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Abstract. Deep neural networks (DNNs) offer a means of address-
ing the challenging task of clustering high-dimensional data. DNNs can
extract useful features, and so produce a lower dimensional representa-
tion, which is more amenable to clustering techniques. As clustering is
typically performed in a purely unsupervised setting, where no training
labels are available, the question then arises as to how the DNN fea-
ture extractor can be trained. The most accurate existing approaches
combine the training of the DNN with the clustering objective, so that
information from the clustering process can be used to update the DNN
to produce better features for clustering. One problem with this app-
roach is that these “pseudo-labels” produced by the clustering algorithm
are noisy, and any errors that they contain will hurt the training of the
DNN. In this paper, we propose selective pseudo-label clustering, which
uses only the most confident pseudo-labels for training the DNN. We for-
mally prove the performance gains under certain conditions. Applied to
the task of image clustering, the new approach achieves a state-of-the-art
performance on three popular image datasets.

1 Introduction

Clustering is the task of partitioning a dataset into clusters such that data points
within the same cluster are similar to each other, and data points from different
clusters are different to each other. It is applicable to any set of data for which
there is a notion of similarity between data points. It requires no prior knowledge,
neither the explicit labels of supervised learning nor the knowledge of expected
symmetries and invariances leveraged in self-supervised learning.

The result of a successful clustering is a means of describing data in terms of
the cluster that they belong to. This is a ubiquitous feature of human cognition.
For example, we hear a sound and think of it as an utterance of the word “water”,
or we see a video of a biomechanical motion and think of it as a jump. This can
be further refined among experts, so that a musician could describe a musical
phrase as an English cadence in A major, or a dancer could describe a snippet
of ballet as a right-leg fouette into arabesque. When clustering high-dimensional
data, the curse of dimensionality [2] means that many classic algorithms, such as
k-means [29] or expectation maximization [10], perform poorly. The Euclidean
distance, which is the basis for the notion of similarity in the Euclidean space,
becomes weaker in higher dimensions [51]. Several solutions to this problem have
been proposed. In this paper, we consider those termed deep clustering.
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Deep clustering is a set of techniques that use a DNN to encode the high-
dimensional data into a lower-dimensional feature space, and then perform clus-
tering in this feature space. A major challenge is the training of the encoder.
Much of the success of DNNs as image feature extractors (including [24,46]) has
been in supervised settings, but if we already had labels for our data, then there
would be no need to cluster in the first place. There are two common approaches
to training the encoder. The first is to use the reconstruction loss from a corre-
sponding decoder, i.e., to train it as an autoencoder [47]. The second is to design
a clustering loss, so that the encoding and the clustering are optimized jointly.
Both are discussed further in Sect. 2.

Our model, selective pseudo-label clustering (SPC ), combines reconstruction
and clustering loss. It uses an ensemble to select different loss functions for dif-
ferent data points, depending on how confident we are in their predicted clusters.

Ensemble learning is a function approximation where multiple approximating
models are trained, and then the results are combined. Some variance across the
ensemble is required. If all individual approximators were identical, there would
be no gain in combining them. For ensembles composed of DNNs, variance is
ensured by the random initializations of the weights and stochasticity of the
training dynamics. In the simplest case, the output of the ensemble is the average
of each individual output (mean for regression and mode for classification) [36].

When applying an ensemble to clustering problems (referred to as consen-
sus clustering; see [3] for a comprehensive discussion), the sets of cluster labels
must be aligned across the ensemble. This can be performed efficiently using
the Hungarian algorithm. SPC considers a clustered data point to be confident
if it received the same cluster label (after alignment) in each member of the
ensemble. The intuition is that, due to random initializations and stochasticity
of training, there is some non-zero degree of independence between the different
sets of cluster labels, so the probability that all cluster labels are incorrect for a
particular point is less than the probability that a single cluster label is incorrect.

Our main contributions are briefly summarized as follows.

– We describe a generally applicable deep clustering method (SPC), which
treats cluster assignments as pseudo-labels, and introduces a novel technique
to increase the accuracy of the pseudo-labels used for training. This produces
a better feature extractor, and hence a more accurate clustering.

– We formally prove the advantages of SPC, given some simplifying assump-
tions. Specifically, we prove that our method does indeed increase the accu-
racy of the targets used for pseudo-label training, and this increase in accuracy
does indeed lead to a better clustering performance.

– We implement SPC for image clustering, with a state-of-the-art performance
on three popular image clustering datasets, and we present ablation studies
on its main components.

The rest of this paper is organized as follows. Section 2 gives an overview
of related work. Sections 3 and 4 give a detailed description of SPC and a
proof of correctness, respectively. Section 5 presents and discusses our experi-
mental results, including a comparison to existing image clustering models and



160 L. Mahon and T. Lukasiewicz

ablation studies on main components of SPC. Finally, Sect. 6 summarizes our
results and gives an outlook on future work. Full proofs and further details are
in the appendix.

2 Related Work

One of the first deep image clustering models was [19]. It trains an autoencoder
(AE) on reconstruction loss (rloss), and then clusters in the latent space, using
loss terms to make the latent space more amenable to clustering.

In [44], the training of the encoder is integrated with the clustering. A sec-
ond loss function is defined as the distance of each encoding to its assigned
centroid. It then alternates between updating the encoder and clustering by k-
means. A different differentiable loss is proposed in [43], based on a soft cluster
assignment using Student’s t-distribution. The method pretrains an AE on rloss,
then, like [44], alternates between assigning clusters and training the encoder on
cluster loss. Two slight modifications were made in later works: use of rloss after
pretraining in [16] and regularization to encourage equally-sized clusters in [14].

This alternating optimization is replaced in [13] by a clustering loss that
allows cluster centroids to be optimized directly by gradient descent.

