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Abstract. In this paper we propose a development technique for low-power
devices with limited computing capacity to obtain efficient, high-performance and
non-CPU-invasive Augmented Reality (AR) applications. The paper will discuss
how to exploit both the available hardware and software resources. Many boards
on the market are equipped with CPUs with low computing power together with
GPUs for 2D/3D graphics and multimedia. The paper analyses the strengths of
these architectures and how to exploit them. The Operating System (O.S.) also
provides features that allow greater control over the system (e.g., avoid wasting
resources) and its performance. The techniques proposed are then used, as an
example, in the development of an AR application for remote assistance.

Keywords: Augmented reality · Low-power · GPU · Embedded system ·
Wearable system

1 Introduction

Nowadays, there are a multitude of low-power, small, wearable boards on the market.
These boards are often equipped with single-core processors with limited computing

capacity, making it burdensome use the CPU inefficiently or to perform heavy computa-
tionally tasks. For this reason, it is necessary to exploit all the resources made available
by the hardware: there are hardware chips in the processor’s System on Chip (SoC) that
can perform specific tasks very efficiently, both in terms of performance and power con-
sumption. Concerning, for example, the various multimedia tasks: video compression,
image processing or 2D/3D graphics. Performing these tasks in software (SW) adds a
prohibitive load for this type of system.

1.1 Multimedia

Many SoCs have a GPU capable of multimedia functionality:

• Video encoding and decoding: supports many hardware compression standards like
h264/h265/mjpeg.
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• Image encoding and decoding: support for jpg/png/bmp in hardware.
• Image processing: application of filters and effects.
• Image conversion: image format conversion (e.g., from YUYV to RGB and vice
versa).

• Image resize: image downscaling and upscaling.

Exploiting the hardware (HW) features, from the developer’s point of view, implies,
use libraries/frameworks provided by the chip vendor that do not necessarily work on
known standards. This adds constraints to the application design:

1. Availability only in certain languages.
2. Abstraction level.
3. Lack of documentation.

1.2 Bus and Memory

There are chips with special buses (e.g., mipi bus [11]) that allow certain peripherals,
like a camera, to be connected directly to the GPU: avoiding unnecessary frame copy
from GPU to CPU and vice versa, saving bandwidth.

In addition, many cards feature unified memory, which can be used to advantage by
reducing memory bandwidth in graphics applications.

System memory that was previously owned only by the CPU is now shared between
the CPU and GPU.

In a unified memory architecture with a unified addressing scheme, both devices
share the same virtual address space. Therefore, instead of explicitly transferring data,
the CPU can pass the pointer of input data to the GPU.

1.3 2d/3d Graphics

The graphics capabilities of these low-power cards are growing, with full support for
vertex/fragment shaders, and higher fillrate.

However, care must be taken when updating textures or reading pixels, considering
to take advantage of unified memory or other types of hardware acceleration to reduce
memory bandwidth.

1.4 O.S. Feature

The O.S. of many embedded boards are based on the Linux kernel and therefore provide
all the means for parallel and concurrent programming. In the design of AR applications,
it is essential to exploit multi-threading. Design the software using periodic threads is a
key factor for two reasons:

1. Logical: each thread has its own modular, limited and well-defined function.
2. Performance: periodicity is an excellent parameter to regulate the performance and

system reactivity.
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AR applications can be considered soft-real system, since if the operations are not
executed within a deadline performance degrades. Many O.S. provide a series of tools
that allow greater control over periodic threads in execution: in the Linux kernel, for
example, there are a series of real-time schedulers. The objective of these schedulers is
to reduce latencies and have a deterministic response time.

1.5 Applications

At the time of writing we are witnessing the COVID-19 pandemic which has changed
the way of working in many sectors: remote assistance (, i.e. the possibility to supervise
complex machines/systems remotely) has become increasingly essential.

Virtual reality applications for cultural heritage (e.g. remote museum tours) have
proved to be a new way of disseminating culture.

Unfortunately, such applications require expensive and complex devices (e.g., htc
vive, oculust rift, etc.).

The techniques described in this paper fit well with the applications described above
and target low-cost devices, which are certainly more accessible to everyone.

In addition, with the spread of cloud computing, these techniques are even more
fundamental, they concern the edge computing part (i.e. those tasks that must necessarily
be performed on the edge device): many AR-cloud applications are based on streaming
video to servers that will process the video and returning it with AR info, it is essential to
adopt any mechanism that reduces the latency in processing the video on the end device.

