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Abstract. Principal component analysis (PCA), a well-known tech-
nique in machine learning and statistics, is typically applied to time-
independent data, as it is based on point-wise correlations. Dynamic
PCA (DPCA) handles this issue by augmenting the data set with lagged
versions of itself. In this paper, we show that both, PCA and DPCA,
are a special case of κ-circulant maximum variance bases. We formulate
the constrained linear optimization problem of finding such κ-circulant
bases and present a closed-form solution that allows further interpreta-
tion and significant speed-up for DPCA. Furthermore, the relation of the
proposed bases to the discrete Fourier transform, finite impulse response
filters as well as spectral density estimation is pointed out.
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1 Introduction

The quest for an effective data representation is a driving force in machine
learning. Often the data at hand has intrinsic regularities that are concealed in
the original space. An appropriately chosen transform from the input space I
to some feature space F can significantly improve the performance of machine
learning algorithms. This is why feature engineering and feature learning are
important tasks in machine learning [3].

Yet, a proper feature map is even more important, when there are regulari-
ties in the given data that are independent of time (or position) as it is the case
for time series or image data [2]. In this context, feature engineering and feature
learning are closely connected to signal processing and many of the well-known
integral transforms (and their discrete counterparts [19]) are still used for fea-
ture engineering [8]. These integral transforms, as for example Fourier, Gabor
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and Wavelet transforms, rely on a fixed basis (or frame), whereas another well-
established technique – principal component analysis [12] – can be used to learn
an orthogonal basis based on available data by finding the direction of maxi-
mum variance. As it is desirable to have data-adaptive representations, princi-
pal component analysis and similar techniques for dimensionality reduction are
frequently used in machine learning and pattern recognition [22,24].

State-of-the-art machine learning techniques, as for example convolutional
neural networks (CNNs) [1] and sparse dictionary learning (SDL) [20] build
on these ideas, i.e., signal representations are learned based on available data,
while enforcing certain properties (e.g. discriminative or sparse representa-
tions). However, the convolutional layers in CNNs are intrinsically offering shift-
invariance [7]. In contrast, in dictionary learning algorithms specific structures
are imposed to the dictionary, in order to find a shift-invariant basis (or frame,
e.g. [17]). Typically, these structures are introduced by means of Toeplitz or
circulant matrices [9]. These matrices establish the link to CNNs, as both can
be interpreted as a finite impulse response (FIR) filter, just like the filters in
CNNs [15]. In both techniques (CNNs and SDL) the filter coefficients are learned
adaptively.

The contribution of this work is a mathematical framework, that generalizes
classical principal component analysis as a problem of matched1 FIR filtering,
by requiring the principal component to be shift-invariant. In particular, we
present a constrained linear optimization problem, that formulates the classical
optimization problem of PCA as a shift-invariant problem. This means, instead
of finding the direction (a vector) of maximal variance in the input space I, we
seek a κ-circulant basis Gκ that maximizes variance (total dispersion [18]) in
the feature space F , where Gκ : I → F . The mathematical formulation of this
optimization problem, which allows a closed-form solution and hence a better
understanding of the results, is based on the decomposition of circulant matrices
into a matrix polynomial of a simple circular permutation matrix.

As a result, we obtain a class of data-adaptive bases, that constitute classical
PCA as well as discrete Fourier analysis (depending on the choice of parameters)
and allows a data-adaptive time-frequency decomposition as known from wavelet
analysis.

2 Preliminaries

Before we turn to the optimization problem of variance maximizing circulant
bases, we recapture related methods. In this paper we focus on two specific
orthogonal transforms, namely the discrete Fourier transform and principal
component analysis.2 Beneath classical PCA we also introduce dynamic PCA,

1 Matched filters are learned in a supervised setting, while here we restrict ourselves
to the unsupervised case. Hence, the “matching” of the filter coefficients is according
to a variance criterion (similar to PCA).

