
Visual Language for Device Management
in Telecommunication Product Line

Eugeny Semenov1, Sheng Kai1, Chen Gen1, Dmitry Luciv2,3,
and Dmitry Koznov2(B)

1 Huawei Technologies Co., Ltd., Shenzhen, China
{semyonov.eugeny,kaisky.sheng,chengen}@huawei.com

2 Saint-Petersburg State University, Saint Petersburg, Russia
{d.lutsiv,d.koznov}@spbu.ru

3 Alferov University RAS, Saint Petersburg, Russia
dluciv@spbau.ru

Abstract. In the present paper, we consider the task of creating hard-
ware specifications for telecommunication devices that close the commu-
nication gap between hardware engineers and software developers. This
task has arisen during the development of a family of telecommunication
systems at Huawei. The specifications need to describe hardware from
the viewpoint of driver development (i.e., device management), omitting
many hardware details and including information for automatic gener-
ation of driver data structures and signatures. Furthermore, they need
to be comprehensive and illustrative for both engineering groups. To
meet this challenge, we propose a visual language supporting five views
(representations): Structured view (all structural elements of a device),
Composite view (all connections of a device), Datapath view (device
parts that process the data flow), Control view (device parts that control
the data flow processing), and Service view (device parts that provide
additional functionality). We present an implementation of the visual
language built with the Eclipse Modeling Tools Xtext/EMF/Sirius and
integrated into a development environment for device management. We
have received positive feedback from the device management software
engineers.

Keywords: Telecommunication systems · Control systems ·
Model-based approach · Product lines · Domain specific modeling ·
Domain specific programming

1 Introduction

Development of various telecommunication devices such as routers, firewalls, etc.
is a very laborious task for a multitude of reasons. First, the final product includes
very different, complex components, ranging from special hardware to control soft-
ware. Second, companies that release such systems, usually, instead of a single
product, create entire product lines [7] which encompass a variety of analogs, as
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): MEDI 2021 Workshops, CCIS 1481, pp. 204–216, 2021.
https://doi.org/10.1007/978-3-030-87657-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87657-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-87657-9_16

Visual Language for Device Management 205

well as the new versions of already existing devices. Therefore, the development
process includes a product line and concurrent work on several products, and can
involve up to several hundred developers.

The complexity of the systems and their mass production produce large vol-
umes of information. Therefore, establishing effective communication between
teams is of utmost importance. A team should share information with other
teams carefully: i.e., provide them with exactly what they require. At the same
time, such “informational junctions” should support illustrative and convenient
methods of specification representation to enable collaborative work between
teams.

This problem has arisen in a project at Huawei that was developing net-
work routers. During the interactions between hardware and software develop-
ers, a need was identified for hardware models of products that could be used in
developing hardware drivers. This model needed to include high-level hardware
descriptions, free from various hardware details. At the same time, it could con-
tain additional information necessary for developing control software, which is a
part of the final product. The model also needed to be complete, i.e., allowing
automatic generation of essential parts of code for hardware drivers, as well as
illustrative and easy to comprehend, discuss and develop.

We have decided to employ the domain-specific model driven approach [20,
32] and create a special visual language for this purpose. This language supports
the multiple view point concept [25], allowing to model different aspects of the
target products, and based on Domain Specific Modeling (DSM) approach [20].
We present an implementation of the language built with the Eclipse Model-
ing Tools Xtext/EMF/Sirius [13,31], and integrated into a device management
development environment, specifically developed for this product line. We have
received positive feedback from the device management software engineers.

2 Approach Context

In our work, we consider a particular product line of network routers. This
product line consists of a set of systems (routers) that include both hardware
and software components. In the current paper, we concentrate on a single task
concerning the product line—device management. In short, device management
refers to the development of drivers for the hardware included in the system.

The visual language that we present is a part of the device management devel-
opment environment. The problem is that driver programmers need a large vol-
ume of information about hardware devices, but a still considerably smaller one
than hardware engineers possess. Obtaining this information is a labor-intensive
task, as hardware engineers are not able to easily extract information that is
essential for software development from their body of knowledge. Moreover, it
is important to formalize this extracted information in order to use it for auto-
matic generation of software data structures, function signatures (parameters
and their types), event sequence processing, etc. Generated code is an essential
part of target code, although driver code can not be completely generated due
to various peculiarities and specifics of particular systems.

