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Abstract. Elbow fracture diagnosis often requires patients to take both
frontal and lateral views of elbow X-ray radiographs. In this paper, we
propose a multiview deep learning method for an elbow fracture subtype
classification task. Our strategy leverages transfer learning by first train-
ing two single-view models, one for frontal view and the other for lateral
view, and then transferring the weights to the corresponding layers in
the proposed multiview network architecture. Meanwhile, quantitative
medical knowledge was integrated into the training process through a
curriculum learning framework, which enables the model to first learn
from “easier” samples and then transition to “harder” samples to reach
better performance. In addition, our multiview network can work both
in a dual-view setting and with a single view as input. We evaluate our
method through extensive experiments on a classification task of elbow
fracture with a dataset of 1,964 images. Results show that our method
outperforms two related methods on bone fracture study in multiple
settings, and our technique is able to boost the performance of the com-
pared methods. The code is available at https://github.com/ljaiverson/
multiview-curriculum.

Keywords: Multiview learning · Deep learning · Curriculum
learning · Elbow fracture · Clinical knowledge

1 Introduction

Human’s cognitive ability relies deeply on integrating information from different
views of the objects. This is particularly the case for elbow fracture diagnosis
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where patients are often required to take both the frontal view (i.e. Anterior-
Posterior view) and lateral view of elbow X-ray radiographs for diagnosis. This is
because some fracture subtypes might be more visible from a certain perspective:
the frontal view projects the distal humerus, the proximal ulna and the radius [7,
21,22], while the lateral view shows the coronoid process and the olecranon
process [9,18,22]. In practice, it is also common that some patients only have a
single view radiograph acquired, or have a missing view for various reasons.

In recent years, the advance of deep learning has been facilitating the
automation of bone fracture diagnosis [3,10,12] through multiple views of X-
ray images, which shows faster speed and decent accuracy compared to human
experts [13,14,17]. However, few methods leverage multiview information, which
provide more visual information from different perspectives for elbow fracture
diagnosis.

In this work, we propose a novel multiview deep learning network architecture
for elbow fracture subtype classification that takes frontal view and lateral view
elbow radiographs as input. While the proposed model is a dual-view (frontal and
lateral) architecture, it is flexible as it does not strictly require a dual-view input
during inference. Furthermore, our training strategy for the multiview model
takes advantage of transfer learning by first training two single-view models, one
for frontal view and the other for lateral view, and then transferring the trained
weights to the corresponding layers in the proposed multiview network architec-
ture. In addition, we investigate the utilities of integrating medical knowledge of
different views into the training via a curriculum learning scheme, which enables
the model to first learn from “easier” samples and then transition to “harder”
samples to reach better performance.

To evaluate our method, we conduct experiments on a classification task of
three classes of elbow fractures that shown in Fig. 1. We compare our method
to multiple settings including the single-view models, different combinations of
the transfer learning strategy and the knowledge-guided curriculum learning.
Our method is also compared to a previous method [11]. Results show that our
proposed method outperforms the compared methods, and our method functions
seamlessly on a multiview and a single-view settings.

(a) (b) (c) (d) (e) (f)

Fig. 1. Example images from the three categories from our dataset for classification
task: (a) and (b) show the frontal and lateral non-fracture category respectively; (c)
and (d) show the frontal and lateral ulnar fracture category respectively; (e) and (f)
show the frontal and lateral radial fracture category respectively.
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2 Related Work

Multiview learning [23] takes advantage of data with multiple views of the same
objects. Co-training [2,16,20] style algorithms were a group of traditional multi-
view learning algorithms originally focusing on semi-supervised learning, where
multiple views of data were iteratively added to the labeled set and learned by
the classifier. Another group of multiview learning algorithms explore Multiple
Kernel Learning (MKL), which was originally proposed to restrict the search
space of kernels [4,6]. Recent work on multiview learning based modeling shows
promising effects for medical fields such as bone fracture and breast cancer detec-
tion [8,13,17].

