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Abstract. Despite the recent advances in image-guided neurosurgery, reliable and
accurate estimation of the brain shift still remains one of the key challenges. In
this paper, we propose an automated multimodal deformable registration method
using hybrid learning-based and classical approaches to improve neurosurgical
procedures. Initially, themoving and fixed images are aligned using classical affine
transformation (MINC toolkit), and then the result is provided to the convolutional
neural network, which predicts the deformation field using backpropagation. Sub-
sequently, the moving image is transformed using the resultant deformation into
a moved image. Our model was evaluated on two publicly available datasets: the
retrospective evaluation of cerebral tumors (RESECT) and brain images of tumors
for evaluation (BITE). The mean target registration errors have been reduced from
5.35 ± 4.29 to 0.99 ± 0.22 mm in the RESECT and from 4.18 ± 1.91 to 1.68
± 0.65 mm in the BITE. Experimental results showed that our method improved
the state-of-the-art in terms of both accuracy and runtime speed (170 ms on aver-
age). Hence, the proposed method provides a fast runtime for 3D MRI to intra-
operative US pair in a GPU-based implementation, which shows a promise for
its applicability in assisting the neurosurgical procedures compensating for brain
shift.

Keywords: Brain shift · Computer-aided diagnosis · Deformable · MRI-US
registration · Deep learning

1 Introduction

Image-guided neurosurgery (IGN) has proven to be a valuable tool for assisting neuro-
surgeons in the planning, interventional, and post-operative clinical phases [1, 2]. Yet,
achieving accurate lesion localization and differentiation from the surrounding anatom-
ical structures remains a challenging task in neurosurgery. This challenge is related to
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the difficulty of visually defining these pathologic structures from healthy tissue in addi-
tion to the brain movements, known as “brain shift”, due to neurosurgical manipulation,
gravity, and anesthesia [3].

Hence, intra-operative magnetic resonance images (iMRI) and intra-operative ultra-
sound images (iUS) have been used for compensation of brain shift during surgery [4].
The iMRI scanner however limits the physician’s access to the operative field and special
surgical tools are required, which may be associated with high costs. iUS is portable,
inexpensive, requires little preparation, and provides fast data acquisition. Though iUS
can visualize interior soft tissue and structures, it has the difficulty of imaging through
bones, and its high dependency on the inter-operator interpretation may result in image
inconsistency. Consequently, the fusion of pre-interventional MRI images with the iUS
data acquired intra-operatively is proposed to compensate for the brain shift to enable
guided surgery.

Over the past years, many approaches have been applied for medical image regis-
tration that can be classified into non-learning- and learning-based approaches [5, 6].
Basically, classical or non-learningmethods are formulated as an iterative pair-wise opti-
mization problem that requires proper feature extraction, choosing a similarity measure-
ment, defining the used transformation model, and finally an optimization mechanism to
investigate the search space. Over time, extensive literature has developed using diverse
combinations of the aforementioned elements [7–10]. Still, the traditional iterative pro-
cess is computationally expensive, requiring long processing times ranging from tens of
minutes to hours even with an efficient implementation on a regular central processing
unit (CPU) or modern graphical processing unit (GPU).

To overcome the limitations of classical methods, learning-based approaches have
been proposed in recent years. Learning methods formulate the classical optimization
problem into a problem of loss function estimation. Rather than optimizing for every
input pair of images individually, deep learning tends to find a function that takes many
pairs of images and directly computes the transformation field. Some neural networks
were proposed for the registration of a pre-operative MRI to the iUS volumes for brain
shift correction [11, 12]. To better copewith inaccurate ground truth data and to eliminate
the time required for dataset annotation, unsupervised learning was introduced [13].

In this work, we propose a real-time automated deformable MRI-iUS registration
method using a mixture of deep learning and traditional registration tool. By comb-
ing both methods, our method intends to provide considerably improved robustness
and computational performance for assisting neurosurgeons intra-operatively. The main
contributions of this paper are as follows.

– We introduce our hybrid learning-based and traditional approach (see Fig. 1) for
MRI-iUS deformation field estimation.

– We validate the performance of our model on data from 36 patients from two publicly
available multi-site datasets: BITE and RESECT and compare it to the state-of-the-art
non-learning- and learning-based registration algorithms.

