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Abstract. The deep learning methods supervised by annotating differ-
ent regions of histopathology images (patch-level labels) have achieved
promising outcomes in assisting pathologic diagnosis. However, most clin-
ical data only contains label information for the whole slide image (WSI-
level labels), so the methods supervised by WSI-level labels are more
necessary than the ones supervised by patch-level labels. Additionally,
various methods supervised by WSI-level labels ignore the contextual
relations among patches extracted from a WSI, making incorrect pre-
dictions for some patches in a WSI and further misclassifying the WSI.
In this paper, we propose to utilize an interpretable dual encoder net-
work with a context-capturing RNN module to capture the contextual
relations among all patches extracted from a WSI. Besides, we propose
to utilize a feature attention module to weigh the importance of each
patch automatically. More importantly, visualization of weight for each
patch in a WSI demonstrates that our approach matches the concerns of
pathologists. Furthermore, extensive experiments demonstrate the supe-
riority of the interpretable dual encoder network.

Keywords: Whole slide image · Contextual relations · Interpretable ·
Patch-level labels · WSI-level labels.

1 Introduction
Histopathology image diagnosis plays a critical role in treating disease, as it can
guide clinic doctors to determine the follow-up treatment plan [1,2]. Recently, deep
learning methods for whole slide images (WSIs) diagnosis have continually devel-
oped to empower pathologists’ efficiency and accuracy.According towhich types of
labels are available, these deep learning methods can be separated into two classes:
methods supervised by patch-level labels [3–6] and WSI-level ones [7–10].

These methods supervised by patch-level labels require manually annotat-
ing regions of different tissue types (patch-level labels) for WSIs. Conceivably,
patch-level labels’ acquisition is time-consuming and labor-intensive, making it
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Fig. 1. The Illustration of contextual relations problem. (a) A WSI with malignant
lesion outlined by an expert. (b) A benign sub-region in a WSI, which includes nine
patches. It is worth noting that the center patch is more likely to have the same
properties as its neighbors. (c) All patchs’ malignant probabilities in the WSI are
obtained by method that ignore contextual relations [10].

challenging to build large training datasets. However, patch-level labels for WSIs
can further improve the model performance by modeling context relations among
neighboring patches [3]. As an example of context relations, Fig. 1b reveals that
the center patch may fall in the benign region with a high probability when its
neighboring patches are in the benign region. To model such context relations
among neighboring patches, Zanjani et al. [4] utilized Convolutional Neural Net-
work (CNN) to extract features from neighboring patches, and then Conditional
Random Field (CRF) is applied to these patches to refine the predicted prob-
ability map in the post-processing stage. In parallel to this work, Li et al. [5]
proposed a neural conditional random field (NCRF) model that can be trained
in an end-to-end manner, avoiding the post-processing stage. It is worth noting
that the above methods’ tremendous success depends on the patch-level labels
for all WSIs.

In contrast, WSI-level labels can easily be obtained from pathological reports.
Thus the methods supervised by WSI-level labels are more necessary than the
ones supervised by patch-level labels. As a typical WSI-level supervised method,
Hou et al. [7] initially took all patches in the WSI as training samples and
eliminated the patches with low classification probability iteratively. In [8], the
authors extended this approach by clustering patches wisely and eliminating the
patches that are less discriminative for the classification task. Chen et al. [10]
believe that the eliminated policy is a hard sampling technique which makes a
binary decision to select samples and proposed a soft-weighted technique called
rectified cross-entropy loss (LRCE). Besides, they introduced an upper transition
loss (LUT ) to improve the patches’ classification accuracy further. However, these
methods supervised by WSI-level labels predict each patch independently in the
inference stage. From our perspective, the independent predictions ignore the
context relations among neighboring patches, leading to inconsistent predictions
of patches in the same region. For instance, as shown in the red circle of Fig. 1c,
some patches in the benign region are misclassified as malignant ones.
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Fig. 2. Overview of the interpretable dual encoder network. It is worth noting that the
blue color represents the WSI-level feature vector and other colors represent different
patch-level feature vectors.

