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Abstract. High-quality magnetic resonance imaging (MRI), which is
generally acquired by ultra-high field (7-Tesla, 7 T) MRI scanners,
may lead to improved performance for brain disease diagnosis, such as
Alzheimer’s disease (AD). However, 7 T MRI has not been widely used
due to higher cost and longer scanning time. To overcome this, we pro-
posed to utilize the generative adversarial networks (GAN)-based tech-
niques to synthesize the 7 T scans from 3 T scans, for which, the most
challenge is that we do not have enough data to learn a reliable mapping
from 3 T to 7 T. To address this, we further proposed the Unlimited
Data Augmentation (UDA) strategy to increase the learning samples via
the deformable registration, which can produce enough paired 3 T and
7 T MR images to learning this mapping. Based on this mapping, we
synthesize a 7 T MR scan for each subject in Alzheimer’s Disease Neu-
roimaging Initiative (ADNI), and conduct some experiments to evaluate
their effect in two tasks of AD diagnosis, including AD identification and
mild cognitive impairment (MCI) conversion prediction. Experimental
results demonstrate that our UDA strategy is effective to learn a reliable
mapping to high-quality MR images, and the synthetic 7 T scans are
possible to increase the performance of AD diagnosis.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that could accelerate
the patient’s cognitive loss and lead to dementia [10]. Previous studies have veri-
fied that magnetic resonance imaging (MRI) is a relevant important technique in
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Fig. 1. Framework of our proposed method consisting of two stages, i.e., (a) 7 T MR
image synthesis, and (b) disease classification.

AD diagnosis, e.g., identifying AD individuals and predicting the progress of mild
cognitive impairment (MCI) [16]. Generally, higher-quality MR scans, which are
recognized with a higher signal-to-noise ratio (SNR) and can be acquired with
higher magnetic field strength, are possible to result in a more accurate diagno-
sis of AD. Comparing to 1.5-Tesla (1.5 T) and 3 T MRI, the ultra-high field (7
T) MRI has evident clinical advantages, including higher SNR, better contrast,
higher sensitivity to provide detail of anatomy and pathology of the brain, and
easier to detect subtle changes [9,11]. However, in addition to producing quality
images, 7 T MRI also brings higher costs and longer scanning time.

Currently, the most widely used MRI is 1.5 T and 3 T scanners, of which a
lot of scans have been collected, such as Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [6]. The low quality may lead to an upper bound of analysis. If
these scans can be converted to 7 T MR scans, it is possible to boost the diagno-
sis performance. This produces a specific scenario of image-to-image translation,
for which various techniques have been studied, particularly those techniques
based on generative adversarial networks (GAN) [3,5,7,19]. Accordingly, it is
potential to learn a mapping from 1.5 T or 3 T MR images to 7 T images
based on various GANs, e.g., cycle-consistency GAN (cycGAN) [3], pixel2pixel
GAN (p2pGAN) [5], L1GAN [2], feature matching GAN (FMGAN) [17], or
sense-consistency GAN (SGAN) [14] with various constraints. As 3 T MRI syn-
thesized from 1.5T MRI can help to improve the performance of AD status
prediction [18], synthesizing 7 T MRI from 1.5 T/3 T MRI may further promote
the performance.
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However, learning image-to-image mappings generally requires abundant
data collection. It makes the task of synthesizing 7 T MR scans very difficult
because 7 T MRI scanners have not been widely applied and there is no public
dataset with accessible 7 T MR scans. Even a previous study [15] collected 15
in-house subjects with both 3 T and 7 T MR scans, it is still not enough to
learn a reliable mapping. As diagnosis models generally align images based on
image appearances by using image registration methods in their pre-processing
pipeline, conventional data augmentation such as up-down flip, left-right flip
may not be applicable to brain images.

Based on previous studies, we found that the most variability among different
images is the regional characteristic, to address which, a deformable augmenta-
tion may be effective to enlarge the learning dataset. Accordingly, we propose
an effective strategy to do deformable augmentation, so that to increase training
samples to learning reliable mappings from 3 T scans to 7 T scans. We register
the 3 T MR scan of each subject with paired 3 T and 7 T scans to a target 3 T
MRI in the ADNI dataset via deformable registration and apply the deformable
field to the corresponding healthy 7 T MR scan. In this way, we can obtain
enough subjects with paired 3 T and 7 T MR images.

