yr · te,1 = 1
otherwise. Therefore, it is unfavorable to violate the constraint.

510 S. Yarkoni et al.

This concept can be generalized to a larger class of edges. To do that, we
define the shipment sets of an edge e to be the subsets of S(e), and we call
a shipment set S n-minimal for some positive integer n if tvol(S) ≥ n and
tvol(S′) < n for each proper subset S′ of S. Moreover, S is called minimal if it
is n-minimal for some n (n may be not unique if all shipments in S exceed the
volume capacity). We generalize the concept of (11) to all edges that only have a
few minimal shipment sets. These edges we define good and all other edges bad.

Note that the only 1-minimal shipment sets are the singletons {s} with some
shipment s. Therefore, if e is an edge with tvol(S(e)) = 1 (as in (11)), then each
minimal shipment set of e is 1-minimal and thus a singleton. Hence we may
definitely define each such edge to be good. For our scenarios, we obtained the
best results when defining an edge e to be good if tvol(S(e)) ≤ 2 or if there are
at most 8 potential shipments on e. Then most edges in our scenarios are good,
and for all other edges, the number of minimal shipment sets is usually such
huge that applying our approach does not improve our QUBO.

We let Egood and Ebad denote the set of all good and bad edges, respectively.
For each good edge e, we introduce new binary variables: the trucks on e are
numbered by 1, ..., tmax(e) and for each n = 1, ..., tmax(e), we have a binary
decision variable xe,n that is 1 iff truck n on e is used. For technical reasons, we
additionally define xe,tmax(e)+1 to be the constant 0. The total truck distance (6)
is then reformulated as

∑

e∈Ebad

d(e) ·
∑

n∈T (e)

n · te,n +
∑

e∈Egood

d(e) ·
tmax(e)∑

n=1

xe,n. (12)

As before, our QUBO contains implementations of all route-shipment con-
straints (3) and of the capacity constraints (9) for all bad edges. For the good
edges, we have the following constraints which generalize the concept of (11):

Good Capacity Constraints : Let e be a good edge. Then for each n-minimal
shipment set S of e with n ≤ tmax(e) + 1, we have

∏

s∈S

∑

r∈R(s,e)

yr ≤ xe,n (13)

where R(s, e) denotes the set of all candidate routes of s containing e, i.e.
R(s, e) = R(s)∩R(e). Particularly, if n = tmax(e)+1, we have

∏
s∈S

∑
r∈R(s,e)

yr = 0.

Before showing how to implement these constraints, we first verify their cor-
rectness. We show that in a feasible solution of our QUBO, we have enough
used trucks on each good edge e to transport all shipments scheduled on e. Let
U denote the set of these shipments. For each n = 1, 2, ..., tvol(U), we choose a
smallest possible subset Sn of U with tvol(Sn) ≥ n. Then each Sn is n-minimal
and

∏
s∈Sn

∑
r∈R(s,e)

yr is always 1 because each shipment s in Sn is scheduled on e

so that
∑

r∈R(s,e)

yr = 1. Hence if n ≤ tmax(e) + 1, then by (13) applied to Sn, we

Solving the SRP with Quantum Optimization Techniques 511

obtain xe,n = 1. Now since xe,tmax(e)+1 = 0, we see that tvol(U) ≤ tmax(e) and
that truck n on e is used for each n = 1, 2, ..., tvol(U). These are enough trucks
to transport all shipments in U . On the other hand, the constraints (13) do not
force xe,n = 1 for some n > tvol(U). To see that, consider an n-minimal shipment
set S of e. Then since tvol(S) > tvol(U), S contains a shipment s that is not in U ,
i.e. s is not scheduled on e. Hence

∑
r∈R(s,e)

yr = 0 and thus
∏
s∈S

∑
r∈R(s,e)

yr = 0.

To implement the constraints (13), we consider an n-minimal shipment set S
of some good edge e with n ≤ tmax(e)+1. Let s1, s2, ..., sk denote the shipments
of S, and for each i = 1, 2, ..., k, let Σi denote the expression

∑
r∈R(si,e)

yr. Hence

we have to implement the constraint Σ1 · Σ2 · ... · Σk ≤ xe,n. We consider a
solution fulfilling all route-shipment constraints (3) so that Σi ≤ 1 for each
i = 1, 2, ..., k. If k = 1, then similarly to (11), we implement the constraint
Σ1 ≤ xe,n by the summand M · (Σ1 − Σ1 · xe,n). Note that since Σ1 ≤ 1, we
obtain Σ1 − Σ1 · xe,n = 0 if Σ1 ≤ xe,n, and Σ1 − Σ1 · xe,n = 1 otherwise. Now
assume k ≥ 2. To emulate the product Σ1 · Σ2 · ... · Σk, we introduce auxiliary
binary variables z2, z3, ..., zk. First, we implement the constraint z2 = Σ1 ·Σ2 by
the summand Ω2 := M · (

Σ1 · Σ2 + (3 − 2 · Σ1 − 2 · Σ2) · z2
)
. Note that since

Σ1 ≤ 1 and Σ2 ≤ 1, we obtain Ω2 = 0 if z2 = Σ1 · Σ2, and Ω2 ∈ {M, 3M}
otherwise. Now analogously, for each i = 3, 4, ..., k, we implement the constraint
zi = zi−1 · Σi by the summand Ωi := M · (zi−1 · Σi + (3 − 2 · zi−1 − 2 · Σi) · zi

)
.

This forces zi = Σ1 · Σ2 · ... · Σi for each i = 2, 3, ..., k. Finally, we implement the
constraint zk ≤ xe,n by the summand M · (zk − zk · xe,n).

Note that the summands Ωi may be negative in a solution where Σi ≥ 2 for
some indices i. Therefore, it may be favorable (or at least not unfavorable) to
violate some route-shipment constraints (3). To avoid such violations, we add the
auxiliary summand Δi := M

2 · Σi · (Σi − 1) to our QUBO for each i = 1, 2, ..., k
which is 0 if all route-shipment constraints are fulfilled. It is straightforward
to verify that in all solutions, Ω2 + Δ1 + Δ2 ≥ 0 and Ωi + Δi ≥ 0 for each
i = 3, 4, ..., k so that it is unfavorable now to violate any constraint.

4 Experiments and Data

The inputs used in this work were generated from a real-world network of hubs in
Europe belonging to DB Schenker. The specific locations and distances between
hubs have been abstracted to comply with data protection laws, but are rep-
resentative of the real-world network. Connections between hubs correspond to
serviced routes between hubs. We use one graphical model to represent the entire
hub network, and generate multiple inputs based on different numbers of ship-
ments: 30, 50, 80, and 100 shipments. In all inputs, every shipment sij travels
from one hub (vi) to another (vj). The direct route, vi → vj along eij , is always
the first candidate route for sij . The other candidate routes are generated by
a staggered k-shortest path approach: shipments are categorized by their OD-
distance, and for each category the k shortest paths are calculated where k

512 S. Yarkoni et al.

increases with respect to the OD-distance of the category. For example, ship-
ments up to 200 km have one alternative route while shipments over 1000 km
have up to 10 routes. The volume of the shipments is randomly generated using
an adapted exponential distribution, resulting in many smaller shipments and
few larger shipments.

In this study we use multiple solvers for our SRP instances and gauge the
viability of QUBOs as representations of the problem. We provide a brief intro-
duction and motivation for each solver.

Direct Shipments. We consider the “direct shipment” solution to the SRP as
a simple baseline. The direct solution is computed by routing every shipment
(sij) along its most direct path (eij). Since every shipment origin/destination
is unique in our instances, this equates to using one truck per edge for every
shipment.

Simulated Annealing. Simulated annealing is a well-known heuristic opti-
mization algorithm for combinatorial optimization [22]. The algorithm involves
probabilistically flipping individual variables’ states proportionally to the objec-
tive value change such a flip would induce and the current “temperature” of
the system. Candidate solutions are initialized at random, and the temperature
parameter is initialized to infinity; solutions are slowly “cooled” and the tem-
perature is lowered until the solutions settle in local optima and variable flips no
longer occur. Simulated annealing has been used extensively in benchmarking
studies related to quantum computing [23,24]. The specific implementation of
simulated annealing in this analysis was from the Python package dimod [25].

Tabu Search. This algorithm is another metaheuristic for combinatorial opti-
mization, operating on the principle that searching already-discovered solutions
should be actively discouraged (a “tabu list”). Individual variables’ states are
flipped based on their likelihood of importance in the global optimum [26]. Solu-
tions which worsen the objective function value may be explored by the search
if no other variable flip is possible, which allows for both global and local refine-
ment of solutions. The Python package used for Tabu can be found here [25].

Gurobi. Optimal solutions and optimality bounds were produced by solving the
MIP in Sect. 3.1 using Gurobi, an exact branch-and-bound solver. The benefit of
using Gurobi is that a bound on the optimality of the solutions is provided. Given
that the objective function units are the same for all solvers, this optimality gap
can be used for all solvers in this analysis. The run-time allocated to Gurobi was
24 h per input to obtain good bounds for each instance.

D-Wave Hybrid Solver. The smallest instance in our test set required 787
QUBO variables. While small for the application, this is larger than could be

Solving the SRP with Quantum Optimization Techniques 513

solved on D-Wave QPUs at the time of experiments. Instead, a proprietary
hybrid classical-quantum algorithm offered by D-Wave Systems was used, called
the Hybrid Solver Service (HSS), which has been used in previous applica-
tions [27], and admits QUBOs with up to 10k binary variables. The HSS uses
a QPU to optimize clusters of variables, allowing one to leverage the use of a
quantum processor without the overhead of embedding. However, this hybrid
algorithm does not allow direct access to control the QPU in its inner loop.
Therefore, we consider the HSS as a black-box optimizer, and measure the per-
formance as a function of the timeout parameter, similar to Gurobi and other
proprietary solvers.

5 Results

The consolidated results appear in Fig. 2. While the total run-time of Gurobi
was 24 h to obtain good lower bounds, good solutions with an optimality gap
of less than 10 percent were already found after a few minutes for all instances.
For the 30 and 50 shipment instances, we also obtained provably optimal solu-
tions within the first few minutes of optimization. The solutions from Gurobi
were significantly better than those obtained by solving the QUBO formulation.
However, this is possibly due to both the fact that Gurobi is an exact solver
and the way in which the MIP is discretized, as explained in Sect. 3.2. Tabu
search was able to find a near-optimal solution for the 30 shipment instance, but
was unable to find even feasible solutions for any of the other instances. Simu-
lated annealing was able to find feasible solutions, but only in the largest case of
100 shipments was the solution better than the direct shipment approach. The
D-Wave HSS was able to find better-than-direct solutions for the 30, 50, and
80 shipment instances. To attempt a fair comparison, each QUBO solver was
given roughly the same amount of time per test instance. However, the specific
parameter choices corresponding to such times were found and set by hand. We
include the parameter settings chosen in Appendix A.

Table 1. Number of variables and terms needed to describe the problem instances
using binary encoding and good capacity constraints.

Shipments Routes QUBO variables QUBO terms

30 223 787 4856

50 428 1526 16315

80 752 2305 40594

100 925 3318 59014

Throughout our initial experiments, we found that increasing the number
of possible routes for each shipment does not directly correlate with improved
solutions to the original problem (lower total truck km). This is due to the fact

514 S. Yarkoni et al.

Fig. 2. Performance of all solvers used in the experiments. We display the results in
units of truck kilometers for ease of comparison. Simulated annealing (SA), Tabu, and
the D-Wave HSS are QUBO solvers, Gurobi is a MIP solver, and the direct solutions
are the simple baseline of one truck per shipment (explained in Sect. 4).

that each additional route creates more minima and a more rugged landscape.
It is important to note that given the way we construct the QUBO– no trucks
along an edge is a valid solution– increasing the number of possible routes can
only create additional minima, not remove minima that have already been cre-
ated. Given this insight, it became even more important to consider the number
of QUBO terms (shown in Table 1) and to improve the QUBO as outlined in
Sect. 3.3.

6 Conclusions

In this work we motivated a logistics optimization problem based on a real-world
use-case, the shipment rerouting problem. This problem models the distance
minimization of a simple objective function– total number of truck kilometers
used to send shipments between nodes in a graph. We presented methods to
translate this problem to a QUBO form using both simple minimization objec-
tives (truck kilometers as weights on decision variables), and hard constraints
(knapsack-like constraints on edges in the graph) to test both quantum and
classical optimization algorithms. We further presented methods to optimize the
QUBO representation in attempts to improve the performance of the algorithms
used in our experiments. We found that there was significant amount of work in
finding such valid QUBO representations. Despite the relatively straightforward
description of the problem, to correctly model the solution landscape was more
subtle, and required multiple iterations of derivations, as explained throughout
the text. Nonetheless, we found it an informative exercise, as the lessons learned
can be applied to future work.

Solving the SRP with Quantum Optimization Techniques 515

Of the algorithms tested, Gurobi performed the best despite being an exact
branch-and-bound algorithm. Of the heuristics, we found that the D-Wave HSS
was able to find better than greedy solutions for the smaller problem sizes tested.
We stress that given our small test bed we cannot conclude any one solver being
the best relative to the others, nor was this the intention. Furthermore, we find
that the bar we define as “acceptable” (finding solutions that are better than
direct shipments) was surprisingly difficult for the heuristics to beat. This is
important to note since simulated annealing was able to find valid solutions for
all the problem sizes, but better-than-direct for only the largest problem. From
this, together with the long run-times required to find these valid solutions,
we conclude that this type of logistics optimization problem may not benefit
from transformation to a QUBO for the purpose of being solved with heuristics.
The growth in the number of variables required to solve such relatively small
problems was a bottleneck that could not be compensated for. However, with
the advent of error-corrected quantum processors in the future, it is possible
that this bottleneck can be overcome. Until then, our future research will be
dedicated to finding real-world optimization problems that are better-suited for
current quantum technologies.

A Solver Parameters

Here we present the time allocated to each solver in Table 2, and the corre-
sponding parameters in Table 3. For the D-Wave HSS, we limit the 30 and 50
shipment instances to only 5 minutes of run-time. We note that these 5 minutes
were sufficient for the problems tested. Because we could not control the usage of
the QPU in the D-Wave HSS, we report the QPU run-time in the timing results
rather than a parameter. All software solvers were executed using single-threaded
programs.

Table 2. Table of run-time allocated to each solver in the experimental setup.

Instance Simulated annealing Tabu HSS

30 1 h 1 h 5min (QPU: 3.0 s)

50 1 h 1 h 5min (QPU: 1.4 s)

80 1 h 1 h 1 h (QPU: 3.61 s)

100 1 h 1 h 1 h (QPU: 4.34 s)

516 S. Yarkoni et al.

Table 3. Parameter sets used for each solver. Parameters not mentioned were set to
default values.

Instance Simulated annealing Tabu HSS

30 2500 samples, 50000 sweeps 1 h timeout 5min timeout, use qpu = True

50 1600 samples, 50000 sweeps 1 h timeout 5min timeout, use qpu = True

80 1000 samples, 50000 sweeps 1 h timeout 1 hr timeout, use qpu = True

100 500 samples, 50000 sweeps 1 h timeout 1 hr timeout, use qpu = True

References

1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134 (1994)

2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc.
Roy. Soc. Lond. Ser. A Math. Phys. Sci. 439(1907), 553–558 (1992)

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pp. 212–219. Association for Computing Machinery, New York (1996)

4. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltz-
mann machine. Phys. Rev. X 8(2), 021050 (2018)

5. Alexander, C., Shi, L., Akhmametyeva, S.: Using quantum mechanics to cluster
time series. arXiv:1805.01711 (2018)

6. Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., Parney, B.:
Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017)

7. Venturelli, D., JJ Marchand, D., Rojo, G.: Quantum annealing implementation of
job-shop scheduling. arXiv:1506.08479 (2015)

8. Streif, M., Neukart, F., Leib, M.: Solving quantum chemistry problems with a
D-wave quantum annealer. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019.
LNCS, vol. 11413, pp. 111–122. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-14082-3 10

9. Quantum, G.A.I.: Hartree-fock on a superconducting qubit quantum computer.
Science 369(6507), 1084–1089 (2020)

10. Venturelli, D., Kondratyev, A.: Reverse quantum annealing approach to portfolio
optimization problems. Quant. Mach. Intell 1(1), 17–30 (2019). https://doi.org/
10.1007/s42484-019-00001-w

11. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature
473(7346), 194–198 (2011)

12. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. arXiv:1411.4028 (2014)

13. Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adia-
batic quantum computation is equivalent to standard quantum computation. SIAM
Rev. 50(4), 755–787 (2008)

14. Barahona, F.: On the computational complexity of ising spin glass models. J. Phys.
A Math. Gener. 15(10), 3241 (1982)

15. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)
16. Ding, Y., Chen, X., Lamata, L., Solano, E., Sanz, M.: Implementation of a hybrid

classical-quantum annealing algorithm for logistic network design. SN Comput.
Sci. 2(2), 68 (2021)

http://arxiv.org/abs/1805.01711
http://arxiv.org/abs/1506.08479
https://doi.org/10.1007/978-3-030-14082-3_10
https://doi.org/10.1007/978-3-030-14082-3_10
https://doi.org/10.1007/s42484-019-00001-w
https://doi.org/10.1007/s42484-019-00001-w
http://arxiv.org/abs/1411.4028

Solving the SRP with Quantum Optimization Techniques 517

17. Stollenwerk, T., et al.: Quantum annealing applied to de-conflicting optimal trajec-
tories for air traffic management. IEEE Trans. Intell. Transp. Syst. 21(1), 285–297
(2020)

18. Domino, K., Koniorczyk, M., Krawiec, K.,Ja�lowiecki, K., Gardas, B.: Quantum
computing approach to railway dispatching and conflict management optimization
on single-track railway lines. arXiv:2010.08227 (2021)

19. Costa, A.M.: A survey on benders decomposition applied to fixed-charge network
design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)

20. Paraskevopoulos, D.C., Bektaş, T., Crainic, T.G., Potts, C.N.: A cycle-based evolu-
tionary algorithm for the fixed-charge capacitated multi-commodity network design
problem. Eur. J. Oper. Res. 253(2), 265–279 (2016)

21. Yaghini, M., Momeni, M., Sarmadi, M.: A simplex-based simulated annealing algo-
rithm for node-arc capacitated multicommodity network design. Appl. Soft Com-
put. 12(9), 2997–3003 (2012)

22. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

23. Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis,
J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science
345(6195), 420–424 (2014)

24. King, J., et al.: Quantum annealing amid local ruggedness and global frustration.
J. Phys. Soc. Jpn. 88(6), 061007 (2019)

25. D-Wave Systems has produced an open-source library in Python (dimod) for
solvers that optimize QUBOs and Ising Hamiltonians. More information can be
found here. https://docs.ocean.dwavesys.com/en/stable/docs dimod/

26. Glover, F.: Tabu search–part I. ORSA J. Comput. 1(3), 190–206 (1989)
27. Yarkoni, S., et al.: Quantum shuttle: traffic navigation with quantum computing,

pp. 22–30. Association for Computing Machinery, New York (2020)

http://arxiv.org/abs/2010.08227
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/

Improving the Location of Roadside
Assistance Resources Through

Incident Forecasting

Roman Buil1,2(B) , Santiago Garcia2 , Jesica de Armas3 ,
and Daniel Riera1

1 Universitat Oberta de Catalunya, Rambla Poble Nou, 18, 08018 Barcelona, Spain
rbuilg@uoc.edu

2 Accenture S.L., Passeig de Sant Gervasi, 51, 08022 Barcelona, Spain
3 Department of Economics and Business, Universitat Pompeu Fabra, Ramon Trias

Fargas, 25-27, 08005 Barcelona, Spain

Abstract. This paper presents a solution for a real world roadside assis-
tance problem. Roadside assistance companies must allocate their spe-
cialised resources to minimize the operating cost associated with servic-
ing when incidents occur. In this process, the location of these resources
plays an important role. Therefore, this work proposes a study on the
forecasting of incidents and their impact on the location of resources and
operating costs. To do this, we have built a machine learning model com-
petition enriched with new features drawn from traditional time series
methods and external data such as weather, holidays, and client portfo-
lios. The results show a significant reduction in operating costs thanks
to the forecasting of incidents.

Keywords: Road incident forecasting · Model competition · Location
of resources · Machine learning

1 Introduction

Roadside Assistance is a service for car, motorcycle and bicycle drivers whose
vehicles have suffered a mechanical failure (or accident) leaving them stranded.
These incidents can involve starting a car, diagnosing and repairing, towing a
vehicle, changing a flat tire, removing a stuck vehicle, or helping people who can-
not get into their car, among others. A company-specific (or external) resource
will be dispatched if the incident can be repaired on-site. Otherwise, a tow truck
will remove the vehicle.

One of the purposes of roadside assistance companies is to reduce operating
costs, including those associated with their own resources, those of external
suppliers, fuel and penalties for not complying with the Service Level Agreement
(SLA), which is time maximum elapsed since the incident is reported until the
arrival of the resource at the scene of the incident.

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 518–531, 2021.
https://doi.org/10.1007/978-3-030-87672-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_34&domain=pdf
http://orcid.org/0000-0003-3755-8465
http://orcid.org/0000-0003-0667-7066
http://orcid.org/0000-0002-7619-7407
http://orcid.org/0000-0002-4718-7234
https://doi.org/10.1007/978-3-030-87672-2_34

Improving the Location of Resources Through Forecasting 519

Fig. 1. Relationship between the three modules (encircled, main scope of this paper)

Resources are limited and specialized. Therefore, they need certain skills to
be candidates for a certain task. Different resources incur different fixed and/or
variable costs. Incidents have some specific requirements or characteristics that
could also affect the assignment. Finally, regulations regarding lunch breaks and
breaks, as well as contract requirements, will determine the feasibility of a solu-
tion.

Real Automòbil Club de Catalunya (RACC1) is a road-side assistance com-
pany that operates in Spain. It covers an average of 1600 incidents per day,
reaching maximum values of 2000 incidents per day, manages approximately
135 resources, and uses autonomous cranes as well as external providers to cover
those incidents that cannot be covered with its own resources. RACC is currently
forecasting the number of incidents at a very high level. The accuracy of this
aggregated forecast is below 65%; however, with this estimation they are able to
make mid to long term decisions such as fleet sizing or determining the number
of resources needed to work on each shift and vacations scheduling. Operational
and tactical decisions require a lower granularity and fall out of the scope of this
paper. Nowadays, all resources start their shifts in some fixed base locations.

RACC believes that current resources utilization rates and SLA times are
below the potential level that could be reached using modern Data Science tech-
niques. A solution has been designed to improve day-to-day operations, minimise
the use of third-party services, reduce operating costs and meet customer SLAs.
It integrates the following three modules (Fig. 1):

– Prediction of the number of incidents: Forecasting Machine Learning (ML)
models the competition to obtain the number of incidents by predefined
region, time period and type of incident.

– Location Optimization Algorithm: Dynamic decision making of the optimal
location of each resource based on data history, clusters and current status.

– Real-time resource allocation optimization algorithm: automatic allocation of
resources to incidents in real time using mathematical optimization models.

This document focuses on the first module, but also includes an initial basic
solution for the second. The third has also been developed and is currently
in production, but we consider that it is outside the scope of this work. It is

1 https://www.racc.cat.

https://www.racc.cat

520 R. Buil et al.

only used to evaluate the improvement of the results obtained from the location
optimization and prediction modules.

Forecasting and location optimization will use the same regions, defined using
a clustering model. Thus, the prediction of the number of incidents, with their
type, will directly influence the optimization of the location because the resources
will be allocated based on their skills, which are related to the types of incidents.

The remainder of this paper is organized as follows. Section 2 is devoted
describe the problem. Section 3 illustrates the problem scope. Section 4 presents
the solution approach. Section 5 discusses the results of the forecast at different
geographical and time horizon and granularity levels, comparing with RACCs
forecast when possible. Finally, Sect. 6 concludes this work and proposes possible
future research lines.

2 Problem Statement

The prediction of the demand for vehicle-related services has been a focus of
interest in recent years, since this forecasting allows improving the performance
of companies in the sector. Recent works in this area apply different methods
to predict the demand of services, such as deep learning [11,14,16,21], non-
parametric density estimation [15], Petri nets [5], long short-term memory net-
works [22], back propagation neural network [23], or learning-based optimization
[3]. The most common services that required this prediction are car-sharing net-
works or taxi networks, due to the advantages that relocation of vehicles involves
in these dynamic environments [9].

In general, the articles mentioned above talk about predicting the general
demand in a previously determined location. We not only look for a forecast of
incidents, we first identify the optimal number of strategic locations and then
predict the number of incidents that will occur at each location for different types
of incidents and time periods. This must be done for different time horizons.

Generating a forecast that is sufficiently accurate is mandatory to have a
solution that contains the best location of resources, thus reducing the arrival
time to incidents. Therefore, RACC also requires a first version of that solution
that will decide the location of the resources. Finally, these new locations should
be tested using the real-time resource allocation optimization algorithm and
compared to the benchmark results without using location optimization.

The proposed innovative approach to incident forecasting is to combine tradi-
tional time series-based forecasting methods with ML models. New features are
generated from traditional time series-based methods and incorporated into ML
models to enrich them. We are not just using a ML model, but doing ML models
competition [20] in order to use the best model in each situation depending on
the time horizon.

3 Problem Scope

The problem presented in this work consists on the prediction of number of
incidents depending on the time horizon and granularity (hourly, daily), the

Improving the Location of Resources Through Forecasting 521

location or region (higher disaggregation than the current one), and type of
incident, with the aim of relocating the resources in the right positions to better
serve the demand, adjust resources schedules and size the fleet.

The time horizons to consider are determined by business needs, since require-
ments are different when making strategic, tactical or operational decisions. The
length of the time horizon determines the way to group the incidents (by hour, by
set of hours, by day, etc.) In this work, three time horizons have been developed
for each specific business need:

– Short-term: hourly forecast for a 7-day time window (one week ahead) to
adjust resources schedules

– Mid-term: daily forecast for the following month to optimize resources loca-
tion

– Long-term: daily forecast for the following 6–12 months to size fleet needs

Volume and density of incidents make Barcelona Metropolitan Area a region
that can be used to compare results between current forecast used by RACC, and
our new forecast. A definition of multiple dynamic clusters, instead of few static
zones, has been performed by means of statistical methods based on mass centers
taking into account historical incidents data. These clusters could be dynamically
redefined according to the month, paying special attention to specific areas where
more detail is needed, e.g., cities with higher activity, where a higher level of
granularity can be of use.

Being able to compute a different forecast for each main resource category can
help define the most appropriate resources to use in an incident, since different
types of incidents require different kinds of resources. For this reason, based on
incidents volumes and relevance, the type of incidents have been defined as:

– Non-repairable (NR)
– Repairable incidents related to a wheel problem (R wheel)
– Repairable incidents with a battery problem (R battery)
– Other repairable incidents (R other)

In order to obtain appropriate forecasts, we have used different kind of data
about the problem: historical data of incidents for around 3 years, clients port-
folio during this period of 3 years, national and regional holidays of the period,
weather related data for the period.

4 Solution Approach

4.1 Data Preparation

ML models are based on historical data, which usually needs to be cleaned before
use. Particularly, all the data required for this work is related to incidents. In
the available (real) historical data, an incident can be related to several services
and covered by multiple resources. However, the forecast must be done based on
the initial known information about the incident, and hence, on the first service

522 R. Buil et al.

recorded. For this reason, a cleansing on the historical data has been made in
order to consider the first record for each incident before running the forecast.
Once the data has been cleaned and there is one row per incident containing the
timestamp, geographical coordinates and the type of incident, they will be used
as input of the models.

Since one of the reasons to forecast incidents is trying to relocate resources
to better serve demands, it is important to aggregate them in small regions,
ensuring that all the area inside the scope of the project is covered. This is done
by applying the well-known K-means algorithm [10] on the historical incidents.

An initial analysis has been performed on the data variance to find the opti-
mal number of clusters using the elbow method [12]. However, this number,
which is the best statistically speaking, did not match with RACC’s strategy,
and the final number has been selected by a compromise between RACC’s strat-
egy and the mathematical solution. This happens because although clustering
algorithms provide the theoretical optimal location, at the end of the day, work-
ers need to be sent to those locations from one of RACC’s bases. This includes
an extra cost to the problem: they spend part of their working shift travelling
to their starting point (while they may have been already working on another
incident).

For each cluster, data is split into training, testing and validation data sets.
Due to its nature – time series with cycles in it – data is not split randomly, but
maintaining order. For example, if a forecast of the next week is the objective,
the testing and validation data also covers a week following the normal sequence
of days. The training set would then be the rest of the data, maintaining the
same sequential order. Additionally, to improve the model generalization, K-
Folds Cross Validation [19] can also be performed, taking several time horizons
of the same length from the data to use as validation sets. This can be especially
interesting if trying to find a model that can perform well during the whole year,
as using validation sets from different months could help the model to be more
generalized to any event, although they can also be trained more specifically for
a certain period, such as summer.

4.2 Additional Features

In general, once the data has been aggregated, classical methods such as ARIMA
[8, Chapter 8], or Exponential Smoothing models [8, Chapter 7] are used to
predict the outcome of the next period based on linear regressions or series
that have trend and seasonal components. In this case, ML models are used
to try to predict what will happen in the next period. This means that new
features added to the data model could have a positive impact, since they provide
useful information that can improve the accuracy of the forecast results. This
information could be split between 2 categories: a) external, such as the weather,
client portfolios or holidays; or b) calculated, information that is obtained from
data statistics. Some details about this information are:

Improving the Location of Resources Through Forecasting 523

– Weather : Weather data can influence the behaviour of drivers at the wheel
and the possibility of having an accident, so it is an external valuable infor-
mation.

– Client portfolios: The total amount of clients that RACC has each month.
This is an important variable, especially for the long-term forecast, as given
the number of clients, you have an upper limit for the simultaneous incidents.

– Holidays: Holidays are an important factor for the model as there is a clear
evidence of mobility changes around events such as bank holidays.

– Season: The season of the year may have an effect on where the incidents may
occur. For instance, there is a greater mobility towards the beach in summer,
whereas the Pyrenees might have more drivers during winter.

– Data statistics: Historical statistics can also provide useful information to
the forecasting model. After the data exploration phase, it can be concluded
that there is a cyclical effect on the occurrence of incidents. Therefore the
model also receives as inputs maximums, minimums, averages, medians and
standard deviations of the number of incidents calculated by combinations of
time granularities, such as month-day, weekday-hour, season-day of week.

– Lags: Providing input data about a “similar” day is important. It can also be
useful to provide the data of what happened the previous day, a week before,
or if it is going to be a bank holiday the following Monday, which will affect
Friday’s traffic.

– Cyclic transformations: To let the ML model know that a feature is cyclical,
e.g. time, sine and cosine transforms are applied to the year, month, weekday
and day of the incident. By doing this, the model is provided with the meaning
that although Monday is the 1st day of the week and Sunday is the 7th, they
are actually only one day apart.

4.3 Model Competition

The final step to obtain the prediction results is to launch a ML model competi-
tion. The set of models tried are the following: Decision Tree Regressor (dt) [17],
Extra Trees Regressor (extratr) [1], Gradient Boosting Regressor (gboost) [4],
K-Neighbors Regressor (knn) [2], Multilayer Perceptron (MLP) network (neural)
[13]. Random Forest Regressor (randf) [18], SVR (svm) [6], and XGB Regressor
(xgboost) [7].

The model competition is first launched intra-model. This means each model
is tested with different parameters to fine tune individually. This process is
followed by comparing the best models for each type of incident. The comparison
is performed by means of the root-mean-square error (RMSE), with the objective
of minimizing the average of all the validation sets that are used during the
training phase. The best model overall is then selected to compute the final
prediction.

5 Results

The result of the forecast at region/cluster level, by type of incident and time
is required to decide the best location for the resources. However, it is not

524 R. Buil et al.

Algorithm 1. Main Algorithm
1: procedure runPrediction(parameters)
2: workorders ← readAndCleanHistoricalWorkorders() � Data Cleansing
3: aggregated workorders ← aggregateWorkorders() � Data Preparation
4: aggregated workorders ← addAdditionalFeatures() � Additional Features
5: X train, Y train, X val, Y val, X test ← featureEngineering() � Standardize

data, split into training, testing and validation sets
6: best model ← empty solution
7: for all model in models do training result ← trainModel(X train, Y train,

X val, Y val) � Intra-model competition with different parameters
8: best model ← compareModels(best model, training result)
9: end for

10: final forecast ← predictModel(best model, X test) � Compute the Final
forecast with the best model

11: return final forecast
12: end procedure

comparable with current RACC’s forecast, that just predicts the number of
incidents, at high level regions, and without distinguish between types neither
timestamp. Therefore, first, we generate forecast at the same level of aggrega-
tion, so we can compare our accuracy; second, we compute the clusters and we
generate forecast by cluster, incidents’ type and timestamp; third, we use this
disaggregated forecast to test the impact of locating resources in the different
clusters at the beginning of the day and use the resource allocation module.

The input data set used to train the algorithms is made up from 3 years
of data, aggregated by 30 min. Data from the Barcelona region has been used
to compare against RACC’s forecast. Data from Catalonia has been used to
compute clusters and test the forecast together with the resource location and
the resource allocation modules.

5.1 Comparison at RACCs Level of Aggregation

The scope of this experiment is only “repairable incidents in Barcelona”; other-
wise we cannot compare against RACC’s forecast. The comparison is made at 3
different time horizons:

– Short-term: Two weeks of November 2018 aggregated by hour.
– Mid-term: November and December 2018 aggregated by day.
– Long-term: From January to December 2018 aggregated by day.

Table 1 shows that the increment on forecast accuracy at any time horizon
is more than 18 points, achieving more than 33 points for one of the long-term
horizons.

Figure 2 shows the graphics for the mid-term horizon case. Lines correspond
to RACC’s prediction (usually over forecasting), historical data, and the Extra
Trees Regressor model. The latter is very close to the historical data, being the
model with higher accuracy for this case.

Improving the Location of Resources Through Forecasting 525

Fig. 2. Mid-term forecast comparison

526 R. Buil et al.

Table 1. Comparison between RACC’s and our work accuracy

Time horizon RACC Best model Difference

Short-term week 1 57.6% 78.5% +20.9

Short-term week 2 64.1% 82.2% +18.1

Mid-term November 70.2% 94.5% +24.3

Mid-term December 55.6% 88.6% +33.0

Long-term Jan-Jun 71.0% 91.8% +20.8

Long-term Jul-Dec 59.0% 92.4% +33.4

5.2 Clusters and Disaggregated Forecast

As mentioned above, the calculation of the clusters has been done using the elbow
method. However, RACC was not totally satisfied, and they made some adjust-
ments based on their knowledge and strategy, obtaining 39 clusters. Figure 3
represents the different clusters in the region around Barcelona. The size of the
circle represents the volume of the incidents for each cluster.

Fig. 3. Generated Clusters around Barcelona

Once the clusters are defined, incidents are grouped by cluster, type of inci-
dent and timestamp. Results are compared against the historical data for the
following time periods:

Improving the Location of Resources Through Forecasting 527

– Short-term: Third week of September 2019 aggregated by hour.
– Mid-term: From January to February 2019 aggregated by day.

Figures 4 and 5 present the results of the disaggregated forecast for short-
term (by hour) and mid-term (by day) and for one cluster.

Good forecast accuracy on short-term where incidents are grouped by hour
is difficult to achieve. Only clusters with enough volume have more than 60%
accuracy. In particular, one of the clusters in Barcelona (Fig. 4) has 80% accu-
racy using a Random Forest model. The mid-term forecast, where incidents are
grouped by day, also present some cluster with low accuracy. However, in this
case, there is a global accuracy of 63.7%, 81.2% in the best case (Fig. 5) obtained
with the XGBoost model.

The accuracy of the results when disaggregating the data by clusters and
incident types is clearly lower than when calculating only by one incident type
and region. This is especially noticeable when aggregating by hour instead of
day. The reason behind this is the increment of complexity of the problem by
multiplying the number of features by the number of clusters times the number
of incident types. It also means that the number of incidents per instant of time
is also reduced, adding more bias to the data due to getting more zeroes in the
time series, especially in clusters with lower activity.

5.3 Resource Location and Resources Allocation

Any forecast, no matter with which accuracy, is not useful if you do not use
it with a certain objective. For example, using forecasting of sales to better
plan the inventory management. In this case, we have calculated the forecast
by cluster, incident type and timestamp to locate resources closer to the region
where incidents will happen. Thus, we can reduce the time to arrive to inci-
dents. Therefore, we decided to do a small test to see if locating the resources in
different locations would improve the allocation of resources during the day to
day operations. Since this is a preliminary test, there is no algorithm locating
the resources by skills (meaning matching incidents types). The location is a
distribution of the resources depending on the volume of incidents per cluster.
The selection of the type of resource is random.

The day of activity has been selected randomly and corresponds to 17th

September 2018, from 06:00 to 15:00 local time, in the area of Catalonia
(Barcelona, Girona, Lleida, Tarragona). A set of 567 incidents has been extracted
and used to test the algorithm, with 147 own resources (each of which has its
own working schedule), 46 tow trucks and 427 external providers. These are the
real numbers of incidents that happened and resources that were available during
that day.

Table 2 presents the real allocation done by RACC, and the results of the
resources allocation with an initial location of the resources based on the forecast
of incidents.

Basically, results show the following:

– Increment of the number of own resources allocated by 15%

528 R. Buil et al.

Fig. 4. Short-term forecast for the cluster with higher accuracy (80%)

Table 2. RACC real allocation vs new resource allocation with resource location based
on incidents forecast

Own Freelance External Own resources SLA Cost

Resources Tow Trucks Providers Occupation rate compliance reduction

RACC 256 96 215 60% 45%

Our Solution 295 168 104 76% 85% 20%

– Increment of the number of freelance tow trucks allocated by 75%
– Decrease number of external providers allocated by 51%
– Increase own resources occupation rate by 16%
– Increase SLA Compliance by 40%
– Decrease operational costs by 20%

Therefore, we can state that even though the type of incidents is still not
considered to locate the resources, the improvements on the main indicators are
very promising.

Improving the Location of Resources Through Forecasting 529

Fig. 5. Mid-term forecast for the cluster with higher accuracy (82.1%)

6 Conclusions

In this paper, we propose an innovative approach to forecast incidents using a ML
model competition enriched with new features created based on traditional time
series methods, mentioned in Sect. 4. Additionally, this approach uses external
data such as weather, holidays, and customer portfolios. The ML model compe-
tition is used to select the best performing model for all clusters. The clusters
have been generated using a mathematical calculation as a basis and then using
the customer’s information and knowledge to fit them. The best ML models for
disaggregated forecasting are: Random Forest for the short term and XGBoost
for the medium term. When generating a forecast to compare with the RACC,
based on time horizon and time period, the best models are XGBoost, Multilayer
Perceptron Network (MLP), and Extra Trees.

The test, which assesses both the placement of the proposed resources and the
subsequent allocation of services, has demonstrated the potential of this solution.
The results obtained show a 20% reduction in operating costs, while the use of
own resources increased, the number of autonomous cranes also increased and
the number of external suppliers decreased.

This work can be further developed with forecast enhancements by adding
additional features to give more weight to the last few weeks of historical data.
Therefore, unexpected variations of incidents could be automatically reflected in

530 R. Buil et al.

the forecast earlier. Additionally, the location of resources could be developed,
generating an optimal location for them. This placement optimization could be
used to position resources at the beginning of the day, or even multiple times
during the day.

Acknowledgments. This work has been partially supported (granted) by the Indus-
trial Ph.D. Program of Government of Catalonia 2017DI092. This work could not be
possible without the support of both the Real Automóbil Club de Catalunya (RACC),
specially the Analytics and Assistance Operations departments, and Accenture team,
Supply Chain & Operations Applied Intelligence.

References

1. Ahmad, M.W., Reynolds, J., Rezgui, Y.: Predictive modelling for solar thermal
energy systems: a comparison of support vector regression, random forest, extra
trees and regression trees. J. Cleaner Prod. 203, 810–821 (2018). https://doi.org/
10.1016/j.jclepro.2018.08.207

2. Ban, T., Zhang, R., Pang, S., Sarrafzadeh, A., Inoue, D.: Referential knn regression
for financial time series forecasting. In: Lee, M., Hirose, A., Hou, Z.G., Kil, R.M.
(eds.) Neural Information Processing, pp. 601–608. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42054-2 75

3. Beirigo, B., Schulte, F., Negenborn, R.R.: Overcoming mobility poverty with shared
autonomous vehicles: a learning-based optimization approach for rotterdam zuid.
In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020. LNCS, vol. 12433, pp. 492–
506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4 32

4. Ben Taieb, S., Hyndman, R.J.: A gradient boosting approach to the kaggle load
forecasting competition. Int. J. Forecast. 30, 382–394 (2014). https://doi.org/10.
1016/j.ijforecast.2013.07.005

5. Clemente, M., Fanti, M.P., Mangini, A.M., Ukovich, W.: The vehicle relocation
problem in car sharing systems: modeling and simulation in a petri net framework.
In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 250–
269. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8 14

6. Fan, G.F., Peng, L.L., Hong, W.C., Sun, F.: Electric load forecasting by the svr
model with differential empirical mode decomposition and auto regression. Neuro-
computing 173, 958–970 (2016). https://doi.org/10.1016/j.neucom.2015.08.051

7. Gregory, B.: Predicting customer churn: Extreme gradient boosting with temporal
data (2018)

8. Hyndman, R., Athanasopoulos, G.: Forecasting: Principles and Practice, 2nd edn.
OTexts, Melbourne (2018)

9. Illgen, S., Höck, M.: Literature review of the vehicle relocation problem in one-
way car sharing networks. Transp. Res. Part B Methodol. 120, 193–204 (2019).
https://doi.org/10.1016/j.trb.2018.12.006

10. Jin, X., Han, J.: K-means clustering, pp. 563–564. Springer, Boston (2010). https://
doi.org/10.1007/978-0-387-30164-8 425

11. Ke, J., Zheng, H., Yang, H., Chen, X.M.: Short-term forecasting of passenger
demand under on-demand ride services: a spatio-temporal deep learning approach.
Transp. Res. Part C Emerg. Technol. 85, 591–608 (2017). https://doi.org/10.1016/
j.trc.2017.10.016

https://doi.org/10.1016/j.jclepro.2018.08.207
https://doi.org/10.1016/j.jclepro.2018.08.207
https://doi.org/10.1007/978-3-642-42054-2_75
https://doi.org/10.1007/978-3-030-59747-4_32
https://doi.org/10.1016/j.ijforecast.2013.07.005
https://doi.org/10.1016/j.ijforecast.2013.07.005
https://doi.org/10.1007/978-3-642-38697-8_14
https://doi.org/10.1016/j.neucom.2015.08.051
https://doi.org/10.1016/j.trb.2018.12.006
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1016/j.trc.2017.10.016
https://doi.org/10.1016/j.trc.2017.10.016

Improving the Location of Resources Through Forecasting 531

12. Kodinariya, T., Makwana, P.: Review on determining of cluster in k-means clus-
tering, vol. 1, pp. 90–95 (2013)

13. Koskela, T., Lehtokangas, M., Saarinen, J., Kaski, K.: Time series prediction with
multilayer perception, fir and elman neural networks (1996)

14. Lei, Z., Qian, X., Ukkusuri, S.V.: Efficient proactive vehicle relocation for on-
demand mobility service with recurrent neural networks, vol. 117 (2020). https://
doi.org/10.1016/j.trc.2020.102678

15. Li, X., Wang, C., Huang, X.: Reducing car-sharing relocation cost through non-
parametric density estimation and stochastic programming. In: 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6
(2020). https://doi.org/10.1109/ITSC45102.2020.9294599

16. Liao, S., Zhou, L., Di, X., Yuan, B., Xiong, J.: Large-scale short-term urban taxi
demand forecasting using deep learning. In: 2018 23rd Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 428–433 (2018). https://doi.org/
10.1109/ASPDAC.2018.8297361

17. Meek, C., Chickering, D., Heckerman, D.: Autoregressive tree models for time-
series analysis, pp. 229–244. https://doi.org/10.1137/1.9781611972726.14

18. Mei, J., He, D., Harley, R., Habetler, T., Qu, G.: A random forest method for real-
time price forecasting in new york electricity market, vol. 2014, pp. 1–5 (2014).
https://doi.org/10.1109/PESGM.2014.6939932

19. Rodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity analysis of k-fold cross vali-
dation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32,
569–575 (2010). https://doi.org/10.1109/TPAMI.2009.187

20. Thakur, A., Krohn-Grimberghe, A.: Autocompete: a framework for machine learn-
ing competition (2015)

21. Vateekul, P., Sri-iesaranusorn, P., Aiemvaravutigul, P., Chanakitkarnchok, A.,
Rojviboonchai, K.: Recurrent neural-based vehicle demand forecasting and relo-
cation optimization for car-sharing system: a real use case in Thailand, vol. 2021
(2021). https://doi.org/10.1155/2021/8885671

22. Wang, N., Guo, J., Liu, X., Fang, T.: A service demand forecasting model for
one-way electric car-sharing systems combining long short-term memory networks
with granger causality test, vol. 244 (2020). https://doi.org/10.1016/j.jclepro.2019.
118812

23. Wang, N., Jia, S., Liu, Q.: A user-based relocation model for one-way electric
carsharing system based on micro demand prediction and multi-objective opti-
mization, vol. 296 (2021). https://doi.org/10.1016/j.jclepro.2021.126485

https://doi.org/10.1016/j.trc.2020.102678
https://doi.org/10.1016/j.trc.2020.102678
https://doi.org/10.1109/ITSC45102.2020.9294599
https://doi.org/10.1109/ASPDAC.2018.8297361
https://doi.org/10.1109/ASPDAC.2018.8297361
https://doi.org/10.1137/1.9781611972726.14
https://doi.org/10.1109/PESGM.2014.6939932
https://doi.org/10.1109/TPAMI.2009.187
https://doi.org/10.1155/2021/8885671
https://doi.org/10.1016/j.jclepro.2019.118812
https://doi.org/10.1016/j.jclepro.2019.118812
https://doi.org/10.1016/j.jclepro.2021.126485

Solving a Multi-objective Vehicle Routing
Problem with Synchronization

Constraints

Briseida Sarasola1(B) and Karl F. Doerner1,2

1 Institut für Business Decisions and Analytics,
Oskar-Morgenstern-Platz 1, Wien, Austria

briseida.sarasola@univie.ac.at
2 Data Science @ Uni Vienna, Vienna, Austria

karl.doerner@univie.ac.at

Abstract. In this paper, we solve a multi-objective vehicle routing prob-
lem with synchronization constraints at the delivery location. Our work
is motivated by the delivery of parcels and consumer goods in urban
areas, where customers may await deliveries from more than one service
provider on the same day. In addition to minimizing travel costs, we
also consider a second objective to address customer preferences for a
compact schedule at the delivery location, so that all deliveries to a cus-
tomer happen within a non-predefined time interval. To determine the
Pareto fronts, three metaheuristic methods based on large neighborhood
search are developed. The results on small instances are compared with
an ε-constraint method using an exact solver. Results for large real-world
instances are also presented.

Keywords: Vehicle routing problem · Synchronization ·
Multi-objective optimization

1 Introduction

The vehicle routing problem with synchronization constraints at the delivery
location (VRPSCDL) is motivated by a current situation in urban transporta-
tion, where a single recipient often expects several orders from more than one
service provider on the same day [14]. Service providers aim at minimizing the
costs, while recipients are customers that wish to receive all orders approximately
at the same time. Therefore the decision involves several stakeholders that need
to find a compromise between transportation costs and compact schedules at
the delivery location.