Pseudo-label training is introduced by [6]. Cluster assignments are inter-
preted as pseudo-labels, which are then used to train a multilayer perceptron on
top of the encoding DNN, training alternates between clustering encodings, and
treating these clusters as labels to train the encoder.

Generative adversarial networks [15] (GANs) have produced impressive
results in image synthesis [5,12,22]. At the time of writing, the most accurate
GAN-based image clustering models [11,35] design a generator to sample from
a latent space that is the concatenation of a multivariate normal vector and a
categorical one-hot encoding vector, then recover latent vectors for the input
images as in [9,28], and cluster the latent vectors. A similar idea is employed
in [21], though not in an adversarial setting. For more details on GAN-based
clustering, see [11,27,40,49,50] and the references therein.

Adversarial training is used for regularization in [33]. In [34], the method
is developed. Conflicted data points are identified as those whose maximum
probability across all clusters is less than some threshold, or whose max and next-
to-max are within some threshold of each other. Pseudo-label training is then
performed on the unconflicted points only. A similar threshold-based filtering
method is employed by [7].

A final model to consider is [30], which uses a second round (i.e., after the
DNN) of dimensionality reduction via UMAP [32], before clustering.

3 Method

Pseudo-label training is an effective deep clustering method, but training on
only partially accurate pseudo-labels can hurt the encoder’s ability to extract
relevant features. Selective pseudo-label clustering (SPC) addresses this problem
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Fig. 1. The complete SPC method. (1) Pretrain autoencoders. (2) Perform multiple
clusterings independently. (3) Identify agreed points as those that receive the same
label in all ensemble members. (4) Perform pseudo-label training on agreed points and
autoencoder training on unagreed points. Steps (2)–(4) are looped until the number of
agreed points stops increasing.

by selecting only the most confident pseudo-labels for training, using the four
steps shown in Fig. 1.

1. Train K autoencoders in parallel.
2. Cluster in the latent space of each, to obtain K sets of pseudo-labels.
3. Select for pseudo-label training, those points are those that received the same

label in all K sets of pseudo-labels, after the labellings have been aligned using
the Hungarian algorithm.

4. Train on the selected pseudo-labels. Go back to (2).

Training ends when the number of agreed points stops increasing. Then, each
data point is assigned its most common cluster label across the (aligned) ensem-
ble.

3.1 Formal Description

Given a dataset X ⊆ R
n of size N with C true clusters, let (fj)1≤j≤K , fj : Rn →

R
m, and (gj)1≤j≤K , gj : Rm → R

n be the K encoders and decoders, respectively.
Let ψ : RN×m → {0, . . . , C − 1}N be the clustering function, which takes the N
encoded data points as input, and returns a cluster label for each. We refer to the
output of ψ as a labelling. Let Γ : {0, . . . , C−1}K×N → {0, . . . , C−1}N ×{0, 1}N
be the consensus function, which aggregates K different labellings of X into a
single labelling, and also returns a Boolean vector indicating agreement. Then,
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Algorithm 1. Training algorithm for SPC
for j = 1, . . . ,K do

Update parameters of fj and gj using autoencoder reconstruction
end for
while number of agreed points increases do

compute (c1, . . . , cN ), (a1, . . . , aN ) as in (1)
for j = 1, . . . ,K do

Update parameters of fj and hj to minimize (2)
end for

end while

(c1, . . . , cN ), (a1, . . . , aN ) = Γ(ψ(f1(X )) ◦ · · · ◦ ψ(fK(X ))), (1)

where (c1, . . . , cN ) are the consensus labels, and ai = 1 if the i-th data point
received the same cluster label (after alignment) in all labellings, and 0 otherwise.
The consensus function is the ensemble mode average, ci is the cluster label that
was most commonly assigned to the i-th data point.

Define K pseudo-classifiers (hj)1≤j≤K , hj : Rm → R
C , and let

L =
1
N

N∑

i=1

K∑

j=1

{
CE(hj(fj(xi)), ci) ai = 1
||gj(fj(xi)) − xi|| otherwise,

(2)

where CE denotes categorical cross-entropy:

CE : RC × {0, . . . , C − 1} → R

CE(x, n) = − log(x[n]) .

First, we pretrain the autoencoders, then compute (c1, . . . , cN ), (a1, . . . , aN ) and
minimize L, recompute, and iterate until the number of agreed points stops
increasing. The method is summarized in Algorithm 1.

Figure 2 shows the training dynamics. Agreed points are those that receive
the same cluster label in all members of the ensemble. As expected, the agreed
points’ accuracy is higher than the accuracy on all points. Initially, the agreed
points will not include those that are difficult to cluster correctly, such as an
MNIST digit 3 that looks like a digit 5. Some ensemble members will cluster
it as a 3 and others as a 5. The training process aims to make these difficult
points into agreed points, thus increasing the fraction of agreed points, without
decreasing the agreed points’ accuracy. Figure 2 shows that this aim is achieved.
As more points become agreed (black dotted line), the total accuracy approaches
the agreed accuracy. The agreed accuracy remains high, decreasing only very
slightly (blue line). The result is that the total accuracy increases (orange line).
We end training when the number of agreed points plateaus.
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Fig. 2. Iterations of (2)–(4) in Fig. 1 on MNIST.

3.2 Implementation Details

Encoders are stacks of convolutional and batch norm layers; decoders of trans-
pose convolutional layers. Decoders have a tanh activation on their output layer,
all other layers use leaky ReLU. The MLP pseudo-classifier has a hidden layer
of size 25. The latent space of the autoencoders has the size 50 for MNIST and
FashionMNIST, and 20 for smaller USPS. We inject noise from a multivariate
normal into the latent space as a simple form of regularization. As suggested
in [48], the reconstruction loss is �1. The architectures are the same across the
ensemble, diversity comes from random initialization and training dynamics.