Curriculum learning is also an area of active research. It was first introduced
by Bengio et al. in [1] to enable the machine learning to mimic human learning by
training a machine learning model first with “easier” samples and then transition
to “harder” samples. Some existing work focus on integrating domain knowledge
into the training process through curriculum learning. For example, [11,15] inte-
grate domain knowledge by using the classification difficulty level of different
classes.

3 Methods

3.1 Multiview Model Architecture

Fig. 2. The proposed multiview model architecture. The green and blue dotted line box
represent the frontal and lateral view modules, respectively. Yellow diamonds are the
predicted labels, 0, 1, 2 corresponding to non-fracture, ulnar fracture, radial fracture
respectively (Color figure online)

To incorporate information from both frontal and lateral view for the elbow X-
ray images while maintaining the flexibility of being able to output predictions
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with one view as input, we propose a novel multiview model architecture shown
in Fig. 2. In this architecture, during training, pairs of frontal and lateral view
images are fed into their corresponding modules for feature extraction by the
convolutional neural networks (CNNs). After the feature extraction, the model
splits into three branches as shown in Fig. 2. The top and bottom branches
take the corresponding single-view features to the fully connected (FC) layers
for classification, while the middle branch takes the concatenated features from
both views as input to further extract features and then conducts classification.

Consider a data sample triplet Di = {x
(F )
i , x

(L)
i , yi} where Di represents

the i-th data sample, x
(F )
i , and x

(L)
i are its images from the frontal and lateral

view, and yi ∈ {0, 1, 2} is its ground truth label with 0, 1, 2 corresponding to
non-fracture, ulnar fracture, radial fracture respectively. We denote the three
predicted labels from the three branches of our multiview model as F(x(F )

i ),
L(x(L)

i ), and M(x(F )
i , x

(L)
i ), where F , L, M represent the frontal view module,

the lateral view module, and the “merge module” that contains the two CNN
blocks from the frontal and lateral module, the CNN as well as the FC layers in
the middle branch.

During training, we minimize the objective function over the i-th data sample
computed by Eq. (1) where θ, θF , θL, and θM represent the parameters in the
entire model, the frontal view module, the lateral view module, and the merge
module. As shown in Eq. (1) (with C being the number of classes), for each
module, the loss is computed with cross entropy loss over the corresponding
predicted label and ground truth yi in a one-hot representation.

Jθ(x
(F )
i , x

(L)
i , yi) = JθF (x(F )

i , yi) + JθL(x(L)
i , yi) + JθM(x(F )

i , x
(L)
i , yi)

= −
C∑

c=1

(
yi,c

(
log(F(x(F )

i )c) + log(L(x(L)
i )c) + log(M(x(F )

i , x
(L)
i )c)

)) (1)

During test phase, if a frontal view image and a lateral view image are both
presented, the default final predicted label is the one predicted from the merge
module, i.e. M(x(F )

i , x
(L)
i ). Alternatively, if there is only one view, the model

will still output a predicted label from the module of the corresponding view
credited to the designed architecture of our model.

3.2 Transfer Learning from Pretrained Single-View Models

In most medical applications with deep learning, researchers use the ImageNet [5]
pretrained model as a way of transfer learning. However, a great number of deep
learning models do not have publicly available pretrained weights, especially
for self-designed models. Here, we investigate a homogeneous way of transfer
learning as shown in Fig. 3: we first train two single-view models (using the same
training set as the one for the multiview model) that have identical structure as
the frontal view and lateral view module in the multiview architecture. Then,
we transfer the trained weights of the CNNs and FC layers from the single view
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models to the counterparts of the multiview model (refer to the links in Fig. 3).
For the middle branch (the gray CNN and LC layers blocks in Fig. 2) in the merge
module, we randomly initialize their weights. We make all weights trainable in
the multiview model.

Fig. 3. Transfer learning from pretrained single-view models.

