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Abstract. Stain color variation s across images are common in the med-
ical imaging domain. However, such variations among the training and
test datasets may lead to unsatisfactory performance on the latter in any
desired task. This paper proposes a novel coupled-network composed of
two U-Net type architectures that utilize self-supervised learning. The
first subnetwork (N1) learns an identity transformation, while the sec-
ond (N2) learns a transformation to perform stain normalization. We also
introduce classification heads in the subnetworks, trained along with the
stain normalization task. To the best of our knowledge, the proposed cou-
pling framework, where the information from the encoders of both the
subnetworks is utilized by the decoders of both subnetworks as well as
trained in a coupled fashion, is introduced in this domain for the first
time. Interestingly, the coupling of N1 (for identity transformation) and
N2 (for stain normalization) helps N2 learn the stain normalization task
while being cognizant of the features essential to reconstruct images. Sim-
ilarly, N1 learns to extract relevant features for reconstruction invariant
to stain color variations due to its coupling with N2. Thus, the two sub-
networks help each other, leading to improved performance on the subse-
quent task of classification. Further, it is shown that the proposed archi-
tecture can also be used for segmentation, making it applicable for all three
applications: stain normalization, classification, and segmentation. Exper-
iments are carried out on four datasets to show the efficacy of the proposed
architecture.

Keywords: Self-supervised learning · Stain-normalization ·
Classification

1 Introduction

Staining is a step in microscopic slide preparation that involves staining chemi-
cals to highlight the regions of interest in the tissue/blood sample or bone mar-
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row smear. Stain color variations in the images across datasets collected from
various hospitals/centers may arise due to varying illumination conditions, stain
chemicals, and staining time. Thus, the diagnostic tool trained on one center’s
dataset may perform non-optimally on another center’s dataset. To counter this
problem, stain color normalization is employed. Some of the widely used stain
normalization approaches are based on histogram equalization [6,8,18], color
deconvolution [9,11,15,17], and color transfer methods [10,13,14]. In histogram
equalization methods, the probability density function of the reference image
and source image colors are matched for each R, G, and B channel. In [10], color
transfer between the two images is used to achieve stain normalization, while
in [13], mean and standard deviation of the source and reference images are
matched. However, these methods do not utilize histological information. Color
deconvolution methods are based on negative matrix factorization (NMF) or
singular value decomposition (SVD) to find the stain vectors. In [4] SVD, along
with the robust aligning of the reference and query images’ Cartesian frames
is utilized to counter stain color variation. A limitation of all these methods is
that the performance depends on the reference image’s choice and may change
considerably with the change of reference image. Of late, deep learning (DL)
methods are gaining significance in this area. Some generative model-based DL
methods for stain normalization are discussed in [16,21,22]. In [22], InfoGAN
is utilized, while in [21], variational-autoencoder and deep convolutional Gaus-
sian mixture model are used for stain normalization. In [16], a CycleGAN based
method is used to preserve the structure information while applying the color
transformation. However, this method requires reference center’s data that may
not always be available. As a remedy, self-supervised learning can be employed
that does not require GT [7]. It is based on first training the network on some
pretext tasks and later utilizing for the other downstream tasks. In [19], a net-
work is trained to carry out stain normalization by learning to map the color
(stain) augmented images to the corresponding original images. This can be
considered as self-supervised learning, wherein the pretext task is to learn to
transform the color augmented images to the original images. Color transforma-
tion of test images to that of training data can be considered as the downstream
task. This paper utilizes this approach but uses two coupled subnetworks (N1
and N2) instead of a single network and learns dual transformation (pretext
tasks). In addition, classification heads are added to the encoders of both the
subnetworks [5,12]. The first subnetwork (N1) learns an identity transformation,
while the second (N2) learns to perform stain normalization. N1 helps N2 learn
the context-aware stain normalization task, while N2 helps N1 learn the stain-
invariant features for the reconstruction task. Thus, both N1 and N2 assist each
other, leading to improved stain-invariant performance on the subsequent clas-
sification task. We also experimented with segmentation as a downstream task.
Since the proposed architecture can be utilized for stain normalization, classifi-
cation, and segmentation, we name it an all-in-one network (AION). Elaborate
experiments are presented on four datasets for each of the three tasks.
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Fig. 1. AION: An architecture with two coupled-networks and classification heads for
learning two transformations; one identity and another for stain normalization. AION
can also be used for stain-invariant classification and segmentation.

