
Deriving Interaction Scenarios for Timed
Distributed Systems by Symbolic

Execution

Boutheina Bannour1(B), Arnault Lapitre1, and Pascale Le Gall2

1 Université Paris-Saclay, CEA, List, 91120 Palaiseau, France
{boutheina.bannour,arnault.lapitre}@cea.fr
2 Université Paris-Saclay, CentraleSupélec, MICS,

91192 Gif-sur-Yvette Cedex, France
pascale.legall@centralesupelec.fr

Abstract. In this paper, we propose a symbolic framework to analyze
and debug communicating distributed models. We implement dedicated
symbolic execution techniques for such models and use them to com-
pute interaction scenarios satisfying a particular user coverage objective.
These scenarios reveal emergent temporal and data correlations that are
part of the system specification. To support the understanding and the
analysis of such learned knowledge, our tooling allows for an intuitive
annotated scenario visualization using sequence diagrams. As an appli-
cation, we develop behavioral models for the so-called distributed Trickle
algorithm which manages information dissemination in Wireless Sensor
Networks (WSN). We select relevant scenarios which cover critical com-
munications achieving an up-to-date or outdated state of the network.

1 Introduction

Context and Related Work. Symbolic Execution (SE in short) [10] is a powerful
execution technique for analyzing programs or models. Its main principle is to
execute a program or a model using variables instead of concrete values. SE
collects for each explored path a set of logical constraints on the introduced
variables for its execution, called Path Conditions (PC). Therefore, such a sym-
bolic path represents a possibly infinite set of concrete paths. As such, SE is
a systematic execution technique, which is valuable for the analysis of complex
programs or models. Moreover, SE is gaining interest due to the availability of
computing resources and the progress made in constraint solving.

SE has been increasingly used in the analysis of concurrent multi-process
systems and more recently of distributed systems. Although we are positioning
our work at the level of models of distributed systems, we will discuss related
approaches dealing with programs [1,11,20,22,23,25] for their relevance and for
having addressed early issues related to non-deterministic concurrent executions
and/or asynchronous communications. In [1], authors use an object oriented
modeling language for programs which allows objects to execute concurrently (or
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): MEDI 2021 Workshops, CCIS 1481, pp. 46–60, 2021.
https://doi.org/10.1007/978-3-030-87657-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87657-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-87657-9_4

Deriving Interaction Scenarios for Timed Distributed 47

synchronize) and to interact by asynchronous method calls. In [25], the Symbolic
PathFinder [21] tool is extended to deal with bytecode of multi-threaded Java
programs without communication primitives. Another work [18] still based on
PathFinder proposes analysis of inter-process communications. In [11], concrete
and symbolic execution are combined to provide an efficient analysis based on
a fixed order of scheduling multi-threaded programs. In [22], authors implement
SE of distributed systems on top of the KLEE tool [5] by unfolding a number
of execution paths for some subsystems while keeping track of their communica-
tion history in terms of emitted/received network packets and then identifying
pairwise states on packets emitting/recipient subsystems. While combinatorial
interleaving is often bypassed by using exploration heuristic or partial order
reduction techniques, the originality of this work is to come up with an alterna-
tive to interleaved execution of distributed subsystems. SE has been extended to
models using variants of abstract labeled transition systems, namely Symbolic
Transition Systems (STS in short) [6,12]. Timed STSs (or TSTS for short) which
extend STS with clocks have been defined later in [3,26,27]. [26,27] are rather
a merge of Timed Automata [2] and STS so that clock values represent convex
abstractions, known as zones, while [3] uses symbolic techniques to homoge-
neously handle both clocks and other data variables. The DIVERSITY tool [17]
implements the SE of TSTS [3,6] and also provides them with textual syntax
and editing features.

Contribution. We adopt a compositional modeling approach based on TSTS
like those in [3] for the purpose of modeling behaviors of distributed subsystems.
A technical improvement is that we give a new definition of TSTS in which transi-
tions are equipped with an expressive sequential statement language. This state-
ment language mixes computations on clocks and other variables, and enables
many steps of communications, guards and variable updates to be combined into
a single (symbolic) execution step. The objective is to provide modeling facili-
ties for different levels of detail that may appear in the specification of real dis-
tributed systems, such as in the specification of the Trickle case study [13,14,16]
which has motivated the present work. We then define models of distributed sys-
tems as a collection of TSTSs. These are endowed with SE using asynchronous
communication mechanisms for which we define time and data interdependen-
cies. More precisely, our SE mechanisms collect all possible information linking
data and time on the execution of distributed subsystems. Thus, we propose
identification constraints to take into account that values received at a given
port necessarily correspond to a value emitted at a port connected to it. Simi-
larly, since a duration between an emission of a message a followed by a reception
of a message b at a given location should be greater than the duration between
the reception of a followed by the emission of b at a remote location, we con-
sider constraints on delays separating events (emissions/receptions). As part of
our contribution, we implement the proposed TSTS-based distributed models
together with their SE in the DIVERSITY tool. Interactions between commu-
nicating subsystems can therefore be explored in the tool. In order to primarily

48 B. Bannour et al.

assess these interaction behaviors, we propose a dedicated selection method that
highlights the emissions and their corresponding receptions.

Structure of the Paper. Sect. 2 presents the motivating example of the Trickle-
based information dissemination. Section 3 introduces TSTS and their associated
SE mechanisms. In Sect. 4, we define TSTS-based models for distributed sys-
tems together with dedicated unfolding techniques applying correlated SE of
the involved TSTS under asynchronous communication. Then, we show in the
section how interaction scenarios can be selected from such models and discuss
experimental results on the Trickle case study. Finally, we give some concluding
remarks in Sect. 5.

