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Abstract. In the last years, solutions were proposed in the literature to
alleviate the complexity of using sophisticated graphic suites for 3D scene
generation by leveraging automatic tools. The most common approach
based on the processing of text descriptions, however, may not represent
the ideal solution, e.g., for fast prototyping purposes. This paper pro-
poses an alternative methodology able to extract information about the
objects and the layout of the scene to be created from a single 2D image.
Compared to previous works, experimental results reported in this work
show improvements in terms of similarity between the 2D and 3D scenes.

Keywords: Image-based modelling · Scene-object modelling ·
Machine learning

1 Introduction

Today, the commonly used software to generate graphics assets are suites, such
as Blender1, and Autodesk Maya2, since they provide a number of functionalities
and tools that allow users to produce 3D animated scenes [10]. Although these
suites are generally characterized by a higher degree of flexibility in terms of
available features, they also present a very steep learning curve [8]. Difficulties
in learning such software prevent unskilled users to operate with them or, more
in general, make the generation of 3D contents a time-consuming task requiring
a lot of effort even for professional users [2].

One of the most common operation being performed with such suites is rep-
resented by the objects’ layout. Although the commands to move and rotate
objects are generally simple to activate, the standard input interfaces to control

This work has been supported by VR@POLITO initiative.
1 Blender: https://www.blender.org/.
2 Autodesk Maya: https://www.autodesk.com/products/maya/overview.
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the transformations are based on mouse and keyboard. Therefore, users can han-
dle only two degrees of freedom at a time, resulting in an increase of the users’
mental effort [3]. As a consequence, the scenes generated by unskilled users are
generally unrealistically simple [14]. However, operating with such software is
becoming inescapable for non-professional users [5], e.g., to share a prototypical
idea of 3D scenes that can be later used by experts to build the ultimate version.

In order to overcome these limitations, the literature proposed a number of
solutions able to automatically reconstruct 3D scenes by processing, e.g., text
[4], images [1] and audio clips [12]. The high number of works based on text
descriptions (e.g. [4,5]) suggests that this approach represents the most com-
mon solution. However, in the case of fast prototyping, it may not be the ideal
solution, since the need to write the entire description of the scenes can slow
down the process [1]. Leveraging a simple 2D image (e.g. a sketch or a photo)
of the desired scene could be significantly faster than writing a text description.
Image-based approaches introduce a number of new challenges in the under-
standing of the input regarding, for example, the need to infer/detect objects to
model them individually, solve the depth ambiguity to correctly place objects,
recognize relationships among objects, etc. To cope with the above issues, this
paper proposes a methodology that breaks down the complexity of the overall
process into a number of simpler steps. The main idea is to leverage information
regarding the camera framing the scene (e.g. point of view, perspectives cues,
relative positions of the objects in the view, etc.) to generate a similar layout
in the reconstructed environment. Machine learning algorithms complement this
methodology to infer the number and types of objects as well as determining the
distance from the camera.

Moreover, differently from solutions presented in the literature, which were
usually implemented as standalone applications, the proposed pipeline is inte-
grated within a traditional graphics suite. Besides the possibility to improve the
quality of the generated scene by leveraging the sophisticated methods embed-
ded in the software, the integration allows users to explore scenes into an immer-
sive environment using virtual reality technologies, thus helping them to better
understand the scene layout. The integration within a traditional software suite
was made possible by developing a dedicated add-on that can be installed into
the open-source 3D graphics software named Blender. The add-on is also released
as open-source at https://github.com/logicesecutor/3D scene generator.

In order to assess the effectiveness of the proposed system it was compared
with a previous work [1]. Results showed promising improvements in terms of
scene similarity.

2 Related Works

Different solutions have been proposed to solve the problem of generating 3D
graphics assets from 2D images. For example, in [13] perspective cues, such as
perspective lines or distorted planes, identified within a single 2D image, are
leveraged to reconstruct both indoor and outdoor environments as a combina-
tion of flat textured planes represent walls, floor, and ceiling. Another example

https://github.com/logicesecutor/3D_scene_generator
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is reported in [6], which describes a number of tools developed for Matlab to
reconstruct a 3D environment from multiple calibrated images. With respect
to the previous work in [6] the shapes of the objects identified in the images
are preserved. However, the resulting 3D scene is built as a single high-poly
mesh. This approach, named photogrammetry, may be considered not the ideal
solution for fast prototyping, since the high number of vertices in the result-
ing mesh could make it difficult to apply changes or further operate with it. In
[11] a neural network was introduced for recognizing and reconstruct boxes and
spheres identified into the 2D image provided as input to the network. Although
this approach partially solves the issue regarding the shape of the objects, the
poor flexibility related to the limited set of recognized objects could represent a
weakness for general-purpose applications.