The clustering function (ψ above) is a composition of UMAP [32] and either
HDBSCAN [31] or a Gaussian mixture model (GMM). As in previous works,
we set the number of clusters to the ground truth. UMAP uses the parameters
suggested in the clustering documentation clustering, n neighbours is 30 for
MNIST and scaled in proportion to the dataset size for the others. HDBSCAN
uses all default parameters. We cut the linkage tree at a level that gives the
correct number of clusters. On the rare occasions when no such cut can be
found, the clustering is excluded from the ensemble. The GMM uses all default
parameters.

Consensus labels are taken as the most common across the ensemble, after
alignment with the Hungarian algorithm (called the “direct” method in [3]).

4 Proof of Correctness

Proving correctness requires proving that the expected accuracy of the agreed
pseudo-labels is higher than that of all pseudo-labels, and that training with
more accurate pseudo-labels makes the latent vectors easier to cluster correctly.
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4.1 Agreed Pseudo-Labels Are More Accurate

Given that each member of the ensemble is initialized independently at ran-
dom, and undergoes different stochastic training dynamics, we can assume that
each cluster assignment contains some unique information. Formally, there is
strictly positive conditional mutual information between any one assignment in
the ensemble and the true cluster labels, conditioned on all the other assignments
in the ensemble. From this assumption, the reasoning proceeds as follows.

Choose an arbitrary data point x0 and cluster c0. Let X be a random variable
(r.v.), indicating the true cluster of x0, given that n members of the ensemble
have assigned it to c0, and other assignments are unknown, n ≥ 0. Thus, the
event X = c0 is the event that x0 is correctly clustered. Let Y be a Boolean
r.v. indicating that the (n + 1)-th member of the ensemble also assigns it to c0.
Assume that, if n ensemble members have assigned x0 to c0, and other assign-
ments are unknown, then x0 belongs to c0 with probability at least 1/C and
belongs to all other clusters with equal probability, i.e.,

p(X = c0) = t

∀c �= c0, p(X = c) = (1 − t)/(C − 1) ,

for some 1/C ≤ t ≤ 1. It follows that the entropy H(X) is a strictly decreasing
function of t (see appendix for proof). Thus, the above assumption on condi-
tional mutual information, written I(X;Y ) > 0, is equivalent to p(X = c0|Y ) >
p(X = c0). This establishes that the accuracy of the agreed labels is an increas-
ing function of ensemble size. Standard pseudo-label training uses n = 1, whereas
SPC uses n > 1 and so results in more accurate pseudo-labels for training.

4.2 Increased Pseudo-Label Accuracy Improves Clustering

Problem Formulation. Let D be a dataset of i.i.d. points from a distribution
over S ∈ R

n, where S contains C true clusters c1, . . . , cC . Let T be the r.v.
defined by the identity function on S and f : S → R

m, an encoding function
parametrized by θ, whose output is an r.v. X. The task is to recover the true
clusters conditional on X, and we are interested in choosing θ such that this task
is as easy as possible. Pseudo-label training applies a second function h : Rm →
{0, . . . , C − 1} and trains the composition h ◦ f : Rn → {0, . . . , C − 1} using
gradient descent (g.d.), with cluster assignments as pseudo-labels. The claim is
that an increased pseudo-label accuracy facilitates a better choice of θ.

To formalize “easy”, recall the definition of clustering as a partition that
minimizes intra-cluster variance and maximizes inter-cluster variance. We want
the same property to hold of the r.v. X. Let y : D → {0, . . . , C − 1} be the true
cluster assignment function and Y the corresponding random variable, then ease
of recovering the true clusters is captured by a high value of d, where

d = Var(E[X|Y ]) − E[Var(X|Y )].
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High d means that a large fraction of the variance of X is accounted for by
cluster assignment, as, by Eve’s law, we can decompose:

Var (X) = E[Var(X|Y )] + Var(E[X|Y ]), (3)

In the following, we assume that f and g are linear, C = 2, h ◦ f(D) ⊆ (0, 1),
and E[T ] =

−→
0 . The proof proceeds by expressing the value of d in terms of

expected distances between encoded points after a training step with correct
labels and with incorrect labels, and hence proving that the value is greater in
the former case. We show that the expectation is greater in each coordinate,
from which the claim follows by linearity (see appendix for details).

Lemma 1. Let x, x′ ∈ D be two data points, and consider the expected squared
distance between their encodings under f . Let usame and udiff denote the value
of this difference after a g.d. update in which both labels are the same and after
a step in which both labels are different, respectively. Then, usame < udiff .

If w ∈ R
m and w′ ∈ R are, respectively, the vector of weights mapping the

input to the i-th coordinate of the latent space, and the scalar mapping the i-th
coordinate of the latent space to the output, then the expected squared distance
in the i-th coordinate of the latent vectors before the g.d. update is

E
x,x′∼T

[(wTx − wTx′)2] = E
x,x′∼T

[(wT (x − x′))2].

When the two labels are the same, assume w.l.o.g. that y = y′ = 0. Then, with
step size η, the update for w and following expected squared difference usame is

w ← w − η(w′(x + x′))

usame = E
x,x′∼T

[((w − ηw′(x + x′))T (x − x′))2]

= E
x,x′∼T

[(wT (x − x′) − ηw′(||x||2 − ||x′||2))2].

When the two labels are different, assume w.l.o.g. that y = 0, y′ = 1, giving

w ← w − η(w′(x − x′))

udiff = E
x,x′∼T

[((w − η(w′(x − x′))T )(x − x′)])2]

= E
x,x′∼T

[(wT (x − x′) − ηw′||x − x′||2)2].

It can then be shown (see appendix) that usame < udiff .

Lemma 2. Let z be a third data point, z ∈ D, z �= x, x′, and consider the
expected squared distance of the encodings, under f , of x and z. Let vsame and
vdiff denote, respectively, the value of this difference after a g.d. update with two
of the same labels, and with two different labels. Then, vsame = vdiff .
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Lemma 3. Let s and r denote, respectively, the expected squared distance
between the encodings, under f , of two points in the same cluster and between
two points in different clusters. Then, there exist λ1, λ2 > 0 whose values do not
depend on the parameters of f , such that d = λ1r − λ2s.

