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Abstract. The motor synthesis of humanoid characters is one of the
main problems in data-driven animations, with applications in robotics,
entertainment and game development. Both in the commercial and aca-
demic fields there is a strong interest in developing new synthesis tech-
niques. The attention of researchers in this field has recently turned to
artificial intelligence techniques with the use of neural networks, in par-
ticular recurrent neural networks (RNN) that are well suited to predict
data sequences, such as animations. The use of RNNs for the genera-
tion of animations despite the high success in the scientific field and the
excellent results in real development, still has limitations that prevent
its use on a larger scale. In this work, therefore, the need to overcome
these limits has required to focus on the phase following the generation of
interactions by the network. In particular, starting from a work present
in the literature, the limitations were analyzed and solutions were pro-
posed that made it possible to improve the visual rendering of the Carry
and Sit operations. The results obtained are positive and did not require
any intervention on the neural network. New items and characters have
been successfully introduced. Both pre-existing characters and imported
characters are able to interact with all objects with greater effectiveness,
responsiveness and visual fidelity.

Keywords: Computer graphics · Animations · Recurrent neural
network

1 Introduction

In recent years, the interest in virtual character animation has rapidly grown.
Application areas that benefit from advances in motor synthesis include robotics,
virtual reality, video games, and non-interactive animation [6]. The advances in
this field are strongly linked to the development of artificial intelligence, espe-
cially deep learning [11,15].

Examples of synthesis of human animations aimed at precision interactions
can be found in commercial games such as Gears of War 4 [1], For Honor [4]
and Star Citizen [8] and underline the strong interest of large companies to
research in the sector. The main component of the games is immersion, or the
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user’s illusion of not being in front of a machine but of interacting with a real
and coherent world. Artificial intelligence plays a fundamental role in this mech-
anism, not only in the more direct application of creating adversaries and more
skilled allies. In particular, the 10 categories identified are: Non-player character
(NPC) behavior learning [14], Search and planning [7], Player modeling [22],
Games as AI benchmarks [20], Procedural content generation [18], Computa-
tional narrative [2], Believable agents [13], AI-assisted game design [21], AI in
commercial games [3]. Concerning this last point, in academic field, there is a
strong emphasis on the use of Recurrent Neural Network (RNN) for the synthe-
sis of novel animations and transitions starting from Motion Capture (MoCap)
data. RNN has good performance to classify sequential data as natural speech
recognition, handwriting recognition and animation synthesis. The attempts to
increase generality are based on the variety of character actions, the variety of
objects they can interact with, and transitions. To do this, it is often proposed to
retrain the network with novel data. This process is very expensive for two rea-
sons: first of all, novel data with the same structure as the pre-existing ones are
necessary. Tools and methods for acquiring MoCap data are not easily accessi-
ble. Data must be cleaned and augmented before being inserted into the training
set. Then, the training of the network requires much more time how much more
data are available.

This research aims to propose a non invasive method to generalize the tech-
niques of motor synthesis in terms of diversity of build and variety of objects.
Departing from the solution proposed by [19], the purpose is to test the introduc-
tion of new assets. Through the definition of import rules and the introduction of
components in the post-processing phase, the problems of compatibility, visual
fidelity and responsiveness have been solved. The components are non-invasive
as they do not modify the original structure and are activated only when a cor-
rection is needed. Furthermore, the results were obtained without modifying the
neural network.

The main contributions of this paper are summarized as follows:

– Visual fidelity: the gap between the hands and the objects carried by the
character must be eliminated.

– Effectiveness and responsiveness: characters must lift objects without block-
ing and without lingering in the lift transition.

– No intervention on the network: the neural network must be unaffected, so
corrections cannot be based on introducing novel data or retraining the net-
work.

– Control: activation of fixes must be under the control of the developer.

The remainder of the paper is organized as follows. In Sect. 2, a comparative
analysis with other motor synthesis techniques is proposed. Section 3 describes
the specific objectives, the problems encountered and the techniques adopted.
The results obtained are described in Sect. 4. Finally, Sect. 5 describes the degree
of achievement of the objectives and the ideas for future developments.
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2 Related Works

Several approaches have been adopted to generate realistic animations for
humanoid characters. These methods are mainly divided into [10,16,23]:

– Simulation based : aims to create animations that respect physical constraints.
– Data driven: aims to create animations that can be managed in real time

starting from unstructured data.

