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Abstract. Deep learning has been extensively used in unsupervised deformable
image registration. U-Net structures are often used to infer deformation fields from
concatenated input images, and training is achieved by minimizing losses derived
from image similarity and field regularization terms. However, the mechanism
of multiresolution encoding and decoding with skip connections tends to mix
up the spatial relationship between corresponding voxels or features. This paper
proposes a multiresolution registration network (MRN) based on simple convolu-
tion layers at each resolution level and forms a framework mimicking the ideas of
well-accepted traditional image registration algorithms, wherein deformations are
solved at the lowest resolution and further refined level-by-level. Multiresolution
image features can be directly fed into the network, and wavelet decomposition
is employed to maintain rich features at low resolution. In addition, prior knowl-
edge of deformations at the lowest resolution is modeled by kernel-PCAwhen the
template image is fixed, and such a prior loss is employed for training at that level
to better tolerate shape variability. The proposed algorithm can be directly used
for group analysis or image labeling and potentially applied for registering any
image pairs. We compared the performance of MRN with different settings, i.e.,
w/wo wavelet features, w/wo kernel-PCA losses, using brain magnetic resonance
(MR) images, and the results showed better performance for the multiresolution
representation and prior knowledge learning.

Keywords: Medical image registration · Multiresolution representation · Prior
knowledge · Wavelet decomposition · Convolutional neural network

1 Introduction

In recent years, deep neural networks have been extensively used in deformable image
registration, amongwhichVoxelMorph [1] has beenwidely adopted due to easy training,
fast inferring speed, and comparable results to traditional state-of-the-art methods. They
have also been applied to align multi-modality images by disentangling the problem to
a mono-modal one [2]. In learning-based registration, many deep registration methods
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employ U-Net structures using multiresolution encoding and decoding paths with skip
connections. Basically, a 3D deformation can be inferred by the networks after concate-
nating the input images, and unsupervised training is achieved by minimizing the losses
derived from image similarity and deformation regularization terms.

However, the mechanism of multiresolution encoding and decoding architecture,
especially with the skip connection, tends to mix up the spatial relationship between
corresponding voxels of the images under registration or the feature maps at different
resolutions. This may leave the task of solving deformations entirely to the convolutional
layers and lead to more convolutional layers or complex network structures.

Recently, cascaded registration models have been proposed to improve the perfor-
mance of registration [3–5]. Zhao et al. presented a volume tweening network (VTN) [3],
which gradually registers a pair of images by using cascaded registration subnetworks,
and each time the deformation field between the intermediately warped moving image
and the fixed image are refined. Lately, they proposed a recursive cascaded network in
[4], so the entire system can be jointly trained. During testing, one cascade network may
be iteratively applied multiple times. But clearly, the networks should be different at dif-
ferent levels, especially the first network and the subsequent ones. de Vos et al. trained
each cascade network one by one by fixing the weights of previous networks [5]. Despite
using multiple networks, the effort seeks for more convolutional layers if one looks the
cascade networks from end-to-end as a whole. In a typical U-shape network architecture,
since the misalignment between feature maps caused by a residual or skip connection
is complicated, a simple bilinear up-sampling and concatenating operation may break
the symmetry between the down-sampling encoder and up-sampling decoder. Inspired
by the Flow-Net [6], an semantic flow estimator layer was adopted in [7], so that the
motion between two feature maps in different convolution layers can be compensated.

This paper uses convolutional neural network (CNN) for image registration while
adopting thewell-accepted idea from traditional image registration algorithms.We incor-
porate multiresolution representation of images, multilevel or hierarchical registration,
and prior knowledge constraints in the training stage. Specifically, we apply elegant
CNNs with less layers and parameters to solve the deformation field at the lowest res-
olution or to refine the fields at higher resolutions. The method is explicitly structured
in multiresolution and allows for corresponding image features be directly fed into the
subnetwork as inputs, thereby no skip-connection concatenation is needed. Various mul-
tiresolution image representations could be used, and herein wavelet decomposition is
employed to maintain rich features. CNN at each level can be trained separately, and any
image pairs can be well registered using MRN. In the case of group analysis or image
labeling, where the fixed image (or template) does not change, a prior knowledge-based
loss can be applied to the deformation field at the lowest resolution. Therefore, from
a group of valid deformations, the kernel-PCA statistics can be defined to form a new
prior knowledge loss.