A real-life application of the VRPSCDL arises in housing and decoration
logistics [16,20], where several furniture suppliers offer their products on a shared
online platform. A customer may buy products from different suppliers, that are
later shipped with different logistics companies. However, customers wish to
receive all products within a small time interval. As a result, furniture suppliers
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 532–546, 2021.
https://doi.org/10.1007/978-3-030-87672-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_35&domain=pdf
http://orcid.org/0000-0002-0677-3026
http://orcid.org/0000-0001-8350-1393
https://doi.org/10.1007/978-3-030-87672-2_35

Solving a MO-VRP with Synchronization Constraints 533

need to find a way to collaborate with each other to improve customer service.
Other possible applications include supermarkets, construction sites, and in gen-
eral, any business that expects deliveries from several suppliers.

The VRPSCDL has been solved in the literature by allowing a maximum
amount of idle time at the delivery location, where idle time is defined as non
service time between the first and the last delivery to a given location. Existing
results show that it is possible to substantially reduce the idle time by more than
40% without sacrificing the travel cost (3% longer travel times) [14]. However,
the problem was addressed by first determining a fix idle time/service time ratio
and then solving the single-objective optimization problem, but it is in general
not easy to find appropriate values for the ratios. We aim at supporting decision
makers by providing several solutions, so that a suitable trade-off solution can
be chosen. To tackle this problem we model the multi-objective problem as
an extension of the single-objetive problem. We formulate two objectives to
minimize travel cost and idle time at the delivery location.

Many of the initial approaches to tackle multi-objective routing problems in
the literature use highly specialized population-based metaheuristics [5,9], such
as evolutionary algorithms [6,13,17]. It has been recently shown that combin-
ing several single-objective methods [3,8,18] as well as using a single-objective
algorithm within a solution framework that treats all other objectives as con-
traints [1,12] provide excellent results in solving multi-objective vehicle routing
problems. In this work, we focus on solution techniques that use powerful single-
objective neighborhood search methods to build the Pareto set.

The remainder of this paper is structured as follows. Section 2 introduces the
problem. Our solution methods are described in Sect. 3. Results are presented in
Sect. 4. Finally, Sect. 5 gives some conclusions and lines of future work.

2 Problem Statement

The multi-objective VRPSCDL (MO-VRPSCDL) is based on the VRPSCDL,
which is defined using a multi-commodity flow formulation [14]. We introduce
here the necessary notation to later define the multi-objective problem. In the
single-objective formulation, the problem consists of minimizing the total travel
time to serve n deliveries to m delivery locations from p depots. A solution
to the VRPSCDL is a set of routes that serves all deliveries once. Each route
starts at a departure depot and ends at the corresponding arrival depot, and
only serves deliveries associated to that depot. A delivery location receives one
or more deliveries, which must be fulfilled in a compact schedule. The notation
for the sets, data, and variables of the VRPSCDL are summarized next.

Sets:

– D is the set of deliveries.
– P1 is the set of departure depots.
– P2 is the set of arrival depots.
– N = P1 ∪ D ∪ P2 is the total set of nodes.
– U is the set of delivery locations.

534 B. Sarasola and K. F. Doerner

– D′
l is the set of all deliveries at location l ∈ U .

– D′′
i is the set of all deliveries to be fulfilled by depot i ∈ P1.

– V is the set of all vehicles.
– Vi is the set of all vehicles associated to depot i ∈ P1.

Problem data:

– cij is the travel time from node i to j, i, j ∈ N .
– di is the service time at node i ∈ N .
– wl is the maximum idle time at delivery location l ∈ U .
– Q is the vehicle capacity.
– T is the return time at the depot.

Variables:

– xijk is equal to 1 if vehicle k travels from node i to node j, 0 otherwise.
– sik is the time at which service starts at delivery i by vehicle k.
– startl is the time at which the first delivery at location l starts.
– lastl is the time at which the last delivery at location l ends.
– zij is 1 if, given two deliveries i, j to the same location, i is scheduled before

j, 0 otherwise.

In previous work, the maximum idle time wl at the delivery location has been
defined as the maximum amount of non service time between the first and the
last delivery at location l. The value of wl depends on the total service time of
all deliveries to location l and a parameter α ≥ 0, so that wl = α · ∑

i∈D′
l
di,

where D′
l is the set of all deliveries to l. The value of α controls the percentage

of allowed idle time at each delivery location. The maximum idle time is thus
modeled as Constraint (1) in the single-objective problem.

lastl − startl −
∑

i∈D′
l

di ≤ α ·
∑

i∈D′
l

di ∀l ∈ U (1)

The model imposes that the service of two or more deliveries at a given loca-
tion cannot overlap, so that a vehicle must wait if another vehicle is currently
serving the customer at the delivery location. Moreover, a vehicle might also
wait if it arrives to the location before service can start according to the syn-
chronization constraints. Following previous work, we assume that vehicles leave
each node as early as possible, so that they departure from the depot at time 0
and leave the delivery location right after serving the delivery.

The MO-VRPSCDL can be defined as a minimization problem of the form:

min f(x,α) = (f1(x), f2(α)) (2)

s.t.

gi(x) ≥ 0 ∀i (3)
hj(x) = 0 ∀j (4)

Solving a MO-VRP with Synchronization Constraints 535

The first objective f1(x) is the total travel time of the VRPSCDL.

f1(x) =
∑

i∈N

∑

j∈N

∑

k∈V

xijk · cij (5)

The second objective f2(α) aims at minimizing the maximum αl for every
delivery location l in the problem.

f2(α) = max
l∈D′

l

{

αl

∣
∣
∣
∣ αl =

lastl − startl∑
i∈D′

l
di

− 1

}

(6)

The problem constraints of the MO-VRPSCDL are the same as in the VRP-
SCDL except Constraint (1), which is removed and treated as the second objec-
tive.

3 Solution Techniques

This section provides a description of our solution methods based on neighbor-
hood search. All described methods provide an approximation of the Pareto front
in the MO-VRPSCDL and use an archive to maintain the set of non-dominated
solutions. A solution si is non-dominated if there are no other solutions sj , i �= j,
with f1(sj) < f1(si) and f2(sj) ≤ f2(si), or f1(sj) ≤ f1(si) and f2(sj) < f2(si).
Our local search algorithms try to improve one objective at each step, while the
other objective values might deteriorate, so that each step follows a “pure local
search” scheme [11].

We use the Solomon C1 heuristic to build initial solutions that are feasible
with respect to some value of α. The algorithm selects depots in a random
order and builds a set of routes considering all deliveries of the selected depot.
To ensure that the solution is feasible, we use “self-imposed time windows”,
which provide an earliest and latest start time for all deliveries to the same
location [14]. These time windows are not predefined, so all locations have an
initial self-imposed time window equal to the work day duration [0, T]. When a
delivery is inserted in the solution, its time window is updated. We denote this
algorithm Solomon C1(α). If α = ∞, self-imposed time windows are not used.

3.1 Multi-Directional Local Search

We solve the MO-VRPSCDL by integrating it in Multi-Directional Local Search
(MDLS) [18]. This framework requires the definition of a local search method for
each objective. Therefore, since the MO-VRPSCDL is a bi-objective problem,
we need to define two local search methods. In our case, each execution of a local
search is a single iteration of an Adaptive Large Neighborhood Search (ALNS).
We denote this method MDLS-ALNS (see pseudocode in Algorithm 1).

For the first objective, we use ALNS1, which is based on the existing ALNS
for the VRPSCDL [14]. Its destroy and remove operators are described in detail

536 B. Sarasola and K. F. Doerner

in previous work. Originally, it handles the maximum idle time constraint by
setting self-imposed time windows on the delivery locations. However, MDLS
considers the maximum idle time as a second objective, so self-imposed time
windows are not used, i.e. an insertion is always feasible as long as other problem
constraints are not violated (flow and timing constraints, vehicle capacity, return
time at the depot, and deliveries served sequentially at the delivery location).

For the second objective, we define ALNS2 as an ALNS with the following
features. The destroy operators are the random removal and the worst removal
operator. The first one selects ξ deliveries using a uniform distribution and
removes them from the solution, whereas the second one removes ξ deliveries
that correspond to delivery locations with high values of α. This latter uses a
randomization factor to avoid always removing the same deliveries. The repair
operators are the greedy insertion and the 2-regret insertion operator. Both of
them consider the cost of inserting a delivery as the maximum value of α in the
solution after inserting the delivery.

In our pseudocode, ALNS1 and ALNS2 are called with two parameters,
where the first one is the initial solution of the ALNS and the second one is
the maximum allowed value of α. In particular, MDLS relies on ALNS2 to
find solutions that are good with respect to the second objective, so it does not
impose a constraint on the maximum allowed idle time and the second parameter
is α = ∞.

The initial solution s0 of MDLS is generated by solving the VRPSCDL with
α = ∞ (line 1) and it is used to initialize the archive A (line 2). Then, MDLS
iteratively selects one random solution z from the archive (line 5) at iteration i
and applies ALNS1 and ALNS2 to obtain two new solutions, si,1 and si,2 (lines
6–7), that are used to update the archive (line 8).

Algorithm 1. MDLS-ALNS
1: s0 ← Solomon C1(∞)
2: A ← {s0}
3: while stopping condition not met do
4: i ← 1
5: Select a random solution z from A
6: si,1 ← ALNS1(z, ∞)
7: si,2 ← ALNS2(z, ∞)
8: Update archive A with si,1 and si,2
9: end while

3.2 ε-Constraint Method

The ε-constraint method (ECM) for multi-objective problems consists of opti-
mizing one single objective, while formulating the second objective as a con-
straint [4]. Although it has been mainly used in association with exact algo-
rithms, the ECM and some of its variants has been shown to provide good
results in combination with heuristics to approximate the Pareto front [1,7,12].

Solving a MO-VRP with Synchronization Constraints 537

We embed ALNS1 in the ECM framework and denote the resulting method
ECM-ALNS (see Algorithm 2). The method proceeds as follows. We first solve
the single-objective sub-problem π0 with α0 = 0, so that no idle time is allowed at
any delivery location (line 1). To obtain this first solution s0, the solver is allowed
to run until I0 iterations without improvement are reached. Next, we solve the
single-objective sub-problem π∞ with α∞ = ∞ to get a minimum reference
value for the first objective (line 2). The initial archive A contains thus s0 and
s∞ (line 3). Then, the value of the maximum allowed α is set back to 0 (line 4)
and iteratively increased by ε, so that the single-objective sub-problem πi with
αi = αi−1+ε is solved, i > 0 (lines 6-8). After In iterations without improvement,
ALNS1 stops and returns solution si, which is used to update the archive (line 9).
Following previous work [12] and our own preliminary experiments, we allocate
comparatively longer execution times to obtain the initial solution s0 by setting
I0 	 In.

The ECM can proceed with both increasing and decreasing constraint values.
We choose to increase the values of α because the solutions of a sub-problem with
αi are also feasible solutions of sub-problems with αj if αj > αi, but the opposite
is in general not true. Preliminary experiments show that, instead of generating
a new solution from scratch for each problem πi, i > 0, better results can be
obtained by using the solution si−1 of πi−1 found in the previous iteration as the
initial solution of the ALNS1 to solve πi. This can be achieved without repairing
the solution or using penalties if the ECM operates for increasing values of α.

Algorithm 2. ECM-ALNS
1: s0 ← ALNS1(Solomon C1(0), 0)
2: s∞ ← ALNS1(Solomon C1(∞), ∞)
3: A ← {s0, s∞}
4: α0 = 0
5: while stopping condition not met do
6: i ← 1
7: αi ← αi−1 + ε
8: si ← ALNS1(si−1, αi)
9: Update archive A with si

10: end while

3.3 Heuristic Box Splitting

Heuristic Box Splitting (HBS) addresses some of the problems arising in the
ECM [12]. Instead of iteratively solving a single-objective sub-problem with
increasing (or decreasing) constraint values, HBS forms a rectangle determined
by the minimum and maximum values of each objective. This rectangle is iter-
atively split in halves, so that a single-objective sub-problem with a constraint
determined by the splitting value is solved.

538 B. Sarasola and K. F. Doerner

We embed ALNS1 in HBS (HBS-ALNS) as follows (see Algorithm 3). Similar
to the ECM, the single-objective sub-problem π0 with α0 = 0 is solved to obtain
s0 after I0 iterations without improvement (line 1). Then, we solve the single-
objective problem with α∞ = ∞ and obtain thus s∞ with the same termination
criterion as before (line 2). The initial archive contains solutions s0 and s∞ (line
3). Points (f1(s∞), f2(s∞)) and (f1(s0), f2(s0)) form a rectangle that determines
the area where HBS searches for new solutions (lines 4–5). The initial rectangle
is added to the rectangle set S (line 6) and HBS runs until no more rectangles
are available as follows. It selects the rectangle R(y1, y2) with the larger area
(line 9). The rectangle is split in two halves, so that the line that halves the
rectangle determines the value of the constraint αi, where i > 0 is the current
iteration. For example, in the first iteration after creating the initial rectangle,
α1 = 0.5 · f2(s∞), and in general, αi = 0.5 · (y1

2 + y2
2) (line 10). The solver runs

using this constraint until In iterations without improvement are reached (line
12), and the found solution si is used to update the archive (lines 13–16). The
solution also allows the algorithm to discard areas that are dominated by the
found solutions and to create new rectangles that are added to S (line 17).

Algorithm 3. HBS-ALNS
1: s0 ← ALNS1(Solomon C1(0), 0)
2: s∞ ← ALNS1(Solomon C1(∞), ∞)
3: A ← {s0, s∞}
4: z1 ← (f1(s∞), f2(s∞))
5: z2 ← (f1(s0), f2(s0))
6: S ← {R(z1, z2)}
7: while stopping condition not met do
8: i ← 1
9: Select R(y1, y2) ∈ S with the largest area

10: αi ← 0.5 · (y1
2 + y2

2)
11: Select z ∈ A with f1(z) ≤ f1(zj) such that zj ∈ A and f2(zj) ≤ αi

12: si ← ALNS1(z, αi)
13: if si is dominated then
14: y2 ← (y2

1 , αi)
15: else
16: Update archive A with si
17: Update S according to HBS rules
18: end if
19: if S = ∅ then
20: S ← {R(z1, z2)}
21: end if
22: end while

Similar to the ECM, preliminary experiments show that better results can
be obtained by using solutions found with αi as the initial solution for solving
problems with αj > αi (line 11). In the ECM this step is straightforward, since
α increases monotonically. However, HBS needs to select a solution z ∈ A that

Solving a MO-VRP with Synchronization Constraints 539

is feasible with respect to the current αi. This is done by choosing the solution z
with the best value of the first objective f1 among those those solutions zj ∈ A
that are feasible with respect to αi (line 11).

The original HBS terminates when the rectangle set S is empty. We modify it
to run until the maximum runtime is reached. If S is empty, the initial rectangle
is added to S (lines 18–20).

4 Experiments and Results

This section presents the results obtained by our algorithms. We first com-
pare the performance of our neighborhood search based methods with solutions
obtained by an exact solver embedded in the ECM (see Sect. 4.1). Then, we
evaluate our algorithms by solving large instances obtained from real-world data
in Sect. 4.2. We use the set of instances for the VRPSCDL without instances 0,
1, 20, and 21, because those instances define a single depot and there is thus no
synchronization involved.

Results report the normalized hypervolume (HV) as a percentage of the
reference HV [21]. To calculate the reference HV for each instance, we build
reference sets with all non-dominated solutions found in all our experiments. The
nadir point is estimated to be 10% larger than the worst found values for each
objective [10,12], so that extreme solutions also contribute to the HV . Although
the HV is currently considered the most relevant performance indicator in multi-
objective optimization [2], we also include some results concerning the overall
non-dominated vector generation (ONV G) [19] and spacing (SP) [15] to obtain
further information about the performance of our algorithms.

The exact solver is an implementation of the model of the VRPSCDL using
CPLEX. We embed this solver in the ECM framework as described in Sect. 3.2,
and denote this algorithm ECM-CPLEX. It runs for 86, 400 s and dedicates a
maximum of 3, 600 s to solve each sub-problem. We use ε = 0.01 in all exper-
iments. Each call to CPLEX runs until it finds the optimum solution or the
maximum runtime is reached. The exact solver is run only once for each instance.

We allow each combination of multi-objective framework and neighborhood
search algorithm to run for a maximum time of 3, 600 s. Following previous
settings in the literature, each iteration of MDLS consists of one iteration of
each ALNS. Same as described above, ECM-ALNS uses ε = 0.01. ECM-ALNS
and HBS-ALNS first obtain their reference points using I0 = 5, 000, and then
solve each sub-problem with In = 500. For each instance and metaheuristic, we
report the average and the best of 5 independent runs.

All algorithms were implemented in Java 1.7. The exact solver requires
CPLEX 12.6.2. Each experiment runs on a Xeon core at 2.50 GHz with 64 GB
shared RAM and deactivated hyperthreading.

4.1 Small Instances

First we compare our results on a small dataset with instances that contain
p ∈ [2, 3] depots, n ∈ [10, 40] deliveries, and m ∈ [6, 23] delivery locations.

540 B. Sarasola and K. F. Doerner

Table 1 reports the HV obtained by the ECM-CPLEX as well as the average
and best HV obtained by ECM-ALNS, HBS-ALNS, and MDLS-ALNS. Best
results for each instance are highlighted in bold. Our results show that ECM-
CPLEX is not always able to find the best-known Pareto front due to runtime
restrictions. It obtains the best HV in 9 of 18 instances, but its results are weaker
for the larger instances 8–9 and 16–19, each with 30 to 40 deliveries. In addition,
the exact solver for the VRPSCDL only optimizes the travel cost, while its
schedules are just determined to be feasible by CPLEX. For this reason, it often
obtains worse Pareto fronts than the heuristic algorithms, which try to schedule
deliveries in a compact manner. The best overall results are provided by HBS-
ALNS, both regarding the average quality of the Pareto fronts as well as the best
of 5 runs. In particular, it obtains the best average result in 11 of 18 instances
with an average HV = 98.5%. MDLS-ALNS provides competitive results and
finds the best result for 8 of 18 instances. ECM-ALNS is outperformed by all
algorithms.

Table 1. HV (%) obtained by each algorithm solving small instances.

Instance ECM- ECM-ALNS HBS-ALNS MDLS

CPLEX Avg Best Avg Best Avg Best

2 99.8 97.9 99.8 99.9 99.9 97.0 98.9

3 100.0 98.8 100.0 100.0 100.0 100.0 100.0

4 98.8 97.1 98.0 98.5 98.7 98.1 98.2

5 95.9 94.9 95.4 96.0 96.0 89.9 91.8

6 100.0 97.5 98.7 100.0 100.0 95.7 97.7

7 100.0 97.6 100.0 100.0 100.0 100.0 100.0

8 97.1 99.1 99.9 100.0 100.0 94.3 94.9

9 90.2 97.4 99.2 100.0 100.0 95.0 98.1

10 100.0 97.7 100.0 100.0 100.0 100.0 100.0

11 97.7 95.2 96.8 98.0 98.1 95.0 95.2

12 100.0 94.4 99.5 96.3 100.0 100.0 100.0

13 100.0 97.9 99.1 99.6 99.9 100.0 100.0

14 96.7 93.1 95.7 96.0 97.1 95.8 96.3

15 100.0 79.9 86.7 97.3 98.5 100.0 100.0

16 97.8 96.7 97.9 98.2 98.3 98.0 98.6

17 95.8 95.6 96.6 97.5 98.5 98.1 98.4

18 91.1 94.7 96.4 98.3 98.9 95.3 96.0

19 83.6 95.2 96.6 97.6 98.9 99.9 99.9

Avg 96.9 95.6 97.6 98.5 99.0 97.3 98.0

Solving a MO-VRP with Synchronization Constraints 541

4.2 Large Instances

Table 2 show the results obtained using the set of large instances with p ∈ [2, 6]
depots, n ∈ [100, 300] deliveries, and m ∈ [65, 100] delivery locations. For each
algorithm and instance the average and the best HV (%) are reported. Our
results show that HBS-ALNS outperforms the other solution methods in 15 of
18 instances regarding the average results, and it is able to find the best approx-
imation of the Pareto front in 14 of 18 instances. In the remaining instances,
ECM-ALNS finds the best results and always outperforms MDLS-ALNS.

Table 2. HV (%) obtained by each algorithm solving large instances.

Instance ECM-ALNS HBS-ALNS MDLS-ALNS

Avg Best Avg Best Avg Best

22 97.0 97.3 98.4 98.5 96.8 97.7

23 97.2 98.0 97.9 98.0 96.3 97.0

24 97.5 97.7 98.2 98.4 96.0 97.1

25 95.9 96.6 95.7 96.4 91.3 92.2

26 95.8 96.5 96.3 96.5 91.8 92.6

27 96.9 97.1 97.8 98.2 92.7 93.4

28 95.3 95.6 96.3 96.9 87.3 88.7

29 95.1 95.6 94.8 95.5 85.1 85.3

30 95.2 95.6 96.6 97.0 89.5 90.0

31 95.0 95.8 96.4 96.6 88.9 89.5

32 95.8 96.6 96.8 97.1 87.6 88.5

33 94.9 96.3 96.0 96.2 85.1 85.6

34 95.9 96.9 95.7 95.9 83.7 84.1

35 95.4 96.0 96.4 96.9 86.1 88.0

36 93.0 94.4 95.6 95.9 83.9 84.5

37 94.5 95.3 95.1 95.9 82.6 83.3

38 94.8 95.9 95.6 96.0 83.0 83.7

39 94.3 94.6 95.6 96.3 84.9 85.5

Avg 95.5 96.2 96.4 96.8 88.5 89.2

Table 3 shows average and best results of the ONV G indicator obtained
by each algorithm on each instance. This measure is the number of solutions
in the Pareto front approximation and larger values are considered to be bet-
ter. Although it poses some problems, as bad approximations with many non-
dominated points are preferred over better approximations with only a few
points, it can be used together with the HV to provide additional insights about
the algorithms. Our results show that ECM-ALNS consistently finds mores solu-
tions than the other algorithms, both in the average and in the best case. It also

542 B. Sarasola and K. F. Doerner

finds more solutions for larger instances (80–100) than for medium-sized ones
(40–80), which seems a priori logical because the solution space is likely larger.
HBS-ALNS finds more solutions than MDLS-ALNS, but it should be noted that
the number of solutions for both algorithms does not depend on the instance size.
The difference between ECM-ALNS and HBS-ALNS can be explained by how
they explore the solution space. While ECM-ALNS increases α by very small
values in each iteration and is therefore able to find many similar (but different)
solutions, HBS-ALNS tries to explore different regions of the solution space and
therefore finds less (but more diverse) solutions.

Table 3. ONV G obtained by each algorithm solving large instances.

Instance ECM-ALNS HBS-ALNS MDLS-ALNS

Avg Best Avg Best Avg Best

22 45.2 57.0 42.0 48.0 28.4 42.0

23 42.4 51.0 32.6 41.0 23.2 28.0

24 57.6 71.0 47.2 59.0 32.2 45.0

25 69.8 80.0 52.6 73.0 39.6 47.0

26 63.0 75.0 53.2 61.0 35.4 40.0

27 65.6 78.0 49.0 56.0 42.2 49.0

28 76.9 86.0 45.6 54.0 36.4 40.0

29 85.4 96.0 47.8 64.0 38.6 44.0

30 79.1 92.0 39.8 56.0 37.6 43.0

31 78.7 90.0 39.0 54.0 39.6 45.0

32 81.3 88.0 42.8 49.0 42.2 50.0

33 91.1 100.0 47.6 60.0 36.2 39.0

34 84.3 94.0 38.8 46.0 31.8 41.0

35 89.8 98.0 56.4 70.0 30.4 42.0

36 86.1 93.0 40.0 51.0 35.8 39.0

37 96.1 112.0 41.0 55.0 32.6 34.0

38 90.5 100.0 38.6 54.0 26.4 34.0

39 95.2 106.0 45.8 54.0 40.6 50.0

Avg 76.6 87.1 44.4 55.8 35.0 41.8

The performance of MDLS is hindered by the poor performance of ALNS2

when the instance size increases. Although it obtains reasonably good HV val-
ues for middle-sized instances such as 22–24 (100 deliveries), its results quickly
degradate for larger instances. Figure 1 shows the median Pareto front obtained
by each method based on neighborhood search for two instances. The median
Pareto front is the front that corresponds to the median HV of 5 independent
runs. Figures 1a and 1b show the results obtained for instances 19 and 39 (40 and

Solving a MO-VRP with Synchronization Constraints 543

 0

 0.5

 1

 1.5

 2

 2.5

 3

 180000 190000 200000 210000 220000 230000 240000 250000 260000 270000

m
ax

 a
lp

ha

travel time

ECM-ALNS,
HBS-ALNS,

MDLS-ALNS

(a) Instance 19 with 3 depots, 40 deliveries, and 17 locations.

(b) Instance 39 with 6 depots, 300 deliveries, and 100 locations.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106 4x106

m
ax

 a
lp

ha

travel time

ECM-ALNS,
HBS-ALNS,

MDLS-ALNS

Fig. 1. Median Pareto front obtained by each solution method based on neighborhood
search on (a) a small instance and (b) a large instance.

544 B. Sarasola and K. F. Doerner

300 deliveries, respectively). On the smaller instance, MDLS-ALNS is fast and
outperforms the other two solution methods, while it fails at finding good solu-
tions in the larger instance. Figure 1b also shows that EPS-ALNS finds many
good solutions, but it does not explore the front for high values of α, while
HBS-ALNS finds reasonably good spread solutions along the complete Pareto
front.

We quantify this latter effect by calculating the average SP for each algo-
rithm and instance (see Fig. 2, only ECM-ALNS and HBS-ALNS are shown for
better readability). The SP indicator measures how uniformly the solutions of a
Pareto front approximation are spread (lower values are considered to be better).
Our results show that ECM-ALNS finds good spread Pareto fronts for smaller
instances (22–26), while the fronts become more sparse for larger instances (27–
39). The performance of HBS-ALNS on this indicator, however, does not depend
so strongly on the instance size, i.e. similar SP values are obtained for most
instances, and they are on average better than those of ECM-ALNS, specially
for larger instances.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

SP

instance

ECM-ALNS
HBS-ALNS

Fig. 2. Average SP obtained by ECM-ALNS and HBS-ALNS.

5 Conclusions

In this paper, we defined and solved a multi-objective vehicle routing prob-
lem with synchronization constraints at the delivery location. We proposed

Solving a MO-VRP with Synchronization Constraints 545

three methods based on single-objective neighborhood search that are embed-
ded within more general optimization frameworks for multi-objective optimiza-
tion. In particular, we used ECM, HBS, and MDLS together with two ALNS
algorithms. Experiments showed that HBS-ALNS provide the best Pareto fronts
regarding the HV , also outperforming an exact solver on small instances. Future
research should consider other quality indicators for multi-objective optimiza-
tion problems, additional analysis on how fast the methods are at finding new
solutions, tune the ALNS for the second objective in MDLS, and implement
some restart criteria to better explore the Pareto front in the ECM.

References

1. Anderluh, A., Nolz, P.C., Hemmelmayr, V.C., Crainic, T.G.: Multi-objective opti-
mization of a two-echelon vehicle routing problem with vehicle synchronization
and ‘grey zone’ customers arising in urban logistics. Eur. J. Oper. Res. 289(3),
940–958 (2021). https://doi.org/10.1016/j.ejor.2019.07.049

2. Audet, C., Bigeon, J., Cartier, D., Digabel, S.L., Salomon, L.: Performance indi-
cators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021).
https://doi.org/10.1016/j.ejor.2020.11.016

3. Eskandarpour, M., Ouelhadj, D., Hatami, S., Juan, A.A., Khosravi, B.: Enhanced
multi-directional local search for the bi-objective heterogeneous vehicle routing
problem with multiple driving ranges. Eur. J. Oper. Res. 277(2), 479–491 (2019).
https://doi.org/10.1016/j.ejor.2019.02.048

4. Haimes, Y.Y., Lasdon, L.S., Wismer, D.A.: On a bicriterion formation of the prob-
lems of integrated system identification and system optimization. IEEE Trans.
Syst. Man Cybern., 296–297 (1971). https://doi.org/10.1109/TSMC.1971.4308298

5. Jozefowiez, N., Semet, F., Talbi, E.: Multi-objective vehicle routing problems. Eur.
J. Oper. Res. 189(2), 293–309 (2008). https://doi.org/10.1016/j.ejor.2007.05.055

6. Lacomme, P., Prins, C., Sevaux, M.: A genetic algorithm for a bi-objective
capacitated arc routing problem. Comput. Oper. Res. 33(12), 3473–3493 (2006).
https://doi.org/10.1016/j.cor.2005.02.017. Part Special Issue: Recent Algorithmic
Advances for Arc Routing Problems

7. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation
scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper.
Res. 169(3), 932–942 (2006). https://doi.org/10.1016/j.ejor.2004.08.029

8. Lian, K., Milburn, A.B., Rardin, R.L.: An improved multi-directional local search
algorithm for the multi-objective consistent vehicle routing problem. IIE Trans.
48(10), 975–992 (2016). https://doi.org/10.1080/0740817X.2016.1167288

9. Liu, Q., Li, X., Liu, H., Guo, Z.: Multi-objective metaheuristics for discrete opti-
mization problems: a review of the state-of-the-art. Appl. Soft Comput. 93, 106382
(2020). https://doi.org/10.1016/j.asoc.2020.106382

10. Maltese, J., Ombuki-Berman, B.M., Engelbrecht, A.P.: A scalability study of many-
objective optimization algorithms. IEEE Trans. Evol. Comput 22(1), 79–96 (2018).
https://doi.org/10.1109/TEVC.2016.2639360

11. Mart́ı, R., Campos, V., Resende, M.G., Duarte, A.: Multiobjective GRASP with
path relinking. Eur. J. Oper. Res. 240(1), 54–71 (2015). https://doi.org/10.1016/
j.ejor.2014.06.042

https://doi.org/10.1016/j.ejor.2019.07.049
https://doi.org/10.1016/j.ejor.2020.11.016
https://doi.org/10.1016/j.ejor.2019.02.048
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1016/j.ejor.2007.05.055
https://doi.org/10.1016/j.cor.2005.02.017
https://doi.org/10.1016/j.ejor.2004.08.029
https://doi.org/10.1080/0740817X.2016.1167288
https://doi.org/10.1016/j.asoc.2020.106382
https://doi.org/10.1109/TEVC.2016.2639360
https://doi.org/10.1016/j.ejor.2014.06.042
https://doi.org/10.1016/j.ejor.2014.06.042

546 B. Sarasola and K. F. Doerner

12. Matl, P., Hartl, R.F., Vidal, T.: Leveraging single-objective heuristics to solve bi-
objective problems: Heuristic box splitting and its application to vehicle routing.
Networks 73(4), 382–400 (2019). https://doi.org/10.1002/net.21876

13. Ombuki, B.M., Ross, B., Hanshar, F.: Multi-objective genetic algorithms for vehicle
routing problem with time windows. Appl. Intell. 24(1), 17–30 (2006). https://doi.
org/10.1007/s10489-006-6926-z

14. Sarasola, B., Doerner, K.F.: Adaptive large neighborhood search for the vehicle
routing problem with synchronization constraints at the delivery location. Net-
works 75(1), 64–85 (2020). https://doi.org/10.1002/net.21905

15. Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algo-
rithm Optimization. Master’s thesis, Department of Aeronautics and Astronautics,
MIT (1995)

16. Shao, S., Xu, G., Li, M., Huang, G.Q.: Synchronizing e-commerce city logistics
with sliding time windows. Transp. Res. Part E Logist. Transp. Rev. 123, 17–28
(2019). https://doi.org/10.1016/j.tre.2019.01.007

17. Tan, K.C., Cheong, C.Y., Goh, C.K.: Solving multiobjective vehicle routing prob-
lem with stochastic demand via evolutionary computation. Eur. J. Oper. Res.
177(2), 813–839 (2007). https://doi.org/10.1016/j.ejor.2005.12.029

18. Tricoire, F.: Multi-directional local search. Comput. Oper. Res. 39(12), 3089–3101
(2012). https://doi.org/10.1016/j.cor.2012.03.010

19. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. Ph.D. thesis, Graduate School of Engineering,
Air Force Institute of Technology (1999)

20. Xu, S.X., Shao, S., Qu, T., Chen, J., Huang, G.Q.: Auction-based city logis-
tics synchronization. IISE Trans. 50(9), 837–851 (2018). https://doi.org/10.1080/
24725854.2018.1450541

21. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. Ph.D. thesis, ETH Zurich, Switzerland (1999)

https://doi.org/10.1002/net.21876
https://doi.org/10.1007/s10489-006-6926-z
https://doi.org/10.1007/s10489-006-6926-z
https://doi.org/10.1002/net.21905
https://doi.org/10.1016/j.tre.2019.01.007
https://doi.org/10.1016/j.ejor.2005.12.029
https://doi.org/10.1016/j.cor.2012.03.010
https://doi.org/10.1080/24725854.2018.1450541
https://doi.org/10.1080/24725854.2018.1450541

Air Logistics and Multi-modal
Transport

Analysis of the Impact of Physical Internet
on the Container Loading Problem

Ana Rita Ferreira1, António G. Ramos1(B) , and Elsa Silva2

1 INESC TEC and School of Engineering, Polytechnic of Porto, Porto, Portugal
agr@isep.ipp.pt

2 INESC TEC, Porto, Portugal

Abstract. In the Physical Internet supply chain paradigm, modular boxes are
one of the main drivers. The dimension of the modular boxes has already been
subject to some studies.However, the usage of amodular approach on the container
loading problemhas not been accessed. In thiswork,we aim to assess the impact of
modular boxes in the context of the Physical Internet on the optimization of loading
solutions. A mathematical model for the CLP problem is used, and extensive
computational experimentswere performed in a set of problem instances generated
considering the Physical Internet concept. From this study, it was possible to
conclude for the used instances that modular boxes contribute to a higher volume
usage and lower computational times.

Keywords: Physical internet · Modular boxes · Container loading problem

1 Introduction

“Official statistics report that in the USA, trailers are approximately 60% full when
travelling loaded” (Montreuil 2011), numbers that reflect the unsustainability in current
logistics, mainly because the number of journeys is more than necessary, which leads to
higher C02 emissions and higher costs to companies sustain. Thus, was born the Physical
Internet to solve the problems of traditional logistics and, in particular, the problem of:
“we are shipping air” (Montreuil 2011).

The Container Loading Problem (CLP) is a combinatorial optimization problem.
The objective is to pack a set of boxes into a container to maximize the occupied volume
without overlapping (Ramos et al. 2018).

The modularity of PI boxes combined with CLP models is the key to minimize
the previously mentioned problem. Landschützer et al. (2014) defines Physical Internet
boxes as a “modular set of load units forming a building block of smaller units that can be
combined manifold while respecting current sizing requirements for efficient handling
and space usage”. This type of box has great relevance because there is a significant
diversity of dimensions in the packaging (products are from different brands, and each
has distinct measures) directly associated with the inefficient use of space (Landschützer
et al. 2014).

© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 549–561, 2021.
https://doi.org/10.1007/978-3-030-87672-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_36&domain=pdf
http://orcid.org/0000-0002-0885-7792
http://orcid.org/0000-0002-6274-8095
https://doi.org/10.1007/978-3-030-87672-2_36

550 A. R. Ferreira et al.

Thiswork aims to understand how the Physical Internet can positively impact solving
the CLP, realizing the effect of modular boxes on the content occupation rate.

This work differs from the others found in the literature because it shows the
advantages of Physical Internet (the modular boxes) to obtain better solutions in the
CLP.

The Sect. 2 of the paper is dedicated to the literature review. Section 3 develops the
methodology and highlights the 3 main steps: the choice of the model and dimensions
for themodular boxes and the development of an instance generator to randomly develop
the instances used in the tests. In Sect. 4 the results obtained are presented, and in the
last Sect. 5, the conclusions are discussed.

2 Literature Review

Physical Internet (π or PI) is inspired by Digital Internet and was defined by Montreuil
(2011) and Ballot et al. (2014) as a logistical system that operates globally, combining
physical, digital and operational elements by “encapsulation”, interfaces and protocols
and by Tran-Dang et al. (2020) as having been “developed to be a global logistics system
that aims to move, handle, store, and transport logistics products in a sustainable and
efficient way”.

This paradigm shift requires several changes and has a major impact on the way
products are designed, handled, stored,manufactured anddistributed, redefiningbusiness
models and value creation (Montreuil et al. 2012; Ballot et al. 2014).

Thus, Physical Internet comes to solve the 13 problems of traditional logistics defined
by Montreuil (2011): (1) We are shipping air and packing, (2) Empty travel is the norm
rather than the exception, (3) Truckers have become the modern cowboys, (4) Products
mostly sit idle, stored where unneeded, yet so often unavailable fast where needed, (5)
Production and storage facilities are poorly used, (6) So many products are never sold,
never used, (7) Products do not reach those who need them themost, (8) Fast and reliable
intermodal transport is still a dream or a joke, (9) Getting products in through, and out
of cities is a nightmare, (10) Products unnecessarily move, crisscrossing the world, (11)
Networks are neither secure nor robust, (12) Smart automation and technology are hard
to justify and (13) Innovation is strangled.

The PI logistics system is open, global and allows standard containers to easily move
on various means of transport (Montreuil et al. 2012). Furthermore, since these networks
are collaborative, there is the aggregation of containers fromdifferent origins, optimizing
the loading and increasing the number of trips origin-destination (Montreuil et al. 2012;
Montreuil et al. 2010; Crainic & Montreuil 2016). These standardized, modular and
intelligent containers are called π-containers. They are monitored using a PI identifier
during this path, just as with data packets on the internet.

In the literature, the problem presented in this paper is the CLP and addresses the
disposal of rectangular boxes in the containerminimizing the totalwasted space, ensuring
that the boxes fit in the container and do not overlap, besides ensuring other loading
constraints (Meller et al. 2012).

The interested reader can consult important existing literature review in the CLP
field. In Zhao et al. (2016), an exhaustive comparative review of the CLP algorithms is

Analysis of the Impact of Physical Internet 551

presented, and in Bortfeldt & Wäscher (2013), a state-of-the-art review is presented for
the constraints in CLP. More recently, in Silva et al. (2019), a comparative study of the
exact methods for CLP is also presented.

For greater efficiency in optimization, it is necessary to reflect on the dimensions
of modular boxes, such as the Modulushca Project- an initiative that represents the first
genuine contribution to the development of interconnected logistics at the European
level and provides a basis for an interconnected logistics system until 2030. Regarding
the dimensions of modular boxes, the Modulushca project developed, based on the
dimensions traditionally used, such as euro, a modular platform that allows up to 440
different types of boxes. From that and to obtain amore accessible and effective solution,
Landschützer et al. (2014) suggested 5 dimensions for each of the PI boxes, present in
Fig. 1.

Fig. 1. Dimensions proposed by Landschützer et al. (2014)

3 Methodology

3.1 Model for the CLP

Several authors have studied the CLP since the 60’s and currently, there are multiple
algorithms, which can be classified according to their objective function and existing

552 A. R. Ferreira et al.

restrictions (Pisinger, 2002). The chosen model was developed by Chen et al. (1995) and
fell under the category of Multi-container loading model (Pisinger, 2002). This model is
distinguished from the others because it considers havingmultiple containers of different
dimensions.

In this work, the model of Chen et al. (1995) was adapted to respond to the objective.
Instead of having multiple containers, there is only one (j = 1), and the goal is to max-
imize the volume of boxes in it. Despite using only one container in the computational
experiments, themodel is generic and can be used for multiple containers. Consequently,
the objective function has changed. From the model adaptation, there is the objective
function present in Eq. (1) and the constraints from (2) to (20). Parameters are defined
in Table 1 and decision variables are defined in Table 2.

Table 1. Parameters of Chen et al. (1995).

Parameters Definition

I Total number of boxes to be packed

J Total number of containers available

M An arbitrarily large number

(pi, qi, ri) Parameters indicating the length, width, and height of box i
(
Lj,Wj,Hj

)
Parameters indicating the length, width, and height of container j

Table 2. Decision variables of Chen et al. (1995).

Decision
Variables

Definition

sij A binary variable equal to 1 if box i is placed in container j; otherwise it is
equal to 0

(xi, yi, zi) Continuous variables (for location) indicating the coordinates of the front-left
bottom (FLB) corner of box i

(lxi, lyi, lzi) Binary variables indicating whether the length of box i is parallel to the X-, Y-,
or Z-axis. For example, the value of lyxi is equal to 1 if the length of box i is
parallel to the X-axis; otherwise it is equal to 0

(wxi,wyi,wzi) Binary variables indicating whether the width of box i is parallel to the X-, Y-,
or Z-axis. For example, the value of wxi equals to 1 if the width of box i is
parallel to the X-axis; otherwise it is equal to 0

(
hxi, hyi, hzi

)
Binary variable indicating whether the height of box i is parallel to the X-, Y-,
or Z-axis. For example, the value of hxi is equal to 1 if the height of box i is
parallel to the X-axis; otherwise it is equal to 0

aik Binary variable indicating if box i is to the left of box k

bik Binary variable indicating if box i is to the right of box k

(continued)

Analysis of the Impact of Physical Internet 553

Table 2. (continued)

Decision
Variables

Definition

cik Binary variable indicating if box i is in front of box k

dik Binary variable indicating if box i is behind box k

eik Binary variable indicating if box i is on top of box k

fik Binary variable indicating if box i is under box k

O.F .Maximize
∑J

j=1

∑I

i=1
pi · qi · ri · sij (1)

xi + pi · lxi + qi · wxi + ri · hxi ≤ xk + (1 − aik) · M ∀i, k, i < k (2)

xk + pk · lxk + qk · wxk + rkv · hxk ≤ xi + (1 − bik) · M ∀i, k, i < k (3)

yi + pi · lyi + qi · wyi + ri · hyi ≤ yk + (1 − cik) · M ∀i, k, i < k (4)

yk + pk · lyk + qk · wyk + rk · hyk ≤ yi + (1 − dik) · M ∀i, k, i < k (5)

zi + pi · lzi + qi · wzi + ri · hzi ≤ zk + (1 − eik) · M ∀i, k, i < k (6)

zk + pk · lzk + qk · wzk + rk · hzk ≤ zi + (1 − fik) · M ∀i, k, i < k (7)

aik + bik + cik + dik + eik + fik ≥ sij + skj − 1 ∀i, k, j, i < k (8)

∑J

j=1
sij ≤ 1 ∀i (9)

xi + pi · lxi + qi · wxi + ri · hxi ≤ Lj +
(
1 − sij

) · M ∀i, j (10)

yi + pi · lyi + qi · wyi + ri · hyi ≤ Wj +
(
1 − sij

) · M ∀i, j (11)

zi + pi · lzi + qi · wzi + ri · hzi ≤ Hj +
(
1 − sij

) · M ∀i, j (12)

lxi + lyi + lzi = 1 (13)

wxi + wyi + wzi = 1 (14)

554 A. R. Ferreira et al.

hxi + hyi + hzi = 1 (15)

lxi + wxi + hxi = 1 (16)

lyi + wyi + hyi = 1 (17)

lzi + wzi + hzi = 1 (18)

lxi, lyi, lzi,wxi,wyi,wzi, hxi, hyi, hzi, aik , bik , cik , dik , eik , fik , sij, nj = 0 ou 1 (19)

xi, yi, zi ≥ 0 (20)

The objective function (1) aims to maximize the occupied volume of the container.
Constraints (2)–(8) ensure that there is no overlapping. These constraints are helpful
when comparing boxes from the same container. Constraints (9) guarantees that a box
can only be placed in one container. Constraints (10)–(12) ensure that the boxes placed
in a container fit within the physical dimensions of the container. Finally, the legitimacy
of the box rotations is ensured by the conditions from (13)–(18). The decision variables
domain is presented in constraints (19) and (20).

3.2 Boxes Dimensions Definition

Initially, measures were defined for 10 boxes so that tests could be carried out at a later
stage. It was intended that the dimensions selected were not inconsistent with the current
reality - for easier adaptation in the future - and, for this reason, the existing systems
were used to define the dimensions of the modular boxes.

Table 3 shows the measurements for each of the systems used as a reference: Galia
(GALIA), Modulushca (Landschützer et al. 2014) and EURO (Mokhlesi & Andersson
2009), as well as the similarities between them. In Table 3, it is possible to see the
dimensions selected. The criterion for their selection is the greater similarity between
the 3 systems mentioned (Table 4).

Table 3. Galia, Moduluscha and EURO dimensions in millimetres.

Galia Modulushca EURO

L W H L W L W

1200 500 500 1200 800 1200 1000

1200 500 300 800 600 1200 800

1000 600 500 600 400 800 600

(continued)

Analysis of the Impact of Physical Internet 555

Table 3. (continued)

Galia Modulushca EURO

L W H L W L W

1000 600 300 400 300 600 400

1000 400 500 300 200 400 300

1000 400 300 200 100 300 200

600 400 300

600 400 250

600 400 200

400 300 300

400 300 200

400 300 150

300 200 200

300 200 125

300 200 90

Table 4. Selected dimensions in millimetres.

L W H

1200 800 400

600 400 300

600 400 250

600 400 200

400 300 300

400 300 200

400 300 150

300 200 200

300 200 150

300 200 100

3.3 Instance Generation

The instance generator developed returned a distribution suggestion of the occupation
of the container according to the volume of the container and the desired variability of
boxes (the greater the variability of boxes, the greater the heterogeneity and vice versa).
The flowchart of the instance generator is shown in Fig. 2.

556 A. R. Ferreira et al.

It is important to note that the instance for modular and non-modular boxes is gen-
erated simultaneously because the data necessary is the same (variability and container
size).

A total of 72 instances (36 modular and 36 non-modular) were generated, the vari-
ability of boxes is in the range of 2 to 9. As for the number of boxes, there is a smaller
instance containing 30 boxes and the largest containing 138.

Although the instance generator is prepared for any container measurement, in this
study was considered a container of size 1.2m×0.8m×2.4m. Note that the dimensions
of a Euro pallet were used as container measurements because they are widely used in
practice and allow us to take advantage of a standard dimension.

Fig. 2. Instance generator

4 Results and Discussion

The computational experiments were run on “IBM ILOG CPLEX Optimization Studio
12.10.0”, using Intel Xeon Gold 6148 CPU2.40 GHz, with 96.0 GB of RAM with one
hour of time limit. The computational experimentswere performed considering two types
of instances: modular boxes and non-modular boxes. An analysis of the optimization
times, the occupied volume and the number of allocated boxes is conducted.

4.1 Comparing Modularity and Non-modularity

Each instance of modular boxes corresponds to an instance of non-modular boxes. The
only differences between both are the dimensions (length, width and height) since the
total volume, the volume of the box itself, the number of boxes and the variability are
exactly the same.

Table 5 reports the results of occupied volume and GAP (reported by IBM ILOG
CPLEX) for both scenarios.

All instances ran for 1 h (the limit) except modular instances 1 and 2, which ran for
126 s and 485 s, respectively.