For simplicity, assume that the clusters are equally sized. The argument can
easily be generalized to clusters of arbitrary sizes. We then obtain

d =
C − 1
2C

r − 2C − 1
2C

s,

where C is the number of clusters (see appendix for proof).

Definition 1. Let ỹ : D → {0, . . . , C − 1} be the pseudo-label assignment func-
tion. For di, dj ∈ D, the pseudo-labels are pairwise correct iff y(xi) = y(xj) and
ỹ(xi) = ỹ(xj), or y(xi) �= y(xj) and ỹ(xi) �= ỹ(xj).

Theorem 1. Let dT and dF denote, respectively, the value of d after a g.d. step
from two pairwise correct labels and from two pairwise incorrect labels, and let
x, x′ ∈ D as before. Then, dT > dF .

Proof. Let rT , sT , and rF , sF be, respectively, the values of r and s after a g.d.
step from two pairwise correct labels and from two pairwise incorrect labels.
Consider two cases. If y(x) = y(x′), then rT = rF , by Lemma 2, and sT < sF ,
by Lemmas 1 and 2, so by Lemma 3, dT > dF . If y(x) �= y(x′), then sT = sF ,
by Lemma 2, and rT > rF , by Lemmas 1 and 2, so again dT > dF , by Lemma 3.

The fraction of pairwise correct pairs is one measure of accuracy (Rand Index).
Thus, training with more accurate pseudo-labels facilitates better clustering.

5 Experimental Results

Following previous works, we measure accuracy and normalized mutual informa-
tion (NMI). Accuracy is computed by aligning the predicted cluster labels with
the ground-truth labels using the Hungarian algorithm [25] and then calculating
as in the supervised case. NMI, as in [41], is defined as 2I(Ỹ ;Y )/(H(Ỹ ) + H(Y )),
where Ỹ , Y , I(·, ·), and H(·) are, respectively, the cluster labels, ground truth
labels, mutual information, and Shannon entropy. We report on two handwritten
digits datasets, MNIST (size 70000) [26] and USPS (size 9298) [20], and Fashion-
MNIST (size 70000) [42] of clothing items. Table 1 shows the central tendency
for five runs and the best single run.

We show results for two different clustering algorithms: Gaussian mixture
model and the more advanced HDBSCAN [31]. Both perform similarly, showing
robustness to clustering algorithm choice. SPC-GMM performs slightly worse
on USPS and FashionMNIST (though within margin of error), suggesting that
HDBSCAN may cope better with the more complex images in FashionMNIST
and the smaller dataset in USPS. In Table 1, ‘SPC’ uses HDBSCAN.
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Table 1. Accuracy and NMI of SPC compared to other top-performing image clus-
tering models. The best results are in bold, and the second-best are emphasized. We
report the mean and standard deviation (in parentheses) for five runs.

MNIST USPS FashionMNIST

ACC NMI ACC NMI ACC NMI

SPC-best 99.21 97.49 98.44 95.44 67.94 73.48

SPC 99.03 (.1) 97.04 (.25) 98.40 (.94) 95.42 (.15) 65.58 (2.09) 72.09 (1.28)

SPC-GMM 99.05 (.2) 97.10 (.47) 98.18 (.14) 94.93 (.32) 65.03 (1.54) 69.51 (1.21)

DynAE [34]† 98.7 96.4 98.1 94.8 59.1 64.2

ADC [33]† 98.6 96.1 98.1 94.8 58.6 66.2

DDC [39]† 98.5 96.1 97.0 95.3 57.0 63.2

n2d [30] 97.9 94.2 95.8 90.0 67.2 68.4

DLS [11] 97.5 93.6 – – 69.3 66.9

JULE [45] 96.4 91.3 95.0 91.3 56.3* 60.8*

DEPICT [14] 96.5 91.7 96.4 92.7 39.2* 39.2*

DMSC [1]† 95.15 92.09 95.15 92.09 – –

ClusterGAN [35] 95 89 - - 63 64

VADE [21] 94.5 87.6* 56.6* 51.2* 57.8* 63.0*

IDEC [16] 88.06 86.72 76.05 78.46 52.9* 55.7*

CKM [13] 85.4 81.4 72.1 70.7 – –

DEC [43] 84.3 83.4* 76.2* 76.7* 51.8* 54.6*

DCN [44] 83 81 68.8* 68.3* 50.1* 55.8*

† =uses data augmentation * = results taken from [34]

SPC (using either clustering algorithm) outperforms all existing approaches
for both metrics on MNIST and USPS, and for NMI on FashionMNIST. The
disparity between the two metrics, and between HDBSCAN and GMM, on Fash-
ionMNIST is due to the variance in cluster size. Many of the errors are lumped
into one large cluster, and this hurts accuracy more than NMI, because being
in this large cluster still conveys some information about what the ground truth
cluster label is (see appendix for full details).

The most accurate existing methods use data augmentation. This is to be
expected, given the well-established success of data augmentation in supervised
learning [18]. More specifically, [17] have shown empirically that adding data
augmentation to deep image clustering models improves performance in virtually
all cases. Here, its effect is especially evident on the smaller dataset, USPS. For
example, on MNIST, n2d [30] (which does not use data augmentation) is only
0.6 and 1.9 behind DDC [39], which does on ACC and NMI, respectively, but
is 1.2 and 5.3 behind on USPS. SPC could easily be extended to include data
augmentation, and even without using it, outperforms models that do.