Since the solution adopted in this paper concerns the data-driven based mod-
els with phase-labeled deep-learning, we present literature works for the second
approach and the differences with our solution.

2.1 Data Driven Models

The purpose of data driven models is the creation of animations and transitions
that can be controlled in real time, starting from MoCap data. A classic approach
to data driven animation has been proposed by [9] and based on “motion graph”.
It is possible to control a character by selecting the task, sketch of a path in a
maze or by imitating a person in front of a camera. The effectiveness of this
solution depends on the quality and the quantity of the available MoCap data.
The data are organized in a 2-level structure (motion graph). The top level is a
probabilistic mode which groups character states into clusters and serves as an
interface for user control. The lowest level is a Markov model which handles the
transition between animations. At the lowest level, data are organized in trees,
with frame precision. By traversing the trees, the smoothest transition to the
next frame is determined. This solution works when the character slowly moves
and for a database of comparable size to that used in the experiment.

The work of [17] proposes a motor for the synthesis of constrained movements,
offline (not interactive) based on motion graph. The user can specify a high
level goal. The engine is capable of generating a realistic offline animation. The
traversing of the motion graph is performed through an algorithm that allows to
specify an inflation factor for the heuristic that decreases the traversal times of
the tree, to find sub-optimal solutions. By compressing and pruning the shaft, the
difference between suboptimal and optimal solutions decreases. Animations of
15 s were successfully created by specifying 2d trajectories and applying various
constraints.

In time, data driven models have shown encouraging results by adopting
machine learning techniques, in particular reinforcement learning.

In [12], the authors developed a controller based on reinforcement learning,
powered by a first-person environmental sensor and a motion graph contain-
ing MoCap data. The sensor organizes the data in a hierarchical structure and
does not require parameterization. The character is able to perceive the depth
of the scene and the obstacles that surround it. Planning is formulated as a
Markov decision problem. For training, a reinforcement learning algorithm is
used, adapted to benefit from the hierarchical structure of the data. At the end
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of the training, the controller is able to manage the animations of the character
in real time and avoid obstacles.

Deep learning techniques have shown an excellent scalability and ability to
create credible unpublished animations. In particular, the RNNs have proved to
be very efficient in managing animations. The RNNs in fact take into account
the previous states in the prediction phase, for this reason they present good
performances for sequential tasks such as natural language processing, speech
recognition, handwriting recognition or animation synthesis [5,19]. In [5], the
authors have proposed a prediction and classification technique of humanoid
poses based on Encoder-Recurrent-Decoder, a particular implementation of
RNN. This model operates on two domains: MoCap data and video footage.

The reference solution adopted [19] belongs to data driven models based on
deep learning. This model, based on a novel architecture called NSM, allows
to start from MoCap data to obtain a character that can be controlled in real
time. Novel transitions not present on the original data are generated, precise
interactions can be made, and the character can be controlled through high-
level tasks. The functioning of NSM consists of two main components. i) Gating
Network generates weights (experts) used to modify the value of the internal
weights of the Motion Prediction Network. It receives a subset of the Motion
Prediction Network inputs. ii) Motion Prediction Network is the main component
that deals with the prediction of the position to the next frame.

Similar to the [12] technique, the character is equipped with sensors. The
interaction sensor activates when the character has to sit or lift an object and
detects the geometry of the target. It is shaped like a parallelepiped and is
centered on the object. The environmental sensor is centered on the character,
has a cylindrical shape, is always active and informs the network about all the
near obstacles. The advantages of this solution compared to the previous ones
are: interactions of precision, generalization and response and control times.

The solutions shown are often specific to a certain character model. In some
cases, no mesh is assigned to the characters. Attempts to extend generality are
oriented towards the environment, the tasks that can be performed and the
variety of objects to interact with. The expansions are carried out upstream,
affecting the variety and quality of the training data, and thus retraining the
network. No attempts have been made to expand the solutions to characters of
different sizes.

