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Abstract. Automatic coronary artery labeling is essential yet challeng-
ing step in coronary artery disease diagnosis for clinician. Previous meth-
ods typically overlooked rich relationships with heart chamber and also
morphological features of coronary artery. In this paper, we propose a
novel point-cloud learning method (called CorLab-Net), which compre-
hensively captures both inter-organ and intra-artery spatial dependen-
cies as explicit guidance to assist the labeling of these challenging coro-
nary vessels. Specifically, given a 3D point cloud extracted from the seg-
mented coronary artery, our CorLab-Net improves artery labeling from
three aspects: First, it encodes the inter-organ anatomical dependency
between vessels and heart chambers (in terms of spatial distance field) to
effectively locate the blood vessels. Second, it extracts the intra-artery
anatomical dependency between vessel points and key joint points (in
terms of morphological distance field) to precisely identify different ves-
sel branches at the junctions. Third, it enhances the intra-artery local
dependency between neighboring points (by using graph convolutional
modules) to correct labeling outliers and improve consistency, especially
at the vascular endings. We evaluated our method on a real-clinical
dataset. Extensive experiments show that CorLab-Net significantly out-
performed the state-of-the-art methods in labeling coronary arteries with
large appearance-variance.
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1 Introduction

The diagnosis of coronary heart diseases needs a 3D model of the coronary artery
with precisely labeled vessels, which provides necessary information for many
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Fig. 1. Sample heart consisting of aorta, atrium, ventricles and coronary arteries. (a)
A chamber along with major coronary arteries; (b) A 3D heart shows the blood vessels
intertwining and attaching around the organ; (c) The coronary arteries structure varies
among individuals, as well as the thin and messy side branches.

subsequent procedures, such as locating stenosis/occlusion, generating medical
reports, calculating statistics for important anatomical branches and visualizing
regions of interest [1,2]. As shown in Fig. 1, coronary arteries are intertwined with
or attached to multiple organs, i.e., the heart chambers, aorta, and heart surface.
Precisely labeling them is practically challenging, mainly due to 1) coronary
vessels are typically tortuous dendritic tubular structures with diverse lengths; 2)
coronary vessels have dramatically changed shape appearance across individuals
and spatial positions.

Several automatic methods have been proposed for coronary artery (or sim-
ilar 3D structure) labeling, e.g., based on registration techniques, CNNs, and
point-cloud deep learning. Traditional methods [3,4] adopt registration tech-
niques to label coronary arteries via main branch matching, which cannot sensi-
tively identify detailed vessels. CNN-based methods can perform labeling more
efficiently, while general convolutional kernels defined in the grid space are hard
to capture the contextual information along with the tortuous tree-like struc-
tures of the coronary vessels [5]. Inspired by the pioneering works in 3D computer
vision and graphics [6–8], more recent works attempted to apply point-cloud net-
works or graph convolutional networks (GCNs) for tree-like vascular structures
labeling, achieving promising resulting in specific applications [9–12]. However,
since coronary vessels have relatively more complicated structures, deep net-
works working solely with point-coordinates information may fail to capture
discriminative shape details for fine-grained vessel labeling.

In this paper, to identify detailed coronary vessels with varying lengths and
shape appearance, we propose to leverage comprehensive spatial/anatomical
dependencies as explicit guidance in developing task-specific point-cloud deep
networks. That is, a CorLab-Net method is designed to integrate both inter-
organ and intra-artery contextual information with point-coordinate information
for accurate point-wise labeling. Our CorLab-Net has three key technical contri-
butions: 1) It defines a spatial distance field between vessels and heart chambers,
serving as the inter-organ spatial guidance to assist the localization of the blood
vessels. 2) It predicts a morphological distance field between vessel points and
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key joint points (i.e., landmarks), providing the intra-artery anatomical guidance
to help identify different vessel branches at the junctions. 3) It integrates GCN
modules to capture the high-order correlations between neighboring points, ren-
dering the intra-artery local guidance to enhance labeling consistency and correct
prediction outliers, especially at the vascular endings.

2 Method

Our CorLab-Net method mainly includes three components: anatomical distance
field module, morphological distance field module, and a point-cloud network
integrating GCN modules, such as the schematic diagram shown in Fig. 2. The
two distance field modules form an effective enriched-feature space by capturing
the inter-organ and intra-artery spatial dependencies to provide detailed contex-
tual information. Based on the outputs of these two modules, the point-cloud
network uses PointNet++ [7] as the backbone and integrates the GCN modules
in its decoding part to conduct locally-consistent point-wise labeling.