5.1 Ablation Studies

Table 2 shows the effect of removing each component of our model. All settings
use HDBSCAN. Particularly relevant are rows 2 and 3. As described in Sect. 3,
we produce multiple labellings of the dataset and select for pseudo-label train-
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Table 2. Ablation results, central tendency for three runs. A1=w/o label filtering;
A2 = w/o label sharing; A3 = w/o ensemble; A4 = pseudo-label training only; A5 =
UMAP+AE; A6 = UMAP. Both A1 and A2 train on all data points. The former trains
each member of the ensemble on their own labels, and the latter uses the consensus
labels. A3 sets K = 1, in the notation of Sect. 3.1.

MNIST USPS FashionMNIST

ACC NMI ACC NMI ACC NMI

SPC 99.03 (.1) 97.04 (.25) 98.40 (.94) 95.42 (.15) 65.58 (2.09) 72.09 (1.28)

A1 98.01 (.04) 94.46 (.11) 97.03 (.65) 92.43 (1.29) 63.12 (.16) 70.59 (.01)

A2 98.18 (.05) 94.86 (.09) 97.31 (.89) 92.99 (1.84) 60.60 (4.45) 68.77 (.48)

A3 98.02 (.19) 94.45 (.43) 95.85 (.80) 89.77 (1.65) 59.23 (3.58) 67.09 (3.77)

A4 97.88 (.72) 94.8 (.85) 87.49 (7.93) 82.68 (2.6) 61.2 (4.28) 67.28 (1.72)

A5 96.17 (.26) 91.07 (.23) 87.00 (8.88) 80.79 (7.43) 55.29 (3.54) 66.07 (1.04)

A6 70.24 77.42 70.46 71.11 42.08 49.22

Table 3. Ablation studies on the size of the ensemble.

MNIST USPS FashionMNIST

ACC NMI ACC NMI ACC NMI

25 98.48 95.60 97.70 93.82 67.67 73.25

20 98.49 95.64 97.87 94.21 67.52 73.13

15 99.03 (.10) 97.04 (.25) 98.40 (.94) 95.42 (.15) 65.58 (2.09) 72.09 (1.28)

12 98.82 96.54 98.20 95.02 67.77 73.13

10 98.78 96.42 98.39 95.47 62.93 69.89

8 98.75 96.32 98.41 95.44 67.45 71.99

6 98.61 95.90 98.40 95.39 63.84 70.62

5 98.56 95.82 98.30 95.19 67.91 73.46

4 98.47 95.60 98.27 95.18 67.90 73.38

3 98.44 95.50 98.15 94.84 63.36 70.88

2 98.27 95.07 97.98 94.40 62.9 70.41

1 98.02 (.19) 94.45 (.43) 95.85 (.80) 89.77 (1.65) 59.23 (3.58) 67.09 (3.77)

ing only those data points that received the same label in all labellings. We
perform two different ablations on this method: A1 and A2. Both use all data
points for training, but A1 trains each ensemble on all data points using the
labels computed in that ensemble member, and A2 uses the consensus labels. At
inference, both use consensus labels. The significant drop in accuracy in both
settings demonstrates that the strong performance of SPC is not just due to the
application of an ensemble to existing methods, but rather to the novel method
of label selection.

It is interesting to observe that A1 performs worse than A2 on MNIST and
USPS. Combining approximations in an ensemble has long been observed to
give higher expected accuracy [4,8,37,38], so the training targets would be more
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accurate in A1 than in A2. We hypothesize that the reason that this fails to
translate to improved clustering is a reduction in ensemble variance. On MNIST
and USPS, high accuracy across the ensemble means high agreement. Giving the
same training signal for every data point reduces variance further. Especially,
compared with A2, the reduction is greatest on incorrectly clustered data points,
because most incorrectly clustered data points are non-agreed points, and as
argued in [23], high ensemble variance in the errors is important for performance.

A4 clusters in the latent space of one untrained encoder and then pseudo-
label trains (essentially the method in [6]). It performs significantly worse than
SPC, showing the value of the decoder, and of SPC’s label selection technique.

A3 omits the ensemble entirely. Comparing with A2 again shows that the
ensemble itself only produces a small improvement. Alongside SPC’s label selec-
tion method, the improvement is much greater.

5.2 Ensemble Size

The number of autoencoders in the ensemble, K in the terminology of Sect. 3.1, is
a hyperparameter. We add the concatenation of all latent spaces as an additional
element. Table 3 shows the performance for smaller ensemble sizes. In MNIST
and USPS, where the variance is reasonably small, there is a discernible trend
of the performance increasing with K, then plateauing and starting to decrease.
For FashionMNIST, where the variance is higher, the pattern is less clear. For all
three datasets, however, we can see a significant difference between an ensemble
of size two and an ensemble of size one (i.e., no ensemble). We hypothesize that
the decrease for K = 20, 25 is due to a decrease in the number of agreed points,
and so fewer pseudo-labels to train the encoders.

6 Conclusion

This paper has presented a deep clustering model, called selective pseudo-label
clustering (SPC). SPC employs pseudo-label training, which alternates between
clustering features extracted by a DNN, and treating these clusters as labels to
train the DNN. We have improved this framework with a novel technique for pre-
venting the DNN from learning noise. The method is formally sound and achieves
a state-of-the-art performance on three popular image clustering datasets. Abla-
tion studies have demonstrated that the high accuracy is not merely the result of
applying an ensemble to existing techniques, but rather is due to SPC’s novel fil-
tering method. Future work includes the application to other clustering domains,
different from images, and an investigation of how SPC combines with existing
deep clustering techniques.
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A Appendix A: Full Proofs

This appendix contains the full proofs of the results in Sect. 4.

A.1 More Accurate Pseudo-Labels Supplement

The only part omitted from the argument in the main paper is a proof for the
claim about the entropy of the random variable X. This is supplied by the
following proposition.

Proposition 1. Given a categorical random variable X of the form

p(X = c0) = t

∀c �= c0, p(X = c) =
1 − t

C − 1
,

for some 1/C ≤ t ≤ 1, the entropy H(X) is a strictly decreasing function of t.