In experiments, using brain magnetic resonance (MR) images, we compared the
performance of MRN with different settings, i.e., w/wo wavelet features, w/wo prior
knowledge losses. We used Dice of brain tissues and number of deformation folding
to evaluate the effectiveness of the proposed method. The experimental results showed
better performance for the multiresolution representation and prior knowledge learning
in terms of registration accuracy and topological correctness.
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2 Method

2.1 Multiresolution Image Registration Hierarchy

The proposed network addresses several key components for multiresolution registra-
tion, including formulating a multi-level structure to first solve the deformations at the
lowest resolution and then gradually refine the deformation fields, using multiresolution
image features to help better match anatomical structures, and applying prior knowledge
or statistics of the deformation fields to regularize the deformations for more robust
registration. The CNN-based registration can be summarized in Fig. 1.

Fig. 1. The structure of MRN. The input template and subject images T0 and S0 are fed into
the network, which are down-sampled (or transformed using wavelet packet transformation) into
different resolution levels. Registration is performed hierarchically at different resolution levels,
and the outputs include a deformation field and a warped subject.

As shown in Fig. 1, the input template and subject images (T0 and S0) are first down-
sampled (half the size) to lower resolution levels (T1,T2 and S1, S2). F2 represents
the output deformation field at the lowest resolution (level 2), which aligns images T2
and S2. The deformed image S

′
2 can be generated using spatial transformation network

(STN) based onF2.Mean square error (MSE) between the deformed image and template
image, and deformation smoothness losses can be applied to train the CNN at this level.
The output deformation field F2 is then up-sampled to level 1 and used to deform the
subject image S1. To train the CNN at level 1, MSE and smoothness losses can be used
similarly, and the training can be performed after the lower level network is properly
trained. Using the same way, a refinement field F0 can be solved by training the CNN
at level 0. Therefore, the network yields the final deformation field F by solving the
deformation F2 and the refinement fields F1 and F0 and then composing them.
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It can be seen that the structure of the proposed MRN mimics the traditional regis-
tration and gradually refines the deformation fields. The network can be trained level-
by-level or even trained independently when available deformations can be generated
and properly down-sampled. As the outputs of each CNN are deformation fields, the
training and performance of the network can be easily monitored. Moreover, the inputs
at different levels are flexible, as long as they reflect multiresolution representations of
the images to be registered. Notice that the deformation fields at the lowest resolution
reflect the major anatomical variability, and hence different priors can be used at this
level. Herein, as an example, we use a kernel-PCA loss to regularize the training at the
lowest resolution by assuming the template image is fixed. For the higher two levels, only
smoothness losses are used for regularization since the fields only reflect refinements.
Finally, to solve the deformations at each level, we use simple CNN (Sect. 2.4) rather
than the U-Net structure to eliminate its shortcomings mentioned in Introduction.

2.2 Multiresolution Representation and Prior Knowledge Learning

Multiresolution Representation of Input Images
Asmentioned above,MRN allows for using different image representations as inputs. To
maintain abundant image information in both low and high frequency, we adopt wavelet
packet transform (WPT) [8] to generate images at resolution levels 1 and 2. Figure 2
shows an example of images after WPT. Three selected high-pass bands in the red boxes
of the original image are combined to form the high-frequency image (mean absolute
values), so the inputs for each image includes an image channel and a high-frequency
channel, and the number of input channels of CNNs is 4 for all the levels.

Fig. 2. Multiresolution representation of images with WPT. From left to right: original image as
the input at level 0; low pass and combined bands in red boxes as the input of level 1; low pass
and combined red bands as the input of level 2. (Color figure online)

Statistical Priors for Learning the CNN at the Lowest Resolution Level
Denoting the deformations at level 2 as f1, f2, . . . , fN , whereN is the number of samples
available. The prior distribution of the deformations can be modeled by kernel-PCA [9]
with Gaussian kernel functions. The samples can be obtained from a traditional method
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such as SyN [10] after proper down-sampling. According to kernel-PCA, the kernel
matrix of N samples can be calculated by:

κ
(
fi, fj

) = exp
{−γE

(
fi, fj

)}
, i = 1, . . . ,N ; j = 1, . . . ,N , (1)

whereE(fi, fj) is the Euclidean distance between two deformation fields fi and fj normal-
ized by the number of voxels, E

(
fi, fj

) = 1
|M|

∑
v∈M‖fi(v) − fj(v)‖2, and γ is a constant.