This research has showed an increase in generality compared to the solution
of [19] without intervening on the training of the network. The solution adopted
is based on the addition of non-invasive components in the post-processing phase.
This approach has 2 advantages: non-invasiveness and no training.

3 Materials and Methods

This section shows the solution approaches adopted for the 2 main procedures:

– Adaptation of the Carry task;
– Adaptation of the Sit task and positional corrections.
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For each approach we describe the problems occurred in the original design
and the adopted solution. The common purpose is to augment the generality of
the solution, allowing the use of novel objects and characters and to increase the
visual fidelity of the interactions.

Import of Custom Assets. During the analysis of the demo, the need derived to
import a custom character, as the included character had display problems. The
import of custom characters, such as the import of objects to interact with, is a
relevant aspect if the intent is to evaluate the versatility of the animation tool in
adapting it to different projects. Moreover, the solutions adopted in this study
provide good performance also when the characters have been imported.

3.1 Adaptation of the Carry Task

One of the actions that the character can perform once it is set up is to carry
objects. For that regard, this section highlights the defects, describing and show-
ing the problems related to the transport and their respective causes. In addi-
tion, in order to understand the corrections, the steps of the algorithm of lifting
at threshold, which manages lifting and transport, was analyzed. Changes of
thresholds are also shown to improve effectiveness and responsiveness. Finally,
two approaches were used to eliminate the empty space between the hands and
the object, the first modifies the rotations of the character’s bones while the
second modifies the geometry of the object.

The imported character has some problems:

– Effectiveness: some failures in lifting objects. In some cases, when the char-
acter is preparing to lift the object, it remained in the position for a very
long time before starting the lifting or in the worst cases it blocked without
success.

– Efficiency: unacceptable response times. Since the project is intended for
interactive applications, such a lack of responsiveness is unacceptable.

– Visual fidelity: the hands are too far from the raised object. The cause of the
distance of the hands is given by the difference between the skeletons of the
default character and the imported character. The network performs better
with the default character, as because it also has longer arms and a mesh
that hides the defects when present.

Algorithm of Lifting at Threshold. The algorithm of lifting at threshold is
structured in 5 main phases.

1. Approaching the object: if the character is not close to the object, he proceeds
by walking to a target position.

2. Lifting: the character is in the target position and is ready to lift the object.
Bending down, he grabs the object with his hands, then stands up to carry
it.
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3. Movement with object in hands: it is possible to control the character to make
him walk while carrying the object.

4. Positioning transition: when the transport signal is interrupted, the transition
is started to place the object on the ground.

5. Positioning of the object on the ground: the object is placed on the ground
and the Carry task ends.

In the approaching phase, at each iteration the character continues walking
towards the object. The interaction sensor is constantly updated.

Fig. 1. The modified approaching phase (changes are highlighted in blue). (Color figure
online)

To solve the problem in the approaching the object, the proposed approach
acts on the contact threshold (Fig. 1). The lock of the character occurred at
the check on the contact threshold. Even if the character was close enough to
the object with the hands in the correct position, the neural network did not
assign contact values such as to allow him to exit the cycle. The introduced
tolerance increase mechanism is triggered only if the character is already bent
to lift the object and the tolerance increases with each iteration both towards
the hand-object distance and the contact values.

Even if there are no changes in the lifting phase, the updates of the threshold
values affect the stability of the cycle, when checking the contact values. At each
iteration, the time elapsed from the beginning of the lift, the position of the
object, the static goal and the interaction sensor are updated. Once the lift
limit time is exceeded, the next phase begins. It is possible that this phase
prematurely ends due to a lack of contact or interruption of the signal. In this
case the character drops the object to the ground.

The modify in the movement phase (Fig. 2) provides that before entering the
main loop it is signaled that the character is standing and carrying the object.
This allows to isolate when the change in the position of the hands is necessary.

For each iteration, the destination of the object is calculated, i.e. the middle
position between the hands, which is then assigned to it. Following the applica-
tion of the dynamic goal, the character can be made to move through movement
signals. Finally, the interaction sensor is updated. This phase ends only when the
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Fig. 2. The modified movement phase.

transport signal is interrupted and its duration therefore depends on the user’s
control.