Proof.

H(X) = − t log t − (1 − t) log
1 − t

C − 1
d(H(X))

dt
= − log t − 1 − 1

1 − t
+ log

1
C − 1

+
t

1 − t
+ log 1 − t

= − 2 − log t − log C − 1 + log t − 1

= − 2 − log
(

t

1 − t
(C − 1)

)
.

The argument to the log is clearly an increasing function of t for t > 1. Therefore,
for 1/C ≤ t < 1, it is lower-bounded by setting t = 1/C. This gives

d(H(X))
dt

≤ −2 − log
(

1/C

1 − 1/C
(C − 1)

)

< − log
(

1/C

1 − 1/C
(C − 1)

)
= − log 1 = 0.

The derivative is always strictly negative with respect to t, so, as a function of
t, H(X) is always strictly decreasing.

A.2 Lemma 1 Supplement

The following is a proof for the claim that usame < udiff , as stated in Sect. 4.
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Decomposing usame according to the definition of variance (as the expectation
of the square minus the square of the expectation) gives

E
x,x′∼T

[wT (x − x′) − ηw′(||x||2 − ||x′||2)]2

+ Var(wT (x − x′) − ηw′(||x||2 − ||x′||2)).

The expectation term equals 0, as

wT
E

x,x′∼T
[(x − x′)] − ηw′

E
x,x′∼T

[(||x||2 − ||x′||2)]
= (wE[T ] − E[T ]) − ηw′(E[||T ||2] − E[||T ||2]) = 0.

By symmetry, we can replace covariances involving x′ with the same involving
x. The remaining term can then be rearranged to give

usame = 2Var(wTx − ηw′||x||2)
= 2wTCov(T )w + 2ηw′V ar(||x||2) − 4Cov(wTx, ηw′||x||2).

Now rewrite udiff . Decomposing as above gives

E
x,x′∼T

[wT (x − x′) − ηw′(||x − x′||2)]2

+ Var(wT (x − x′) − ηw′(||x − x′||2)) ,

and here the expectation term does not equal 0:

(wT
E

x,x′∼T
[(x − x′)] − ηw′

E
x,x′∼T

[(||x − x′||2)])2

= (ηw′)2 E
x,x′∼T

[||x − x′||2]2.

The variance term can be expanded to give:

Var(wT (x − x′) − ηw′(||x − x′||2))
= 2wTCov(T )w + 2ηw′Var(||x − x′||2)

− 4Cov(wTx, ηw′||x − x′||2).

By comparing terms, we can see that this expression is at least as large as
usame. First, consider the covariance terms.
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Claim. Cov(wTx, ηw′||x − x′||2) = Cov(wTx, ηw′||x||2).

Cov(wTx, ηw′||x − x′||2)
= E[wTxηw′||x − x′||2] − E[wTx]E[ηw′||x − x′||2]
= ηw′

E[wTx||x − x′||2] − 0E[ηw′||x − x′||2]
= ηw′

E[wTx||x − x′||2]
= ηw′

E[wTx
∑

k

x2 − 2xx′ + x
′2]

= ηw′ ∑

k

E[wTxx2
k] − 2E[wTxxk]E[x′] + E[wTx]E[x

′2]

= ηw′ ∑

k

E[wTxx2
k] − 2E[wTxxk]0 + 0E[x

′2]

= ηw′ ∑

k

E[wTxx2
k]

= ηw′
E[wTx

∑

k

x2
k]

= ηw′
E[wTx||x||2]

= ηw′
E[wTx||x||2] − 0E[ηw′||x||2]

= E[wTxηw′||x||2] − E[wTx]E[ηw′||x||2]
= Cov(wTx, ηw′||x||2).

So, we see the covariance terms are equal.
Next, compare the second variance terms

Claim. Var(||x − x′||2) ≥ Var(||x||2).

Var(||x − x′||2)

= Var

(
nz∑

k=0

(x)2k + (x′)2k − 2(x)k(x′)k

)

= Var

(
nz∑

k=0

(x)2k

)
+ Var

(
nz∑

k=0

(x′)2k

)
+ 2Var

(
nz∑

k=0

xkx
′
k

)

= 2Var

(
nz∑

k=0

(x)2k

)
+ 2Var

(
nz∑

k=0

xkx
′
k

)

= 2(Var(||x||2) + Var(xTx′))

≥ Var(||x||2).
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Assuming that the data are not all identical, this implies that udiff is strictly
greater than usame.

udiff − usame

= (ηw′)2 E
x,x′∼T

[||x − x′||2]2 + 2wT Cov(T )w

+ 2ηw′Var(||x − x′||2) − 4Cov(wTx, ηw′||x − x′||2)
− ((2wT Cov(T )w + 2ηw′V ar(||x||2)
− 4Cov(wTx, ηw′||x||2)))

= (ηw′)2 E
x,x′∼T

[||x − x′||2]2

+ 2ηw′ (Var(||x − x′||2) − Var(||x||2))

− 4
(
Cov(wTx, ηw′||x − x′||2) − Cov(wTx, ηw′||x||2))

= (ηw′)2 E
x,x′∼T

[||x − x′||2]2

+ 2ηw′ (Var(||x − x′||2) − Var(||x||2))

≥ (ηw′)2 E
x,x′∼T

[||x − x′||2]2 > 0.

A.3 Lemma 2 Supplement

The following is the complete proof of Lemma 2, which was omitted from the
main paper.