– To the best of our knowledge, this is the first real-time non-linear pre-operativeMRI to
iUS registrationmethod using hybrid learning-based and classical approaches towards
brain shift compensation.
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2 Material and Methods

2.1 Dataset

In this study, we have used two public accessible multi-site datasets, namely BITE [14]
and RESECT [15]. These datasets contain pre-operative MRI and 3D iUS images from
14 patients and 22 patients, respectively. Expert-labeled anatomical landmarks, provided
for each MRI-iUS pair, are utilized for ground truth evaluations. For the BITE dataset,
we use the landmarks chosen by the first two experts while the third expert’s annotation
in the dataset was excluded for consistency since they provided data for the first six
patients only.

2.2 Proposed Workflow

Traditional Image Registration. Medical image registration is the process of align-
ing two or more sets of imaging data acquired using mono- or multi-modalities into a
common coordinate system. Let IF and IM denote the fixed and the moving images,
respectively, and Let φ be the deformation field that relates the two images. Then, our
goal is to find the minimum cost function C as:

C = D(IF, IM .φ) + R(φ) (1)

where (IM .φ) is the moving image IM warped by the deformation field φ, the dissimi-
larity metric is denoted by D, and R(φ) represents the regularization parameter. In this
work, MRI and iUS scans are utilized as the moving and fixed images, respectively,
since our goal is to reflect the brain shift in the pre-operative MRI data.

Learning-Based Registration. Figure 1 presents an outline of the proposed non-rigid
registration method. Our model consists of two steps: first, IF and IM are fed into our
convolutional neural network (CNN) that then predicts φ. Second, IM is transformed
into a warped image (IM .φ) using a spatial re-sampler. The developed CNN architecture
utilized in experiments is based on U-Net [16] and our previous enhancement [17].
Using backpropagation, which is a feedback loop that estimates the network weighting
parameters, the network can automatically learn the optimal features and the deformation
field.

Our CNN contains two main parts: a feature extractor (or encoder) as well as a
deformation field estimator (or decoder). 3D convolutions are applied in both encoder
and decoder parts instead of the 2D convolutions used in the original U-Net architecture.
Table 1 lists the detailed implementation of each layer in our CNN. The encoder consists
of two consecutive 3D convolutional layers, each followed by a rectified linear unit
(ReLU) and 3D spatial max pooling. A stride of 2 is employed to reduce the spatial
dimension in each layer by half, similar to the traditional pyramid registration scheme.
In the decoding path, each step consists of a 3D up-sampling, a concatenation with the
corresponding features from the encoder, 3D up-convolutions, a batch normalization
layer, followed by a rectified linear unit (ReLU). Finally, a 1 x 1 x 1 convolution layer
is applied to map the resultant feature vector map into φ.
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Fig. 1. An overview of the proposed workflow for 3DMRI to iUS image deformable registration.
Dashed red arrows show the processes applied in the training stage only (Color figure online).

Table 1. Our deformable CNN architecture details.

# Operation Output # Operation Output

0 Input 128 × 128 ×
128 × 1

8 UpSampling3D 32 × 32 × 32
× 256

Input 128 × 128 ×
128 × 1

Concatenate 32 × 32 × 32
× 320

Concatenate 128 × 128 ×
128 × 2

Conv3D/BatchNorm/ReLU 32 × 32 × 32
× 128

1 Conv3D/BatchNorm/ReLU 64 × 64 ×
64 × 32

Conv3D/BatchNorm/ReLU 32 × 32 × 32
× 128

2 Conv3D/BatchNorm/ReLU 32 × 32 ×
32 × 64

9 UpSampling3D 64 × 64 × 64
× 128

3 Conv3D/BatchNorm/ReLU 16 × 16 ×
16 × 128

Concatenate 64 × 64 × 64
× 160

4 Conv3D/BatchNorm/ReLU 8 × 8 × 8 ×
256

Conv3D/BatchNorm/ReLU 64 × 64 × 64
× 64

5 Conv3D/BatchNorm/ReLU 8 × 8 × 8 ×
512

Conv3D/BatchNorm/ReLU 64 × 64 × 64
× 64

Conv3D/BatchNorm/ReLU 8 × 8 × 8 ×
512

10 UpSampling3D 128 × 128 ×
128 × 32

Dropout 8 × 8 × 8 ×
512

Concatenate 128 × 128 ×
128 × 34

7 UpSampling3D 16 × 16 ×
16 × 512

Conv3D/BatchNorm/ReLU 128 × 128 ×
128 × 16

Concatenate 16 × 16 ×
16 × 640

Conv3D/BatchNorm/ReLU 128 × 128 ×
128 × 16

(continued)
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Table 1. (continued)

# Operation Output # Operation Output

Conv3D/BatchNorm/ReLU 16 × 16 ×
16 × 256

11 Conv3D/BatchNorm/ReLU 128 × 128 ×
128 × 16

Conv3D/BatchNorm/ReLU 16 × 16 ×
16 × 256

12 Conv3D 128 × 128 ×
128 × 3

Loss Function. Owing to the applied two-step approach, the overall loss function L
has two components, as Shown in Eq. 2. L computes the image similarity between the
warped image (φ.IM) and the ground truth warped image IW , whereasLdisp corresponds
to the deformation field gradient error.

