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Abstract. CT image quality is heavily reliant on radiation dose, which
causes a trade-off between radiation dose and image quality that affects
the subsequent image-based diagnostic performance. However, high radi-
ation can be harmful to both patients and operators. Several (deep
learning-based) approaches have been attempted to denoise low dose
images. However, those approaches require access to large training sets,
specifically the full dose CT images for reference, which can often be diffi-
cult to obtain. Self-supervised learning is an emerging alternative for low-
ering the reference data requirement facilitating unsupervised learning.
Currently available self-supervised CT denoising works are either depen-
dent on foreign domains or pretexts that are not very task-relevant. To
tackle the aforementioned challenges, we propose a novel self-supervised
learning approach, namely Self-Supervised Window-Leveling for Image
DeNoising (SSWL-IDN), leveraging an innovative, task-relevant, sim-
ple, yet effective surrogate—prediction of the window-leveled equivalent.
SSWL-IDN leverages residual learning and a hybrid loss combining per-
ceptual loss and MSE, all incorporated in a VAE framework. Our exten-
sive (in- and cross-domain) experimentation demonstrates the effective-
ness of SSWL-IDN in aggressive denoising of CT (abdomen and chest)
images acquired at 5% dose level only (Code available at https://github.
com/ayaanzhaque/SSWL-IDN).

Keywords: Computed tomography · Image denoising · Self-supervised
learning · Window-leveling · VAEs

1 Introduction

Computed Tomography (CT) imaging is one of the fundamental imaging modal-
ities in medical practice. However, X-ray radiation is a clinical concern, as high
radiation can be harmful to patients [3]. Low dose CT (LDCT) images could
be acquired to reduce radiation dose as an alternative to full dose CT (FDCT).
However, lowering radiation dose introduces higher noise and various imaging
artifacts, resulting in degraded diagnostic and other image-based performance.
To address this tradeoff, deep learning-based denoising methods have been inves-
tigated to improve and enhance CT imaging. Conventionally, denoising models
map noisy LDCT (input) to cleaner FDCT (target). CT denoising is a popular
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Fig. 1. Window-Leveling is the process of using CT numbers to adjust the contrast
and brightness of the image. This image modification as a pretext learns important
representations of the data, improving downstream denoising of predicting FDCT from
LDCT by removing noise.

field of research because of its clinical importance, as being able to denoise, and
thus use, low dose CT provides improved patient safety and diagnostic perfor-
mance. Approaches include new architectures [1,5,7,21] and training procedures
[6,22].

Acquiring reference images is challenging due to the harmful nature of radia-
tion as well as the difficulty of performing two identical scans at different radia-
tion doses. Thus, it is desirable to train denoising models with limited reference
data. Self-Supervised Learning (SSL) has emerged as a promising alternative to
fully-supervised learning in order to utilize large unlabeled training examples.
In an SSL scheme, synthetic labels can be generated from the data itself, for
both labeled and unlabeled data. Similar to transfer learning, SSL pre-trains
a model on a surrogate task, but on the same dataset instead of one from a
foreign domain, and then fine-tunes the pretrained model on a downstream, or
main evaluation, task [17]. This SSL is not to be confused with other methods
that are also called self-supervised which use no reference scans. Common surro-
gates available in literature include rotation prediction, colorization/restoration,
and patch prediction. In general-purpose SSL denoising, popular works include
[14,16,19,20]. In SSL CT denoising, popular works include [13,18,24]. However,
these specific methods do not use any reference scans or have a downstream task,
meaning they are more unsupervised than self-supervised. Thus, as argued by
these papers, a method using FDCT references, like ours, is not comparable.

Variational autoencoders (VAEs) [12] are an extension of autoencoders
(AEs), which use encoders and decoders to deconstruct inputs to low-dimensional
representations and then reconstruct it. VAEs are generative as they use the
reparameterization trick to inject randomized noise into the latent code. For
denoising, VAEs have not been extensively used [10,25]. Additionally, residual
learning [9] has gained interest in deep learning, so Residual (ResNet) VAEs
have been proposed for image generation [11]. In medical image denoising, to
our best knowledge, there is little literature using VAEs [2], and the use of
RVAEs are even more scarce. Additionally, recent works support the use of Per-
ceptual Loss because it optimizes high-level feature learning [1,21] as opposed
to Mean-Squared Error (MSE) which optimizes on a pixel-wise scale for precise
noise removal. Only a few CT denoising methods have used hybrid losses [8,15].
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Fig. 2. Schematic of the proposed SSWL-IDN model. As a pre-text, the model predicts
window-leveled images from non-window-leveled images. The model architecture uses
residuals between the encoder and decoder with a VAE bottleneck.

In this paper, we use SSL to improve performance of deep denoising models
with limited reference FDCT. We propose a novel denoising surrogate to predict
window-leveled CT images from non-window-leveled images. Window-leveling in
CT is the process of modifying the grayscale of an image, using the CT numbers,
to highlight, brighten, and contrast important structures. Unlike many other
existing self-supervised learning methods, our proposed self-supervised window-
leveling (SSWL) is a task-relevant surrogate, as it is directly related to the
downstream task, prioritizing similar feature learning. Furthermore, we limit
all our experiments to 5% dose level potentially towards an aggressive dose
reduction mechanism to demonstrate effectiveness even at such low dose settings.