206 E. Semenov et al.

To specify the hardware information used for driver development, we have
developed a special textual device management domain specific language (DSL).
The language allows to define not only the hardware structure of the system,
but also a large number of its properties. Additionally, it provides facilities for
specifying connections between hardware elements, which can be rather compli-
cated due to a possibility of hardware structure changing dynamically: a system
administrator can insert a special card into an existing router to increase the
number of its network connections, and router drivers must obtain access to the
new hardware elements on the card.

The visual language that we present is a part of the environment for driver
development for the router product line. It is intended for graphical represen-
tation of the hardware structure and connections from the programming point
of view, omitting secondary details. As it has turned out, the device manage-
ment DSL is not enough for the product line needs. Our experiments have shown
that quite often, software developers and hardware engineers need to discuss the
structure of the system. Consequently, they need to use high level tools. More-
over, software developers are also needed to renew the information concerning
the structure of a particular board or card due to the target system including
decades of various. It should be noted that people operate with the visual pre-
sentation of the complex system structure much more efficiently than using other
representations. However, it is more appropriate to perform everyday work using
textual programming language [23].

3 Metamodel

To describe the proposed visual language, we use the metamodel approach [4,31].
This approach provides a formal method for language specification, and it can be
used for graphical editor development. We used the Ecore notation [31]. Apart
from some technical details, we present the simplified metamodel in the current
paper (see Fig. 1).

Our visual language includes the main entities of the problem domain which
are hardware elements Module, Chip, Element, Port and their connections.
Hardware drivers can access these hardware entities and enable upper level soft-
ware to influence their behavior (launch, re-launch, re-configure, etc.).

Let us describe in more detail the constructions of the language following
Fig. 1.

HardwareElement is the root entity, denoting a hardware element that
could contain ports. Its properties are name, type, and multiplicity, where the
latter denotes the number of instances of this hardware element in a system.
Instances can not be created dynamically and thus are statically presented in
the system model. HardwareElement is virtual entity, and is introduced only
for gathering properties of real life hardware elements.

Module represents a hardware part of the target router. There are two
kinds of modules: board and card. Board is the main part of the router holding
hardware elements which support the main functions of a router. Furthermore, a

Visual Language for Device Management 207

board enables communication between all of the hardware elements placed on it.
Card is used to extend the capabilities of a board or another card to be inserted
into a target module. In our visual language, we provide the module types, but
not the target configuration of the system, which can be modified dynamically.

Chip addresses the next layer of hardware decomposition: a module con-
sists of a number of chips. Chips perform various module functions, e.g. cod-
ing/decoding an optical signal, board temperature control, etc. There are four
kinds of chips: core, slot, to slot, to bus. Core chips are used to express main
functionality of the module they belong to. Other chip kinds are used to express
the mechanism of card insertion. Any module (board or card) could have a num-
ber of chips marked as a slot for various cards to be inserted in. If a module is
a card, it must have a special chip marked as to slot for insertion of the parent
card into any suitable slot of another module (see chip PicSlot in Fig. 2). At
last, a card could have special chips marked as to bus for connecting to the board
bus directly (see chip CanBus in Fig. 2).

Element is the last decomposition layer of the hardware device. Elements are
parts of a chip that provide more detailed functionality. In particular, they are
carriers of the ports of the chip. Every chip port provides special functionality for
processing input/output, and, precisely, this functionality is encapsulated into
the elements. A single element can implement a number of ports.

Hardware elements communicate with each other and the environment via
ports. A single hardware element can have several groups of ports of the same
type. To represent these groups, we use the PortGroup entity. PortGroup’s
properties are kind, type, and multiplicity. There are two kinds of ports: internal
(for internal communication of the hardware elements inside of the module),
and panel (for external communication of the module). The PortGroup’s type
addresses the control of connections for ports that belong to the group. There are
special rules for types which can be connected. These roles are expressed in the
textual device management DSL. PortGroup’s multiplicity refers to the number
of ports in the particular PortGroup. All ports from a PortGroup have the
same type and kind. Ports of various chips/elements may have the same type.
Additionally, the ports of a PortGroup are enumerated. The Port’s number is
a significant property, as ports of the same type are often numbered sequentially
throughout the entire module.