The works reviewed so far described systems and tools developed as stan-
dalone applications not integrated into existing 3D graphics software. However,
in the context of fast prototyping, the integration with such software can allow
expert developers to further edit on the generated scenes seamlessly without the
need for additional import/export operations.

To the best of the authors’ knowledge, a few works were reported in the liter-
ature that are able to generate 3D scenes from single 2D images that is already
integrated into a graphics suite. An example is the add-on for Blender proposed
in [1]. The environment automatically built with this tool can be explored and
modified into an immersive environment. However, in this work, the positions
of the objects in the source image and their relations were not considered in
the generation of the scenes. The layout was generated automatically through a
probabilistic method, that could introduce significant differences in the objects
positioning.

Moving from the above review, a system is proposed able to automatically
generate 3D scene from its 2D representation. The idea was to leverage informa-
tion extracted from the source image not only to infer the number and types of
objects but also to understand their positions and relations in the environment.
The tool is integrated within a well-known suite for enabling further editing.
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3 System Overview

The overall architecture of the system is illustrated in Fig. 1. The expected work-
flow starts with the selection of the source image used as input to the following
steps. By analyzing this image, a number of data are inferred, i.e., information
of the camera framing the environment represented in the 2D image and the
objects identified in the scene. These data are then combined in order to recon-
struct the 3D environment (more details on each step will be provided in the
remaining part of this section).

The entire workflow is integrated within the well-known 3D computer graph-
ics software (Blender). After the installation of the proposed add-on, a graphical
user interface is shown in Blender’s 3D Viewport Editor to let users select images
and start the elaboration as shown in Fig. 1. Once the 3D scene has been gener-
ated, the user can apply further changes by using the functionalities of Blender
and explore the scene into an immersive environment by means of Blender’s
native add-on that enables the VR visualization.

3.1 Automatic Camera Calibration

The main objective of this step is to calibrate the Blender’s camera to match
as much as possible the external and internal parameters of the camera framing
the scene represented in the 2D image. In particular, the main idea behind the
camera calibration is to look at the scene with the same camera setting used to
obtain the source image in order to extract the relative positions of the objects
in the scene and their relationship. To this aim, the add-on Camera Calibration
PVR3 was used. The add-on matches the Blender’s 3D Camera to the perspec-
tive observed in the source image. As requirements, the user has to manually
shape the mesh of a plane to match the perspective lines and add two dangling
vertices corresponding to perpendicular lines observed in the image. An exam-
ple of a valid input is shown in Fig. 2a. In order to automate this process, the
Camera Calibration PVR add-on was integrated within the proposed system and
its functionalities were combined with a further library, i.e., XiaohuLuVPDetec-
tion4, that implements the algorithm for the automatic vanishing points esti-
mation proposed in [9]. In particular, with the XiaohuLuVPDetection library,
the three vanishing points in the source image are detected (Fig. 2b). Then the
computed positions of the three points, expressed in pixel unit are converted in
meters and expressed into the image space reference system. The coordinates of
the intersection between lines (points A to F in Fig. 2b) are found by iteratively
solving a linear system for each of the six vertices required (i.e., four vertices
for constructing the plane and the two additional dangling vertices). Once the
plane has been automatically reconstructed (Fig. 2c), the Camera Calibration
PVR add-on is executed to calibrate the Blender’s 3D camera. The operations

3 Camera Calibration PVR: https://github.com/mrossini-ethz/camera-calibration-
pvr.

4 XiaohuLuVPDetection: https://github.com/rayryeng/XiaohuLuVPDetection.

https://github.com/mrossini-ethz/camera-calibration-pvr
https://github.com/mrossini-ethz/camera-calibration-pvr
https://github.com/rayryeng/XiaohuLuVPDetection
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(a) (b) (c)

Fig. 2. Automatic camera calibration: a) dangling vertices, b) vanishing points, c)
reconstructed plane.

described above are totally transparent to the user, who is only asked to click
on the “Calibrate Camera” button Fig. 1 to automatically execute the entire
calibration process.