Proof. vdiff − vsame

=E[(wT (x − z) − w′(x − x′)(x − z))2]

− E[(wT (x − z) − w′(x + x′)(x − z))2]

=E[(wT (x − z) − w′(x − x′)T (x − z))2

− (wT (x − z) − w′(x + x′)T (x − z))2]

=E[(wT (x − z) − w′(x − x′)T (x − z)

+ wT (x − z) − w′(x + x′)T (x − z))

(wT (x − z) − w′(x − x′)T (x − z)

− wT (x − z) − w′(x + x′)T (x − z))]

=E[(2wT (x − z) − w′(x − z)T (x − x′ + x + x′))

(−w′(x − z)T (x − x′ − x − x′))]

=E[(2wT (x − z) − 2w′(x − z)T (x))(2w′(x − z)T (x′))]

= 2E[(wT (x − z) − w′(x − z)T (x))w′(x − z)T ]E[x′]

= 2E[(wT (x − z) − w′(x − z)(x))w′(x − z)T ]
−→
0 = 0 .



174 L. Mahon and T. Lukasiewicz

A.4 Lemma 3 Supplement

The following is the complete proof of Lemma 3, which was omitted from the
main paper.

Proof.

Var(T ) = 1
2 E
x,x′∼T

[(x − x′)2]

= 1
2 ( E

x,x′∼T
[(x − x′)2|y(x) = y(x′)]P (y(x) = y(x′))

+ E
x,x′∼T

[(x − x′)2|y(x) �= y(x′)]P (y(x) �= y(x′))

= 1
2 (sP (y(x) = y(x′)) + rP (y(x) �= y(x′))

=
1
2

(
s

1
C

+ r
C − 1

C

)
.

Noting that s = 2E[Var(T |C)], and using Eve’s law, we have

d = Var(T ) − s

=
1
2

(
s

1
C

+ r
C − 1

C

)
− s

=
C − 1
2C

r − 2C − 1
2C

s.

A.5 Theorem 5 Supplement

The following is a more detailed version of the argument given in the main paper.
If y(x) = y(x′), then Lemma 2 means that the expected distance of the

encodings of x and x′ to any data point from another cluster is unchanged
by whether the update was from points with the same or with different labels.
Similarly, the distance between any two other points is unchanged by whether the
update was from points with the same or with different labels. This establishes
that rT = rF . As for the intra-cluster variance, it is smaller after the update with
the same labels than with different labels. Lemma 1 shows that the expected
distance between the encodings of the two points themselves is smaller if the
labels were the same, and the same argument as above shows that all other
expected distances within clusters are unchanged.

If y(x) �= y(x′), then Lemma 2 means that the expected distance of the
encodings of x and any data point from the same cluster is unchanged by whether
the update was from points with the same or with different labels (and the same
for x′). Similarly, the distance between any two other points is unchanged by
whether the update was from points with the same or with different labels. This
establishes that sT = sF . As for the inter -cluster variance, it is larger after the
update with the same labels than with different labels. Lemma 1 shows that the
expected distance between the encodings of the two points themselves is larger
if the labels were different, and the same argument as above shows that all other
expected distances within clusters are unchanged.
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Table 4. Sizes of predicted clusters for MNIST.

Zero One Two Three Four Five Six Seven Eight Nine

HDBSCAN 6923 7878 6979 7095 6802 6290 6911 7384 6776 6962

GMM 6942 6958 6791 7885 6976 7096 7350 6294 6906 6802

Ground Truth 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000

Table 5. Sizes of predicted clusters for USPS.

Zero One Two Three Four Five Six Seven Eight Nine

HDBSCAN 1565 1272 933 819 856 706 833 787 693 834

GMM 1271 834 785 833 690 835 862 930 699 1559

Ground Truth 1553 1269 929 824 852 716 834 792 708 821

Table 6. Sizes of predicted clusters for FashionMNIST.

Top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot

HDBSCAN 7411 6755 56 6591 21333 6046 3173 5666 3711 9258

GMM 6700 3111 16379 6807 6753 9127 7389 4482 8814 438

Ground Truth 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000

B Appendix C: Extended Results

The results in the main paper report the central tendency of five different training
runs for each dataset. Tables 4, 5, and 6 show the sizes of the clusters predicted
by SPC for one randomly selected run out of these five. On MNIST and USPS,
where the accuracy of SPC is >98%, the predicted sizes are close to the true
sizes. On FashionMNIST, where the accuracy is ∼65%, there is a much greater
variance. This accounts for the discrepancy in ACC and NMI for FashionMNIST.
Most of the errors are put into one large cluster, specifically the cluster that was
aligned to ‘coat’ is over three times larger than it should be. This hurts accuracy
more than NMI, because the incorrect data points in the ‘coat’ cluster count
for zero when calculating the accuracy, but they are not randomly distributed
among the other classes, so the conditional entropy of a data point that was
mis-clustered as a coat is < log(10). Actually, most of the mistakes in the ‘coat’
cluster are pullovers or shirts, and almost none of them are, for examples, boots
or tops. Comparing the cluster sizes for SPC-HDBSCAN and SPC-GMM also
accounts for the differences across ACC and NMI between these two settings
on FashionMNIST: SPC-GMM produces more uniformly-sized clusters, so the
difference between ACC and NMI is smaller.

References

1. Abavisani, M., Patel, V.M.: Deep multimodal subspace clustering networks. IEEE
J. Sel. Top. Signal Process. 12(6), 1601–1614 (2018)



176 L. Mahon and T. Lukasiewicz

2. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
3. Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent

extensions and applications. Comput. Sci. Rev. 28, 1–25 (2018)
4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
5. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity

natural image synthesis. arXiv:1809.11096 (2018)
6. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised

learning of visual features. In: Proceedings of ECCV, pp. 132–149 (2018)
7. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering.

In: Proceedings of ICCV, pp. 5879–5887 (2017)
8. Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J.