Analysis of the Impact of Physical Internet 557

Table 5. Computational results

Instance Volume occupied [%] GAP [%]

Nº Total # boxes # Types of boxes Modular Non-modular Modular Non-modular

1 30 4 90,10 74,43 0,00 20,95

2 35 2 100,00 80,11 0,00 20,53

3 44 3 86,46 78,07 13,25 25,33

4 51 2 87,50 70,76 14,29 17,64

5 58 5 81,25 67,90 14,42 36,77

6 61 5 73,44 66,02 25,53 39,36

7 61 4 64,32 57,74 53,04 70,23

8 65 3 83,33 69,18 18,75 42,82

9 65 3 63,54 53,58 53,28 81,53

10 67 2 61,46 58,27 61,86 70,53

11 74 5 65,10 54,60 43,20 70,34

12 82 3 78,13 63,39 28,00 57,28

13 82 6 53,13 43,38 81,86 122,22

14 83 2 59,38 56,43 67,54 76,00

15 89 4 52,61 50,47 87,13 94,61

16 90 5 63,28 40,01 51,03 138,22

17 93 4 57,81 40,52 70,27 142,27

18 94 6 66,15 52,03 46,46 85,93

19 96 6 45,05 44,34 116,19 119,25

20 101 3 45,31 44,63 120,69 122,10

21 102 6 61,46 52,54 57,63 84,14

22 104 4 60,42 31,92 65,52 212,42

23 105 6 58,07 40,52 69,96 142,94

24 106 8 51,56 34,66 89,90 181,77

25 109 7 50,00 46,46 87,50 101,25

26 109 7 46,09 42,12 103,39 122,22

27 110 5 56,25 47,83 67,59 96,77

28 113 7 48,05 45,42 97,29 108,11

29* 120 2 45,31 49,27 120,69 102,07

30* 122 8 41,15 43,64 137,98 123,84

31 123 7 45,83 36,09 105,68 160,57

(continued)

558 A. R. Ferreira et al.

Table 5. (continued)

Instance Volume occupied [%] GAP [%]

Nº Total # boxes # Types of boxes Modular Non-modular Modular Non-modular

32* 130 7 28,13 34,53 238,89 175,43

33* 130 8 11,33 33,27 764,37 193,68

34 134 9 48,18 35,95 97,84 164,41

35 138 8 44,01 40,38 122,49 141,88

36 142 8 35,68 8,31 174,45 1075,02

The results show that 89% of the instances obtained better results with modular
boxes, with the opposite being only confirmed 4 times (instances highlighted with *).
Also noteworthy is the fact that a GAP of 0 was reached twice.

This study demonstrates that transport will be more sustainable as it is possible to
carry more volume with modular boxes.

In the particular case of 35 boxes with variability 2, when using modular boxes, it
becomes clear that there is a better use of space, allowing to transport 3 more boxes than
the instance of non-modular boxes. Figure 3.a. and Fig. 3.b. represent the organization
of modular and non-modular boxes, respectively.

Fig. 3. Represent the organization of modular (a) and non-modular (b)

4.2 The Influence of the Number of Boxes

With this study, it was also possible to better understand the relation between the number
of boxes, the volume occupied and the GAP. Figure 4 and Fig. 5 are graphics on which

Analysis of the Impact of Physical Internet 559

it is possible to observe, respectively, the relation boxes quantity – volume results and
boxes quantity – GAP. Note that in the GAP graphic (Fig. 5), the outliers were removed:
instance 33 of the modular boxes and instance 36 of the non-modular boxes.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

V
ol

um
e

O
cc

up
ie

d
[%

]

Instances
Modular Boxes Non-Modular Boxes
Linear (Modular Boxes) Linear (Non-Modular Boxes)

Fig. 4. Relation between boxes quantity and obtained volume results

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

G
A

P
[%

]

Instances

Modular Boxes Non-modular boxes
Linear (Modular Boxes) Linear (Non-modular boxes)

Fig. 5. Relation between boxes quantity and GAP

The previous figures show that the greater the number of boxes in the instance, the
more difficult it becomes for the model to obtain an optimal solution (GAP = 0%).
Consequently, the volume occupied also decreases with the increase in the number of
boxes.

560 A. R. Ferreira et al.

5 Conclusion

The developed study made it possible to understand the relation between Physical Inter-
net modular boxes and the volume efficiency of loading models. In 89% of the instances,
the modular boxes showed a higher volume efficiency than the non-modular boxes.

The quality of the results obtained is connected with the number of boxes in each
problem instance and, in the case of the modular boxes, the inability of the model to
take advantage of the geometric modularity.

Note that all conclusions drawn are valid for the chosen container measures.
The work developed supports that the Physical Internet paradigm comes to help

the transformation of traditional logistics into sustainable logistics and, in particular, to
reduce the empty space transported, making fewer trips and emitting less C02.

Future work should focus on developing a model that takes advantage of modular
relations, excluding the need for individual analysis of each box.

Acknowledgments. This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020.

References

Ballot, E., Montreuil, B., Meller, R.: The Physical Internet: The Network of Logistics Networks
(2014)

Bortfeldt, A., Wäscher, G.: Constraints in container loading – a state-of-the-art review. Eur. J.
Oper. Res. 229(1), 1–20 (2013). https://doi.org/10.1016/J.EJOR.2012.12.006

Chen, C.S., Lee, S.M., Shen, Q.S.: An analytical model for the container loading problem. Eur. J.
Oper. Res. 80(1), 68–76 (1995)

Crainic, T.G., Montreuil, B.: Physical internet enabled hyperconnected city logistics. Trans. Res.
Procedia 12, 383–398, June 2015. https://doi.org/10.1016/j.trpro.2016.02.074

Galia: Une Bonne Boite Cartonnages du Val d’Orge 91410 Dourdan Norme GALIA (Groupement
pour l’amélioration des liaisons dans l’industrie automobile), 13 May 2021. www.cartonvaldor
ge.fr

Landschützer, C., Ehrentraut, F., Jodin, D.: Modular boxes for the physical internet – technical
aspects. Literature Series - Economics and Logistics, June, 1–27 (2014)

Meller, R.D., Lin, Y.H., Ellis, K.P.: The impact of standardized metric Physical Internet containers
on the shipping volume of manufacturers. In: IFAC Proceedings Volumes, IFAC-PapersOnline,
vol. 14, Issue PART 1, IFAC (2012). https://doi.org/10.3182/20120523-3-RO-2023.00282

Mokhlesi, J., Andersson, A.: The current state and future trends in the use of pallets in distribution
systems. Logistics Manage. 19 (2009)

Montreuil, B.: Toward a physical internet: meeting the global logistics sustainability grand
challenge. Logist. Res. 3(2–3), 71–87 (2011). https://doi.org/10.1007/s12159-011-0045-x

Montreuil, B.,Meller, R.D., Ballot, E.: Towards a physical internet: the impact on logistics facilities
and material handling systems design and innovation. Prog. Mater. Handling Res., 305–327
(2010)

Montreuil, B., Rougès, J.-F., Cimon, Y., Poulin, D.: The physical internet and business model
innovation. Technol. Innov. Manag. Rev. 2(6), 32–37 (2012)

Pisinger, D.: Heuristics for the container loading problem. Eur. J. Oper. Res. 141(2), 382–392
(2002). https://doi.org/10.1016/S0377-2217(02)00132-7

https://doi.org/10.1016/J.EJOR.2012.12.006
https://doi.org/10.1016/j.trpro.2016.02.074
http://www.cartonvaldorge.fr
https://doi.org/10.3182/20120523-3-RO-2023.00282
https://doi.org/10.1007/s12159-011-0045-x
https://doi.org/10.1016/S0377-2217(02)00132-7

Analysis of the Impact of Physical Internet 561

Ramos, A.G., Silva, E., Oliveira, J.F.: A new load balance methodology for container loading
problem in road transportation. Eur. J. Oper. Res. 266(3), 1140–1152 (2018). https://doi.org/
10.1016/j.ejor.2017.10.050

Silva, E.F., Toffolo, T.A.M.,Wauters, T.: Exactmethods for three-dimensional cutting and packing:
a comparative study concerning single container problems. Comput. Oper. Res. 109, 12–27
(2019). https://doi.org/10.1016/J.COR.2019.04.020

Tran-Dang, H., Krommenacker, N., Charpentier, P., Kim, D.S.: Toward the internet of things for
physical internet: perspectives and challenges. IEEE Internet Things J. 7(6), 4711–4736 (2020)

Zhao, X., Bennell, J.A., Bektaş, T., Dowsland, K.: A comparative review of 3D container load-
ing algorithms. Int. Trans. Oper. Res. 23(1–2), 287–320 (2016). https://doi.org/10.1111/ITOR.
12094

https://doi.org/10.1016/j.ejor.2017.10.050
https://doi.org/10.1016/J.COR.2019.04.020
https://doi.org/10.1111/ITOR.12094

Applying Constraint Programming
to the Multi-mode Scheduling Problem

in Harvest Logistics

Till Bender , David Wittwer(B) , and Thorsten Schmidt

TU Dresden, Professur für Technische Logistik, 01062 Dresden, Germany
david.wittwer@tu-dresden.de

Abstract. In this paper, we present a Constraint Programming (CP)
based model for scheduling forage harvesters and transport vehicles dur-
ing corn harvest. The key aspects are the synchronization of the two
resource types and a forage harvester utilization depending on the num-
ber of transport vehicles supporting the harvester. The process is mod-
elled as a pre-emptive multi-mode resource-constraint project scheduling
problem with fast-tracking, sequence-dependent time lags and synchro-
nization. We use the specialized scheduling features of CP Optimizer for
modelling and solving the harvest logistics problem. The results show the
suitability of the CP-based approach for modelling the problem in terms
of representability of its characteristics. In computational experiments,
a solution is found for any of the test instances. Proving optimality,
however, is found to be difficult, especially for larger instances. Further
variants of the model without pre-emption and fast-tracking and with
fewer modes per activity are introduced and tested, showing improve-
ments in computation time and the number of optimal solutions found
for the prior variant.

Keywords: Harvest logistics · Constraint programming ·
Resource-constraint project scheduling

1 Introduction

This paper covers the application of constraint programming-based modelling to
a multi-mode resource constraint scheduling problem (MRCPSP) stemming from
the field of harvest logistics. It is inspired by the dispatching of forage harvesters
and transport vehicles from the view of a contractor. Varying customer demands
with high peaks, short harvest periods and strong weather dependency require
efficient use of high-priced agricultural machinery.

In the harvest process, the grain is cropped by the forage harvester and
transferred directly to the transport vehicle, driving in the field right next to the
harvester. Once the capacity of the transport vehicle is reached, it transports the
corn to a storage facility nearby. The number of transport vehicles required for
a harvester to work at full utilization depends on the capacity of the transport
c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 562–577, 2021.
https://doi.org/10.1007/978-3-030-87672-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_37&domain=pdf
http://orcid.org/0000-0001-6961-0390
http://orcid.org/0000-0001-8070-1533
http://orcid.org/0000-0002-1484-7187
https://doi.org/10.1007/978-3-030-87672-2_37

Constraint Programming in Harvest Logistics 563

vehicles, the throughput of the harvester and the distance to the storage facility.
If the number of transporters required for maximum utilization of the forage
harvester is not reached, waiting times occur, which prolong the service time
(time to harvest a single field). In this paper, instead of modelling the movement
of transport vehicles between harvester/field and storage facility explicitly, we
consider that different numbers of transport vehicles assigned to a field result in
different service times.

To meet the practical requirements of the problem, focusing on forage har-
vester utilization, we model it as a pre-emptive MRCPSP with fast-tracking,
sequence-dependent setup times and synchronization of two resource types. The
MRCPSP is time-based and consists of activities performed by limited resources
[15]. The duration of an activity depends on the mode in which it is performed.
The mode of an activity is determined by the resources used. An activity repre-
sents either harvesting a field or supporting a harvester. In the presented prob-
lem, the mode corresponds to the number of transport vehicles supporting a
forage harvester. The aim is to find a schedule for these activities such that the
harvest is completed in the shortest time possible (makespan) with a given set
of resources (forage harvesters and transport vehicles) and tasks (fields). Con-
sidering pre-emptive activities with fast-tracking refers to a relaxation of the
classic resource-constraint project scheduling problem where activities are split
into subactivities that can be executed independently (parallel, iteratively or
overlapping) [16]. We use this variant to model several harvesters working inde-
pendently from each other at the same field. In this model a harvester cannot
return to a field visited before. Thus, in case of pre-emption, a different harvester
will finish the harvest of that field. Since the harvest process requires both for-
age harvesters and transport vehicles, vehicles are synchronized to service a field
simultaneously. The number of transport vehicles supporting a forage harvester
determines the mode and thus the service time required to harvest a field. In
addition, to account for transfer times between fields, we implement sequence-
dependent time lags where the length of the time lags corresponds to the travel
times between fields.

We formulate the problem described in this article as a constraint program-
ming (CP) problem as the application of CP to scheduling problems has shown
promising results in recent years. [18] and [12] applied CP and mixed integer
programming (MIP) to scheduling problems of an operating theatre and a semi-
conductor fabrication plant, respectively. When minimizing the makespan, CP
outperforms MIP in both studies regarding the objective function value, but
fails to prove optimality in most cases. Laborie [9] proved the superiority of CP
to various optimization techniques for a resource allocation problem. The liter-
ature presented shows that CP can be advantageous over MIP, but it does not
demonstrate a general superiority of this method. Nevertheless, it encourages us
to solve the problem at hand with CP. In this study we use the IBM ILOG CP
Optimizer to address the scheduling problem of forage harvesters and transport
vehicles.

564 T. Bender et al.

Various aspects of agricultural machinery management and biomass logistics
have already been studied. For an overview of these topics, we refer to Bochtis
et al. [4] and Zhai et al. [20]. We briefly describe a few relevant examples of this
vast field in the following. Basnet et al. [2] developed an integer programming
model to schedule the harvest of rape seed at various farms. To solve greater
instances a heuristic approach was developed. Guan et al. [7] use a two-phase
meta-heuristic to calculate a schedule with a high resource utilization ratio in
sugarcane production. El Hachemi et al. [6] apply CP to a synchronized log-truck
scheduling problem, where the operations of both vehicles types are synchronized
regarding temporal and spacial aspects. Bochtis et al. [3] formulate the problem
of handling several sequential biomass operations on geographically dispersed
fields as a flow shop problem with the aim of optimizing the makespan while
incorporating predicted task times. Their approach was extended by Orfanou
et al. [13], allowing multiple machinery types per operation type. Aguayo et al.
[1] present a mixed integer programming model for scheduling the corn stover
collection by two types of harvesters. A static and a dynamic variant, where
demands are added over time, were developed. They greatly improve the objec-
tive value and decrease the optimality gap by passing a solution calculated by
a simplified model. Lin et al. [11] present a mixed-integer linear programming
problem for scheduling the distribution of perishable goods, considering real-
time quality information. He et al. [8] present a MIP-Model and a heuristic
approach, to schedule combine harvesters taking into account a measurement of
fairness between combine harvester owners. Transport vehicles though are not
considered.

Although a vast range of problems were introduced and various methods have
been applied in the fields of agricultural machinery management and biomass
logistics, CP has not been applied to solve the MRCPSP to dispatch forage
harvesters and transport vehicles in the harvest process. We make the following
contributions to address this gap:

1. We apply CP to solve a MRCPSP to minimize the harvest makespan of
forage harvesters and transport vehicles with focus on the utilization rate of
the forest harvesters.

2. We show the applicability of the model to problem sizes of practical relevance
in computational experiments.

3. We present model variants and show the beneficial influence for greater
instances on computation time and makespan of the variant without fast-
tracking and pre-emption compared to the standard model and the variant
with only two available modes.

The remainder of this paper is structured as follows. We present a CP model
of the harvest process by forage harvesters and transport vehicles as MRCPSP in
Sect. 2. Section 3 contains computational experiments and discussions regarding
the model introduced in this paper and its variants. Finally, we summarize the
presented work and give an outlook on future work in Sect. 4.

Constraint Programming in Harvest Logistics 565

2 Problem

In this section, we first present the assumptions made in modeling the harvest
logistics problem. Then a CP model is proposed and its constraints are explained
in detail.

2.1 Assumptions

The harvest logistics described in Sect. 1 is modelled as a pre-emptive MRCPSP
with fast-tracking and synchronization. The dimension used is time in minutes.
To account for travel times between fields, we introduce sequence-dependent time
lags. We make the following assumptions on the operations of forage harvesters
and transport vehicles:

– Each vehicle starts and ends at the depot.
– Harvesting a field requires one harvester and at least one transport vehicle.
– The harvesters are heterogeneous in terms of throughput of corn harvested

per time unit while the fleet of transport vehicles is homogeneous.
– The amount of transport vehicles supporting a forage harvester corresponds

to the mode a field is serviced in. Additional transport vehicles decrease the
service time at a field due to a higher utilization of the forage harvester,
until a harvester- and field-specific maximum of transport vehicles is reached.
The number of transport vehicles at a field and its service time are inversely
proportional.

– Multiple forage harvesters can service a field independently (simultaneously,
iteratively or overlapping).

– A harvester can visit a field not more than once. Thereby we reduce the
number of variables and exclude solutions that are very unlikely to be optimal.

– The minimum service time at a field is 10 min to meet the requirements of a
practical application.

Figure 1 illustrates an optimal solution to the model for an examplary
instance. It shows that minimizing the makespan requires the harvest of field
1 to be split into two parts. While harvester k2 harvests field 1 at the beginning
of the schedule and leaves before it is finished, harvester k1 finishes harvesting
the field at the end of the schedule. Furthermore, transport vehicle l1 switches
from harvester k2 to harvester k1 when traversing from field 3 to field 4. Gaining
an additional transport vehicle enables harvester k1 to harvest fields 4 and 1 in
a higher mode and thus in less time.

2.2 Model

To model the problem, the scheduling concepts of CP Optimizer are used, includ-
ing interval and sequence variables and associated constraints.1

1 For further information about the concepts available in CP Optimizer see [10].

566 T. Bender et al.

1

2

3

4

5

depot

k1 5 4 1

k2 1 3 2

l1 3 4 1

l2 5 4 1

l3 1 3 2

l4 1 2

l5 5 4 1

Fig. 1. Representation of an optimal solution of an instance with five fields, two har-
vesters (k1, k2) and five transport vehicles (l1, l2, l3, l4, l5) as graph and Gantt-Chart

Activities are defined as a set N := {1, . . . , f} with f being the number of
customer fields. The set V = {0} ∪ N ∪ {f + 1} represents the customer fields
including the start and end of each vehicle’s trip, the depot. Splitting the depot
into a start and end point facilitates modelling and is a common technique when
modelling scheduling problems. K is the set of forage harvesters, L is the set of
transport vehicles.

Activities are modelled as optional interval variables. An interval variable in
CP Optimizer has a start time value (start), as well as an end time value (end)
with a length = end − start. An interval variable can be optional to model a
task or an activity which is not necessarily executed [10]. This is useful because
a vehicle might only visit some of the fields. The decision variables used in the
model can be found in Table 1. A minimal duration of 10 min for each interval
except for the ones representing the start and end of the schedule is defined to
prevent short impracticable stops at a field.

The number of transport vehicles necessary for harvester k to work at its
optimal utilization on field i is given by mopt

ik . In this paper we assume that the
relation between service time and the number of transport vehicles supporting
a harvester is inversely proportional.

Constraint Programming in Harvest Logistics 567

Table 1. Decision variables used in the CP model

Variable Variable type Explanation

mik Integer Mode that harvester k works in at field i (this
corresponds to the number of transport vehicles
supporting a harvester)

haik Interval Duration for which harvester k services field i. The
intervals for the depot are dummy variables with a
duration of 0 defined as ha0,k and haf+1,k ∀k ∈ K

tvaikl Interval Duration for which transport vehicle l supports
harvester k at field i. The intervals for the depot are
dummy variables with a duration of 0 and k = 0
defined as tva0,0,l and tvaif+1,0,l ∀l ∈ L

hrk Sequence Contains the interval variables of harvester k. It
contains the order of the interval variables i.e. the
route of a harvester

tvrl Sequence Contains the interval variables of transport vehicle l.
It contains the order of the interval variables i.e. the
route of a transport vehicle

The interval variables for each vehicle are grouped as a sequence variable. A
sequence variable contains interval variables. The solution to a sequence variable
contains the order of the associated interval variables. It therefore represents
the route that a vehicle takes during the schedule. A transition matrix can
be assigned to sequence variables, defining time lags between each interval in
the sequence. Transition matrix Th contains the transition times thi,j defining
the time that harvesters need to travel from field i to field j (or depot). The
transition matrix T tv for transport vehicles is composed similarly.

The objective of the model is to minimize the duration of the harvest process.
This results in the following objective function:

minimize
(
max(endOf (haf+1,k) ∀k ∈ K)

)
(1)

The objective function (1) minimizes the maximum of the end of the interval
variables haf+1,k for every harvester. The interval variable haf+1,k represents
the last activity of a schedule, the return to the depot. Thus, the arrival time
at the depot of the latest forage harvester, i.e. the makespan, is minimized. The
minimization of the makespan ensures an even distribution of workload between
the harvesters.

Subject to the assumptions stated above, the constraints are as follows:

noOverlap(hrk, Th) ∀k ∈ K (2)

noOverlap(tvrl, T tv) ∀l ∈ L (3)

first(hrk, ha0,k) ∀k ∈ K (4)

568 T. Bender et al.

first(tvrl, tva0,0,l) ∀l ∈ L (5)

last(hrk, haf+1,k) ∀k ∈ K (6)

last(tvrl, tvaf+1,0,l) ∀l ∈ L (7)

endOf (tvaf+1,0,l) ≤ max(endOf (haf+1,k,0) ∀k ∈ K) ∀l ∈ L (8)

alternative(haik, (tvaikl ∀l ∈ L),mik) ∀i ∈ V,∀k ∈ K (9)
∑

k∈K

size(haik) · tpk · mik

mopt
ik

≥ yieldi ∀i ∈ N (10)

∑

k∈K

presenceOf (haik) ≥ 1 ∀i ∈ N (11)

Constraints (2) and (3) use the noOverlap() constraint featured in CP Opti-
mizer. It ensures that the activities of a route of a vehicle cannot overlap. The
constraints take the transition matrices Th and T tv as an argument, declaring
that the time between two intervals is greater than or equals time given by the
respective time in the transition matrix.

The depot is always the start of a schedule. The constraints (4) and (5)
enforce the intervals ha0,k and tva0,0,l to be ordered as the first interval in the
respective sequences hrk and tvrl. While the constraints do not affect the start
or end time of the intervals, they ensure that no interval can be sequenced before
the start intervals. The end of a sequence at the depot is modeled similarly by
constraints (6) and (7).

In the objective function, the end of the harvesters’ sequences is minimized.
The end of the transport vehicles’ sequences is not restricted. To limit the
search space, constraints (8) are introduced. They define that a transport vehi-
cle’s schedule ends before or with the maximum of the end of the harvesters’
sequences. This constraint is modelled under the consideration that the driving
speed of the harvesters is less than or equal to the driving speed of the transport
vehicles. In practice, this is usually the case.

Synchronization of the two vehicle types is one of the key aspects of the
model. The constraints (9) ensure that for every present harvester activity haik
exactly mik transporter activities from the tuple (tvaikl ∀l ∈ L) are present. The
constraints also ensure that the activities of the harvester and the transport
vehicles start and end at the same time. The number of transport vehicles to be
synchronized corresponds to the mode that the harvester is working in.

The amount of biomass harvested from a field i is called yieldi and mainly
depends on the field size. To schedule the time of an activity at a field depending
on the yield and to guarantee that all fields are harvested, the constraints (10)
and (11) are introduced. Constraints (10) ensure that the harvested amount of
corn of each field corresponds to the yield of the field. The constant tpk represents
the maximum throughput of a harvester when harvesting a field. Depending on
the mode that the harvester is working in, the throughput is reduced by factor
mik

mopt
ik

. The product of the interval’s size and throughput can be larger than the
yield of the field, due to both factors being discrete. This might lead to slightly

Constraint Programming in Harvest Logistics 569

longer durations of activities than necessary but can be neglected due to the
length of the intervals being modeled in minutes. Constraints (11) ensure that
each field is harvested by at least one harvester. Changing it to an equality
disables pre-emption and fast-tracking of activities.

3 Computational Experiments

In this section, the general setting of the studies is presented and major find-
ings are outlined. The complete results of the computational experiments are
summarized in Appendix A.

3.1 Setting and Test Instances

The model is tested on instances2 defined by the number of fields, the number
of harvesters and the number of transport vehicles. We generate instances for 4,
6, 8, 10, 12, 14 and 16 fields. Instances with greater field numbers include the
same fields as smaller instances. For each number of fields we vary the number
of harvesters and transport vehicles as presented in Table 2.

Table 2. Transport vehicle number per harvester

Harvesters 2 3 4

Transp. Veh. 4 5 6 7 6 7 8 9 8 9 10 11

The field locations are randomly distributed on a 50 × 50 km plane. The
transition times of harvesters and transport vehicles between the fields corre-
spond to the euclidean distances between the fields and a constant velocity for
both vehicle types of 30 km h−1. Field sizes range from 1 to 8 ha according to
field sizes common in Bavaria, Germany [19]. The yield of a field is calculated
using its size and an average yield of 38.44 t ha−1 [14]. The throughput of the
harvesters ranges between 0.5 · tp and 1.5 · tp with tp = 81 t h−1 [5].

All instances are solved with a time limit of 1200 s. The time limit of 20 min
is chosen to represent a practical case where results are needed within a short
time due to the necessity to adapt to changes at short notice. If the time limit
is reached, the gap as relative difference between upper bound (best solution
found) and lower bound (computed e.g. by linear relaxation of the model [17])
is returned. The tests are conducted on a system with an AMD Ryzen 7 4750u
processor with 8 Cores, a base clock of 1.7 GHz and 16 GB of RAM. We use
IBM ILOG CP Optimizer Version 12.10 via its Python API and its default
configuration. The number of threads used in CP Optimizer is set to 8.

2 The instances are available for download at https://tud.link/47mz.

https://tud.link/47mz

570 T. Bender et al.

3.2 Influence of the Number of Forage Harvesters and Transport
Vehicles on the Makespan

The runtime to optimality, the gap and the resulting makespan were monitored
during the tests. A solution was found to any of the 84 test instances of the
standard variant, while 14 of the solutions were proved to be optimal. An initial
solution was found quickly, even for large instances. It took 32.27 s on average
to find a solution for instances with 16 fields with a gap of 96.96% on average.

Table 3. Average makespan, gap and runtime for a given number of fields

#Fields Makespan Gap [%] Runtime [s] #Optimality

4 326.3 2.9 259.0 11/12

6 481.9 21.2 976.7 3/12

8 537.9 45.6 1200.0 0/12

10 609.3 52.7 1200.0 0/12

12 684.4 61.6 1200.0 0/12

14 808.7 69.2 1200.0 0/12

16 1042.3 78.0 1200.0 0/12

Table 3 shows the average of makespan, gap and runtime for all instances
with the same number of fields. Although a feasible solution is usually found in

4-
2-
04

4-
2-
05

4-
2-
06

4-
2-
07

4-
3-
06

4-
3-
07

4-
3-
08

4-
3-
09

4-
4-
08

4-
4-
09

4-
4-
10

4-
4-
11

6-
2-
04

6-
2-
05

6-
2-
06

6-
2-
07

6-
3-
06

6-
3-
07

6-
3-
08

6-
3-
09

6-
4-
08

6-
4-
09

6-
4-
10

6-
4-
11

8-
2-
04

8-
2-
05

8-
2-
06

8-
2-
07

8-
3-
06

8-
3-
07

8-
3-
08

8-
3-
09

8-
4-
08

8-
4-
09

8-
4-
10

8-
4-
11

0
20

0
40

0
60

0
80

0

Instances

M
ak

es
pa

n
(m

in
)

Fig. 2. Calculated makespan of instances with 4, 6 and 8 fields for different numbers
of forage harvesters and transport vehicles

Constraint Programming in Harvest Logistics 571

a short time, the computation time and gap increase rapidly with an increasing
number of fields. No instance with 8 or more nodes could be solved optimally
within the given time limit.

The influence of additional forage harvesters and transport vehicles on the
makespan for instances with 4, 6 and 8 fields is presented in Fig. 2. Here, 4-2-05
describes an instance of four fields, two forage harvesters and five transport
vehicles. The figure illustrates that additional transport vehicles shorten the
makespan until the maximum utilization of the harvesters is reached. At this
point, an additional transport vehicle cannot shorten the makespan any further.
Similarly, the effect of an additional forage harvester on the makespan is affected
by the number of transport vehicles. When the number of transport vehicles is
larger, the benefit of an additional forage harvester is greater than when the
number of transport vehicles is smaller. In general, it can be concluded that the
reduction of makespan ist greater, when relatively scarce resources are added.
This pattern can be observed for optimal and non-optimal solutions with up to
12 fields. For instances with 14 and more fields, deviations occur because the
best solutions found within the time limit of some instances deviate strongly
from the optimal solution.

3.3 Analysis of Model Variants

Even though for the objective of minimizing the makespan CP usually manages
to find solutions faster than MIP, it often fails to prove optimality, terminating
with a great gap. Thus, we introduce two variants in addition to the standard
variant to address this issue. In the analysis of the variants, the changes in
makespan and computation time are investigated. In the first variant, we reduce
the amount of modes to two, only allowing forage harvesters to work in both
of their most efficient modes (dual mode). By this, the minimum number of
transport vehicles required to harvest a field is increased. In the second variant
activity pre-emption and fast-tracking are removed, so each field is visited once
by exactly one harvester. As this prevents harvest activities on the fields to be
split, this will be called the variant with no split for the remainder of the paper.
The number of optimal solutions and the average makespan, gap and compu-
tation time are summarized in Table 4. The dual mode variant shows similar
results as the original model. Of the 84 instances, 13 were solved to optimality.
On average, the makespan is slightly shorter in the dual mode variant compared
to the standard variant. In terms of gap and runtime however, the standard
variant shows slightly better results. The small differences in computation time
suggest that a high mode was already frequently selected in the original model
and lower modes were very quickly excluded by the solution algorithm.

In the tests of the variant without splits 56 of the 84 instances could be
solved optimally. Since in this variant the service times are only determined
by the number of transporters and can no longer be split arbitrarily between
different forage harvesters, the solution space is greatly reduced. The standard
model is a relaxation of the model without splits. Thus, the optimal solution
of the standard model is at least as good as the optimal solution of the variant

572 T. Bender et al.

without splits. However, the solution space is so much larger that the simplified
variant gives better results for 35 of the 36 instances with 12 or more fields.

Table 4. Comparison of the model variants regarding number of instances solved
optimally, average makespan, gap and computation time

Variant #Optimality Average of

Makespan Gap [%] Runtime [s]

Standard 14/84 641.6 47.3 1033.7

Dual mode 13/84 639.1 47.9 1037.3

No split 56/84 622.3 19.9 444.8

Figure 3 shows the relative difference in makespan of the two additional vari-
ants compared to the standard variant per field and harvester combination.
While the standard and dual mode variant have very similar results on average,
the makespan of the model without splits is longer for smaller instances. On the
contrary, for instances with more fields this variant results in shorter makespans.
For larger instances, not using splits leads to better results in terms of makespan.
Some smaller, non-optimal solutions have a shorter makespan in the standard
variant compared to optimal solutions in the variant without splits, This could
indicate that the solution is the optimal solution or close to it.

4/
2

4/
3

4/
4

6/
2

6/
3

6/
4

8/
2

8/
3

8/
4

10
/2

10
/3

10
/4

12
/2

12
/3

12
/4

14
/2

14
/3

14
/4

16
/2

16
/3

16
/4

−2
0%

0%
20

%

re
la
ti
ve

m
ak

es
pa

n
ch

an
ge

Dual mode
No split

Fig. 3. Relative change in average makespan for the additional variants compared to
the standard variant

Constraint Programming in Harvest Logistics 573

4 Conclusion

In this paper, we present a CP formulation of the pre-emptive MRCPSP with
fast-tracking, sequence-dependent time lags and synchronization in the field of
harvest logistics. The focus lies on the utilization rate of forage harvesters influ-
enced by the number of transport vehicles supporting it. Instances with various
numbers of vehicles are examined to investigate the effect of additional forage
harvesters or transport vehicles. We show that even for larger instances, good
solutions could be found with CP in reasonable computation times. However, for
most instances optimality could not be proved, terminating with a great gap.
Therefore, two variants were introduced with the goal to shrink the solution
space and obtain shorter computation times.

In the first variant, we increase the minimum number of transport vehicles
needed to process a field. This reduces the number of modes in which a field can
be processed by a forage harvester. However, our computational experiments
show that reducing the modes to this extent does not significantly affect the
computation time. In the second variant, in which pre-emption and fast-tracking
are omitted, i.e. each field is visited once by exactly one forage harvester, a much
larger part of the instances is solved optimally. Future work could include further
simplified variants of the models presented in this paper to generate a starting
point for instances with higher field numbers.

Experiments with greater computation time lead to slightly shorter
makespan. But as short runtimes are a requirement to enable quick replan-
ning due to uncertainties in terms of weather conditions or machine failure, the
use of a computer with higher computing power is recommended. In additional
experiments a simple symmetry breaking constraint (assignment of the furthest
field to one of the transport vehicles) helped to find slightly better solutions in
the given maximum runtime. Therefore, further research on more sophisticated
symmetry breaking constraints is encouraged.

For practical application, additional constraints that take into account, e.g.,
the place and time for a lunch break or a preference in the order of fields to be
harvested, should be considered.

Acknowledgments. The work was carried out as a part of the IGF research project
19509 BR “Landwirtschaftslogistik” (Logistikdienstleistungen in der Landwirtschaft -
Aufträge sicherer und ressourcenoptimal planen) and supported by “Bundesvereinigung
Logistik (BVL) e.V.”.

A Appendix

(See Table 5).

574 T. Bender et al.

Table 5. Overview of the objective value (OV), computation time (Time), and gap
at termination (Gap) for a given number of fields |N |, number of forage harvesters |K|
and number of transport vehicles |L|.

|N| |K| |L| Standard Dual mode No split

OV Time [s] Gap [%] OV Time [s] Gap [%] OV Time [s] Gap [%]

4 2 4 490 11.4 0.0 490 0.3 0.0 490 15.9 0.0

5 440 1.7 0.0 474 0.2 0.0 440 1.3 0.0

6 440 1.6 0.0 474 0.2 0.0 440 1.2 0.0

7 440 1.7 0.0 474 0.2 0.0 440 1.7 0.0

3 6 321 774.6 0.0 321 0.7 0.0 321 727.1 0.0

7 288 18.1 0.0 305 0.3 0.0 288 19.6 0.0

8 285 2.9 0.0 285 0.1 0.0 285 3.0 0.0

9 285 2.5 0.0 285 0.2 0.0 285 3.4 0.0

4 8 245 1200.0 34.7 269 2.1 0.0 245 1200.0 34.7

9 233 891.7 0.0 253 0.2 0.0 233 1200.0 29.6

10 227 191.2 0.0 253 0.2 0.0 227 195.4 0.0

11 222 11.0 0.0 253 0.3 0.0 222 30.1 0.0

6 2 4 728 1200.0 41.8 753 1.3 0.0 728 1200.0 37.8

5 664 287.9 0.0 679 0.7 0.0 664 296.5 0.0

6 664 289.9 0.0 679 0.7 0.0 664 298.0 0.0

7 664 342.2 0.0 679 0.8 0.0 664 339.0 0.0

3 6 464 1200.0 35.1 478 6.0 0.0 458 1200.0 35.8

7 434 1200.0 23.3 453 2.1 0.0 431 1200.0 17.6

8 434 1200.0 21.4 453 2.2 0.0 427 1200.0 18.3

9 431 1200.0 22.3 453 2.5 0.0 427 1200.0 21.6

4 8 349 1200.0 49.3 351 7.9 0.0 352 1200.0 49.7

9 325 1200.0 24.3 340 6.5 0.0 333 1200.0 37.8

10 314 1200.0 17.5 325 0.6 0.0 329 1200.0 31.9

11 312 1200.0 19.2 325 0.5 0.0 312 1200.0 18.6

8 2 4 817 1200.0 52.8 832 15.4 0.0 817 1200.0 40.3

5 757 1200.0 50.6 754 1.9 0.0 737 1200.0 44.4

6 737 1200.0 40.0 754 1.8 0.0 737 1200.0 30.4

7 737 1200.0 34.7 754 5.1 0.0 737 1200.0 36.6

3 6 536 1200.0 51.9 510 48.3 0.0 512 1200.0 49.4

7 474 120000 44.5 489 2.7 0.0 474 1200.0 44.3

8 469 1200.0 37.1 489 2.7 0.0 469 1200.0 39.9

9 469 1200.0 30.1 489 5.6 0.0 469 1200.0 43.3

4 8 385 1200.0 54.0 390 1200.0 54.6 385 1200.0 54.0

9 369 1200.0 52.0 366 189.1 0.0 367 1200.0 51.8

10 358 1200.0 50.6 343 11.9 0.0 340 1200.0 47.9

11 347 1200.0 49.0 343 3.8 0.0 359 1200.0 50.7

10 2 4 939 1200.0 52.7 939 384.4 0.0 939 1200.0 57.4

5 835 1200.0 42.4 856 3.9 0.0 834 1200.0 53.5

6 834 1200.0 41.7 856 3.0 0.0 835 1200.0 46.4

7 834 1200.0 41.9 856 3.1 0.0 834 1200.0 44.8

3 6 593 1200.0 63.7 591 1200.0 60.9 593 1200.0 63.7

7 550 1200.0 60.9 538 41.7 0.0 535 1200.0 59.8

8 531 1200.0 50.1 533 1200.0 11.6 544 1200.0 52.0

9 533 1200.0 49.7 533 7.5 0.0 528 1200.0 48.3

4 8 442 1200.0 60.0 447 1200.0 60.4 437 1200.0 59.5

9 425 1200.0 58.4 410 1200.0 56.8 417 1200.0 57.6

10 401 1200.0 55.9 384 1200.0 53.9 396 1200.0 55.3

11 395 1200.0 55.2 377 352.7 0.0 374 1200.0 52.7

(continued)

Constraint Programming in Harvest Logistics 575

Table 5. (continued)

|N| |K| |L| Standard Dual mode No split

OV Time [s] Gap [%] OV Time [s] Gap [%] OV Time [s] Gap [%]

12 2 4 1046 1200.0 69.3 1045 1200.0 35.3 1056 1200.0 70.1

5 960 1200.0 52.9 923 4.0 0.0 923 1200.0 61.5

6 946 1200.0 53.8 923 4.2 0.0 923 1200.0 51.3

7 945 1200.0 56.4 923 6.4 0.0 923 1200.0 56.5

3 6 677 1200.0 68.2 645 1200.0 65.4 672 1200.0 68.0

7 601 1200.0 64.2 593 1200.0 54.5 601 1200.0 64.2

8 601 1200.0 64.2 577 18.0 0.0 604 1200.0 64.4

9 581 1200.0 63.0 577 15.9 0.0 577 1200.0 62.7

4 8 512 1200.0 65.4 490 1200.0 63.9 520 1200.0 66.0

9 474 1200.0 62.7 449 1200.0 60.6 472 1200.0 62.5

10 453 1200.0 60.9 426 1200.0 58.5 434 1200.0 59.2

11 417 1200.0 57.6 413 197.7 0.0 420 1200.0 57.9

14 2 4 1219 1200.0 72.0 1217 1200.0 46.8 1209 1200.0 73.1

5 1073 1200.0 64.8 1069 37.0 0.0 1069 1200.0 64.0

6 1093 1200.0 63.7 1069 137.2 0.0 1122 1200.0 68.1

7 1093 1200.0 70.3 1069 194.1 0.0 1093 1200.0 70.3

3 6 757 1200.0 71.6 767 1200.0 70.9 819 1200.0 73.8

7 699 1200.0 69.2 676 1200.0 65.5 702 1200.0 69.4

8 669 1200.0 67.9 657 228.9 0.0 702 1200.0 69.4

9 732 1200.0 70.6 657 195.8 0.0 668 1200.0 67.8

4 8 637 1200.0 72.2 544 1200.0 67.5 593 1200.0 70.2

9 621 1200.0 71.5 525 1200.0 66.3 551 1200.0 67.9

10 534 1200.0 66.9 491 1200.0 64.0 500 1200.0 64.6

11 577 1200.0 69.3 466 285.8 0.0 484 1200.0 63.4

16 2 4 1546 1200.0 78.9 1490 1200.0 59.6 1646 1200.0 80.1

5 1320 1200.0 74.4 1289 1200.0 27.4 1315 1200.0 73.6

6 1272 1200.0 72.7 1259 607.9 0.0 1271 1200.0 74.3

7 1280 1200.0 74.0 1259 709.5 0.0 1243 1200.0 66.2

3 6 1434 1200.0 95.8 949 1200.0 76.5 1038 1200.0 79.0

7 910 1200.0 76.0 860 1200.0 74.1 901 1200.0 75.8

8 865 1200.0 74.8 775 1200.0 67.4 945 1200.0 76.9

9 1121 1200.0 94.6 749 1200.0 63.4 1168 1200.0 94.8

4 8 780 1200.0 77.3 685 1200.0 74.2 1092 1200.0 96.2

9 793 1200.0 77.7 647 1200.0 72.6 695 1200.0 74.5

10 603 1200.0 70.7 602 1200.0 70.6 734 1200.0 75.9

11 583 1200.0 69.6 577 1200.0 69.3 623 1200.0 71.6

References

1. Aguayo, M.M., Sarin, S.C., Cundiff, J.S., Comer, K., Clark, T.: A corn-stover har-
vest scheduling problem arising in cellulosic ethanol production. Biomass Bioenergy
107, 102–112 (2017). https://doi.org/10.1016/j.biombioe.2017.09.013

2. Basnet, C.B., Foulds, L.R., Wilson, J.M.: Scheduling contractors’ farm-to-farm
crop harvesting operations. Int. Trans. Oper. Res. 13(1), 1–15 (2006). https://doi.
org/10.1111/j.1475-3995.2006.00530.x

3. Bochtis, D., Dogoulis, P., Busato, P., Sørensen, C., Berruto, R., Gemtos, T.: A
flow-shop problem formulation of biomass handling operations scheduling. Comput.
Electron. Agric. 91, 49–56 (2013). https://doi.org/10.1016/j.compag.2012.11.015

https://doi.org/10.1016/j.biombioe.2017.09.013
https://doi.org/10.1111/j.1475-3995.2006.00530.x
https://doi.org/10.1111/j.1475-3995.2006.00530.x
https://doi.org/10.1016/j.compag.2012.11.015

576 T. Bender et al.

4. Bochtis, D.D., Sørensen, C.G., Busato, P.: Advances in agricultural machinery
management: a review. Biosyst. Eng. 126, 69–81 (2014). https://doi.org/10.1016/
j.biosystemseng.2014.07.012

5. Döring, G., Schilcher, A., Strobl, M., Schleicher, R., Seidl, M., Mitterleitner, J.:
Verfahren zum Transport von Biomasse. Tech. rep, Biogas Forum Bayern, Freising
(2010)

6. El Hachemi, N., Gendreau, M., Rousseau, L.M.: A hybrid constraint programming
approach to the log-truck scheduling problem. Ann. Oper. Res. 184(1), 163–178
(2011). https://doi.org/10.1007/s10479-010-0698-x

7. Guan, S., Nakamura, M., Shikanai, T., Okazaki, T.: Resource assignment and
scheduling based on a two-phase metaheuristic for cropping system. Comput. Elec-
tron. Agric. 66(2), 181–190 (2009). https://doi.org/10.1016/j.compag.2009.01.011

8. He, P., Li, J., Wang, X.: Wheat harvest schedule model for agricultural machin-
ery cooperatives considering fragmental farmlands. Comput. Electron. Agric. 145,
226–234 (2018). https://doi.org/10.1016/j.compag.2017.12.042

9. Laborie, P.: An update on the comparison of MIP, CP and hybrid approaches for
mixed resource allocation and scheduling. In: van Hoeve, W.J. (ed.) Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, vol.
10848, pp. 403–411. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
319-93031-2 29

10. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP optimizer for schedul-
ing. Constraints 23(2), 210–250 (2018). https://doi.org/10.1007/s10601-018-9281-
x

11. Lin, X., Negenborn, R.R., Duinkerken, M.B., Lodewijks, G.: Quality-aware mod-
eling and optimal scheduling for perishable good distribution networks: the case of
banana logistics. In: Bekta?, T., Coniglio, S., Martinez-Sykora, A., Voß, S. (eds.)
Computational Logistics, vol. 10572, pp. 483–497. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-68496-3 32

12. Maleck, C., Nieke, G., Bock, K., Pabst, D., Stehli, M.: A comparison of an CP
and MIP approach for scheduling jobs in product areas with time constraints and
uncertainties. In: 2018 Winter Simulation Conference (WSC), pp. 3526–3537. IEEE
(2018). https://doi.org/10.1109/WSC.2018.8632404

13. Orfanou, A., et al.: Scheduling for machinery fleets in biomass multiple-field
operations. Comput. Electron. Agric. 94, 12–19 (2013). https://doi.org/10.1016/
j.compag.2013.03.002

14. Statistisches Bundesamt: Anbauflächen, Hektarerträge und Erntemengen
ausgewählter Anbaukulturen im Zeitvergleich. https://www.destatis.de/DE/
Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/
Feldfruechte-Gruenland/Tabellen/liste-feldfruechte-zeitreihe.html

15. Talbot, F.B.: Resource-constrained project scheduling with time-resource tradeoffs:
the nonpreemptive case. Manag. Sci. 28(10), 1197–1210 (1982). https://doi.org/
10.1287/mnsc.28.10.1197

16. Vanhoucke, M., Debels, D.: The impact of various activity assumptions on the lead
time and resource utilization of resource-constrained projects. Comput. Ind. Eng
54(1), 140–154 (2008). https://doi.org/10.1016/j.cie.2007.07.001

17. Viĺım, P.: Re: solucion gap (2020). https://community.ibm.com/
community/user/datascience/communities/community-home/digestviewer/
viewthread?MessageKey=7fba1844-472c-4704-9500-f60737306084&
CommunityKey=ab7de0fd-6f43-47a9-8261-33578a231bb7&tab=digestviewer#
bm7fba1844-472c-4704-9500-f60737306084

https://doi.org/10.1016/j.biosystemseng.2014.07.012
https://doi.org/10.1016/j.biosystemseng.2014.07.012
https://doi.org/10.1007/s10479-010-0698-x
https://doi.org/10.1016/j.compag.2009.01.011
https://doi.org/10.1016/j.compag.2017.12.042
https://doi.org/10.1007/978-3-319-93031-2_29
https://doi.org/10.1007/978-3-319-93031-2_29
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/978-3-319-68496-3_32
https://doi.org/10.1109/WSC.2018.8632404
https://doi.org/10.1016/j.compag.2013.03.002
https://doi.org/10.1016/j.compag.2013.03.002
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/Tabellen/liste-feldfruechte-zeitreihe.html
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/Tabellen/liste-feldfruechte-zeitreihe.html
https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/Tabellen/liste-feldfruechte-zeitreihe.html
https://doi.org/10.1287/mnsc.28.10.1197
https://doi.org/10.1287/mnsc.28.10.1197
https://doi.org/10.1016/j.cie.2007.07.001
https://community.ibm.com/community/user/datascience/communities/community-home/digestviewer/viewthread?MessageKey=7fba1844-472c-4704-9500-f60737306084&CommunityKey=ab7de0fd-6f43-47a9-8261-33578a231bb7&tab=digestviewer#bm7fba1844-472c-4704-9500-f60737306084
https://community.ibm.com/community/user/datascience/communities/community-home/digestviewer/viewthread?MessageKey=7fba1844-472c-4704-9500-f60737306084&CommunityKey=ab7de0fd-6f43-47a9-8261-33578a231bb7&tab=digestviewer#bm7fba1844-472c-4704-9500-f60737306084
https://community.ibm.com/community/user/datascience/communities/community-home/digestviewer/viewthread?MessageKey=7fba1844-472c-4704-9500-f60737306084&CommunityKey=ab7de0fd-6f43-47a9-8261-33578a231bb7&tab=digestviewer#bm7fba1844-472c-4704-9500-f60737306084
https://community.ibm.com/community/user/datascience/communities/community-home/digestviewer/viewthread?MessageKey=7fba1844-472c-4704-9500-f60737306084&CommunityKey=ab7de0fd-6f43-47a9-8261-33578a231bb7&tab=digestviewer#bm7fba1844-472c-4704-9500-f60737306084
https://community.ibm.com/community/user/datascience/communities/community-home/digestviewer/viewthread?MessageKey=7fba1844-472c-4704-9500-f60737306084&CommunityKey=ab7de0fd-6f43-47a9-8261-33578a231bb7&tab=digestviewer#bm7fba1844-472c-4704-9500-f60737306084

Constraint Programming in Harvest Logistics 577

18. Wang, T., Meskens, N., Duvivier, D.: Scheduling operating theatres: mixed integer
programming vs. constraint programming. Eur. J. Oper. Res. 247(2), 401–413
(2015). https://doi.org/10.1016/j.ejor.2015.06.008

19. Zenger, X., Friebe, R.: Agrarstrukturentwicklung in Bayern, IBA - Agrarstruk-
turbericht 2014. Tech. rep, Bayerische Landesanstalt für Landwirtschaft (LfL),
Freising-Weihenstephan (2015)

20. Zhai, Z., Mart́ınez, F.J., Beltran, V., Mart́ınez, N.L.: Decision support systems
for agriculture 4.0: survey and challenges. Comput. Electron. Agric. 170, 105256
(2020). https://doi.org/10.1016/j.compag.2020.105256

https://doi.org/10.1016/j.ejor.2015.06.008
https://doi.org/10.1016/j.compag.2020.105256

Tackling Uncertainty in Online
Multimodal Transportation Planning
Using Deep Reinforcement Learning

Amirreza Farahani(B) , Laura Genga , and Remco Dijkman

School of Industrial Engineering, Eindhoven University of Technology,
Eindhoven 5612, AZ, Netherlands

{A.Farahani,L.Genga,R.M.Dijkman}@tue.nl

Abstract. In this paper we tackle the container allocation problem
in multimodal transportation planning under uncertainty in container
arrival times, using Deep Reinforcement Learning. The proposed app-
roach can take real-time decisions on allocating individual containers to
a truck or to trains, while a transportation plan is being executed. We
evaluated our method using data that reflect a realistic scenario, designed
on the basis of a case study at a logistics company with three different
uncertainty levels based on the probability of delays in container arrivals.
The experiments show that Deep Reinforcement Learning methods out-
perform heuristics, a stochastic programming method, and methods that
use periodic re-planning, in terms of total transportation costs at all lev-
els of uncertainty, obtaining an average cost difference with the optimal
solution within 0.37% and 0.63%.