Overall, we are surprised to find that there has been little discussion about
how to model contextual relations among patches when lacking patch-level
labels. Thus, this paper regards patches extracted from a WSI as a sequence
and proposes to utilize an RNN module to take contextual relations among all
patches extracted from the WSI into account when only WSI-level labels are
available. Besides, considering that not all patches extracted from a WSI con-
tribute equally to the final diagnosis, we propose to utilize a feature attention
module [12] to weigh the importance of each patch automatically. Finally, An
interpretable dual encoder network is formed by combining the modules men-
tioned above. The significant superiority of this network is as follows.

(1) Our network merely requires WSI-level labels that are easy to obtain, which
significantly saves a lot of labor cost on annotations.

(2) The context-capturing RNN module of our network is adopted to automat-
ically model the contextual relations among all patches extracted from a
WSI, which are different from previous patch-level supervised methods that
just model the contextual relations among neighboring patches.

(3) Our network’s feature attention module automatically captures the most
critical patch for final diagnosis, making we can produce fine heatmaps by
visualizing each patch’s importance.

2 Methodology

Figure 2 shows an overview of the interpretable dual encoder network. It contains
five primary modules: WSI input module, weight-sharing CNN module, context-
capturing RNN module, feature attention module, and classification module.
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(1) The WSI input module takes a WSI as input and then splits the WSI into
non-overlapping patches.

(2) The weight-sharing CNN module acts as a patch’s appearance encoder that
takes patches extracted from a WSI as input and then codes each patch as
a patch-level feature vector.

(3) The context-capturing RNN module jointly processes these patch-level fea-
ture vectors and then encodes each patch-level feature vector as context-
aware feature vector. By jointly processing these patch-level feature vectors,
we make sure that we capture the contextual relations among all patches
extracted from a WSI.

(4) The feature attention module merges context-aware feature vectors from each
time step into a WSI-level feature vector. It is worth noting that the feature
attention module can weigh the importance of each patch automatically.

(5) The classification module uses the WSI-level feature vector for the final
diagnosis.

2.1 WSI Input Module

A WSI from the training set is taken as Xi, and meanwhile, its WSI-level label is
taken as Yi. Thus the training set can be expressed as {(X1, Y1), ..., (XM , YM )},
where M is the total number of training samples. The WSI input module takes a
WSI Xi as input and then splits the WSI into non-overlapping 512∗512 patches.
Before passing these non-overlapping patches to the weight-sharing CNN mod-
ule, we discard non-informative background patches to reduce the computational
cost and mark the rest of the foreground patches as {xi,1, xi,2, ..., xi,N}.

2.2 Weight-Sharing CNN Module

To fully extract the foreground patches’ discriminative feature, we employ a
modified CNN f(·) as patches’ appearance encoder. Specifically, we modify the
Resnet [13] by replacing the classification layer with a feature reduction layer that
is essentially a three-layer fully connected neural network. The convolution layers
of modified Resnet encode a patch into a patch-level feature vector, and further,
the feature reduction layer of modified Resnet reduces the patch-level feature
vector’s dimension to 256. Formally, as shown in Eq. 1, the modified Resnet can
map a patch to a 256-dimensional feature vector vi,t, where t = 1, 2, ..., N . Due
to GPU memory limitation, we modify Resnet pre-trained on ImageNet and only
update the feature reduction layer’s weights during the training process.

vi,t = f (xi,t) (1)

2.3 Context-Capturing RNN Module

After getting a sequence of patch-level feature vectors {vi,1, ..., vi,N}, we pro-
pose to use a Bidirectional Long Short-Term Memory (BLSTM) [14] to model
the contextual relations among them. Note that the BLSTM consists of two
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independent processing streams, one moving left to right(
−−−−→
LSTM(·) ) and the

other right to left(
←−−−−
LSTM(·) ). As a matter of convenience, we use the index

t (t = 1...N) to denote the position of the patch-level vector vi,t. For the t-th
patch-level feature vector vi,t, the sub-network

−−−−→
LSTM(·) merges vi,t with its

previous output
−−−→
hi,t−1 to generate the forward feature vector

−→
hi,t . The above

calculation process is shown in Eq. 2. As same as the sub-network
−−−−→
LSTM(·),

the calculation process of sub-network
←−−−−
LSTM(·) is shown in Eq. 3.