3.2 Object Positioning

By clicking on the “Object Positioning” button, the system automatically
extracts objects from the source image and places them into the environment
according to a number of rules detailed in the following. A Convolutional Neu-
ral Network (CNN) is used to extract from the source image the labels and
the bounding boxes (BBs) of the objects detected in the environment. To this
aim, the open-source python library Image AI5 was considered, since it offers a
number of reproducible machine learning algorithms for image prediction, object
detection, video object tracking, etc. Object detection is supported using three
models, i.e., RetinaNet, YOLOv3 and TinyYOLOv3, trained on COCO dataset6.
The YOLOv3 model was selected for its performance in terms of computation
time, however, in the future, more advanced or custom models could be leveraged
to improve the quality of the recognition. Moreover, fine-tuning on a specialized
custom dataset could be applied to reduce the error-rate and increase the num-
ber of labels extracted from the source image. The labels are leveraged to search
corresponding 3D models in the mesh database. The mesh database contains 50
models, covering all the possible labels that can be extracted from the source
image with the considered CNN. Besides the 3D geometry, the database also
memorizes materials, textures, physical properties, and baked animations. A
number of alternative models are also provided in the database to avoid repeti-
tions in case of labels recognized multiple times. The BBs are leveraged by the
Object Retrieval block to extract from the source image the RGB color picked
at the center of the BB. The RGB values are used to edit the default shader of
the 3D objects to make it assume a base color similar to that observed in the
source image.

Once all the models are retrieved from the database, their positions are
adjusted in the 3D environment to match the center of the BB detected in the
5 Image AI: https://github.com/OlafenwaMoses/ImageAI.
6 COCO dataset: https://cocodataset.org/#home.

https://github.com/OlafenwaMoses/ImageAI
https://cocodataset.org/#home
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(a) (b) (c)

Fig. 3. Objects’ depth estimation: a) source image with recognized objects and BBs,
b) depth maps with two sample BBs mapped in.

source image with that observed by looking at the object from the calibrated
3D camera. To compute the BB of an object observed by the 3D camera, all the
3D coordinated of the vertices are mapped into a 2D plane and then converted
to pixel coordinates in the camera viewport. This operation can take time for
high poly meshes. For this reason, the geometry of the mesh is first simplified by
using a Blender’s modifier that automatically reduces the number of vertices.

From a perspective point of view, bringing an object closer to the camera
or scaling it, makes no difference in the projected image. Moreover, the coordi-
nates of the BBs retrieved by the object detection components are 2D and do
not contain indications about the depth. To solve this issue, a principal assump-
tion was made, i.e., the proportions among the objects are fixed (according to
the sizes defined in the database) and coherent among the objects. Under these
hypotheses, it is possible to use a depth prediction algorithm to extrapolate the
depth value of the objects in the image. To this aim, the CNN models trained
for depth prediction from a single RGB image proposed in [7] and available at
https://github.com/iro-cp/FCRN-DepthPrediction are leveraged. Depth predic-
tion network predicts depth map for the source image as shown in Fig. 3b. Pixel
coordinates of the BBs detected in the source image are then mapped to the
depth map and the depth value at the center of the BB is used to set the dis-
tance of the object from the 3D camera. The result of this process is depicted
in Fig. 3c. Finally, the orientation of each object is adjusted with a successive
approximation method with the goal of minimizing the difference between the
aspect ratio of the BB detected in the source image and that observed in the
scene from the 3D camera.

3.3 Environment Generation and Physics

This step, executed by clicking on the “Generate room” button, generates a
plane with grass in case of outdoor settings or a complete room with walls,
floor and ceiling for indoor settings. Then, physics constraints are applied to the
scene, i.e., gravity force, to avoid floating elements and correctly place objects
on the surface below. Examples of 3D scenes generated by the proposed system
are shown in Fig. 4.

https://github.com/iro-cp/FCRN-DepthPrediction
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(a) (b) (c) (d)

Fig. 4. Considered use cases: a) source image n.1 (source: https://www.aluna.it), b)
result obtained from image n.1, c) source image n.2 (source: https://www.wattpad.
com), and d) result obtained from image n.2.