Fig. 2. Overview of the proposed framework. (a) Entire processing pipeline of our net-
work; (b) The point cloud network learns the principle of consistency between neigh-
boring points based on PointNet++ and GCN module.

2.1 Anatomical Distance Field

As can be seen from the examples in Fig. 1, coronary vessels start from the aorta,
wrap around and attach to the surfaces of the left and right atria and ventricle.
In practice, clinicians annotate different artery vessels according to the spatial
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associations between the artery and specific surrounding organs. It implies that
the inter-organ anatomical dependencies convey critical contextual information
to help locate different vessels. Unfortunately, such anatomical dependencies
were typically ignored by existing automatic methods [10,13], as they work solely
on point coordinates for blood vessel identification.

Inspired by the clinical experience, we assume each branch of a coronary
artery is roughly distributed at a fixed position of the heart, according to which
an anatomical distance field is defined to model the inter-organ dependencies
between different coronary branches and surrounding heart parts. Specifically,
we denote the points of coronary arteries P as P = [p1, p2, · · · pN ] with N = 2048
points, pi ∈ R3, and surface points of heart chambers C as C = [c1, c2, · · · cM ]
with M ∈ [8000, 14000] points, cj ∈ R3. The details to calculate such a distance
field are as follows:

Si = min
i=1,··· ,N
j=1,··· ,M

√
(pi,1 − cj,1)

2 + (pi,2 − cj,2)
2 + (pi,3 − cj,3)

2
, (1)

Disti =

{
Si

Th , if Si

Th < 1 ,

1, else ,
(2)

where Th is an empirical number, and Th = 50 in this study.
In practice, we calculate the minimum distance from each point of the coro-

nary artery branch to the surfaces of the aorta, left and right atria and left
and right ventricle, respectively, and then merge these distance constraints with
point coordinate information to form the whole distance field, as shown in Fig. 2.
Finally, these discriminative information and other effective vectors are fed into
point cloud network to enrich the whole input feature space.

2.2 Morphological Distance Field

Traditional point-cloud networks treat all input points equally [6,7], ignoring the
important contributions of key points in defining the shape of an input point
cloud. For example, in coronary labeling, the identification of a joint point can
provide strong clues regarding the semantic labels of all other points, from the
proximal one to the distal one, on the corresponding artery branch.

To integrate such intra-artery contextual information into our CorLab-Net
method, a morphological distance field is defined accordingly. Specifically, we
assume that different points have different contributions to the network; since
joint points contain more semantic information, the network should pay more
attention to them. Therefore, as shown in Fig. 2, we first apply a landmark-
detection point-cloud network to the original coronary data to regress the joint
points of each branch. Then, the spatial displacements from each point on the
branch to the respective joint points are further calculated, forming the mor-
phological distance field.

In the implementation process, we directly regress the distance vectors from
each point to the closest joint points to replace the above process. Note that these
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two processes are equivalent. Specifically, the input to this module is coronary
artery points P . The output Q are the vector differences between each point
and the closest joint point of sub-branches, where Q = [q1, q2, · · · qK ] with K =
2048 points, qr ∈ R3. To train the landmark regression network, we define our
regression loss based on the chamfer distance [14,15] to constrain the predicted
vectors Q to be close to the real vector differences T . The regression loss Lreg for
network training is the chamfer distance between the predicted vector differences
Q and ground-truth vectors T :

Lreg(Q,T ) =
1

|Q|
∑
qk∈Q

min
tw∈T

‖qk − tw‖22 +
1

|T |
∑
tw∈T

min
qk∈Q

‖tw − qk‖22 , (3)

2.3 Point-Cloud Deep Network

Since there is no order information in the point cloud data, the network cap-
tures context information between neighboring points by using various aggre-
gating neighboring points in the encoder stage, such as Multi-Scale Grouping
(MSG) and Multi-Resolution Grouping (MRG) [7]. The decoder stage is often
overlooked. It generates high-level semantic vectors, which has a strong mapping
relationship with the label.

In labeling task of coronary arteries, the neighboring points generally belong
to the same category, especially the points at vascular endings. If the network can
match the label relationship of neighboring points with its corresponding high-
level features, the labeling consistency relationship will be established through
spatial distribution between each point and neighboring points. The consistency
can better guide the network to make decisions.