−→
hi,t =

−−−−→
LSTM(vi,t,

−−−→
hi,t−1) (2)

←−
hi,t =

←−−−−
LSTM(vi,t,

←−−−
hi,t−1) (3)

Next, Eq. 4 merge the forward vector
−→
hi,t with the backward vector

←−
hi,t

to generate a context-aware feature vector hi,t for the t-th patch-level feature
vector.

hi,t = [
−→
hi,t,

←−
hi,t ] (4)

In this paper, the hyperparameter details of LSTM are as follows. The num-
ber of features in the hidden state is 512, and the number of recurrent layers
is 3.

2.4 Feature Attention Module and Classification

Given a WSI, not all patches extracted from it contribute equally to the final
diagnosis. Therefore, we embed the feature attention module in the interpretable
dual encoder network to weigh the importance of each patch automatically.
The feature attention module can map the context-aware feature vector set
{hi,1, ..., hi,N} to a WSI-level feature vector Si by a weighted sum of these
context-aware feature vectors. The details of the weighted sum are as follows.
First, fully connected layer projects each patch-level feature vector hi,t to a
hidden representation ui,t. The fully connected layer is defined in Eq. 5:

ui,t = tanh(Wuhi,t + bu) (5)

As shown in Eq. 6, the importance of context-aware feature vector hi,t is weighed
by the similarity between the hidden representation ui,t and a context vector u
learned during training.

ai,t =
exp (u�

i,tu)
∑N

t=0 exp (u�
i,tu)

(6)

Next, the WSI-level feature vector Si is formed by a weighted sum of these
context-aware feature vectors {hi,1, ..., hi,N}.

Si =
N∑

t=0

ai,thi,t (7)
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Finally, we use a softmax classifier to predict the WSI-level label Ŷi for the WSI
Xi. The softmax classifier takes the WSI-level feature vector Si as input and
then outputs estimated probabilities p(y|Xi) for all categories.

p(y|Xi) = softmax(WpSi + bp) (8)

Ŷi = arg max p(y|Xi) (9)

3 Experiments

3.1 Dataset

To validate the network’s effectiveness, we create a digital thyroid frozen section
dataset, including 547 WSIs. According to the subsequent surgical plan, these
WSIs can be categorized as benign or malignant. As shown in Table 1, the col-
lected dataset includes 97 benign and 154 malignant WSIs for training, 19 benign
and 25 malignant WSIs for validation, 85 benign and 167 malignant WSIs for
testing. The slides in the training set and testing set only have WSI-level labels.
However, the slides in the validation set have both WSI-level labels and patch-
level labels.

Table 1. Summary of experimental data

Benign Malignant Total

Train 97 154 251

Val 19 25 44

Test 85 167 252

Total 201 346 547

3.2 Implementation Details

The WSI input module throws the non-informative background patches away as
Chen et al. [10]. The interpretable dual encoder network is trained with NVIDIA
GeForce GTX 2080 Ti GPU. In the training process, a batch size of 1 WSI is
feed into the network. Meanwhile, it is trained in an end-to-end way for 100
epochs, using adam optimizer with a learning rate of 0.0001.

3.3 Performance Comparison

In this sub-section, we conduct ablation experiments to investigate the feature
attention module’s effectiveness firstly. Then we implement a method supervised
by WSI-level labels [10] and compare it with our solution on the different back-
bone. In the experiments, we used Accuracy, Precision, Recall, and F1-Score as
our evaluation criteria.