Essentially, a PortGroup is a collection of multiple entry/exit points (ports)
of a hardware element with sharing properties. It could be said that Port-
Group’s properties are a very simple interface of such a point. We do not need
explicit interfaces for PortGroup/Port, as signals and data that are passed
through the ports are out of scope of device management. On the other hand,
we need not only port groups, but separate ports as well to control port to
port connections in our specification: drivers need access to this information to
provide network management functions. That is why using layer connections,
similarly to ROOM [8], is not suitable in our case.

Some chips could be connected to each other without ports, e.g., voltage
sensors VltPT are linked like that to the CanBus chip (see Fig. 6).

208 E. Semenov et al.

We have omitted a considerable number of parameters of hardware elements,
in particular, the complex name/type hierarchy and some additional entities
describing it via the means of the device management DSL. The first version of
our visual language included all of this information (at the time we did not prop-
erly understand the role of a programming domain specific language). We had
created a really complicated visual language, and implemented a lot of property
sheets for each language construction in a graphical editor. This elicited negative
feedback from the users due to the reluctance of the product line developers to
use the modeling tool for everyday work, which required them to specify a lot
of details in the property sheets.

HardwareElement

Module Chip Element

* *

name
type
mul plicity

PortGroup

*

Port

*
type
kind: panel, internal
mul plicity

number
in

out *

port_connec on

in

out *

portless_connec on

kind: board, card
kind: core, slot, to_slot, to_bus

Fig. 1. Language metamodel

4 View Types

Our visual language is intended to provide the ability to browse the specifications
on device management DSL to simplify discussing the system structure, renew
knowledge about the selected system part (the specification usually has a lot
of details, and developers can forget them very quickly), as well as make the
introduction of a new employee to the project easier. No new entities can be
added using the visual modeling tool, and no editing facilities are provided. We
are following the ideas of the visualization toolkit for the Cobol reengineering
system described in [6]: visualization of existing software-related entities and
their relations using numerous views.

Multiple well-elaborated views are required to enable suitable browsing of
a complicated textual specification or program. The multiple view point con-
cept [25] is well-known in the model-based approach: it is used everywhere, from
structure analysis approaches to object-oriented notations and UML. However,
in our situation, we need to concentrate on this issue due to the following fact.
Various views are easy to create because they are not manually constructed, but
generated on developer request based on the existing specification. Therefore, we

Visual Language for Device Management 209

provide a large number of view types so the developers will not need to spend
their efforts on creating them manually. Furthermore, view type variety helps to
understand, discuss and analyze the system better.

The visual language we present supports the following view types:

– Structured view presents all structural hardware elements of a system to be
developed (see Fig. 2); since this is a large volume of information, no connec-
tions and elements of chips are depicted. However, chip ports are depicted
directly on chips.

– Composite view is similar to structured view, but it is augmented with multi-
plicity indicators in order to depict the instances of chips, elements, and ports
(see Fig. 3). This is the reason why this view is not as large as the previous
one. To ensure this, in contrast with the previous view type, the elements are
shown inside of chips. Furthermore, port connections are depicted as well.
However, using multiplicity augmentations does not allow to depict port to
port connections because the view presents grouped ports only.

– Datapath view presents the data flow process which indicates the main func-
tionality of the module (see Fig. 4). In this view, all other details are omitted.

– Control view presents chips, ports, and connections of the module which con-
trol the main functionality (see Fig. 5). In short, chips and elements from the
previous view perform tasks, and hardware elements from this view control
them.

– Service view presents the service functionality of the module, e.g., control of
temperature or voltage sensors, fan controllers (see Fig. 6).