3.3 Knowledge-Guided Curriculum Learning

For the model training, we propose a knowledge-guided curriculum learning to
enhance learning effects. The idea of curriculum learning is to enable the train-
ing process to follow an “easy-to-hard” order, where the easier samples will be
fed into the model for training earlier than the harder samples. To do so, we
implemented a multiview-based curriculum learning by adapting the method
from [15]. We quantify and integrate medical knowledge by scoring the classi-
fication difficulty levels of each category of elbow fracture with board-certified
radiologist’s expertise. Table 1 shows the quantitative scores reflecting the clas-
sification difficulty based on experience of expert radiologists. Note that we use
the “Both views” scores to train the multiview model, and use “Frontal/Lateral
view only” for homogeneous transfer learning.

Table 1. Quantitative classification difficulty levels for each category of elbow frac-
ture (1-hardest; 100-easiest), which enables the integration of medical knowledge into
curriculum learning.

Non-fracture (normal) Ulnar fracture Radial fracture

Frontal view only 30 30 30

Lateral view only 35 60 45

Both views 45 65 55

These scores are used to initialize the sampling probability for each training
data point according to Eq. (2) with e = 1, where p

(1)
i is the initial sampling



560 J. Luo et al.

probability for data point Di, si is its score, sk is the score of the data point
Dk, and N is the number of data points in the dataset. Using the sampling
probabilities, at the beginning of every epoch, we permute the training set by
sampling all the data points without replacement.

p
(e)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

si∑N
k=1 sk

e = 1,

p
(e−1)
i · E′

√
1/N

p
(0)
i

2 ≤ e ≤ E′,

1/N E′ < e ≤ E

(2)

This enables the easier samples to have a higher chance of being presented before
the harder samples. This chance will be exponentially reduced by updating the
sampling probabilities for each data point according to Eq. (2). In this equation,
e is the current epoch, E′ is the last epoch that we update the sampling proba-
bilities. For the rest of the training (E′ < e ≤ E) the sampling probabilities will
be fixed to 1/N .

4 Experiments and Results

4.1 Experiment Settings

Dataset and Implementation Details. This study includes a private dataset
of 982 subjects of elbow fractures in an Institutional Review Board-approved
retrospective study. The subjects are categorized into three classes: 500 non-
fracture (normal) cases, 98 ulnar fracture cases, and 384 radial fracture cases.
Each subject includes one frontal and one lateral elbow X-ray image, which
makes it a total of 1,964 elbow X-ray images. To increase the robustness of our
results, we conduct 8-fold cross validation. For each split of the entire dataset,
one fold was used as the hold-out test set. Within the remaining seven folds,
we randomly select one fold as the validation set for hyperparameter tuning.
The remaining folds are used as the training set. All separations of the dataset
are in a stratified manner, which maintains the ratio over different classes. The
reported results are averages over the 8 disjoint held-out test sets.

VGG16 [19] is used as the backbone for the two single-view models, and the
frontal and lateral modules in the multiview model. We customize the middle
branch two 3 × 3 × 512 convolutional layers with max pooling layers, followed
by VGG16’s classifier for the FC layers. The hyperparameters are selected based
on the best validation AUCs. We use the following hyperparameters for the
proposed model: batch size 64, learning rate 10−4 for the Adam optimizer, and
after 16 epochs every sample is treated as having an equal difficulty score. All
models were trained on an NVIDIA Tesla V100 GPU. The code is available at
https://github.com/ljaiverson/multiview-curriculum.

Metrics. The metrics for the 3-class classification task include accuracy and
area under receiver operating characteristic curve (AUC). We also compute a

https://github.com/ljaiverson/multiview-curriculum
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Table 2. Model performance with both views. The bold numbers correspond to the
highest value for each metric (TL: proposed transfer learning from single view models;
CL: proposed knowledge-guided curriculum learning).