46 Z. Wu et al.

Table 2. Performance of feature attention module (FA) on different benchmark models

Method Metrics

Resnet18 Resnet50 Resnet152

+ + + FA Accuracy Precision Recall F1-score

BLSTM BLSTM BLSTM

� 89.68% 100% 84.43% 91.56%

� � 93.25% 96.30% 93.41% 94.83%

� 86.91% 100% 80.24% 89.04%

� � 90.48% 96.73% 94.27% 95.48%

� 90.48% 100% 85.63% 92.26%

� � 91.67% 97.40% 89.82% 93.46%

Effect of Feature Attention Module. To test whether the additional feature
attention module can help improve model performance, we first implement three
benchmark models and then embed the feature attention module in each bench-
mark model. Table 2 illustrates the experimental results with and without the
feature attention module. It can be seen that these benchmark models have high
precision but low recall for malignant class. Our explanation for this phenomenon
is that benchmark models tend to classify some malignant WSIs as benign ones
due to sizeable benign lesion regions in these malignant WSIs. In an extreme case,
only less than 1% of regions on a misclassified WSI may be malignant while the
rest are benign. However, when adding the feature attention module, these mod-
els can achieve high accuracy and high recall. Specifically, the feature attention
module increased the three benchmark model F1-score by 3.27%, 6.44%, and
1.20%, respectively. Meanwhile, the feature attention module can also increase
three benchmark model accuracy by 3.57%, 3.57%, and 1.19%, respectively. It
demonstrates that the feature attention module can automatically weigh each
patch’s importance and further capture the patches most relevant to the final
diagnosis.

Comparision with Method Supervised by WSI-level Labels. We com-
pare our method with Chen’s method [10] in Table 3. From Table 3, we can
observe that our method’s performance is better than Chen et al. on the different
backbone. The possible reason is that our method models contextual relations
among all patches in a WSI, which is different from Chen’s method that predicts
each patch in a WSI separately. Besides, it is worth noting that Chen’s method
uses patch-level labels in the validation set to select the best model for testing,
whereas we only use WSI-level labels.

To further compare the method proposed by Chen et al. with our method,
we visualize the expert annotation in WSI, each patch’s malignant probability
obtained by Chen’s method and each patch’s weight obtained by our network’s
feature attention module, respectively in Fig. 3. We can find that both Chen’s
model and our model focus on the malignant lesions.



Interpretable Histopathology Image Diagnosis 47

Table 3. Performance of different deep learning algorithms

Methods Accuracy Precision Recall F1-score

Chen et al.(Resnet18+LRCE + LUT ) [10] 85.71% 97.12% 80.83% 88.23%

Ours(Resnet18+BLSTM+FA) 93.25% 96.30% 93.41% 94.83%

Chen et al.(Resnet50+LRCE + LUT ) [10] 88.49% 92.07% 90.42% 91.24%

Ours(Resnet50+BLSTM+FA) 90.48% 96.73% 94.27% 95.48%

Chen et al.(Resnet152+LRCE + LUT ) [10] 87.30% 96.55% 83.83% 89.74

Ours(Resnet152+BLSTM+FA) 91.67% 97.40% 89.82% 93.46%

(a) (b) (c)

Fig. 3. Prediction visualization of selected examples. (a) WSI with malignant lesion
outlined by an expert. (b) Visualizing each patch’s malignant probability obtained by
Chen’s method [10]. (c) Visualizing each patch’s weight obtained by our network’s
feature attention module.

4 Conclusion

In this paper, we find that there has been little discussion about how to model
contextual relations among all patches extracted from a WSI when lacking patch-
level labels. Thus we propose to utilize an interpretable dual encoder network
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with a context-capturing RNN module to capture the contextual relations among
all patches extracted from a WSI. The comparative experiments on thyroid
datasets demonstrate the superiority of our method. Besides, we propose to uti-
lize a feature attention module to weigh the importance of each patch automat-
ically. Extensive ablation experiments demonstrated that the feature attention
module could capture the patches most relevant to the final diagnosis.
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