2 Motivating Example: Trickle-Based Dissemination

Trickle [13,14,16] is the state-of-the-art distributed algorithm for the dissemina-
tion of information across a Wireless Sensors Network (WSN). This algorithm
is provided as a standard library in TinyOS [15] and Contiki [8], two of the best
known firmware Operating Systems (OS) for WSN. Trickle is also used in recently
standardized WSN protocols namely the Multicast Protocol for Low Power and
Lossy Networks (MPL) [9] and the Routing Protocol for Low Power and Lossy
Networks (RPL) [28]. The dissemination of information across the network is
through sensor-to-sensor short-range communications since such small devices
can be equipped only with small radio antennas. In addition, such communica-
tions may be asymmetric: a node can send messages to another node without the
opposite being possible. The network can be seen as a directed graph connecting
nodes to their neighbors which can be reached by their transmissions. Trickle is
a fully distributed algorithm. Each node applies a set of rules according to its
state, i.e., the information it holds. The goal is to converge to an updated global
state of the network where all nodes have the same information. The Trickle
algorithm can be described as follows:

– each node maintains a current interval τ , a counter c and a broadcasting time
t in current interval τ ,

– global parameters to all nodes (same values) are k the redundancy constant,
τl the smallest value for τ , and τh the largest value for τ ,

– each node applies the following rules:
1. at the start of a new interval a node resets its timer and counter c and

sets at random t to a value in [τ/2, τ [,
2. if the node receives a message consistent with the information it holds, it

increments c,
3. when its timer reaches t, the node broadcasts a message carrying the

information it holds if c < k,
4. when its timer expires at τ , it increases its interval length by setting τ to

min(2 · τ, τh) and starts a new interval,
5. when a node receives a message that is inconsistent with its own infor-

mation, then if τ > τl it sets τ to τl and starts a new interval, otherwise
it does nothing.

Deriving Interaction Scenarios for Timed Distributed 49

Each time an inconsistency is detected, the interval τ is set to τl, then τ
is doubled up to τh. Note that the node transmits only if its neighbours are
unlikely to be up-to-date, when c < k given c counts receptions of consistent
messages in the interval (k is fixed based on neighbours number). If c ≥ k, the
node suppresses the transmission. Moreover, since small intervals are considered
immediately after the inconsistency, the frequency of transmissions is greater
at the beginning (and decreases when approaching τh). This allows nodes to
quickly share the same information. Now nodes are not necessarily synchronized,
yet Trickle suggests choosing a random t (in [τ/2, τ [) together with imposing a
listen-only period (first half of τ) in order to enhance the distribution of the
transmission load between nodes in the interval (and hence energy cost).

0

Version!0 Version?0

node1 node2

t = 6.5

τ
=

8
τ
=

16

suppresses transmission

c = 1

c = 0

c ≥ k

time

t = 7

10
15
18

4
8

(a) Concrete scenario

0

Version!myv0 Version?v1

node1 node2

t = t1
τ
=

8
τ
=

16

c = 1

c = 0

time

t = t1

x0

x2

x1

y0

y1

y2

(b) Symbolic scenario

PC1 : 4 ≤ node1.t1 < 8 ∧ x2 = node1.t1
)

PC2 :
(
4 ≤ node2.t1 < 8 ∧ y2 ≤ node2.t1

∧ node2.v1 = node2.myv0

)

data and time interdependencies :
node1.myv0 = node2.v1 ∧ x0 + x1 + x2 ≤ y0 + y1 + y2

(c) Symbolic scenario constraints

Fig. 1. Illustration of Trickle scenarios

Figure 1 depicts a first scenario (Fig. 1a) between two nodes node1 and node2,
each implementing the Trickle algorithm. The second scenario (Fig. 1b) is an
abstract scenario that can be obtained by our symbolic execution for which
the first scenario is a concretization. The scenarios illustrate the transmission
suppress according to Trickle rules, the information being disseminated is a ver-
sion number. Node node1 emits a version number 0 on its port node1.V ersion
(denoted by V ersion!0 on the message with source the axis of node1). This ver-
sion number is received later by node node2 on its port node2.V ersion (denoted
by V ersion?0 on the message with destination the axis of node2). When node2
receives the same version number as it holds, it increments its counter node2.c
which reaches k (k = 1). This results in suppressing the transmission sched-
uled at the value stored in node2.t (node2.t = 7) within the second half of the

50 B. Bannour et al.

τ -interval (node2.τ = 8). Executions at node1 and node2 are given by the fol-
lowing succession of delays and emissions/receptions:

node1 : “4, 6, 6.5,Version!0” and node2 : “8, 7, 5.5,Version?0”
Initial delays 4 and 8 are measured since a common fictitious time point

denoted by 0 on the time axis. They correspond to elapsed time before respec-
tively node1 and node2 are started. The small arrows indicate the start of the
nodes on their respective axes. Introducing such delayed initialization is typical
for distributed subsystems where there is no global clock. The symbolic scenario
encodes such execution using (fresh) variables and logical constraints (Fig. 1c).
Constraints 4 ≤ node1.t1 < 8 ∧ x2 = node1.t1 and 4 ≤ node2.t1 < 8 ∧ y2 ≤
node2.t1 ∧ node2.v1 = node2.myv0 correspond to Path Conditions (PC). On the
other hand, constraints x0 + x1 + x2 ≤ y0 + y1 + y2 and node1.myv0 = node2.v1
reflect time and data inter-dependences. Both kind of logical constraints will be
inferred by our symbolic execution mechanisms.