M represents the image domain, and |M| is the number of voxels. Then, the centered
kernel matrix can be calculated by:

κc = κ − 1κ − κ1 + 1κ1, (2)

where 1 is a squarematrixwith element of 1/N . Finally, the eigenvectors and eigenvalues
of κc form the projection matrix φ and the variances λ along principal components. The
projection of any new deformation field f can be calculated by:

μ = φTk, (3)

where k = [
κ
(
f, fj

)
, j = 1, . . . ,N

]
. The shape of the input field f can be regularized by

enforcing vector μ within the range defined by the variance as:

Lkpca(f) =
∑

i=1,...K
μ2
i /λi, (4)

where K is the number of principal eigenvectors. Traditionally, least squares estimation
needs to be performed when reconstructing the constrained deformation field. Herein,
with tensor programming of PyTorch, the above loss function can be automatically
optimized through the gradient graphs of the software package.

2.3 Network Training Strategies

As seen from Fig. 1, MRN can be trained level-by-level. In addition to the prior loss
defined in Eq. (4), we also use the MSE and smoothness loss functions. MSE is defined
as the similarity between template images and deformed subject images:

LMSE,l = 1

|M|
∑

v∈M ‖Tl(v) − Sl(f(v) + v)‖2, l = 0, 1, 2. (5)

where l represents resolution level. The smoothness loss is defined as:

Lgrad = 1

|M|
∑

v∈M ‖∇f(v)‖2. (6)

In summary, the total loss for each level l is defined as:

Ll = αLMSE,l + βLGrad,l + ηLkpca, l = 0, 1, 2. (7)

η is set to zero for level 0 and 1, so the prior loss does not apply for higher resolutions.
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2.4 Algorithm Implementation

The CNNs at each level consist of 6 blocks, and each block includes a 3 × 3 × 3
convolutional layer with no padding followed by ReLU, and the last layer does not
have ReLU. The size of output at each level is smaller than that of the input (12 voxel
difference) because no-padding operation is used.We cropped input images into patches
with size 140 × 140 × 140 and stitched back to the image space to save GPU memory.
The output deformation field at the lower level should meet the size of the output of
the current level after up-sampling. This gives an exact effective size of 56 × 56 ×
56 for each patch. So, we crop overlapping patches by skipping 56 voxels. Another
consideration is that the kernel-PCA model is computed from the entire field at level
2, but for patch implementation, we can only use partial deformation field. Thus, the
kernel vector k in Eq. (3) is calculated by using the deformationwithin the corresponding
regions of each patch, i.e., κ = [

κ
(
P(f),P(fj)

)
, j = 1, . . . ,N

]
, and P() stands for only

picking the deformation within the patch. With bigger patches covering a large area of
the brain, distance calculated between two whole deformation fields is approximated
by computing via partial fields, avoiding computing the statistics for different patch
locations.

The network was implemented using PytTorch with Adam optimization. NVIDIA
Geforce RTX 2080 Ti was used for training and testing. We trained the network up
to1000 epochs (about 118,000 iterations) with batch size 1. The learning rate was set to
1e-5. The weights of loss terms in Eq. (7) were chosen as α = 1, β = 0.01. η was set to
0.01 for the first half epochs and 0.1 for the rest.

3 Results

3.1 Datasets and Experiment Setting

We evaluated the performance of the proposed method using 150 T1 brain MR images
from ADNI [11]. We randomly chose 120 images for training and 30 images for testing.
One of the training images was selected as the template image (see Fig. 3 left). The
goal was to train MRN by registering 119 sample images onto the template image in
an unsupervised fashion. All the images were preprocessed by first applying N3 bias
correction and then aligning them globally onto the template image space using affine
registration. Skull strippingwas performed using BET [12]. The images used for training
and testing are with size 180 × 216 × 180 and in isotropic 1 × 1 × 1mm3 spacing.
For CNN inputs, the two images or two sets of WPT data are normalized to the range
between 0 and 1 before cropping patches so that the intensities across different patch
locations remain consistent for each image.