2 Methods

Consider the source image dataset and the corresponding augmented dataset
with color variations. The aim is to perform stain normalization such that the
stain color profile of the augmented dataset is as close as possible to the source
dataset. If trained successfully, the trained model can map one Center’s images
to those of another Centre with a matching stain color profile. To accomplish
this, we modify the architecture in [19] (here named as AION−−) to arrive at
AION, presented in Fig. 1.

Normalization by the AION Architecture: The AION architecture can
be seen as a self-supervised learning architecture consisting of two parallel U-
Net types AION−− coupled through cross-connections running from the encoder
units of one to the decoder units of the other. The first subnetwork, N1 is trained
to learn the identity transformation on the source dataset. In contrast, the second
subnetwork, N2 is supposed to map the augmented image dataset’s stain color
profile to that of the source dataset. Each subnetwork consists of an input layer,
four encoder units (EUs), four decoder units (DUs), and one output layer. Input
layer and encoder units constitute the encoder, while decoder units and output
layer constitute the decoder. The input layer consists of 32 filters, while the
successive EUs consist of twice the filters than the preceding layer/unit. Hence,
the first EU consists of 64 filters, and the fourth EU consists of 512 filters.
The size of each filter is 3 × 3. Each convolutional operation in the encoder is
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performed with a stride of two and a padding of one. This leads to a reduction of
output size by two after each convolutional operation. Each EU consists of two
parallel convolutions layers and provides a coupling mechanism for N1 and N2.
These parallel layers receive the same input from the preceding EU. However,
the output from one goes to the succeeding EU of the same subnetwork and
the output of the other goes to the decoder unit of another subnetwork. Similar
cross-connections are followed for both the subnetworks (Fig. 1).

Each DU of N1 concatenates the input from the preceding layer/unit, the
output from the corresponding EU of N1, and the output from the corresponding
EU of N2. DUs also involve upsampling by two by the nearest neighbors approach
to match the spatial size for concatenation. The concatenated output is given
to the convolutional layers within DUs. The final output is forwarded to the
next DU. Similar is the decoder structure of N2. Each DU contains half the
number of filters of the preceding DU, with the first DU containing 256 filters
and the fourth containing 32 filters. Finally, the output layer provides a three-
channel output. Each convolutional operation in the network is followed by batch
normalization (BatchNorm) and leaky ReLu except for the output layer, which
has tanh activation and no BatchNorm.

Classification and Segmentation: To introduce the classification capability,
we add two classification heads (CHs), one in each subnetwork on top of the last
EU. Each CH consists of a single convolutional layer with 512 filters followed
by BatchNorm, ReLu activation, global averaging pooling, and a classification
layer. The CH of N1 predicts the class of images of the source dataset, while
CH of N2 predicts the class of color augmented dataset. The AION can also be
used for the segmentation. For this case, both N1 and N2 are fed with the source
dataset, and the classification heads are not trained.

Training Methodology: To train the AION for stain normalization, an image
Is from the source dataset is given as input to N1. Another image Iu,aug, obtained
through some transformation φ(·) on image Iu from the source dataset, is given
as input to N2, where indices u and s may or may not be equal. N1 aims to
reconstruct the input image, while N2 attempts to match Iu. If we denote the
output of N1 as Īs and of N2 as Īu, the loss function is given as:

L1 = MSE(Īs, Is) + MSE(Īu, Iu), (1)

where MSE(·) is the mean square error. Hence, N1 is learning an identity trans-
formation, and N2 is learning φ−1, assuming such inverse exists. Once trained,
N2 should transform the stain (color) of the input data to that of the data input
to N1. The classification heads are also trained simultaneously to predict the
labels of the input images. Hence, the complete loss function is given as:

L = MSE(Îs, Is) + MSE(Īu, Iu) + NLL(y1, ŷ1) + NLL(y2, ŷ2), (2)

where NLL is the negative log-likelihood, y is the true label, and ŷ is the pre-
dicted label by the classification head. The subscripts 1 and 2 denote the classi-
fication head of Network-1 and Network-2, respectively. It should be noted that
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Table 1. Description of the four dataset. Highlighted cells for Camelyon17 represent
the sum of train and val dataset of the respective columns as the architecture trained
on one center’s is tested on another center’s whole data.

