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Abstract. Electroencephalography (EEG) has become a widely used
non-invasive measurement method for brain-computer interfaces (BCI).
Hybrid BCI (hBCI) additionally incorporate other physiological indica-
tors, also called bio-signals, in order to improve the decryption of brain
signals evaluating a variety of different sensor data. Although significant
progress has been made in the field of BCI, the correlation of data from
different sensors as well as the possible redundancy of certain sensors
have been less frequently studied. Based on deep learning our concept
presents a theoretical approach to potentially replace one sensor with the
measurements of others. Hence, a costly or difficult to sensor measure-
ment could be left out of a setup completely without losing its function-
ality. In this context, we additionally propose a conceptual framework
which facilitates and improves the generation of scientifically significant
data through their collection within a corresponding VR application and
set-up. The evaluation of these collected sensor data, which is described
in five consecutive steps, is to cluster the data of one sensor and to classify
the data from other sensors into these clusters. Afterwards, the sensor
data in each cluster are analysed for patterns. Through the predictive
data analysis of existing sensors, the required number of sensors can be
reduced. This allows valid statements about the output of the original
sensor with no need to use it effectively. An artificial intelligence (AI)
based EEG emulation, derived from other directly related bio-signals,
could therefore potentially replace EEG measurements which indirectly
enables the use of BCI in situations where it was previously not possible.
Future work might clarify relevant questions concerning the realisation
of the concept and how it could be further developed.

Keywords: Hybrid brain-computer-interfaces · Computational
intelligence · Sensor-sensor interaction · Sensor replacement

1 Introduction

Through the considerable progress of the last decades, the technology of Head
Mounted Displays (HMD) has improved significantly. In addition to including
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improved display technologies [7], the number of sensors, for different measure-
ments based on physiological indicators, increased. The manufacturer HP for
example, announced the HP Reverb G2 Omnicept Edition for May 2021 [13].
This HMD device intergrates sensors for eye tracking, pupillometry, heart rate,
pulse rate variability and even a face camera. In addition to sensory hardware
integration, the first software solutions for measuring near-real-time cognitive
load are already being developed. However, these solutions are often insufficient
in their precision and quality because only individual sensors are interpreted. Due
to sensor characteristics and software misinterpretations the number of errors
increases whereas the quality of measurements decreases at the same time. By
using more precise sensors or fusing sensor data, the quality of measurement can
be increased.

In addition to sensor fusion, the interpretation of sensor data is a key dis-
cipline. Here, human computer interaction (HCI) forms the interface between
humans and computers. The previously collected sensor data is processed in
a special machine language. For this purpose, the signals are interpreted and
evaluated in the form of logical relationships. These evaluated data sets can be
visualised and converted into a human-understandable language.

The next step of HCI on the way to further connect humans and technology
is seen in the creation of interfaces between the human brain and computers
through so-called BCIs [9]. BCIs are basically intended to translate signals from
the human brain into directly commands for interactive applications [18]. Meth-
ods for measuring brain activity can be divided into two groups: invasive and
non-invasive [27].

Invasive measurement methods such as electrocorticography (ECoG) record
signals directly from the cortical surface or from inside the brain [24,34]. In this
context, the decoding of bio-mechanical parameters has already been successfully
used for monkeys and humans to control prostheses [12,16,31–33]. However,
the high risk of the associated necessary surgical intervention and the gradual
degradation of the recorded signals over time, entail considerable disadvantages,
which is why non-invasive approaches such as functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), near-infrared spectroscopy
(NIRS), and EEG are increasingly used in context of human users [1]. Although
fMRI, for example, offers higher spatial resolution, EEG has become the most
popular method due to its direct measurement of neuronal activity, comparative
ease of portability and low cost [27].