2 Principal component analysis is almost equivalent to the Karhunen-Loève transform
(KLT) [14]. Further information regarding the relationship between PCA and KLT
is given in [10].
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because it is closely related to κ-circulant bases. Finally, in Sect. 2.3 κ-circulant
matrices are introduced along with FIR filters.

2.1 Principal Component Analysis

Let X ∈ R
D×N be a data set consisting of N observations x ∈ R

D with zero-
mean. In order to find the principal component w.r.t. X, the optimization prob-
lem

max
u∈RD

{∥∥uT X
∥∥2

2

}
s.t. ‖u‖22 = 1. (1)

has to be solved. In a geometric meaning, we seek the vector u∗ (the princi-
pal component) being most similar to the observations x in the data set.3 The
corresponding Lagrangian

L(u, λ) = uT XXT u − λ(uT u − 1) (2)

leads to the eigenvalue problem

XXT u = λu, (3)

where XXT is proportional to the sample covariance matrix S ∈ R
D×D of the

data at hand (XT denotes the transpose of X). The symmetric covariance matrix
S can be diagonalized as Λ = UT SU, i.e.,

1
N − 1

XXT U = SU = UΛ. (4)

The column vectors of U are the eigenvectors (eigenbasis) of S and form an
orthogonal basis for RD. The eigenvector corresponding to the largest eigenvalue
is the principal component and points in the direction of maximum variance.

The representation x′ of some signal x ∈ X in a subspace S can be found
as UT

k x, where UT
k : X → S contains only the eigenvectors belonging to the

k largest eigenvalues. The reconstruction x′ of the signal x is then found as
UkUT

k x, i.e., Uk : S → X .
In the context of this work it is especially of interest, that depending on

the underlying stochastic process, the covariance matrix may have a Toeplitz-
like structure (cf. Sect. 4.1) and the corresponding eigenbasis approximates a
Fourier basis [21].

2.2 Dynamic Principal Component Analysis

In [13] Ku et al. proposed dynamic PCA for statistical process monitoring, where
the original data set is augmented by lagged versions of itself. Hereby the number
of lags L is a free parameter. This method of data augmentation is used in order
to achieve circular permutation invariance and to overcome the static behavior

3 The dot product uTx serves as measure of similarity.
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of classical PCA. In fact, a classical PCA is performed, yet instead of the original
data set X the augmented data set XA is used. This can be formalized as

XA =
[
P0X P1X · · · PL−1X

]
, (5)

where P is the permutation matrix

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 0
...

. . .
...

0 1
1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

∈ R
D×D. (6)

Hence, for DPCA the principal component is the eigenvector u∗ of XAXT
A with

the largest corresponding eigenvalue, which can also be found as a solution to
the optimization problem

max
u∈RD

{∥∥uT P0X
∥∥2

2
+ · · · +

∥∥uT PL−1X
∥∥2

2

}
s.t. ‖u‖22 = 1. (7)

2.3 κ-Circulant Matrices

A circulant matrix C ∈ R
D×D is formed by a vector c ∈ R

W and its lagged
versions, e.g. when W = D it is a matrix of the form

C =

⎡
⎢⎢⎢⎣

c0 c1 · · · cW−1

cW−1 c0 · · · cW−2

...
. . .

...
c1 c2 · · · c0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

| cT |

| cT P |

...

| cT PD−1 |

⎤
⎥⎥⎥⎦ =

W−1∑
w=0

cwPw, (8)

where P corresponds to a circular permutation as defined in Eq. 6. An example
of a simple circulant is shown in the top left graph of Fig. 1.

A circulant matrix can be diagonalized as

C = FΛF−1, (9)

where F ∈ R
D×D is the discrete Fourier matrix with components fj,k that are

given as fj,k = exp (−2πijk/D)/
√

D for all 0 ≤ j, k < D with i2 = −1 [11].
The eigenvalue matrix Λ =

√
D diag (Fc) is a diagonal matrix with the discrete

Fourier transform of c on its diagonal. Hence, the eigenvectors of a circulant
matrix are the Fourier modes and the eigenvalues can be computed from the
DFT ĉ =

√
D Fc of the vector c, i.e., λj = ĉj .

