
Spine-Rib Segmentation and Labeling via
Hierarchical Matching and Rib-Guided

Registration

Caiwen Jiang1, Zhiming Cui1, Dongming Wei1, Yuhang Sun1, Jiameng Liu1,
Jie Wei1, Qun Chen1,2, Dijia Wu1,2, and Dinggang Shen1,2(B)

1 School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
dgshen@shanghaitech.edu.cn

2 Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China

Abstract. Accurate segmentation and labeling of spine-rib are of great
importance for clinical spine and rib diagnosis and treatment. In clinical
applications, the spine-rib segmentation and labeling are often challeng-
ing, as the shape and appearance of vertebrae are complicated. Previous
segmentation and labeling methods usually face considerable difficulties
when coping with spine CT images with abnormal curvature spines and
implanted metal. In this paper, we propose a multi-stage spine-rib seg-
mentation and labeling method that can be applied to various spine-rib
CT images. Our proposed method consists of three steps. First, a 3D
U-Net is used to obtain a initial segmentation mask of the spine and
rib. Then, the subject information, including gender, age, and the shape
of the spine and rib, is used for hierarchically selecting the templates
with similar physiological structures from the pre-constructed template
library. Finally, the segmentation mask and label from the templates are
transferred to the subject via rib-guided registration to achieve correc-
tion of the initial results. We evaluated the proposed method on a clinical
dataset, and obtained significantly better and robust performance than
the state-of-the-art method.

Keywords: Spine-rib segmentation and labeling · Hierarchical
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1 Introduction

Spine-rib segmentation and labeling are important for image-guided diagnosis,
pre-operative planning, and post-operative evaluation [1,2]. In conventional clin-
ical diagnosis, the doctor needs to determine the type of vertebrae and ribs based
on experience, and then segment them slice by slice. Thus, manual segmentation
and labeling of vertebrae and ribs in CT images is laborious and subjective [3].
Therefore, it is necessary to propose an automatic spine-rib segmentation and
labeling algorithm to improve efficiency and reliability.
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a Arbitrary FoV b Abnormal curvature c Metal implants

Fig. 1. Sagittal plane of six cases. (a) The FoV of images varies largely, and the appear-
ance of adjacent vertebrae is very similar. (b) Abnormal curvature of the spine. (c) The
surgical metal implants cause peculiar image artifacts.

Automatic spine-rib segmentation and labeling have been applied in various
clinical applications, such as detection of vertebra and rib fractures [4], assess-
ment of spinal deformities [5], and computer-assisted surgical interventions [6].
But there are still many challenges in the clinical stage to design an automated
spine-rib segmentation and labeling algorithm. As shown in Fig. 1(a), the field
of view (FoV) of spine CT images varies largely, and the appearance of adja-
cent vertebrae is too similar to distinguish. Various pathological circumstances,
including scoliosis, vertebra fractures, and lumbarization, increase the difficulty
of vertebrae identification, as shown in Fig. 1(b). Moreover, as shown in Fig. 1(c),
the presence of surgical metal implants usually causes severe blurring of the ver-
tebral boundary.

Recently, many approaches have been proposed to solve the problems men-
tioned above, which can be divided into three categories. The first combines
machine learning and statistical models [7–9], which are robust to be applied to
various spine-rib CT images. However, this category of the method is hard to
be used in the application stage, due to the requirement of hand-crafted image
features. The second category is based on multi-stage neural networks [10–14],
which can effectively extract global context information of vertebrae and ribs to
solve the arbitrary FoV problem. But this category of methods can not robustly
handle pathological or abnormal spinal images. The third category of methods
is based on template matching [15–17]. However, the diversity of templates used
in previous methods are limited and cannot cover the complex situation.

In this paper, to address the above-mentioned limitations, we present an
accurate and stable spine-rib segmentation and labeling method via hierarchical
matching and rib-guided registration. In the first stage, we construct a represen-
tative template library by collecting numerous spine-rib CT images. Then given
a testing CT image, we first use a 3D U-Net to obtain the semantic segmentation
of vertebrae and ribs. In addition, we use information such as gender, age, spine,
and rib shape to perform hierarchical matching, and select templates that have
similar structures to the input object. Finally, we obtain the corrected spine and
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Fig. 2. The overall architecture of the proposed method, where CN , CN1 , CN2 , CN3

and CNf denote the template set, and N , N1, N2, N3 and Nf denote the numbers of
templates where (Nf � N3 � N2 � N1 � N).

rib segmentation masks and labels by transferring the annotation from selected
templates to the subject via rib-guided registration. We extensively evaluate our
method on a clinical dataset with various pathological or abnormal spinal CT
images, and results are significantly better than the state-of-the-art methods.