Keywords: Optimization · Deep Reinforcement Learning · Online
planning under uncertainty · Multimodal transport

1 Introduction

This paper introduces an online planning algorithm based on Deep Reinforce-
ment Learning (DRL) in presence of uncertainty in container arrival times that
we developed for a transportation company for their container allocation decision
support system in the multimodal transportation planning domain. The prob-
lem can be formulated as a sequential decision-making problem (i.e., allocation
decisions are taken for each individual container sequentially) for a particular
transportation corridor between two locations (i.e., the set of available trans-
portation options between two specific locations). Given a set of containers,
each with its arrival time and due date, and a set of available vehicle options,
each with its transportation costs, and arrival and departure time, the goal is
to allocate each container to one of the available options, in such a way that

The work leading up to this paper is partly funded by the European Commission under
the FENIX project (grant nr. INEA/CEF/TRAN/M2018/1793401).

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 578–593, 2021.
https://doi.org/10.1007/978-3-030-87672-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_38&domain=pdf
http://orcid.org/0000-0003-2375-5396
http://orcid.org/0000-0001-8746-8826
http://orcid.org/0000-0003-4083-0036
https://doi.org/10.1007/978-3-030-87672-2_38

Tackling Uncertainty in Online Multimodal Transportation Planning 579

the total cost is minimized. As trains have a lower cost than trucks, solving the
planning problem corresponds to allocating as many containers to trains as pos-
sible. One of the crucial challenges within this context consists in dealing with
unexpected events, i.e., events that can hinder the feasibility of the container
allocation plan. These events can be classified in two groups: (1) ‘Dynamicity’,
i.e., changes in demand to the logistics company, which is not predictable, and
(2) ‘Uncertainty’, i.e., delays in containers availability for departure, due to,
for instance, delays in container arrival time, which make the transportation
environment non-deterministic [14].

Traditional offline planning methods are not suitable for dealing with these
unexpected events. These methods allocate a batch of containers to available
vehicles in one go. However, if an unexpected event happens after the allocation
plan has been decided, it might make the plan not feasible for the new situation.
In this case, the planner needs to re-plan only a single container or the few
containers that are affected by such event. We refer to this as online (re)planning.
Currently, there is little support for online planning. It is usually carried out by
means of heuristics (e.g., re-optimization approaches and combinations of offline
methods and greedy algorithms) whose outputs may be far from the optimal.

For online (re)planning in deterministic environments with dynamicity, our
previous work [8] introduced a DRL-based online planning algorithm for mul-
timodal transportation, which is able to learn rules to allocate individual con-
tainers to available vehicles while the plan is being executed. In this paper, we
extend our previous approach, by introducing a novel DRL-based online planner
able to deal with uncertainty due to container delays.

We tested our method using data representing a realistic scenario, designed
on the basis of a real case study at a transportation company. Our results demon-
strate that our algorithm can learn rules to effectively allocate containers to
trains and trucks in the presence of uncertainty. Furthermore, it outperformed
the tested competitors in terms of total transportation costs, generating a solu-
tion close to the theoretical optimal one.

The rest of this paper is organized as follows. Section 2 introduces relevant
related literature. Section 3 provides a formal definition of the problem under
investigation. Section 4 introduces our approach. Section 5 discusses our experi-
mental evaluation. Section 6 draws conclusions and delineates future work.

2 Related Work

Previous work dealing with uncertainty in multimodal transportation usually
rely on some a priori assumptions on probability distributions for the ship-
ments, orders, and travel times, then integrating the unexpected events via
offline model-driven methods such as stochastic programming or robust opti-
mization [5,18]. To the best of our knowledge, there are only few exceptions,
reported in Table 1. We categorize these online approaches based on modal-
ity, uncertainty measure, proposed method and problem type. Most of these

580 A. Farahani et al.

Table 1. Online methods in multimodal transportation (re)planning under uncertainty

Reference Modality Uncertainty Problem Method

[20] Rail Demand, Travel Time Empty vehicle re-positioning Approximate DP

[6] Unspecified Transit time Re-routing Genetic Algorithm

[21] Rail, road, barge Demand Container re-allocation LP-Decision Tree

[15] Road, barge Demand Freight selection Approximate DP

Table 2. Application of DRL in decision making under uncertainty

Reference Domain Uncertainty RL Method

[4] Cloud computing scheduling Task, resource Value based

[11] Water management Geological Value based, Policy based

[13] Supply chain Demand Policy based

[23] ITS energy management Environment Policy based

[9] EV Battery swapping Electricity prices Policy based

[7] Internet of energy Trajectory Value based

[16] Self-driving car Driving scenario Value based

[1] Wind power producing Wind generation, electricity price Policy based

[24] Wind power producing Wind generation, electricity price Value based

[22] Unmanned aerial vehicle Movement Value based, Policy based

[25] Pavement systems life-cycle Traffic, cost, price indices, etc. Value based

[17] Operational management Environment Value based

approaches focus on demand uncertainty, while no approaches have been pro-
posed to deal with delays in containers availability. This paper aims to fill that
gap.

Reinforcement Learning applications have been studied for optimizing
sequential decision-making problems under uncertainty in various domains.
Table 2 categorizes previous approaches with respect to: (1) domain, (2) Uncer-
tainty aspects, and (3) RL method. Current works use two main groups of
RL methods: Value-based Reinforcement Learning methods, such as Deep Q-
network (DQN), double DQN (DDQN), and dueling DDQN [4,7,16,24,25] and
Policy-based approaches such as Deep Deterministic Policy Gradient (DDPG),
and Proximal Policy Optimization (PPO) [1,9,13,23]. In our work, we also apply
a value-based DRL method, which is mostly used in literature [4,7,16,24,25].
However, we apply the method in a new domain,i.e., to sequential container
planning under uncertainty.

3 Problem Definition

In this section, first we define the problem in an offline setting using Integer Lin-
ear Programming (ILP) and Stochastic Programming (SP). Then, we define the
problem in an online setting in the form of a Markov Decision Process (MDP).

Tackling Uncertainty in Online Multimodal Transportation Planning 581

3.1 Offline Planning Problem Definition

We create two different offline planning problem formulations. First, we formu-
late an ILP problem with two variants: (1) using actual arrivals with perfect
knowledge of delays, to be used as a theoretical benchmark; (2) using estimated
or expected arrivals without knowledge of delays, to be used by methods that
do re-planning when a delay occurs. Second, we provide an SP formulation.
Variables for both formulations are explained in Table 3.

Table 3. List of integer linear and stochastic programming elements

Sets

I Set of containers

T Set of trains

Ω Set of generated scenarios, ω ∈ {0, 1, 2, ..., |Ω| − 1}
Decision variables ILP, SP

Xt
i ∈ {0, 1} Put container i on train t

Bi ∈ {0, 1} Put container i on truck

Decision variables SP

Rt,ω
i ∈ {0, 1} Container i is removed from train t

At,ω
i ∈ {0, 1} Container i is re-planned to train t

Dω
i ∈ {0, 1} Container i is re-planned to a truck

Parameters

ei Estimated earliest day on which container i is available
for transport

li Delivery due date for container i

dt Day on which train t departs the origin

art Day on which train t arrives at its destination

capt Number of spaces available on train t

Ct Costs of transporting a container with train t

C Costs of transporting a container with a truck

lateω
i Number of days container i arrives late in scenario ω

latei Number of days container i arrives late

Integer Linear Program Problem Definition. Given a list of containers and
vehicles, the goal is to determine an allocation of containers to vehicles such that
the total cost of transportation is minimal. Formally, this is expressed by Eq. 1.
This minimization problem has to fulfill the following constraints. First, each
container must be allocated to exactly one train or truck (Eq. 2). Furthermore, a
container can be allocated only to a train which departs on or after the earliest
availability day of the container (Eq. 3), and arrives at the latest on the container
due date (Eq. 4). Finally, the maximum capacity of a train can not be exceeded
(Eq. 5).

582 A. Farahani et al.

Minimize
∑

i∈I

∑

t∈T

Ct · Xt
i +

∑

i∈I

C · Bi (1)

Subject to:
∑

t∈T

Xt
i + Bi = 1, ∀i ∈ I (2)

Xt
i · dt ≥ Xt

i · (ei + latei), ∀t ∈ T, i ∈ I (3)

Xt
i · art ≥ Xt

i · li, ∀t ∈ T, i ∈ I (4)
∑

i∈I

Xi
t ≤ capt, ∀t ∈ T (5)

It is worth noting that this program knows the actual schedules of the con-
tainers, because Eq. 3 takes the delay of the container into account. The ILP
formulated in this setting acts as a benchmark, because it has perfect knowledge
of the moment of arrival of the container. However, this method is not applicable
in real-life, since it is unrealistic to know all possible delays in advance. In this
paper, we also consider an ILP where we use the estimated arrivals. The formu-
lation for this problem is identical except for Eq. 3, where only ei is used. In this
setting, when a delay occurs and one or more containers miss the allocated train,
a re-planing is needed. We refer to this formulation as ILP-based re-optimization
or re-planning, depending on whether another ILP solver or allocation heuristics
are used to re-allocate the delayed containers.

Stochastic Program Problem Definition. Equation 6 formalizes the objec-
tive function to be minimized by our stochastic program. Again the total cost
of transportation must be minimized. The first two terms correspond to the
first-stage component, i.e., the summation of the original train costs and the
original truck costs. The other elements belong to the second stage component:
the costs of the recourse actions of re-planning containers. They involve the
negative costs of containers that were removed from trains, cost for containers
that were added to trains, and cost for containers that were added to trucks
over all scenarios. This minimization problem is subject to the following set of
constraints: the constraints for the ILP problem still apply (Equation 2–5), if
a container is removed from a train, it must be added to another train or to
a truck (Eq. 7), re-planned containers planned on a train should depart on or
after their earliest availability day (note that the earliest leave day is delayed for
these containers) (Eq. 8), re-planned containers planned on a train should arrive
at the latest on their latest arrival day (Eq. 9), capacity constraints should also
be met after re-planning (Eq. 10), a container can only be removed from a train
if it was originally planned on that train (Eq. 11), a container should only be
re-planned, if it is late (Eq. 12), a container must be re-planned, if it is too late
for the train on which it was originally planned (Eq. 13).

Tackling Uncertainty in Online Multimodal Transportation Planning 583

Minimize
∑

i∈I

∑

t∈T

Ct · Xt
i +

∑

i∈I

C · Bi − 1
|Ω|

∑

ω∈Ω

∑

i∈I

∑

t∈T

Ct · Rt,ω
i

+
1

|Ω|
∑

ω∈Ω

∑

i∈I

∑

t∈T

Ct · At,ω
i +

1
|Ω|

∑

ω∈Ω

∑

i∈I

C · Dω
i

(6)

Subject to:

∑

t∈T

Rt,ω
i =

∑

t∈T

At,ω
i + Dω

i , ∀i ∈ I, ω ∈ Ω (7)

At,ω
i · dt ≥ At,ω

i · (ei + lateω
i), ∀t ∈ T, i ∈ I, ω ∈ Ω (8)

At,ω
i · art ≤ At,ω

i · li, ∀t ∈ T, i ∈ I, ω ∈ Ω (9)
∑

i∈I

Xt
i −

∑

i∈I

Rt,ω
i +

∑

i∈I

At,ω
i ≤ capt, ∀t ∈ T, ω ∈ Ω (10)

Rt,ω
i ≤ Xt

i , ∀t ∈ T, i ∈ I, ω ∈ Ω (11)
∑

t∈T

Rt,ω
i ≤ lateω

i , ∀i ∈ I, ω ∈ Ω (12)

Xt
i · (dt − ei − lateω

i) + lateω
i · Rt,ω

i ≥ 0, ∀t ∈ T, i ∈ I, ω ∈ Ω (13)

3.2 Online Planning Under Uncertainty Problem Definition

We formulate the online version of our problem as a Markov Decision Process
(MDP), defined by the following elements.

The set of states S, where each state has two components. The first com-
ponent is a list of train capacities, {cap1, cap2, . . . , cap|T |}, where each capj rep-
resents the number of slots available on the train or trains that correspond to a
particular train schedule. More precisely, we store in the environment a list of all
train schedules P = {p1, . . . , p|T |}, where each pt corresponds to the pair (depar-
ture time, arrival time) for one or more trains. As a consequence, the arrival and
departure times of trains are implicitly encoded in the state; each capj is equal
to the sum of the capacities of all the train corresponding to the schedule pj .
The second component of our states is the information about the next container
that must be allocated, where a container i is represented by the estimated ear-
liest day on which this container is available for transportation ei and the due
delivery day li. The next container to allocate is selected using a heuristic, as
explained later in the text. It should be noted that we do not take into account
delays as a part of state components and we use estimated schedules.

The set of actions A, consisting of all possible train options T and an option
‘Truck’ that is assumed to be always available and uncapacitated. Note that not
all actions are possible in each state, because of the constraints (see Sect. 3.1). For
example, a train could have no more slots available, or its scheduled departure
time could not meet the due delivery date of the container.

584 A. Farahani et al.

The reward function R(s, a), which is the negative cost associated with
selecting an action a from the list of eligible actions (Eq. 14). This reward func-
tion is defined as follows:

– If the selected action is a truck, it is never affected by possible delays and the
reward is the negative cost of transportation by this truck.

– If the selected action is a train and if the train is eligible (considering the
delay), the reward for this action is the negative cost of transportation by
this train. If the selected train is ineligible, we penalize the selected action by
setting the reward equal to the negative cost of transportation by truck (i.e.,
a cost much higher than any train cost).

R(s, a, late) =

⎧
⎪⎨

⎪⎩

−C, if a = Truck,

−Ca, if a ∈ T, dt ≥ e + late,

−C, if a ∈ T, dt < e + late

(14)

The objective, which is maximizing the expected cumulative reward of the
selected actions. Note that this is equal to minimizing the expected cumulative
cost of transportation. We use the Bellman Eq. [2] to calculate this.

4 Planning Under Uncertainty Using Deep Reinforcement
Learning

In this paper, we extend our previous DRL method [8] to deal with uncertainty
in online multimodal transportation planning problems. In the following, we
provide a high-level overview of the Deep Q-Learning approach (described by
Algorithm 1).

4.1 Multimodal Transportation Problem Environment

The DRL algorithm learns by performing a number of episodes E. During each
episode a set of containers is planned either on a train or on a truck. The envi-
ronment has the information on the trains, containers and occurrence of delays.
It keeps a current state, and can be given actions to perform that will result in
a reward and a new state (see Sect. 3.2). To this end, the environment has two
main functions, discussed in the following.

– Environment initialization. At the beginning of each episode a new envi-
ronment is generated by launching the data generator, to ensure that the
starting point of each new episode is different from other episodes. The data
generator creates a set of trains with their temporal features and initial capac-
ities, a set of containers, with their temporal features and delay information,
and transportation costs for each vehicle option (line 4, Algorithm 1).

Tackling Uncertainty in Online Multimodal Transportation Planning 585

Algorithm 1. Deep Q-Learning for Online Multimodal Transportation Planning
under Uncertainty
1: Initialize Deep Q-Network Q
2: Initialize replay memory D
3: for episode = 1 to E do
4: Generate new containers, containers delays and trains
5: Set current state s with random capacity for all trains
6: while there is an unallocated container i ∈ I do
7: A′ ← mask(s) forbidden actions (Eq. 15)
8: With probability ε select a random action a ∈ A′

9: Otherwise select a = argmaxa′∈A′Q(s, a′)
10: eligibility ← check(s, a, late)
11: if eligibility = False then
12: Allocate container to the truck option
13: Create new state s′ from s without updating train capacity used by a
14: else
15: Allocate container to the selected action
16: Create new state s′ from s by updating train capacity used by a
17: end if
18: Update new state s′ with new container arrival
19: Calculate reward r = R(s, a, late) (Eq. 14)
20: Record experience (s, a, r, s′) in replay memory D
21: s ← s′

22: if every M iterations then
23: Sample random minibatch of experience from replay memory D
24: for (s, a, r, s′) in minibatch do
25: y ← Bellman Equation over (s, a, r, s′), Q
26: Update Deep Q-Network Q(s, a) = y
27: end for
28: end if
29: end while
30: end for

– Interaction with the agent. Once an agent selects an action, we update
the environment, calculate the next state and calculate reward of this action.
Updating the environment means updating the capacity of trains based on
the selected action. Note that if the selected action is ineligible for allocation,
then we do not change capacities (lines 11–13, Algorithm 1). Then, a new
state is generated using the updated train capacities and selecting the next
container to plan (line 18, Algorithm 1).
We test four different allocation heuristics or policies for selecting the next
container for decision making, (1) Earliest arrival first (or First In First Out
- FIFO) with random allocation of containers arrived on the same day, (2)
Earliest due date first (EDF) with random allocation of containers arrived
on the same day, (3) FIFO with EDF allocation of containers arrived on the
same day, (FIFO-EDF) (4) EDF with FIFO allocation of containers arrived
on the same day (EDF-FIFO).

586 A. Farahani et al.

4.2 Feature Engineering and Deep Q-Network Architecture

The algorithm learns through a Deep Q-Network, which learns the Q values for
state and action combinations. For the input features, we use a vector of size
|T |+2, which consists of the list of train capacities defined in Sect. 3.2 and both
the temporal features ei, li of container i. The vector of the output nodes is
equal to the size of the vehicle options (A), since we use a separate output unit
for each action. For the output layer, we use a Softmax layer over the actions.
Hence, the outputs of our Deep Q-Network correspond to the predicted Q(a, s)
of the individual action a for the input state s, and we select an action with
highest Q-value. The network is fully-connected, with k hidden layers.

4.3 Action Selection Methods and Masking Approach

The list of eligible actions can be different for each state s. However, the use of
a dynamic set of actions increases significantly the complexity of the problem,
up to the point where the computation is not feasible. To deal with this challenge,
we determine a static action list of all possible actions and then use we use a
customized epsilon-greedy method with a masking approach to determine which
actions are enabled at each state s as follows (Algorithm 1, line 7):

mask({cap1, . . . , cap|T |, e, l}) = {t ∈ T | dt ≥ e, art ≤ l, capt ≥ 1} ∪ {Truck}
(15)

The agent selects a random eligible action with a fixed probability, 0 ≥ ε ≥ 1,
or the action that is optimal with respect to the learned Q-function otherwise [19]
(Algorithm 1, lines 8–9).

4.4 Replay Memory and Minibatch

We use a replay memory [12] method, which records the experiences of our agent
into a replay memory D at each step (s, a, r, s′) of each episode (Algorithm line
20). Every M steps, we then update the network. The main advantage of this
method consists in decreasing the variance of the updates. Lines 22 to 26 show
how we apply Q-learning updates, or minibatch updates, by first sampling expe-
riences randomly from the replay memory, calculating the expected cumulative
reward for each experience using the Bellman equation and then updating the
Deep Q-Network for each experience with the expected cumulative reward.

5 Experiments and Results

This section discusses the experiments that we carried out to test the perfor-
mance of our method. Section 5.1, introduces the experimental settings and the
tested competitors, while Sect. 5.2 discusses the obtained results.

Tackling Uncertainty in Online Multimodal Transportation Planning 587

5.1 Experimental Settings

Dataset. We generated data with properties that are based on the long-haul
transportation planning problem of a logistics company for a particular trans-
portation corridor. These data include the following features (see Sect. 4): the
number of trains, with their capacity and temporal properties, transportation
costs, and containers with their temporal features and their delays. To simu-
late container delays, we follow the approach proposed by previous work on
uncertainty handling [10], where delays are generated randomly based on the
three different levels of uncertainty, which is the probability that the container
is delayed by a given number of days x (Table 4): (1) Low, (2) Average, (3) High.
We indicate this probability as p(late = x). Time windows of this experiment
are weekly. We assume that trucks are always available and uncapacitated.

Table 4. Probability of occurrence of estimated delay in each uncertainty level

Scenario p(late = 0) p(late = 1) p(late = 2)

Low uncertainty 0.9 0.08 0.02

Average uncertainty 0.6 0.3 0.1

High uncertainty 0.3334 0.333 0.333

Training Parameters. We did hyperparameter tuning on: the number of episodes
(with options 4000, 5000, 6000), learning rate (0.01, 0.1), number of hidden lay-
ers (2, 4), discount factor (0.5, 0.99), number of nodes per hidden layer (100, 150,
200), and mini batch size (5, 10, 15). The algorithm worked best and learning
converged using E = 6, 000 episodes of 7 days. In each episode 100 containers
must be planned, i.e. 100 steps must be performed. The number of containers is
chosen proportional to the train capacity over the week, in line with the prop-
erties of the planning problem at the logistics company. Each container has an
estimated earliest availability day and a due date that are uniformly distributed
over the week. Delays are generated based on Table 4 in three different levels of
uncertainty. There are 28 train schedules per week. For the capacity of trains in
each train schedule we test 7 different settings, i.e.: 6 different settings in which
each train schedule (1, 1), (1, 2), . . . has the same capacity 1 through to 6; and
one setting in which each schedule has a random number of available slots that
is uniformly distributed over 0 to 6 spaces. The goal of using these different
settings is to investigate the effect of uncertainty levels and available capacity
on the planners performance in a realistic scenario.

We initialize a fully-connected feedforward neural network with backpropa-
gation with 2 hidden layers of 100 nodes, ReLU activator, and Adam optimizer.
We use a replay memory of size 10,000 and retrain the Deep Q-Network based
on minibatches 5 times per epoch. The discount factor, used in the Bellman

588 A. Farahani et al.

equation, is γ = 0.99, which means that future rewards are of high impor-
tance in the learning process. Remaining parameters are initialized according to
PyTorch’s default parameters. The probability ε with which a random action is
chosen starts at 0.95 and is decreased after each episode in steps of 0.1 until it
reaches 0.05. The agent and the simulation model are executed on a machine
with an Intel(R) Core(TM) i7 Processor CPU @ 2.80 GHz and 16 GB of RAM,
no graphics module is used for training the neural network.

Tested Competitors. We use the offline ILP solver based on actual schedules as
a benchmark. Furthermore, we compare the performance of our method against
(1) ILP-based re-optimization, and (2) ILP and SP joint Greedy heuristics as
re-planner. These methods are inspired by the literature and discussions with the
logistics company on how their (re) planner currently works. For the ILP-based
(re) optimization, we run once per week an ILP planner based on estimated
data; to update the plan in presence of delays, we also run a daily ILP based
(re) optimization, which has information of delayed containers until the current
day. ILP and SP joint Greedy heuristics are commonly used in practice as re-
planner. These methods also run ILP and SP planner for estimated data once
per week; however, they apply a greedy heuristic to allocate delayed containers
separately to a train or, if no eligible trains are available, a truck. We refer to
these combinations as ‘ILP + First train’, ‘SP + First train’, which re-plan a
container on the first available train, and ‘ILP + Cheapest train’, ‘SP + Cheapest
train’, which re-plan containers on the cheapest available option.

0 1000 2000 3000 4000 5000 6000
Episode

−350

−300

−250

−200

−150

Av
er

ag
e

R
ew

ar
ds

Average Reward per Episode
Average Rewards
Moving Average

(a) Average reward

0 1000 2000 3000 4000 5000 6000
Episode

0

2000

4000

6000

8000

10000

12000

14000

16000

C
os

t D
iff

er
en

ce
s

w
ith

 O
pt

im
al

Total Cost Differences per Episode
Cost Differences
Moving Average

(b) Cost differences with optimal solution

Fig. 1. Average Reward (a) and cost differences with ILP (b) per episode during train-
ing

5.2 Results

Training and Stability Analysis. We assess the performance of the learning pro-
cess by using the total reward the agent collects in each episode during train-
ing [3]. We tested four different allocation heuristics discussed in Sect. 4.1 in
21 different settings (3 levels of uncertainty and 7 different available capacity

Tackling Uncertainty in Online Multimodal Transportation Planning 589

settings). For the sake of space, here we discuss only the results of the most
challenging (and realistic) setting, i.e., the one corresponding to random train
capacity and high uncertainty level. As allocation heuristic, here we discuss EDF,
since it turned out to be the best performing one in our previous work [8]. How-
ever, the results obtained for all the other tested settings show similar trends.
Figure 1 shows the changes in the average reward (Fig. 1a) and in the cost dif-
ferences with the ‘benchmark’ method (Fig. 1b) per episode. The red line is a
moving average line highlighting the behavior of the model during these episodes.
Figure 1a shows a smooth improvement of the average rewards, which demon-
strates that we did not experience any divergence issues. Figure 1b shows that
the cost differences with the benchmark solutions converge to zero, which proves
that our agent is able to learn container allocation patterns, getting closer to
the optimal solution as the training goes on.

Methods Comparison. We tested the above discussed methods in different exper-
iments with seven different capacity settings and three different levels of uncer-
tainty, obtaining in total 21 different settings. We measure their performance in
terms of the average per week over 20 weeks of the total costs of transportation
(i.e., the costs deriving from the actual allocation of each container to a train or
to a truck). Figure 2 shows the average transportation costs of each method in
the different capacity settings. For the sake of space, only the results obtained
at high uncertainty level, i.e., the most challenging scenario, are plotted.

Table 5. Average cost differences (%) w.r.t. the optimal solution over 20 weeks.

Method Low Average High

DRL-(FIFO) 27.87 21.61 17.01

DRL-(FIFO-EDF) 4.76 10.67 11.97

DRL-(EDF-FIFO) 0.63 0.53 0.37

DRL-(EDF) 0.65 0.78 0.66

Re-ILP 7.18 20.40 20.05

ILP+cheapest train 9.27 31.44 34.97

ILP+first train 9.28 31.38 34.96

SP+cheapest train 7.68 26.61 33.37

SP+first train 7.54 26.13 33.07

DRL-(EDF-FIFO), DRL-(EDF) are consistently better than other competi-
tors and very close to the benchmark optimal solution for all tested capaci-
ties. Performance of DRL-(FIFO) and DRL-(FIFO-EDF), instead, decrease with
increasing train capacity. Nevertheless, all DRL-based methods always perform
better than the competitors.

For the other uncertainty levels, DRL-(EDF-FIFO), DRL-(EDF) achieved
in all the settings performance very close to the optimal ones. However, in the

590 A. Farahani et al.

low uncertainty settings differences with not DRL methods are less evident. In
particular, in the most competitive scenario (i.e., with train capacity equal to
1), all the tested methods obtain results close to the optimal solution. This was
expected, since few containers need re-planning and few options are available.
Differences between DRL-based methods and other competitors become more
evident with the increasing of the train capacity, even though the performance
gap is less pronounced than in the other uncertainty levels. This suggests that
uncertainty does have a significant impact on the performance of not DRL-based
methods. Another interesting observation in the low uncertainty setting, is that
the performance of the DRL-(FIFO) are overall worse than other competitors.

Table 5 reports differences of the average of the costs of each method with
respect to the optimal solution. For each method, for each setting, we computed
the average total cost of transportation over 20 weeks. Then, for each method
we computed in each setting difference between its obtained cost and the cost
corresponding to the optimal solution; finally, we compute the average of these
differences over the 21 different settings considered in the experiments. All the
DRL methods with EDF policy obtained on average values very close to the
optimal solver in all the uncertainty levels. In particular, DRL-(EDF-FIFO)
obtained the best results. All the other methods show a significant increase
in costs. For example, the re-ILP method, which is the best one among the not
DRL-based competitors, obtains on average increasing of the total costs of 7.18%,
20.40% and 20.05% for the low, average and high setting respectively. Some
methods appear to perform better in higher uncertainty level; DRL-(FIFO) is
the most evident example. This behavior may seem counter-intuitive. However,
recall that this is a relative measure; while the absolute cost of EDF-(FIFO)
increases moving from low to high uncertainty, the benchmark costs increases as
well and at a faster pace, with the result that the relative cost decreases.

Fig. 2. Average transportation costs for high uncertainty levels in different capacity
settings

Tackling Uncertainty in Online Multimodal Transportation Planning 591

Summing up the obtained results show that the use of ILP-based replan-
ner methods with limited knowledge on future events leads in general to poor
performance. SP re-planning methods partly remedy to this lack of knowledge
using an a priori probability distribution for exploring different scenarios. How-
ever, when container arrivals do not fit this distribution, the obtained solutions
are often quite far from the benchmark. In contrast, the proposed DRL-based
methods can learn the container allocation rules under uncertainty, thus being
able to take more informed (and efficient) allocation decisions.

6 Conclusions and Future Work

This paper investigated the application of DRL in tackling uncertainty in online
container allocation in the multimodal transportation domain. The experimen-
tal results shown that the DRL based proposed approach can learn patterns of
containers allocation under uncertainty, which allows it to consistently outper-
form the tested competitors, obtaining solutions close to the theoretical optimal
benchmark solution. In particular, the Deep Q-Networks planner that uses an
EDF heuristic to determine which container must be planned first, outperformed
the heuristic, periodic re-planning, and stochastic programming competitors,
obtaining an average cost difference with the optimal solution of only 0.63%,
0.53%, and 0.37% in the low, average, and high uncertainty levels respectively.

Overall, these results show how the use of Deep Reinforcement Learning can
significantly decrease costs associated with container re-planning under uncer-
tainty for logistics companies, thus suggesting that the use of these techniques
can indeed bring significant practical advantages in the logistic domain with
dynamic and non-deterministic environments.

Nevertheless, our method presents some limitations. The current version of
the method supports only the allocation of containers to a single vehicle, rather
than to a combination of vehicles. In future work, we plan to extend our model
to incorporate this aspect, thus increasing the generality of the method. Also,
we intend to take locations into account as a planning factor. Finally, we plan to
investigate the application of different DRL approaches and reward functions.

References

1. Alves, J.C., Mateus, G.R.: Deep reinforcement learning and optimization approach
for multi-echelon supply chain with uncertain demands. In: Lalla-Ruiz, E., Mes,
M., Voß, S. (eds.) ICCL 2020. LNCS, vol. 12433, pp. 584–599. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59747-4 38

2. Barron, E., Ishii, H.: The Bellman equation for minimizing the maximum cost.
Nonlinear Anal. Theory Methods Appl. 13(9), 1067–1090 (1989)

3. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: an evaluation platform for general agents. J. Artif. Intell. Res. 47, 253–279
(2013)

https://doi.org/10.1007/978-3-030-59747-4_38

592 A. Farahani et al.

4. Bhargavi, K., Babu, B.S.: Soft-set based DDQ scheduler for optimal task scheduling
under uncertainty in the cloud. In: 2017 2nd International Conference On Emerging
Computation and Information Technologies (ICECIT), pp. 1–6. IEEE (2017)

5. Delbart, T., Molenbruch, Y., Braekers, K., Caris, A.: Uncertainty in intermodal
and synchromodal transport: Review and future research directions. Sustainability
13(7), 3980 (2021)

6. Escudero, A., Muñuzuri, J., Guadix, J., Arango, C.: Dynamic approach to solve the
daily drayage problem with transit time uncertainty. Comput. Ind 64(2), 165–175
(2013)

7. Fang, D., Guan, X., Peng, Y., Chen, H., Ohtsuki, T., Han, Z.: Distributed deep
reinforcement learning for renewable energy accommodation assessment with com-
munication uncertainty in Internet of Energy. IEEE Internet Things J. 8, 8557–
8569 (2020)

8. Farahani, A., Genga, L., Dijkman, R.: Online multimodal transportation planning
using deep reinforcement learning. arXiv preprint arXiv:2105.08374 (2021)

9. Gao, Y., Yang, J., Yang, M., Li, Z.: Deep reinforcement learning based optimal
schedule for a battery swapping station considering uncertainties. IEEE Trans.
Ind. Appl. 56(5), 5775–5784 (2020)

10. Gumuskaya, V., van Jaarsveld, W., Dijkman, R., Grefen, P., Veenstra, A.: Dynamic
barge planning with stochastic container arrivals. Transp. Res. Part E Logist.
Transp. Rev. 144, 102161 (2020)

11. Ma, H., Yu, G., She, Y., Gu, Y., et al.: Waterflooding optimization under geological
uncertainties by using deep reinforcement learning algorithms. In: SPE Annual
Technical Conference and Exhibition (2019). Society of Petroleum Engineers

12. Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

13. Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., Su, H.: Deep reinforcement learn-
ing approach for capacitated supply chain optimization under demand uncertainty.
In: 2019 Chinese Automation Congress (CAC), pp. 3512–3517. IEEE (2019)

14. Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing.
Handb. Oper. Res. Manag. Sci. 8, 141–295 (1995)

15. Rivera, A.P., Mes, M.R.: Anticipatory scheduling of freight in a synchromodal
transportation network. Transp. Res. Part E Logist. Transp. Rev. 105, 176–194
(2017)

16. Sakib, N.: Highway lane change under uncertainty with deep reinforcement learning
based motion planner (2020)

17. Shyalika, C., Silva, T.: Reinforcement learning based an integrated approach for
uncertainty scheduling in adaptive environments using MARL. In: 2021 6th Inter-
national Conference on Inventive Computation Technologies (ICICT), pp. 1204–
1211. IEEE (2021)

18. SteadieSeifi, M., Dellaert, N.P., Nuijten, W., Van Woensel, T., Raoufi, R.: Mul-
timodal freight transportation planning: a literature review. Eur. J. Oper. Res.
233(1), 1–15 (2014)

19. Tokic, M., Palm, G.: Value-difference based exploration: adaptive control between
epsilon-greedy and softmax. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS
(LNAI), vol. 7006, pp. 335–346. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24455-1 33

20. Topaloglu, H.: A parallelizable and approximate dynamic programming-based
dynamic fleet management model with random travel times and multiple vehi-
cle types. In: Dynamic Fleet Management, pp. 65–93. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-0-387-71722-7 4

http://arxiv.org/abs/2105.08374
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/978-3-642-24455-1_33
https://doi.org/10.1007/978-3-642-24455-1_33
https://doi.org/10.1007/978-0-387-71722-7_4

Tackling Uncertainty in Online Multimodal Transportation Planning 593

21. van Riessen, B., Negenborn, R.R., Dekker, R.: Real-time container transport plan-
ning with decision trees based on offline obtained optimal solutions. Decis. Supp.
Syst. 89, 1–16 (2016)

22. Wan, K., Gao, X., Hu, Z., Wu, G.: Robust motion control for UAV in dynamic
uncertain environments using deep reinforcement learning. Remote Sens. 12(4),
640 (2020)

23. Wang, P., Li, Y., Shekhar, S., Northrop, W.F.: Uncertainty estimation with distri-
butional reinforcement learning for applications in intelligent transportation sys-
tems: a case study. In: 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pp. 3822–3827. IEEE (2019)

24. Yang, J., Yang, M., Wang, M., Du, P., Yu, Y.: A deep reinforcement learning
method for managing wind farm uncertainties through energy storage system con-
trol and external reserve purchasing. Int. J. Electric. Power Energy Syst. 119,
105928 (2020)

25. Yehia, A.: Understanding uncertainty: a reinforcement learning approach for
project-level pavement management systems. PhD thesis, University of British
Columbia (2020)

Robust Multi-Objective Gate Scheduling
at Hub Airports Considering Flight
Delays: A Hybrid Metaheuristic

Approach

Abtin Nourmohammadzadeh(B) and Stefan Voß

Institute of Information Systems (IWI), University of Hamburg, Hamburg, Germany
{abtin.nourmohammadzadeh,stefan.voss}@uni-hamburg.de

Abstract. Regarding the large number of flights that a hub airport
usually has to serve and the competitiveness in the aviation industry,
optimal scheduling of limited and expensive airport resources such as
gates is really vital. This work focuses on the efficient scheduling of air-
port gates to achieve a balance between three important goals, namely
reducing the walking distance of passengers, decreasing the number of
flights assigned to the gates different from their reference gates as well
as widening the total shopping area passed by passengers while walking
to, from or between the gates. A set of different scenarios is considered
for the arrival of flights regarding the possible delays. Robust multi-
objective optimisation is followed through an exact solution approach
according to the weighted sum method by the Baron solver as well as a
metaheuristic method consisting of the hybridisation of multi-objective
particle swarm optimisation (MOPSO) and the multi-objective simu-
lated annealing (MOSA). The sets of Pareto-optimal solutions obtained
by these two methods along with those of the pure MOPSO, MOSA and
a tabu search algorithm from the literature are compared based on some
evaluation metrics and with the aid of a statistical test.

Keywords: Airport gate scheduling · Robust optimisation ·
Multi-objective optimisation · Multi-objective particle swarm
optimisation (MOPSO) · Multi-objective simulated annealing (MOSA)

1 Introduction

The world has witnessed tremendous growth in air traffic up to the hard era
of the Covid-19 outbreak and there is great hope that the aviation industry
can return to its flourishing days after controlling the pandemic. The European
Commission’s report on the Air Transport Market states that a wide increase
happened in the total worldwide number of operated flights in the period 2010
to 2016, namely from 27.8 million to 36.8 million. The statistics on the volume
of carried air passengers also show an increase of 219.28 million to reach 3.7

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 594–610, 2021.
https://doi.org/10.1007/978-3-030-87672-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_39&domain=pdf
http://orcid.org/0000-0003-0383-0379
http://orcid.org/0000-0003-1296-4221
https://doi.org/10.1007/978-3-030-87672-2_39

Robust Multi-Objective Gate Scheduling 595

billion in 2016 [8]. Therefore, hub airports must handle a huge number of flights
within short periods with their limited resources. Regarding the very competi-
tive environment of the air transportation sector, efficient usage of resources to
increase revenue and customer satisfaction is extremely important. Furthermore,
in terms of the total revenues that airports gain, the average commercial rev-
enues constitute about half of them [7]. Hence, airports are not only considered
as the points for passenger transportation between origins and destinations but
also as centres for shopping and leisure [13,15].

This necessitates investigating many optimisation problems which emerge at
airports. Gate scheduling is one important resource assignment problem, where
a set including a limited number of gates is assigned to a large set of arriving
or departing flights. There are usually two kinds of gates, the ones connected
to the terminal and equipped with air bridges, which are used by passengers
to directly and conveniently get on and off the airplanes, and the ones existing
as ramp spaces away from the terminal. The embarkation and disembarkation
to/from airplanes that stay at the ramp gates are usually done by special buses
and require more time. The passengers that a hub airport is involved with are
from three categories. The departure passengers, who start their journey from
the airport and traverse the distance between the entrance and their departure
gate. The arrival passengers, who end their air travel at the airport and have
to walk from the gates to the airport’s exits. The last but most important ones
are the transit passengers, who change their flights at the airport to continue
travelling to their final destination. This group has to walk from their arrival to
their departure gate. It is common that some gates are rent by specific airlines
for their flights. Therefore, it is tried to assign those flights to their associated
or reference gates and the assignment of them to any other gate is extremely
undesirable. In addition, each flight can be served only by a specific set of gates
with regard to the size and other specifications of the aircraft which operates it.

Three main groups of stakeholders exist in the gate scheduling problem
(GSP), which are airport operators, airlines, and passengers. Each of them has its
own interests and wills; however, there are also many common interests. Airport
operators seek to gain more profits by giving a higher level of service to air-
lines and passengers while efficiently using the related resources and minimising
the incurred costs by reducing the congestions, needed resources, interruptions,
delays etc. On the other hand, passengers want convenient and smooth boarding
and deboarding, short walking distances as well as good access to airport facili-
ties such as shops, restaurants, or entertainment areas. Finally, airline operators
prefer easy terminal access and short ground times for their aircraft [8].

These different goals and perspectives lead to the considerations of a variety
of objectives for the GSP. The conflict between the objectives shows that the
problem is multi-objective in nature and has to be modelled and tackled in this
respect. Therefore, our research presents a model for the GSP with three objec-
tives of minimising the total walking distances of passengers within the terminal,
minimising the number of flights which are not assigned to their reference gate,
and maximising the total shopping area that passengers go through within the

596 A. Nourmohammadzadeh and S. Voß

terminal. The first objective is passenger-oriented, whereas the second objective
is more in favour of airlines and the third one targets passengers and airports.
Moreover, the stochastic nature of various influencing factors make it necessary
to consider a robust version of the GSP. Hence, the model is later converted to
its robust version.

We choose an exact and an evolutionary metaheuristic solution approach
to tackle the problem. The application of the metaheuristic algorithm is due
to the complexity of the problem and the demand for obtaining efficient solu-
tions in short times. For the exact solution, the weighted sum method is chosen.
The formulated model is programmed in GAMS [2] and the Baron solver [1] is
called. The proposed metaheuristic approach comprises an integrative hybridi-
sation of the multi-objective particle swarm optimisation (MOPSO) and the
multi-objective Simulated Annealing (MOSA) to boost the search ability. The
approaches are tested on some synthetic instances.

It is worth noting that the problem of determining efficient gates for flights
is also called the gate assignment problem (GAP). However, due to providing
each gate with the time plan for serving the assigned flights, in this work, we
use the name GSP for the problem addressed.

The organisation of the remainder of this work is as follows: In Sect. 2, some
previous related works are introduced and categorised. Section 3 explains the
proposed model. Subsequently, Sect. 4 covers the solution approaches. Compu-
tational results are given and discussed in Sect. 5. At last, Sect. 6 draws the
overall conclusions of this paper and recommends some potential subjects for
future research.

2 Related Work

The GSP (or the GAP which is used interchangeably) has been under consider-
ation for many years and numerous modelling approaches and solution method-
ologies are proposed for it. A very good literature review of this subject is [8],
which categorises a vast collection of the GAP works based on the criteria such
as the orientation of their objectives, and besides, a variety of mathematical
models is introduced. [22] is another paper that addresses the state-of-art but
with the focus on the presented mathematical models.

According to [8], the GAP objectives are of three groups: namely, passenger-
oriented, which is the most common, e.g. [3,6,7,9–11,18,20,27–29], airline/
airport-oriented, e.g. [3,7,9–12,14,16–18,20,25,28,29], or robustness-oriented,
e.g. [7,10,12,17,18,20,29], which considers the possible changes in the problem
inputs. Its other comparison aspects are if the models are single, e.g. [6,11,14,25,
27], or multi-objective, e.g. [7,9,10,12,16–18,20,28,29], as well as which objectives
are optimised. Among the objectives considered in the GAP, the main ones are:
minimising the total walking distance of passengers, e.g. in [3,6,7,9–11,18,22,28,
29], minimising total passenger waiting time, e.g. [27], minimising the number of
flights assigned to remote gates, e.g. [9], minimising the number of towing moves,
i.e. the assignment of two consecutive flights operated by one aircraft to different

Robust Multi-Objective Gate Scheduling 597

gates, e.g. in [11,12,20], minimising towing costs, e.g. in [18,28,29], minimising
the sum of waiting times of aircraft for gates, e.g. in [16], maximising total flight-
gate preferences, e.g. in [12,20], maximising the number of passengers at gates, e.g.
[7,11], maximising the number of passengers at gates close to shopping facilities,
e.g. [7], maximising potential airport commercial revenue, e.g. [11], minimising
variance of idle times, e.g. in [7,10], minimising the number of conflicts of any two
adjacent aircraft assigned to the same gate, e.g. in [18], minimising the expected
gate conflict duration, e.g. in [28], minimising the expected gate conflict cost, e.g.
in [29], and minimising the absolute deviation of new gate assignment from a ref-
erence schedule, e.g. in [20].

[6] examines the performance of a genetic algorithm (GA), a tabu search (TS),
a simulated annealing (SA), and a hybrid approach based on the SA and TS on
the GAP using flight data from the Incheon International Airport. [3] applies
a kind of the TS algorithm where a probabilistic approach as an aspiration
criterion is embedded. [7] aims at raising the shopping revenues through assigning
passengers to specific gates near shopping facilities. [9] develops a metaheuristic
based on the fuzzy bee colony optimisation to deal with its GAP. An improved
adaptive particle swarm optimisation algorithm is used in [10]. [11] proposes
an innovative approach to the tactical planning of the assignments of flights
to terminal-connected and remote gates and uses the concept of recoverable
robustness. [12] addresses the general case that the aircraft, which operate the
flights, have arrival, parking, and departure tasks that can be each assigned to
a different gate. It models the GAP with a graph-theoretical approach based on
the clique partitioning problem.

[14] develops a method that makes use of the benefits of heuristics with a
stochastic method rather than applying a purely probabilistic approach to find
fast efficient solutions to the problem. The authors apply their approach to real
data from the Istanbul Airport. [16] utilises CPLEX as well as an evolutionary
multi-objective optimisation algorithm. A methodology that captures decision-
makers’ preferences in multi-objective environments is employed. [18] solves a
version of the multi-objective GAP by the second version of the non-dominated
sorting genetic algorithm (NSGA-II). The authors compare the performance of
their approach with some other metaheuristics. A Pareto simulated annealing
(PSA) approach is adapted for the GSP in [20] to get a representative approxi-
mation of the Pareto front and the uncertainty of inputs is treated by means of
fuzzy numbers. The mathematical modelling of flight-to-gate reassignment with
passenger connections is explored in [22] and a number of cases of various sizes
and schedule scenarios, as well as a set based on a real European airport, are
used as the test instances. [17] addresses a multi-criteria gate assignment prob-
lem with the objectives of maximising passenger connection revenues and gate
plan robustness as well as minimising zone usage costs.

