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Abstract. To make the best decisions in real-world situations, autonomous vehi-
cles require learning algorithms that process a large number of labeled images.
This paper aims to compare the automatically generated saliency maps with atten-
tion maps obtained with an eye-tracking device in order to provide automated
labeling of images for the learning algorithm. To simulate traffic scenarios, we are
using a virtual driving environment with a motion platform and an eye-tracking
device for identifying the driver’s attention. The saliency maps are generated by
post-processing the driver’s view provided by the front camera.
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1 Introduction

Autonomous vehicle development in the last decade has increased substantially. All
major car manufacturers have launched their own semi o fully autonomous vehicles
and they continuously work on extending the range, reducing energy consumption,
reducing the time to market and also developing new simulation techniques. Software
and hardware-in-the-loop simulations of autonomous vehicles are often overlooking the
human factor [1]. A driver is expected to react based on his experience to different tracks
and environmental conditions (variations inweather, tire degradation, fuel consumption).
The testing of virtual cars in a multi-modal virtual environment is an important step in
the validation process of new concepts and technologies. Virtual driving environments
(VDE) are providing the user realistic feedback regarding the required visual, auditory,
haptic, and kinesthetic information. The most common way of imposing the motion of
the driving simulator is by the 6 degrees of freedom Stewart hexapod platform. A driv-
ing simulator with realistic interaction, operating environment and feedback eliminates
the difficulties of the road test but allows the understanding of driving behavior, testing
driver assistant systems, and traffic research.

Driving and especially safe driving is a collection of competencies that are acquired,
refined, automated and maintained. Driving behavior can also be influenced by the
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driver’s desire for smooth driving [2]. The main parameters proposed in the literature to
assess driver behavior are the longitudinal and the lateral accelerations [3], which can
be reproduced accurately with the VDE. Driver behavior can be modeled as a dynamic
system in a phase transition framework as changes in the physiological system [4] and
is also correlated with age, gender and sensation seeking [5]. The evaluation of driving
scenarios is complex because it is subject on many closely interconnected variables
depending not only on the different types of drivers but also on the road environment,
the traffic characteristics and the categories of road infrastructure.

Machine learning and artificial intelligence are the cornerstones of autonomous vehi-
cle development. The data for the construction of the model of the environment is pro-
vided by sensors like cameras, radar, and lidar. Complex driving maneuvers require a
detailed model of the environment, and deep-learning algorithms based on image pro-
cessing are of great importance. For training the neural networks, labeled images are
required, which can be obtained manually or automatically from a driving simulator.
Attention allocation analysis and prediction of the user on the driving scene can help the
image labeling process [6].

In this paper, we are proposing a verification metric for the automated labeling of
images using the saliency map comparing it with the attention map obtained with an
eye-tracking device. For this, we are proposing a VDE with a motion platform and an
eye-tracking device. The front-camera image (the driver’s view) is post-processed for
obtaining the saliencymap and this is comparedwith the attentionmap.We are interested
in the accuracy of the automated salient region detection in case the decision made by
the human driver in a specific traffic situation.

2 The Virtual Driving Environment

The proposed virtual driving environment is composed by a motion platform, a driving
seat with pedals, a steering wheel and a Tobii eye tracking device [7]. The Stewart
platform is the MOOG 6 DOF 2000E, which is a six degree of freedommotion platform
(Fig. 1). The dynamicmodel of the platformwas developed, analyzed and a co-simulation
environment was proposed in [8]. The performance of a driving simulator is defined by
the Motion Cueing Algorithm, which is a system of filters that takes into account the
limits of the simulator as well as the threshold of the driver’s motion perception to
reproduce simulated vehicle acceleration.

In the VDE, the dynamic model of the vehicle and the visual feedback is provided by
the CARLA simulator. CARLA is an open-source software platform, which is intended
to be a system that includes individual projects developed to smooth the process of
development, training and validation of autonomousmanagement systems. The CARLA
simulator consists of a scalable client-server architecture in which the server manages
the simulation itself: sensor playback, physics calculation, updates on the state of the
world and its actors and connects to client modules that control the logic of the actors on
stage and set the conditions of the world, using as programming environments Python
or C++ [9]. The basic structure of the CARLA simulator is composed of traffic man-
agement subsystem, sensors, recording subsystem, simulator integration subsystem in
other learning environments, various libraries with maps, weather conditions and sets of
actors, as well as a series of predefined routes and scenarios [9].
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To highlight the simulation capabilities of the CARLA platform, in [10] three types
of autonomous leadership are analyzed: a classic modular pipeline, an end-to-end model
trained by imitation learning and an end-to-end model. to-end trained through hardened
learning. Driving software was tested, testing various sensors (camera and LiDAR),
using a real-time hardware-in-the-loop simulation system without constraints based on
the CARLA platform [11]. The paper [12] proposes a complex method, which can
achieve a self-driving scale-ball, which can manage massive car traffic scenarios (over
7,000 km traveled) using a high-fidelity driving simulator, respecting traffic rules and in
a wide variety of environments (urban, rural, highway, narrow roads, roundabouts and
pedestrian crossings).