For the transition phase (Fig. 3), the modify concerns the reset of the contact
threshold, so that the character does not stay in the transition phase for too long.
Before the change, the threshold values were not modified so the reset was not
necessary.

Fig. 3. The modified transition phase.

For the final phase of the repositioning of the object on the ground (Fig. 4),
the modify concerns the control of the distance of the object from the final
position. If it is close enough then the transition phase ends.

Wrist Correction. In some cases the character’s hands are too far from the
transported object. This defect was both in the imported character and the one
included in the demo. To contextualize the change it is necessary to understand
the logic of assigning the character’s posture (Fig. 5). The network is powered
for each frame, in order to be able to predict the values.
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Fig. 4. The modified repositioning phase.

Fig. 5. The modified update phase for each frame.

During the read of new values, the positions and rotations of the bones for
the current frame are assigned. In the Postprocess phase corrections are made to
the skeleton through assignments and calculation of inverse kinematics. Figure 6
shows the Read phase. After updating the time series and the trajectory, the
posture is assigned. A check has been added that allows to disable the network
control on the skeleton, in order to facilitate tests and isolate conflicts.

Fig. 6. The modified reading phase.

Three strategies have been adopted to correct the position of the wrists.

1. Intervention on transformations: in the postprocessing phase the transforma-
tions of the wrists were modified. The first attempt was to intervene directly
on the positions of the wrists, then on the rotation of the elbows.

2. Intervention on colliders in the editor: by intervening on the objects trans-
ported incorrectly and modifying the geometry of the colliders, the network
is influenced to bring the hands closer to the object.
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3. Intervention on colliders at runtime: the modification of the colliders is carried
out in real time by comparing the position of the hands with the extension
of the object.

Adaptation of the Sit Task. The Sit task consists of making the charac-
ter sit on the top of an object. The complete interaction includes 4 phases: i)
Approaching the object; ii) Transition into a sitting position; iii) Permanence in
a sitting position; iv) Transition into a straight position (Idle).

The problem concerned a malfunctioning in staying in a sitting position.
In particular, the ankles were not positioned correctly and interpenetrations
between the mesh of the character and the object were visible. The different
length of the legs creates an inconsistency at the moment of arbitrary positioning
of the ankles in the Read and Postprocessing phase. Since the network expects
longer legs, it places the hips too deep, causing the mesh to interpenetrate. To
solve the problem, there has been a change in the algorithm. By intervening in
the algorithm it is sufficient that the modification is carried out after the inverse
kinematics so that the old position is overwritten (the final position is the one
that counts for rendering).

Fig. 7. Correction in Post-process of the task Sit.

Figure 7 shows the correction of the Sit task. The correction is activated
only if the character is seated and if it is activated for the object with which
he is interacting. All objects that the character can sit on have a contact point
for the hips. To allow a smooth correction, an interpolation is performed with
the desired position. Finally, we intervene on the local position of the ankles to
eliminate graphic artifacts.

Positional Corrections. The default potion is also a task. If the character
did not receive any assignment to the skeleton positions while standing still, she
would initially remain in T-pose. The animation in the Idle condition gives the
character a natural look.
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The problem is that even without receiving any input, the character tends
to move around the scene. The skeleton remains motionless while the entire
character moves along the surface creating a sliding effect. The movement of
the character is given by the assignment to each frame of the new position of
the bones. The position at each frame is determined by the neural network. For
each bone there are two network outputs that directly affect its new position,
the positions of the bones and their speeds (Fig. 8).

Fig. 8. Modified post-process phase to correct sliding.

When the posture reading is taken, position and speed are calculated for each
bone.

The calculation of the actual position is posf = (posf−1+velocity·time)+pos
2 ,

where posf is the position in the current frame, posf−1 the position in the pre-
vious frame, velocity the speed obtained from the network and time the elapsed
time. Sliding is corrected by applying a “correction factor” to the speed of each
bone, only when the character should be standing still.

4 Results

This Section shows the results obtained for the 2 areas of improvement: adapta-
tion of the Carry task and adaptation of the Sit task and positional corrections.

4.1 Adaptation of the Carry Task

The success criterion is given by the correct lifting of all objects (pre-existing
and new) both by the original character and the imported ones. By applying the
appropriate correction method it was possible to make all the characters lift all
the objects without creating gaps.