Application Stain Normalization and Classification Segmentation

Datasets
Camelyon17 (Patches) PCam

(Patches)

Databowl

(Patches)

CVCDB

(Images)C0 C1 C2 C3 C4

Train 53538 31169 54834 94635 16776 262146 8640 488

Val 6000 4000 4000 15002 4000 32770 1360 62

Test 59538 35169 58834 109637 20776 32770 2503 62

Fig. 2. Sample images from the datasets. (Set-1: left to right) Image from C0, C1,
C2, C3, C4, and C5 of Camelyon17. (Set-2) augmented images from C3 obtained with
transformation φ(·). (Set-3) PCam. (Set-4) DSB, (Set-5) CVC.

classification Head-1 is trained on the source image data, while classification
Head-2 is trained on the augmented data.

For segmentation, the tanh activations at the output layers are replaced
with sigmoid activations. The input of both the networks is the same, and the
classification heads are not trained. Also, the original (not augmented) data is
used for training. The respective segmented mask is predicted from both the
networks, and both the networks are trained simultaneously using the binary
cross-entropy loss.

3 Results

In this work, we use four publicly available datasets. Camelyon17 challenge
dataset [3] is used for stain normalization, PatchCamelyon (PCam) [20] for
classification, and Data Science Bowl (DSB) [1] & CVC-ClinicDB (CVC) [2]
for segmentation. Camelyon17 consists of hematoxylin and eosin (H&E) stained
whole slide images (WSIs) of lymph node sections collected from five centers
labeled as C0 to C4. For training and testing, the patches of size 128 × 128 are
extracted from the level-0 of the WSIs. PCam have 96 × 96 patches having a
binary label indicating the presence or absence of metastatic tissue. There is
stain-variation among the patches, which makes the classification task challeng-
ing. The DSB is a cell segmentation dataset having images of varying sizes. We
have extracted 128× 128 patches for training and testing. CVC is a polyps seg-
mentation dataset with 612 images of size 384 × 288 pixels. For training with
CVC, we have augmented the training set using random rotations. The distri-
bution of the patches/images for all the datasets is provided in Table 1, and the
sample images are shown in Fig. 2.
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Stain-Normalization: For Camelyon17, there are variations in the colors of
stained images of the five centers (Fig. 2). Intuitively, a classifier trained on one
center’s data may perform unsatisfactorily on the remaining centers’ data. We
train a classifier on a particular center’s data and test on the remaining cen-
ters’ data for stain-normalization. The stain normalization quality can then be
assessed through improvement in the classification performance over the unnor-
malized data. We begin our analysis with C3 as the training data. For compari-
son, we chose Macenko [9] and Reinhard [13] as non-DL methods, and StainGAN
[16] and AION−− [19] as DL methods. StainGAN [16] is trained using C3 and C0
because it requires two training datasets. Results are also reported by adding
a classification head to AION−−. We name this architecture as AION−−+H.
Both AION and AION−−+H are trained with the same training methodology
as discussed in Sect. 2. To obtain the augmented images, φ(·) consists of satu-
ration in the range [0, 2.5] and hue in the range [0.5,0.5] with a probability of
0.95. The sample augmented images are shown in Fig. 2. Some results are shown
with an external classifier (EC) that consists of 10 convolutional layers, batch
normalization and Leaky ReLU as activation, and a classification layer.

All the models are implemented using PyTorch 1.1.0 and trained using
RTX2080 GPU. Except for classifiers, all the models are trained using Adam
optimizer for 80 epochs, batch size of 32, and initial learning rate of 0.001,
which is reduced to one-tenth of the present value if there is no change in the
validation performance for seven epochs. For classifiers, an SGD optimizer and
a batch size of 64 are used for 150 epochs. The initial learning rate of 0.001 is
reduced to one-tenth at 80th, 120th, and 140th epochs. The following results are
reported with AION−−+H and AION:

1. AION−−+H (H): Results from the classification head that is added to
AION−−

2. AION (H1): Results with N1’s classification head of AION
3. AION (H2): Results with N2’s classification Head of AION
4. AION−−+H (EC): Results with an external classifier trained on a center,

and tested on normalized images obtained from AION−−+H
5. AION (N2+EC): Results with an external classifier trained on a center,

and tested on normalized images obtained from N2 of AION

Results with C3 as training data are shown in Table 2 in terms of balanced
accuracy (BAC), the area under the curve (AUC), and the weighted F1-score
(WF1). The mean performance of the methods requiring reference images is
inferior to other methods, showing their dependency on the reference image’s
choice. It can be seen that stain normalization leads to improved classification
performance over original images for all the centers. For C0, AION (N2+EC)
gives the top performance with a significant margin in terms of BAC and WF1.
For C1 and C4, AION−−+H (EC) and AION (N2+EC) are having approxi-
mately similar performances, and for C2, AION−− is giving the best results.
Apart from C2, both AION−−+H (EC) and AION (N2+EC) are performing
better than AION−−. This shows the contributions of the added components to
the AION−−. Another significant observation is the better performance of AION
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(H1) than original images. This shows that AION (H1) has also become stain-
invariant, even though it is trained with the unnormalized images. This capa-
bility may have been introduced due to the coupling in the AION. AION−−+H
(H) and AION (H2) are trained with augmented images and have seen vary-
ing stain colors. Hence, the performance improvement with these architectures
is apparent. Table 3 shows the inter-center train-test results in terms of AUC.
For all the centers, there is performance enhancement after stain normalization.
Also, for most cases, results with AION are better than AION−−+H, which are
better than AION−−.

Table 2. Results with C3 as training data, and other centers as the test data. The
shaded cells represent mean results with five various reference images.

Dataset C0 C1 C2 C4

Metric/

Method
AUC BAC WF1 AUC BAC WF1 AUC BAC WF1 AUC BAC WF1

Original 0.7835 0.5960 0.5422 0.7581 0.7013 0.6948 0.4026 0.3338 0.3187 0.8628 0.7826 0.7824

Macenko [9] 0.5530 0.5025 0.4539 0.6117 0.5410 0.4767 0.5499 0.5428 0.5203 0.6096 0.5907 0.5490

Reinhard [13] 0.5465 0.4898 0.3738 0.5833 0.5087 0.3791 0.4699 0.4759 0.2521 0.4353 0.4867 0.3532

StainGAN [16] 0.7926 0.5714 0.5023 0.8097 0.7217 0.7175 0.6882 0.6072 0.5241 0.5887 0.5097 0.365