[23] forecasts and optimises movements of the passengers inside airport ter-
minal buildings. [25] proposes a method to improve the robustness of solutions to
reduce the need for gate re-planning regarding disturbances in the flight sched-
ules. The method replaces the deterministic with stochastic gate constraints that

598 A. Nourmohammadzadeh and S. Voß

incorporate the inherent stochastic flight delays to reduce the gate conflicts. [28]
considers a GAP, in which the traditional costs and the robustness are simulta-
neously considered. An adaptive large neighborhood search algorithm is designed
with local search operators to efficiently tackle the problem.

3 Modelling

The GSP model which we present in this section includes the three mentioned
objectives, while it ensures the assignment of all flights to gates and the separa-
tion time between two consecutive usages of an identical gate. Our tri-objective
mathematical model for the GSP is presented in this section in three parts of
introducing the notation, formulation and adding robustness.

3.1 Notation

The notations used in our model are as follows:

Parameters

H The planning horizon

F The set of flights including arrivals and departures, f is the index for a single
flight

FR The set of flights which have a reference gate, FR ∈ F

G The set of gates connected to the terminal

RG Represents the ramp or remote gates

PGf The set of gates which can serve flight f

Rf The reference gate of flight f

Dg,g′ The walking distance between gates g and g′

D0,g The walking distance between the entrance and gate g

Dg,0 The walking distance between gate g and the exit

Sg,g′ The shopping area existing between gates g and g′

S0,g The shopping area existing between the terminal entrance and gate g

Sg,0 The shopping area existing between gate g and the terminal exit

Pf,f ′ The number of transit passengers which get off flight f and then board flight
f ′

P0,f The number of departure passengers which enter the airport and board flight
f

Pf,0 The number of arrival passengers which get off flight f and then exit the
airport

STf The arrival time of flight f at the gate, i.e. gating time of the flight

FTf The finish time of flight f at the gate

SPTf,f ′ The separation time required between the consecutive leaving of flight f from
and gating time of flight f ′ at the same gate

Robust Multi-Objective Gate Scheduling 599

Variables

xf,g Binary variable which is equal to 1 if flight f is assigned to gate g,
otherwise it is zero

yf,f ′ Binary variable which is equal to 1 if flights f and f ′ are assigned to
the same gate

3.2 Formulation

The mathematical formulations of our model are as follows:
Objectives

Min Z1 =
∑

f∈F

∑

f ′∈F,f ′ �=f

∑

g∈PGf

∑

g′∈PGf′ ,g′ �=g

xf,gxf ′,g′Dg,g′Pf,f ′

+
∑

f∈F

∑

g∈PGf

xf,g(D0,gP0,f + Dg,0Pf,0) (1)

Min Z2 =
∑

f∈FR

∑

g �=Rf

xf,g (2)

Max Z3 =
∑

f∈F

∑

f ′∈F,f ′ �=f

∑

g∈PGf

∑

g′∈PGf′ ,g′ �=g

xf,gxf ′,g′Sg,g′Pf,f ′

+
∑

f∈F

∑

g∈PGf

xf,g(S0,gP0,f + Dg,0Sf,0) (3)

Constraints
∑

g∈PGf

xf,g = 1 f ∈ F (4)

xf,gxf ′,g = yf,f ′ f, f ′ ∈ F ; g ∈ PGf ∪ PGf ′ (5)

STf ′ − FTf − SPTf,f ′ ≤ H(1 − yf,f ′) f, f ′ ∈ F ;STf ′ > STf ; g ∈ PGf ∪ PGf ′

(6)

Equation (1) is the first objective to be minimised, which sums up the total
distances walked by all passengers between the gates, from the terminal entrance
to the gates and from the gates to the terminal exit. Equation (2) is the second
objective, which calculates the number of total non-reference assigned gates and
we seek to minimise the resulted value. The third objective is represented by Eq.

600 A. Nourmohammadzadeh and S. Voß

(3), which is very similar to (1) with the difference that here the existing shopping
area between the points is taken into account and it has to be maximised. It
can also be transformed into a minimisation objective by replacing Sg,g′ with
Dg,g′ − Sg,g′ , S0,g with D0,g − S0,g and Sg,0 with Dg,0 − Sg,0. In other words,
we seek to reduce the passed non-shopping area. This is done to have the same
optimisation direction for all objectives in order to make the solution approaches
and evaluation metrics better applicable.

Constraint (4) enforces each flight to be assigned to exactly one gate. Con-
straints (5) set yf,f ′ = 1 if both xf,g and xf ′,g are together one for any gate g.
The separation time between any two flights dwelling consecutively at the same
gate is ensured by constraint (6).

3.3 Considering Robustness

To insert robustness into our model, a set of scenarios is considered for the
arrival times of flights at gates, which can be due to possible delays. Therefore,
we have a set including the possible gating times for each flight f called PSTf .
These make together numerous scenarios, which each consists of a combination
of the possible gating times of flights. The set of probable scenarios is named
Scen. In our robust optimisation process, for each solution, the worst value of
each objective based on all the existing scenarios is regarded as the value of
that objective. So even the worst scenario is taken into account in the solution
evaluation and this is in accordance with the definition of robustness presented
in [4]. It is worth noting that a feasible solution to the model must satisfy the
constraints with regard to all scenarios according to our assumptions. Based on
the given explanations, the robust version of our model can be expressed as:

Min(max
s∈Scen

Z1) (7)

Min(max
s∈Scen

Z2) (8)

Max(min
s∈Scen

Z3) (9)

Constraint (4) (10)

Constraint (5) (11)

Constraint (6) s ∈ Scen (12)

The new objectives, i.e. (7–9) seek to optimise the worst objective value of
all scenarios. While Constraints (10) and (11) are exactly the same as their
equivalents in the non-robust version, Constraint (12) ensures the separation
time of two consecutive flights at an identical gate based on all possible gating
times of them included in the scenarios.

Robust Multi-Objective Gate Scheduling 601

4 Solution Methodologies

4.1 Exact Approach with the Weighted Sum of Objectives

In multi-objective optimisation, each solution represents multiple objective val-
ues. Therefore, solutions can not be easily sorted based on only one criterion,
which is the case in the single-objective optimisation. So we have to consider a
trade-off between the objectives instead with the aid of a concept called dom-
inance. It is said that in the presence of n objectives, a solution x dominates
another solution y, x ≺d y, if the following conditions are true:

1) zi(x) ≤ zi(y),∀i ∈ 1, 2, ..., n
2) ∃j ∈ 1, ..., n : zj(x) < zj(y)

In multi-objective optimisation, the goal is to discover a set of globally non-
dominated solutions, which is known as Pareto-optimal. A set containing the
Pareto-optimal solutions constitutes a Pareto front. An easily applicable method
to tackle a multi-objective optimisation problem by any exact solver is to replace
the multiple objectives with a single objective containing a weighted sum of the
original objectives as below:

Z =
n∑

i=1

ciZi (13)

n∑

i=1

ci = 1 (14)

where the problem has n objectives and ci is the weight associated with the
objective i. By manipulating these weights, i.e. the vector C = (c1, c2, ..., cn),
different solutions can be obtained. Thus, each time the problem is solved based
on a C, there is the possibility of finding one non-dominated or Pareto-optimal
solution.

4.2 Hybrid Metaheuristic

There are some considerable weaknesses in exact methods in dealing with multi-
objective problems such as long computational times, the necessity of numerous
runs or difficulty in locating the non-convex part of the Pareto front. There-
fore, metaheuristic multi-objective methods can be employed as alternative
approaches to provide good results within much shorter computational times.
Hence, here we devise a metaheuristic approach consisting of the combination
of two famous evolutionary concepts, namely the MOPSO and the MOSA.

602 A. Nourmohammadzadeh and S. Voß

MOPSO. In the MOPSO, see [21], a population of candidate solutions is ini-
tialised as the particles and a random velocity is associated with each. The parti-
cles are moved in each iteration according to their velocities, which are steadily
updated based on the best position that the particle has experienced as well
as the global best position of all particles up to that point. The corresponding
formulas are as follows:

vpaticle = ωvparticle + ϕp(BPparticle − pparticle) + ϕg(BG − pparticle) (15)

pparticle = pparticle + vparticle (16)

where vparticle is the velocity of the particle, pparticle is the position of the par-
ticle, ω is the inertia coefficient that applies the effect of the previous positions,
BPparticle is the personal best position of the particle, BG is the global best
position of all particles, ϕp and ϕg are random coefficients, which determine the
influence of the personal and global best positions. These coefficients are sepa-
rately chosen for each particle and changed in each iteration. A major difference
in the MOPSO in comparison to the PSO is in the evaluation of the solutions
to find the personal and global best positions. Different metrics can be consid-
ered for this sake. One of them is the distance from the nearest non-dominated
solution found until then. The non-dominated solutions are saved in a set REP .
The metric can be mathematically expressed as:

M1(Particle) =
1
n

min
Particle′∈REP

n∑

i=1

(Zi(Particle′) − Zi(Particle))2 (17)

REP is updated each time that a new non-dominated solution (solnew) is
found. This update includes adding solnew to REP and eliminating the solu-
tions in REP which are dominated by solnew. The global best (GB) is chosen
within REP according to the diversity aspect. For this goal, each solution of
REP is evaluated based on the distance of its two nearest neighbours which are
also existing in REP . We call this metric M2. The distance between any two
solutions, sol and sol′, is calculated as:

Dsol,sol′ =
n∑

i=1

(Zi(sol) − Zi(sol′))2 (18)

The larger is M2, the better is the solution because it shows that there is a
larger gap between this solution and others. Thus, it is more likely that this gap
can be filled with some new non-dominated solutions, which we try to find next.
So the GB is a particle in REP corresponding to the largest M2.

This algorithm continues iteration by iteration and REP is completed and
corrected by population-based searches done by the movements of particles until
a pre-defined termination criterion is met. The latest REP is considered as the
output of this algorithm.

Robust Multi-Objective Gate Scheduling 603

MOSA. The MOSA, originally presented in [26], applies neighbourhood
searches by a probabilistic acceptance rule to increase the probability of landing
on non-dominated solutions. For a problem with n objectives, a random weight is
assigned to each objective considering

∑n
i=1 λi = 1. The acceptance probability

of a neighbouring solution sol′ of the solution sol is calculated as follows:

P (sol, sol′, λ, T) = min(1, exp(− max
i=1,...,n

λi[(zi(sol′) − zi(sol)]
T

)) (19)

where T is the current temperature. At the beginning of the algorithm, we have
a high T that leads to larger acceptance probabilities for dominated solutions.
By going further in the optimisation process, we decrease T , which means that a
new dominated solution can be harder accepted instead of the current solution.
This is analogous to the annealing process in reality that the shape of an object
can be easily changed when it is melted but by cooling, it gets more stability
and changing it is less possible.

We aim at using the concept of a population-based MOSA, which tries a num-
ber of neighbourhood searches for each solution of the population and replaces
it with a neighbouring solution probabilistically. Here again, a set ρ is consid-
ered to keep the Pareto-optimal solutions. Upon finding any new non-dominated
solution, ρ is updated. After the execution of nbn neighbourhood searches, the
algorithm starts a new iteration by decreasing the temperature T . This algorithm
continues iteratively while the stoppage condition does not hold.

Hybridisation. Hybridisation can be regarded as an approach to use the advan-
tages of multiple metaheuristics at the same time. As the MOPSO and the MOSA
have shown good capability and conform well with the structure of our problem,
we decided to develop an integrative hybrid of them. In our hybrid algorithm,
an initial population of particles is randomly generated. Then, in each iteration,
firstly, the concept of the presented MOPSO is used and the particles move to
their new positions. Henceforth, the mechanism of MOSA is applied by trying
the neighbouring solutions of the positions with the acceptance probability. In
other words, an MOSA is run at the end of each MOPSO iteration to improve
the solutions. The termination condition of the MOSA is passing a pre-defined
number of iterations Maxit, whereas the termination criterion of the MOPSO
or the whole hybrid algorithm is stagnation over a number of consecutive itera-
tions MUI. The pseudocode of this hybrid metaheuristic is given in Algorithm
1. This algorithm has some important parameters related to the MOPSO and
the MOSA such as |S|, ω, MUI, T0, nbn and Maxit, which have to be efficiently
set.

Application for the GSP. An important part of the implementation of a
meta-heuristic is how to encode a solution in a form that can be conveniently
used in the algorithm. Two different solution representations are defined for
our hybrid algorithm because it applies the concepts of two metaheuristics. The

604 A. Nourmohammadzadeh and S. Voß

Algorithm 1: The Proposed Hybrid Metaheuristic
Data: The problems’ inputs and the algorithm’s parameters
Result: A set of high-quality non-dominated solutions

1 - Generate initial solutions S, or initial positions of particles.
2 - Generate a random velocity for each particle.
3 - Set REP = ∅
4 - q = 0. q is the current number of consecutive unsuccessful iterations.
5 while q ≤ MUI do
6 for s ∈ S do
7 - Calculate the new velocity of the particle according to 15.
8 - Move the particle s to its new position according to 16.
9 - Evaluate the particle by the calculation of M1 according to 17.

10 - Start the MOSA by setting T = T0.
11 for it = 1:Maxit do
12 for neighbour = 1 : nbn do
13 - Construct a neighbouring solution of the particle position.
14 - Accept the neighbouring solution with the probability 19.

15 end
16 - Decrease T.

17 end
18 - Update the personal best position of the particle BP .
19 - Update the REP if necessary.
20 - Update GP if necessary based calculation of M2.

21 end
22 - Set q = q + 1 if no non-dominated solution is found within the iteration;

otherwise set q = 0.
23 end
24 - Report the REP .

MOSA is applicable to problems with discrete variables, which is the case in
our GSP. So our first solution representation is a string of cells, where each
cell corresponds to one flight and contains the id of the gate chosen to serve it.
Figure 1 illustrates an encoded solution which can be used in the MOSA part.

3 5 2 2 5 1 4 2 4 1

Fig. 1. Solution representation for the MOSA: There are ten flights and five gates,
according to this solution, the first flight is assigned to gate 3, the second to gate 5,
and so on.

However, since the MOPSO works with continuous variables, the whole
assignment is converted to only one real value by considering the mentioned
representation as being a number in the base-B numeral system and B =
the number of gates plus one. Consequently, this number can be converted to

Robust Multi-Objective Gate Scheduling 605

its decimal equivalent or one in the base-ten. For example, the structure shown
in Fig. 1 is regarded as a number in the base-six numeral system (because there
are five gates), i.e. (3522514241)6, and it is converted to a decimal number as
follows: 3(60)+4(61)+2(62)+4(63)+1(64)+5(65)+2(66)+2(67)+5(68)+3(69) =
39325491.

The MOPSO can use it as the particle position. Therefore, in the process of
the hybrid algorithm, these two representations are constantly turned to each
other in order to be usable by the MOPSO and the MOSA. Finally, the con-
straints of the problem are handled by adding a penalty function to the objec-
tives. The penalty functions are specific for each objective and expressed as
Penzi = CP × NSV × Max(zi), where CP is a constant factor, NSV is the
normalised sum of violations in all constraints and Maxzi is the considered
maximum of the objective i.

5 Computational Experiments

The computational efforts done in this work begin with generating the test
instances, then the considered methodologies have to be well parameterised,
subsequently, the instances can be tackled with the approaches to compare their
merit. Our experiments are run on machines with a Core(TM) i7 processor, 3.10
GHz CPU, and 16 GB of RAM.

5.1 Test Instances

The test instances are generated based on real data about the arrival and depar-
ture flights at five major airports in the world, which are obtained online. How-
ever, we consider a simple airport layout as shown in Fig. 2. This is an example
where the airport has altogether 10 gates, the distance between two adjacent
gates is one unit, the distance from the entrance/exit to the nearest gate is
assumed to be 5 units, there are three shopping areas, one for every four gates,
which cover 2 units each. An unlimited number of remote (non-connected) gates
at the apron are available, which are with the consideration of required bus
transfer efforts 10 units away from the terminal. We assume that the number

of gates is directly proportional to the number of flights as |G| =
|F |
20

or one
for every 20 flights. This terminal layout is extended or shrunk according to the
number of flights existing in each instance. It means that the distances between
the entities remain the same but the number of them is increased or decreased.
A random reference gate is considered for 20% of the flights and it is due to
the fact that only a proportion of flights tend to be operated at a fixed gate in
the real world. Three possible delays are assumed for 5%, 10%, and 20% of the
flights. The set of possible delays is {0, 10, 30, 45, 60} in minutes and the scenar-
ios are built accordingly. The considered planning horizon is 12 h. The number
of flights included in the instances is from 100 to 1000.

606 A. Nourmohammadzadeh and S. Voß

Gate 1 Gate 2

1

Gate 3 Gate 4 Gate 5 Gate 6 Gate 7 Gate 8 Gate 9 Gate 10

Shopping Area 1

2

Shopping Area 2 Shopping Area 3

Entrance
Exit

Entrance
Exit

5

Fig. 2. The considered airport layout

5.2 Parameterisation of Algorithms

Setting the parameters at their efficient values plays a vital role in the successful
performance of the optimisation algorithms. In the application of the weighted
sum methods, the weights used in each run of the exact solver have to be cor-
rectly set and changed in order to increase the ability in finding Pareto-optimal
solutions. In our implementation, the weights of the three objectives can take the
values 0,0.1,0.2,0.3,...,1 regarding that their summation must be one. So the Baron
solver processes the problem with the aggregated objective 103 = 1000 times.

The tuning of parameters of our hybrid metaheuristic is done by the
Taguchi method (see [19]), which works according to the design of experiment.
We give the method three levels for each parameter, which are regarded as
low, middle and high values, to choose from. The experiments are done on
middle-sized instances. According to the applied parameter setting, the cho-
sen parameter values are as follows: MUI = 25 from {10, 25, 50}, |S|=200
from {100, 200, 300}, ω = 0.6 from {0.3, 0.6, 0.8}, T0 = 105 from {103, 105, 107},
nbn = 50 from {10, 50, 100}, Maxit = 100 from {100, 200, 300} and CP = 100
from {10, 100, 1000}.

5.3 Results and Comparison

The weighted sum method is programmed in GAMS, while the proposed hybrid
metaheuristic along with a pure MOPSO and MOSA and a probabilistic TS
approach based on the solution methodology presented in [3] are programmed
in Python. The test instances are tackled by the method based on the presented
robust model. Different metrics can be used to evaluate the performance of
multi-objective optimisation approaches. Two evaluation metrics are here used.
The first one is the quality metric (QM) that shows the share of each method
in the set of overall non-dominated solutions obtained by all methods. It is
calculated by the accumulation of Pareto-optimal sets of all methods in one
pool and eliminating those which are dominated by any other solution within
this pool; then the number of solutions provided by each method is divided by the

Robust Multi-Objective Gate Scheduling 607

size of the pool. Since duplicate answers are removed, one solution may be related
to more than one method. The second one is Hypervolume (HV) that is used the
most in the multi-objective literature [24] and measures the size of the objective
space covered by the set of non-dominated solutions found by the method. A
very significant advantage of this metric is that it indicates both accuracy and
diversity. The metaheuristic methods run for each instance ten times and the
average metrics of the replications are considered to have indicators which are
based on wider experiments. Table 1 contains the QM and the HV based on the
objective values normalised in [0,1] as well as the execution times of the applied
solution methodologies. The solution time limit is set to 600 s for each run of the
weighted sum method, so it is 6 × 105 in total.

Table 1. The (average) values of the multi-objective evaluation metrics and the (aver-
age) execution times in seconds of the methods in robust optimisation of the problem

|S| Weighted sum TS MOPSO MOSA Hybrid

QM HV Time QM HV Time QM HV Time QM HV Time QM HV Time

100 0.15 0.65 6 × 105 0.54 0.71 25 0.56 0.72 18 0.54 0.68 25 0.82 0.83 41

200 0 0.53 6 × 105 0.56 0.70 30 0.52 0.68 26 0.53 0.50 33 0.80 0.78 48

300 0 0.48 6 × 105 0.48 0.63 34 0.50 0.67 32 0.51 0.48 41 0.76 0.75 56

400 0 0.42 6 × 105 0.52 0.56 45 0.51 0.64 36 0.48 0.47 49 0.78 0.73 63

500 0 0.41 6 × 105 0.51 0.42 52 0.48 0.62 42 0.45 0.50 48 0.72 0.79 73

600 0 0.38 6 × 105 0.48 0.58 51 0.47 0.65 47 0.46 0.45 53 0.67 0.76 82

700 0 0.36 6 × 105 0.47 0.55 64 0.45 0.62 55 0.40 0.46 61 0.71 0.74 88

800 0 0.35 6 × 105 0.49 0.58 70 0.46 0.62 62 0.41 0.43 68 0.73 0.78 97

900 0 0.31 6 × 105 0.45 0.62 107 0.42 0.60 87 0.42 0.41 95 0.68 0.75 111

1000 0 0.30 6 × 105 0.42 0.51 121 0.40 0.58 98 0.38 0.37 118 0.65 0.70 128

As it is observed in the results, the proposed hybrid metaheuristic outperforms
the rest of the methods in terms of both metrics. Except for the smallest instance,
where the weighted sum method can provide only one overall non-dominated solu-
tion, it is totally unable to find any in other cases within the very long considered
time limit. The hybridisation has enhanced the ability in searching for better solu-
tions. This can be perceived by comparing the results of the pure MOPSO and
MOSA with those of the hybrid approach of these two. The results of the TS app-
roach are quite similar to the pure MOPSO. In some cases, it provides partially
better solutions, whereas in other cases its outcomes are slightly weaker. In terms
of the execution time, the hybrid method is the slowest because two algorithms
have to be run numerous times in every implementation of it. Nevertheless, the
required execution times are not considerably longer and the method can be used
in practice to deal with real-sized instances. So it provides high-quality solutions
for the largest problem with 1000 flights only in 128 s, while the exact solution
approach is unsuccessful even after almost one week of execution.

To have statistical comparisons, all the methods are compared through a
non-parametric test (the Friedman test with the Bergmann-Hommel post hoc

608 A. Nourmohammadzadeh and S. Voß

procedure [5]). The obtained p-values for the comparison of the hybrid method
with others are near zero in all cases, which indicate a significant difference in
their averages.

In the end, we conduct some complementary experiments to detect how
much the objectives are deteriorated because of considering the robustness in
our model. In these experiments, the non-robust model presented in Sect. 3.2 is
solved for the same instances and the differences or the costs of robustness are
analysed. The hybrid metaheuristic method, which is found to be the most effi-
cient, is also used for the non-robust optimisation and the results are compared
with those already presented in the three last columns of Table 1 in Table 2.

Table 2. The average metrics’ values and the average execution times in seconds of
the robust and non-robust approach and their average differences

|S| Robust Non-robust Difference in percent (%)

QM HV Time QM HV Time QM HV Time

100 0.82 0.83 41 0.85 0.85 33 3.6 2.4 19.5

200 0.80 0.78 48 0.86 0.84 36 8.5 7.6 25

300 0.76 0.75 56 0.84 0.81 44 10.5 7.4 21.4

400 0.78 0.73 63 0.85 0.82 51 8.9 12.3 19

500 0.72 0.79 73 0.80 0.87 62 11.1 17.7 15.1

600 0.67 0.76 82 0.79 0.82 70 17.9 7.8 14.6

700 0.71 0.74 88 0.82 0.80 75 15.5 8.1 14.8

800 0.73 0.78 97 0.80 0.86 81 8.7 10.3 16.5

900 0.68 0.75 111 0.77 0.86 90 11.7 14.6 18.9

1000 0.65 0.70 128 0.74 0.81 106 13.8 15.7 17.1

As it is evident, the metrics’ values related to the non-robust approach are bet-
ter and the solutions are achieved in shorter execution times. This shows that we
have to always accept a cost in terms of both the solution quality and the computa-
tion time if we aim at embedding robustness in the optimisation. It can be observed
that the cost of robustness is more considerable in the large instances. However,
regarding the important fact that the problem inputs do not have a deterministic
nature, it can be worthwhile in many cases to bear this robustness cost in order to
have more reliable solutions, which remain good in different scenarios.

6 Conclusions and Future Outlook

In this work, the GSP is addressed and a multi-objective model with the consid-
eration of non-deterministic arrival times of flights at gates is presented for it.
Some real-based instances of various sizes are created and solved with five differ-
ent solution methodologies. The analysis of the methods’ performances indicates
that our proposed hybrid metaheuristic is superior to the exact solution method
with the considered time limit, both its pure constituent metaheuristics and also

Robust Multi-Objective Gate Scheduling 609

another probabilistic approach based on a metaheuristic presented in a previous
paper. Hence, we can provide fast non-dominated solutions for GSP instances of
real sizes with several hundreds of flights. The Pareto-optimal solutions can be
given to decision-makers to choose from based on their criteria and preferences.

An interesting future direction can be investigating the influence of the ter-
minal layout or increasing the number of gates. Besides, other real facts such
as breakdowns of gates and cancellation of flights can be taken into account.
Finally, the application and development of other metaheuristics or matheuris-
tic methods can be followed as a future subject with a lot of room for research.

References

1. https://www.gams.com/latest/docs/s baron.html
2. GAMS Development Corporation, General Algebraic Modeling System (GAMS)

Release 24.2.1. Washington, DC, USA (2013)
3. Aktel, A., Yagmahan, B., Özcan, T., Yenisey, M.M., Sansarcı, E.: The comparison

of the metaheuristic algorithms performances on airport gate assignment problem.
Transp. Res. Procedia 22, 469–478 (2017). https://doi.org/10.1016/j.trpro.2017.
03.061

4. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper.
Res. Lett. 25(1), 1–13 (1999). https://doi.org/10.1016/s0167-6377(99)00016-4

5. Bergmann, B., Hommel, G.: Improvements of general multiple test procedures
for redundant systems of hypotheses. In: Multiple Hypothesenprüfung / Multiple
Hypotheses Testing, pp. 100–115. Springer, Heidelberg (1988). https://doi.org/10.
1007/978-3-642-52307-6 8

6. Cheng, C.H., Ho, S.C., Kwan, C.L.: The use of meta-heuristics for airport gate
assignment. Expert Syst. Appl. 39(16), 12430–12437 (2012). https://doi.org/10.
1016/j.eswa.2012.04.071

7. Daş, G.S.: New multi objective models for the gate assignment problem. Comput.
Ind. Eng 109, 347–356 (2017). https://doi.org/10.1016/j.cie.2017.04.042

8. Daş, G.S., Gzara, F., Stützle, T.: A review on airport gate assignment problems:
single versus multi objective approaches. Omega 92, 102146 (2020). https://doi.
org/10.1016/j.omega.2019.102146

9. Dell’Orco, M., Marinelli, M., Altieri, M.G.: Solving the gate assignment problem
through the fuzzy bee colony optimization. Transp. Res. Part C Emerg. Technol
80, 424–438 (2017). https://doi.org/10.1016/j.trc.2017.03.019

10. Deng, W., Zhao, H., Yang, X., Xiong, J., Sun, M., Li, B.: Study on an improved
adaptive PSO algorithm for solving multi-objective gate assignment. Appl. Soft
Comput. 59, 288–302 (2017). https://doi.org/10.1016/j.asoc.2017.06.004

11. Dijk, B., Santos, B.F., Pita, J.P.: The recoverable robust stand allocation problem:
a GRU airport case study. OR Spectr. 41(3), 615–639 (2018). https://doi.org/10.
1007/s00291-018-0525-3

12. Dorndorf, U., Jaehn, F., Pesch, E.: Flight gate assignment and recovery strate-
gies with stochastic arrival and departure times. OR Spectr. 39(1), 65–93 (2016).
https://doi.org/10.1007/s00291-016-0443-1

13. Freathy, P., O’Connell, F.: Planning for profit: the commercialization of European
airports. Long Range Plan. 32(6), 587–597 (1999). https://doi.org/10.1016/s0024-
6301(99)00075-8

https://www.gams.com/latest/docs/s_baron.html
https://doi.org/10.1016/j.trpro.2017.03.061
https://doi.org/10.1016/j.trpro.2017.03.061
https://doi.org/10.1016/s0167-6377(99)00016-4
https://doi.org/10.1007/978-3-642-52307-6_8
https://doi.org/10.1007/978-3-642-52307-6_8
https://doi.org/10.1016/j.eswa.2012.04.071
https://doi.org/10.1016/j.eswa.2012.04.071
https://doi.org/10.1016/j.cie.2017.04.042
https://doi.org/10.1016/j.omega.2019.102146
https://doi.org/10.1016/j.omega.2019.102146
https://doi.org/10.1016/j.trc.2017.03.019
https://doi.org/10.1016/j.asoc.2017.06.004
https://doi.org/10.1007/s00291-018-0525-3
https://doi.org/10.1007/s00291-018-0525-3
https://doi.org/10.1007/s00291-016-0443-1
https://doi.org/10.1016/s0024-6301(99)00075-8
https://doi.org/10.1016/s0024-6301(99)00075-8

610 A. Nourmohammadzadeh and S. Voß

14. Genç, H.M., Erol, O.K., Eksin, İ, Berber, M.F., Güleryüz, B.O.: A stochastic neigh-
borhood search approach for airport gate assignment problem. Expert Syst. Appl.
39(1), 316–327 (2012). https://doi.org/10.1016/j.eswa.2011.07.021

15. Geuens, M., Vantomme, D., Brengman, M.: Developing a typology of airport
shoppers. Tour. Manag. 25(5), 615–622 (2004). https://doi.org/10.1016/j.tourman.
2003.07.003

16. Kaliszewski, I., Miroforidis, J., Stańczak, J.: The airport gate assignment prob-
lem multi-objective optimization versus evolutionary multi-objective optimization.
Comput. Sci. 18(1), 41–52 (2017). https://doi.org/10.7494/csci.2017.18.1.41

17. Kumar, V.P., Bierlaire, M.: Multi-objective airport gate assignment problem in
planning and operations. J. Adv. Transp 48(7), 902–926 (2013). https://doi.org/
10.1002/atr.1235

18. Mokhtarimousavi, S., Talebi, D., Asgari, H.: A non-dominated sorting genetic algo-
rithm approach for optimization of multi-objective airport gate assignment prob-
lem. Transp. Res. Rec. J. Transp. Res. Board 2672(23), 59–70 (2018). https://doi.
org/10.1177/0361198118781386

19. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons, Inc.,
Hoboken (2006)

20. Nikulin, Y., Drexl, A.: Theoretical aspects of multicriteria flight gate scheduling:
deterministic and fuzzy models. J. Schedul. 13(3), 261–280 (2009). https://doi.
org/10.1007/s10951-009-0112-1

21. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in mul-
tiobjective problems. In: Proceedings of the 2002 ACM symposium on Applied
computing (SAC). ACM Press (2002). https://doi.org/10.1145/508791.508907

22. Pternea, M., Haghani, A.: Mathematical models for flight-to-gate reassignment
with passenger flows: state-of-the-art comparative analysis, formulation improve-
ment, and a new multidimensional assignment model. Comput. Ind. Eng. 123,
103–118 (2018). https://doi.org/10.1016/j.cie.2018.05.038

23. Richter, S., Voss, S., Wulf, J.: A passenger movement forecast and optimisation
system for airport terminals. Int. J. Aviat. Manag. 1(1/2), 58 (2011). https://doi.
org/10.1504/ijam.2011.038293

24. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective
optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11
(2015). https://doi.org/10.1109/CLEI.2015.7360024

25. van Schaijk, O.R.P., Visser, H.G.: Robust flight-to-gate assignment using flight
presence probabilities. Transp. Plan. Technol 40(8), 928–945 (2017). https://doi.
org/10.1080/03081060.2017.1355887

26. Serafini, P.: Simulated annealing for multi objective optimization problems. In:
Multiple Criteria Decision Making, pp. 283–292. Springer, New York (1994).
https://doi.org/10.1007/978-1-4612-2666-6 29

27. Yan, S., Tang, C.H.: A heuristic approach for airport gate assignments for stochas-
tic flight delays. Eur. J. Oper. Res. 180(2), 547–567 (2007). https://doi.org/10.
1016/j.ejor.2006.05.002

28. Yu, C., Zhang, D., Lau, H.Y.: An adaptive large neighborhood search heuristic for
solving a robust gate assignment problem. Expert Syst. Appl. 84, 143–154 (2017).
https://doi.org/10.1016/j.eswa.2017.04.050

29. Yu, C., Zhang, D., Lau, H.: MIP-based heuristics for solving robust gate assignment
problems. Comput. Ind. Eng. 93, 171–191 (2016). https://doi.org/10.1016/j.cie.
2015.12.013

https://doi.org/10.1016/j.eswa.2011.07.021
https://doi.org/10.1016/j.tourman.2003.07.003
https://doi.org/10.1016/j.tourman.2003.07.003
https://doi.org/10.7494/csci.2017.18.1.41
https://doi.org/10.1002/atr.1235
https://doi.org/10.1002/atr.1235
https://doi.org/10.1177/0361198118781386
https://doi.org/10.1177/0361198118781386
https://doi.org/10.1007/s10951-009-0112-1
https://doi.org/10.1007/s10951-009-0112-1
https://doi.org/10.1145/508791.508907
https://doi.org/10.1016/j.cie.2018.05.038
https://doi.org/10.1504/ijam.2011.038293
https://doi.org/10.1504/ijam.2011.038293
https://doi.org/10.1109/CLEI.2015.7360024
https://doi.org/10.1080/03081060.2017.1355887
https://doi.org/10.1080/03081060.2017.1355887
https://doi.org/10.1007/978-1-4612-2666-6_29
https://doi.org/10.1016/j.ejor.2006.05.002
https://doi.org/10.1016/j.ejor.2006.05.002
https://doi.org/10.1016/j.eswa.2017.04.050
https://doi.org/10.1016/j.cie.2015.12.013
https://doi.org/10.1016/j.cie.2015.12.013

A Branch-and-Cut Algorithm for Aircraft
Routing with Crew Assignment for
On-Demand Air Transportation

Rafael Ajudarte de Campos(B) , Thiago Vieira , and Pedro Munari

Federal University of São Carlos, São Carlos, SP, Brazil
rafael.ajudarte@estudante.ufscar.br, munari@dep.ufscar.br

Abstract. We address the aircraft routing problem with crew assign-
ment in the context of on-demand air transportation. This problem
involves the design of least-cost routes for an aircraft set in order to ser-
vice private flight requests, considering the customer preferences, fleet
characteristics and maintenance events. Additionally, a crew team has
to be assigned to each route while satisfying the crew legislation, includ-
ing duty time limitations and minimum rest times. Despite its practi-
cal relevance, integrated aircraft routing and crew assignment has been
barely explored in the literature addressing on-demand air transporta-
tion. In this paper, we propose a tailored branch-and-cut algorithm to
effectively solve the addressed problem, which resorts to a strategy based
on dynamic programming to separate cuts that guarantee the feasibil-
ity regarding crew legislation. In computational experiments carried out
using real-life data provided by a company, the method obtained opti-
mal solutions for all instances in less than five minutes. Moreover, these
solutions indicate a potential improvement of around 23% in the opera-
tional cost when compared to the routes designed by the company, which
highlights the benefits of using the proposed approach in practice.

Keywords: Aircraft routing · Crew assignment · On-demand air
transportation

1 Introduction

The airline industry is known for operating in a dynamic environment where
every decision may have a strong impact on operational costs. In a context like
this, in which poorly-optimized decisions can easily undermine the company’s
already small profit margin, the Operations Research (OR) tools become of
utmost importance. Optimization models and algorithms have been successfully

Supported by São Paulo Research Foundation (FAPESP) [grant numbers 19/22235-6,
19/23596-2, 20/11602-5, 16/01860-1], Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) [Finance Code 001] and the National Council for
Scientific and Technological Development (CNPq) [grant number 313220/2020-4].

c© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 611–626, 2021.
https://doi.org/10.1007/978-3-030-87672-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_40&domain=pdf
http://orcid.org/0000-0001-5970-8394
http://orcid.org/0000-0001-9186-8769
http://orcid.org/0000-0001-5929-593X
https://doi.org/10.1007/978-3-030-87672-2_40

612 R. A. de Campos et al.

used to assist the decision-making process, providing tools capable of generating
efficient solutions within a reasonable time [1,10,13].

In this paper, we are interested in two important processes in the air trans-
portation sector, namely aircraft routing, which involves the decision of which
flights to assign to each aircraft [7,8,10], and crew assignment, which consists of
assigning crew members to particular flight legs [4,6]. We consider these opera-
tions in the context of companies that offer private flights as part of fractional
ownership programs. In such type of service, a customer partially owns an air-
craft by paying a fraction of its price, giving them the right to fly for a certain
number of hours per year [15]. These companies operate differently from tra-
ditional commercial airlines because the customer has decision-making power
regarding the flight starting times, the route and the type of the requested air-
craft. As customer’s requests are mandatory by contract and generate revenue,
this type of company usually focuses on minimizing the operating costs particu-
larly related to positioning flights [14]. These are flights in which the aircraft flies
without customers to the departure airport of a request, without providing any
profit for the company. This type of flight usually represents approximately 35%
of the time an aircraft is in the air, and thus it is an important cost component
for the company [15].

Another relevant source of operating costs in this type of company is the
upgrade costs, which arises when customers are serviced by an aircraft that is
better, and more expensive, than the one they hired. Despite the additional
cost, an upgrade can be used strategically by the company to obtain savings
with respect to positioning a farther away aircraft of the type chosen by the
customer. This approach allows the company to reduce their total costs and
meet requests that would be impossible otherwise [10]. The downside is that this
freedom considerably increases the complexity of the decision-making process.
It should be noted that the companies’ policy usually does not allow customers
to be serviced by aircraft that are inferior to the one requested (downgrade).

Moreover, the company is responsible for the fleet maintenance. Periodically,
each aircraft must go through a planned checking and maintenance process,
becoming unavailable until it is finished. Although the start time of a mainte-
nance event is pre-scheduled, the company is typically allowed to advance or
delay this time within a relatively large margin of 24 h. Thus, maintenance can
be seen as a request in which the aircraft must be stationary at a single airport
for a certain period of time and which presents a comprehensive time window,
allowing greater flexibility.

Another important point the company must consider while planning the air-
craft routes is the various regulations related to the crew’s working and resting
time. Some of the most relevant are the maximum time allowed in a duty, the
maximum accumulated flight time in a duty, the minimum time of rest between
two duties, and the maximum time that crew members can be away from their
base (the place where they are usually hosted when not working) [4,11].

Considering routing and crew requirements simultaneously in the planning
stage, albeit a more complex activity, brings considerable economic advantages to

Aircraft Routing Model 613

the solution [2,9,12]. This is compatible with the company’s focus on minimizing
operating costs and can be interesting to apply in practice. However, it is worth
noting that due to the high dynamics of this sector, it is essential not only to
generate an efficient solution, but also to obtain it in a short time span. This
is particularly more relevant in on-demand air transportation companies, such
as the one studied in this paper, because, by contract, customers can request a
flight as little as four hours in advance.

In the literature addressing models and solution approaches for aiding
decision-making in the described context, authors typically resort to special-
ized algorithms to effectively obtain solutions, such as decomposition techniques
[9], branch-and-price methods [14] and heuristic approaches [2]. We emphasize
that the majority of works addressing integrated routing and crew requirements
were developed for traditional companies [2,9]. Furthermore, we are not aware
of any other study that considers all aspects of the situation addressed in this
paper, in the context of on-demand air transportation.

In this paper, we aim to obtain economical solutions that consider requests’
requirements and crew rules, based on the real case of an air transportation
company that offers fractional ownership management services and operates pri-
marily in Europe and Asia. We propose a branch-and-cut (B&C) algorithm that
dynamically inserts cuts into a recent compact model from the literature [10], as
a way to enforce the crew’s requirements. Cut separation is done based on the
labeling algorithm, a dynamic programming procedure that proved to be efficient
in practice. In addition to the characteristics already considered in the litera-
ture, such as routing, maintenance request and possibility of service upgrade, we
further ensure that the maximum duration of a duty and the minimum rest time
between two duties are respected. Furthermore, we inserted into the formulation
the possibility of outsourcing a customer requests. Computational experiments
were carried out using real-life data provided by a company, and optimal solu-
tions were quickly obtained for all instances.

The remainder of this paper is structured as follows. Section 2 presents the
base model for aircraft routing that is used in the B&C algorithm. Section 3
describes the B&C algorithm and the cuts generated to enforce crew require-
ments. The results of computational experiments are shown in Sect. 4 and, finally,
the concluding remarks and next steps are presented in Sect. 5.

2 Aircraft Routing Model

The B&C algorithm is based on an aircraft routing model that is initially created
without considering crew requirements. This model was originally proposed in
[10] for the same context of a fractional ownership management company. A fea-
ture that makes this model stand out among other compact formulations [5,14]
is that instead of using a problem representation based on the traditional net-
work in which nodes represent the airports, the authors considered an alternative
network in which the nodes represent customer requests, as depicted in Fig. 1.
Thus, the decision variables select the sequence of requests that each aircraft

614 R. A. de Campos et al.

will perform. This typically leads to a more efficient optimization model than
traditional formulations with the standard representation [10].

Fig. 1. Representation of the flow network through requests. Source: [10]

Consider the aircraft set V , which can be partitioned according to an ordered
set of types P . For each type p ∈ P , we create subsets Vp that lists the aircraft
of that type. The requests are represented by the set R which is composed of
two subsets: L, which contains the customer requests; and M , which includes
the maintenance events. Additionally, set R also contains a dummy request 0.
The parameters considered in the model are: the positioning costs of aircraft v
from the request r to the request s, Cvrs; the travel time between airports i and
j for an aircraft of type p, T p

ij ; the moment when the aircraft v ∈ V becomes
available for its first flight in the planning horizon, AVv; the airport at which an
aircraft v is parked at the start of the planning horizon, kv; the type of aircraft
v, tv ∈ P ; the time the aircraft takes at an airport such as boarding and taxiing,
TAT r

k ; the expected starting time of request r ∈ R, STr, which can be delayed by
an amount of ΔL minutes if it is a customer request, or advanced and delayed
by ΔM minutes if it is a maintenance event; we also need the departure and
destination airports of request r, represented by ir and jr, respectively; the type
of aircraft required for a request r is represented by parameter pr; and TLr is
the maintenance time of a request r ∈ M .

Considering the sets and parameters previously presented, the model devel-
oped in [10] uses two groups of decision variables. The first one is composed by
the binary variables yvrs, which assume the value 1 if, and only if, aircraft v
services request s immediately after servicing request r. The second is composed
of the continuous variables wr, which represent the earliest time that request r
can be executed. Thus, the model is given by:

min
∑

v∈V

∑

r∈R

∑

s∈R

Cvrsyvrs +
∑

r∈L

∑

s∈R
s �=r

∑

p∈P
p>pr

∑

v∈Vp

(ctvT
tv
irjr

− cprT
pr
irjr

)yvrs (1)

s.t.
∑

p∈P
p≥pr

∑

v∈Vp

∑

s∈R
s �=r

yvrs = 1, r ∈ L, (2)

∑

s∈R
s �=r

yvrs = 1, r ∈ M, v ∈ V, (3)

Aircraft Routing Model 615

∑

s∈R
s �=r

yvrs =
∑

s∈R
s �=r

yvsr, v ∈ V, r ∈ R, r > 0, (4)

∑

s∈R

yv0s = 1 =
∑

r∈R

yvr0, v ∈ V, (5)

STr ≤ wr ≤ STr + ΔL, r ∈ L, (6)
STr − ΔM ≤ wr ≤ STr + ΔM , r ∈ M, (7)

ws ≥ wr +
∑

v∈V

(T tv
irjr

+ TAT s
jr + T tv

jris
+ TAT s

is
)yvrs + M1

rs(
∑

v∈V

yvrs − 1),

r ∈ L, s ∈ R, r �= s, s > 0, jr �= is, (8)
ws ≥ wr +

∑

v∈V

(T tv
irjr

+ TAT s
is)yvrs + M2

rs(
∑

v∈V

yvrs − 1),

r ∈ L, s ∈ R, r �= s, s > 0, jr = is, (9)
ws ≥ (AVv + T tv

kvis
+ TAT s

is
)yv0s, s ∈ L, v ∈ V, kv �= is, (10)

ws ≥ (AVv + TAT s
is

)yv0s, s ∈ L, v ∈ V, kv = is, (11)
ws ≥ wr + TLr + T pr

jris
+ TAT s

is
+ M3

rs(yvrrs − 1),

r ∈ M, s ∈ R, r �= s, s > 0, jr �= is, (12)
ws ≥ wr + TLr + TAT s

is
+ M4

rs(yvrrs − 1),

r ∈ M, s ∈ R, r �= s, s > 0, jr = is, (13)
ws ≥ (AVvs + T ps

kvs is
)yvs0s, s ∈ M,kvs �= is, (14)

ws ≥ AVvsyvs0s, s ∈ M,kvs = is, (15)
wr ≥ 0, r ∈ R, (16)

yvrs ∈ {0, 1}, v ∈ V, s, r ∈ R. (17)

The objective function (1) consists of minimizing the operational costs. These
costs are composed by the costs of aircraft positioning, which arise in trips that
aircraft fly alone, represented by the first term, and upgrade cost, the increase
in cost when servicing a request with an aircraft better than the one contracted,
represented by the second term. Constraints (2)–(4) ensure that every request is
fulfilled once and the correct flow of aircraft. Constraints (5) enforce the balance
in the dummy request, where every aircraft must depart from and return to.
The time windows for customer and maintenance requests are determined by
constraints (6) and (7), respectively. The minimum time to start a customer’s
request s is computed by constraints (8) and (9). The first set is activated in the
case in which positioning is needed to service request s after r while the second
is used when the destination of request r is the same as the departure airport of
s. Constraints (10) and (11) are used to calculate the time each aircraft will be
ready to service the first request of their planning horizon, with the first set of
constraints being used when positioning between the aircraft’s starting airport
and the request’s departure airport is necessary and the second one is used when
these airports are the same. Constraints (12)–(15) are analogous to (8)–(11), but
for maintenance requests. The main difference between this type of request and
customer ones is that instead of requiring a flight from ir to jr to execute the
request, the aircraft must stay on the ground at the ir airport during the whole

616 R. A. de Campos et al.

duration (TLr) of the maintenance process. Finally, the domain of the variables
is defined in constraints (16) and (17).

We extend this formulation to consider the possibility of outsourcing a cus-
tomer request to another company, if it is not possible to service them with the
current fleet. Let Cor be the cost of outsourcing request r ∈ L, and outr be the
binary decision variable that indicates whether request r should be serviced by
other company. With this new information, we extend the objective function by
adding the following term: ∑

r∈L

Coroutr. (18)

It indicates the total cost of outsourced requests. We set Cor as twice the maxi-
mum positioning costs between all existing requests using the best aircraft pos-
sible. Thus, Cor is considerably bigger than any positioning costs, and should
be used as little as possible. We also need to change constraints to allow the out-
sourcing to fulfill some requests if needed. To do this, we simply need to replace
constraints (2) and (6), in this order, by the following expressions:

∑

p∈P
p≥pr

∑

v∈Vp

∑

s∈R
s �=r

yvrs + outr = 1, r ∈ L, (19)

ST r(1 − outr) ≤ wr ≤ (ST r + ΔL)(1 − outr), r ∈ L. (20)

With the base routing model finished, we can now describe the B&C algo-
rithm developed to dynamically insert the crew rules.

3 Branch-and-Cut Algorithm

To incorporate crew assignment to the models described in the previous section,
we develop a B&C algorithm that dynamically generates cuts when a candidate
solution is infeasible regarding crew rules. Before detailing the complete algo-
rithm, we describe the crew requirements that are evaluated in the separation
routines.