OPTICAL[0]

IO

I2CSF P

SF P

OPTICAL[1]

IO

I2CSF P

SF P

OPTICAL[2]

IO

I2CSF P

SF P

OPTICAL[3]

IO

I2CSF P

SF P

SDA

SF P[4]

SF P[1]

SF P[2]

SF P[3]
IL K

FPGA1
I2C[2]

I2C[1]

I2C[4]

I2C[3]

VltPT3

VltPT0

VltPT1

VltPT2

CanBus

SDB
IL K

IL K

SFP[0]

SFP[1]

SFP[2]

SFP[3]

CARD1

I2C

IO [1]

IO [2]

IO [3]

IO [4]

I2C[5]

I2C[6]

I2C
IL K

PicSlot

Fig. 2. Example of Structured view

210 E. Semenov et al.

CARD1

OPTICAL

Op cal
SF P SF P

FPGA1

CTRLLOGIC

SDA

IN IL K

CMAC

CTRLINTF
I2C

CTRLINTF
IO I2C

I2C

SDB

ETMLMAC SMAC SlotP ins
IL K IL K IN IN

PicSlot
IN IL K

IL K

CTRLINTF I2C

VltPT CanBus4

SF P IN
LMAC 4

4

IOSFP [4]

Fig. 3. Example of Composite view

SFP[0]

SFP[1]

SFP[2]

SFP[3]

CARD1
OPTICAL[0] SDA SDB

ETM

LMAC[0]

CMAC

Op cal

LMAC SMAC
SlotP ins

SF P SF P

OPTICAL[1]
Op calSF P SF P

OPTICAL[2]
Op calSF P SF P

Op calSF P SF P

OPTICAL[3]

SF P IN

SF P INLMAC[1]

LMAC[2]
SF P IN

SF P INLMAC[3]

IN IL K IL K IL K IN IN

PicSlot

IN IL K IL K

Fig. 4. Example of Datapath view

5 Tool

We have implemented a programming prototype for our visual language using
the Eclipse Modeling Tools Xtext/EMF/Sirius [13,31]. We have specified the
grammar of our device management DSL using EBNF (Extended Backus-Naur
Form). We put some additional information into the grammar to convert it prop-
erly into Ecore (i.e., a visual language metamodel), indicating which constructs
can be grouped into metaclasses, and which grammar relations map into refer-
ences or inheritances. Next, using Sirius, we map the Ecore metamodel into the
graphical notation and generate the graphical editor.

It should be noted that Eclipse Modeling Tools allows to develop a target
visual tool and an environment for textual DSL that are seamlessly connected to
each other. In our case, seamlessness refers to the automatic synchronization of
constructions on diagrams and in the textual editor. Moreover, Eclipse Modeling
Tools provides rapid development process, which is very important taking into
account the iterative process of development based on regular user feedback.
However, implementing non-standard features using Sirius can be problematic.

Visual Language for Device Management 211

FPGA1

CARD1
C_OPTICAL[0]

CTRLINTF
IO

I2C

C_OPTICAL[1]

CTRLINTF
IO

I2C

CTRLINTF
IO

I2C

CTRLINTF
IO

I2C

C_OPTICAL[2]

C_OPTICAL[3]

CTRLLOGIC

I2C[2]

I2C[1]

I2C[4]

I2C[3]

IO [0]

IO [1]

IO [2]

IO [3]

I2C[5]

I2C[6]

CTRLINTF
I2C

SDA

CTRLINTF
I2C

SDB

Fig. 5. Example of Control view

CanBus

VltPT[3]

VltPT[0]

VltPT[1]

VltPT[2]

CARD1

Fig. 6. Example of Service view

In fact, there is a wide variety of aspects that should be kept in mind while
choosing a development technology for an industrial solution.

To validate our target tool, we have implemented 15 modules and demon-
strated results and tool features to the product line developers. They have given
us positive feedback, but insisted on Structured view being able to show all of
important structural elements of a module on a single diagram, ignoring the big
size of such a diagram for real life modules. Following [21], we would like to not
ignore the use process, even if we imagined it in a different way (i.e., we thought
that the Composite view would be enough for a high-level view). However, we
will have more feedback after a full introduction of our tool into the development
process.

6 Related Work

Hierarchical component models are widely used for modeling real-time systems
starting from SDL (70’s–90’s) [1]. In ROOM [8], the concept of components with
ports and interfaces was thoroughly elaborated on, including various kinds of
ports, layer connections, and deep integration ports/interfaces with an extended
final state machine. Furthermore, this model was used in UML in composite
structured diagrams [3], in the real-time UML profile MARTE [2], and SysML [5].
In avionics the special modeling language AADL is used, including features for
modeling hardware elements [15].