In this paper, we first design various GAN-based models to learning the
mapping from 3 T to 7 T after doing deformable augmentation. Experimental
results demonstrate that all of them are promoted by our deformable augmen-
tation strategy, where SGAN achieves the best synthesis performance. Then, we
use the mapping learned by SGAN to synthesis a 7 T scan for each 3 T/1.5 T
scan in the ADNI dataset, i.e., each subject in ADNI now has a pair of original 3
T/1.5 T scan and a synthetic 7 T scan. Finally, each pair of the original 3 T/1.5
T image and the synthetic 7 T image are combined as a two-channel 3D image
and fed into classifiers. Experimental results demonstrate that our synthetic 7
T scans are effective to improve the performance in AD diagnosis.

2 Method

2.1 Dataset

There are two datasets used in this study. The first is an in-house dataset with
15 subjects, each of which has a pair of 3 T and 7 T T1-weighted MR scans. All
3 T and 7 T scans were acquired with Siemens Magnetom Trio 3 T and 7 T MRI
scanners, respectively. Specifically, each 3 T scan consists of 224 coronal slices
acquired with the 3D magnetization-prepared rapid gradient-echo (MP-RAGE)
sequence. The imaging parameters of 3D MP-RAGE sequence were: repetition
time (TR) = 1900 ms, echo time (TE) = 2.16 ms, inversion time (TI) = 900
ms, flip angle (FA) = 9◦, and voxel size = 1.0 × 1.0 × 1.0 mm3. Each 7 T scan
consists of 191 sagittal slices acquired with the 3D MP2-RAGE sequence. The
imaging parameters of 3D MP2-RAGE sequence were: TR = 6000 ms, TE =
2.95 ms, TI = 800/2700 ms, FA =4◦/4◦, and voxel size = 0.65 × 0.65 × 0.65
mm3. Each 3T scan was linearly aligned to the MNI standard space with the
voxel size of 1.0 × 1.0 × 1.0 mm3. The corresponding 7 T scan was then aligned
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to the 3 T scan in the MNI space by using FLIRT. After bias field correction,
skull removal, and intensity normalization, the intensity values of the 3 T and 7
T images were rescaled to [−1, 1].

The second dataset is the Alzheimer’s Disease Neuroimaging Initiative
database (ADNI) [6], where we use the baseline T1 scans of its two subsets, i.e.,
ADNI-1 and ADNI-2. Subjects in ADNI can be divide into (1) AD patients, (2)
CN patients, (3) pMCI patients that would progress to AD within 36 months
after baseline, and (4) sMCI patients that would not progress to AD. After
removing subjects that exist in both ADNI-1 and ADNI-2 from ADNI-2, there
are 200 AD, 231 CN, 171 pMCI, and 150 sMCI subjects in ADNI-1, while there
are 165 AD, 209 CN, 89 pMCI, and 256 sMCI subjects in ADNI-2. We apply
a similar pre-processing pipeline on MR scans in ADNI. After pre-processing,
these scans also have the voxel size of 1.0 × 1.0 × 1.0 mm3.

2.2 Framework

We propose a two-stage deep learning framework to promote the image qual-
ity of T1 scans and boost the performance of AD diagnosis as illustrated in
Fig. 1. In the first stage, we learn a mapping from 3 T scans to 7 T scans via
GAN-based techniques, which is used to promote the quality of scans in ADNI.
Especially, to address the small training data problem, we propose the Unlimited
Data Augmentation (UDA) with deformable registration. In the second stage,
based on the synthesized 7 T T1 scans, we develop a deep learning method for
AD diagnosis, by learning 3T and 7 T features automatically in a data-driven
manner. To the best of our knowledge, this is the first attempt to promote AD
diagnosis by mapping common-used 3 T MRI to high-quality 7 T MRI.