The first requirement we consider is the maximum allowed time without rest
in a single duty (MaxDuty), which is typically defined as 13 h in the studied com-
pany. This is guaranteed by international regulations due to the risks associated
with crew fatigue. Moreover, the company must ensure the crew has at least 10 h
(MinRest) of uninterrupted rest between two consecutive duties. Every time a
complete rest occurs, the accumulated duty is reset. A particularity on mainte-
nance requests is that, since the aircraft is parked during the entire process, the
crew can rest during the event and, hence, the company can take advantage of
the maintenance time. If maintenance lasts longer than MinRest, it is interesting
to extend the crew’s free time until the end of the request, as there is no reason
to keep the pilots on stand-by if the aircraft is not ready yet. Conversely, if the
duration of maintenance is less than MinRest, the crew still needs to rest for the
minimum time, even if the aircraft is available earlier. Anyway, it is interesting
to take advantage of maintenance to cover part of, or completely, the rest, as

Aircraft Routing Model 617

this allows for time saving and feasibility of solutions that would be impossible
otherwise.

Other important elements considered by the company are the crew presenta-
tion times to prepare the plane and analyze the weather conditions and itinerary.
The first one occurs at the beginning of a duty (PRE), usually taking 40 min,
being counted within the crew’s duty. The second one happens at the ending
of a duty (POS), lasting 30 min and is neither counted in the duty nor the rest
time. Thus, whenever there is a rest in the planning horizon we must also insert
the presentation time in the start and end of the duty. Figure 2 presents a visual
representation of these concepts, in which we created two examples to facilitate
the understanding of the different behaviors of resting. In both examples we have
a route that, during the planning horizon, starts from a rest, then the aircraft
services a customer request, position itself, services another request, takes a rest
and finally services a last customer request. The only difference between them
is that in Example 1 the second request serviced by the aircraft is a customer’s
while in Example 2 we have a maintenance. We can note that in Example 2, the
crew is allowed to start its rest right after positioning and does not need to be
available during the whole maintenance (represented by the green outline in the
rest period).

Fig. 2. Examples of rest behaviour for two vehicle routes. (Color figure online)

The B&C method, depicted in Fig. 3, incorporates these requirements by
adding cuts that eliminate infeasible solutions regarding crew constraints. The
separation algorithm is called inside CPLEX’s enumeration tree, using callback
procedures. Every node of this tree consists of a linear programming (LP) relax-
ation of model (1)–(17), possibly with additional branching constraints and cuts
generated on previously solved nodes. If the solution of the LP relaxation in
a given node is not integer, the solver automatically branches based on the
fractional variables, and thus create two new nodes in the tree. Otherwise, if
the solution is integer, the solver invokes the cut separation algorithm (which
is detailed in Algorithm 1) to check if the solution is feasible considering crew
requirements. If all the considered crew requirements are satisfied, we accept it as
a candidate for optimal solution. Conversely, if the solution is infeasible regard-
ing the crew constraints, we reject the solution and add cuts to the model, to
avoid obtaining the same solution again.

618 R. A. de Campos et al.

CPLEX enumeration tree for the MIP model (1)-(17)

Solve LP
Relaxation

Integer
solution?

Branch on
the node

Cut separation
(Algorithm 1)

No

Yes

Feasible
regarding crew?

Add cuts to the model
and reject solution

No

Accept
solution

Yes

Fig. 3. General structure of the B&C algorithm.

Regarding the cut separation, there are different options that should be eval-
uated when considering the possibility of resting between two requests, and it
is not possible to define the correct alternative when analyzing the route only
up to a specific node. We also need to ascertain this decision’s impact on the
remaining nodes. For example, resting before the n-th node in a route might
not violate any time window up to this node, but this extra time might make
the (n + 1)-th infeasible, thus we must account for the different resting options
and possible future impacts in a route. Thus, to verify whether a solution is
feasible in the scope of crew requirements, we developed a labeling algorithm [3]
based on dynamic programming. Firstly, in a given solution, let Rv be a route
of aircraft v such that Rv = (r0, r1, r2, . . . , rn+1), where r0 and rn+1 are nodes
that represent the initial and final artificial requests. In the labeling framework,
we assign a bucket to each node and, inside each bucket, there are the labels
related to this node. Labels are data structures, responsible to carry a series of
essential information through the buckets for calculating accumulated resources
and checking the feasibility condition. Regarding the crew requirements, we con-
sider two resources, the total elapsed time (Elapl) and the total duty time since
the last rest (DTl), both accumulated up to label l of a given bucket. In addi-
tion, each label keeps the information of the parent (previous) label, useful for
backtracking in post-processing. This procedure is summarized in Algorithm 1.

The first operation in Algorithm 1, after getting the route Rv and creating
its respective buckets, is defining a label at the bucket of node r0 with the initial
characteristics of the aircraft, such as the time it is available and the accumu-
lated duty time since the last rest at the beginning of the planning horizon.
Accumulated duty values are non-zero when the company’s planning starts in
the middle of a duty of a specific aircraft. After creating the label for node r0,
the algorithm extends it to the bucket of the first request in the route, r1. Like-
wise, each generated label will be extended to the next nodes of the route, or at
least an attempt will be made. This process is repeated until the last node in
the route is reached or there is no way to create any label for the next node in
the route, in which case the solution is deemed infeasible. As pointed out in line

Aircraft Routing Model 619

Algorithm 1: Separation algorithm
Input: Solution candidate.
Output: Feasibility solution for the crew assignments.

1 foreach aircraft v ∈ V do
2 Get Rv and create a bucket for each node in it;
3 Create label l in the bucket of node r0 with the initial properties of v;
4 for i ← 0 to n, step + 1 do
5 foreach label l ∈ bucket of node ri do
6 Extend the current label l to all five possible cases and create child

labels for those that are feasible in ri+1;
7 end
8 Check whether the created child labels dominate or are dominated by

other existing labels in the bucket of node ri or by themselves;
9 Delete the dominated labels;

10 if there is no label in the current node then
11 Infeasible route: Add no-good cuts to eliminate solution;
12 break;

13 end

14 end

15 end
16 if cuts were not inserted in the model then
17 return Feasible solution for the crew requirements;
18 else
19 return Flag the solution candidate as infeasible for the crew requirements;
20 end

6 of the algorithm, when extending a label, there are five different possible cases
related to rest decisions and whenever a verified case is feasible, a child label is
generated using its strategy. Thus, each label can have up to five children. The
options related to rest that should be checked are represented in Fig. 4.

The first case is the option of executing request ri and immediately prepare
to start request ri+1, without any rest. Case 2 occurs when the crew takes
a rest between requests ri and ri+1 at the departure airport of request ri+1.
In this case the aircraft will start request ri+1 immediately after ending the
rest. If a positioning is required, Case 2 can be interpreted as taking a rest
after the positioning flight. Conversely, if there is no positioning the rest starts
immediately after the end of request ri, if it is a customer request, or at the start
of it, if it is a maintenance request. Case 3 only exists if a positioning between
requests ri and ri+1 is required and represents the possibility to rest before the
positioning. This option is usually taken when positioning would exceed the duty
limit. Case 4 is a combination of Cases 2 and 3, and represents the attempt to
take a complete rest before and after positioning, this one is especially useful on
particularly long positioning trips. Finally, Case 5 can be chosen in a particular
situation where two consecutive maintenance requests on an aircraft happen at
the same airport. This allows the second maintenance to start while the crew

620 R. A. de Campos et al.

Fig. 4. Visual representation of all cases checked when extending a label to the next
node.

is still resting, instead of forcing the crew to return to work to start the second
maintenance like in Case 2. Note that the label generated in Case 5 is not inserted
in the next node of the route (ri+1), but in the following one (ri+2).

When a label is created, the algorithm verifies if it dominates or is dominated
by any other existing label in the evaluated node. A label l1 dominates a label
l2 in the same node or bucket if and only if: Elapl1 ≤ Elapl2 and DTl1 ≤ DTl2 .
In other words, label l1 dominates l2 if, and only if, it has lower or equal elapsed
time and less accumulated duty time at the start of the evaluated node. This
can happen, for example, when it is possible to take a rest between two requests
and the total elapsed time is still lower than the opening time windows, and
thus Case 1 will be dominated by the ones that allow resting. Another situation
in which this usually happens is when we compare Cases 2 and 3. The former
usually dominates the latter, since its accumulated duty time at the start of
the next request is lower, except in the situation Case 2 is infeasible. A label in
the bucket of ri is considered infeasible, and thus not allowed to be inserted, if
it violates the time window of request ri (Elapsl > STri + Δ) or violates the
maximum duty time (DTl > MaxDuty).

Figure 5 presents a numerical and visual example on how the separation
algorithm checks the feasibility of a route. In this example, we want to verify
if route R = (r0, r1, r2, r3, r0) is feasible. This particular route is composed by
the artificial node r0 (from where the aircraft departs and returns) and three
customer requests. The time windows for each request is found just below their
respective bucket and the duration of each request is found above it, i.e., 120 min
for r1, 150 for r2 and 180 for r3. The positioning times are found over the arrow
connecting two consecutive requests, thus 50 min between r0 and r1, 60 between
r1 and r2 and 90 min between r2 and r3. We start by generating a label in node r0,
this label has a total elapsed time (E) and accumulated duty time (D) equal to
0. We then extend the generated label with the five possible cases, not forgetting
to add the presentation time (PRE) in this first extension. Since the time window
from request r1 closes very early, Cases 2 to 4 are all infeasible because if the
crew takes a rest the elapsed time will surpass the closing of the time windows.
Furthermore, since there is no maintenance event in this example, Case 5 will

Aircraft Routing Model 621

never be used. The remaining label, generated by Case 1, is then extended to
node r2 and a similar situation happens, in which only the label created by Case
1 is feasible due to the time window constraints. However, this time the aircraft
arrived before the request starting time, thus it needs to wait before starting the
service, accumulating duty in the process. We now extend the label generated
to the bucket of r3. Unlike in the previous nodes, opting to not rest (Case 1)
is not feasible, due to the maximum duty duration constraints, while Cases 2
and 3, in which we try to rest after and before the positioning, respectively, are.
However, Case 3 is dominated by Case 2 because the accumulated duty from the
latter is lower than the former, while both have the same elapsed time. Finally,
we can easily extend the generated label to the remaining node (r0) without any
problem. Thus, we were able to successfully generate labels for all nodes in the
route and confirm that this route is feasible.

[0; 5000] [80; 95] [500; 515] [1410; 1425] [0; 5000]

Legend

- Infeasible

- Dominated

Fig. 5. Visual representation of a labeling structure.

If it is not possible to generate any label in some node, we consider the route
infeasible and cut-off the solution. We consider two different types of cuts for
this purpose. The first is the feasibility cut, in which we cut the route up to
the node with no labels, limiting the sum of the binary variables. Suppose route
Rv = (r0, r1, . . . , rk . . . , rn) is assigned to vehicle v and it becomes infeasible at
node rk. The algorithm would generate the following cut:

yvr0r1 + yvr1r2 + yvr2r3 + · · · + yvrk−1rk ≤ k − 1; (21)

This inequality prevents vehicle v to take this sequence of nodes up to node
rk, and thus cutting not only this route, but any other that would try this
combination in v up to node rk.

The second type of cut is used to define a lower bound for the arrival time
in a customer if a route similar to the one evaluated is taken in future solution

622 R. A. de Campos et al.

candidates. Let MinElapi be the smallest elapsed time among all the labels of
node ri. For the same infeasible route exemplified above, we insert for each node
up to node rk cuts of type:

MinElapi(yvr0r1 +yvr1r2 +yvr2r3 + · · ·+yvri−1ri − i+1) ≤ wri , i < k; (22)

In the worst case, MinElapi will be equivalent to the opening of the time
window constraints. However, if MinElapi is greater than the opening of the
time windows, these cuts can prevent infeasible solutions for crew constraints
without the need to call the separation algorithm again.

4 Computational Results

In this section, we present the results of computational experiments performed
with the B&C algorithm. The tests were executed on a PC with a processor Intel
Core i7-4790 3.6 GHz CPU and 16 GB RAM. The algorithm was implemented
in language C++, on top of the Concert Library of the IBM CPLEX Opti-
mization Studio v.12.10, and the cuts were inserted using the generic callback
routines provided by the library. The instances used in the experiments were
actual data provided by the airline company and corresponds to four months
of flight records. The first month comprises 10 days of operation and a total of
112 requests (including customer requests and maintenance events); the second
involves 10 days and 129 requests; the third consists of 8 days and 107 requests;
and the fourth month, a higher demand period, has 16 days and 578 requests. As
proposed in [10], we group the flights of each month in instances covering three
days of operation each, which is compatible with the company’s usual planning
horizon (up to three days).

Table 1 summarizes the results obtained with the B&C algorithm. In this
table, under the header Instance, we present columns ID, |L|, |M | and n, which
details the analyzed instances. Column ID identifies each individual instance in
the format Mx ytoz, where x indicates the month, and y and z represent the first
and last days covered by the instance, respectively. The three remaining columns
present, respectively, the number of customer requests, the number of mainte-
nance requests and their sum. Furthermore, we present the positioning (Cpos),
upgrade (Cup), outsourcing (Cout) and total (Ctot) costs of the solutions pro-
vided by, the model without the crew’s cuts and the full B&C algorithm. The
company costs (Ctot) in particular are composed exclusively by positioning, since
is the only information we were able to extract from its logs. We also present the
computational times (CPUt) in seconds to obtain the optimal solution for both
the model and the full algorithm. Finally, under the header “Comparison” we
compare the B&C results against the solution provided by the company and the
compact model by analyzing how much our algorithm improved the company’s
solution (Ipv Co), how much a solution with crew constraints is more expensive
than the ones without these requirements (Diff Crw) and the increased compu-
tational time to obtain an optimal solution with the B&C algorithm against the

Aircraft Routing Model 623

simplified compact model (Diff CPUt). Note that, since we used an artificial big-
M parameter to define the outsourcing costs, we compare only the positioning
and upgrade costs against the company’s solution for parameter Ipv Co.

A first point we identified is that, in general, our B&C algorithm not only
obtained an optimal solution quickly, averaging 12.20 s and taking 239.43 s at
most, but also improved the company’s solution in most instances. On average,
our solutions were 23.1% cheaper than the ones provided by the company. As
expected, the instances of the fourth month, the one with higher demand and 110
requests on average, were the hardest to solve. Nevertheless, the B&C obtained
optimal solutions for them with an average time of 30.94 s, and only two of them
took more than 30 s to be solved.

Note that in some instances of months 3 and 4, our algorithm provided more
expensive solutions than the company. This mostly happened because, in prac-
tice, the company can negotiate with the pilots to work overtime in exchange for
longer rests or higher payment. For example, in instance M3 6to8, our solution
was more expensive than the company’s because it positioned an aircraft to ser-
vice a specific customer, while the company actually negotiated with the crew
members of an aircraft positioned in the requested airport to extend their duty
over the limit to service that customer. Another factor that resulted in these dif-
ferences is the split duty rule, a more complex strategy a company can employ in
which the crew can take a break, a pause period shorter than a normal rest, and
extend the duty duration by a fraction of the break time. Even so, our proposed
algorithm proved to be a very useful tool for the studied company, being able to
generate good solutions far quicker than the manual method previously used by
them, which could take hours to design all routes from scratch.

When comparing the solutions of the B&C and the compact model, we noted
that considering crew requirements had some negative impact in the optimal
solution, increasing it by 13.0% on average. This was expected since we are now
dealing with a problem with more, and tighter, constraints. This difference was
more noticeable in months with higher customer demand, such as months 3 and
4, since the crew have less opportunities to rest than months with proportionally
more maintenance events. Remarkably, the majority of instances in months 1
and 2 actually had the same solution for the problem with and without crew
requirements. Moreover, as expected, using the B&C algorithm to insert these
constraints iteratively resulted in longer solution times than simply running the
compact model with no crew constraints. However, this increase was relatively
small, with an average of only 10 s among all the instances. Notably, in instances
of the first three months, the B&C algorithm increased the total computational
time by less than one second.

624 R. A. de Campos et al.
T
a
b
le

1
.
C

o
m

p
u
ta

ti
o
n
a
l
re

su
lt

s
o
f
a
ll

co
m

p
a
n
y
’s

in
st

a
n
ce

s

Aircraft Routing Model 625

5 Conclusion

We studied the aircraft routing problem with crew assignment in the context of
on-demand air transportation, based on the real case of a company that oper-
ates in the fractional ownership management sector. We proposed a tailored
branch-and-cut algorithm that dynamically inserts constraints related to crew
requirements into an aircraft routing model. The algorithm uses a labeling-based
strategy to effectively separate and insert, if needed, feasibility and optimality
cuts into the problem. In computational experiments using real-life data pro-
vided by the company, the algorithm obtained optimal solutions for all instances
within reasonably short computational times, taking an average of 30.94 s to solve
the largest instances in the set. Moreover, the solution costs were considerably
smaller than the costs of the routes employed by the company, on average.

For next steps, we intend to consider additional crew rules, such as allowing
overtime and split duties to further improve the solutions given by the algorithm.
Furthermore, we plan to incorporate uncertainty on travel times to obtain solu-
tions that are robust to this kind of variability. Finally, we intend to extend the
problem to separate the crew from the aircraft, allowing them to take different
aircraft in the planning horizon. This extension would also require to consider
positioning the crew, to get to the new vehicle of their planning horizon, via the
fleet or scheduled airlines to enable trips. We can also extend our formulation
to consider not only the departure limits, but also the arrival time windows and
allow slower, albeit cheaper, aircraft to service a request, as long as it respects
both time windows. Finally, there is also the possibility to incorporate to the
model the decision on where the maintenance events of each aircraft will take
place, considering the availability and costs of maintenance services at different
airports.

References

1. Barnhart, C., Cohn, A.M., Johnson, E.L., Klabjan, D., Nemhauser, G.L., Vance,
P.H.: Airline Crew Scheduling, pp. 517–560. Springer, Boston (2003). https://doi.
org/10.1007/0-306-48058-1 14

2. Dunbar, M., Froyland, G., Wu, C.L.: An integrated scenario-based approach for
robust aircraft routing, crew pairing and re-timing. Comput. Oper. Res. 45, 68–86
(2014)

3. Feillet, D.: A tutorial on column generation and branch-and-price for vehicle rout-
ing problems. 4OR Q. J. Oper. Res. 8, 407–424 (2010)

4. Haouari, M., Zeghal Mansour, F., Sherali, H.D.: A new compact formulation for
the daily crew pairing problem. Transp. Sci. 53(3), 811–828 (2019)

5. Jamili, A.: A robust mathematical model and heuristic algorithms for integrated
aircraft routing and scheduling, with consideration of fleet assignment problem. J.
Air Transp. Manag. 58, 21–30 (2017)

6. Kasirzadeh, A., Saddoune, M., Soumis, F.: Airline crew scheduling: models, algo-
rithms, and data sets. EURO J. Transp. Logistics 6(2), 111–137 (2015). https://
doi.org/10.1007/s13676-015-0080-x

https://doi.org/10.1007/0-306-48058-1_14
https://doi.org/10.1007/0-306-48058-1_14
https://doi.org/10.1007/s13676-015-0080-x
https://doi.org/10.1007/s13676-015-0080-x

626 R. A. de Campos et al.

7. Khaled, O., Minoux, M., Mousseau, V., Michel, S., Ceugniet, X.: A compact opti-
mization model for the tail assignment problem. Eur. J. Oper. Res. 264, 548–557
(2017)

8. Liang, Z., Feng, Y., Zhang, X., Wu, T., Chaovalitwongse, W.A.: Robust weekly
aircraft maintenance routing problem and the extension to the tail assignment
problem. Transp. Res. Part B Methodol. 78, 238–259 (2015)

9. Mercier, A., Soumis, F.: An integrated aircraft routing, crew scheduling and flight
retiming model. Comput. Oper. Res. 34, 2251–2265 (2007)

10. Munari, P., Alvarez, A.: Aircraft routing for on-demand air transportation with
service upgrade and maintenance events: compact model and case study. J. Air
Transp. Manag. 75, 75–84 (2019)

11. Shebalov, S., Klabjan, D.: Robust airline crew pairing: move-up crews. Transp. Sci.
40(3), 300–312 (2006)

12. Sherali, H.D., Bish, E.K., Zhu, X.: Airline fleet assignment concepts, models, and
algorithms. Eur. J. Oper. Res. 172(1), 1–30 (2006)

13. Vieira, T., et al.: Exact and heuristic approaches to reschedule helicopter flights for
personnel transportation in the oil industry. Transp. Res. Part E Logist. Transp.
Rev. 151, 102322 (2021)

14. Yang, W., Karaesmen, I.Z., Keskinocak, P., Tayur, S.: Aircraft and crew scheduling
for fractional ownership programs. Ann. Oper. Res. 159(1), 415–431 (2008)

15. Yao, Y., Ergun, Ö., Johnson, E., Schultz, W., Singleton, J.M.: Strategic planning
in fractional aircraft ownership programs. Eur. J. Oper. Res. 189, 526–539 (2008)

Designing a Physical Packing Sequence
Algorithm with Static Stability for Pallet

Loading Problems in Air Cargo

Philipp Gabriel Mazur(B), No-San Lee, Detlef Schoder, and Tabea Janssen

University of Cologne, Cologne Institute for Information Systems, Pohligstr. 1,
50969 Cologne, Germany

{mazur,lee,schoder}@wim.uni-koeln.de

Abstract. Large amounts of airfreight are loaded on pallets and containers for
transport every day. Especially in the air cargo sector, fast and efficient pallet
loading is crucial for smooth operations. Recently, scholars have proposed AI-
optimized solutions for the pallet loading problem that include strongly heteroge-
nous cargo.However, findingpacking sequences that determine item loadingorder,
receive scant attention in literature. In this research, we develop a design to solve
the physical packing sequence problem that comprises requirements, features, and
fitness criteria to equip an algorithm that automatically finds a physical packing
sequence for a given cargo arrangement. We derive our algorithm based on previ-
ous findings and practical insights from a collaboration with a major cargo carrier.
Also, we provide an integration design in combination with optimization heuris-
tics. Our approach is implemented in a prototype, demonstrated, and evaluated on
a set of real-world cargo data. Our findings reveal both the ability to find packing
sequences in reasonable time and the ability to identify improvement potential
with respect to stability.

Keywords: Pallet loading problem · Loadability · Physical packing sequence ·
Genetic algorithm

1 Introduction

In the air cargo sector, palletizers load freight into containers or onto pallets either
manually or by using a forklift truck [1]. Since storage space of an airplane is limited, a
high space utilization is desirable. Further, loaded pallets or container must comply to
various constraints and aviation safety regulations [2, 3].

During palletizing, workers determine cargo positions and sequentially load cargo.
Currently, the build-up process lacks IT support [2]. Due to strictly scheduled time
windows, palletizers frequently load pallets under time pressure. Moreover, a rising
proportion of heterogeneous cargo is complicating the build-up. Together, time pressure,
loading process complexity, and absent support can lead to non-optimal space utilization
or, in the worst case, repeated repacking of an arrangement.

© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 627–641, 2021.
https://doi.org/10.1007/978-3-030-87672-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_41&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_41

628 P. G. Mazur et al.

In research, the problem of generating optimal arrangements of cargo is called pallet
loading problem (PLP) [4] or container loading problem (CLP) [3]. A cargo arrangement
defines the set of items to be packed, their orientation and final positions. A large body
of literature exists that faces the optimization of cargo arrangements based on heuristics
and mathematical programming [3]. On the other hand, one can distinguish between
the problems of finding cargo arrangements and sequences, in which arrangements are
assembled (physical packing sequence problem, PPSP) [5]. The PPSP opts to find an
optimal packing sequence for an already calculated arrangement. A packing sequence
provides step-by-step instructions on how to build up a specific arrangement that meets a
set of real-world conditions, such as static stability of the cargo or reduction of physical
strain for palletizers. Also, different modes of packing (e.g., manual, forklift) imply
different characteristics that must be considered. Compared to the generation of cargo
arrangements, research on packing sequence problems is scarce [5].

This work tackles the PPSP in the case of air cargo palletizing. To the best of our
knowledge, no comparable artifact is described in related studies. Thus, our objective is to
develop a packing sequence algorithm for a given, already optimized cargo arrangement
that meets air cargo requirements.

Our approach is based on a genetic algorithm (GA) and must comply with a multi-
tude of real-world conditions, such as item-related constraints, ULD-related constraints,
packing device-related constraints, static stability and comprehensiveness. GA are well
established in CLP research and can balance out multiple, potentially conflicting objec-
tives by integrating several fitness dimensions in the objective function [6]. Problem-
related constraints can be included in the GA in several ways, for example to avoid infea-
sible solutions. GA capabilities fit the requirements of PPSP due to high combinatorial
complexity, strict deadlines and multiple optimization goals.

Since our goal is to solve the PPSP on a conceptual level and to achieve solutions
that are directly applicable in practice, we develop both a design and an artifact that
implements our design, thereby following a design science approach guided by Peffers
et al. [7] that comprises six phases. After the problem identification and motivation, we
derive solution objectives. Then, we design and implement the artifact. We demonstrate
its functionality by deploying the algorithm with a set of cargo data from practice. For
the evaluation, we collect and discuss performance data.

The remainder of the work is structured as follows: In the next chapter, we set out
related work and constraints concerning the PPSP. Afterwards, we provide a description
of our approach,which is followed by the presentation of results. In the following section,
our results are discussed. Finally, we present a conclusion of this work.

2 State of the Art

Although the CLP is a widely researched topic, few studies explicitely considered the
distinction betweenCLP and PPSP and the calculation of packing sequences for obtained
cargo arrangements [5]. Someauthorsmention a separate algorithm for packing sequence
generation but provide no details on design or procedure [8, 9]. A different picture is
painted, when (un)loading is part of the problem, for example in multidrop scenarios
or in combinations of CLP with vehicle routing problems [3]. The goal is to unload

Designing a Physical Packing Sequence Algorithm with Static Stability 629

all boxes for one destination without having unload boxes for later destinations. Pack-
ing sequences might be implicitely present through placement heuristics, which itera-
tively place cargo in walls or layers. When considering the difference between cargo
arrangements and packing sequences, a feasible and efficient packing sequence should
be computed separately [5, 8, 9].

Different packing devices have been distinguished [5]. The authors differenciate
betweenmanual handling, handling equipment and automated systems.Manual handling
is carried out by workers that lift and place cargo. Handling equipment comprises the
usage of forklifts, or other mechanical equipment, while automated systems, robot arms
or other systems carry out the packing.

The packing sequence defines the “sequence by which each box is placed inside
the container in a specific location determined by the CLP algorithm” [5]. As such,
the packing sequence should operationalize the caculated cargo arrangement into an
actionable sequence of instructions. Every itemmust occur in the sequence exactly once
[10]. The position of an item must not be blocked by an already loaded item [10] and
it is not possible to lift an item over an already placed item. Following Ramos et al.
[5], the PPSP can be formally described as: For a given cargo arrangement M that
comprises items bi(i = 1, . . . , n) with depth di, width wi, and height and hi and their
final positions in the layout (xi, yi, zi), find a sequence that fulfills a set of practical
constraints. Practical constraints can be categorized into (1) item-related constraints, (2)
ULD-related constraints, (3) packing device-related constraints, (4) static stability, and
(5) comprehensiveness:

Item-related constraints: This category focuses on the possible packing sides and
devices with respect to the cargo. Some items might be loaded from every side, others
only from two sides. This situation frequently occurswhen cargo arrives pre-palletized on
wooden pallets that have holes for the forks [11]. In the air cargo sector, cargo is strongly
heterogenous, i.e. cargo varies in shape, size and characteristics [1, 11]. Furthermore,
packing device information on an item-level specify, if an item can be loaded manually
or by a forklift.

ULD-related constraints: Unit loading devices (ULD) are employed in air cargo
logistics to consolidate cargo and comprise standardized pallets and containers [12].
For containers, the constraint restricts the number of packing sides due to the presence
of rigid walls. Containers can only be loaded through the container door, which might
be congruent to the container wall or might be smaller. Nascimento et al. [13] permit
packinf sides only to the container rear. Pallets can have a variable size and contour [1,
14]. Additionally, the ULD can restrict packing devices (i.e., some containers must be
loaded manually).

Packing device-related constraints: This set of constraint focuses on the specifica-
tions of the device packing the items. When it comes to manual packing, stress and
physical exertion plays a major role [5], especially when items are heavy, large or irreg-
ularly shaped. The packing sequence must be designed such that ergonomic factors are
taken into account and should minimize lifting and movements especially under weight
as far as possible to safe loading time and prevent physical fatigue. Lifting items with
increasing distance to the human body increases the leverarm pressing on the palletizer’s

630 P. G. Mazur et al.

back, favoring the chances of injuries. Moreover, loading heavy items to high positions
(e.g., overhead reaching) increases muscular exertion [5].

Furthermore, the packing sequence generation must consider body heights and arm
lengths. For manual packing, some studies include a maximum reach value that rep-
resents the maximum distance between walls of the same destination that are allowed
to surpass, or the maximum reach of the worker’s arm or packing device’s length [5,
15]. Ramos et al. [5] employ maximum reach for the calculation of arm’s reach, which
is the distance between a box and the nearest box to the palletizer. Nascimento et al.
[13] include manual packing constraints to calculate CLP solutions based on an exact
algorithm. Manual packing is expressed through both a maximum loadable height and
a maximum horizontal distance between an item’s end for each pair of items lying on
top of each other.

For other packing devices, constraints exist that affect the generation of packing
sequences [8].Khan andMasood [16] present amethod specificially designed to generate
robot-packable patterns. Four placement strategies are developed along which the penta-
block strategy performs best. Due to the length of the fork, a maximum reach might also
be necessary for forklift packing. For cartesian robots, similar physical limitations exists,
when items are loaded through a fork attached to the robot’s arm. For humanoid robots,
similar physical restrictions exists as for human palletizers.

Static stability: This constraint ensures that items maintain their positions during
packing and prevents items from falling down on the container floor [17]. Altering the
packing sequence heavily impacts static stability [5]. Many approaches exist, such as
full base support, partial base support or static mechanical equilibrium calculations [18].
Ramos et al. [5] present a static stability algorithm that is based on the idea of force and
moment equilibria and calculates the supporting polygon for every subset of boxes. In
the air cargo sector with high item and shape heterogeneities, calculating static stability
remains a major challenge, since most approaches impose assumptions (e.g., constant
density, cuboidal shapes) on the cargo, which hardly reflects practical operation’s com-
plexity. To achieve realistic stability approximations, physical simulations with physics
engines are chosen for dynamic [19] and static stability [11].

Comprehensiveness: This set of constraints applies only tomanual packing or forklift
packing, where a human steers the forklift. It contributes to the requirement that pal-
letizers must understand the packing sequence, final positions and orientations. Brandt
and Nickel [1] introduce the requirement of instructive visualizations to guide palletizers
and load planners.

3 Solution Approach

Our goal was to solve the PPSP on a conceptual level and to achieve solutions that
are directly applicable in practice. As mentioned previously, little is known about the
solutions of PPSPs. Although previous studies provide useful insights, the entire com-
plexity is uncovered during the process leading up to the implementation of the artifact.
Therefore, we followed an design-oriented approach that builds an artefact for solving
the PPSP based on requirements and constraints deduced from existing theory and prac-
tice. We iteratively improved our solution until it reached a maturity to be deployed in

Designing a Physical Packing Sequence Algorithm with Static Stability 631

practical PPSP scenarios. The design science research (DSR) approach intends to create
and evaluate IT artifacts with the purpose of solving organizational problems [20]. This
work applies the design science research methodology (DSRM) by Peffers et al. [7] who
structure a DSR project into the six phases (1) problem identification and motivation, (2)
solution objectives definition, (3) design and development, (4) demonstration, (5) evalu-
ation, and (6) communication [7]. All phases can be iterated repeatedly. From a practical
viewpoint, the problem originated during amulti-year cooperation with a large airfreight
handling company. Although an existing algorithm already calculated optimized cargo
arrangements, practitioners were unable to evaluate the feasibility of obtained solutions
since no practical packing sequence existed. Consequently, obtained solutions cannot
directly be applied. We raised requirements for our solution based on previous findings
from literature and teamdiscussions. Consulted experts provided new input duringmulti-
ple workshops. Further, we interviewed an experienced palletizer to deduct requirements
for the PPSP. To demonstrate our artifact’s problem-solving capabilities, we developed
an interactive, web-based 3D-visualization that shows calculated packing sequences and
provides packing instructions for palletizers. Further, the airfreight carrier provided us
real world cargo data from operations, from which we extracted multiple test cases.
Based on the test cases, we both demonstrated our design’s feasibility to solve the prob-
lem and evaluated its performance. In this work, evaluation investigated development
of fitness criteria and genetic operators scores during GA iterations. Afterwards, we
compared results for varying algorithmic configurations. Particularly, we examined the
impact of fitness criteria weight changes on the resulting best solution.

A genetic algorithm (GA) simulates the evolutionary process by representing solu-
tions to an optimization problem with a DNA-like structure. For the purpose of finding
optimal solutions, the solutions candidates go through an artificial evolution such that
the best characteristics prevail. The general structure of a basic GA based on Kramer [6]
is depicted in the following:

Initialize population
repeat

repeat
crossover
mutation
phenotype mapping
fitness computation

until population complete
selection of parental population

until termination condition

The GA starts with the creation of an initial set of solutions (population). Every solu-
tion is represented by a genotype that contains all necessary information. The genotype
for a solution to a combinatorial problem typically is a list of values from a set of symbols
or bit strings. The recombinator (crossover) combines genotypes of two or more popula-
tion members to generate new solutions (childs). Afterwards, child solutions undergo a
mutation step. In most cases, the evaluation of solutions generated by recombination and

632 P. G. Mazur et al.

mutation relies on a phenotype, a problem context specific representation. According
to Rothlauf [21], to quantify solution quality, a fitness function f : �g → R assigns
every solution x ∈ �g in the search space �g a numerical score. The numerical fitness
score allows comparison between two solutionsx1, x2 ∈ �g . If f (x1) > f (x2), x1 is
being superior with respect to solution fitness.The optimization goal is therefore to find
a solution, which maximizes the fitness [21]:

x
∧ = max

x∈�g
f (x)

When optimizing for multiple, potentially conflicting objectives, the fitness function
can aggregate multiple sub-fitness scores, for example using a weighted sum. To get the
desired solution quality convergence, a selector picks the best solutions in a population to
become the next parental generation. In most optimization problems, constraints reduce
the solution space. Problem-related constraints can be included in the GA in several
ways, for example to avoid infeasible solutions. Genotype and genetic operators can be
designed in a way that constraints are automatically fulfilled (1). A death penalty (2)
causes infeasible solutions to enter a cycle of crossover and mutation until a feasible
solution is found. Using penalty functions (3), the fitness score of invalid solutions might
be reduced.

With respect to the PPSP, we observe a set of problem characteristics that well suit
solution capabilities of GA. In CLP contexts, metaheuristics like GA arewell established
for problems with high combinatorial complexity [22]. On average a single flight seg-
ment contains around 350 items, with 3,8% of flight segments carrying over 1000 items
[1], which impact packing sequence’s complexity. Furthermore, feasibility of packing
sequences is restricted through a set of constraints. GA are problem-agnostic and can
balance out multiple, potentially conflicting objectives in their fitness function. More-
over, strict flight schedules and corresponding deadlines [11] combined with uncertain
delivery times of input cargo implies the need to always find a good solution, even if
terminated early. For every point in time, heuristic-based approaches guarantee a good
solution exists.

3.1 Solution Objectives

Our artifact’s objective is to find a packing sequence for a pre-defined cargo arrangement
that contains strongly heterogenous cargo. Our artifact should incorporate item-related,
ULD-related, packing device-related, static stability and comprehensiveness constraints.
Further, due to the close nature of PPSP and PLP, we put special attention on integration
design between both problems. With respect to the air cargo context, it should cope with
the complexity of regular and irregular shapes and be configureable to adapt to varying
inputs. To meet strict time windows, we opt for efficient calculations.

3.2 Design and Development

Our deducted design requirements (DR) are depicted inTable 1.Wededucted our require-
ments based on the solution objectives and assigned corresponding system components
and design features (DF). Design features remark implemented key characteristics of
our proposed design. We implemented all design features in our instantiation.

Designing a Physical Packing Sequence Algorithm with Static Stability 633

Table 1. Design requirements, system compontens, and design features

Design requirement System component Design feature

DR.01: Single occurance Genotype DF.01: Sequence permutation

DR.02: Corridor Genotype DF.02: Corridor

DR.03: Include regular and
irregular shapes

Genotype DF.03: Box, cylinder, polygon
prism

DR.04: Item-related
constraints

Genotype, phenotype DF.04: Possible and preffered
packing sides on an item-level

DR.05: ULD-related
constraints

Genotype DF.05: Possible packing sides on
an ULD-level

DR.06: Packing
device-related constraints

Genotype DF.06: Manual and forklift
packing

Fitness DF.07: Ease of loading

DF.08: Heavy first

DF.09: Runway

DF.10: Edge distance

DF.11: Non-overhang

DR.07: Static stability Fitness DF.12: Static stability

DR.08: Comprehensiveness Fitness DF.13: Consecutive neighbors

DF.14: Easy positioning

Visualization DF.15: Animated packing

DF.16: Possible and prefereed
packing sides

DR.09: Configureable
algorithm

Architecture DF.17: Job processing

DR.10: Close PLP and PPSP
integration

Architecture DF.18: Pre-assessment and
stand-alone interface

DR.11: Reduced fitness calls Populator, recombinator,
mutator

DF.19: Create only feasible
solutions

634 P. G. Mazur et al.

Architecture and Workflow. Our PPSP algorithm is integrated into the flow of finding
palletizing solutions in two distinct ways: (1) As a pre-assessment and (2) as stand-alone
(2) [DF.18]. Figure 1 shows a flowchart of our integration design. White boxes belong
PLP optimization, grey boxes to PPSP calculation. The pre-assessment (1) estimates a
packing sequence based on a subset of fitness criteria and provides an interface to PLP
metaheuristics. With an estimation of packing sequence quality, the PLP metaheuristic
can optimize for solutions that adhere to the requirements of packing sequences. The pre-
assessment starts the populator of the PPSP algorithm and finishes if it finds a packing
sequence. Fitness evaluation is conducted using a subset of fitness criteria. We modeled
the stand-alone approach (2) as a full version, which is triggered after PLP optimization.
The full algorithm employs a GA to find a packing sequence for an already optimized
set of PLP solutions.

Fig. 1. PPSP algorithm workflow and integration.

Instantiation. Our PPSP algorithm supports four distinct shape types: Boxes, cylin-
ders, and polygon prisms. Boxes are defined through a depth di„ width wi, and height hi.
Cylinders are represented using radius ri, and height hi. Polygon prisms are represented
using a two-dimensional vertex list and a fixed height hi. Every item can be approxi-
mated using its bounding box, defined as minimal cuboid that entirely contains the item.
The former two shapes are regular, the latter can become irregular. In air cargo logistics,
most items are boxes [DF.03]. To meet the requirement of varying inputs (e.g., cargo
characteristics, termination conditions, ULD), we employed job-processing. A job con-
tains sufficient information to be executed as-is but is flexible enough to react to varying
application circumstances [DF.17].

Genotype and Phenotype. Our algorithm uses order-based encoding as described in
Raidl and Kodydek [23], so the genotype comprises a sequence of cargo item labels
representing the packing sequence. Therefore, the overall solution space spans all per-
mutations of items on theULD [DF.01]. This set is reduced to permutations that represent
feasible sequences [DF.19]. We opt to avoid infeasible solutions, since for every solu-
tion candidate, its fitness is evaluated. However, fitness evaluations are computationally
expensive and should be minimized [6]. Therefore, we discard infeasible solution can-
didates by design. For this work, a feasible sequence must fulfill two conditions: (1)

Designing a Physical Packing Sequence Algorithm with Static Stability 635

The sequence contains items that are either placed on the pallet ground or if at least
one supporting item is already placed, i.e., the supporting item is positioned earlier in
the packing sequence. (2) For every item, there must be at least one packing device that
can load the item from at least one side [DF.04]. Further, a free corridor between pack-
ing device and item’s final position in the cargo arrangement must be present [DF.02].
Both, free corridor, and blocked corridor situations are depicted in Fig. 2 and Fig. 3.
For irregular items, we employed the projected bounding box as free corridor estimation
[DF.03].

Additionally, we consider individual packing device characteristics [DF.06]. Based
on our observations from air cargo practice, we decided to support forklift packing and
manual packing, as both are predominantly employed and no robot packing is possible
in foreseeable future. Specifically, input consists of the device’s maximum reach and
item weight and size limits that constrain the usage of a specific packing device (e.g.,
work safety regulations limit the maximum lifting weight for a palletizer). For manual
packing situations, the item’s weight and longest side must not exceed weight and size
limits. Further, we calculate the arm’s reach to determine if the palletizer can reach the
item’s position and extend it to 360-degree. For forklift packing, items are primarily pre-
palletized on transport pallet, which contain wholes for the forks. We specify a property
on an axes-level that determines if and from which sides a forklift can load the item.

Similar to packing sides on an item-level, we include ULD-related packing side
restrictions [DF.05]. Every ULD contains information about possible packing sides for
every packing device specified (e.g., front, back, left, right for manual packing, front for
forklift packing).

Fig. 2. Free corridor Fig. 3. Blocked corridor

Genetic Operators. For the initial population, we employ a random populator, which
generates arbitrary start solutions that fulfill our feasibility conditions [DF.19]. The pop-
ulator chooses on candidates that are currently supported and discard placements, in
which candidate item would block unplaced items. With this check, we assert that all
candidate items have at least one unblocked packing side [DF.02]. Due to our feasibility
requirement, the populator might fail if no such sequence exists. Therefore, the pop-
ulation operator is limited to fixed number of iterations. Solutions are recombined by
randomly choosing two parent solutions from our populations. The selection follows a
uniform distribution between 0 and the population size. We implemented (1) a modified
PMX recombinator (MPMX), inspired by Marian et al. [24] that copies the first part

636 P. G. Mazur et al.

of one parent until a randomly chosen split point, and (2) an order keeping crossover
(OKX). The modified OKX selects the first part of one parent until a randomly chosen
index and then adds the unused items in the order they appear in the second parent’s
sequence. Again, the feasibility of the item is checked before insertion. In terms ofmuta-
tors, we decided to implement (1) neighbor mutator swaps the position of two random
subsequent items in the sequence if the result is a feasible sequence. (2) The swap muta-
tor swaps the position of two random non-subsequent items in the sequence if the result
is a feasible sequence. (3) The cut-and-paste mutator, which was inspired by Smith and
Smith [25], sets both a random cut index and a random paste index. Then, the algo-
rithm extracts the longest sequence of items including the item at the cut index that are
consecutive neighbors and shifts subsequences to the paste index. We implemented two
types of selectors: (1) The elitist selection operator chooses the solutions with the best
score from the set of parents, children, and mutated children. (2) The tournament selec-
tion applies the tournament selection, where the solution with the higher score wins the
battle. Furthermore, we added a check for duplicates check prior to adding a solution to
the population. The termination criteria can be specified in the algorithm configuration.
One can choose upon runtime, iterations, and solution quality, or a combination.

Fitness Criteria and Objective Function. Although previous studies provide useful
insights to tackle the PPSP, few specify evaluation criteria for packing sequences. Thus,
one main task in the design of the PPSP algorithm in this work was to determine charac-
teristics of good packing sequences and to find fitness metrics that operationalize them.
A solution’s overall fitness score comprises the weighted sum of all individual fitness
criteria scores. Our resulting fitness criteria contain:

Ease of Loading. This fitness criterion quantifies a palletizer’s physical exertion. For
items, that are loaded manually, the physical effort depends on the distance between the
palletizer’s feet and the item’s target position on the pallet [DF.07].

Heavy-first. To increase a sequence’s robustness, it is desirable that heavier items are
placed before lighter items since heavy items provide good support. With this crite-
rion, we measure sequence weight developments. Both, a best-case and a worst-case
weight curves are calculated for reference. The best-case (worst-case) weight sequence
orders items by weight in descending (ascending) order. Finally, our criterion incentives
sequences that rather belong to the best-case [DF.08].

Runway. This criterion rewards sequences that suppress palletizer movements to save
loading time. It adds up corners between the preferred packing sides of two consecutive
items. Thereby, a perfect sequence comprises packing from one side, a cumbersome
sequence enforces palletizers to switch between opposite ULD sides [DF.09].

Edge Distance. To achieve an easier handling of items and to reduce stress, this criterion
incentives sequences with minimal edge distances between item and ULD [DF.10].

Non-overhang. During design cycle iterations, we frequently observed sequences that
slid items below already placed items, which, in real-world contexts, is hard to realize.
With this criterion, we count the number of items above other items that are located
earlier in the sequence and penalize sequences with high number of overhangs [DF.11].

Designing a Physical Packing Sequence Algorithm with Static Stability 637

Static Stability. In this work, we implemented a physical simulation to meet our goal of
real-world stability assessments that is based on the physics engine Bullet. We modelled
cargo items as rigid bodies, i.e., they cannot be deformed. We assumed constant density.
However, changing an items density (e.g., displacing its center of gravity) can be easily
integrated when present. We implemented the Sim2 approach described in Mazur et al.
[11] that iteratively places items and triggers gravitational force acceleration. If at least
one items moves, the sequence is accordingly marked as unstable and receives a penalty.
Due to numerical simulation errors, a small quantity of delta movement is allowed
[DF.12].

Consecutive Neighbors. This criterion incentives sequences that combine spatial prox-
imity of two items with proximity in the sequence. Placing items that are located next
to each other in both sequence and arrangement facilitates sequence understanding, as
multiple information task requirements can be cognitively linked and palletizers can
work from one area of the cargo arrangement onwards and recognize already placed
items [DF.13].

Easy Positioning. Our algorithm incentives sequences that place items into corners,
either in ULD corners or between already placed items and ULD edges, which simplifies
the search for the correct position [DF.14].

Visualization. We implemented a web frontend with a visualization of packing
sequences. Further, we displayed labeled arrows with the item’s packing sequence that
point to the item’s final position from its preferred packing side and further displayed
arrows that indicate possible alternative packing sides [DF.16]. Also, we implemented
an animation that sequentially slid items on the ULD [DF.15]. We depict an exemplary
visualization demonstration in Fig. 4.

Output. The PPSP output remarks a feasible packing sequence containing item
sequences, packing devices, and preferred and possible packing side on an item-level.

4 Demonstration and Evaluation

For evaluation purposes, a large airfreight carrier provided us real-world cargo data. The
data contains booking data from several flightswith cargo of various sizes but is limited to
outer bounding boxes. from the data, we created several sample jobs that comprise three
degrees of shape heterogeneity (boxes only (BO), 15% non-cuboidal cargo (15H), and
40% non-cuboidal cargo (40H)) combined with three input item set sizes. This process
led to a sample set of nine jobs. We enriched the jobs by adding further information and
PPSP algorithm configuration, namely forklift capabilities and ULD packing sides. The
forklift capable axes on an item-level were assigned at random. With respect to packing
sides at an ULD-Level, we prohibit forklift packing from the ULD back, where cargo
is frequently stored temporarily for the next station. For manual packing, all sides are
reachable. Containers are loaded through the front side.