Model Accuracy AUC Balanced
accuracy

Binary task
accuracy

Binary task
AUC

Single-view-frontal 0.683 0.807 0.570 0.732 0.813

Single-view-lateral 0.856 0.954 0.807 0.895 0.959

Multiview 0.854 0.958 0.796 0.884 0.964

Multiview + TL 0.891 0.966 0.847 0.916 0.973

Multiview + [11] 0.818 0.939 0.746 0.864 0.952

Multiview + [11] + TL 0.870 0.961 0.811 0.898 0.973

Multiview + CL 0.889 0.970 0.847 0.908 0.978

Multiview + CL + TL 0.889 0.974 0.864 0.910 0.976

balanced accuracy by averaging the ratios between the number of true positives
and the total number of samples with respect to each class, which reduces the
effect induced by data imbalance. In addition, we evaluate the models’ over-
all ability to distinguish fracture against non-fracture images. This is done by
binarizing the ground truth and predicted labels by assigning 0 to them if they
originally are 0, and assigning 1 otherwise. We compute the binary task accuracy
and the AUC as two additional measures.

4.2 Results

As shown in Table 2, we compare our proposed multiview model with curricu-
lum learning method (CL) and transfer learning (TL) with the following six
types of models: 1) two single-view models (frontal/lateral view only), referred
as Single-view-frontal/lateral; 2) multiview model with regular training, referred
as Multiview; 3) multiview model with only transfer learning strategy, referred
as Multiview + TL; 4) multiview model with a previous curriculum training
method [11], referred as Multiview + [11]; 5) multiview model with [11] and our
proposed transfer learning strategy, referred as Multiview + [11] + TL; and 6)
multiview model with only our curriculum learning method, referred as Multi-
view + CL. We use the output from the middle branch, as the predicted label.

Attributed to the multiple branches of our model and the customized loss
function, our model has the flexibility of generating the prediction with a single
view as input. In Table 3, we show the results of the performance from the
frontal view module and lateral view module separately. Different from [11], our
curriculum updates the difficulty score of every sample after every epoch, which
benefits the multiview model. Table 2 shows that with both views presented in
the test phase, our method achieves the highest AUC and balanced accuracy
with a margin of up to 0.118 compared to the state-of-the-art performance. In
settings with missing views, however, our strategy does not always perform the
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Table 3. Model performance with a single view as input

Model Input view Accuracy AUC Balanced
accuracy

Binary task
accuracy

Binary task
AUC

Single-view Frontal 0.720 0.828 0.593 0.761 0.844

Single-view + CL [15] Frontal 0.683 0.807 0.570 0.732 0.813

Multiview Frontal 0.658 0.749 0.514 0.702 0.766

Multiview + TL Frontal 0.738 0.827 0.617 0.774 0.829

Multiview + [11] Frontal 0.566 0.675 0.396 0.575 0.648

Multiview + [11] + TL Frontal 0.737 0.815 0.605 0.773 0.831

Multiview + CL Frontal 0.723 0.814 0.602 0.761 0.823

Multiview + CL + TL Frontal 0.756 0.829 0.636 0.786 0.846

Single-view Lateral 0.856 0.954 0.807 0.895 0.959

Single-view + CL [15] Lateral 0.840 0.946 0.809 0.872 0.948

Multiview Lateral 0.844 0.951 0.800 0.870 0.956

Multiview + TL Lateral 0.848 0.954 0.804 0.876 0.961

Multiview + [11] Lateral 0.837 0.945 0.779 0.870 0.949

Multiview + [11] + TL Lateral 0.857 0.960 0.819 0.885 0.969

Multiview + CL Lateral 0.838 0.956 0.807 0.867 0.956

Multiview + CL + TL Lateral 0.840 0.955 0.794 0.874 0.960

best. Table 3 shows that with frontal view as the only input view, our method
outperforms all the compared methods per each metric, but with the lateral view
as the only input view, our method achieves slightly lower performance than the
best results.

5 Conclusion

In this work, we propose a novel multiview deep learning method for elbow
fracture subtype classification from frontal and lateral view X-ray images. We
leverage transfer learning by first pretraining two single-view models. Mean-
while, medical knowledge was quantified and incorporated in the training pro-
cess through curriculum learning. The results show that our multiview model
outperforms the compared methods, and we achieved improved results over the
previously published curriculum training strategies. As future work, we plan to
further integrate other domain knowledge with respect to different views and
explore curriculum learning in the output space.
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