We have used components and ports from ROOM/MARTE in our visual
language, allowing three decomposition levels (module, chip, element). However,
in contrast to ROOM, our components are not black boxes: elements placed
on one chip can be connected directly to other elements in another chip via
element ports. We also allow to create simple relations between chips without
ports (in Service view). At last, we do not use a final state machine and port

212 E. Semenov et al.

interfaces (definition data and messages which can be transferred via ports that
include this interface). A final state machine is not suitable for hardware drivers,
and events (alarms and commands) which drivers process are not connected to
hardware ports and are defined separately.

In fact, we have used the subset of ROOM/MARTE that was suitable for our
domain, properly changing some details. We have employed the Domain Specific
Modeling (DSM) paradigm [20]: instead of customising existing modeling stan-
dards, we utilized all their features we needed to create our own small visual
language. Using a standard is justified if one is able to use existing tools which
support the standard, saving effort on tool development. However, the exten-
sion mechanism of modeling standards is not flexible enough, and customization
capabilities of modeling tools are quite limited. On the other hand, DSM tools
(especially Eclipse Modeling Tools) are mature nowadays. Moreover, it was nec-
essary for us to integrate visual language support with the DSL programming
toolset. Consequently, the DSM approach is more efficient in our case than using
standard visual modeling languages/tools.

The concept of a product line was actively researched and introduced to
the software industry in 1990–2000 [7]. The idea behind it is developing and
promoting a set of products together for a specific market segment, and, at the
same time, building the products from common (reusable) assets. The significant
number of methods and tools were created to support software product lines.
Below some recent reviews can be found. In [10], a systematic literature review
of the empirical studies on software product lines is presented (reviewed studies
were published between 2000 and 2018). In [14], variability metrics for software
product lines are collected and analyzed. Approaches to product line evolution
are reviewed in [27]. A survey of software product line management tools is
presented in [29]. Actually, the topic is a matter of practice rather than intensive
research nowadays.

Domain specific programming languages and model-based approach are used
in product line development. In [17], the product line is considered as a soft-
ware factory based on development by assembly, i.e. a significant part of the
target applications is supplied from ready-built and built-to order components.
However, it is more of a conceptual framework than a set of real development
assets (tools, languages, models, etc.). It should be also stressed that it does not
support any telecommunication specifics.

The model-driven approach is actively being employed in the context of vari-
ability management in product lines [9,18,33,35]. There is a special branch of this
approach that focuses on feature modeling [19,34,36], including development
of various artifacts, e.g., documentation [24]. The problem of these approaches
is the high complexity of variability languages and procedures. Additionally, it
requires a formal specification of the reusable artifacts.

A lot of research is dedicated to generation of applications in a product line
based on model-based specifications [12,17,22]. The problem of these approaches
is creating a labor-intensive and inflexible development infrastructure, which
becomes problematic in case of market changes [23].

Visual Language for Device Management 213

It should be noted that a large number of model-based approaches has
already been created. However, there is a problem with its wide adoption in
the industry [30]. Product lines appear to be a suitable context for model-based
development combined with domain-specific modeling and programming lan-
guages [17,20]. Thus, both research and industrial communities need reports
on successful large-scale applications of the model-based approach in order to
exchange their successful and unsuccessful experiences.

Finally, let us note that software/hardware telecommunication product lines
have become more and more labor-intensive, involving hundreds and even thou-
sands of developers. Meanwhile, there is a lack of research for telecommunication
product lines: we have found [11] concerning performance variability, and [28]
that considers the problem of defining a product line’s scope. In particular, we
were not able to find research on the device management problem.

7 Conclusion

In this paper, we have proposed a domain specific visual language for device man-
agement in a telecommunication product line. The language addresses the need
for browsing hardware specifications using the multiview concept. The imple-
mentation of the language in Eclipse Modeling Tools is presented.

The visual language proposed in the paper, could be extended, providing view
on modules (boards and cards) of product line. The most obvious relationship
between board and card is “a card could be inserted into a board”. However,
we plan to move ahead basing on feedback and demands of device management
engineers. It means we will develop features, which are most required.