The algorithm runs through 100 iterations with a population size of 100. We used all
implemented fitness criteria, recombinators, andmutators. The weightings resulted from

638 P. G. Mazur et al.

observations during DSR cycles.We employed elitist selection since it resulted in higher
scores. The recombinators each created 50% of a new generation. Both mutators were
applied to 33% of the children. We ran 10 demonstration instances on three problem
scenarios (BO, 15H, 40H) each. Our results are depicted in Table 2. Runtime average
on 1–2 min. As the static stability criterion accounts for most of the runtime, we also
conducted 10 runs runs without this criterion. The demonstration instance 40H was
almost twice as fast in both cases due to a smaller item set. Themean best score (weighted
sum of fitness criteria) exceeds 0.9 for all instances. Since resulting best sequences were
very similar in all tests, rendered sequences range among the best for this configuration.
All scenarios have been run 10 times, displayed are the mean values.

Table 2. Overview of test instances (N = 10)

Job scenario # items Runtime Runtime w/o static stability Best score

BO 20 106 s 2.16 s 0.936

15H 22 130 s 2.32 s 0.906

40H 13 55 s 1.68 s 0.904

For illustration, we depict the resulting best sequence in Fig. 4. As mirrored in
our design requirements, the algorithm mostly proceeds from one area to another. In
conclusion, the calculated sequences for demonstration seem applicable for practice.

Fig. 4. Exemplary visualized packing sequence of 15H

We evaluate our instantiation with respect to overall and components’ (fitness crite-
ria, genetic operators) performance for sample problems. A unique solution is a sequence
that has not appeared in any generation during algorithm run. We observe many new
unique solutions at algorithm start, while for later generations, this number decreases.
Afterwards, new solutions seem to supersede the current best solution only due to muta-
tions. With increasing item heterogeneity, the number of unique solutions decreases.
This observation might be due to more complex cargo arrangements as they impose
more limitations to the packing sequence. Table 3 comprises information on the number
of created and invalid solutions and duplicates for each genetic operator.

The OKX has a higher chance of producing valid and duplicate solutions. This might
be due to its re-usage of already feasible sequences. If the split point is near sequence
start or end, it has a high chance of duplicating one of the parents. It is noticeable that all

Designing a Physical Packing Sequence Algorithm with Static Stability 639

Table 3. Performance of genetic operators

Populator Recombinator Mutator

Operator Random OKX PMX cut-and-paste Swap Neighbor

Created solutions 100 1589 1803 1651 1586 2309

Invalid solutions 203 52 496 2283 3000 661

Duplicate solutions 0 3350 2701 175 140 330

Mean age 1.96 5.30 5.51 4.04 3.82 4.65

Variance age 1.92 65.70 82.94 21.32 14.48 43.82

mutators produce only few duplicates. The neighbor mutator has the highest mutation
success rate, which reflects that it only makes a slight change to the sequence and the
result would only be invalid if the second neighbor is placed on top of the first or the
first item would be blocked by the second neighbor. The cut-and-paste and the swap
mutator generate many invalid solutions. This is comprehensible because the chance
that one or more items fit into the sequence at a randomly chosen position might be
low. We designed recombination and mutation operators to complement each other. The
recombination operators rather work on the sequence’s overall structure. They define
the sequences’ start areas and where to proceed. In contrast, the mutation operators
change sequences on a smaller scale. The neighbor- and swapmutation can create longer
sequences of consecutive neighbors. However, the neighbor mutation has little impact
on the overall packing strategy. The swap mutator has a higher impact but primarily
fails because switching only one item frequently results in infeasible sequences. This
disadvantage is tackled with the cut-and-paste operation. It incorporates the chance of
removing “jumps” fromoneULDarea to another inside the sequence and a higher chance
of creating feasible sequences than the swap mutator. Nevertheless, the swap mutator is
crucial to remove single items from sequence positions where they do not really fit.

5 Discussion and Conclusion

This work contributes to solving ULD-loading problems with practical constraints as the
availability of a packing sequence is an important part transition from cargo arrangement
generation to physical assembly. Moreover, it addresses the PPSP as a problem class by
itself. Despite its importance in practice, only few studies explicitly treat PPSPs. This
work summarizes and illustrates requirements for the PPSP from related literature and
practical viewpoints. We identified elven design requirements and 19 design features
for PPSP algorithm design, which we implemented in our artifact. The requirements
and features provide guidance to future research on how to model packing sequence
algorithms in real-world applications. A further refinement might lead to abstractions
in the form of design principles or theories. We laid the ground for the consideration
of non-cuboidal cargo shapes, as frequently met in air cargo practice, and proposed a
dual integration design to combine PPSP and PLP. Although we specifically designed
our algorithm to meet practical requirements in the air cargo sector, applications in

640 P. G. Mazur et al.

other transport modes such as truck or ship are conceivable. Our artifact supports pallets
and containers, both of which play a major role in aviation industry. Depending on
the problems’ characteristics (e.g., available time, constraints) our algorithm can be
adapted to run only few iterations or be stopped during execution. On the other hand,
our work encounters limitations, which include, but are not limited to the following.
Only few studies exist on packing sequence problems. Hence, only few findings could
be reconceptualized for our deduction of requirements and features. Likewise, our study
and specifically our evaluation lacks field tests. Althoughwe evaluated on real-world data
from operations of a large cargo carrier, requirements in terms of runtime, functionality
and performance must be raised closely related to practical operations at a cargo hub.
Further, feedback from palletizers is paramount when evaluating comprehensiveness
and useability in terms of our 3D visualization. Finally, our algorithm’s performance
highly depends on its configuration (e.g., population size, used operators, fitness criteria
weights). Althoughwe developed a sense for algorithm configuration duringDSRcycles,
an optimization of configuration (e.g., using hyperparameter optimization) helps to find
the best set ups for varying problem scenarios.

References

1. Brandt, F., Nickel, S.: The air cargo load planning problem - a consolidated problem definition
and literature review on related problems. Eur. J. Oper. Res. 275, 399–410 (2019). https://doi.
org/10.1016/j.ejor.2018.07.013

2. Lee, N.-S., Mazur, P.G., Bittner, M., Schoder, D.: An intelligent decision support system for
air cargo palletizing. In: Bui, T. (ed.) Proceedings of the 54st Hawaii International Conference
on System Sciences. Proceedings of the Annual Hawaii International Conference on System
Sciences. Hawaii International Conference on System Sciences (2021). https://doi.org/10.
24251/HICSS.2021.170

3. Bortfeldt, A., Wäscher, G.: Constraints in container loading – A state-of-the-art review. Eur.
J. Oper. Res. 229, 1–20 (2013). https://doi.org/10.1016/j.ejor.2012.12.006

4. Dowsland, K.A.: An exact algorithm for the pallet loading problem. Eur. J. Oper. Res. 31,
78–84 (1987). https://doi.org/10.1016/0377-2217(87)90140-8

5. Ramos, A.G., Oliveira, J.F., Lopes, M.P.: A physical packing sequence algorithm for the
container loading problem with static mechanical equilibrium conditions. Int. Trans. Oper.
Res. 23, 215–238 (2016). https://doi.org/10.1111/itor.12124

6. Kramer, O.: Genetic Algorithm Essentials. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52156-5

7. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007). https://
doi.org/10.2753/MIS0742-1222240302

8. Bischoff, E.E., Ratcliff, M.: Issues in the development of approaches to container loading.
Omega 23, 377–390 (1995). https://doi.org/10.1016/0305-0483(95)00015-G

9. Ngoi, B.K.A., Tay, M.L., Chua, E.S.: Applying spatial representation techniques to the con-
tainer packing problem. Int. J. Prod. Res. 32, 111–123 (1994). https://doi.org/10.1080/002
07549408956919

10. Liu, W.-Y., Lin, C.-C., Yu, C.-S.: On the three-dimensional container packing problem under
home delivery service. Asia Pac. J. Oper. Res. 28, 601–621 (2011). https://doi.org/10.1142/
S0217595911003466

https://doi.org/10.1016/j.ejor.2018.07.013
https://doi.org/10.24251/HICSS.2021.170
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1016/0377-2217(87)90140-8
https://doi.org/10.1111/itor.12124
https://doi.org/10.1007/978-3-319-52156-5
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1016/0305-0483(95)00015-G
https://doi.org/10.1080/00207549408956919
https://doi.org/10.1142/S0217595911003466

Designing a Physical Packing Sequence Algorithm with Static Stability 641

11. Mazur, P.G., Lee, N.-S., Schoder, D.: Integration of physical simulations in static stability
assessments for pallet loading in air cargo. In: Winter Simulation Conference (WSC). IEEE
(2020). https://doi.org/10.1109/WSC48552.2020.9383878

12. Paquay, C., Schyns, M., Limbourg, S.: A mixed integer programming formulation for the
three-dimensional bin packing problem deriving from an air cargo application. Int. Trans.
Oper. Res. 23, 187–213 (2014). https://doi.org/10.1111/itor.12111

13. Nascimento, O.X.d., Alves de Queiroz, T., Junqueira, L.: Practical constraints in the container
loading problem: comprehensive formulations and exact algorithm. Comput. Oper. Res. 128,
105186 (2021). https://doi.org/10.1016/j.cor.2020.105186

14. Chan, F.T., Bhagwat, R., Kumar,N., Tiwari,M.K., Lam, P.: Development of a decision support
system for air-cargo pallets loading problem: a case study. Expert Syst. Appl. 31, 472–485
(2006). https://doi.org/10.1016/j.eswa.2005.09.057

15. Junqueira, L., Morabito, R., Sato Yamashita, D.: MIP-based approaches for the container
loading problem with multi-drop constraints. Ann. Oper. Res. 199, 51–75 (2012). https://doi.
org/10.1007/s10479-011-0942-z

16. Masood, S.H., A. Khan, H.: Development of pallet pattern placement strategies in robotic
palletisation. Assembly Autom. 34, 151–159 (2014). doi: https://doi.org/10.1108/AA-12-201
2-092

17. Junqueira, L.,Morabito, R., Sato Yamashita, D.: Three-dimensional container loadingmodels
with cargo stability and load bearing constraints. Comput.Oper. Res.39, 74–85 (2012). https://
doi.org/10.1016/j.cor.2010.07.017

18. Ramos, A.G., Oliveira, J.F.: Cargo stability in the container loading problem - state-of-the-art
and future research directions. In: Vaz, A.I.F., Almeida, J.P., Oliveira, J.F., Pinto, A.A. (eds.)
APDIO 2017. SPMS, vol. 223, pp. 339–350. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-71583-4_23

19. Bracht, E.C., Queiroz, T.A. de, Schouery, R.C.S., Miyazawa, F.K.: Dynamic cargo stability in
loading and transportation of containers. In: IEEE International Conference on Automation
Science andEngineering (CASE), pp. 227–232 (2016). https://doi.org/10.1109/COASE.2016.
7743385

20. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research.
Manag. Inf. Syst. Q. 28, 75–105 (2004). https://doi.org/10.2307/25148625

21. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-32444-5

22. Zhao, X., Bennell, J.A., Bektaş, T., Dowsland, K.: A comparative review of 3D container
loading algorithms. Int. Trans. Oper. Res. 23, 287–320 (2016). https://doi.org/10.1111/itor.
12094

23. Raidl, G.R., Kodydek, G.: Genetic algorithms for the multiple container packing problem.
In: Goos, G., et al. (eds.) Parallel Problem Solving from Nature -- PPSN V. Lecture Notes in
Computer Science, vol. 1498, pp. 875–884. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0056929

24. Marian, R.M., Luong, L.H., Abhary, K.: A genetic algorithm for the optimisation of assembly
sequences. Comput. Ind. Eng. 50, 503–527 (2006). https://doi.org/10.1016/j.cie.2005.07.007

25. Smith, G.C., Smith, S.S.-F.: An enhanced genetic algorithm for automated assembly plan-
ning. Robot. Comput-Integr. Manuf. 18, 355–364 (2002). https://doi.org/10.1016/S0736-584
5(02)00029-7

https://doi.org/10.1109/WSC48552.2020.9383878
https://doi.org/10.1111/itor.12111
https://doi.org/10.1016/j.cor.2020.105186
https://doi.org/10.1016/j.eswa.2005.09.057
https://doi.org/10.1007/s10479-011-0942-z
https://doi.org/10.1108/AA-12-2012-092
https://doi.org/10.1016/j.cor.2010.07.017
https://doi.org/10.1007/978-3-319-71583-4_23
https://doi.org/10.1109/COASE.2016.7743385
https://doi.org/10.2307/25148625
https://doi.org/10.1007/3-540-32444-5
https://doi.org/10.1111/itor.12094
https://doi.org/10.1007/BFb0056929
https://doi.org/10.1016/j.cie.2005.07.007
https://doi.org/10.1016/S0736-5845(02)00029-7

Intermodal Competition in Freight Transport -
Political Impacts and Technical Developments

Joachim R. Daduna(B)

Berlin School of Economics and Law, Badensche Str. 52, 10825 Berlin, Germany
daduna@hwr-berlin.de

Abstract. The competition between the various transport modes is characterized
by the question of economic efficiency of transport services on the one hand
and (transport) policy objectives on the other hand. A comparison shows that
road freight transport dominates the terrestrial transport market, while the other
transport modes in this segment generally rely on this due to their restrictions
with regard to the provision of a widespread infrastructure. Despite of political
prioritization and massive subsidies, the intended changes in modal split are not
be achieved, due to significant changes in demand structures and their spatial
distribution over the last years. By technological development the importance of
road freight transport will significantly increase and also of River-sea and Short
Sea Shipping, while rail freight transport and also freight transport on inland
waterways will significantly lose market share.

Keywords: Competition in freight transport · Mono-modal and multimodal
transport · Rail freight transport

1 Mobility and Economic Development

Intermodal competition between different modes of transport has been a controversially
discussed problem for decades in the context of the design of regional, national as well
as global transport processes. The main reason for this is that economic competition
cannot exist and cannot develop if there are no efficient mobility services in freight (and
passenger) transport. [83: 161] already stated that,…the improvement of the transport
modes […] is a powerful incentive for efforts and objectives aimed at reducing the man-
ufacturer price and improving the quality of goods…. This means that market structures
and functioning competition are decisively influenced by the attained level of mobility.
This is also indicated by the influence of transport on economic growth, for example
for Germany from 1950 to 1990, which is given as 48.8% overall (and 26.1% for road
transport) (see [10]). The importance of freight transport is ultimately to be seen in the
fact that it forms mandatory basis structures for division of labor in economies.

[138] also comes to the result that there is a direct connection between industrial-
ization and the available transport modes, whereby these are the dynamic factors in the
development process. He says in this regard… the transport modes enforce on industri-
alization a certain independent influence, which otherwise industrialization would not

© Springer Nature Switzerland AG 2021
M. Mes et al. (Eds.): ICCL 2021, LNCS 13004, pp. 642–660, 2021.
https://doi.org/10.1007/978-3-030-87672-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87672-2_42&domain=pdf
https://doi.org/10.1007/978-3-030-87672-2_42

Intermodal Competition in Freight Transport 643

havemade.…Thismeans that industrial development does not determine the (transport-)
logistics service structures, as is often claimed (see [67]), but quite simply formulated
we can say: Logistics is not everything, but without (transport)logistics everything will
be nothing.

Themobility of people and goodswas already the basis of far-reaching trade relations
in early ancient time. However, at that time, quasi-monopolistic structures existed due
to the available transport alternatives based on very simple land vehicles, smaller inland
barges and seagoing vessels for coastal areas. These were associated with considerable
restrictions, especiallywith regard to the realizable transport quantities and trip durations
as well as the transportability of goods. For a few thousand years, these were the (very
limited) basis ofworldwidemobility provision. It was not before the late 18th century that
fundamental technical developments in the transport sector and a targeted construction
of the necessary transport infrastructure came up (see [58: 186–188], [14]). With the
availability of larger transport capacities and time-related plannable transport processes,
it was possible to develop new industrial location structures and forms of manufacturing
which were the basis of industrialization of European and North American economy.

For theFirst Industrial Revolution (see [28]) were improvements in the road network
as well as a considerable expansion of the existing inland waterway network through
its extension and the construction of canals (see [14]) the infrastructural basis. With
the emergence of steamships, inland waterway transport (as well as maritime transport)
became independent of weather conditions and to a certain extent of topographical
influences, which led to disruptive changes in the transport of (bulk) goods at that time.

The Second Industrial Revolution (see [29]) created a completely new situation in
freight transport. In the first phase, the focus was still on inland waterway transport,
which reached almost its greatest network expansion during this period. However, it
then lost its hitherto dominant position to rail freight transport (see [58: 186–188], [12]),
which enabled completely new options in the design of network structures. This was in
fact the first time that intermodal competition emerged, with a focus on industrial bulk
transport.

In the middle of the 20th century, however, rail freight transport also lost impor-
tance due to significant improvement and wide-ranging expansion of the road transport
infrastructure and the development of road vehicle technology in key transport mar-
ket segments. Due to a higher flexibility, faster transport processes as well as direct
origin-destination connections, changing industrial structures could emerge within the
framework of small and medium-sized enterprises. The dependence of industrial sites
on railroad sidings and inland ports decreased considerably, so that dislocated man-
ufacturing structures could emerge. The Third and Fourth Industrialization, is on the
other hand, largely characterized by improvements in transport modes in the context of
digitalization and automation (see [56, 131]).

In the following chapters, first the existing transport modes are compared and evalu-
ated.Next, the viewof the competitive structure ismodifieddue to operational restrictions
of most transport modes by including multimodal transport services. Based on this, the
impact of political influence and technological progress is viewed and an outlook on
future developments is given. With regard to the lack of relevant data, mainly transport
data from the European Union (EU) are the basis for the following analysis.

644 J. R. Daduna

2 Comparison and Evaluation of Transport Modes

When discussing the available transport modes, it has to be taken into account that their
possible applications must be viewed in a differentiated manner due to mode-related
framework conditions. This concerns in particular the necessary infrastructure as well as
the technical, capacitive and operational characteristics of the vehicles used. Simplified
(one-dimensional) comparisons based only on the relation of transport volumes and costs
for the three terrestrial transport modes (see Fig. 1), as used, among others, by [108:
113], are not very helpful. This is because, even if this form of comparison is repeatedly
taken up in political discussions, they cannot provide a useful decision-making basis, as
they are neither relevant from a theoretical nor an operational point of view.

Road transport

Rail transport Transport on
inland waterways

Overall costs

Transportation volumex 1 2x

3F

2F

1F

Fig. 1. Comparison of quantitative cost performances for road, rail, and inlandwaterway transport

The system-related advantages and disadvantages of the individual transport modes
must be in the foreground of the analysis (see [138]) as well as the question of the funda-
mental suitability for the respective transport operation and their actual (spatial) avail-
ability. A basis for the qualitative rating is provided by the characteristics of transport
valuabilities defined by [139: 80–92] (see also [18: 58–62], [39]).

o Time required for transport execution (delivery time): Sum of travel times andwaiting
times (due to technical or organizational reasons).

o Ability for bulk good shipping: Available capacity of a transport mode used as well
as the cost-level for the transport of a weight- or space-unit of specified (bulk) goods.

o Transport network design: Possibility of forming direct transport connections
between shippers and customers.

o Time-related calculability of transport operations: Adhere to travel times and delivery
deadlines for transport operations.

o Service frequency: Level of transport service on a link in a defined time period.
o Security and failure-free processes: Avoidance of external influences on transport

operations that would hinder or prevent the continuity of the processes.
o Ease of access: Extent of access to the transport mode in question.

In view of the changes in the framework conditions in recent decades, the flexibility
of the possible applications and, in connectionwith the politically forced decarbonization

Intermodal Competition in Freight Transport 645

of transport (see [55, 124]), the environmental friendliness of transport modes must be
included as additional criteria. It is also possible that the question of the extent to which
automated or autonomous driving will become established and will play a role in the
future, also under the aspect of completely new design options in operational use and
changed cost structures (see [25, 88, 120]).

Furthermore, due to structural developments, it makes sense to include Short Sea
Shipping (SSS) (as well as River-sea Shipping (RSS)) as an independent transport mode
in addition to the classic modes (road and rail freight transport, freight transport on
inland waterways, sea and air freight transport, and transport via (pipe) lines). These
are sea transport services that are largely limited to regional areas which can be seen
here as an environmentally friendly alternative to terrestrial transport modes and as a
capacity relief for them (see [33, 37, 99, 107, 125]). Under certain conditions, there is also
the possibility of complementing existing terrestrial transport infrastructures (see [100:
162–186], [114], [133]). The growing importance of these transport modes in recent
years is also reflected in their share of transport performance (in tkm) in the modal split,
which was 29.2% in the EU in 2018 (see [42]: 38). The following figure (Fig. 2) shows
the evaluation of the seven transport modes considered based on the criteria described.
This is a present state, which, however, may lead to changed evaluations with a stronger
market penetration of new vehicle technologies and qualified transport infrastructures
in the coming years.

Transport mode
Mode

characteristics Sp
ee

d

M
as

s
ca

pa
bi

lit
y

N
et

w
or

k
in

te
gr

at
io

n

C
al

cu
la

bi
-

lit
y

Se
rv

ic
e

fr
eq

ue
nc

y

Se
cu

rit
y

C
on

ve
ni

-
en

ce

Fl
ex

ib
i-

lit
y

Ec
o-

fr
ie

nd
-

lin
es

s

Road +2 -2 +2 +1 +2 0 +2 +2 0
Rail +1 +2 -1 +1 0 +2 -1 -2 +1
Inland waterways -1 +2 -2 0 0 +2 -1 -2 +1
Pipelines +1 +2 -2 +1 +2 +2 -1 -2 +1
RSS / SSS -1 +2 -2 +1 0 +2 -1 -2 +1
Sea -1 +2 -2 +1 0 +2 -1 -2 +1
Air +2 -2 -2 +2 0 +2 -1 -2 -2
The ratings are based on the comments by [139: 80-92] and [39] as well as own estimations of the
current situation.

Fig. 2. Comparison of transport modes regarding their functional characteristics

The qualitative evaluation of the modes of transport described here represents the
possibility of use, but it does not provide any information regarding the existing modal
split, that means, the quantification of the realized market shares in intermodal compe-
tition. For the EU, Fig. 3 shows the shares of transport performance (in tkm) and their
distribution in the modal split for the years 1995 and 2018, as well as their percentage
change during this period (see, [42: 38]). However, these are aggregated values that do
not reflect the significant differences within the individual member states (see, [42: 39]),
which mainly result from the different geographical and topographical conditions and
settlement structures.

646 J. R. Daduna

Transport modes 1995 2018 Increase
Mrd. tkm / % 1995 - 2018

Road 1127.2. / 47.0 1708.9 / 51.0 51.6
Rail 374.8 / 15.6 423.3 / 12.6 12.9
Inland waterways 121.9 / 5.1 135.0 / 4.0 10.7
Pipelines 103.8 / 4.3 104.0 / 3.1 0.2
RSS / SSS 671.4 / 28.0 979.2 / 29.2 45.8
Air 1.4 / 0.1 2.2 / 0.1 56.2
Total 2400.5 3352.6 39.7

Fig. 3. Comparison of freight transport performance (in tkm) and modal split in the EU by
transport modes for 1995 and 2018

However, this is not only a phenomenon within the EU, but there are very differently
structured transport markets worldwide with regard to the different used transport modes
in the various regions (see, [42: 38]). The comparison of the situation in the EU, USA,
Japan, China and Russia in Fig. 4 underlines this very clearly.

Transport mode EU-27 USA Japan China Russia
Mrd. tkm / % 2018 2018 2017 2018 2018

Road 1708.9 / 51.2 2959.5 / 38,8 210.8 / 50.1 7124.9 / 39.9 241.2 / 5.7
Rail 1 412.7 / 12.0 2525.2 / 33.1 21.7 / 5.2 288.1 / 1.6 2579.8 / 61.2
Inland waterways 135.0 / 4.1 463.0 / 6.1 --- --- 32.7 / 0.8
Oil pipelines 2 104.0 / 3.1 1429.8 / 18.7 --- 530.1 / 3.0 1331.6 / 31.6
Sea 3,4,5 979.2 / 29.3 253.5 / 3.3 180.9 / 43.6 9905.2 / 55.5 28.3 / 0.7
Total 3339.8 7631.0 413.4 17848.3 4213.6
1 USA: Class I rail; 2 China: Oil and gas pipelines; 3 Domestic / Intra EU; 4 USA: Coastal shipping
5 China: Coastal and inland waterway shipping

Fig. 4. Comparison of freight transport performance (in tkm) and modal split for the EU, USA,
Japan, China, and Russia for 2018 (or 2017).

The data for the EU (see Fig. 3) show a dominance of road freight transport and
SSS/RSS, also with regard to the development in recent years. Air freight transport has
grown the most, but this is of minor importance due to its marginal share in transport
performance. Critical, however, is the under-proportional growth in freight transport
on inland waterways and especially in rail freight transport, which has been politically
prioritized within the EU for decades. Although this sector has been subsidized to a
significant extent, without any lasting success. It has not been possible to achieve any
overall shifting effects to the disadvantage of road freight transport.

In order to understand this situation, the data on road freight transport volume must
be analyzed in more detail (see Fig. 5). Since the relevant data are not available at the
EU level, data on traffic volumes from Germany are used (see [20: 240–241]).

The key point is the distribution of distance-related volumes among local (< 50 km),
regional (51–150 km) and long-distance (> 150 km) transport. The share of local and
regional transport amounts to 79.6% in total in 2018 that means the major part of this
market segment does not offer any relevant potential for modal shift in favor of the other
terrestrial transport modes (see [70]). Furthermore, in the case of rail freight transport as
well as freight transport on inlandwaterways, direct origin-destination links are normally

Intermodal Competition in Freight Transport 647

Road transport specification
Mio, t

2008 2018 Percent
change

Road freight transport 3438.0 3753.1 9.2
Foreign trucks 392.0 11.4 568.0 15.1% 44.9
German trucks 3046.0 88,6 3185.1 84.9% 4.6
Haulage 1889.8 62.0 2474.0 77.7 30.9
Transport by own trucks 1156.2 38.0 711.1 22.3 -39.0

< 50 km (near) 1749.1 57.4 1776.1 55.8% 1.5
51 - 150 (regional) 623.7 20.5 758.3 23.8% 21.6
>150 (long distance) 673.2 22.1 650.7 20.4% -3.3

Fig. 5. Freight transport volume (in million tons) in road freight transport in Germany 2008 and
2018

not available due to the lownetworkdensity, so that their use is only possible in the context
of multimodal (or bi-modal) transport operations (see [30, 89, 111]), with pre-carriage
and on-carriage services almost ultimately taking place by road (see Sect. 3). Transports
in local and regional transport as well as in long-distance transport in the lower distances
are definitely not affine to rail and to inland waterways transport. This means, that there
is in this segment only an intra-modal market.

The explanations make it clear that the (operational and technical) utilization options
can be described based on the transport valuabilities, but not the logistical deployment
options or the market and competitive structures. This is because road freight transport
is the onlymono-modal transport mode that means, apart from a few exceptions, it is the
only transport mode for which a direct origin-destination link is available. This means
that a view of intermodal competition cannot be limited to the level of the individual
transport modes, but due to the mandatory necessity of multimodal transport links, not
only the included transport modes but also the necessary transshipment facilities must
be considered when changing the transport mode.

3 Incorporation of Multimodal Transport Flows

Multimodal (or combined) transport is described (see [30, 38]) by the fact that (in their
original definition) at least two different transport modes are used in freight forwarding.
A special variant is the multimodal load unit transport, at which only (closed) and stan-
dardized load units (e.g. containers or swop bodies) are shipped continuously from the
origin to the destination (see [59, 109]). This differentiation is not of fundamental impor-
tance for a comparison of multimodal transport processes, but they differ significantly
in terms of the handling times and costs occurring in transshipment operations.

Since the economic and logistical importance of load unit freight transport is clearly
in the foreground, the following comments are based on this. Accompanied bi-modal
freight transport, such as Ro/Ro and ferry transport in the SSS (see [27, 80]) and ferry
transport for river crossings (see [48]), is not included, as these have a de facto monopoly
position largely due to geographical restrictions. The same applies to rolling roads
(road/rail transport), which are often used in difficult topographical regions (for example
for alp crossings) due to administrative restrictions on road freight transport (see [95,
110]), including to reduce high emission levels of road freight transport in ecologically
sensitive areas (see [64]).

648 J. R. Daduna

The (quantifiable) costs of multimodal transport include the fixed costs for their
use and the variable costs (per km) of the respective transport modes as well as the
handling costs (and, if necessary, also the additional costs for intermediate storage) in
the transshipment facilities used. The following figure (see Fig. 6) shows a comparison
of the resulting cost function for (a mono-modal) road freight transport with that for
bi-modal road/rail freight transport (see [78, 113, 148]). An analogous structure also
emerges in a comparison with the inclusion of freight transport on inland waterways
(see [85]) in bi-modal freight transport solutions.

Fig. 6. Comparison of mono-modal and a bi-modal (road / rail) transport cost functions

A key issue in this comparison is the question of the break-even distance, the mini-
mum transport distance that must occur in rail freight transport (or freight transport on
inland waterways) for a bi-modal transport operation to achieve at least the same cost
level (see [21, 90, 141]). The often stated 300 km for the share of rail freight trans-
port, which is questioned by [90], seems to be plausibly based on data from the Union
Internationale Pour le Transport Combine Rail-Route (UIRR) (see [42: 73]). For 2018,
the percentage share of transport distances is for up to 300 km (1%), between 300 and
900 km (51%), and over 900 km (48%).

In the example presented, it can be seen that the break-even distance is at T2. (with
of costs C0).This means that in the case when no rail/road transshipment is possible at
point T2 or between T2 and TD, that mono-modal road freight is the more cost-effective
solution. Only in the case that a transshipment between T2 and TD is possible, the
bi-modal transport is more cost effective.

However, this is only a rough estimate, because only on basis of a detailed (and case-
by-case) comparative calculation (see [90]) can a sufficiently accurate decision be made.
This is due to a number of parameters (see [78]), such as the capacity (= length) of the
train, the wagon types used and the resulting loading options for different container types
and lengths, and the availability and performance of handling facilities. However, there
are also quality differences, which essentially result from reliability, transport flexibility,
the time required for transport operations, and transport security.

With a view to sustainability of transport services to be provided, there is also an
increasing interest considering external cost effects (see [9, 21, 64, 65, 85, 93]), which

Intermodal Competition in Freight Transport 649

cannot be quantified or only to a limited extent. However, these are included by target-
oriented administrative measures (including e.g. road tolls). The priority objective here
is to make road freight transport more expensive.

When comparing transport processes, it also must be taken into account that there
is usually more than one connection between an origin and destination, whereby the
transport modes can be used in different combinations (see [35, 121]). These are deter-
mined by various parameters (including transport costs and time, type of goods and
value, access options to the transport modes) (see [69]). Key objectives are, for exam-
ple, to reduce the logistics costs occurring, the transport time, and the external costs that
arise (including through transport-induced emissions). These problems aremulti-criteria
decision problems with non-congruent objective structures, where no relevant results for
operational planning can be determined based on the calculated values. In order to enable
a multi-criteria comparison, a standardization of the values is required (see [35]), which
enables a multi-criterial comparison of alternative connections and form a useful basis
for decision-making.

4 Impacts from Political Influence

In addition to measures in the field of research funding, political influence in the trans-
port sector is extended essentially on two levels: the qualification and expansion of the
transport infrastructure and regulatory measures. The objective here is, on the one hand,
a targeted influence on competition to restrict road freight transport, among other by
promoting bi-modal freight transport (see [115, 129]) and, on the other hand, reducing
transport-induced environmental impacts by decarbonizing transport operations, espe-
cially regarding road transport (see [73, 92, 122]). For many years, these developments
have been strongly pushed by subsidies on the EU level, among others with the Trans-
European Networks-Transport (TEN-T) projects (see [100: 118–161], [106]), as well
as on the national level of the member countries. The main objectives are the expansion
and standardization of transport systems and infrastructure within the EU, including
neighboring countries of Eastern Europe.

The focus of transport policy measures is on rail transport, which has been expected
to play a much stronger role in European freight transport for years, although to date
this has only been achieved to a very limited extent (see [105, 106]). So the eight Rail
Freight Corridors (RFC) for providing more efficient seaport hinterland transport (see
[79]) show not any significant effects (see [42]: 44) with regard to the overall share of
rail freight transport. This is shown even though rail freight transport performance and
transport volumes in bi-modal freight transport have increased somewhat in recent years.

The efforts of realizing the transport policy objectives regarding a prioritization of
rail transport in the EU have been (and continue to be) extensively subsidized. Thus,
subsidies amounting to almost 40 Mrd. e per year were paid out in the EU-15 area from
1998 to 2008 (see [31]).With growing subsidies and the enlargement of the EU, there has
even been an increase to 50.6 Mrd. e in 2019 (see [43]:30–31). In fact, the subsidies are
likely to be even higher, since financial resources can also flow into rail transport from
other funding areas (e.g. environmental protection, sectoral and regional development)
(see [43: 24]). Overall, however, a precise allocation of subsidies in the rail sector is only

650 J. R. Daduna

possible to a limited extent, since a differentiated view with a separation of passenger
and freight transport is not possible (see [22]).

The introduction of distance-based charges on (heavy) trucks in various European
countries with the aim of generating modal shift effects by making road freight transport
more expensive (see [19, 52]) and halting the decline in single wagonload transport
(see [60]) was and still is a failure. The reasons for this are multi-faceted, although
from client’s point of view, the focus is on inadequate performance in comparison with
road freight transport (which are also to be seen as quality differences), which causes
asymmetric demand elasticity (see [119]).

Furthermore, the still largely nationally oriented rail transport structures are an addi-
tional obstacle. There is a lack of consistent monitoring and control as well as safety
technology in the various network areas (regional, national, international) (see [118,
127, 144]), which should already be available with the European Train Control System
(ETCS). This has a significant negative impact on the actual core area of rail freight
transport, the (cross-border) long-distance transport. In addition, there are problems due
to a multi-layered user structure, the lack of vehicle standards at the international level
(see [106]), as well as diverging national framework conditions and political interests.

If we also look at the developments in Germany in recent years, it is clear that the
politically desired changes in the modal split of freight transport could not be achieved,
even with extensive subsidies (see [144]). The currently planned high expenditures for
qualification and expansion of the rail transport infrastructure will also not have any
effect in this respect. The main reasons for this are the lengthy planning and approval
procedures and the excessively long time period required for realization. Since continuity
of industrial site structures has decreased significantly in the EU as well as in many
regions worldwide in recent years and will continue to decrease, it must be assumed that
if infrastructure becomes available, the expected demand for transport will no longer
be met, even in an international context (see [46, 128]). A key factor is, among other
things, the decarbonization of the energy sector, which will inevitably have a significant
negative impact on bulk transport (see [41: 23]).

Even the rail freight transport between Europe and China (Eurasian land bridge),
which has been pushed for several years within the framework of the Chinese Belt
and Road Initiative (BRI) (see [82, 140, 146, 147]), cannot reach any significant market
shares in container transport. So the available capacities for additional freight trains on the
relevant routes must be seen, because the tracks are also used for passenger transport and
national freight transport. If we look at the development of transport volumes between
Asia and Europe in recent years, it also shows that the share of rail freight transport was
only 1.4% in 2018 (see [17]). Apart from these facts, the expansion of the links is not
uncontroversial from political and ecological view (see [130]).

As before, transport on the Suez Canal Route (SCR) is still dominant, which is
also reflected in the container throughput of 42.255 million TEU in the EU ports of
the North Range (see [41: 72]). However, depending on climate change developments,
a competing (and especially shorter) link could become available for SCR with the
Northern Sea Route (NSR) (see [145, 147]). So ultimately, rail freight can only provide
a niche solution between air and sea transport in this market.

Intermodal Competition in Freight Transport 651

As already mentioned in Sect. 2, the SSS and RSS are competing with the terrestrial
transport modes, which have reached amodal split share of 29.2% in the EU in 2018 (see
Fig. 3), that means, significantly more than in rail freight transport and freight transport
on inland waterways with an aggregated share of 16.6%.

Regarding to transport policy objectives, (not only) in the EU an (even) greater use
of SSS and RSS is aimed at (see [57, 84, 112], [100: 162–186]). Influencing the modal
split in (intra-European) freight transport to the disadvantages of road freight transport
is the dominant objective (see [126, 132]). In the foreground here is the TEN-T project
21 (Motorways of the Sea) (see [8, 101, 125], [100: 118–161]). Possible examples of
shifting effects to reduce road freight transport have been discussed increasingly (see
[26, 107, 136]) and partially realized up to now. However, if we look at the transport
valuabilities (see Sect. 2), it becomes clear that, due to similar performance parameters,
a strong growing competition for rail freight transport has emerged with SSS/RSS.

5 Impacts of Technological Developments

One field of the technical development that will strongly influence the competitive struc-
tures in the future is automated and autonomous driving (see [25, 88, 120]). These tech-
nological changes must be seen in connection with an increasing digitalization in the
transport sector and the developments in the area of low-emission and zero-emission
drive systems (see [16, 143]). These fields will have a significant impact on future struc-
tures in competition of the transport sector, as key framework conditions will change in
terms of performance and possible applications.

In road freight transport, autonomous and connected driving will lead to disruptive
developments and new market opportunities (see [4, 40]). In the foreground are con-
siderable (personnel) cost savings and completely new options for service design due
to the elimination of legal working restrictions which currently affect the operational
planning. This will significantly reduce the increase in the cost function of road freight
transport (see Fig. 6), that means, the break-even distance in bi-modal road/rail (as also
road/inland waterway) transport will inevitably increase unless there are corresponding
developments for the other two transport modes. In the case of a successful market pene-
tration of trucks with battery or fuel cell drive (see [98, 104]), the argument of ecological
advantageousness of rail freight transport also disappears.

In the discussion about electric drives in the field of commercial vehicles in road
transport, three main forms are in the foreground (see [16, 143]). These are battery-
based drives (tending toward vans and light trucks) (see [68]), fuel-cell-based drives
(tending toward trucks and heavy vehicles) (see [75]), and trucks with a power supply
via catenaries (see [87]). At present, however, there is a controversial debate about
which path is the right one; the decisive factor here will be the operational and economic
evaluation of the respective overall system (costs).

Various technical developments are also available or about to be introduced in rail
freight transport. However, autonomous driving will be limited to only a few applica-
tions due to safety regulations (see [52, 81]). The focus here is on automated (remote-
controlled) driving (see [49, 118, 135]), which has actually been possible with self-
driving units for about 20 years (see [49, 86, 118]). However, this technology is not

652 J. R. Daduna

been applied in the EU up to now, even though such solutions could have improved the
marketability of regional freight transport services and operations on sidings (see [118]).

Fuel cell drives are also under discussion for the rail sector (see [1, 47, 123]). How-
ever, it is questionable whether their use in electrified core networks can bring rele-
vant competitive advantages, especially in view of the necessary financial expense for
restructuring the tracks. However, such solutions could be very interesting in the area
of automated vehicle units (as well as in local passenger rail transport in non-electrified
secondary networks).

Developments are also underway in inland navigation with regard to autonomous
(see [102, 117]) and automated (remote-controlled) inland vessels (see [15]). However,
competitiveness is sometimes considerably limited, also in the European area, as the
possibilities of use are subject to widely differing capacity restrictions within the inland
waterway networks (see [134]). The crucial question here is over which distances con-
tinuous transports are possible without the need for transshipment to smaller ship sizes,
and to what extent do transshipment operations affect the time of transport processes
and the economic efficiency.

In addition to the political prioritization of theSSS/RSS, there are nowalso significant
technical developments. In the foreground are autonomously operating vessels (see [23,
44, 45, 50, 77]), which are currently under development and through which the fields of
application will expand considerably. The associated concepts for sea-sea transshipment
on feeder ships (see [3, 66]) can, for example, significantly reduce terrestrial seaport
hinterland transport by distributing the cargo to smaller ports with regional catchment
areas.

6 Outlook

The development of competition in freight transport, especially in the EU, will not meet
the propagated transport policy objectives. This applies to a considerable extent to the
intended modal shift from road to rail freight transport. In the EU, for example, this
transport mode has developed at an under proportional low rate compared with overall
freight transport in recent years, despite all the measures that have been taken. A modal
split share of 38% predicted for 2050 in Germany (see [41: 26]) must be regarded
as completely unrealistic and much more as a result of political wishful thinking (see
Fig. 5), even taking into account increasing shares in bi-modal freight transport. The
main reasons for this situation show a very complex background.

First, the in-depth changes in the freight structure must be seen. Rail freight-related
bulk good transport will be significantly reduced in the future, due to the politically
enforced decarbonization of power generation. In addition, there will be changes in
transport demand due to dislocated (and also increasingly volatile) location structures.
The disruptive developments associated with this are result from changed manufactur-
ing processes based on Additive Manufacturing (AM) (see, [7, 11, 33, 74, 116]) with
increasing on-demand and customer-based manufacturing. In this respect, the question
must also be asked to what extent a qualification and expansion of the rail network struc-
tures the rural regions can be justified economically and also politically in the case of a
very limited demand for freight transport due to the remarkable financial requirements.

Intermodal Competition in Freight Transport 653

The extent towhich container transport can compensate for possible losses in demand
is questionable, since there is also a powerful competition in this market segment from
transport on inland waterways and in the RSS/SSS. In addition, a long-term decline
in container traffic must be assumed based for example on AM developments (see the
forecast of [97: 176] with decline of 38% in 2040), growing reshoring activities (see [6,
51, 103, 142]) as well as structural changes of the international supply chains under the
aspect of (national) supply security (see [2, 35]).

Due to the significantly higher transport capacity of barges within bi- or multimodal
transport connections, inland navigation can have considerable advantages over rail
freight transport on certain routes.However, at this point, the question of possible impacts
from climatic changes and resulting reductions in the depth of navigability on inland
waterways must be considered, which can have a negative impacts on the performance
of inland navigation and thus on competition in the medium and long term view (see
[13, 71]). The inclusion of transport services in RSS/SSS, on the other hand, results
in considerable competitive advantages over rail freight transport due to larger vehicle
capacities and a future use of autonomously operating vessels as well as innovative forms
of service (see [3, 66]).

Compared with road freight transport, rail freight transport will continue to lose
importance due to its inherent disadvantages in the service provision processes. The
previously propagated ecological disadvantages will no longer exist in the future due to
the ongoing development of electric drives (see [54, 98, 104]) as well as the no longer
existing volume-related (personnel) cost disadvantages with the use of autonomously
driving trucks. Ultimately, this development will lead in road freight transport to more
significant competitive advantages, especially in local and regional transport as well as
on shorter distances of long-distance transport operations.

It is doubtful whether new transport modes be able to enter the terrestrial transport
sector in the coming years. The repeatedly propagated use of cargo drones (see [63,
91]) will remain a niche application due to the lack of performance in terms of transport
volume, transport weight and operating range. Larger vehicle versions will face aviation
law problems as well as safety issues that will set limits. Also underground transport
systems (see [137]), such as the SwissMetro project (see [72, 94]), which has been
discussed for almost 50 years, or more recently theHyperloop project (see [24, 62, 96]).
These transport systems do not involve fundamentally new solutions, but they would be
an additional competitor to rail freight transport, with a high transport speed but alsowith
extremely high infrastructure costs. Locally oriented systems for inner-city transport as
an alternative to (local) road freight transport, such as the CargoCap project (see [32,
76]), have also not yet come to implementation for certain reasons. However, in the case
of the construction of new settlements, the inclusion of such systems may be possible
as also useful (see [61]).

The data from the past years as well as the emerging developments show that ulti-
mately there is no modal competition in the true sense but only between possible (mono-
and multimodal) transport links. The crucial point is the dependence of almost all modes
(rail, inland waterway, SSS/RSS as well as sea and air) on pre- and on-carriage links
based on other modes in order to connect points of origin and destinations. These facts
must be integrated more strongly into transport policy planning and decision-making,

654 J. R. Daduna

also to ensure an efficient use of resources and to overcome the current lack in congruence
of transport policy objectives.

References

1. Al-Hamed, K.H., Dincer, I.: Development and optimization of a novel solid oxide fuel
cell-engine powering system for cleaner locomotives.Appl. Therm. Eng. 183, 116150 (2021)

2. Althaf, S., Babbitt, C.W.: Disruption risks to material supply chains in the electronics sector.
Resour., Conserv. Recycl. 167, 105248 (2021)

3. Akbar, A., Aasen, A.K., Msakni, M.K., Fagerholt, K., Lindstad, E., Meisel, F.: An economic
analysis of introducing autonomous ships in a short-sea liner shipping network. Int. Trans.
Oper. Res. 28(4), 1740–1764 (2021)

4. Alonso Raposo, M., Grosso, M., Mourtzouchou, A., Krause, J., Duboz, A., Ciuffo, B.:
Economic implications of a connected and automated mobility in Europe. Res. Transp.
Econ. (in press) (2021)

5. Aperte, X.G., Baird, A.J.: Motorways of the sea policy in Europe. Marit. Policy Manag.
40(1), 10–26 (2013)

6. Ashby, A.: From global to local - reshoring for sustainability. Oper. Manag. Res. 9(3), 75–88
(2016)

7. Attaran, M.: The rise of 3-D printing - the advantages of additive manufacturing over
traditional manufacturing. Bus. Horiz. 60(5), 677–688 (2017)

8. Baird, A.J.: The economics of Motorways of the Sea. Marit. Policy Manag. 34, 287–310
(2007)

9. Bask, A., Rajahonka, M.: The role of environmental sustainability in the freight transport
mode choice. Int. J. Phys. Distrib. Logist. Manag. 47(7), 560–602 (2017)

10. Baum, H.: Der volkswirtschaftliche Nutzen des Verkehrs. Zeitschrift für Verkehrswis-
senschaft 68(1), 27–51 (1997)

11. Ben-Ner, A., Siemsen, E.: Decentralization and localization of production - the organiza-
tional and economic consequences of additive manufacturing (3d printing). Calif. Manage.
Rev. 59(2), 5–23 (2017)

12. Berger, T.: Railroads and rural industrialization - evidence from a historical policy
experiment. Explor. Econ. Hist. 74, 101277 (2019)

13. Beuthe, M., Jourquin, B., Urbain, N., Lingemann, I., Ubbels, B.: Climate change impacts on
transport on the Rhine and Danube - a multimodal approach. Transp. Res. Part D 27, 6–11
(2014)

14. Bogart, D.: Inter-modal network externalities and transport development - evidence from
roads, canals, and ports during the english industrial revolution. Netw. Spat. Econ. 9(3),
309–338 (2009)

15. Bratić, K., Pavić, I., Vukša, S., Stazić, L.: A review of autonomous and remotely controlled
ships in maritime sector. Trans. Maritime Sci. 8(2), 253–265 (2019)

16. Breuer, J.L., Samsun, R.C., Stolten, D., Peters, R.: How to reduce the greenhouse gas emis-
sions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel
cell-electric and catenary trucks. Environ. Int. 152, 106474 (2021)

17. Bucsky, P.: The iron silk road - how important is it? Area Dev. Policy 5(2), 146–166 (2020)
18. Bühler, G.: Verkehrsmittelwahl im Güterverkehr. Physika, Heidelberg (2006)
19. Bulheller, M.: Verlagerung auf die Schiene muss teuer erkauft werden. Internationales

Verkehrswesen 58(7–8), 353–355 (2006)
20. Bundesministerium fürVerkehr unddigitale Infrastruktur (BMVI) (Hrsg.):Verkehr inZahlen

2020/2021. Kraftfahrtbundesamt, Flensburg (2020)

Intermodal Competition in Freight Transport 655

21. Carboni, A., Dalla Chiara, B.: Range of technical-economic competitiveness of rail-road
combined transport. Eur. Transp. Res. Rev. 10(2), 1–17 (2018). https://doi.org/10.1186/s12
544-018-0319-3

22. Catalano, G., Daraio, C., Diana, M., Gregori, M., Matteucci, G.: Efficiency, effectiveness,
and impacts assessment in the rail transport sector - a state-of-the-art critical analysis of
current research. Int. Trans. Oper. Res. 26(1), 5–40 (2019)

23. Chaal, M., Banda, O.A.V., Glomsrud, J.A., Basnet, S., Hirdaris, S., Kujala, P.: A framework
to model the STPA hierarchical control structure of an autonomous ship. Saf. Sci. 132,
104939 (2020)

24. Chaidez, E.,Bhattacharyya, S.P.,Karpetis,A.N.: Levitationmethods for use in theHyperloop
high-speed transportation system. Energies 12, 4190 (2019)

25. Chan, C.-Y.: Advancements, prospects, and impacts of automated driving systems. Int. J.
Transp. Sci. Technol. 6, 208–216 (2017)

26. Chandra, S., Christiansen, M., Fagerholt, K.: Analysing the modal shift from road-based to
coastal shipping-based distribution - a case study of outbound automotive logistics in India.
Marit. Policy Manag. 47(2), 273–286 (2020)

27. Christodoulou, A., Woxenius, J.: Short-distance maritime geographies - Short sea shipping,
RoRo, feeder and inter-island transport. In: Wilmsmeier, G., Monios, J. (eds.) Geographies
of Maritime Transport, pp. 134–148, Edward Elgar, Cheltenham, UK (2020)

28. Coluccia, D.: The first industrial revolution (c1760–c1870). In: Zanda, G. (ed.) Corporate
Management in a Knowledge-Based Economy, pp. 41–51. PalgraveMacmillan UK, London
(2012). https://doi.org/10.1057/9780230355453_3

29. Coluccia, D.: The second industrial revolution (late 1800s and early 1900s). In: Zanda,
G. (ed.) Corporate Management in a Knowledge-Based Economy, pp. 52–64. Palgrave
Macmillan UK, London (2012). https://doi.org/10.1057/9780230355453_4

30. Crainic, T.G., Kim, K.H.: Intermodal transportation. In: Barnhart, C, Laporte, G.V.(eds.)
Handbooks in Operations Research and Management Science, vol. 14, pp. 467–537, North-
Holland, Amsterdam et al. (2007)

31. Crössmann, K., Mause, K.: Rail subsidisation in the European Union - an issue beyond left
and right? Comp. Eur. Polit. 13(4), 471–492 (2015)

32. Cui, J., Nelson, J.D.: Underground transport - an overview. Tunn. Undergr. Space Technol.
87, 122–126 (2019)

33. Daduna, J.R.: Short sea shipping and river-sea shipping in the multi-modal transport of
containers. Int. J. Ind. Eng. 20(1/2), 225–240 (2013)

34. Daduna, J.R.: Disruptive effects on logistics processes by additive manufacturing. In:
Ivanov, D., Dolgui, A., Yalaoui, F. (eds.) IFAC Conference on Manufacturing Modelling,
Management and Control. IFAC-PapersOnLine, vol. 13, pp. 2770–2775 (2019)

35. Daduna, J.R., Prause, G.: The baltic sea as a maritime highway in international multimodal
transport. In: Doerner, K.F., Ljubic, I., Pflug, G., Tragler, G. (eds.) Operations Research
Proceedings 2015. ORP, pp. 189–194. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-42902-1_25

36. Dempsey, P.: The supply chain in a world of Covid-19. Eng. Technol. 15(4), 44–47 (2020)
37. Douet, M., Cappuccilli, J.F.: A review of short sea shipping policy in the European union.