2.3 Unlimited Data Augmentation

As we only have a few paired 3 T and 7 T scans, which is not enough to learn
a reliable generative model to synthesize 7 T scans, we propose the Unlimited
Data Augmentation (UDA) to produce more paired 3 T and 7 T MR scans via
the deformable registration [1]. The motivation is that the deformable registra-
tion can find a non-linear transformation (i.e., deformation field) to establish
anatomical correspondences between each two images, and each group of images
still keeps the spatial relationships after being applied with the same deforma-
tion field. Based on this, we can produce hundreds of paired training samples
with potentially large and complex variety.

As our goal is to find a mapping function from 3 T to 7 T MR scans for
the ADNI subjects, we randomly select several scans from ADNI as the fixed
templates. We first perform deformable registration to each 3 T MR scan of the
in-house dataset and each selected template to obtain a deformation field, and
then apply the deformation field to this pair of 3 T and 7 T in-house scans. For
example, if we select 30 scans from ADNI as templates, then we can produce
15 × 30 samples in total, which may be enough to train a reliable mapping.
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2.4 Synthesizing 7 T MRI with GAN

In the first stage of our framework, we attempt to learn a mapping from 3 T to
7 T MR scans, which is conducted by the GAN-based techniques. We follow the
structures in [13], to create our GAN structures, which contains a generator and
a discriminator.

The generator is an encoder-decoder network, where the encoder consists of
three 3D convolutional layers with strides of {1, 2, and 2} and channels of {8,
16, and 32}, respectively, while the decoder consists of two 3D deconvolutional
layers (with 32 and 16 channels, respectively) and a 3D convolutional layer with 1
channel. Between the encoder and decoder, we also insert 3 residual blocks (RB),
each of which contains two convolutional layers with a shortcut connection. The
kernel sizes of the first and last convolutional layers are set to 7 × 7 × 7, while
which of the other layers are set to 3× 3× 3. All convolutional/deconvolutional
layers except the last one are followed by the batch normalization and rectified
linear unit (ReLu) activation while the last layer uses the “tanh” activation.

The discriminator is a fully convolutional network with five 3D convolutional
layers with the kernel size of 4 × 4 × 4. The channels of these layers are 16, 32,
64, 128, and 1, respectively, where the strides are 2, 2, 2, 2, and 1, respectively.
The former four layers are followed by batch normalization and ReLu activation.

During the training phase, the generator attempts to create the mapping to
approximate the difference between 3 T and 7 T MR images while the discrimi-
nator outputs a binary indicator to distinguish the original and the synthetic 7
T MR images. Besides, with different constraints, the generator and discrimina-
tor can form different GANs, such as the basic GAN with only the adversarial
loss [3], the cycle-consistency GAN (cycGAN) with the adversarial loss and cycle-
consistency loss [19], the pixel-to-pixel GAN (p2pGAN) with the adversarial loss
and the mean absolute error (MAE) loss [5], the 3D encoder-decoder with only
MAE loss (L1GAN) [2], the feature matching GAN (FMGAN) with the adver-
sarial loss and the feature matching loss [17] and the sense-consistency GAN
(SGAN) with the MAE loss and the feature matching loss [14]. Specifically, to
adopt the potential location shift, we apply patch-wise training by randomly
sampling patches of size 192× 192× 192 from the whole volume at the center of
each brain with a maximum random shift of 4 × 4 × 4 as the inputs. It should
be noted that all these patches can cover the whole brain regions of all sub-
jects. When synthesizing a target 7 T scan during the test phase, we randomly
select 50 patches from each 3 T scan, feed them into the generator to obtain 50
synthetic patches, and calculate the average of these synthetic patches as the
synthetic 7 T MR scan.

2.5 Disease Classification

After synthesizing 7 T scans for all subjects in ADNI, we further involve these
7 T scans in the classification tasks. Therefore, at the second stage, we built a
classification model using both original 3 T and synthetic 7 T MR images to
identify AD subjects (AD vs. NC classification) and predict MCI progression
(pMCI vs. sMCI classification).
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Table 1. Results (% except PSNR) of image synthesis achieved by different methods
for 3 T scans of subjects in in-house data.