We build a graph structure to capture the consistent relationship between
neighboring points, vertices of graph are 3D coordinates of point cloud, and edges
are determined by Euclidean distance between the coordinates. If two points are
close together in space, they are connected, and the threshold d is set to measure
whether the two vertices are connected.

In this way, the high-level features of all points in the neighborhood are
fused by the graph structure. The features of each points have a strong map-
ping relationship with the label, and the fused features have enriched feature
representation.

3 Experiments and Results

3.1 Dataset and Evaluation Metrics

In our experiments, we collected a private database of 100 subjects, and all of
them are annotated by three experts. Our data included not only voxel label
for each coronary artery vessel, but also labels for atrium and ventricles. These
subjects and corresponding annotations compose the experimental dataset.

The evaluation is performed on coronary artery segments by the predicted
label and ground truth. The precision rate for each branch is calculated by
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P = TP
TP+FN . The Recall is Recall = TP

TP+FP . The F1 score is F1 = 2 ∗
Precision × Recall
Precision + Recall . Since the numbers of coronary branches in different subjects

are imbalance, we also adopt the mean metrics of all branch segments.

3.2 Implementation Details

Point Cloud Processing. Due to the differences of subjects, our image
sequence is not fixed, and the size is 512 × 512 × Se, where Se ∈ [155, 353].
Therefore, before the image is sampled into point cloud, it needs to be nor-
malized. There are mainly three steps in normalization: (1) the input image is
cropped according to the position of the segmented coronary artery in the image,
and only the part containing coronary vessels is retained. (2) Since the cropped
sizes of each subject are inconsistent, the cropped image coordinates are divided
by the size for normalization. (3) The 3D image is sampled as point cloud, and
the point cloud data has been normalized to the range [0, 1].

Parameters Setting. The numbers of vertices H in the two GCNs are set
to 512 and 1024, respectively, and GCN parameters are the same as [16]. The
threshold d for edge connection is an empirical number, the two GCNs are set
to 0.1 and 0.05 in this study, respectively. Five-fold cross-validation is used in
the experiment, and we train the network for 200 epochs using Adam optimizer
with an initial learning rate of 0.001. The model is implemented using PyTorch
with an NVIDIA Tesla V100S GPU, and each mini-batch contains 4 point cloud
samples. In addition, chamfer distance and cross-entropy are, respectively, used
as loss functions in regression and classification network.

3.3 Comparison with Existing Methods

To verify the effectiveness of our framework, several point cloud algorithms were
tested on dataset, including PointNet [6], PointNet++ [7] and HN-Net [10]. They
all directly take the 3D point cloud as input to predict the labels of coronary
arteries. The statistic results and visual presentations are presented in Table. 1
and Fig. 3, respectively.

Quantitative Results. The overall coronary labeling results are summarised in
Table.1, where the proposed framework shows significant improvement to other
methods. Concretely, compared with the backbone PointNet++, our method
increases by 11%, 10.6% and 11.3% in meanPrecision, meanRecall and F1 score,
respectively, which demonstrates the effectiveness of the anatomical dependency-
aware point-cloud learning framework. At the same time, it can be seen that
the metrics of PointNet and HN-Net are far below our method, which further
indicates the advantages of all proposed module in our framework.

Qualitative Results. The visual presentations are shown in Fig. 3 for three
typical subjects. It can be observed that labeling results produced by our method
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Table 1. Comparisons of PointNet (PN), PointNet++ (PN++), HN-Net (HN) and
CorLab-Net on our dataset. Recall, Precision(P) and F1 score are used as the evaluation
metrics (%).