3 Models of Timed Symbolic Transition Systems

Preliminaries
A signature is a couple Ω = (S,Op) where S is a set of type names and Op
is a set of operation names provided with a profile in S+. We denote with
V =

∐
s∈S Vs the set of typed variables with type : V → S the function that

associates a variable to its corresponding type. The set of Ω-terms in V , denoted
TΩ(V) =

∐
s∈S TΩ(V)s, is inductively defined over V and operations Op of Ω

as usual and the function type is extended to TΩ(V) as usual. The set of typed
equational Ω-formulas over V , denoted as FΩ(V), is inductively defined over
equality predicates t = t′ for any t, t′ ∈ TΩ(V)s and over usual boolean con-
nectives. For ϕ ∈ FΩ(V), we denote V ar(ϕ) ⊆ V the set of variables occurring
in ϕ. A substitution over V is a type-preserving application ρ : V → TΩ(V).
The identity substitution over V is denoted idV and the notation ρ[x → t]
means the substitution identical to ρ except that it associates t with x. Signa-
ture Ω includes a particular type, denoted time ∈ S, for representing durations,
and which is provided with usual operations, i.e., <: time × time → Bool and
+ : time × time → time, . . .

An Ω-model is a set M =
∐

s∈S Ms with Ms a set of values for type s, hence
inducing a mapping between each operation name f : s1, . . . , sn−1 → sn ∈ Op
and the corresponding concrete operation fM : Ms1 × · · · × Msn−1 → Msn

. The
set Mtime is denoted D (for the set of durations) and is isomorphic to the set of
non-negative real numbers (R≥0). An interpretation is an application ν : V → M
that associates a value in M to each variable v ∈ V , canonically extended to
TΩ(V) and FΩ(V) as usual. For ν ∈ MV and ϕ ∈ FΩ(V), the satisfaction of ϕ
by ν is denoted M |=ν ϕ and is inductively defined w.r.t. the structure of ϕ as
usual. We say a formula ϕ ∈ FΩ(V) is satisfiable, denoted Sat(ϕ), if there exists
ν ∈ MV such that M |=ν ϕ.

A TSTS-signature is defined as a tuple Σ = (Ω,A,K,P), where Ω = (S,Op)
is a signature, A, K and P are pairwise disjoint sets of variables representing

Deriving Interaction Scenarios for Timed Distributed 51

respectively generic data variables (A), clock variables (K) and ports (P). Vari-
ables in A and P can take any type in S whereas variables in K (i.e. clocks) are
limited to type time. So, each class of variables is partitioned w.r.t. types s ∈ S,
hence A =

∐
s∈S As, P =

∐
s∈S Ps whereas K can be reduced to Ktime

1.
As glimpsed in the introduction, transitions of TSTS will be defined using

sequential scheduling of statements like in programming languages.

Sequential Statements
A sequential statement (statement in short) stm is defined as follows:

stm : := skip | p?x | p!t1 | x:=t2 | newfresh(x) |
[
φ
]

|
stm1;stm2 | if

(
φ
)
then stm1 else stm2

with p ∈ P , x ∈ A ∪ K, t1 ∈ TΩ(A ∪ K)type(p), t2 ∈ TΩ(A ∪ K)type(x), and
φ ∈ FΩ(A ∪ K). The set of statements over Σ is denoted by Stm(Σ).

skip is the null statement; p?x denotes the reception, on port p, of a value
which is stored in x, whereas p!t1 denotes the emission, on port p, of the value
corresponding to the current interpretation of term t1; x := t2 assigns the vari-
able x with a new value denoted by t2; newfresh(x) randomly assigns x with
a new value;

[
φ
]

denotes a condition on variables which enables the statement
execution. Moreover, statements can be built using sequence (;) and condition
(if . . . then . . . else . . .).

Timed Symbolic Transition Systems (TSTS)
A TSTS over a TSTS-signature Σ = (Ω,A,K,P) is a triple G = (Q, q0, T r),
where Q is the set of states, q0 ∈ Q is the initial state and Tr is the set of
transitions of the form (q, stm, q′) with q, q′ ∈ Q, and stm ∈ Stm(Σ).

For a transition tr = (q, stm, q′), q (resp. q′) is the source (resp. target)
state of the transition. stm is called the statement of the transition. We use
the notations src(tr), tgt(tr) and stm(tr) to refer to q, q′ and stm respectively.
For G = (Q, q0, T r) a TSTS, we use States(G), initSt(G) and Trans(G) to
respectively refer to Q, q0 and Tr.

Figure 2 depicts a TSTS which models the behavior of a Trickle node, accord-
ing to rules described in Sect. 2.

From the initial state q0, the node assigns t with a new fresh value using the
action newfresh(t), this new value for t is constrained by the guard [τ/2 ≤ t <
τ]. The clock2 cl is initially reset, as glimpsed before it is used to activate the
different Trickle events, that is when reaching t and starting new τ -intervals.

When node reaches the state q1, it can receive a message (on port Version)
from a neighboring node before reaching t (loop-transitions on q1). Such mes-
sage carries a version number. The message is processed as follows (see macro
updateVersion): if the node is outdated, it updates its version number (myv :=
v). Trickle rule related to (in)consistency is then applied: if the neighbour is
1 Variables in Atime are not of the same nature of those in K as they are only used

to store terms of type time, while clocks are used to measure time passing.
2 Any clock of a given node, here cl, evolves only if a transition of that node is executed:

the clock is then implicitly incremented by a fresh duration.