2 Related Work

2.1 AR on Embedded GPU

The potential of GPUs in embedded systems has been discussed in recent times;
Embedded devices can be used in various areas: AR, computer vision, IoT, etc..

Lopez et al. [3] identified the main HW. and SW. components required by AR
systems. The processing architectures investigated are two:

• Edge Systems: all operations are performed on the device.
• Cloud Systems: operations are delegated to a server.

With the progress of Cloud technologies the second approach is interesting [6].
Unfortunately there are limitations due to latencies and bandwidth required [7] that
make the Quality of Experience (QoE) [8] not satisfactory, making these technologies
still not completely mature.

Therefore, it makes sense to continue investigating approaches based on edge
computing.

Elteir et al. [4] investigated the potential of embeddedGPUs in IoT boards as enablers
for computationally intensive applications.

Due to the technological differences between the various embedded GPUs, it is
difficult to develop high-level platform-independent frameworks. Such frameworks, for
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example,must take into accountwhether theGPU is discrete (dGPU) or integrate (iGPU),
as dGPUhas its own privatememory space for the system and data, introducing overhead
for copying data between the CPU and GPU. In contrast, iGPUs share the same memory
space with the CPU without the need to copy data.

Interesting is the work of Cameanu et al. [5] in developing a Component-based
development (CBD) approach that is independent of the CPU-GPU used. The limitation
of their approach is for computationally oriented applications since the framework they
developed is based on OpenCL.

2.2 Real-Time Support

Real-time operating systems are widely used in the embedded world. Since AR systems
can be considered as soft-real time systems, limitations and benefits of using real-time
techniques/approaches are being evaluated. Interesting is the analysis carried out by
Elliott andAnderson [1] that highlights the limitations and constraints imposedby current
GPUs:

• Isolation:most of the drivers are closed-source, then system isolationmust be provided
to protect fromunknown behaviors. Since even soft real-time systems require provable
analysis, the uncertain behaviors of the driver force integration solutions to treat it as
a black box.

• Throughput oriented: The GPU sw. and hw. are designed to be used by only one
process at a time. Low latency of operations and the sharing of GPU among processes
are only supported to a limited degree.

• GPU Interrupt handling: interrupts are difficult to manage in a real-time system.
Interrupts may occur periodically, sporadically, or at entirely unpredictable moments,
depending upon the application. Interrupts often cause disruptions in a real-time sys-
tem since the CPU must temporarily halt the execution of the currently scheduled
task. The GPU driver must be designed to minimize the interrupt duration.

The authors found that GPU resources in soft real-time systems can be managed
through a real-time CPU scheduler.

The Linux kernel offers several real-time schedulers [10] and also a patch to make
the kernel real-time [9], which mitigates the limitations written earlier (e.g., interrupts
are handled with threads (thus scheduled)).

3 System Model

In order to make the presented methodology clearer, let’s evaluate a use case: developing
a wearable device with an AR application for remote assistance.

The wearable device is equipped with a camera and head-mounted display (HMD),
the device streams the camera (i.e., the point of view of the field operator) to one or
more remote people (the expert operator) who provide information/indications in AR
rendered on the head mounted display (HMD).
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The wearable system is composed of:

• embedded board small in size, low-power and equipped with a SoC combining CPU
/GPU sharing memory and Wi-Fi module.

• camera.
• audio module (sound card which can be integrated into the embedded board or
external).

• HMD.

The proposed technique starts by identifying which tasks can be performed in HW.
and which in SW.

Starting from the application requirements and cross-referencing the datasheet, iden-
tifying functions/services that can be implemented taking full advantage of the hardware
acceleration. In this case we need to:

1. Acquire frames from the camera.
2. Rendering on HMD the camera frames along with the AR info received.
3. Rendering in a framebuffer the camera frame with some processing/filtering.
4. Encoding/decoding the framebuffer into a video stream.

Point 1 is obtained by exploiting dedicated camera interface: many embedded boards
are equippedwith a special bus, like theMIPI-CSI-2, that allows theGPU to be connected
“directly” to the camera (we will deal with this aspect in the next Section).

Points 2 and 3 obviously require GPUs capable of handling graphical contexts. The
HMD is used to show the camera frames alongwith the AR information coming from the
expert operator, this type of information could be simple indications/text or complex 3D
figures. In any case reduce the memory bandwidth between CPU and GPU is primary:
if the camera frame is used as a texture, it must be saved in the same memory portion
that the GPU will looking for.