This can also be understood by means of the convolution theorem: multiply-
ing a circulant matrix C ∈ R

D×D (that is based on the vector c ∈ R
D) with

some vector x ∈ R
D realizes a discrete circular convolution4, i.e., Cx = x � c =

F−1ΛHFx with ΛH being the conjugate transpose of Λ.
4 The discrete circular convolution of two sequences x,y ∈ R

D is written as x � y,
while the linear convolution is written as x ∗ y.
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A linear convolution can be expressed as a circular convolution, when zero-
padding is used. Hence, C can describe a simple FIR filter [23]. For a filter-kernel
c ∈ R

W and data x ∈ R
D the linear convolution c ∗ x can be written as

Cx = c ∗ x =
(

W−1∑
w=0

cwPw

)
x where x,P ∈ R

W+D−1. (10)

Fig. 1. Examples of κ-circulant matrices Cκ according to Eq. 11 for D = 8 and the
equivalent (sub)matrices Gκ according to Eq. 20 (framed black). Equation 19 formu-
lates the problem of finding the optimal kernel g given a fixed structure of Gκ. For
ease of visualization these exemplary matrices are based on a kernel c ∈ R

W that is a
simple ramp (e.g. cT = [0.125 0.25 0.375 · · · 1] is the first row in the top left matrix).
Note that the bottom right matrix is a wavelet-like structure.

A κ-circulant matrix Cκ ∈ R
D×D is the generalization of a standard circulant

and has the form [4]

Cκ =

⎡
⎢⎢⎢⎣

c0 c1 · · · cD−1

cD−κ cD−κ+1 · · · cD−κ−1

...
. . .

...
cκ cκ+1 · · · cκ−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

| cT |

| cT Pκ |

...

| cT Pκ(D−1) |

⎤
⎥⎥⎥⎦ , (11)

where the subscripts are modulo D. Some examples are shown in Fig. 1.

3 Maximum Variance Bases

In this section, we present a novel optimization problem, that generalizes PCA
and DPCA. This more general optimization problem is based on the idea of
searching a basis, that is inherently translation-invariant. This is enforced, by
choosing circulant structures, that are based on circular permutations. We refer
to those as “matched” κ-circulant matrices.
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3.1 Simple Matched Circulants

For the sake of simplicity, before treating the general case of κ-circulant bases, in
this section we restrict ourselves to the case of standard circulant matrices (κ =
1). In order to find a basis that maximizes variance we formulate a constrained
linear optimization problem analogously to PCA (cf. Eq. 1). However, instead of
a single vector we seek a circulant matrix G (a filter, cf. Sect. 2.3) that solves

max
g∈RW

{
‖GX‖2F

}
s.t. ‖g‖22 = 1, (12)

where ‖ · ‖F denotes the Frobenius norm and

G =
W−1∑
w=0

gwPw. (13)

According to Eq. 10 G is a FIR filter with coefficients g. Hence Eq. 12 may also
be understood as the problem of designing a FIR filter such that the transmitted
energy is maximized.5 Hence, Eq. 12 poses power spectral density estimation as
a constrained linear optimization problem. The corresponding Lagrangian is

L(g, λ) =
N∑

ν=1

〈∑w gwPwxν ,
∑

w gwPwxν〉 − λ
(
gT g − 1

)

=
N∑

ν=1

xT
ν (

∑
w gwP−w) (

∑
w gwPw)xν − λ

(
gT g − 1

)
,

where the product GT G = (
∑

w gwP−w) (
∑

w gwPw) is

GT G = g20P
0 + · · · + g0gW−1PW−1 + · · · + gW−1g0P1−W + · · · + g2W−1P

0.