52 B. Bannour et al.

q1
resetInterval()

q0 q2

[cl = t ∧ c < k]
V ersion ! myv

[cl = t ∧ c ≥ k]

[cl = τ];
doubleInterval()

[cl ≤ t];
V ersion ? v;

consistent := v = myv;
if (consistent) then

c := c + 1
else

updateVersion()
resetInterval()

[cl ≤ τ];
V ersion ? v;

consistent := v = myv;
[consistent];
c := c + 1

[cl ≤ τ];
V ersion ? v;

consistent := v = myv;
[¬consistent];

updateVersion()
resetInterval()

macros

resetInterval() :
τ := τl;
newfresh(t);
[τ/2 ≤ t < τ];

c := 0;
cl := 0

doubleInterval() :
if (2 · τ ≤ τh) then

τ := 2 · τ
else

τ := τh
newfresh(t);
[τ/2 ≤ t < τ];

c := 0;
cl := 0

updateVersion() :
if (myv ≤ v) then

myv := v
else

skip

Fig. 2. Timed Symbolic Transition Systems (TSTS) modeling a Trickle node

up-to-date, i.e., the node and its neighbour agree the version number, then the
counter c of the node is incremented; otherwise a new τ -interval is considered
for the node where τ and c are reset, since additional little-spaced messages
are needed for convergence. When cl = t, the transmission is scheduled only if
c < k in order to inform neighbors of version number the node possesses (hori-
zontal transition q1 → q2), otherwise the process does nothing (curved transition
q1 → q2).

At the state q2, while cl ≤ τ and messages are consistent (agree on version
number), the counter c is incremented (loop-transition on q2), upon the reception
of inconsistent message (different version number) the node starts a new τ -
interval by resetting both cl and c (upper transition q2 → q1). When cl = τ , the
node increases the listening interval by doubling τ (up to τh) (lower transition
q2 → q1).

Symbolic Execution of TSTS
Given a TSTS signature Σ = (Ω,A,K,P), we introduce a set of so-called fresh
variables (also called symbolic parameters) F =

⋃
s∈S Fs which is disjoint from

both the data and clock variables of Σ (i.e. F ∩ (A ∪ K) = ∅). We write Ft ⊆ F
for the set of fresh variables of type time and Fd = F\Ft for the set of non-time
fresh variables. In the following, we will refer to the signature ΣF = (Ω,F, ∅, P)
to define the symbolic execution of a TSTS which is defined over Σ.

Deriving Interaction Scenarios for Timed Distributed 53

Execution contexts (EC in short) are data structures used to store informa-
tion characterizing logical constraints on symbols related to an actual execution
of a TSTS. An EC of a TSTS G = (Q, q0, T r) is a tuple ec = (q, π, λ, θ, Act, pec):

– q ∈ Q is the (current) state of G,
– π ∈ FΩ(F) is a constraint that should be satisfiable in order to reach ec.
– λ : A ∪ K → TΩ(F) is a type-preserving substitution through which data

variables of G are replaced by terms over variables in F ,
– θ ∈ TΩ(Ft) is a term denoting the sum of durations elapsed so-far since the

beginning of the execution of G,
– Act is a sequence of emissions and/or receptions that have occurred since the

beginning (; ; stands for the empty sequence),
– and pec is the parent EC which allowed ec to be reached.

We distinguish initial execution contexts of the form ec0 = (q0, true, λ0,
z0, ; ; , self) such that λ0 associates to each variable of A ∪ K a fresh variable in
F verifying ∀θ ∈ K, λ0(θ) = z0 and ∀x �= y ∈ A, λ0(x) �= λ0(y) and λ0(x) �=
z0.”self” is a special identifier indicating that by convention, the parent EC of
an initial execution ec0 is itself. V ar(ec0) ⊆ F is the set of all fresh variables
occuring in ec0. To refer to the constituents of an EC ec = (q, π, λ, θ, Act, pec),
q(ec) stands for q, π(ec) for π, λ(ec) for λ, θ(ec) for θ, Act(ec) for Act and pec(ec)
for pec. We denote EC(G) (EC0(G)) the set of all (initial) execution contexts ec
of G such that we have Sat(π(ec)). In order to take advantage that only some
components of an EC are likely to be modified at each symbolic execution step,
we will use a kind of additive notation which will point out the only modified
components of ECs: for example, with ec an EC, ec′ = ec[Act → Act; act] means
that ec′ coincides with ec except that the component Act(ec′) is Act(ec); act .

Symbolic Execution of Statements
Let stm and G be resp. a statement and a TSTS both defined over Σ and let
ec ∈ EC(G). The set SE(stm)ec ⊆ EC(G) of ECs reached from ec by symbolic
execution of stm is defined as follows:

SE(skip)ec = {ec} (1)
SE(p?x)ec = {ec[λ → λ[x → y], Act → Act; p?y]} y ∈ Ftype(x) (2)

SE(newfresh(x))ec = {ec[λ → λ[x → y]]} y ∈ Ftype(x) (3)
SE(p!t1)ec = {ec[Act → Act; p!λ(t1)]} (4)

SE(x := t2)ec = {ec[λ → λ[x → λ(t2)]]} (5)

SE(
[
φ
]
)ec = {ec[π → π ∧ λ(φ)]} (6)