Method Metric LM LAD D LCX OM RAMUS S RCA R-PDA R-PLB AM Avg

PN P 63.0 75.6 68.9 77.5 76.6 59.8 61.2 89.2 56.6 96.8 80.9 73.3

Recall 72.0 71.8 63.3 74.3 77.4 95.5 63.4 99.8 64.6 68.6 89.9 73.7

F1 58.3 73.7 65.9 73.8 77.0 62.5 55.1 94.2 58.5 73.9 85.1 70.9

PN++ P 78.5 91.9 83.8 94.1 82.9 63.3 70.2 98.3 83.1 92.7 93.6 84.8

Recall 78.4 87.6 76.7 95.0 76.0 65.8 71.5 97.4 85.3 93.2 95.5 83.9

F1 70.4 89.7 80.6 95.6 81.9 64.4 64.1 97.9 87.0 94.9 94.6 83.7

HN P 86.5 91.5 85.2 96.5 80.5 71.3 79.5 97.6 88.0 97.4 90.8 87.7

Recall 81.5 89.8 88.6 97.2 88.5 73.0 78.5 96.9 89.1 92.8 98.1 88.5

F1 77.0 90.6 76.0 96.9 84.3 76.5 79.0 97.2 88.6 95.0 94.3 86.9

Ours P 93.0 99.2 90.7 98.9 98.7 83.7 94.3 99.9 95.2 99.7 100 95.8

Recall 99.8 97.1 95.6 99.8 87.1 74.3 88.7 100 99.3 98.6 99.0 94.5

F1 96.3 98.1 93.1 99.4 92.6 78.1 91.4 99.8 97.2 99.2 99.5 95.0

match better with the ground truth, especially for typical parts, such as vascular
bifurcation and vascular endings (as highlighted by red arrows in Fig. 3).

The first column is the ground truth, followed by the comparison result of our
method and others. Notably, the other three methods not only fail to produce
satisfactory results in these difficult areas, but also have a large number of label
errors in the main branches. Our method can avoid this problem because it adds
enriched feature vectors and point consistency constraint. The qualitative results
shown in Fig. 3 are consistent with the quantitative comparison, which further
demonstrates the effectiveness and efficiency of our framework for automatic
labeling of coronary arteries.

3.4 Ablation Study

We conduct extensive experiments to validate the effectiveness of our model
components. First, we build a baseline network, denoted as bNet, which is our
network backbone (PointNet++) for automatic labeling of coronary arteries.
All the alternative networks are derived by augmenting the baseline network
with different network components. We describe the details and results in the
following.

Anatomical Distance Field. The anatomical distance field represent relative
location of vessels and chambers, which constrains the vessel execution at the
region level. To validate its benefits, we augment the baseline network bNet with
the anatomical distance field (bNet-A) and compare prediction results of both
networks in Table 2. By appending the module, the meanPrecision, meaRrecall
and meanF1 increase by 5.5%, 4.2%, 5.5%, respectively.

Morphological Distance Field. The morphological distance field focuses on
the important contribution of key points to the network, which represents the



CorLab-Net for Automatic Labeling of Coronary Arteries 583

Fig. 3. Comparison of labeling results for three typical subjects by four different meth-
ods. Different colors represent different categories of coronary vessels, and there are 11
classes in total. The red circle with arrow are artificially designed for visual presenta-
tion, highlighting the typical parts. (Color figure online)

contextual relationships of points at the part level. To validate its benefit, we
add the module to labeling vessel (bNet-A-M), and the metrics go up over 3.6%.

Point Consistency based on GCN. To further minimize the errors of net-
work at vascular endings, we add the graph network module to capture the
category consistency of the neighboring points, which belongs to the constraint
relationship of the point level. We have verified all modules on the dataset and
the metrics have been improved with varying degrees.

Table 2. Part of the ablation study results for our method. The anatomical distance
field, morphological distance field, as well as point consistency based on GCN are all
essential parts of our CorLab-Net.

Method meanPrecision (%) meanRecall (%) meanF1 (%)

bNet 84.8 83.9 83.7

bNet-A 90.3 88.1 89.2

bNet-A-M 93.9 92.4 93.5

Ours 95.8 94.5 95.0
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4 Conclusion

In this study, we propose an anatomical dependency-aware point-cloud learning
framework (CorLab-Net) for coronary artery labeling. Specifically, we develop
three modules, including anatomical distance field, morphological distance field,
and point consistency block, to accurately label the coronary arteries. Com-
pared with the existing point cloud networks, our method achieves superior per-
formance and outperforms the state-of-the-art performance by a large margin,
which suggests the potential applicability of our framework in real-world clinical
scenarios. Furthermore, our work addressed an essential task in clinical practice.
Automatic and accurate labeling of the coronary artery has a great benefit on
the diagnosis of coronary heart diseases, which provides necessary information
for many subsequent procedures, such as generating medical reports, calculating
statistics for important anatomical branches, and visualizing regions of interest.
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