Thus the derivative of L(g, λ) w.r.t. gk can be given as

∂L
∂gk

= −
N∑

ν=1

〈
xν ,

(∑
w gw

(
Pw−k + Pk−w

))
xν

〉
+ 2λgk. (14)

Due to 〈Px,x〉 = 〈x,PT x〉 and because the transpose PT of a circulant matrix
equals its inverse (i.e., PT = P−1) we can write 〈x,Pk−wx〉 + 〈x,Pw−kx〉 =
〈x,Pk−wx〉 + 〈Pk−wx,x〉 and hence using the symmetry of the scalar product
we find

∂L
∂gk

= −2
∑

ν

〈
xν ,

∑
w gwPw−kxν

〉
+ 2λgk. (15)

With the abbreviation zk,w =
∑

ν

〈
xν ,Pk−wxν

〉
for the components of the

matrix Z ∈ R
W×W this leads to⎡

⎢⎣
z0,0 · · · z0,W−1

...
. . .

...
zW−1,0 · · · zW−1,W−1

⎤
⎥⎦g = Zg = λg. (16)

5 Due to the constraint ‖g‖2
2 = 1 this is not trivial.
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Note that Z is a symmetric Toeplitz matrix that is fully determined by its first
column vector z, because the value of zk,w only depends on the difference of the
indeces k − w but not on the absolute value of k and w. The components zk,w

of the matrix Z are given as (cf. Eq. 15)

zk,w =
∑

ν

〈
xν ,Pk−wxν

〉
(17)

This means the value of zk,w depends on the similarity of xν and the lagged
versions Pk−wxν . In case of zero-mean data, this corresponds to the circular
sample autocorrelation6 r ∈ R

D, which can be estimated by

r ∝
N∑

ν=1

[
F−1

(
FX � FX

)]
w,ν

, (18)

where � denotes the Hadamard product (pointwise matrix multiplication). Due
to z ∝ r the sample autocorrelation matrix Z can be computed in O(D log D)
by means of the fast Fourier transform (FFT).

3.2 Matched κ-Circulant Matrices

The generalization of Eq. 12 for κ-circulant matrices is

max
g∈RW

{
‖GκX‖2F

}
s.t. ‖g‖22 = 1. (19)

The matrix Gκ is defined as

Gκ = Mκ

W−1∑
w=0

gwPw, (20)

where the “masking” matrix Mκ has components

mj,k =

{
1 if j = k ∈ [0, κ, 2κ, · · · , �D/κ − 1
κ]
0 else.

(21)

Left multiplication of this masking matrix to a circulant matrix G essentially
preserves only every κ-th rows of G (cf. [17]). The effect of Mκ and the resulting
structure of the matrix Gκ is shown in Fig. 1.

The derivative of the Lagrangian resulting from Eq. 19 is

∂L
∂gk

=
N∑

ν=1

〈xν ,
(∑

w gw

(
P−wMT

κ MκPk + P−kMT
κ MκPw

))
xν〉 − 2λgk. (22)

6 This interpretation is only valid under the assumptions mentioned in Sect. 3.3. Fur-
thermore, the normalization of the autocorrelation (autocovariance) is to be per-
formed as r′ = r

r0
, with the first component r0 of r being the variance [16].
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Analogously to Eq. 16 we find an eigenvalue problem

Zκg = λg, (23)

where the symmetric matrix Zκ ∈ R
W×W has components

zk,w =
N∑

ν=1

〈xν ,P−wMκPkxν〉. (24)

Note that the resulting matrix Zκ is a consequence of the structure of Gκ,
in other words, fixing the parameters κ and W means to hypothesize a certain
model. Assume – as an example – a circulant data matrix: in this case the sample
covariance matrix S becomes a symmetric circulant matrix and is equal to the
sample autocorrelation matrix. Hence, the parameters κ and W imply a certain
model.

3.3 Relation to PCA, DPCA and DFT

The closed-form solution for a κ-circulant variance maximizing bases presented
in the previous section has many implications. In the following the relation of
the presented solution to PCA, DPCA and DFT is described.