The 3 methods adopted were:

– Intervention on the transformations;
– Intervention on the colliders in the editor (sensor);
– Intervention on the colliders at runtime (sensor).
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Intervention on the Transformations. The first intervention on the trans-
formations was on the position of the wrists. The effect of this correction can
be seen in Fig. 9. Although the hands are in a believable position relative to the
carried object, the mesh associated with the elbow has an incorrect rotation.
By forcing arbitrary positions in the skeleton, it is possible to create errors of
this type, as inconsistencies in terms of lengths and rotations can occur. The
network’s assignment of global positions takes the wrists away from the correct
local position.

Fig. 9. Effect of direct positioning.

The intervention on the rotation is the most solid, as it help to position the
hands correctly and partially returns control of the skeleton to the developer.
This aspect allows more freedom in the positioning of the bones, but can generate
conflicts with the network. These conflicts can show as graphic imperfections in
some characters. For the conflicts with the positioning of the neural network, we
have decided to intervene directly on the values detected to influence the rotation
of the arms, and therefore leave the network for posture complete control again.
Visual problems can also be related to the character skinning process. To solve
these problems it is therefore necessary to go back to the “weight painting”
phase, uniform the weights of the mesh and then re-import the character.

Intervention on the Colliders in the Editor. Figures 10 and 11 shows the
effects of the resizing of bounds and colliders along the X-axis. The objects are
always raised considering the forward direction, which coincides with the Z-axis
(in blue). The space between the hands and the object is eliminated after the
modification.

To determine if and when to apply the scaling, the same control considered
for the rotation of the elbows was used. It is then checked that the character
is actually being transported and that the object contains the contact points
of the wrists. The intervention on the colliders in the editor allows to have a
good control for a specific object, leaving unchanged the interactions with the
other objects. Since the positions and rotations of the bones are not arbitrarily
changed, no conflicts with the network are generated. This method requires more
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Fig. 10. Collider, bounds and effect on transport before the modification. (Color figure
online)

Fig. 11. Collider, bounds and effect on transport after the modification. (Color figure
online)

effort on the part of the developer who has to test the transport of the object
and make any changes to the colliders. Another disadvantage is the specificity,
as the modification to the colliders is static, it may be correct for a certain
character but not for others. With multiple characters this approach may not
work. Another limitation of this approach compared to direct intervention is
that it fails to correct the transport of smaller objects (Fig. 12).

Intervention on the Colliders at Runtime. Figure 13 shows the result of
this operation equal to that obtained through the modification in the editor.
The intervention on colliders at run-time, exploiting the difference between the
distance of the hands and the extension of the object, can automatically adapt
to different characters and geometries. It therefore has a good generality and
automaticity. The intervention on the sensor does not generate conflicts with
the neural network, but could have conflict with corrections made offline. For
this reason, an option has been added in the Interaction component that allows
to disable corrections for certain objects.



130 M. Mameli et al.

Fig. 12. Example of inefficiency with too small objects.

Fig. 13. Effect of the fix at runtime on a new character. The size of the bounds (in
blue) is restricted with respect to the mesh.

Comparison. The comparison among the 3 described methods can be summa-
rized in the Tables 1 and 2.

Thanks to a selector, it is possible to easily change the correction method.

4.2 Adaptation of the Sit Task and Positional Corrections

In the Sit task, the visual fidelity is increased thanks to the correct positioning
of the ankles and the elimination of interpenetrations. The autonomous sliding
has been minimized and the character has been brought back to the ground via
the height correction.
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Table 1. Summary table of the 3 correction methods (1).

Method Generality
(Charac-
ters)

Generality
(Objects)

Control Conflict with
the neural
network

Rotation of the elbows High High Medium Yes

Offline modification Low Low High No

Run-time modification High Low Medium No

Table 2. Summary table of the 3 correction methods (2).