In [13] it is proposed to study the quality of the results obtained artificially compared
to the results obtained with the help of real sensors, in the field of object detection
with LiDAR. Vehicle control activities were analyzed by precise decoding of motion
intention using the BMI-VCS method - Integration of brain-machine interface (BMI)
neurotechnology with vehicle control systems (VCS). [14] is studying the possibility
that defective autonomous vehicles can be driven, in the event of a breakdown, with the
help of tele-driving. This system is an extension of the CARLA open-source simulator,
responsible for rendering the driving environment and ensuring an evaluation of the
reproducible scenario.

Fig. 1. The proposed virtual driving environment
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3 Visual Saliency Detection and Gaze Tracking

For the driver’s visual system, certain parts of the driving scene present crucial infor-
mation. These are the perceptually salient regions that contain semantically meaningful
information.

Saliency detection is a process of location of important objects or regions in an
image. The quality of the salient region labeling is very important since it will control
the accuracy and the capability of the autonomous vehicle to find the right path in its
surroundings. Image labeling and semantic segmentation can be completed manually
or can be automatized. Manual image segmentation and labeling is a time-consuming
process, because of the high volume of images in different driving scenarios. Automatic
salient region detection can be bottom-up and top-down modes [15]. The bottom-up
approach is fast, data-driven, and task-independent, while the top-down is based on
supervised learning and are task-oriented.

Salient region retrieval is used in various filed like automotive or robotics. It is used
in vehicle headlights detection with the region-of-interest segmentation method together
with the pyramid histogram of oriented gradients features detection in a support vector
machine classifier [16]. In [17] the saliency map is used in the prediction for making
braking decisions. This application is using a deep neural network to predict salient
features, then relate these with driving decisions. Dang et al. is proposing a visual
saliency–aware receding horizon exploration for path planning of aerial robots with a
two-step optimization paradigm [18].

Eye-tracking in theVDE is used to obtain the point of gaze, the spot onwhich the user
is focusing. Eye-tracking devices were successfully used in drivers’ testing in perceiving
objects in the visual field [19] and to determine fatigue driving state [20].

Studies in eye movement during driving are showing that there are different salient
regions on which the users are focusing their attention. In a survey on 40 subjects, Deng
et al analyzed the eye-tracking data when viewing traffic images [21]. They concluded
that the driver’s attention was mostly concentrated on the end of the road in front of the
vehicle.

Fig. 2. The virtual driving scenario implemented using Carla simulator
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Fig. 3. Examples of saliency maps obtained using SmoothGrad and gaze heat maps generated
from the input images recorded from virtual driving scenario

4 Experimental Setup for the Saliency Detection in Driving
Scenario

In the Carla simulator we implemented the following scenario: the user is driving the
ego-car along a secondary road, then the ego-car is reaching an intersection where the
user is waiting for the possibility to turn right on the main road (Fig. 2).



516 C. Antonya et al.

A total of nine users were requested to perform the experiment. The participants ages
were between 25 and 41 years old and none of them wore glasses during the experiment.

At the beginning of the experiment, theywere asked to calibrate theTobii eye tracking
device by looking at 5 predefined points. Then each of them performed the experiment
scenario. The eye movement was recorded for 10–20 s. On the main road, there is traffic
from the main direction and also from the front road. The user’s view (front camera
image of the car) is recorded at the speed of 10 frames/s.

5 Comparative Evaluation of Saliency and User’s Gaze

Visualizing saliency maps is used in order to detect relevant image regions (in our sce-
nario: the cars in the traffic). To perform this stage of evaluation, the tf-keras-vis visu-
alization toolkit [22] was used. This framework allows obtaining two types of saliency
maps: vanilla saliency or SmoothGrad. SmoothGrad was used in this paper because
the results obtained with the vanilla saliency map were noisy. SmoothGrad improves the
visibility by sharpening the gradient-based saliency maps [23]. For the implementation a
Convolutional Neural Network (CNN) model was used based on the pre-trained popular
VGG16 model [24]. The input images had a fixed size of 224 × 224 pixels.

In order to display the distribution of each user’s gaze fixations, we used heat maps
generated by Eye Movements Metrics and Visualizations Toolbox [25].

After analyzing the saliency and heat maps (Fig. 3), we obtained an accuracy of
83.3% regarding the overlap of predicted relevant regions with the user’s gaze fixation.
In some cases, where the overlap did not occur, the car was absent or partially present
in the image or there were reflecting lights that focused the user’s gaze.

6 Conclusions

To prepare the future autonomous vehicles to deal with real-word situation, the learning
algorithms require tremendous number of labeled images. Because different objects and
subjective factors are present in images, one way of extracting the meaningful content
of an image is to use an automated salient extraction algorithm. This is important also
in advanced driver assistance systems for warning generation by situation awareness
models. Drivers are using visual perception and are usually focusing their attention for
decision-making on the main features of the scenery ahead, like the curvature of the
road ahead, neighboring vehicles, bicycles, pedestrians and other obstacles. We used the
popular pretrained VGG16 model and SmoothGrad for saliency map generation, which
accomplished 83.3%accuracy. The interpretation of scene from an event-reasoning point
of view using automated salient region detection is an important step in image labeling
for autonomous vehicle’s behavior training and improvement. In the future, we will
apply the discussed method to create datasets for driving decisions based on saliency
maps.
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