AION−− [19] 0.8611 0.7192 0.7042 0.8257 0.7577 0.7553 0.9390 0.8067 0.7535 0.8115 0.7206 0.7137

AION−−+H (H) 0.7975 0.7199 0.7172 0.8327 0.7433 0.7398 0.7457 0.6751 0.6046 0.8739 0.8040 0.8039

AION−−+H (EC) 0.8438 0.7538 0.7497 0.8600 0.7805 0.7794 0.8174 0.7240 0.6567 0.9289 0.8661 0.8659

AION (H1) 0.7767 0.6941 0.6915 0.8040 0.7279 0.7248 0.6419 0.6072 0.6958 0.9286 0.8562 0.8562

AION (H2) 0.8019 0.7186 0.7161 0.8370 0.7395 0.7349 0.7833 0.6828 0.6008 0.8851 0.8129 0.8125

AION (N2+EC) 0.8661 0.7733 0.7712 0.8605 0.7781 0.7769 0.8579 0.7534 0.6937 0.9218 0.8627 0.8625

Table 3. AUC with inter-center training-testing

AUC

Train C0 C1

Test C1 C2 C3 C4 C0 C2 C3 C4

Original 0.8607 0.5076 0.7157 0.5080 0.8065 0.1852 0.6490 0.1052

AION−− [19] 0.8714 0.9341 0.9344 0.7714 0.7169 •.8880 0.7305 0.4088

AION−−+H (H) 0.8368 0.8915 0.9114 0.8973 0.7093 0.8448 0.8761 0.7907

AION−−+H (EC) 0.8183 0.9157 0.9304 0.9137 0.6674 0.8870 0.7787 0.4132

AION (H2) 0.8412 0.8956 0.9141 0.9029 0.7128 0.8465 0.8774 0.8221

AION (N2+EC) 0.8359 0.9130 0.9362 0.9206 0.6551 0.8680 0.8088 0.4920

Train C2 C4

Test C0 C1 C3 C4 C0 C1 C2 C3

Original 0.6055 0.5722 0.3577 0.3617 0.4506 0.6532 0.7667 0.4012

AION−− [19] 0.6884 0.8269 0.7648 0.4211 0.5983 0.5797 0.8019 0.7130

AION−−+H (H) 0.6706 0.7722 0.7732 0.7732 0.5708 0.6920 0.7699 0.7466

AION−−+H (EC) 0.6772 0.8005 0.8455 0.5670 0.6125 0.6269 0.8264 0.7817

AION (H2) 0.6995 0.7800 0.7967 0.7940 0.5869 0.7121 0.7761 0.7529

AION (N2+EC) 0.6926 0.8034 0.8508 0.6623 0.6080 0.6418 0.7821 0.7576
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Classification: To highlight AION’s classification capability, we use the binary
class dataset of PCam with inter-image stain variations. We have also compared
the results with AION−−+H to show the proposed architecture’s contribution.
Results are summarized in Table 4.I. A methodology similar to stain normaliza-
tion is used for training with PCam. First, we trained EC on the original PCam
training set. This classifier provided an AUC of 0.8448 on the original PCam
test set. The AION−−+H (H), AION (H1), and AION (H2) provide a gain
of 4%, 4.61%, and 3.66%, respectively. Even though these classifiers are shal-
low (6 layers) than EC (10 layers), they provided a significant gain. This gain
could be more with deeper heads. Hence, the proposed architecture can produce
stain-invariant classifiers as a byproduct. To explore further, we stain-normalized
PCam using AION−−+H and AION trained on C3 of Camelyon17. Training and
testing with the resultant dataset provided an AUC of 0.8948 and 0.9105 with
AION−−+H and AION (N2), respectively, which again proves AION’s useful-
ness. We also replaced the custom classifier with ResNet-24 and DenseNet-161.
The best AUC is achieved with AION (N2) for both classifiers, which is 0.9356
with ResNet-34, and 0.9275 with DenseNet-161.

Table 4. (I) PCam Classification results, (II) CVC and DSB Segmentation results

(I) PCam Classification Results

Classifier Method AUC Classifier Method AUC

AION−−+H (H) AION−−+H 0.8848 Resnet-34 Original 0.8948

AION (H1) AION 0.8909 AION−− [19] 0.9059

AION (H2) AION 0.8814 AION−−+H 0.9181

AION (N2) 0.9356

EC Original 0.8448 DensNet-161 Original 0.8691

AION−− [19] 0.9054 AION−− [19] 0.9137

AION−−+H 0.8948 AION−−+H 0.9091

AION (N2) 0.9105 AION (N2) 0.9275

(II) Segmentation results on CVC and DSB with AION−−+H and AION

Dice Similarity Coefficient (DSC)

Dataset CVC DSB

Initialization/Method AION−−+H AION (N1) AION (N2) AION−−+H AION (N1) AION (N2)

C3-Pretrained 0.6897 0.7453 0.6896 0.8670 0.8533 0.8682

Random 0.8243 0.8198 0.8328 0.8712 0.8723 0.8705

Intersection over Union (IoU)

Dataset CVC DSB

Initialization/Method AION−−+H AION (N1) AION (N2) AION−−+H AION (N1) AION (N2)

C3-Pretrained 0.7406 0.7765 0.7407 0.8527 0.8378 0.8542

Random 0.8361 0.8327 0.8432 0.8568 0.8579 0.8560
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CVC GT AION−−+H AION CVC GT AION−−+H AION

Fig. 3. Sample segmentation masks from AION−−+H and AION (H2) from CVC.

Segmentation: In one set of experiments, we considered segmentation as the
downstream task and initialized AION−−+H and AION with the network’s
weights trained on C3 (C3-Pretrained). In contrast, in the other experiment,
they are initialized randomly. Also, as the classification head is not trained,
AION−− and AION−−+H are the same for segmentation. Both AION−−+H and
AION gave an inferior performance with C3-pretrained networks as compared to
random initialization (Table 4.II). This shows that stain-normalization-specific
features are, perhaps, not helpful in the segmentation task on this dataset. Also,
the performance difference between the two initializations is large for CVC as
compared to DSB. This is due to the similarity in the imaging modality of DSB
and C3. Also, AION has better performance than AION−−+H for both datasets.
The qualitative results are also presented in Fig. 3.

4 Conclusion

In this work, we proposed a novel self-supervision based dual-transformation
coupled-network architecture for stain normalization. The architecture is also
equipped with classification heads that can achieve stain-invariant classifica-
tion. The utility is also shown for the downstream task of segmentation. The
architecture can perform well on all three applications of stain normalization,
classification, and segmentation.
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