PCA. When κ = W = D the optimization problem formulated in Eq. 19 is
equivalent to the problem of finding principal components as described in Eq. 1.
In this case the only non-zero component of Mκ is m0,0 = 1, such that Zκ =
ZD ∝ S, i.e., the matrix Z is proportional to the sample covariance matrix (as
for usual PCA this only holds when the underlying data set has zero-mean data).
This can also be understood from Fig. 1, where this case is depicted by example
(W = D = κ = 8).

DPCA. When choosing κ = 1 and W = D we can identify the number of lags
L for DPCA with the kernel width W . This can be seen, when comparing Eq. 7
with the equivalent problem

max
g∈RD

{∥∥(P0g)T X
∥∥2

2
+ · · · +

∥∥(PW−1g)T X
∥∥2

2

}
s.t. ‖g‖22 = 1, (25)

which in turn is equivalent to Eq. 12. However, computing Z1 as Z1 = XAXT
A

in O(D3) is less efficient than using Eq. 18 with O(D log D). This case is shown
by example in Fig. 1 in the top left matrix (W = D = 8, κ = 1).

Introducing another masking matrix Mγ similar to Mκ it is possible to aug-
ment Eq. 12, such that DPCA with a smaller number of lags (L < D) can be
modeled. This matrix Mγ has to be a diagonal matrix with the first L − 1 diag-
onal entries being one and the rest being zero. The solution of this problem is
analogously to Eq. 23 with Mκ in Eq. 24 being replaced by Mγ . Yet, when nar-
row range dependencies are expected, it is more efficient to choose κ = 1 and
W < D.
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DFT. Assuming equidistantly sampled zero-mean data that stems from a wide-
sense stationary stochastic process, in the case D = W and κ = 1, the matrix
Z1 is proportional to the circular sample autocorrelation matrix [6]. The circular
autocorrelation is symmetric and hence the resulting matrix Z1 is a symmetric
circulant, i.e., according to Eq. 9 we have Z1 = FΛF−1 with Λ =

√
D diag (Fr).

This means that the optimal D-dimensional shift-invariant basis (maximizing the
total dispersion7) is the discrete Fourier basis F, because this is the eigenbasis
of the matrix Z1. Furthermore, under the assumptions stated above, the vector
p =

√
D Fr is an estimate of the power spectral density, which is by definition

the discrete time Fourier transform of the sample autocorrelation [16].

4 Numerical Results

In the following the presented theory is demonstrated using the example of
a stationary random process, i.e., data points x ∈ R

128 are sampled from a
moving-average (MA) process (cf. [16]). This moving average process is based
on a modulated and truncated Gaussian f(t) = sin(2πt) exp(−t2) (cf. Fig. 2)
that is sampled on the interval [−2, 2] (with sampling frequency 16Hz such that
f ∈ R

64). Additionally we visualize the results based on a stationary process
that realizes random shifts of a fixed signal. Although these settings are rather
specific, they serve the purpose of demonstrating the proposed framework and
visualize the main results.

Fig. 2. Observations of the data (left graph) taken from a moving average process with
the kernel f shown in the middle graph. The right graph shows the absolute value of
the discrete Fourier transform f̂ of f and its estimate p, i.e., the (single-sided) spectral
density of the corresponding random process (the x-axis is the frequency axis showing
halfcycles/sample).

In the examples presented here, the parameters W and κ are always chosen
appropriately although such a clear setup does not always naturally arise. Yet, in
most cases this is a minor problem. If W,D and κ are inconsistent, zero-padding
can be used to overcome this issue (as it is done for discrete Fourier transform).
However, as shown in Fig. 1 in the bottom left graph, the effect of Mκ is not
always as desired. In fact κ and W should be chosen such that mod(D,κ) =

7 Let Y = GκX. Maximizing ‖Y‖2
F (cf. Eq. 19) means maximizing the trace of the

covariance matrix S ∝ YYT , which in turn is a measure for the total dispersion
[18].
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mod(D,W ) = 0. This is not a strong restriction, when zero-padding (or another
kind of padding, e.g. symmetric) is used.