SE(stm1; stm2)ec =
⋃

ec′
0∈SE(stm1)ec

SE(stm2)ec′
0

(7)

SE(if
(
φ
)
then stm1 else stm2)ec = SE(stm1)ec[π→π∧λ(φ)] (8)

∪SE(stm2)ec[π→π∧λ(¬(φ))]

54 B. Bannour et al.

Symbolic Execution of Transitions
Let tr = (q, stm, q′) be a transition of G and ec = (q, π, λ, θ, Act, ec) be an EC
of EC(G). The set of ECs SE(tr)ec reached from ec by symbolic execution of tr
is defined as the set of all ec′ = (q′, π′, λ′, θ + z,Act′, ec) such that there exists
(q, π′, λ′, θ, Act′, pec) in SE(stm(tr))ec[λ→λ′

0]
where λ′

0 is defined as follows:

λ′
0(w) = λ(w) + z for w ∈ K and λ′

0(w) = λ(w) for w ∈ A (9)

with z a fresh variable in Ft, denoted as delay(ec′) in the sequel.
The set of ECs ec′ reached from of a given EC ec by executing tr ∈ Trans(G)

is obtained in two steps. First, all clocks are increased by the same amount of
time, denoted by the time-typed variable z ∈ Ft which allows to obtain the
intermediate substitution λ′

0 (9). Second, transition statement stm(tr) is evalu-
ated from the newly built context, i.e., ec in which λ′

0 replaces λ. ECs obtained
then, characterize substitutions λ′ reflecting data variables substitutions by new
variables as defined by the statement symbolic execution.

Symbolic Execution of TSTS
The symbolic execution of a TSTS G from ec0 ∈ EC0(G) is the smallest
set of ECs, denoted as SE(G)ec0 , satisfying: ec0 ∈ SE(G)ec0 and for any
tr ∈ Trans(G), ec ∈ SE(G)ec0 such that q(ec) = src(tr), we have SE(tr)ec ⊆
SE(G)ec0 . This results in a tree structure en-rooted in ec0.

4 Distributed Models and Interaction Scenarios
Derivation

We use TSTS to specify Timed Distributed Systems (DS in short). A remote
subsystem is characterized by a TSTS. Communications between subsystems
TSTSs are specified by asynchronous data-passing over unbounded fifo queues.

Distributed System Model
A Distributed System model Sys = (G1, · · · ,Gm, Γ) is defined by:

– a family (Gi)i∈{1,..m} of TSTS defined over Σi = (Ω,Ai,Ki, Pi) verifying that
different sub-systems do not share constituents, i.e., ∀i, j ≤ m with i �= j,
Ai ∩ Aj = ∅, Ki ∩ Kj = ∅ and Pi ∩ Pj = ∅,

– the function Γ : PSys → 2PSys specifying connections between ports.

The set of all ports of Sys is denoted by PSys =
⋃

i≤m Pi. Besides, the
set of all generic data variables (resp. clock variables) of Sys is denoted by
ASys =

⋃
i≤m Ai (resp. KSys =

⋃
i≤m Ki).

From now on, Sys will denote a generic DS model. We now define the sym-
bolic execution of Sys over the signature ΣSys

F = (Ω,F, ∅, PSys). Figure 3 depicts
a DS for a grid topology of four Trickle nodes, each is associated with a TSTS.

System Execution Context. A system execution context (or a SC) of Sys is
a tuple ecsys = (ec1, · · · , ecm, γ, χ, pecsys) where

Deriving Interaction Scenarios for Timed Distributed 55

subsystem node1

subsystem node3

subsystem node2

subsystem node4

port Version

connection

TSTS G4TSTS G3

TSTS G2TSTS G1

var. :τ, t, c, cl, myv, v

Version

VersionVersion

(fifo)

Fig. 3. Distributed System for a Trickle grid topology

– eci ∈ EC(Gi) with i ≤ m, is an EC over ΣSys
F ,

– γ : PSys → (TΩ(Fd) × TΩ(Ft))∗,
– χ ∈ FΩ(F),
– and pecsys is either the identifier self or any other SC.

EC(Sys) is the set of all SC of Sys and we can access to components of ecsys

using notations γ(ecsys),χ(ecsys) or pecsys(ecsys).
γ associates to each port the content of its fifo queue in terms of a received

piece of data and its emission date. χ represents a constraint on time and data
inferred from data exchanges in Sys. As in the unitary case, pecsys gives access
to the SC from which ecsys has been built. Similarly, if pecsys = self , ecsys is
then an initial SC. The symbolic execution of a DS-model consists in executing
a transition of one of its component TSTS Gi and making execution contexts
of Sys evolve accordingly. Intuitively, the evolution of the overall SC will essen-
tially concern the EC relating to the TSTS Gi for which the transition is being
executed.

Symbolic Execution of Transition in a DS-Model
For a SC ecsys = (ec1, · · · , eci, · · · , ecm, γ, χ, pecsys), let tr be a transition in Gi

such that i ≤ m and src(tr) = q(eci). The symbolic execution SE(tr)ecsys
of tr

from ecsys is the set of ec′
sys = (ec′

1, · · · , ec′
i, · · · , γ′, χ′, ecsys) provided that all

components of ec′ are well defined according to the rules:

– ec′
i ∈ SE(tr)eci

– for all j ≤ m such that j �= i, ec′
j = ecj

– (γ′, χ′) = SE(Act(ec′
i))(γ,χ) with SE(Act)(γ,χ) inductively defined or unde-

fined as follows:
• for Act the empty sequence (Act =; ;), (γ, χ)
• for Act of the form p!t;Act′, SE(Act′)(γ[q→γ(q).(t,θ(ec′

i))]q∈Γ (p),χ)

56 B. Bannour et al.

• for Act of the form p?x;Act′ s.t. there exists a port q verifying p ∈ Γ (q),
∗ SE(Act′)(γ[p→w],χ∧(θ(ec′

i)≥θ)∧(x=t)) if γ(p) is of form (t, θ).w
∗ undefined if γ(p) = ε (i.e. γ(p) is an empty fifo queue)

• for Act of the form p?x;Act′ s.t. for all ports q, p �∈ Γ (q), SE(Act′)(γ,χ).