3.2 Algorithm Comparison

Figure 3 shows an example of the registration results of MRN using WPT inputs and
kernel-PCA priors. It can be seen that the warped image at level 2 deforms a lot toward
the template image, and the deformation can be further refined in the following levels.
The proposed method also yields smooth deformation fields with less folding (will be
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addressed below). Figure 4 plots more results of different testing subjects for visual
assessment. The registration of all the 30 testing samples are successful, and the warped
images look similar to the template image.

Fig. 3. Illustration of the (intermediate) results of the proposed algorithm. From left to right: the
fixed image, the deformed images at level 0, 1, and 2, and the moving image.

Fig. 4. Registration results of different subjects. Top: input moving images; bottom: warped
images on the same template space. The fixed image is the same as Fig. 3.

In order to evaluate the performance of the proposed algorithm, we compared dif-
ferent training strategies and methods, including 1) using original images and their
down-sampled versions as the network input (MRN-Image); 2) using original images
and gradient magnitudes as input at level 0 and WPT data as input at level 1 and 2
(MRN-WPT); 3) with kernel-PCA prior loss based on 2) (MRN-WPT-KPCA); 4) with
kernel-PCA prior loss based on 1) (MRN-KPCA); 5) a deep registration network similar
to the U-Net architecture in [1] and the baseline used in [13] (Deep Registration); and 6)
SyN [10]. The network structures and parameters are the same for all the MRN-based
methods. The parameters of deep registration network and SyN are carefully tuned. We
tested the methods on 30 testing images respectively.

Dice similarity coefficients (DSC) of white matter (WM), gray matter (GM) and
Cerebrospinal Fluid (CSF) with ventricle between the masks on the template image and
the ones warped from each subject image are used for quantitative evaluation. We also
calculated the smoothness metric, i.e. permillage of folding in the deformation fields.

Figure 5 shows results of 30 testing data in terms of DSC for different settings of the
compared methods. It can be seen that compared to the Deep Registration method, the
DSC of GM,WMand CSF of our proposedMRNwere all improved. The methods using
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WPT features slightly outperformed others, and in terms of kernel-PCA constraints, they
yield similarDSCs, but overall the standard deviations are at least 10%smaller, indicating
more consistent and robust results over the testing datasets, and statistical models could
generate more variability during network training.

Fig. 5. Comparison of DSC for different methods.

We also counted the number of voxels with incorrect topology (i.e., with negative
Jacobian determinants), and the mean and standard deviation values in MRN-Image,
MRN-WPT, MRN-KPCA, MRN-WPT-KPCA are 0.49 ± 0.37, 0.53 ± 0.36, 0.46 ±
0.38, and 0.32± 0.28, respectively (unit in permillage). The number of folding decreases
greatly in MRN-WPT-KPCA, indicting our proposed method can yield reliable defor-
mations, as less folding means better morphologically allowable fields. Moreover, the
median of folding in MRN-WPT-KPCA is only 0.2‰, which is significantly smaller
than other methods (all > 0.35‰).

One of the drawbacks of the comparison is that as the statistical model losses are
only applied in the lowest resolution, the differences might be overwhelmed by the
processing at the higher two levels. Additionally, we believe that the statistical losses
may help improve the robustness of the registration networks and plan to validate and
test on atlas-based applications on bigger datasets with extensive data augmentation.

4 Conclusion

We proposed an MRN using simple convolution layers at each resolution level by mim-
icking the ideas ofwell-accepted traditional image registration algorithms. SimpleCNNs
were used to solve the deformations at each resolution and gradually refine the deforma-
tion level-by-level. MRN allows for image features in different resolutions be directly
fed into the network, and WPT images are naturally fit into the structure. Additionally,
for registering with template image, the prior knowledge of deformations at the lowest
resolution is modeled by kernel-PCA, which can be easily embedded into the network
training. Experiments using brain MR images showed the advantages of MRN com-
pared with different settings, i.e., w/wo wavelet features, w/wo prior knowledge losses.
The results showed better performance for the multiresolution representation and prior
knowledge learning.
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