As a further research direction, we plan to apply the concept of view-to-view
transformation [23] to produce more views demanded by the various needs of
the developers. One of the main tasks to solve in order to achieve this goal is
the layout problem: the generated views should be arranged properly. One of
the partial solutions of this problem is allowing manual layouting. In any case,
if the automatic layouting is not good enough, the tool will not be accepted by
users.

Another potential research direction is the support of planned reuse and
variability management of device management specifications. We could extend
the visual language by feature modeling formalism [19,36] for visual variability
management. It would be the next step after visualization of hardware structure
for device management.

Finally, using knowledge graphs and ontology engineering [16,26] as an alter-
native approach to gather and access information required for device manage-
ment appears to be promising. This approach may be efficient due to the sig-
nificant heterogeneity of the device management information, although we have
not highlighted this issue in the paper.

214 E. Semenov et al.

References

1. ITU Recommendation Z.100: Specification and Description Language. ITU-T
(2002)

2. A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded sys-
tems. OMG, June 2008

3. Unified Modeling Language (UML). OMG (2013)
4. Meta Object Facility (MOF) Core Specification. OMG (2015)
5. OMG Systems Modeling Language. OMG, November 2019
6. Baburin, D.E., Bulyonkov, M.A., Emelianov, P.G., Filatkina, N.N.: Visualization

facilities in program reengineering. Program. Comput. Softw. 27(2), 69–77 (2001)
7. Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,

Principles and Techniques. Springer, Heidelberg (2010). https://doi.org/10.1007/
3-540-28901-1

8. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. Wiley,
New York (1994)

9. Buchmann, T., Greiner, S.: Managing variability in models and derived artefacts in
model-driven software product lines. In: Proceedings of the 6th International Con-
ference on Model-Driven Engineering and Software Development, MODELSWARD
2018, Funchal, Madeira, Portugal, 22–24 January 2018, pp. 326–335. SciTePress
(2018)

10. Chacón-Luna, A.E., Gutiérrez, A.M., Galindo, J.A., Benavides, D.: Empirical soft-
ware product line engineering: a systematic literature review. Inf. Softw. Technol.
128, 106389 (2020)

11. Cvetković, R., Nešković, S.: An approach to defining scope in software product
lines for the telecommunication domain. In: Catania, B., Ivanović, M., Thalheim,
B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 555–558. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15576-5 44

12. Dageförde, J.C., Reischmann, T., Majchrzak, T.A., Ernsting, J.: Generating app
product lines in a model-driven cross-platform development approach. In: 49th
Hawaii International Conference on System Sciences, HICSS 2016, Koloa, HI, USA,
5–8 January 2016, pp. 5803–5812. IEEE Computer Society (2016)

13. Eclipse Project: Eclipse Sirius. https://www.eclipse.org/sirius/
14. El-Sharkawy, S., Yamagishi-Eichler, N., Schmid, K.: Metrics for analyzing vari-

ability and its implementation in software product lines: a systematic literature
review. In: Berger, T., et al. (eds.) Proceedings of the 23rd International Systems
and Software Product Line Conference, SPLC 2019, vol. A, p. 33:1. ACM (2019)

15. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduction
to the SAE Architecture Analysis and Design Language. SEI Series in Software
Engineering, Addison-Wesley, Boston (2012)

16. Gavrilova, T.: Ontological engineering for practical knowledge work. In: Apolloni,
B., Howlett, R.J., Jain, L. (eds.) KES 2007. LNCS (LNAI), vol. 4693, pp. 1154–
1161. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74827-4 144

17. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories: Assem-
bling Applications with Patterns, Models, Frameworks, and Tools. Wiley, Chich-
ester (2004)

18. He, X., Fu, Y., Sun, C., Ma, Z., Shao, W.: Towards model-driven variability-based
flexible service compositions. In: 39th IEEE Annual Computer Software and Appli-
cations Conference, COMPSAC 2015, Taichung, Taiwan, 1–5 July 2015, vol. 2, pp.
298–303. IEEE Computer Society (2015)

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-642-15576-5_44
https://www.eclipse.org/sirius/
https://doi.org/10.1007/978-3-540-74827-4_144

Visual Language for Device Management 215

19. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE
Softw. 19(4), 58–65 (2002)

20. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley, New York (2008)