L = Lsim + Ldisp (2)

where Lsim employs the similarity metric of the local normalized correlation coefficient
(NCC), which are calculated as follows:

Lsim = NCC(IW,φ.IW) = 1

N

∑
pεX

∑
i
(
IW(p) − IW(p)

) ∑
i
(
φ.IM(p) − φ.IM(p)

)
√∑

i
(
IW(p) − IW(p)

)2
√∑

i
(
φ.IM(p) − φ.IM(p)

)2
(3)

where (φ.IM(p)) and IW (p) are the voxel intensities of a corresponding patch p in the
warped image and the ground truth, respectively, whereas (φ.IM(p)) and IW(p) are the
mean pixel intensities for both images. Ldisp measures spatial gradients differences in
the predicted displacement d as follows:

Ldisp =
∑

pεX
‖∇d(p)‖ (4)

3 Experimental Results

3.1 Experimental Setup

Due to the large differences between the two databases in terms of study characteristics
and the followed MRI and iUS protocols, a pre-processing step is crucial. First, for each
patient, the iUS images were resampled to the voxel resolution of the MRI of 1 × 1
× 1 mm3. Then, the MRI images were cropped to the field of view (FOV) of the iUS.
After that, all images were resized into an image resolution of 128 × 128 × 128 pixels
to be applicable by the proposed deep learning model. An affine alignment on MRI and
iUS volumes was achieved using the MINC toolkit (https://github.com/BIC-MNI/minc-
tools). Finally, we obtained the ground truth warped MRI by applying thin-plate spline
transformation to the input MRI and the expert labeled MRI-iUS tags using the MINC
toolkit.

As the number of cases is rather limited, we use intensive data augmentation to help
prevent themodel fromoverfitting and improve the registration results. This involves ran-
dom 3D flipping, 3D rotations [0–30 degrees], random gamma intensity transformation

https://github.com/BIC-MNI/minc-tools
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[0.8–1.2], and elastic deformation. For the experiments, our model was implemented in
Python using the TensorFlow library. The experiments were run on an Intel Xeon Gold
6248 (27.5M Cache, 2.50 GHz) CPUwith 8 GB RAM and a single NVIDIA Tesla V100
GPU 32GB. For training our network, we divide the cases into two sets 78% for the
training set and 22% for the validation set, the ADAM optimizer with an initial learning
rate of 0.0001, and a batch size of 4 was used. To compare with other studies, we use the
mean target registration error (mTRE), which represents the average distance between
the corresponding landmarks in each MRI-iUS pair after registration. The evaluation of
our experiments was performed using the same approach reported in [18].

3.2 Registration Results

Figure 2 shows seven examples of aligning MRI to iUS for different patients using our
proposed registration method. Each column corresponds to an individual patient. From
the visual results, it can be seen that overlaid MRI-iUS pairs are significantly improved
after applying ourmethod. Table 2 andTable 3 depict the pre-and post-registration results
for all trained cases for the BITE and the RESECT datasets, individually. In both tables,
the minimum achievable affine is the minimum mTRE we can achieve using an affine
transformation for the registration. In the last column, an average of the results over the
listed cases for each dataset as well as their standard deviation (std dev) is reported. For
the BITE database, our model reduced the initial mTRE (provided in the dataset) from 4.
18± 1.91 mm to 1.68± 0.65 mm. Similarly, an mTRE of 0.99± 0.22 mmwas achieved
on the RESECT database starting with an initial mTRE value of 5.35 ± 4.29. This
result highlights that our method delivers better results than initial alignment and similar
results to the minimum achievable truth affine registration on average. In a few cases,
the proposed approach performs similar or slightly worse compared to the ground-truth

Fig. 2. Examples of MRI to iUS registration. From the top row, iUS images (green), preoperative
T2-FLAIR MRI (grey), initial overlay of iUS on MRI, and final deformable registration, respec-
tively. Columns cases of BITE #5, #6, #14 and RESECT #5, #9, #15, #17, and #23, respectively
(Color figure online).
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affine results which indicate that the optimal transformation has been achieved using
the truth rigid registration. Overall, this analysis confirms that the number of available
training cases affects the accuracy and robustness of the CNN. This was indicated by the
superior performance of our method on the RESECT dataset (22 cases) over the BITE
dataset (14 cases).