When ec′
sys is defined, ec(ec′

sys) denotes ec′
i the execution context directly mod-

ified by the last executed transition (tr ∈ Tr(Gi)). In a nutshell, an emission on
a port p has the effect of filling all the fifo associated to the ports of Γ (p) and
the reception of a message on port p consumes the first message stored in its
fifo. Simultaneously, all the knowledge about data and durations are translated
into constraints. Let us note that for a transition tr carrying a reception on a
port p connected to a port of other subsystems (p ∈ Γ (q) for some q), if its fifo
is empty (γ(p) = ε), then SE(tr)ecsys

is undefined so that tr cannot be executed
in the current SC.

Symbolic Execution of a DS-Model
Let us introduce ec0sys an initial SC defined as a tuple (ec10, · · · , ecm

0 , γ0, true,

self) where for all i ≤ m, eci
0 is in EC0(Gi) and for all p in PSys, γ0(p) is the

empty queue, i.e. is ε. The symbolic execution SE(Sys)ec0sys
of Sys is the smallest

set of SC containing ec0sys and all SC reached by symbolic executions of any tr ∈⋃
i≤m Trans(Gi) from any ecsys ∈ SE(Sys)ec0sys

. A system symbolic path pasys

is a sequence ec0sysec
1
sys . . . eck

sys such that for all 0 < i < k, pecsys(eci+1
sys) = eci

sys,
we denote tgt(pasys) = eck

sys, the target of pasys.
For any ecsys = (ec1, · · · , ecm, γ, χ, pecsys), we note π(ecsys) =

(
∧

i≤k π(eci))
∧

χ.
A symbolic path pasys is feasible iff Sat(π(tgt(pasys))).

Selection Method
Interaction scenarios will be selected based on the computation of a feasible
path pasys from the symbolic execution tree of the overall DS model Sys. The
method favors the selection of system paths with a high coverage of subsystems
pairwise Emissions (E) and Receptions (R) in the spirit of the work [24] and
that of our previous experimental work on Trickle [4,19]. The idea is to guide
the SE of Sys with the objective to compute a system path pasys which covers
sequences where an emission (p!a) of a piece of data a by some subsystem is
followed by the corresponding reception (q?a) of a by another subsystem (q ∈
Γ (p)). The selection is implemented according to the Send Receive Pair Coverage
criterion (SRPC) [24] by defining coverage sequences based on internal pairwise
Emissions and Receptions. To cope with the potential combinatorial explosion
due to asynchrony, we have integrated the SRPC criterion with some exploration
heuristics available in the tool DIVERSITY [17].

Experimentation. Table 1 gives some metrics on symbolic exploration for the
computation of updated/outdated scenarios on grid topologies T1 (Fig. 3) and
T2 (T2 has a connection less). The results are obtained on a PC equipped with
an Intel Core i7 processor and 32GB RAM. The outdated scenario given in
Fig. 4 is the one described on line 5 of Table 1. We report on the size of all

Deriving Interaction Scenarios for Timed Distributed 57

Table 1. Experimentation for Trickle

Scenario Exploration (|E|,|R|) |SC| Time Coverage Rate

Updated (T1) Heuristic (5, 11) 7239 1 m 100% 100%

Updated (T1) BFS (4, 9) 620120 1 h 0 m 34 s 72% n/a

Outdated (T2) Heuristic (7, 15) 9156 23 s 650 ms 100% 100%

Updated (T2) Heuristic (8, 17) 13708 1 m 40 s 600 ms 100% 100%

Outdated (T1) Heuristic (3, 6) 1041 7 s 340 ms 100% 100%

|E|: Emission events count, |R|: Receptions events count in scenario, |SC|: count
of System Contexts, Coverage: percentage of targeted coverage, Success rate for 20
trials of the selection heuristic
N.B., overall TSTSs size is 12 states and 28 transitions for both topologies T1 and T2

other generated scenarios in terms of number of Emissions and Receptions. We
have used CVC4 solver to check the feasibility of logical constraints inferred for
scenarios (system paths). We report on BFS (Breadth-First Search) in order
to illustrate the exploration combinatorial. Even though left running for more
than one hour, only partial coverage has been achieved with BFS. Then we have
evaluated the coverage under the heuristic. Experiments show reduced running
time. Given the overall short running time of our selection mechanism on the 4
asynchronous Trickle nodes, we expect it to be scalable to many other nodes.
The reader can refer to [7,29,30] for some informative running time results on
model-checking other Trickle case studies, yet in synchronous setting. Those first
results need to be consolidated with further experiments.