21. Kelly, S., Pohjonen, R.: Worst practices for domain-specific modeling. IEEE Softw.
26(4), 22–29 (2009)

22. Kim, S.D., Min, H.G., Her, J.S., Chang, S.H.: DREAM: a practical product line
engineering using model driven architecture. In: Third International Conference on
Information Technology and Applications (ICITA 2005), 4–7 July 2005, Sydney,
Australia, pp. 70–75. IEEE Computer Society (2005)

23. Koznov, D.V.: Process model of DSM solution development and evolution for
small and medium-sized software companies. In: Workshops Proceedings of the
15th IEEE International Enterprise Distributed Object Computing Conference,
EDOCW 2011, Helsinki, Finland, 29 August–2 September 2011, pp. 85–92. IEEE
Computer Society (2011)

24. Koznov, D.V., Romanovsky, K.Y.: DocLine: a method for software product lines
documentation development. Program. Comput. Softw. 34(4), 216–224 (2008)

25. Kruchten, P.: The 4+1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)
26. Kudryavtsev, D., Gavrilova, T.: Diagrammatic knowledge modeling for managers -

ontology-based approach. In: KEOD 2011 - Proceedings of the International Con-
ference on Knowledge Engineering and Ontology Development, Paris, France, 26–
29 October 2011, pp. 386–389. SciTePress (2011)

27. Marques, M., Simmonds, J., Rossel, P.O., Bastarrica, M.C.: Software product line
evolution: a systematic literature review. Inf. Softw. Technol. 105, 190–208 (2019)

28. Myllärniemi, V., Savolainen, J., Männistö, T.: Performance variability in software
product lines: a case study in the telecommunication domain. In: 17th International
Software Product Line Conference, SPLC 2013, Tokyo, Japan, 26–30 August 2013,
pp. 32–41. ACM (2013)

29. Pereira, J.A., Constantino, K., Figueiredo, E.: A systematic literature review of
software product line management tools. In: Schaefer, I., Stamelos, I. (eds.) ICSR
2015. LNCS, vol. 8919, pp. 73–89. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-14130-5 6

30. Petre, M.: UML in practice. In: 35th International Conference on Software Engi-
neering, ICSE 2013, San Francisco, CA, USA, 18–26 May 2013, pp. 722–731. IEEE
Computer Society (2013)

31. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, Boston (2008)

32. Tolvanen, J., Kelly, S.: Applying domain-specific languages in evolving product
lines. In: Proceedings of the 23rd International Systems and Software Product Line
Conference, SPLC 2019, vol. B, Paris, France, 9–13 September 2019, pp. 65:1–65:2.
ACM (2019)

33. Tolvanen, J., Kelly, S.: How domain-specific modeling languages address variability
in product line development: investigation of 23 cases. In: Proceedings of the 23rd
International Systems and Software Product Line Conference, SPLC 2019, vol. A,
Paris, France, 9–13 September 2019, pp. 24:1–24:9. ACM (2019)

34. Usman, M., Iqbal, M.Z., Khan, M.U.: A product-line model-driven engineering
approach for generating feature-based mobile applications. J. Syst. Softw. 123,
1–32 (2017)

https://doi.org/10.1007/978-3-319-14130-5_6
https://doi.org/10.1007/978-3-319-14130-5_6

216 E. Semenov et al.

35. Verdier, F., Seriai, A.-D., Tiam, R.T.: Combining model-driven architecture and
software product line engineering: reuse of platform-specific assets. In: Hammoudi,
S., Pires, L.F., Selic, B. (eds.) MODELSWARD 2018. CCIS, vol. 991, pp. 430–454.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11030-7 19

36. Yang, G., Zhang, Y.: A feature-oriented modeling approach for embedded product
line engineering. In: 12th International Conference on Fuzzy Systems and Knowl-
edge Discovery, FSKD 2015, Zhangjiajie, China, 15–17 August 2015, pp. 1607–
1612. IEEE (2015)

https://doi.org/10.1007/978-3-030-11030-7_19

	Visual Language for Device Management in Telecommunication Product Line
	1 Introduction
	2 Approach Context
	3 Metamodel
	4 View Types
	5 Tool
	6 Related Work
	7 Conclusion
	References