Method Automaticity Integrity Problems

Rotation of the elbows Yes High Problems with the mesh
of the character

Offline modification No Media Does not manage good
little objects

Run-time modification Yes Low Does not manage good
little objects

Sit Task. The results are shown in Fig. 14. The detachment with the ankles
was canceled. In the chair, the contact points have been changed to allow the
character to sit further forward. The knees are positioned at the edge of the
chair avoiding interpenetration. However, this translation is in a less natural
arm position. Another defect is the loss of fluidity in the transition: in the most
serious cases it is possible to notice a sort of teleportation of the character to
the target position. Finally, as in the case of the transport, the corrections are
specific to the character and mainly depend on the length of the legs. In many
cases, the fix to the Sit task is unnecessary and the control can be left to the
network. Multiple touch-points can also be defined for different characters.

Fig. 14. Comparison before (left) and after (right) the correction.
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Fig. 15. Timelapse of 30 s without input with corrective factor.

Table 3. Comparison of translation in the absence of input and in the absence or
presence of the correction factor in 30 s.

Translation X Translation Z Absolute translation

Without correction –0.5 +1.4 1.49

Active correction –0.2 –0.1 0.22

Sliding. The sliding correction by acting on the speeds greatly improves the
stability of the character (Fig. 15). A more solid (and more invasive) solution
would be an integral modification of the system by which the translation in the
scene is established. The effect of the correction is shown in Table 3.

5 Conclusions and Future Works

The use of RNNs to generate animations despite the high success in the sci-
entific field and the excellent results in real development still has limitations
that restrict its use on a larger scale. In particular, the lack of generalization
of the networks and therefore the difficulty of their use on computer graphics
characters of different nature or composition, studies are needed to overcome
this limit. Furthermore, the composition of animations and interactions with
the scene, based on the data, presents graphical-visual renders in some cases not
exactly realistic which prevent their application in areas where the visual ren-
dering of the result is of fundamental importance, such as in games. To overcome
these limitations, this work has focused on the phase following the generation
of interactions by the network. In particular, starting from the work of [19], its
limitations were analyzed and solutions were proposed that made it possible to
improve the visual rendering of the Carry and Sit operations.
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The proposed correction method is non-invasive. Corrective factors have
been added, both in the logic of the task and in Postprocess, which improve
visual fidelity, effectiveness and response times. In addition, new characters and
new objects have been successfully introduced to make them interact. The new
objects are compatible with the existing solution. The improvements made are
also reflected in the starting assets. The original character is more responsive
and can correctly lift all objects. Additional components have a good tradeoff
between automaticity and control. Thanks to the introduction of control vari-
ables, they can be easily activated, calibrated and tested during execution. The
results have been obtained without modifying the neural network. This is impor-
tant as it demonstrates that it is possible to make minor changes to some network
inputs without creating conflicts. It is also possible to avoid the operations of
new data acquisition, preparation and training. The objectives have been fully
reached and an increase in the generality of the solution has been achieved.

Possible future developments may concern two aspects:

– Collision management: the character can avoid obstacles thanks to the envi-
ronmental sensor. He can pass through cracks by bending over or sit on a
chair behind a desk by moving his legs appropriately.

– Importing IK characters: by resolving IK constraints at runtime, offset errors
between the bones can be corrected. To obtain this advantage, the imported
character must have been configured with inverse kinematics. It is therefore
interesting to study the behaviour of IK characters in lifting objects and
sitting down. The application of inverse kinematics has been included in the
correction by rotation of the elbows and in the Sit task.
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23. Zhang, H., Starke, S., Komura, T., Saito, J.: Mode-adaptive neural networks for

quadruped motion control. ACM Trans. Graph. 37(4) (2018). https://doi.org/10.
1145/3197517.3201366

http://youtube.com/watch?v=ZMgHhu7XT78
https://doi.org/10.1007/978-3-319-70742-6_20
https://doi.org/10.1007/978-3-319-70742-6_20
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1007/978-3-319-42716-4
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3197517.3201366

	Overcoming the Limits of a Neural Network for Character-Scene Interactions
	1 Introduction
	2 Related Works
	2.1 Data Driven Models

	3 Materials and Methods
	3.1 Adaptation of the Carry Task

	4 Results
	4.1 Adaptation of the Carry Task
	4.2 Adaptation of the Sit Task and Positional Corrections

	5 Conclusions and Future Works
	References