Although significant progress has been made in this field of research. BCIs
still face a number of challenges due to inaccuracy, unreliability and latency, as
it is difficult to obtain and accurately process the information from the brain.
For this reason, the inclusion of other signals in order to decode data for BCI
user is becoming increasingly important. A BCI system that additionally uses
other physiological indicators, also called bio-signals, is referred to as hBCI [5].
Several works [6,22] have already shown improvements for BCI, e.g. in accuracy
and information transfer, rate by incorporating other bio-signals such as elec-
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tromyography, electrooculography or electrocardiography (ECG). Nevertheless,
the search for valid and reliable hBCI systems remains a serious challenge [4,23].

In this context, we propose a conceptual framework which facilitates and
improves the generation of meaningful measurement data through their collection
within a corresponding VR application and set-up. Furthermore, the measured
sensor data should also be used in order to analyse other sensors in the same setup
for ultimately being able to replace one sensor with the measurements from oth-
ers. Therefore AI based EEG emulations, derived from other directly related bio-
signals, could potentially replace EEG measurements which indirectly enables the
use of BCI in situations where it was previously not possible.

In addition to a comprehensive concept proposal, our contribution also pro-
vides valuable information of the potential procedure in the context of an
expected subsequent implementation.

The presented work is structured as follows. In Sect. 2, we discuss the cur-
rently relevant fields of literature. Section 3 describes the general conceptual
framework, as well as the detailed theoretical procedure in five consecutive steps,
followed by a discussion of the presented approach in Sect. 4. Here the potential
advantages and expected difficulties, especially in the interaction of the mea-
surement data collected in the context of the VR application were addressed.
While Sect. 5 summarizes our approach and intentions, Sect. 6 furthermore gives
an outlook on the potential next steps and further work.

2 Related Work

We identified three areas of relevant related work. The first is the machine learn-
ing based analysis of BCI data, often with a focus on deep learning. The sec-
ond is concerned with the connection of BCIs and the VR ecosystem while the
third addresses the idea of analysing the correlation of sensor data from existing
sensor data. The amount of research in the three areas decreases as far as we
have observed. Hence, there is currently no research that creates a connection
between these three aspects, namely an analysis of sensor correlation for hBCIs
and HMDs. Some relevant work on these three areas will be highlighted in turn.

The use of physiological measurements for emotion detection has been a
research subject for a longer time. While in many papers emotion detection is
performed using one or two individual measurements, recently there have been
more publications where a multi-modal sensor-set has been used. Ali et al., for
example, created an emotion recognition system where multiple physiological
signals like ECG, EDA and skin temperature were studied and most commonly
used statistical features extracted [3]. A public HCI tagging database “MAH-
NOB” was used for training, testing and initial validation while own data was
used for final validation. The study also compared the results of using the same
sensor brands in training and testing to the results when using different brands
in order to generalize the findings.

Regarding the use of deep learning in EEG-signal analysis Zhang et al. give a
comprehensive review over the advancements in this field [38]. Here the different
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deep learning methods for EEG-analysis are explained, reviewed and discussed
and a selection of applications in different fields are listed. In particular, [14]
Kanjo et al. 2019 are using an approach that is similar to our approach, where
they take data from multiple sensors and process the input from all sensors
at the same time using deep learning models. The use case for classifying the
sensor data is emotion detection. Kanjo et al. differ by using over twenty sensors,
providing a wide range of data types and sensor types such as physiological and
environmental sensors and using deep learning models to enhance the predictive
capabilities of the sensor data rather than analysing the sensors themselves.

For the practical implementation of EEG-sensor measurement while wearing
VR-Headsets Tauscher et al. examine how VR-Headsets and EEG-Caps can be
physically combined for parallel measurements so that signal quality from both
is preserved [29]. Weibel et al. furthermore present a framework for conducting
physiological experiments in VR-environments where standardized modules for
data collection using questionnaires, the synchronization of physiological mea-
surements, and data storage are included as well as tools for data visualization
and evaluation [35]. A reproducible protocol for conducting experiments with
this framework is also provided.