Forecast. 5(4), 559–583 (1989)
9. Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial

network. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 1967–1974 (2018)
10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)
11. Ding, F., Luo, F.: Clustering by directly disentangling latent space.

arXiv:1911.05210 (2019)
12. Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: Creative adversarial

networks, generating art by learning about styles and deviating from style norms.
arXiv:1706.07068 (2017)

13. Gao, B., Yang, Y., Gouk, H., Hospedales, T.M.: Deep clustering with concrete
k-means. In: Proceedings of ICASSP, pp. 4252–4256. IEEE (2020)

14. Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering
via joint convolutional autoencoder embedding and relative entropy minimization.
In: Proceedings of ICCV (2017)

15. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of NIPS, pp.
2672–2680 (2014)

16. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local
structure preservation. In: Proceedings of IJCAI, pp. 1753–1759 (2017)

17. Guo, X., Zhu, E., Liu, X., Yin, J.: Deep embedded clustering with data augmen-
tation. In: Proceedings of Asian Conference on Machine Learning, pp. 550–565
(2018)

18. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors.
arXiv:1207.0580 (2012)

19. Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for cluster-
ing. In: Proceedings of ICPR, pp. 1532–1537. IEEE (2014)

20. Hull, J.J.: A database for handwritten text recognition research. TPAMI 16(5),
550–554 (1994)

21. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an
unsupervised and generative approach to clustering. arXiv:1611.05148 (2016)

22. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of CVPR (2019)

23. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. TPAMI
20(3), 226–239 (1998)

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of NIPS, pp. 1097–1105 (2012)

25. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.
Logist. Q. 2(1–2), 83–97 (1955)

http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1911.05210
http://arxiv.org/abs/1706.07068
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1611.05148


Selective Pseudo-Label Clustering 177

26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

27. Liang, J., Yang, J., Lee, H.-Y., Wang, K., Yang, M.-H.: Sub-GAN: an unsuper-
vised generative model via subspaces. In: Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 726–743. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01252-6 43

28. Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adver-
sarial networks. arXiv:1702.04782 (2017)

29. Lloyd, S.: Least square quantization in PCM. IEEE Trans. Inf. Theory (1957/1982)
18, 129–137 (1957)

30. McConville, R., Santos-Rodriguez, R., Piechocki, R.J., Craddock, I.: N2D:(not too)
deep clustering via clustering the local manifold of an autoencoded embedding.
arXiv:1908.05968 (2019)

31. McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering.
J. Open Sour. Softw. 2(11), 205 (2017)

32. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv:1802.03426 (2018)

33. Mrabah, N., Bouguessa, M., Ksantini, R.: Adversarial deep embedded clus-
tering: on a better trade-off between feature randomness and feature drift.
arXiv:1909.11832 (2019)

34. Mrabah, N., Khan, N.M., Ksantini, R., Lachiri, Z.: Deep clustering with
a dynamic autoencoder: From reconstruction towards centroids construction.
arXiv:1901.07752 (2019)

35. Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: ClusterGAN: latent space clustering
in generative adversarial networks. arXiv:1809.03627 (2019)

36. Opitz, D.W., Maclin, R.F.: An empirical evaluation of bagging and boosting for
artificial neural networks. In: Proceedings of ICNN, vol. 3, pp. 1401–1405. IEEE
(1997)

37. Pearlmutter, B.A., Rosenfeld, R.: Chaitin-Kolmogorov complexity and generaliza-
tion in neural networks. In: Proceedings of NIPS, pp. 925–931 (1991)

38. Perrone, M.P.: Improving regression estimation: averaging methods for variance
reduction with extensions to general convex measure optimization. Ph.D. thesis
(1993)

39. Ren, Y., Wang, N., Li, M., Xu, Z.: Deep density-based image clustering. Knowl.-
Based Syst. 197, 105841 (2020)

40. Wang, Y., Zhang, L., Nie, F., Li, X., Chen, Z., Wang, F.: WeGAN: deep image
hashing with weighted generative adversarial networks. IEEE Trans. Multimed.
22, 1458–1469 (2019)

41. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and tech-
niques with Java implementations. ACM SIGMOD Rec. 31(1), 76–77 (2002)

42. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv:1708.07747 (2017)

43. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: Proceedings of ICML, pp. 478–487 (2016)

44. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces:
simultaneous deep learning and clustering. In: Proceedings of ICML, vol. 70, pp.
3861–3870. JMLR.org (2017)

45. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations
and image clusters. In: Proceedings of CVPR, pp. 5147–5156 (2016)

https://doi.org/10.1007/978-3-030-01252-6_43
http://arxiv.org/abs/1702.04782
http://arxiv.org/abs/1908.05968
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1909.11832
http://arxiv.org/abs/1901.07752
http://arxiv.org/abs/1809.03627
http://arxiv.org/abs/1708.07747


178 L. Mahon and T. Lukasiewicz

46. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

47. Zemel, R.S., Hinton, G.E.: Developing population codes by minimizing description
length. In: Proceedings of NIPS, pp. 11–18 (1994)

48. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for neural networks for
image processing. arXiv:1511.08861 (2015)

49. Zhao, W., Wang, S., Xie, Z., Shi, J., Xu, C.: GAN-EM: GAN based EM learning
framework. arXiv:1812.00335 (2018)

50. Zhou, P., Hou, Y., Feng, J.: Deep adversarial subspace clustering. In: Proceedings
of CVPR (2018)

51. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection
in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5),
363–387 (2012)

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1511.08861
http://arxiv.org/abs/1812.00335

	Selective Pseudo-Label Clustering
	1 Introduction
	2 Related Work
	3 Method
	3.1 Formal Description
	3.2 Implementation Details

	4 Proof of Correctness
	4.1 Agreed Pseudo-Labels Are More Accurate
	4.2 Increased Pseudo-Label Accuracy Improves Clustering

	5 Experimental Results
	5.1 Ablation Studies
	5.2 Ensemble Size

	6 Conclusion
	A  Appendix A: Full Proofs
	A.1  More Accurate Pseudo-Labels Supplement
	A.2  Lemma 1 Supplement
	A.3  Lemma 2 Supplement
	A.4  Lemma 3 Supplement
	A.5  Theorem 5 Supplement

	B  Appendix C: Extended Results
	References