Regarding point 4, targeting applications that require encoding/decoding of video
streams: it is worth checkingwhether there is a dedicated HW. in the GPU for its process-
ing. Many commercial cards are equipped with HW. acceleration for h264/h265 video
encoding. In order to program them, low-level standards (e.g., OpenMax) up to higher-
level frameworks (e.g., libav/openh264) canbeused, allowing to create/manage/integrate
video codecs inside applications with different abstraction levels.

In the proposed model the best solution is always to use low level standards, like
OpenMax: they guarantee full control over configurable parameters, less overhead and
moreover there is no risk of using SW. solutions without the developer “awareness”:
this occurs very frequently in high level frameworks when an implementation is not
available for a specfic HW., there is a fallback to SW. approaches which in embedded
systems risk saturating the CPU.
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4 Proposed Approach

4.1 Graphics Standard

The structure of the various standards for programming the GPU is often not clear: it is
important to know the relationship between them and their interoperability.

Fig. 1. GPU standards structure

The standards considered are:

• OpenMax: OpenMax is a unified abstraction layer that allows access to hardware
that otherwise requires vendor specific APIs. OpenMax therefore allows a (sort of)
portable implementation of software that utilizes such hardware. OpenMax provides
an abstraction over hardware that is capable to perform operations with multi media
(audio, images and video). Hardware can only be in one state at a time so it resembles a
statemachine.OpenMaxmaps to that statemachine and provides anAPI tomanipulate
it.

• OpenGLES:OpenGLES is a cross-platformAPI for full-function 2D and 3Dgraphics
on embedded systems, including consoles, phones, appliances, andvehicles. It consists
of well-defined subsets of desktopOpenGL, creating a flexible and powerful low-level
interface between software and graphic acceleration. OpenGL ES includes profiles
for floating-point and fixed-point systems and the EGL specification for portably
binding to native windowing systems. What distinguishes OpenGL ES from OpenGL
is its emphasis on low-capability embedded systems. OpenGL ES is a simplified and
tidied-up formofOpenGLbut still has the same capabilities asOpenGL. The emphasis
with this API is on 2D and 3D graphics, suitable for games programming and other
high-demand graphics applications. It will work in cooperation with other windowing
systems, such as the X Window System or Wayland, or where no other windowing
system is running.
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• OpenVG: OpenVG is a cross-platform API that provides a low-level hardware accel-
eration interface for vector graphics libraries such as Flash and SVG. OpenVG is tar-
geted primarily at handheld devices that require portable acceleration of high-quality
vector graphics for compelling user interfaces and text on small-screen devices, while
enabling hardware acceleration to provide fluidly interactive performance at very
low power levels. OpenVG is an alternative approach to graphics to OpenGL. While
OpenGL renders onto textures, OpenVG is more concerned with drawing lines to
form shapes and then rendering within those shapes.

• EGL: EGL is an interface between Khronos-rendering APIs such as OpenGL ES
or OpenVG and the underlying native platform window system. It handles graph-
ics context management, surface/buffer binding, and rendering synchronization and
enables high-performance, accelerated, mixed-mode 2D and 3D rendering using other
Khronos APIs. EGL is the “glue” layer between the higher-level APIs and the hard-
ware. It isn’t used extensively by the application programmer, just enough to give the
higher level the hooks into the lower level. Both OpenGL ES and OpenVG sit above
EGL.

Many manufacturers develop specific features for their hardware, which are
accessible via so-called standards extensions:

• OpenGL extension: the OpenGL standard allows individual vendors to provide addi-
tional functionality through extensions as new technology is created. Extensions may
introduce new functions and new constants, may relax or remove restrictions on exist-
ingOpenGL functions. Proprietary pixel format can be defined: howpixels aremapped
in texture memory, many chip vendors create their own internal conventions, opaque
to the programmer, that allow proprietary technologies to be used to the advantage of
performance and power consumption.

• OpenMax tunneling: it is possible to exchange information between multimedia com-
ponents (e.g., by directly passing camera frames to a video encoder) without involving
the CPU.

• EGL extension: it is possible, to use a camera frame or decoded video frame directly
as a texture. The solutions adopted by chip vendors use proprietary technologies
(e.g., proprietary pixel format or special memory mapping exploiting unified memory
architecture) that are available to the programmer as extensions to EGL. One of
the most useful is the EGL image: this extension defines a new EGL resource type
that is suitable for sharing 2D arrays of image data between client APIs., Although
the intended purpose is sharing 2D image data, the underlying interface makes no
assumptions about the format or purpose of the resource being shared, leaving those
decisions to the application and associated client APIs.