Although literature already mentioned certain improvements for BCI by inte-
grating other bio-signals [6,22], the variety of additional integrated bio-signals
and the previous amount of research yet remain limited. Besides potential cor-
relations of data from different sensors, possible redundancies of certain sensors
have been less frequently studied so far. In addition, these research topics are not
interconnected across disciplines, suggesting that there is a need for a general
concept across research disciplines. [2] Agarwal et al. directly address the idea of
replacing sensors with the help of other sensor data. Their goal is to use existing
sensors more prudently in order to improve energy management. Although the
basic idea of sensor replacement is present, there is no analysis of the sensor data
itself.

[37] Yan et al. and [11] Gao et al. take multiple sensor data and perform
correlative analysis on the sensors to address data loss in wireless sensor net-
works. Yan et al. propose a multiple linear regression model to recover data,
while Gao et al. propose an approach to find the spatial-temporal correlation in
the sensor data. This approach is also used by [30] Tayeh et al., who follow the
data reduction and energy saving paradigm for environmental sensors in wireless
sensor networks. Yan et al. attempt the same thing as the model in this paper.
Instead of making one sensor redundant because other sensors contain the same
information, it attempts to find this information because it may be missing for
a specific use case. Even though Yan et al. and our approach share the idea
of enhancing sensor networks, they differ in the type of sensors (environmental
sensors in green houses), the reason for analysing the sensors, and the machine
learning tools used. Gao et al. and Tayeh et al. use the approach even more sim-
ilar, but the premise is different. Both papers focus on data reduction in systems
with many identical sensors distributed across a region rather than an array of
different sensors at the same location.
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Thus, this paper fills multiple gaps in the current research. Not only by sensor
data correlation analysis using deep learning models but specifically since this
analysis is done in order to analyse the used sensors themselves. The gained
knowledge of sensor correlation can thereby be applied to a large number of use
cases.

3 Conceptual Framework

In this chapter we describe the conceptual Framework Fig. 1 of EEG sensor
replacement by AI based emulation.

Fig. 1. Concept: The time-dependent signals (S,t) of different sensors (eye tracking,
heart rate, pupillometry, face cam) are detected in the course of measurement. The
signals are further evaluated in process and read into a buffer as a data set (SM).
Various AI methodologies are used to analyse the data from buffer. A cluster analysis
based on patterns, rules, and principles takes place. If a data modification is made,
the parameters are stored again. Furthermore, new data sets are deposed in the buffer.
As a result of the AI analysis, a temporal and signal-based adjustment is made to the
actual number of sensors required as well as temporal query of signals. During the
entire measurement, a user machine communication takes place via log control. The
user can intervene in the system at any time. The concept can be divided into five
steps of measurement, cluster, user control, dataset and AI/Results.

Contrary to the previous literature on sensor-sensor interaction, the goal of
the presented concept is to replace one sensor with the measurements from other
sensors. Thus, sensors are not investigated for their ability to predict certain use
cases like emotion or stress but rather used to analyse the data of other sensors
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in the same setup. If the concept is successful, a costly or difficult to measure
sensor could be left out of a setup completely without losing its functionality.
The basic idea of the concept is to cluster the sensor data from one sensor and
to classify the data from the other sensors into these clusters. Afterwards, the
sensor data in each cluster is analysed for pattern that make statements about
the output of the original sensor possible. The individual steps of the concept
are each described below, followed by a discussion of the potential uses and the
significance of the concept.

Step 1: Measurement of Sensor Data in a VR Setup. The experimental
setup consists of a VR environment in which a test person plays a game or is
exposed to specific different situations that trigger different emotions. Physio-
logical sensors measure the user’s responses throughout the experiment and the
results are logged. As long as there is a time stamp attached to the data, the con-
cept is agnostic to the origin of the data. As mentioned above, some retail HMDs
already provide several sensors to measure bio-signals, including eye tracking,
ECG, gyroscope and electro-dermal activity. The impractical headcaps used for
EEG measurement represent both, a physical constraint to the experimental
setup as well as an inspiration for the concept. Even though the literature has
shown the possibility of combining an EEG headcap and HMDs [29], it is desir-
able to ultimately lose the need for a headcap with the successful implementation
of our concept.