J. Transp. Geogr. 19(4), 968–976 (2011)
38. Dua, A., Sinha, D.: Quality of multimodal freight transportation - a systematic literature

review. World Rev. Intermodal Transp. Res. 8(2), 167–194 (2019)
39. Eisenkopf, A., Hahn, K., Schnöbel, C.: Intermodale Wettbewerbsbeziehungen im Verkehr

und Wettbewerbsverzerrungen. In: Eisenkopf, A., Knorr, A. (eds.) Neue Entwicklungen in
der Eisenbahnpoliti, pp. 9–138, Duncker & Humblot, Berlin, (2008)

https://doi.org/10.1186/s12544-018-0319-3
https://doi.org/10.1057/9780230355453_3
https://doi.org/10.1057/9780230355453_4
https://doi.org/10.1007/978-3-319-42902-1_25

656 J. R. Daduna

40. Engholm, A., Björkman, A., Joelsson, Y., Kristoffersson, I., Pernestål, A.: The emerging
technological innovation system of driverless trucks. Transp. Res. Procedia 49, 145–159
(2020)

41. Erhardt, J., Reh, E., Treber,M., Oelinger, D,Müller-Görnert,M.: Klimafreundlicher Verkehr
in Deutschland - Weichenstellungen bis 2050. Berlin/Bonn (2014)

42. European Commission (EC): EU transport in figures. Luxembourg, Publications Office of
the European Union (2020)

43. European Commission (EC): State aid Scoreboard 2020. European Commission - DG
Competition (2021)

44. Fan, C., Wróbel, K., Montewka, J., Gil, M., Wan, C., Zhang, D.: A framework to identify
factors influencing navigational risk for maritime autonomous surface ships. Ocean Eng.
202, 107188 (2020)

45. Felski, A., Zwolak, K.: The ocean-going autonomous ship - challenges and threats. J.Marine
Sci. Eng. 8(1), 41 (2020)

46. Fisch, J.H., Zschoche, M.: The effect of operational flexibility on decisions to withdraw
from foreign production locations. Int. Bus. Rev. 21(5), 806–816 (2012)

47. Fragiacomo, P., Piraino, F.: Fuel cell hybrid powertrains for use in Southern Italian railways.
Int. J. Hydrogen Energy 44(51), 27930–27946 (2019)

48. Gagatsi, E., Estrup, T., Halatsis, A.: Exploring the potentials of electrical waterborne
transport in Europe - The E-ferry concept. Transp. Res. Procedia 14, 1571–1580 (2016)

49. Gattuso, D., Cassone, G.C., Lucisano, A., Lucisano,M., Lucisano, F.: Automated rail wagon
for new freight transport opportunities. In: IEEE International Conference on Models and
Technologies for Intelligent Transportation Systems (MT-ITS), pp. 57–62 (2017)

50. Ghaderi, H.: Autonomous technologies in short sea shipping - Trends, feasibility and
implications. Transp. Rev. 39(1), 152–173 (2019)

51. Gharleghi, B., Jahanshahi, A.A., Thoene, T.: Locational factors and the reindustrialisation
process in the USA - reshoring from China. Int. J. Bus. Globalisation 24(2), 275–292 (2020)

52. Gleichauf, J., Vollet, J., Pfitzner, C., Koch, P., May, S.: Sensor fusion approach for an
autonomous shunting locomotive. In: Gusikhin, O.,Madani, K. (eds.) ICINCO2017. LNEE,
vol. 495, pp. 603–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-11292-
9_30

53. Gomez, J., Vassallo, J.M.: Has heavy vehicle tolling in Europe been effective in reducing
road freight transport and promoting modal shift? Transportation 47(2), 865–892 (2020)

54. González Palencia, J.C., Nguyen, V.T., Araki, M., Shiga, S.: The role of powertrain elec-
trification in achieving deep decarbonization in road freight transport. Energies 13, 2459
(2020)

55. Gota, S., Huizenga, C., Peet, K., Medimorec, N., Bakker, S.: Decarbonising transport to
achieve Paris agreement targets. Energ. Effi. 12(2), 363–386 (2018). https://doi.org/10.1007/
s12053-018-9671-3

56. Greenwood, J.: The third industrial revolution - technology, productivity, and income
equality. Econ. Rev. 35(2), 2–12 (1999)

57. Grosso, M., Lynce, A.-R., Silla, A., Vaggelas, G.K.: Short sea shipping, intermodality and
parameters influencing pricing policies - the Mediterranean case. NETNOMICS 11, 47–67
(2010)

58. Grübler, A.: The rise and fall of infrastructures. Physica, Heidelberg (1990)
59. Guerrero, D., Rodrigue, J.P.: The waves of containerization - shifts in global maritime

transportation. J. Transp. Geogr. 34, 151–164 (2014)
60. Guglielminetti, P., Piccioni, C., Fusco, G., Licciardello, R., Musso, A.: Rail freight network

in Europe - opportunities provided by re-launching the single wagonload system. Transp.
Res. Procedia 25, 5185–5204 (2017)

https://doi.org/10.1007/978-3-030-11292-9_30
https://doi.org/10.1007/s12053-018-9671-3

Intermodal Competition in Freight Transport 657

61. Guo, D. Yicun Chen, Y., Yang, J. Tan, Y.H., Zhang, C., Chen, Z.: Planning and application
of underground logistics systems in new cities and districts in China. Tunn. Undergr. Space
Technol. 113, 10347 (2021)

62. Hansen, I.A.: Hyperloop transport technology assessment and system analysis. Transp. Plan.
Technol. 43(8), 803–820 (2020)

63. Hassanalian,M.,Abdelkefi,A.:Classifications, applications, anddesign challenges of drones
- a review. Prog. Aerosp. Sci. 91, 99–131 (2017)

64. Heinold, A., Meisel, F.: Emission rates of intermodal rail/road and road-only transportation
in Europe - A comprehensive simulation study. Transp. Res. Part D 65, 421–437 (2018)

65. Heinold, A., Meisel, F.: Emission limits and emission allocation schemes in intermodal
freight transportation. Transp. Res. Part E 141, 101963 (2020)

66. Holm, M.B., Medbøen, C.A.B., Fagerholt, K., Schütz, P.: Shortsea liner network design
with transshipments at sea - a case study fromWestern Norway. Flex. Serv. Manuf. J. 31(3),
598–619 (2019)

67. Isenhardt, I., Solvay, A.F., Otte, T., Henke, C., Haberstroh, M.: Rolle und Einfluss der
Industrie 4.0 auf die Gestaltung autonomerMobilität. In: Frenz,W. (ed.) Handbuch Industrie
4.0: Recht, Technik, Gesellschaft, pp. 681–696. Springer, Heidelberg (2020). https://doi.org/
10.1007/978-3-662-58474-3_35

68. Jahangir Samet, M., Liimatainen, H.; van Vliet, O.P.R., Pöllänen, M.: Road freight transport
electrification potential by using battery electric trucks in Finland and Switzerland. Energies
14, 823 (2021)

69. Jensen, A.F., et al.: A disaggregate freight transport chain choice model for Europe. Transp.
Res. Part E 121, 43–62 (2019)

70. Jonkeren, O., Francke, J., Visser, J.: A shift-share based tool for assessing the contribution
of a modal shift to the decarbonisation of inland freight transport. Eur. Transp. Res. Rev.
11(1), 1–15 (2019). https://doi.org/10.1186/s12544-019-0344-x

71. Jonkeren, O., Jourquin, B., Rietveld, P.: Modal-split effects of climate change - the effect of
low water levels on the competitive position of inland waterway transport in the river Rhine
area. Transp. Res. Part A 45(10), 1007–1019 (2011)

72. Jufer, M., Perret, F.L., Descoeudres, F., Trottet, Y.: Swissmetro, an efficient intercity subway
system. Struct. Eng. Int. 3(3), 184–189 (1993)

73. Kaack,L.H.,Vaishnav, P.,Morgan,M.G.,Azevedo, I. L.,Rai, S.:Decarbonizing intraregional
freight systems with a focus on modal shift. Environ. Res. Lett. 13(8), 083001 (2018)

74. Kadir, A.Z.A., Yusof, Y., Wahab, M.S.: Additive manufacturing cost estimation models - a
classification review. Int. J. Adv. Manuf. Technol. 107(9), 4033–4053 (2020)

75. Kast, J., Vijayagopal, R.,Gangloff, J.J., Jr.,Marcinkoski, J.: Clean commercial transportation
- medium and heavy duty fuel cell electric trucks. Int. J. Hydrogen Energy 42(7), 4508–4517
(2017)

76. Kersting, M., Klemmer, P., Stein, D.: CargoCap - Wirtschaftliche Transportalternative im
Ballungsraum. Internationales Verkehrswesen 56(11), 493–498 (2004)

77. Kim, M., Joung, T.H., Jeong, B., Park, H.S.: Autonomous shipping and its impact on regu-
lations, technologies, and industries. J. Int. Maritime Saf., Environ. Affairs, Shipping 4(2),
17–25 (2020)

78. Kim, N.S., van Wee, B.: The relative importance of factors that influence the break-even
distance of intermodal freight transport systems. J. Transp. Geogr. 19(4), 859–875 (2011)

79. Knapcikova, L., Konings, R.: European railway infrastructure - a review. Acta logistica 5(3),
71–77 (2018)

80. Kotowska, I.: The role of ferry and Ro-Ro shipping in sustainable development of transport.
Rev. Econ. Persp. 15(1), 35–48 (2015)

81. Krämer, I.: Shunt-E 4.0 - autonomous zero emission shunting processes in port and hinterland
railway operations. J. Traffic Transp. Eng. 7, 157–164 (2019)

https://doi.org/10.1007/978-3-662-58474-3_35
https://doi.org/10.1186/s12544-019-0344-x

658 J. R. Daduna

82. Lasserre, F., Huang, L.,Mottet, É.: The emergence of trans-Asian rail freight traffic as part of
the belt and road initiative - development and limits. China Perspect. 2020(2), 43–52 (2020)

83. Launhardt,W.:Mathematische Begründung der Volkswirtschaftslehre. Engelmann, Leipzig,
Neudruck, Scientia, Aalen (1963)

84. Le, Y., Ieda, H.: Evolution dynamics of container port systems with a geo-economic concen-
tration index - A comparison of Japan, China and Korea. Asian Transp. Stud. 1(1), 47–62
(2010)

85. Lu, C., Yan, X.: The break-even distance of road and inland waterway freight transportation
systems. Maritime Econ. Logistics 17(2), 246–263 (2015)

86. Mairhofer, F.: CargoMover - an innovative mode of automated freight transport. Rail Eng.
Int. 33(1), 10–12 (2004)

87. Mareev, I., Sauer, D.U.: Energy consumption and life cycle costs of overhead catenary
heavy-duty trucks for long-haul transportation. Energies 11(12), 3446 (2018)

88. Martínez-Díaz, M., Soriguera, F.: Autonomous vehicles - theoretical and practical chal-
lenges. Transp. Res. Procedia 33, 275–282 (2018)

89. Mathisen, T.A., Sandberg Hanssen, T.E.: The academic literature on intermodal freight
transport. Transp. Res. Procedia 3, 611–620 (2014)

90. Meers, D., Vermeiren, T., Macharis, C.: Intermodal break-even distances - a fetish of 300
kilometres? In:Macharis, C.,Melo, S.,Woxenius, J., van Lier, T. (eds.) Sustainable Logistics
- Transport and Sustainability, Emerald, Bingley, vol. 6, pp. 217–243 (2014)

91. Merkert, R., Bushell, J.: Managing the drone revolution - a systematic literature review into
the current use of airborne drones and future strategic directions for their effective control.
J. Air Transp. Manage. 89, 101929 (2020)

92. Meyer, T.: Decarbonizing road freight transportation - a bibliometric and network analysis.
Transp. Res. Part D 89, 102619 (2020)

93. Mostert, M., Limbourg, S.: External costs as competitiveness factors for freight transport -
a state of the art. Transp. Rev. 36(6), 692–712 (2016)

94. Nash, A., Weidmann, U., Buchmueller, S., Rieder, M.: Assessing feasibility of transport
megaprojects - Swissmetro Europeanmarket study. Transp. Res. Rec. 1995(1), 17–26 (2007)

95. Nocera, S., Cavallaro, F., Irranca Galati, O.: Options for reducing external costs from freight
transport along the Brenner corridor. Eur. Transp. Res. Rev. 10(2), 1–18 (2018). https://doi.
org/10.1186/s12544-018-0323-7

96. Nøland, J.K.: Prospects and challenges of theHyperloop transportation system - a systematic
technology review. IEEE Access 9, 28439–28458 (2021)

97. OECD/International Transport Forum (ITF): ITF Transport Outlook 2019. OECD Publish-
ing, Paris (2019). https://doi.org/10.1787/transp_outlook-en-2019-en

98. Olabi, A.G., Wilberforce, T., Abdelkareem, M.A.: Fuel cell application in the automotive
industry and future perspective. Energy 214, 118955 (2021)

99. Paixão Casaca, A.C., Marlow, P.B.: Logistics strategies for short sea shipping operating as
part of multi-modal transport chains. Marit. Policy Manag. 36, 1–19 (2009)

100. Papadimitriou, S., Lyridis, D.V., Koliousis, I.G., Tsioumas, V., Sdoukopoulos, E.,
Stavroulakis, P.J.: The dynamics of short sea shipping - New practices and trends. Palgrave
Macmillan, Cham (2018)

101. Parantainen, J., Meriläinen, A.: The Baltic Sea motorway - recent developments and outlook
for the future. J. Maritime Res. 4, 21–30 (2007)

102. Peeters, G., et al.: An unmanned inland cargo vessel - design, build, and experiments. Ocean
Eng. 201, 107056 (2020)

103. Pegoraro, D., Propris, L.D., Chidlow, A.: De-globalisation, value chains and reshoring.
Industry 4, 152–175 (2020)

104. Peters, R., et al.: Future power train solutions for long-haul trucks. Sustainability 13(4),
2225 (2021)

https://doi.org/10.1186/s12544-018-0323-7
https://doi.org/10.1787/transp_outlook-en-2019-en

Intermodal Competition in Freight Transport 659

105. Pittman, R., Jandová, M., Król, M., Nekrasenko, L., Paleta, T.: The effectiveness of EC
policies to move freight from road to rail - Evidence from CEE grain markets. Res. Transp.
Bus. Manage. 37, 100482 (2020)

106. Raitasuo, P., Bask, A., Rajahonka, M.: Sustainable intermodal train transport. In: de Boer,
L., Houman Andersen, P. (eds.) Operations Management and Sustainability, pp. 195–222,
Palgrave Macmillan, Cham (2019)

107. Raza, Z., Svanberg, M., Wiegmans, B.: Modal shift from road haulage to short sea shipping
- a systematic literature review and research directions. Transp. Rev. 40(3), 382–406 (2020)

108. Rodrigue, J.-P., Comtois, C., Slack, B.: The geography of transport systems. Routledge,
London / New York (2006)

109. Rodrigue, J.P., Notteboom, T.: The geography of containerization - half a century of
revolution, adaptation and diffusion. Geo J. 74(1), 1–5 (2009)

110. Rothengatter, W.: Environmental charges levied on heavy goods vehicles in the EU. In:
Hayashi, Y,Morisugi,M., Iwamatsu, S. (eds.) Balancing nature and civilization - Alternative
sustainability perspectives from philosophy to practice, pp. 77–91, Springer, Cham (2020)

111. Saeedi, H., Wiegmans, B., Behdani, B., Zuidwijk, R.: Analyzing competition in intermodal
freight transport networks - the market implication of business consolidation strategies. Res.
Transp. Bus. Manag. 23, 12–20 (2017)

112. Sánchez, R.J., Wilmsmeier, G.: Short-sea shipping potentials in central America to bridge
infrastructural gaps. Marit. Policy Manag. 32, 227–244 (2005)

113. Sandberg Hanssen, T.E., Mathisen, T.A., Jørgensen, F.: Generalized transport costs in
intermodal freight transport. Procedia Soc. Behav. Sci. 54, 189–200 (2012)

114. Santos, T.A., Guedes Soares, C.: Modeling transportation demand in short sea shipping.
Maritime Econ. Logistics 19(4), 695–722 (2017)

115. Santos, B.F., Limbourg, S., Carreira, J.S.: The impact of transport policies on railroad inter-
modal freight competitiveness - the case of Belgium. Transp. Res. Part D 34, 230–244
(2015)

116. Savolainen, J., Collan, M.: How additive manufacturing technology changes business
models? Review of literature. Addit. Manuf. 32, 101070 (2020)

117. Schiaretti, M., Chen, L., Negenborn, R.R.: Survey on autonomous surface vessels - Part I -
a new detailed definition of autonomy levels. In: Bektas¸ T., Coniglio, S., Martinez-Sykora,
A., Voß, S. (eds.) Computational Logistics, pp. 219–233, Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68496-3_15

118. Schindler, C.: Schienenverkehrstechnik 4.0. In: Frenz, W. (ed.) Handbuch Industrie 4.0:
Recht, Technik, Gesellschaft, pp. 719–757. Springer, Heidelberg (2020). https://doi.org/10.
1007/978-3-662-58474-3_38

119. Schulz,W.: Industrieökonomik undTransportsektor -Marktdynamik undMarktanpassungen
im Güterverkehr. Kölner Wissenschaftsverlag, Köln (2004)

120. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and decision-making for autonomous
vehicles. Ann. Rev. Control, Robotics, Auton. Syst. 1, 187–210 (2018)

121. Seo, Y.J., Chen, F., Roh, S.Y.:Multimodal transportation - the case of laptop fromChongqing
in China to Rotterdam in Europe. Asian J. Shipping Logistics 33(3), 155–165 (2017)

122. Shankar, R., Pathak, D.K., Choudhary, D.: Decarbonizing freight transportation - an inte-
grated EFA-TISM approach to model enablers of dedicated freight corridors. Technol.
Forecast. Soc. Change 143, 85–100 (2019)

123. Siddiqui, O., Dincer, I.: A review on fuel cell-based locomotive powering options for
sustainable transportation. Arab. J. Sci. Eng. 44, 677–693 (2019)

124. Skjærseth, J.B.: Towards a European green deal - the evolution of EU climate and energy
policy mixes. Int. Environ. Agreements - Politics, Law Econ. 21(1), 25–41 (2021)

125. Suárez-Alemán, A.: Short sea shipping in today’s Europe - a critical review of maritime
transport policy. Maritime Econ. Logistics 18(3), 331–351 (2016)

https://doi.org/10.1007/978-3-319-68496-3_15
https://doi.org/10.1007/978-3-662-58474-3_38

660 J. R. Daduna

126. Svindland, M., Hjelle, H.M.: The comparative CO2 efficiency of short sea container
transport. Transp. Res. Part D 77, 11–20 (2019)

127. Tasler, G., Knollmann, V.: The introduction of highly automatic operation - Towards fully
automatic train operation. Signalling + Datacommunication 110(6), 6–14 (2018)

128. Tate, W.L., Ellram, L.M., Schoenherr, T., Petersen, K.J.: Global competitive conditions
driving the manufacturing location decision. Bus. Horiz. 57(3), 381–390 (2014)

129. Torres deMirandaPinto, J.,Mistage,O., Bilotta, P.,Helmers, E.: Road-rail intermodal freight
transport as a strategy for climate change mitigation. Environ. Dev. 25, 100–110 (2018)

130. Tracy, E.F., Shvarts, E., Simonov, E., Babenko, M.: China’s new Eurasian ambitions - The
environmental risks of the silk road economic belt. Eurasian Geogr. Econ. 58(1), 56–88
(2017)

131. Ullrich, G.: Fahrerlose Transportsysteme. Springer, Wiesbaden (2014)
132. Vallejo-Pinto, J.A., Garcia-Alonso, L., Fernández, R.Á., Mateo-Mantecón, I.: Iso-emission

map - a proposal to compare the environmental friendliness of short sea shipping vs road
transport. Transp. Res. Part D 67, 596–609 (2019)

133. van den Bos, G., Wiegmans, B.: Short sea shipping - a statistical analysis of influencing
factors on SSS in European countries. J. Shipping Trade 3(1), 1–20 (2018)

134. van Dorsser, C.: Existing waterway infrastructures ad future need. In: Wiegmans, B., Kon-
ings, R. (eds.) Inland Waterway Transport, pp. 99–124, Routledge, New York (2016)

135. Venkateswaran, K.G., Nicholson, G.L., Roberts, C., Stone, R.: Impact of automation
on the capacity of a mainline railway. In: IEEE International Conference on Intelligent
Transportation Systems, pp. 2097–2102 (2015)

136. Vierth, I., Sowa, V., Cullinane, K.: Evaluating the external costs of trailer transport - a
comparison of sea and road. Maritime Econ. Logistics 21(1), 61–78 (2019)

137. Visser, J.G.S.N.: The development of underground freight transport - an overview. Tunn.
Undergr. Space Technol. 80, 123–127 (2018)

138. Voigt, F.: Verkehr und Industrialisierung. Zeitschrift für die gesamte Staatswissenschaft
109(2), 193–239 (1953)

139. Voigt, F.:Verkehr -DieTheorie derVerkehrswirtschaft (Band 1, Teil 1).Duncker&Humblot,
Berlin (1973)

140. Wen, X., Ma, H.L., Choi, T.M., Sheu, J.B.: Impacts of the belt and road initiative on the
China-Europe trading route selections. Transp. Res. Part E 122, 581–604 (2019)

141. Wiegmans, B., Konings, R.: Intermodal inland waterway transport - Modelling conditions
influencing its cost competitiveness. Asian J. Shipping Logistics 31(2), 273–294 (2015)

142. Wiesmann, B., Snoei, J.R., Hilletofth, P., Eriksson, D.: Drivers and barriers to reshoring - a
literature review on offshoring in reverse. Eur. Bus. Rev. 29(1), 15–42 (2017)

143. Wolff, S., Fries, M., Lienkamp, M.: Technoecological analysis of energy carriers for long-
haul transportation. J. Ind. Ecol. 24(1), 165–177 (2020)

144. Wissenschaftlicher Beirat beim BMVI: Gutachten des Wissenschaftlichen Beirats beim
Bundesminister für Verkehr und digitale Infrastruktur November 2020. BMVI, Bonn (2021)

145. Xu,H.,Yang,D.,Weng, J.: Economic feasibility of anNSR/SCR-combined container service
on the Asia-Europe lane - a new approach dynamically considering sea ice extent. Marit.
Policy Manag. 45(4), 514–529 (2018)

146. Yang, D., Jiang, L., Ng, A.K.: One belt one road, but several routes - a case study of new
emerging trade corridors connecting the far East to Europe. Transp. Res. Part A 117, 190–220
(2018)

147. Zeng, Q., Lu, T., Lin, K.C., Yuen, K.F., Li, K.X.: The competitiveness of Arctic shipping
over Suez Canal and China-Europe railway. Transp. Policy 86, 34–43 (2020)

148. Zgonc, B., Tekavčič, M., Jakšič, M.: The impact of distance on mode choice in freight
transport. Eur. Transp. Res. Rev. 11(1), 1–18 (2019). https://doi.org/10.1186/s12544-019-
0346-8

https://doi.org/10.1186/s12544-019-0346-8

Author Index

Abu-Marrul, Victor 82
Afsar, Bekir 208
Andersson, Henrik 97
Arlinghaus, Julia 237

Bäck, Thomas 502
Becker, Peter 377
Beirigo, Breno A. 347
Bender, Till 562
Bläser, Nikolaj 51
Bouchard, Pierre 21
Brasil, Rafael Gardel Azzariti 66
Buil, Roman 518
Burger, Markus 237

Buscher, Udo 178
Çalık, Hatice 142
Campuzano, Giovanni 393
Carafí, Felipe I. Gré 282
Castro, Carlos 487

Daduna, Joachim R. 642
Damm, Ricardo de Brito 471
de Andrade, João Luiz Marques 3
de Armas, Jesica 518
de Campos, Rafael Ajudarte 611
de Mesquita, Marco Aurélio 66
de Zevallos, Alberto Ossa-Ortiz 282
Dijkman, Remco 578
Doerner, Karl F. 532

Ehmke, Jan Fabian 442

Farahani, Amirreza 578
Ferreira, Ana Rita 549
Fiedler, Alexandra 130
Franczyk, Bogdan 237

Gandra, Vinícius 142
Garcia, Santiago 518
Genga, Laura 578
Gerding, Enrico H. 410
Gicquel, Céline 192
Gil, Alejandro Fernández 487

Glock, Katharina 299
González-Ramírez, Rosa G. 282
Grassel, Joshua 222

Hammami, Nour El Houda 429
Hill, Alessandro 222
Hofmann, Flora Maria 252
Hompel, Michael ten 163
Huck, Andreas 502

Janssen, Tabea 627
Jaoua, Amel 429
Jensen, Rune Møller 51
Jovanova, Jovana 347

Kania, Adhe 208
Kedad-Sidhoum, Safia 192
Keller, Alfred Craig 222
Kesen, Saadettin Erhan 269
Kirchhof, Michael 163
Klein, Tobias 377
Kollingbaum, Martin J. 332
Krebs, Corinna 442
Krueger, Volker 115

Lalla-Ruiz, Eduardo 393, 487
Lau, Hoong Chuin 316
Layeb, Safa Bhar 429
Lee, No-San 627
Leib, Martin 502
Louzada, Lucas 82

Magnussen, Búgvi Benjamin 51
Malec, Jacek 115
Martinelli, Rafael 82
Mazur, Philipp Gabriel 627
Mees, Lukas 456
Menezes, Gustavo Campos 3
Mes, Martijn 393, 487
Meyer, Anne 299
Miettinen, Kaisa 208
Miyake, Dario Ikuo 66
Moeini, Mahdi 456
Montanher, Tiago 66

662 Author Index

Moros-Daza, Adriana 21
Mosquera, Federico 362
Munari, Pedro 611
Musæus, Julie Louise 97

Neukart, Florian 502
Nitsche, Anna-Maria 237
Nøstvik, Håkon 97
Nourmohammadzadeh, Abtin 594

Oxenstierna, Johan 115

Pauly, Markus 163
Pouls, Martin 299

Quezada, Franco 192

Ramos, António G. 549
Reining, Christopher 163
Riera, Daniel 518
Ronconi, Débora P. 66, 471
Ruthmair, Mario 332

Sackmann, Dirk 130
Sarasola, Briseida 532
Sartori, Carlo S. 142
Scheffler, Martin 178
Schmid, Lena 163
Schmidt, Thorsten 562
Schoder, Detlef 627

Schülldorf, Hanno 502
Schulte, Frederik 222, 347
Schumann, Christian-Andreas 237
Schütz, Peter 36, 97
Silva, Elsa 549
Sipilä, Juha 208
Smet, Pieter 142, 362
Speitkamp, Benjamin 502
Štádlerová, Šárka 36
Stein, Sebastian 410

Tabrizi, Marc Shakory 502
Thanos, Emmanouil 362
Truden, Christian 332

van der Tholen, Max 347
Velez-Gallego, Mario C. 282
Vieira, Thiago 611
Visagie, Stephan Esterhuyse 252
Voß, Stefan 21, 594

Wesselink, Lisa 178
Wickert, Toni I. 362
Wittwer, David 562

Yağmur, Ece 269
Yang, Jingfeng 316
Yarkoni, Sheir 502
Yazdanpanah, Vahid 410
Ylänen, Kenneth 51

	Preface
	Organization
	Contents
	Maritime and Port Logistics
	An Integrated Planning, Scheduling, Yard Allocation and Berth Allocation Problem in Bulk Ports: Model and Heuristics
	1 Introduction
	2 Literature Review
	3 Problem Description
	4 Model Formulation
	5 Solution Approach
	5.1 Diving Heuristic with Limited Backtracking
	5.2 Relax-and-fix Heuristic for Variables vntb
	5.3 Local Branching Heuristic
	5.4 Relax-and-Fix Heuristic for the Variables fpts
	5.5 Rolling Horizon Heuristic

	6 Computational Results
	7 Conclusions
	References

	Simulation of an AIS System for the Port of Hamburg
	1 Introduction
	2 Problem Description
	3 The Concept
	4 Discrete Event Simulation Model
	4.1 Validation
	4.2 Analysis of Scenarios
	4.3 Risk Management

	5 Conclusion
	References

	Designing the Hydrogen Supply Chain for Maritime transportation in Norway
	1 Introduction
	2 The Mathematical Programming Model
	2.1 Modelling Approach
	2.2 Mathematical Formulation

	3 Case Study
	4 Computational Results
	5 Conclusion
	References

	Destination Prediction of Oil Tankers Using Graph Abstractions and Recurrent Neural Networks
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Solution Approach
	4.1 Pre-processing
	4.2 Stay-Point Clustering
	4.3 Turn-Point Clustering
	4.4 Trajectory Extraction
	4.5 Graph Abstraction
	4.6 Discrete Trajectory Translation
	4.7 Constant Feature Extraction
	4.8 Recurrent Neural Network Model

	5 Experiments and Results
	6 Conclusion and Future Work
	References

	Scheduling Drillships in Offshore Activities
	1 Introduction
	2 Problem Description
	3 Mathematical Model
	4 Numerical Experiments
	5 Conclusion and Further Research
	References

	Solving a Real-Life Tramp Ship Routing and Scheduling Problem with Speed Profiles
	1 Introduction
	2 Literature Review
	3 Problem Description
	4 MIP Formulation
	5 Computational Experiments
	6 Conclusion and Future Works
	References

	Optimizing Maritime Preparedness Under Uncertainty – Locating Tugboats Along the Norwegian Coast
	1 Introduction
	2 Problem Description
	2.1 Problem Structure
	2.2 Geography, Vessel Types and Tugboat Types
	2.3 Uncertain Parameters

	3 Model Formulation
	4 Solution Approach
	4.1 Scenario Generation
	4.2 Sample Average Approximation for Estimating a Lower Bound
	4.3 Search Heuristic for Determining an Upper Bound

	5 Computational Results
	5.1 Problem Instance
	5.2 Case Study

	6 Conclusions
	References

	Supply Chain and Production Management
	Layout-Agnostic Order-Batching Optimization
	1 Introduction
	2 Literature Review
	3 Preliminaries
	4 Optimization Algorithm
	5 Experiments
	5.1 Datasets
	5.2 Experimental Results

	6 Conclusion
	References

	Automated Negotiation for Supply Chain Finance
	1 Introduction
	2 Automated Negotiation
	3 Supply Chain Finance
	4 Multi-agent Systems
	5 An Illustrative Example
	6 Conclusion and Outlook
	References

	Production Scheduling with Stock- and Staff-Related Restrictions
	1 Introduction
	2 Notation and Problem Description
	3 A Heuristic Approach
	3.1 Initial Solution
	3.2 New Solution Generation
	3.3 Request Insertion Heuristic
	3.4 Request Removal Heuristic
	3.5 Overtime and Night Shift Heuristics

	4 Computational Study
	4.1 New Instance Sets
	4.2 LAHC Parameters
	4.3 Results

	5 Conclusion
	References

	Chances of Interpretable Transfer Learning for Human Activity Recognition in Warehousing
	1 Introduction and Related Work
	2 Methods
	2.1 tCNN
	2.2 pRSL
	2.3 Fine-tuning

	3 Datasets
	4 Application
	4.1 Experimental Setup
	4.2 Quantitative Results
	4.3 Qualitative Analysis
	4.4 Discussion

	5 Conclusion
	6 Outlook
	References

	A Multi-periodic Modelling Approach for Integrated Warehouse Design and Product Allocation
	1 Introduction
	2 Literature Review
	3 Problem Description
	4 Mathematical Formulation
	5 Computational Analysis
	5.1 Experimental Design
	5.2 Single-Periodic Approach vs. Multi-periodic Approach
	5.3 Cost Effects Depending on the Capacity Utilization of the ASRS

	6 Summary
	References

	New Valid Inequalities for a Multi-echelon Multi-item Lot-Sizing Problem with Returns and Lost Sales
	1 Introduction
	2 Related Works
	3 Problem Description and Modeling
	3.1 Production System
	3.2 Natural Formulation
	3.3 Echelon Stock Reformulation

	4 Single-Echelon (, k,U) Inequalities
	5 Computational Experiments
	5.1 Instance Generation
	5.2 Results

	6 Conclusion and Perspectives
	References

	Interactive Multiobjective Optimization in Lot Sizing with Safety Stock and Safety Lead Time
	1 Introduction
	2 Background on Multiobjective Optimization
	2.1 Basic Concepts and Definitions
	2.2 NAUTILUS Navigator

	3 Problem Formulation
	3.1 Safety Stock and Safety Lead Time Formulation
	3.2 Multiobjective Optimization Model

	4 Computational Results
	4.1 Information About the Case
	4.2 Computational Results

	5 Conclusions
	References

	The Craft Beer Game and the Value of Information Sharing
	1 Introduction
	2 The Craft Beer Supply Chain
	3 Information Sharing
	4 Reordering and Production Planning
	4.1 Reorder Strategies
	4.2 Brewery Reordering with Different Information Levels

	5 A Simulation Approach
	6 Computational Analysis
	7 Conclusion
	References

	Smarter Relationships? The Present and Future Scope of AI Application in Buyer-Supplier Relationships
	1 Introduction
	2 Theoretical Background
	2.1 Industry 4.0 and AI in Buyer-Supplier Relationships
	2.2 Research Gap

	3 Research Design
	4 Findings and Discussion
	5 Discussion of Future Research Directions
	6 Conclusion, Contributions and Limitations
	References

	The Effect of Order Batching on a Cyclical Order Picking System
	1 Problem Background
	2 Problem Description
	3 Literature
	4 Incorporating Order Batching in the Four Decision Tiers
	4.1 DBN Assignment to Picking Waves
	4.2 Arranging SKUs on a Picking Line
	4.3 Configuration Selection
	4.4 Order Sequencing Including Order Batching

	5 Results
	5.1 Data and Scenarios
	5.2 Statistical Analysis

	6 Conclusion
	References

	Bi-objective Optimization for Joint Production Scheduling and Distribution Problem with Sustainability
	1 Introduction
	2 Literature Survey
	3 Problem Description
	3.1 MIP Formulation
	3.2 Illustrative Example

	4 Augmented Epsilon Constraint Method
	5 Computational Results
	6 Conclusions
	References

	On the Effect of Product Demand Correlation on the Storage Space Allocation Problem in a Fast-Pick Area of a Warehouse
	1 Introduction
	2 Literature Review
	3 Mathematical Formulation
	3.1 Problem Formulation

	4 Instance Generation
	4.1 Experimental Design
	4.2 Orders Generation Procedure

	5 Numerical Results
	6 Conclusions
	References

	Urban Transport and Collaborative Logistics
	Real-Time Dispatching with Local Search Improvement for Dynamic Ride-Sharing
	1 Introduction
	2 Related Work in Vehicle Routing for Dynamic Ride-Sharing
	3 Dynamic Ride-Sharing: Problem Description and System Design
	3.1 Problem Description and Notation
	3.2 A System Design for Dynamic Ride-Sharing

	4 Vehicle Routing for Dynamic Ride-Sharing
	4.1 Real-Time Dispatching
	4.2 Local Search

	5 Computational Results
	5.1 Data and Setup
	5.2 Scenarios and Algorithm Settings
	5.3 Performance Indicators
	5.4 Results Overview
	5.5 Impact of Pre-booking
	5.6 Vehicle Utilization

	6 Conclusions and Outlook
	References

	A Learning and Optimization Framework for Collaborative Urban Delivery Problems with Alliances
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Two-Stage Learning and Optimization Framework
	4.1 Delivery Cost Prediction and Request Assignment
	4.2 Tabu Search Algorithm

	5 Numerical Experiments
	5.1 Problem Instance Generation
	5.2 Prediction Model Selection
	5.3 Performance Comparison

	6 Conclusion
	References

	Analysis of Schedules for Rural First and Last Mile Microtransit Services
	1 Introduction
	2 Related Work
	3 Rural Commuter Scenario
	3.1 Transportation Network
	3.2 Vehicle Fleet
	3.3 Transport Demand
	3.4 Constraints

	4 Approach
	4.1 Optimization Algorithm
	4.2 Agent-Based Modeling
	4.3 Disturbance Events

	5 Analysis
	5.1 Experimental Setup

	6 Conclusion
	References

	The Share-A-Ride Problem with Integrated Routing and Design Decisions: The Case of Mixed-Purpose Shared Autonomous Vehicles
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 Model Formulation
	3.2 Model Formulation

	4 Experimental Study
	5 Results
	6 Conclusions
	References

	Algorithms for the Design of Round-Trip Carsharing Systems with a Heterogeneous Fleet
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Solution Approaches
	4.1 Integer Programming Formulation
	4.2 Simulated Annealing

	5 Computational Study
	5.1 Data Generation and Experimental Setup
	5.2 Problem Hardness
	5.3 Real-World Instances

	6 Conclusions and Future Work
	References

	Exact Separation Algorithms for the Parallel Drone Scheduling Traveling Salesman Problem
	1 Introduction
	2 Related Literature
	3 The Parallel Drone Scheduling TSP
	4 Valid Inequalities for the PDSTSP
	5 Separation Algorithms
	6 Computational Results
	7 Conclusion
	References

	A Multi-start VNS Algorithm for the TSP-D with Energy Constraints
	1 Introduction
	2 The Traveling Salesman Problem with Drone
	3 Metaheuristic Algorithms
	3.1 Variable Neighborhood Search Algorithm
	3.2 Multi-Start Variable Neighborhood Search Algorithm

	4 Numerical Experiments
	4.1 Experimental Settings
	4.2 Computational Results

	5 Conclusions and Future Work
	References

	Formal Methods to Verify and Ensure Self-coordination Abilities in the Internet of Vehicles
	1 Introduction
	2 Conceptual Analysis and Game Structures
	3 Coalitional IoV Systems
	4 Self-coordinating IoV Classes
	5 A Safety-Ensuring Mechanism
	6 Conclusions
	References

	Routing, Dispatching, and Scheduling
	Equipment Dispatching Problem for Underground Mine Under Stochastic Working Times
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 Production Sequences in Underground Mines
	3.2 Hypotheses Consideration
	3.3 Equipment Stochastic Working Times

	4 Problem Formulation
	4.1 Mathematical Model
	4.2 Monte Carlo Simulation-Based Sampling Approach

	5 Results and Discussion
	5.1 The Deterministic Case
	5.2 The Stochastic Case

	6 Conclusion
	References

	Vertical Stability Constraints in Combined Vehicle Routing and 3D Container Loading Problems
	1 Introduction
	2 Literature Review
	2.1 3D Container Loading Problem
	2.2 3L-CVRP and Extensions

	3 Problem Formulation
	4 Vertical Stability Constraints
	4.1 Calculation of Center of Gravity
	4.2 Minimal Supporting Area
	4.3 Full Base Support
	4.4 Multiple Overhanging
	4.5 Top Overhanging
	4.6 Static Stability by Mack et al. [ch29Mack2004]
	4.7 Static Stability by Ramos [ch29Ramos2015]
	4.8 New Static Stability
	4.9 Summary

	5 Hybrid Algorithm
	6 Computational Studies
	7 Conclusion
	References

	Automated Tour Planning for Driving Service of Children with Disabilities: A Web-Based Platform and a Case Study
	1 Introduction
	2 Literature Review
	3 Mathematical Formulation of the KTPP
	4 A Heuristic for Solving the KTPP
	5 A Web-Based Platform
	5.1 Architecture of the Platform
	5.2 Design of the Platform

	6 Computational Experiments
	6.1 Test Setting
	6.2 Numerical Results

	7 Conclusion
	References

	A Multi-objective Biased Random-Key Genetic Algorithm for Service Technician Routing and Scheduling Problem
	1 Introduction and Background
	2 Problem Description and a Multi-objective Integer Programming Model
	3 Multi-objective Biased Random Key Genetic Algorithm
	3.1 Elite Set
	3.2 Decoder
	3.3 Initial Population

	4 Computational Results
	4.1 Instances
	4.2 Performance Measures
	4.3 BRKGA
	4.4 Comparison with Multi-objective GAs of the Literature

	5 Conclusions and Future Works
	References

	Optimization of Green Pickup and Delivery Operations in Multi-depot Distribution Problems
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 Proposed Algorithm
	5 Computational Results
	5.1 Instances
	5.2 Parameter Setting
	5.3 Results
	5.4 Effects of Loading on Fuel Consumption

	6 Conclusion and Future Research
	References

	Solving the Shipment Rerouting Problem with Quantum Optimization Techniques
	1 Introduction
	2 Previous Works
	3 Constructing MIP and QUBO Representations
	3.1 Constructing the MIP Representation
	3.2 Constructing the QUBO Representation
	3.3 Improvements to the QUBO

	4 Experiments and Data
	5 Results
	6 Conclusions
	A Solver Parameters
	References

	Improving the Location of Roadside Assistance Resources Through Incident Forecasting
	1 Introduction
	2 Problem Statement
	3 Problem Scope
	4 Solution Approach
	4.1 Data Preparation
	4.2 Additional Features
	4.3 Model Competition

	5 Results
	5.1 Comparison at RACCs Level of Aggregation
	5.2 Clusters and Disaggregated Forecast
	5.3 Resource Location and Resources Allocation

	6 Conclusions
	References

	Solving a Multi-objective Vehicle Routing Problem with Synchronization Constraints
	1 Introduction
	2 Problem Statement
	3 Solution Techniques
	3.1 Multi-Directional Local Search
	3.2 -Constraint Method
	3.3 Heuristic Box Splitting

	4 Experiments and Results
	4.1 Small Instances
	4.2 Large Instances

	5 Conclusions
	References

	Air Logistics and Multi-modal Transport
	Analysis of the Impact of Physical Internet on the Container Loading Problem
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Model for the CLP
	3.2 Boxes Dimensions Definition
	3.3 Instance Generation

	4 Results and Discussion
	4.1 Comparing Modularity and Non-modularity
	4.2 The Influence of the Number of Boxes

	5 Conclusion
	References

	Applying Constraint Programming to the Multi-mode Scheduling Problem in Harvest Logistics
	1 Introduction
	2 Problem
	2.1 Assumptions
	2.2 Model

	3 Computational Experiments
	3.1 Setting and Test Instances
	3.2 Influence of the Number of Forage Harvesters and Transport Vehicles on the Makespan
	3.3 Analysis of Model Variants

	4 Conclusion
	A Appendix
	References

	Tackling Uncertainty in Online Multimodal Transportation Planning Using Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Offline Planning Problem Definition
	3.2 Online Planning Under Uncertainty Problem Definition

	4 Planning Under Uncertainty Using Deep Reinforcement Learning
	4.1 Multimodal Transportation Problem Environment
	4.2 Feature Engineering and Deep Q-Network Architecture
	4.3 Action Selection Methods and Masking Approach
	4.4 Replay Memory and Minibatch

	5 Experiments and Results
	5.1 Experimental Settings
	5.2 Results

	6 Conclusions and Future Work
	References

	Robust Multi-Objective Gate Scheduling at Hub Airports Considering Flight Delays: A Hybrid Metaheuristic Approach
	1 Introduction
	2 Related Work
	3 Modelling
	3.1 Notation
	3.2 Formulation
	3.3 Considering Robustness

	4 Solution Methodologies
	4.1 Exact Approach with the Weighted Sum of Objectives
	4.2 Hybrid Metaheuristic

	5 Computational Experiments
	5.1 Test Instances
	5.2 Parameterisation of Algorithms
	5.3 Results and Comparison

	6 Conclusions and Future Outlook
	References

	A Branch-and-Cut Algorithm for Aircraft Routing with Crew Assignment for On-Demand Air Transportation
	1 Introduction
	2 Aircraft Routing Model
	3 Branch-and-Cut Algorithm
	4 Computational Results
	5 Conclusion
	References

	Designing a Physical Packing Sequence Algorithm with Static Stability for Pallet Loading Problems in Air Cargo
	1 Introduction
	2 State of the Art
	3 Solution Approach
	3.1 Solution Objectives
	3.2 Design and Development

	4 Demonstration and Evaluation
	5 Discussion and Conclusion
	References

	Intermodal Competition in Freight Transport - Political Impacts and Technical Developments
	1 Mobility and Economic Development
	2 Comparison and Evaluation of Transport Modes
	3 Incorporation of Multimodal Transport Flows
	4 Impacts from Political Influence
	5 Impacts of Technological Developments
	6 Outlook
	References

	Author Index