Method MAE PSNR SSIM

#1 #10 #20 #1 #10 #20 #1 #10 #20

GAN 49.33 21.14 19.81 16.73 22.37 23.27 39.70 51.11 59.86

cycGAN 9.53 6.81 5.96 27.10 28.89 29.96 74.01 79.84 82.42

p2pGAN 7.14 5.80 5.25 29.03 29.96 30.39 78.74 83.48 84.58

L1GAN 7.18 5.12 4.89 29.35 30.72 31.02 82.32 84.58 85.87

FMGAN 7.00 5.81 5.77 29.18 30.11 30.62 81.47 84.19 84.47

SGAN 6.55 4.81 4.53 29.79 30.91 31.40 83.90 85.02 86.29

#30 #40 #50 #30 #40 #50 #30 #40 #50

SGAN 4.15 4.08 4.11 31.86 31.96 32.03 87.45 87.51 87.69

The classification model employs the same structure as the disease-image
specific neural network (DSNN) [12], which consists of 5 convolutional layers
with channels of 16, 32, 64, 64, and 64, respectively. Each layer has the kernel
size of 3 × 3 × 3 and stride of 1 and is followed by batch normalization and
ReLu activation. Each of the first four convolutional layers is followed by a max-
pooling layer to downsample the output with the stride of 2. The last layer is
followed by a spatial cosine kernel to utilize the spatial information. While using
both original 3 T and synthetic 7 T MR scans as inputs, each pair of 3 T and 7
T images are concatenated along the channel dimension to form a two-channel
volume. We also use the same patch-wise training for the DSNN with the patch
size of 160× 176× 160 and a maximum random shift of 2× 2× 2. While testing,
we only select the patches at the center of the brain from the 3 T and 7 T scans.

2.6 Implement Details

We trained all networks on a platform with an NVIDIA TITAN Xp GPU (32
GB). For the 7 T MR image synthesis stage, we adopted the Adam optimizer
and set the batch size to 1, maximum epoch number to 500, and initial learning
rate to 0.001, which was divided by 10 after 100 iterations. For the disease
classification stage, we adopted the stochastic gradient descent (SGD) optimizer
and set the batch size to 6, maximum epoch number to 300, and initial learning
rate to 0.001, which was divided by 10 after 50 iterations. And we apply 3-fold
cross-validation on 7 T MR image synthesis and train the model three times for
disease classification.

3 Experiments and Results

3.1 Evaluation of Image Synthesis

We evaluate the performance of different 7 T MR image synthesis methods with
three commonly used image quality metrics, including (1) the mean absolute



76 J. Wei et al.

3T image 7T image 3T image 7T image 3T image 7T image 3T image 7T image

(a)

(b)

3T image #1 #10 #20 #30 #40 #50 7T image

Fig. 2. (a) Comparison of typical synthesis results of SGAN with different expanded
factors on one subject from in-house data. (b) The synthesis results of SGAN with the
expanded factor of 30 on four subjects from ADNI. The X of #X is the expanded
factor.

error (MAE), (2) the peak signal-to-noise ratio (PSNR), and (3) the structural
similarity index measure (SSIM) [4]. Table 1 shows the MAE, PSNR, and SSIM
values computed based on the predicted images from different methods, including
the basic GAN, cycGAN, p2pGAN, L1GAN, FMGAN, and SGAN, all of which
are implemented using the same architecture and details for a fair comparison.
The X of #X is the number of selected fixed templates, which means that
the training data was expanded by a factor of X. It can be observed that the
performances of all models on all metrics are improved with the increase of the
expanded factor. This can be attributed to our effective UDA performed by
the deformable registration. Specifically, among these compared models, SGAN
achieves the best performance in terms of all three metrics. Moreover, we further
evaluate the influence of the expand factor for SGAN by increasing the selected
templates. As shown in the last row of Table 1, the benefits from UDA become
less and less while the time costs are increasing linearly. Considering the trade-
off between performance and efficiency, we think the expanded factor of 30 is
the best choice. Therefore, we use SGAN with the expanded factor of 30 to
synthesize 7 T MR scans for our second-stage study.
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In Fig. 2(a), we further visualize an example of our in-house dataset to display
the synthetic 7 T scans of SGAN over expanded factors. From top to bottom
are, respectively, the central slice in axial, sagittal, coronal, and enlarged coronal
views of the original 3 T and 7 T MR images and the synthetic 7 T MR images.
It can be seen that the 7 T MR scan has better contrast than the 3 T scan, and
the quality of synthetic images is improving along with the expanded factors.
Figure 2(b) gives four examples from ADNI to show the original 3 T and synthetic
7 T scans obtained by SGAN with the expanded factor of 30.