Table 2. Details of the MRI-iUS registration for each case in the BITE dataset. Underlined bold
represent cases used during the validation stage.

Case 1 2 3 4 5 6 7 Std dev

# Landmarks 27 25 29 22 21 27 19 -

Before registration 5.88 6.06 8.91 3.87 2.57 2.24 3.02 1.91

Ours (affine + deformable) 1.29 1.08 1.38 1.03 1.45 1.29 2.18 0.65

Minimum achievable affine 1.84 1.42 2.11 1.45 2.04 1.50 1.99 0.45

Case 8 9 10 11 12 13 14 Average

# Landmarks 23 21 25 25 21 23 23 24

Before registration 3.75 5.08 2.99 1.51 3.68 5.13 3.78 4.18

Ours (affine + deformable) 1.55 1.68 1.88 1.72 3.65 1.79 1.52 1.68

Minimum achievable affine 2.19 2.43 1.44 1.32 2.67 2.46 2.30 1.94

3.3 Comparison with the State-of-the-Art Methods

The initial and final landmarks errors for the proposed method and approaches found in
the literature for MRI-iUS registration are displayed in Fig. 3(a). For the BITE database,
our method are compared with LC2 [7], SSC [8], SeSaMI [9], miLBP [19], Laplacian
Commutators [20], cDRAMMS [10], and ARENA [21]. The results obtained indicate
that our method outperforms other evaluated competing techniques, providing mTRE of
1.68 ± 0.65 mm with about 0.40 mm margin smaller than cDRAMMS.

Furthermore, our method was applied to the RESECT database as well (Fig. 3(b)).
Here, we compare our results with conventional methods: LC2 [22], SSC [18], NiftyReg
[23], cDRAMMS,ARENA [21] in addition to learningmethods: FAX [11], CNN+ STN
[12]. As illustrated in Fig. 3 (b), our model ranks first with mTRE of 0.99 ± 0.22 mm
followed by the learning-based method FAX with mTRE of 1.21 ± 0.55 mm. Though
team FAX reported comparable results, our method predicts a 3D pair of MRI-iUS
images with a runtime of 170 ms compared to 1.77 s (team FAX), and thus 10 times
faster. Experimental findings found clear support for the potential of using learning-based
registration methods in neurosurgery.
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Table 3. Details of the MRI-iUS registration for each case in the RESECT dataset. Underlined
bold represent cases used during the validation stage.

Case 1 2 3 4 5 6 7 8

# Landmarks 15 15 15 15 15 15 15 15

Before registration 1.81 5.70 9.56 2.45 12.03 3.25 1.86 2.65

Ours (affine + deformable) 1.09 1.04 0.93 1.04 0.95 0.88 1.05 1.39

Minimum achievable affine 1.13 1.11 0.94 1.04 1.00 0.91 1.26 1.21

Case 12 13 14 15 16 17 18 Std dev

# Landmarks 15 15 15 15 15 15 15 -

Before registration 19.71 4.56 3.02 3.23 3.39 6.37 3.57 4.29

Ours (affine + deformable) 0.91 0.99 1.04 1.26 0.87 0.91 0.76 0.22

Minimum achievable affine 0.96 1.01 1.05 1.34 0.87 1.02 0.81 0.16

Case 19 21 23 24 25 26 27 Average

# Landmarks 15 15 15 15 15 15 15 15

Before registration 3.29 4.56 7.02 1.09 10.06 2.82 5.77 5.35

Ours (affine + deformable) 0.74 0.92 0.71 0.69 1.66 0.94 1.09 0.99

Minimum achievable affine 0.8 0.98 0.71 0.71 0.94 0.97 1.15 1.00

(a) (b)
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Fig. 3. A comparison of the registration error (mTRE) between our proposed method and the
state-of-the-art methods on the BITE dataset (a) and the RESECT dataset (b).
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4 Conclusion

This study presented an automated fast and robust non-linear approach for pre-operative
MRI to iUS registration to assist intraoperative neurosurgical procedures. In our exper-
iments, the performance of our proposed method has been evaluated using 36 patients
from two multi-location databases. Outstandingly, our model outperforms the state-of-
the-art in terms of both performance and computational efficiency. Furthermore, the
qualitative results indicate that the registered MRI-iUS pairs have a significant improve-
ment over the initial alignment. Therefore, the results of our proposed registrationmethod
are promising and can be applied for clinical use during future work.
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