The main challenge for this step is the elusive nature of emotions. Research on
emotions is at the intersection of philosophy, linguistics, sociology, anthropology,
psychology and neuroscience. One approach is to look at emotions as a discrete
variable and to define certain basic emotions that participants can chose from as
a response. For this, a prominent model is the differentiation by Ekman, in which
the six well-established basic emotions anger, disgust, fear, happiness, sadness,
and surprise are proposed as distinguishable across cultures [10]. A different
approach looks at emotions on a continuous scale between pleasant-unpleasant
and between low and high intensity [20]. Although breaking up emotions into a
small set of discrete categories is appealing for an experimental study, a number
of problems are associated with this approach: Taking the six basic emotions as
the basis for an experiment would be a misapplication of Ekman’s research. Even
though the basic emotions might be distinguishable for humans across cultures,
there is no claim that these are the only emotions or building blocks of other
emotions. In fact, Ekman identifies candidate emotions like relief, guilt, embar-
rassment or excitement that are not as easily distinguishable. Ignoring emotions
that are not part of the six basic emotions because of their unclear boundaries is
to simplify the concept of emotions beyond recognition. At the same time, there
might be a disconnection between what humans feel, the signals their brains
produce and the way that they transport the feelings in words or physical move-
ment. The dimensional model may avoid the problem of oversimplification of the
available labels but introduces an element of subjectivity that is more difficult
to measure and control in an experimental setup. Because of the complexity
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and ambiguity of the term “emotions”, an experimental setup should attempt
to investigate specific emotions rather than emotions in general.

Beyond the problem of emotion classification there is the problem of emotion
elicitation in VR, which is equally challenging for the experimental setup pro-
posed here. Even if Ekman’s six basic emotions are taken as a basis of what the
term “emotions” means, the setup needs to trigger at least one of the six emo-
tions reliably, in order to deliver reliable quality data. To achieve this, common
techniques are active and passive in nature [17]. In the passive version, partici-
pants are faced with stimuli with no interaction beyond the sensory experience.
The International Affective Picture System and the International Affective Digi-
talised Sound System, for example, are databases that can be consulted for visual
and auditory passive elicitation of emotions and have been used in VR setups
as well [25]. In the active version of emotion elicitation, a participant could, for
example, interact with a situation or an avatar in a VR environment to elicit
emotions [26]. Even though the passive elicitation poses a lower threshold to the
experimental setup, VR is uniquely suited for the active elicitation of emotions
and has been shown to be more effective than 2D elicitation [28]. For a systematic
literature review of emotion elicitation using VR, see Marin-Morales et al. [21].
Also, emotion elicitation has to remain ethical, so an experimental setup that
elicits strong negative emotions would have to be designed prudently and would
have to be conducted with prior knowledge of the participants. Experiments
that use jump scares (e.g. [36]) have to be weighed carefully for the benefits
of the jump scare in emotion elicitation on the one hand and the biases that
prior proper information of the risks introduces on the other hand. As a word
of caution for the interpretation of results of any VR based emotion elicitation
study, there is more research needed on the relatedness of emotions triggered
in real world situations and emotions triggered in artificially created VR setups
[19,21].

There are several consequences for an experimental design for the concept
proposed here. Firstly, a choice has to be made as to which emotions should
be induced. Secondly, a decision should be made between active (interaction
based) or passive (consumption of content based) methods of elicitation. This
paper does not propose a right way for either of these design choices, as the
concept proposed here engages with the results of sensor data. These results are
in principle independent from the design choices of the underlying experiment.
With regard to the emotions chosen in an experimental setup, the next step of the
concept is to cluster the measured sensor data. It may seem contradictory to first
classify emotions for the experimental setup but to disregard this classification
in the next step, but the significance becomes clear in the third step, where the
researchers are then able to check, whether the clustering has produced results
that are similar to the results envisioned from the experimental setup. This
may not only lead to an adjustment of the clustering algorithm, but also to
an adjustment in the experimental design if some emotional triggers appear to
produce ambiguous results.
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For a larger setup, a higher number of participants as well as a control group
would be needed. A control group in sensor measurements would have to provide
a baseline of EEG data. Here, providing no stimulus would probably not enable
good control groups, as participants’ wandering minds would cause unforeseen
sensor data. We rather propose an easy task or games like light Sudoku puzzles
or Solitaire while wearing the same HMD and sensor cap to be appropriate for
a control group.