4.2 Multithreading

Many embedded O.S. have support for multithreading, which is a powerful tool for
structuring application tasks in a modular and logical way. In graphic/multimedia appli-
cations, the use of periodic threads is a versatile design choice: performance can be
adjusted to dynamically scale according to the quality required or the CPU load.
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The structure of periodic thread is similar the following:

Fig. 2. Periodic thread structure

Threads along with the possibility of interconnecting them using the technolo-
gies/standards described in the previous paragraphs can be modeled as a series of
high-level blocks that provide versatility in building applications on embedded devices
(Fig. 3).

Fig. 3. The tasks implemented as threads can be modeled as high-level box.

4.3 Scheduling

Since AR systems can be considered soft real-time system (i.e., if the deadline is missed
there is a performance degradation), it makes sense to investigate the real time schedulers
made available by a multitude of O.S.

These allow greater control over the threads that are running.
Real-time systems require that tasks execution must follow a severe priority order.

This requires that only theKhighest-priority tasks be running at any given instant in time,
where K is the number of CPUs. A variation to this requirement could be strict priority-
ordered scheduling in a given subset of CPUs or scheduling domains. In both cases, when
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a task is runnable, the scheduler must ensure that it be put on a run-queue on which it can
be run immediately—that is, the real-time scheduler has to ensure system-wide strict
real-time priority scheduling. Unlike non-real-time systems where the scheduler needs
to look only at its run-queue of tasks to make scheduling decisions, a real-time scheduler
makes global scheduling decisions, considering all the tasks in the system at any given
point. A real-time task scheduler would trade off throughput in favor of correctness, but
at the same time, it must ensure minimal task ping-ponging.

Linux kernel offers the following schedulers type:

• SCHED_OTHER: each process is assigned a maximum time slice and a dynamic
priority given by the sum of a base value and a value that decreases as the CPU time
used increases. Dynamic priority update: when all the time of the ready processes
is exhausted, the priorities of all processes are recalculated. It aims to ensure a fair
distribution of CPU between all processes, and to provide good response times for
interactive processes.

• REAL_TIME SCHEDULERS:

– SCHED_FIFO: it implements a first-in, first-out scheduling algorithm. When a
SCHED_FIFO task starts running, it continues to run until it voluntarily yields the
processor, blocks or is preempted by a higher-priority real-time task. All other tasks
of lower priority will not be scheduled until it leaves the CPU. Two equal-priority
SCHED_FIFO tasks do not preempt each other.

– SCHED_RR: is similar to SCHED_FIFO, except that such tasks are allocated time
slices based on their priority and run until they finish their time slice. The default
linux time slice is 100 ms.

Real-time schedulers allow to prioritize threads, thus having greater determinism.
Not all tasks are equal: there are some that are more important than others, so it is fair

to give them higher priority. In a typical AR application, it may be preferable to prioritize
the camera frame capture thread over the video-rendering thread. This can be useful in
CPU overloading situations: sometimes a real-time application running on the target
computer does not have enough time to complete processing before the next time step,
an overload happens every time an execution step is triggered while the previous one is
running. On low-power single-core device, this phenomenon can occur for a variety of
reasons, whether related to the design of the applications themselves (optimistic system
design, based on average rather than worst-case behavior) or to the kernel (interrupt
bursts, kernel exceptions, etc.). Faced with this situation, establishing an order of what
to maintain with stable performance and what to degrade is essential.

5 Experimental Results

The test setup of the techniques shown is a wearable system for remote assistance.
The application use case is show in Fig. 4.
The wearable device is equipped with a camera and viewers, this device streams

what the operator in the field (called the field operator) sees to one or more remote
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Fig. 4. Remote assistance application example

persons (the expert operator) who provide information/indications in AR rendered on
the viewers together with the video of the camera itself.

5.1 Hw. Architecture

The system is composed by:

• Embedded board: custom low power board is used, it features a Broadcom BCM2835
system on a chip, which includes a 700 MHz ARM1176JZF-S processor, VideoCore
IV Graphics Processing Unit (GPU), and 1Gb of shared memory. It has 16 KB Level
1 cache and 128 KB Level 2 cache, that is used primarily by the GPU.

• Camera: the camera chosen uses 5MP Omnivision 5647 sensor, capable of 1080@30
fps, 720@60fps, 480p@90fps. The communication interface is based on a 15-pin
MIPI Camera Serial Interface that directly communicates to the GPU.