4.1 MA Process

In Fig. 2 an overview about the data and the generating process is given. In
the right graph of Fig. 2 the power spectral density and its estimate from the
sample autocorrelation is shown. Figure 3 shows four different configurations of
the matrix Z. As the underlying process is a MA process, the covariance matrix
S (which stems from Eq. 24 with κ = D) is almost Toeplitz-structured. Yet,
estimating the process characteristic incorporating shift-invariance (κ = 1) to
the model leads to a better approximation. This can also be seen from Fig. 4,
where the “principal component” is depicted as a function of W . In Fig. 5 the first
5 eigenvectors are depicted for W = D/2 and W = D/4. Finally it is interesting
to note that the basic optimization problem stated in Eq. 12 is strongly related
to a MA model.

κ = D = 128 κ = D/2 κ = D/4 κ = 1

Fig. 3. The matrix Zκ for different values of κ (with W = D). The left matrix cor-
responds to the covariance matrix (PCA) and the right matrix is equivalent to the
autocovariance matrix. The matrices in between show two “intermediate” steps.

W = 128 = D

W = 64
W = 32
W = 16
W = 8
W = 4

Fig. 4. The eigenvector g∗ ∈ R
W belonging to the largest eigenvalue for varying W .
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g1

g2

g3

g4

g5

Fig. 5. The first 5 eigenvectors g1, . . . ,g5 corresponding to the 5 largest eigenvalues
for W = 32 = D/4 (left graph) and W = 64 = D/2.

4.2 Circular Process

The characteristic of the process and example data is shown in Fig. 6, whereas
the generating function is chosen as in the previous section, i.e., we observe
random shifts of a noisy modulated gaussian. The corresponding matrices Zκ

are shown in Fig. 8 for a variety of parameters. In Fig. 7 the reconstruction of a
sample signal is shown for different parameter settings. The example shown in
Fig. 7 is restricted to the case W = κ, which means PCA is performed on various
scales. The result is less trivial when κ < W , as then a frame (cf. [5]) is resulting
instead of an orthogonal basis.

x1

x2

· · ·
g

1/2

p

ĝ

Fig. 6. Examples of the data (left graph) generated by random shifts of the kernel
g shown in the middle graph with additive noise. The right graph shows the power
spectral density ĝ of g and its estimate p.

x

κ = W = 64
κ = W = 8
κ = W = D

Fig. 7. Example of the reconstruction of a signal (from the two first principal compo-
nents) drawn from the process described with four different settings. As expected the
reconstruction improves with decreasing W (increasing resolution).
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κ = D = W = 128 κ = W = 32 = D/4 κ = 1, W = 64 κ = 1, W = D

Fig. 8. The matrix Zκ for different values of κ estimated from N = 32 samples of a
circular random process generated from random shifts of the vector g depicted in Fig. 6
(middle graph). The left matrix corresponds to PCA (Z1 = S when W = D = κ), the
right matrix is an estimate of the autocovariance matrix and the two graphs in the
middle show matrices Zκ ∈ R

W×W of reduced dimension W < D.

5 Conclusion

PCA and linear filtering (FIR filters) are both relevant topics with many appli-
cations in machine learning. Our work presents a mathematical framework that
establishes a link between those techniques and hence allows a better under-
standing. Beyond that, our formulation allows to estimate models that may
incorporate time-frequency trade-offs in data-adaptive representations. Inherent
to the presented theory is a mathematical formulation, that generalizes PCA in
terms of shift-invariance. This way the relation between PCA and FIR filters,
DFT and DPCA is made explicit and an FFT-based implementation of DPCA
can be proposed. A signal processing point-of-view is provided along with exam-
ples on stationary stochastic processes.
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