2 Method

As shown in Fig. 2, our proposed method consists of three stages. First, we use
a 3D U-Net to obtain initial semantic segmentation S of the vertebrae and ribs,
from which spinal structure information such as centroids of labels (vertebrae)
and spinal curve can be directly obtained. Then, the spine structure information
and physiological information such as gender and age are used to select a tem-
plate set CNf

, have in which the vertebra and rib from template library CNf
has

the most similar structures with S by hierarchical matching. Finally, through
rib-guided registration, we register vertebra and rib segmentation masks in CNf

to S for obtaining the corrected segmentation results and labels.

2.1 Template Library Construction

We construct the template library CN based on a representative clinical dataset,
where three examples are shown in Fig. 3. The templates in CN are selected by
three steps. First, the templates are selected to cover all genders, ages, and
physiques. Then, both normal and abnormal subjects (with abnormal curvature
spine and metal implants) are included in the library to maintain the diversity.
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(a) (b) (c)

Fig. 3. Three typical examples of the template library CN , including (a) image of the
whole view, (b) image of limited view, and (c) image of the pathological spine.

Finally, the segmentation and label of vertebrae and ribs are manually annotated
by doctors.

2.2 Hierarchical Matching

In this section, we first use gender and age to perform initial selection to obtain
CN1 . Then, the average distance between the vertebrae is used to select templates
that have the similar physique to the input subject. Finally, we select Cf from
CN according to the similarity of spinal curves.

Gender and Age Screening. First, we use gender screening to get CN1 from
CN , where the selected templates have the same gender as input image I. Second,
the templates CN2 within three years gap are screened from CN1 . Note that it
is unnecessary to filter age precisely, as the spine structure should be consistent
within several years.

Average Distance Screening. As individuals of the same gender and age
still have different physique, we can select CN3 with the similar physique as I
from CN2 by average distance matching. First, we approximately calculate the
centroids of labels by averaging the coordinates corresponding to same vertebrae.
Then, the length of the entire spinal segment can be calculated by using the
coordinates of the starting centroid and the ending centroid in the spine. Finally,
the length of the entire spinal segment is divided by the number of vertebrae to
obtain the average distance dp.

The spine sequence in S and templates CN2 may be different, therefore, we
need to select the templates containing the same corresponding spine segment as
S, and then calculate the template average distance dt at the same spine segment.
Through extensive experiments, we find that, although the labels of vertebrae
in S are unreliable, the spine segment in S can be approximately determined by
these labels. By comparing dp and dt, we can perform further selection to obtain
CN3 .
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Spinal Curve Screening. Further, we select Cf with similar spinal curvatures
as I from C3 by spinal curve matching. First, the spinal curve can be obtained by
performing cubic spline interpolations based on the extracted vertebral centroid
positions. The Chamfer distance [13] is calculated from the rigidly aligned spinal
curves of I to spinal curves of templates in C3, and Nf templates with the
shortest distance are selected to form CNf

.

2.3 Rib-Guided Registration

After hierarchical matching, the spine physiological structures of templates in
CNf

are similar to I. Then, we perform registration between S and templates
in CNf

for obtaining corrected segmentation masks and labels. However, con-
sidering the shape of adjacent vertebrae are similar and difficult to distinguish,
direct registration between S and templates in Cf may lead to misalignment.
To tackle this issue, we find that the ribs connected to the vertebrae are easily
recognized due to the clear difference in rib length. Therefore, the rib is used
to guide the registration with two stages. First, the ribs segmentation masks in
S and CNf

are aligned. Then, the registration of vertebrae and ribs is jointly
performed between S and CNf

.
Note that the semantic segmentation of I is obtained through a pretrained

3D U-Net. Therefore, we can obtain the segmentation and labeling (Srib) of
each rib from S according to the rib length. For the template, we can perform
the same operation to obtain segmentation masks and labels of ribs Trib. The
segmentation masks of vertebrae and ribs in the templates are denoted as T .
We register Trib to Srib for obtaining the deformation field φrib. The registration
loss is defined over the rib masks as follows:

Lrib = Lsim(Trib(φrib), Srib) + λLsmooth(φrib). (1)

where Lsim(·, ·) measures the mean square error (MSE) between Srib(φrib) and
Trib. Lsmooth(·) is a regularization term to constrain the deformation field to be
smooth, and λ is the balance weight for the regularization.

Through registration between Srib and Trib, the corresponding vertebrae in
S and T have been roughly aligned. Then, performing registration between S
and T can effectively avoid the interference caused by the similarity of adjacent
vertebrae. The deformation field obtained is denoted as φrib vert. Then the whole
rib-guided registration process can be formulated by the following equation:

Lrib guided = Lsim(T (φrib ◦ φrib vert), S) + λLsmooth(φrib ◦ φrib vert). (2)

There are Nf templates in CNf
, and the rib-guided registration is performed

Nf times. Using MSE as the evaluation criterion, the template with the minimum
MSE is selected as the final reference template. The corrected label can obtain
directly from the reference template, and the corrected segmentation masks by
T (φrib ◦ φrib vert).