• HMD: 1080p@60fps HMD is used.
• Audio: audio card featuring microphone and headphones
• Connectivity: 2.4 Ghz interface
• O.S.: Linux 4.9
• Battery

5.2 Sw. Architecture

The application has the following pipeline:
Regarding the application design, the following scheme is used:

• Camera and Video Splitter (OpenMax domain): connected through the tunnelling
mechanism. The video splitter takes the camera signal as input and forwards it to two
output ports as egl image.

• Video rendering (OpenGL domain): the camera frames along with AR info are
rendered, the egl image is used directly as texture.

• Framebuffer rendering (OpenGL domain): this rendering stage is used to prepare the
frame to transmit, effects and filters are applied to the frame (e.g., increase contrast,
use edge detector shaders, etc.). Again, the egl image is used directly as a texture.
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Fig. 5. Software pipeline

• Video encoding (OpenMax domain): the encoder takes the entire framebuffer object
(as an egl image) as input and outputs an encoded video stream (e.g., h264/h265).

• Video streamer and the remote interaction: rely on classic communication protocols
(e.g. udp/tcp/websocket, etc…).

Fig. 6. CPU-GPU interaction

From an operational point of view, the CPU and GPU exchange the following
information (Fig. 6):

4. GPU-> CPU: The egl image containing the camera frame. From developer’s point
of view is a simple pointer indicating the GPU memory area containing the camera
frame.

5. CPU-> GPU: OpenGL commands are sent to the server that resides on the GPU.
6. GPU-> CPU: what is rendered in the framebuffer is encoded as a streaming video.

The video encoder generates video packets transferred to the CPU. This is the only
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operation that requires a minimum memory bandwidth in the application, the video
packets size is proportional to the encoding level, resolution and framerate.

5.3 Benchmark

A comparison is made using both real-time and classic priorities, simulating overload-
ing situations (i.e., load average above 1 by introducing threads which performs some
computation).

Real-time priorities have been given to prevent blocking of camera frame acquisition
and any form of deadlock in the block diagram pipeline (Fig, 5): output splitter threads
that handle egl image must have the highest priority, we must assure their execution as
soon as possible to render the newest frame.

The real-time scheduler used is SCHED_RR (with default time slice 100ms), priority
ranges from 1(low) to 99(high) is given according to the following scheme:

1. Splitter output threads: priority 95.
2. Rendering threads: priority 94.
3. Video encoder thread: priority 93.
4. Remote interaction & Video streamer: priority 92.

The threads period is given by the working frequency of the associated component
(e.g., if the video rendering is at 60 fps, then the video rendering thread on CPU is
running at 60 Hz).

The tests are performed setting high resolution and fps value, pushing the HW. to its
limit.

The experiment number 1 (Table 1) has the flowing parameters:

• Camera: 1280x960 with target 30 fps.
• Video-Rendering: 1280x960 with target 60 fps.
• Video-Encoding: 1280x960 with target 30 fps.

The measured/real fps are lower because are near the GPU and camera limits.
Using SCHED_RR there is an increment on measured average fps, confirming the

goodness of the proposed approach. The major benefit is notable under overloading
conditions, since given the strict priority order the scheduling algorithm tries to reach
the target fps.

Same considerations are valid for experiment 2 and 3.
Figure 7, 8 and 9 show for each component and experiment the measured FPS.

SCHED_RR inoverloading conditions has a huge improvement compared to overloading
in SCHED_OTHER.
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Fig. 7. Camera FPS variation considering experiment number and scheduling policy.

Fig. 8. Video-rendering FPS considering experiment number and scheduling policy.
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Fig. 9. Video-encoding FPS considering experiment number and scheduling policy.

6 Conclusions

The techniques shown provide generic guidelines on how to program embedded boards
for augmented reality applications. It is shown how to take advantage of the unified
memory and hardware acceleration available.

Structuring the application using periodic threads is a key-point, it allows to associate
to each thread a specific and limited task, the periodicity is a good switch to adjust the
performance.

Finally, it has been shown how the use of real-time scheduling policies allows a
greater determinism of the application behavior, providing greater control in overloading
situations.

As a use case an AR telemetry application for a low-power wearable system has
been developed, validating the described approaches.

In the future it is interesting to evaluate the described approaches, especially related to
the part of scheduling, on a full real-timeO.S. as Linux PREEMPT-RT, which guarantee:

• Interrupts are handled with threads (thus scheduled).
• Spin locks replaced with mutexes.
• Priority inheritance is extended to the kernel.
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