Step 2: Clustering of Sensor Data. Even though the data is time series
data, on stream clustering is not necessary. Recording and storing of the data
makes it possible to work with the data at will and without the constraint of
processing in real time. Here, one sensor is chosen as a possible replacement
candidate. The data from this sensor has to be broken up into different clusters
representing one emotional category each. To achieve this, several approaches
can be used. In the vein of deep learning, autoencoders could be used as feature
extractors. It is possible that the experimental setup does not yield enough data
for clustering to be useful or necessary. If labelling by hand is feasible, there is
the option of labelling the experimental data outright. This has the downside of
being labour intensive and costly. A middle ground would be to either take one
occurrence as a prototype and classify the rest of the data by similarity or to
create pseudo-labelled data with a semi-supervised machine learning algorithm.

Regardless of the model used, the time series data could be approached with
a sliding window strategy, in which the step size is smaller than the window
size. The resulting clusters contain lists of timestamps at which certain signif-
icant events occur. These lists of timestamps have to be controlled for their
meaningfulness as they are the basis for further processing.

Step 3: Labelling of Clusters and Reassessment. If a clustering mechanism
is used, the clusters in and of themselves are not meaningful. Instead, the clusters
have to be controlled for how well a certain human-understandable label can be
connected to them. If, for example, a cluster contains time stamps from EEG
data that were all connected to joyful moments in the VR clues, the cluster may
safely be labelled as a positive emotional category. This not only depends on
the experimental setup, but also on the use case that is envisioned. A more or
less fine-grained approach will yield different amounts and qualities of clusters.
If the clusters do not represent the clues in the VR simulation, the clustering
parameters such as bias, learning rate or the loss function of the algorithm can
be changed until a useful clustering is achieved.

As a last resort, if the clusters do not seem to produce comprehensible group-
ings, the VR simulation can be tagged for timestamps at which certain emotions
are cued. These timestamps can be used for manual classification or a semi-
supervised deep learning based model.
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Step 4: Synchronization and Operationalisation of the Other Sensor
Data. Each cluster will correspond to a certain type of emotion or set of emo-
tions, depending on the label that it is assigned in step 3. Each of the clusters
contains a list of timestamps at which the clustered data points occurred. Now
the sensor data from all other sensors are taken into account. The list of times-
tamps from a cluster is used as the index of a relational database. Each column
represents the data from a different sensor, each row represents a point in time.
As a first approach, each cell could contain the measurement for one sensor at
one point during the experiment.

Taking the raw sensor measurements at the exact timestamp would not be
fine-grained enough for some sensors, however. Rather, each sensor has to be
taken into account individually. For example, the value from a sensor measuring
electro-dermal activity may be taken at face value. Heart rate data or ocular
movement on the other hand would be better represented by a gradient of change.
Ideally, each sensor’s data is preprocessed using recurrent neural networks to look
for patterns around each timestamp. This preprocessing transitions into data
analysis seamlessly, as patterns in the data of one sensor sampled by timestamps
already indicate a correlation between the cluster results and the sensor results.
The cell values of the resulting table would contain single values of the sensor
or short periods of sensor data depending on what has the highest information
density.

It is possible, that during analysis, the sensor produces data that is very
different from the originally clustered data. In order to prevent false classification
in the analysis stage, data that is considered to be an outlier will be captured by
a buffer that is fed back into the clustering stage. In this way, not all the data is
classified immediately by brute force. Rather the data that is easily classified will
be passed through, while some data will await processing later on. The concept
can even run in soft real time after an initial setup period.