4 Experimental Setup

With the aim to assess the performance of the proposed system a user study was
conducted by involving 31 volunteers (24 males and 7 females), aged between
22 and 55 (μ = 31.45 and σ = 10.55). Participants can be considered as non-
professional users, since only a limited number of them had experience with
graphics suites. Participants’ background was evaluated through a demographics
questionnaire filled in before the experiment. Collected data revealed the follow-
ing statistics on the usage of graphics suite: never: 51.6%, sometimes: 25.8%,
once a week: 9.7%, everyday: 12.9%. To evaluate the proposed system, both
objective and subjective measurements have been collected for generating three
representative indoors settings. The objective measurements consider the com-
pletion time needed to infer the objects from the image (inference time), the
time required to create the scene layout (position time), and the number of
objects detected in the image. The subjective metrics have been used to com-
pare the proposed system with the automatic scene generation tool proposed
in a previous work [1]. The subjective observations were based on a question-
naire aimed at evaluating the scene similarity. In particular, participants were
requested to judge the similarity of the generated scenes in terms of number and
types of objects, overall scene layout, as well as applied materials and textures.
A within-subject approach was used in this study to compare the two tools. The
questionnaire is available at https://bit.ly/3akDFbk.

4.1 Results

The results in terms of inference and position time, as well as the number of
detected objects, are reported in Table 1

It is worth noticing that the most time-consuming task is represented by
the inference time, which on average covers the 76.14% of the overall process.
The flexibility of the proposed architecture makes it possible, in the future, to
replace the block in charge of inferring objects in order to speed up this process
and increase the number of detectable objects.

Average scores regarding scene similarity are reported in Fig. 5. Paired sam-
ples t-test with 5% significance (p < 0.05) was used to analyze statistically
significant differences. Participants found that the proposed system was able to

https://www.aluna.it
https://www.wattpad.com
https://www.wattpad.com
https://bit.ly/3akDFbk
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Table 1. Objective results concerning: inference time, positioning time and number of
objects detected.

Use case Inf. time Pos. time Detected obj

1 22.32 s 4.35 s 4

2 25.20 s 12.59 s 13

3 26.20 s 7.37 s 6

1.87

2.87
2.03 2.32

1.94
2.52

2.13

3.55

2.48
3.32

2.00

2.94

2.06

3.16

1.74

3.52

1.74

2.84

0.00

1.00
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3.00
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5.00

Cannavò et. al Proposed
Indoor se�ng n.1 Indoor se�ng n.2 Indoor se�ng n.3

*
p < .001

*
p < .001

*
p = .014

*
p < .001

*
p < .001

*
p < .001

*
p < .001

*
p < .001

Objects Layout Mat. & Text. Objects Layout Mat. & Text. Objects Layout Mat. & Text.

Fig. 5. Subjective results concerning scene similarity: average scores (bars height) and
standard deviation (errors bars). Statistically significant differences (p < 0.05) are
marked with the ‘*’ symbol.

generate a better reconstruction of the source image compared with the previ-
ous work in the majority of the considered use cases, as confirmed by the higher
values obtained in all the considered metrics (except for the first use case, in
which no significant differences were found for the layouts).

5 Conclusions and Future Work

This paper presented a system that allows non-professional users to quickly cre-
ate 3D scenes for fast prototyping. A methodology was introduced that combines
the advantages of automatic 3D scene generation with traditional graphics suites
through the development of an add-on target to a well-known graphics suite. The
system proposed in this paper was not meant to replace the traditional graph-
ics suites, but rather to support non-professional users in the quick prototyping
of 3D scenes by leveraging a single 2D image as input. The scene generated
automatically by the proposed system can be considered as a draft that expert
developers can take as reference or starting point to obtain the ultimate ver-
sion. A user study performed by involving participants with limited skills in
using graphics suites. Results showed promising improvements in terms of scene
similarity with respect to a previous work.

Currently, the system presents limitations in terms of flexibility, i.e., pos-
sible scenes that can be created, due to the limited number of objects in the
database and labels that can be inferred by the selected library. Besides solving
the above limitations, which can be faced with the development of new models
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and the introduction of alternative tools for inferring objects from images, pos-
sible evolution will consider the introduction of techniques, to further improve
the capacity of the system of preserving the relationship among objects.
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