Figure 4 depicts a sequence diagram of node4 being outdated for some dura-
tion since the start of new version dissemination held by node1 (Topology T1).
The diagram has been adapted from the output generated by DIVERSITY.
Neighbors of node4, that are node2 and node3 are first updated by node1 with
a new version (green messages), they hence reset their interval to τl. After that,
node4 sends its version (old with respect of that of node1) and gets them to reset
their interval (blue messages). Thus, the transmissions of node2 and node3 are
postponed; this gives time to node1 re-transmit its version again and saturate
their counters (orange messages); therefore they suppress their transmissions
for node4 respectively at y4 + y5 = node2.t3 and z4 + z5 = node3.t3 (last logi-
cal constraints in the scenario). Beyond highlighting such atypical scenarios, the
symbolic execution of the model has allowed us to better understand the complex
concurrency between nodes, which are ruled by non-trivial time constraints.

58 B. Bannour et al.

Trickle

node1

node1

node2

node2

node3

node3

node4

node4

PATH 1 ec_sys< id:281 , height:17 >

((tau_l / 2) <= node1.t_1 < tau_l)

((tau_l / 2) <= node2.t_1 < tau_l)
((tau_l / 2) <= node3.t_1 < tau_l)

((tau_l / 2) <= node4.t_1 < tau_l)

(x_2 == node1.t_1)
Version ! node1.myv_0
@ (x_0 + x_1 + x_2)

Version ! node1.myv_0
@ (x_0 + x_1 + x_2)

(node2.myv_0 < node2.v_1)
&& ((tau_l / 2) <= node2.t_2 < tau_l)
&& (y_2 <= node2.t_1)
&& ((x_0 + x_1 + x_2) <= (y_0 + y_1 + y_2))
&& (node1.myv_0 == node2.v_1)

Version ? node2.v_1
@ (y_0 + y_1 + y_2)

(node3.myv_0 < node3.v_1)
&& ((tau_l / 2) <= node3.t_2 < tau_l)
&& (z_2 <= node3.t_1)
&& ((x_0 + x_1 + x_2) <= (z_0 + z_1 + z_2))
&& (node1.myv_0 == node3.v_1)

Version ? node3.v_1
@ (z_0 + z_1 + z_2)

(u_2 == node4.t_1)
Version ! node4.myv_0 @ (u_0 + u_1 + u_2)

Version ! node4.myv_0
@ (u_0 + u_1 + u_2)

(((x_2 + x_3) == tau_l)
&& (tau_l <= node1.t_2 < (2 * tau_l))

(((u_2 + u_3) == tau_l)
&& (tau_l <= node4.t_2 < (2 * tau_l))

((node2.v_2 < node2.v_1))
&& ((tau_l / 2) <= node2.t_3 < tau_l)
&& ((u_0 + u_1 + u_2) <= (y_0 + y_1 + y_2 + y_3))
&& (node4.myv_0 == node2.v_2)

Version ? node2.v_2
@ (y_0 + y_1 + y_2 + y_3)

((node3.v_2 < node3.v_1)
&& ((tau_l / 2) <= node3.t_3 < tau_l)
&& ((u_0 + u_1 + u_2) <= (z_0 + z_1 + z_2 + z_3))
&& (node4.myv_0 == node3.v_2)

Version ? node3.v_2
@ (z_0 + z_1 + z_2 + z_3)

(x_4 == node1.t_2)
Version ! node1.myv_0
@ (x_0 + x_1 + x_2 + x_3 + x_4)

Version ! node1.myv_0
@ (x_0 + x_1 + x_2 + x_3 + x_4)

(y_4 <= node2.t_3)
&&((node2.v_3 == node2.v_2))
&& ((x_0 + x_1 + x_2 + x_3 + x_4) <=
(y_0 + y_1 + y_2 + y_3 + y_4))

&& (node1.myv_0 == node2.v_3)
Version ? node2.v_3
@ (y_0 + y_1 + y_2 + y_3 + y_4)

(z_4 <= node3.t_3)
&&((node3.v_3 == node3.v_2))
&& ((x_0 + x_1 + x_2 + x_3 + x_4) <=
(z_0 + z_1 + z_2 + z_3 + z_4))

&& (node1.myv_0 == node3.v_3)

Version ? node3.v_3
@ (z_0 + z_1 + z_2 + z_3 + z_4)

((y_4 + y_5) == node2.t_3)

((z_4 + z_5) == node3.t_3)

Fig. 4. A Trickle scenario for the topology of Fig. 3

Deriving Interaction Scenarios for Timed Distributed 59

5 Conclusion

We have provided a symbolic execution framework for timed distributed mod-
els fitted with feasible scenario selection mechanisms. Our framework has been
completely implemented in the DIVERSITY tool and applied successfully on the
distributed Trickle case study models using a heuristic approach. We believe that
efficient novel partial order reduction techniques under the time setting -that we
plan to develop in the near future- can leverage on this selection mechanism in
order to accelerate the targeted selection for wide Trickle topologies.

References

1. Griesmayer, A., Aichernig, B., Johnsen, E.B., Schlatte, R.: Dynamic symbolic exe-
cution for testing distributed objects. In: Dubois, C. (ed.) TAP 2009. LNCS, vol.
5668, pp. 105–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02949-3 9

2. Alur, R., Dill, D.: A theory of timed automata. J. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Bannour, B., Escobedo, J.P., Gaston, C., Le Gall, P.: Off-Line test case generation
for timed symbolic model-based conformance testing. In: Nielsen, B., Weise, C.
(eds.) ICTSS 2012. LNCS, vol. 7641, pp. 119–135. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34691-0 10

4. Bannour, B., Lapitre, A., Le Gall, P.: Exploring IoT trickle-based dissemination
using timed model-checking and symbolic execution. In: Georgiou, C., Majumdar,
R. (eds.) NETYS 2020. LNCS, vol. 12129, pp. 94–111. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-67087-0 7