Step 5: Analysis of the Sensor Data and Interpretation. Statistical anal-
ysis of the table data can be done using household statistical methods or machine
learning models. This requires a machine learning based pipeline, which includes
preprocessing, feature selection and adjusting of weights. This pipeline can be
bypassed using a deep learning approach. While an artificial neural network
could take the form of any neural network for pattern recognition, of which
there is a large choice of different types [8], a promising approach in the area
of emotion classification based on input from multiple sensors has been to use
a hybrid approach of a convolutional neural network together with a long short
term memory recurrent neural network [14], although any other deep learning
approach could be used as well, depending on which model produces the best
result.

The most basic analysis of the table would be to look for patterns within
a single column, denoting one sensor. If all data points in a single column are
similar, there might be a correlation between this sensor and the one to be
replaced. Yet the similarity may only be assessed when compared to the rest
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of that sensor’s data that is not in the table. If, for example, a sensor has the
value 0.75 for all occurrences in the table, the meaningfulness is determined
by the values of the sensors outside of the selected timestamps. If all values
are 0.75, there is no meaning. If all other values are 0.50, there is a strong
correlation between that sensor and the EEG data. Therefore, the analysis has
to find patterns within a column as a first step and compare these to the rest of
the data produced by that sensor.

The more interesting and more intricate approach is to look for patterns in
the combined data of multiple sensors. Even though there might not be a pattern
within one sensor, the relationship between multiple sensors might be distinctive.
These patterns could be found through regular machine learning models or using
deep learning models again. The advantage of deep learning models is that the
required domain knowledge is reduced drastically. It is, however, not eliminated,
as the assessment of a model still requires human evaluation of the results.

The result of the concept would be a list of correlations between the sensors.
If sensor A is investigated, there would be individual correlation values of sensor
A’s data with the other individual sensors but also values for sensor A’s data with
all possible combinations of the other sensors. This table would allow insights
into how much the information content from the input sensor A could be gleaned
from any combination of the other sensors. In the following exemplary Table 1,
the combination of sensors A, B and C together contain 90 % of the information
content of sensor A.

Table 1. Each cell contains an exemplary value of how closely the combined sensor
data of the sensors named in row and column correlate with the target sensor A’s data

Target sensor A Sensor B Sensor C Sensor D

Sensor B 0.2 0.4 0.3

Sensor C 0.4 0.1 0.5

Sensor D 0.3 0.5 0.0

Sensor BC 0.4 0.4 0.9

4 Discussion

There are several underlying assumptions attached to the concept. The first is
that it is beneficial for certain use cases to use multiple sensors at the same time.
The interaction of sensors, which the concept in this paper seeks to investigate,
can only be relevant if multiple sensors provide a benefit in the first place. This
assumption is backed up by the related work, in which many papers utilize
multiple sensors. The authors consider this assumption to be reasonable in the
face of the complexity of use cases.
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Another assumption is that there is overlap in the information content each
sensor measures with regard to a use case. Again, interaction can only take place
if the data measured has some significance for the use case. If, for example,
heart rate measurements and EEG measurements are completely disconnected,
investigating overlap in their respective information content would be futile.
This possibility should not be considered as a shortcoming but as a justification
of the very model proposed here. Ultimately, knowing that heart rate and EEG
measurements in emotion detection are disconnected is a result that is as relevant
as finding a strong connection. In this way, there is a strong connection between
possible shortcomings of the concept and opportunities for further research.

Overall, the results of the concept would be percentages, not absolute
answers. If overlap in the sensors’ information content is found, the overlap
would not be binary (yes/no) but rather on a scale between 0 for no correlation
and 1 for a total correlation. This result not only depends on the efficacy and the
error margin of the models used but also to a large extend on the quality of the
input data. It might be that some sensors do not produce data reliable enough
for repeatable measurements. It could also be that the categories chosen per use
case (e.g. emotional categories such as fear, joy, etc.) do not correspond to mea-
surable physiological phenomena. Here, setting up the experimental design with
specialists for the specific use case is crucial to prevent spurious research. Also,
a strict ethical review of the experimental setup is advisable for two reasons.
Firstly, a simulation triggering strong emotions repeatedly can cause harm to
participants without the right oversight. Secondly, physiological sensor data is
amongst the most sensitive of personal data that has to be strictly protected.