542 C. Jiang et al.

3 Experiments

3.1 Dataset and Evaluation Metrics

We collect a clinical dataset that includes CT scans of 1500 patients, of which
802 are male and 698 are female, with the ages distribution ranging from 8 to
99. The segmentation masks and labels of the vertebrae and ribs are manually
annotated by doctors. There are 800 scans used for training the segmentation
network, 600 scans used for template library construction, and 100 scans used
for testing.

To quantitatively evaluate the performance of our proposed method, the
segmentation performance is evaluated using both Dice and Hausdorff distance
(HD). The labeling performance is evaluated by Iacc and Sacc, where Iacc is the
percentage of vertebrae that are assigned with the correct label, and Sacc is the
percentage of whole scans with correct labels for all vertebrae labels.

3.2 Implementation Details

In training U-Net for segmentation, the Adam optimizer is used with an initial
learning rate λ = 0.01 and batch size = 2. The intensity is first normalized to
[0, 1]. And all the images are resampled to be 256×256×256 and have 2×2×2mm3

voxel size. All experiments are conducted on two NVIDIA Tesla V100 GPUs
using the PyTorch platform.

During the hierarchical matching phase, we use 3 years as the gap for age
matching, and match the average distance based on condition |dp ± 2mm| � dt.
Then, the Chamfer distance is calculated after aligning different spinal curves
by coherent point drift (CPD) rigid registration [18], and the 3 templates with
the highest overlap rate are selected to form CNf

. In the stage of rib-guided reg-
istration, registration is achieved by affine transformation in ANTs [19] library.

3.3 Ablation Studies

In this section, we conduct extensive experiments to validate the effectiveness
of key steps in our proposed framework. We compared our method with the
segmentation masks of vertebra and rib using the same 3D U-Net network. The
quantitative results are shown in Table 1. It can be found that the performance
of segmentation and labeling is significantly improved by our proposed method,
i.e., 9.36% improvements of Dice score and also 15.25 improvement of Iacc. This
proves the effectiveness of rib-guided registration.

3.4 Evaluation and Comparison

Labeling results of our proposed method on five challenging cases are shown
in Fig. 4, including various FoVs, metal artifacts, and abnormal curvature. Our
proposed method achieves accurate labeling results even on the images with
various FoVs and metal artifacts, (see Figs. 4(a) and 4(b)).
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Table 1. Quantitative results of ablation studies.

Methods Segmentation Labeling

Dice (%) HD (mm) Iacc (%) Sacc (%)

U-Net 81.12± 2.23 13.27± 4.21 82.11 79.00

Ours 90.51±1.54 5.79±1.27 97.36 95.00
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Fig. 4. Labeling results of our proposed method on five challenging cases, including
(a)(b) limited FoV, (c) metal artifacts, and (d)(e) abnormal curvature. The top row
shows are original images, the middle row shows ground-truth, and the bottom row
shows our labeling results.

Although our method achieves reliable performance, there are still some lim-
itations of our framework. For example, our proposed method obtains over-
segmentation results over the boundaries of rib in Fig. 4(e). The main reason
is that the template library does not contain a template very similar to this
subject. To address this issue, we plan to collect more representative subjects to
enrich the template library in the future.

For quantitative comparison, we compare our proposed method with three
related methods proposed by Chen et al. [20], Lessmann et al. [21], and Payer et
al. [22], respectively. The results of spine-rib segmentation and labeling from our
proposed method and the three comparison methods on our dataset are shown
in Table 2. From the results, our proposed method achieves the best performance
in both segmentation and labeling tasks.
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Table 2. Comparison on segmentation and labeling results

Methods Segmentation Labeling

Dice (%) HD (mm) Iacc (%) Sacc (%)

Chen et al. [20] 82.56± 2.23 12.27± 4.21 85.23 83.00

Lessmann et al. [21] 83.42± 1.87 9.87± 2.56 88.45 86.00

Payer et al. [22] 88.34± 1.67 7.34± 1.72 92.83 90.00

Ours 90.51±1.54 5.79±1.27 97.36 95.00

4 Conclusion

In this paper, we have presented a novel method for spine-rib segmentation and
labeling. Our method first utilizes a deep learning model to obtain the initial
segmentation and label results. Then, a representative spine-rib template library
is conducted to match the testing subject, for considering possible mistakes in
spine CT images with complicated appearance. Through extensive experiments,
our method shows significant performance improvements in spine-rib segmenta-
tion and labeling.
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