Table 2. Diagnosis results (%) achieved by different methods for ADNI.

Method AUC ACC SEN SPE F1S MCC

AD vs. CN

DSNN (3 T) 93.02 ± 0.93 85.62 ± 1.04 78.52 ± 1.95 93.16 ± 1.78 85.90 ± 1.37 70.23 ± 2.12

DSNN (7 T) 91.22 ± 0.91 85.56 ± 0.89 77.42 ± 0.65 94.63 ± 1.46 83.82 ± 1.16 73.37 ± 1.67

DM-DSNN 94.74 ± 0.29 87.40 ± 0.83 78.64 ± 3.47 95.23 ± 1.08 86.07 ± 0.96 74.82 ± 1.28

pMCI vs. sMCI

DSNN (3 T) 82.60 ± 0.42 77.58 ± 0.60 65.17 ± 1.83 81.90 ± 0.66 72.21 ± 0.77 44.84 ± 1.58

DSNN (7 T) 80.05 ± 0.67 77.39 ± 0.47 57.12 ± 1.15 84.11 ± 0.66 70.61 ± 0.71 41.23 ± 1.41

DM-DSNN 83.25 ± 0.30 78.61 ± 0.25 66.97 ± 1.41 84.57 ± 0.39 73.55 ± 0.22 47.10 ± 0.42

3.2 Evaluation of Disease Classification

We further evaluated the synthetic 7 T MR scans in both tasks of AD iden-
tification (AD vs. CN) and MCI conversion prediction (pMCI vs. sMCI). We
use the DSNN in [12] as our classification method, and report both the results
that using only 3 T or 7 T modality and using both 3T and 7 T modalities
for comparison. Six metrics are computed (as shown in Table 2) to evaluate the
classification results, including the area under the receiver operating charac-
teristic (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-Score
(F1S), and Matthews correlation coefficient (MCC) [8]. Subjects from ADNI-1
and ADNI-2 were used for training and testing the models, respectively.

From Table 2, we can find that the classification results of DM-DSNN that
use both original 3 T and synthetic 7 T images outperform each of the single-
modality DSNN that use only original 3 T or synthetic 7 T images. It implies
that our synthetic 7 T MR images could help to improve the classification perfor-
mance across external datasets. For instance, the DM-DSNN achieves the best
AUC values in both AD vs. CN classification (94.74%), and pMCI vs. sMCI clas-
sification (83.25%), while DSNN achieves 93.02%/82.60% while using 3 T scans
and 91.22%/80.05% while using synthetic 7 T scans. Besides, while using only a
single modality, using our synthetic 7 T images perform comparable but slightly
less well than using original 3 T images. It reveals that our synthetic 7 T images
can not take place of the real 7 T images even it is useful in disease diagnosis.
Nevertheless, we achieve better performance than DSNN, which demonstrates
that our two-stage framework is effective to boost diagnosis performance with
only T1 MR images.
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4 Conclusion

We aim to improve the quality of MRI by learning a mapping from 3T scans to 7
T scans, for which the limited data is the most challenging difficulty. To address
this, we propose the Unlimited Data Augmentation (UDA) strategy to increase
the training samples by deformable registration. Experiments suggest that this
strategy can boost the performance of various GAN-based synthesis techniques,
and the performance of the AD diagnosis tasks, i.e., identifying AD subjects
and predicting MCI conversion, can be further improved with our synthetic 7 T
scans.
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