If the experimental setup is sufficient, the concepts holds great potential to
fill a research gap on the interaction between sensors in VR applications. In a
best-case scenario, sensors could be replaced outright because their information
content can be taken from a combination of other sensors. This could lead to
cheaper devices, a reduction of data transfer or increase the hardware lifecycle,
as individual sensor failures would not result in a broken device. In a worst case
scenario, the concept can enhance our knowledge on the information content of
sensors in specific use cases. This has immense scientific value, which is further
described in the section on opportunities for future work.

5 Conclusion

The aim of this work was to propose a theoretical concept for potentially replac-
ing one sensor with the measurements from other sensors. Hence, costly or diffi-
cult to measure sensors could be left out of a setup completely, without losing its
functionality. An AI based EEG emulation, derived from other directly related
bio-signals, could therefore potentially replace EEG measurements which indi-
rectly enables the use of BCI in situations where it was previously not possible.

The conceptual framework thereby builds upon the generation of meaningful
measurement data through the collection within a corresponding VR application
and set-up. The evaluation of the collected sensor data is processed in five con-
secutive steps, by clustering the data of one sensor and classifying the data from
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other sensors into these clusters. Afterwards, the sensor data in each cluster are
analysed for regularities that make statements about the output of the original
sensor possible.

Although the concept presented has not yet been implemented, the detailed
description of the individual processing steps enables a targeted and comprehen-
sible implementation. Nevertheless, the success of the possible implementation
of the concept stands and falls with the validity of a number of assumptions.
One is that it is advantageous for certain use cases to use several sensors simul-
taneously. Secondly, that there is overlap in the information content that each
sensor measures in relation to a use case. However, it must be fundamentally
emphasised that the results of the concept are in any case statistical probability
values and not absolute answers.

In the best case, sensors, not limited to EEG, could be indirectly integrated or
completely removed based on the findings. In turn this could lead to a reduction
in the size of devices, a reduction in data transfer or an extension of the life cycle
of the hardware in general. In the worst case, the concept can at least expand
the general knowledge about the information content of sensors for specific use
cases.

Therefore, the proposed approach offers considerable added value in any case,
especially in the results of the literature research carried out and the relevance
in the field of BCI established in the process. A successful implementation could
also be used for a number of use cases in which the measurement of brain activity
could not be used or could not be used in a practicable way for interaction
between the user and the application.

6 Future Work

There are two main avenues of future work. The first is the realisation of the
setup described in this paper, the other is how the idea presented here can be
developed further. The first question, how this concept could be realised, requires
a good VR application to trigger emotions. An issue here is that most VR appli-
cations have the goal of eliciting some kind of emotion at some point during the
use of the application. A more direct approach to investigating emotion would
be to create a simulation that produces certain emotions repeatedly in a con-
trolled manner. The data is most distinctive if the patterns occur repeatedly
and the relevant events in the data are not outliers. A good VR application for
this experiment would therefore seek to produce similar emotions reliably. Here,
working with neuroscientists is imperative, as the concept of emotions in natural
language understanding can be at odds with a scientific meaning of what is being
measured.

Another area of research is how well the parameters of a clustering algorithm
and the patterns found in the data can be transferred between participants. A
study here would take one person’s patterns and apply them to other partici-
pants’ data to control for individual differences in the sensor data that is to be
replaced.
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The second avenue for future work, the further development of the concept,
is an open ended field of research. Here, the idea of a sensor hierarchy could
be developed for each use case. Since the results would be percentage based,
a final result might be a large venn diagram per use case in which sensors are
represented as circles and overlap by the amount they correlate. If one sensor
can be replaced by others outright, that sensor would be represented as lying
inside of an overlapping area.

Additionally, more sensors and different types of sensors could be added
to the analysis. The close connection between emotional and environmental
data in emotion detection [15] begs the question whether there is a correlation
between environmental sensors measurements and physiological sensor measure-
ments when testing for emotion.
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