5. Cadar, C., Dunbar, D., Engler, R., Klee, D.: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX (2008)

6. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006). https://doi.org/10.
1007/11754008 1

7. Dong, J.S., Sun, J., Sun, J., Taguchi, K., Zhang, X.: Specifying and verifying sensor
networks: an experiment of formal methods. In: Liu, S., Maibaum, T., Araki, K.
(eds.) ICFEM 2008. LNCS, vol. 5256, pp. 318–337. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88194-0 20

8. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: LCN. IEEE (2004)

9. Hui, J., Kelsey, R.: Multicast protocol for low-power and lossy networks, request
for comments: 7731. Technical report, Silicon Labs, February 2016

10. King, J.C.: Symbolic execution and program testing. Commun. ACM 19, 360248
(1976)

11. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 38

12. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV
-2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006). https://doi.org/
10.1007/11940197 3

https://doi.org/10.1007/978-3-642-02949-3_9
https://doi.org/10.1007/978-3-642-02949-3_9
https://doi.org/10.1007/978-3-642-34691-0_10
https://doi.org/10.1007/978-3-030-67087-0_7
https://doi.org/10.1007/11754008_1
https://doi.org/10.1007/11754008_1
https://doi.org/10.1007/978-3-540-88194-0_20
https://doi.org/10.1007/11817963_38
https://doi.org/10.1007/11940197_3
https://doi.org/10.1007/11940197_3

60 B. Bannour et al.

13. Levis, P., et al.: The emergence of a networking primitive in wireless sensor net-
works. Commun. ACM 51(7), 99–106 (2008)

14. Levis, P., Clausen, T., Hui, J., Gnawali, O., Ko, J.: The trickle algorithm, request
for comments: 6206. Technical report, Internet Engineering Task Force (IETF),
March 2011

15. Levis, P., et al.: TinyOS: an operating system for sensor networks. In: Weber, W.,
Rabaey, J.M., Aarts, E. (eds.) Ambient Intelligence. Springer, Heidelberg (2005).
https://doi.org/10.1007/3-540-27139-2 7

16. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. In: NSDI. USENIX
Association (2004)

17. Arnaud, M., Bannour, B., Lapitre, A.: An illustrative use case of the DIVERSITY
platform based on UML interaction scenarios. Electr. Notes Theor. Comput. Sci.
320, 21 (2016)

18. Shafiei, N., Mehlitz, P.C.: Extending JPF to verify distributed systems. ACM SIG-
SOFT Softw. Eng. Notes 39(1), 1–5 (2014)

19. Nguyen, N.M.T., Bannour, B., Lapitre, A., Le Gall, P.: Behavioral models and
scenario selection for testing IoT trickle-based lossy multicast networks. In ICST
Workshops. IEEE (2019)

20. Dustmann, S.O., Sasnauskas, R., Wehrle K.: Symbolic system time in distributed
systems testing. In: ICST. IEEE (2012)

21. Pasareanu, C.S., Rungta, N.: Symbolic pathfinder: symbolic execution of java byte-
code. In: ASE. ACM (2010)

22. Sasnauskas, R.S., Dustmann, O., Kaminski, B.L., Wehrle, K., Weise, C.,
Kowalewski, S.: Scalable symbolic execution of distributed systems. In: ICDCS.
IEEE (2011)

23. Sasnauskas, R., Kaiser, P., Jukic, R.L., Wehrle, K.: Integration testing of protocol
implementations using symbolic distributed execution. In: ICNP. IEEE (2012)

24. Robinson-Mallett, C., Hierons, R.M., Liggesmeyer, P.: Achieving communication
coverage in testing. ACM SIGSOFT Softw. Eng. Notes 31(6), 1–10 (2006)

25. Khurshid, S., PĂsĂreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2005). https://doi.org/10.1007/3-
540-36577-X 40

26. Von Styp, S.C., Bohnenkamp, H., Schmaltz, J.: A conformance testing relation for
symbolic timed automata. In: Formal Modeling and Analysis of Timed Systems -
8th International Conference, FORMATS Proceedings, pp. 243–255 (2010)

27. Andrade W., D. L. Machado P., Jéron T., Marchand H. Abstracting time and data
for conformance testing of real-time systems. In: ICST Workshops. IEEE (2011)

28. Winter, T., et al.: Rpl: Ipv6 routing protocol for low-power and lossy networks,
request for comments: 6550. Technical report, Cooper Power Systems and Cisco
Systems and Stanford University (2012)

29. Woehrle, M., Bakhshi, R., Mousavi, M.R.: Mechanized extraction of topology anti-
patterns in wireless networks. In: Derrick, J., Gnesi, S., Latella, D., Treharne,
H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 158–173. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30729-4 12

30. Zheng, M., Sun, J., Liu, Y., Dong, J.S., Gu, Yu.: Towards a model checker for
NesC and wireless sensor networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS,
vol. 6991, pp. 372–387. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24559-6 26

https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/978-3-642-30729-4_12
https://doi.org/10.1007/978-3-642-24559-6_26
https://doi.org/10.1007/978-3-642-24559-6_26

	Deriving Interaction Scenarios for Timed Distributed Systems by Symbolic Execution
	1 Introduction
	2 Motivating Example: Trickle-Based Dissemination
	3 Models of Timed Symbolic Transition Systems
	4 Distributed Models and Interaction Scenarios Derivation
	5 Conclusion
	References