Our primary contributions can be summarized as follows:

– A novel and task-relevant self-supervised window-level prediction CT denois-
ing surrogate which is related to the downstream task.

– An innovative residual-based VAE architecture coupled with a hybrid loss
function to simultaneously penalize the model pixel-wise and perceptually.

– Extensive experimentation with varied quantities of labeled data on different
proposed components on in- and cross-domain data demonstrating improved
and effective denoising even from extremely low dose (5%) CT images.

2 Methods

2.1 Denoising

To formulate the problem, we assume unknown data distribution p(X,Y ) over
LDCT X and FDCT Y . We also assume access to labeled training set Dl sampled
i.i.d. from p(X,Y ) and unlabeled training set Du sampled i.i.d. from p(X) after
marginalizing out Y . In CT denoising, the input images are LDCT and the
reference images are FDCT. This relationship can be represented by the equation
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X = Y + n (1)

where n is the resultant noise due to lowering dose. The deep denoising model
is trained to remove n by encoding the input LDCT and recovering the FDCT.

A similar relationship can be found in the CT window-leveling task—non-
window-leveled (NWL) scans as inputs and window-leveled (WL) scans for ref-
erences. This relationship can be similarly represented as,

Z = aX + b, (2)

where X is NWL, Z is WL, and a and b are window-leveling parameters (deter-
mined by the DICOM metadata). Figure 1 illustrates the process of window-
leveling and its relation to denoising. Inspired from the relatedness of the two
tasks, we leverage the first task to help learn or improve the second. The
window-leveling labels enable us to train a deep denoising model as if it is fully-
supervised. Specifically, formulating it as a pretext to the downstream denoising
task is more appropriate when obtaining full dose reference images is difficult.
Window-leveling is similar to denoising as both tasks from a computational view
are image modifications. Since the task is domain-specific, it allows for more rel-
evant feature learning than foreign or arbitrary surrogates.

Therefore, our proposed self-supervised learning training comprises of two
steps: fully-supervised pre-training on the window-leveling task followed by fine-
tuning on the small labeled denoising task. For pre-training, we prepare both
a NWL and WL version of each LDCT scan for both labeled and unlabeled
data. Loss is optimized for predicting the WL LDCT from input NWL LDCT.
Our surrogate is end-to-end as opposed to many other methods which do not use
related tasks, as no architectural or loss changes are required between tasks. After
pre-training, we fine-tune the pre-trained network on the standard denoising task
only with the limited pairs of LDCT and FDCT without freezing parameters.

2.2 Model Architecture and Training

For the model architecture, illustrated in Fig. 2 along with the SSL algorithm, we
propose a Residual Variational Autoencoder (RVAE), which is a combination of
[5] and [12]. While Residual-based VAEs have been proposed [11], they use resid-
uals in the encoder and decoder separately (ResNet as encoder and Transposed
ResNet as decoder) instead of using residual connections between the encoder
and decoder like [5].

We use the base architecture of [5] and add a bottleneck component with
Global Average Pooling and Linear Layers. This downsamples the input to a
latent representation, where we use the reparameterization trick on the latent
code, z. This improves FD predictions, as adding randomized noise ε, which
is tunable through learnable parameters μ (mean) and σ (standard deviation),
in the bottleneck can decrease overfitting, improve generalization, and act as
a regularizer, which is experimentally verified through cross-domain evaluation.
To reparameterize, we use the calculation z = μ + σ ∗ ε. A generative model
can allow for better FD predictions, as the noise in LDCT may hide impor-
tant details and features which can be more easily recovered through generative
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models, as denoising tends to oversmooth and remove subtle information. As
opposed to traditional VAEs, we use constant convolutional filters of 96 instead
of downsampling convolutional layers. We use residuals from feature maps in the
encoder and add them after corresponding layers in the decoder phase. We use
standard convolutional layers in the encoder and transpose convolutional layers
in the decoder.

For our loss, we use a hybrid loss combining MSE and perceptual loss. Per-
ceptual loss encourages high-level visual feature learning/matching, while MSE
optimizes precise, pixel-wise noise removal. Thus, we combine both into one loss
to obtain both benefits. We use [27]’s perceptual loss where the model prediction
and target are passed to an Image-Net pre-trained VGG-19 and the extracted
features from hidden convolutional layers are used to calculate perceptual dis-
tance between the features. The perceptual loss can be defined as

Lperceptual =
1
M

M∑

i=1

‖F(ŷi) − F(yi)‖2, (3)

where M is the mini-batch size, ŷ are the model predictions, y are the labels,
and F is a feature extractor.

Our final loss function can be represented by

L(y, ŷ, μ, σ) = LMSE(ŷ, y) + βLperceptual(F(ŷ),F(y)) + αLKL(μ, σ), (4)

where LMSE is standard MSE loss, the Lperceptual is perceptual loss, and β
is Lperceptual weight. For the VAE, LKL represents the KL divergence loss, and
α is the LKL weight. μ is the mean term, and σ is the standard deviation term,
both from the latent space. The KL divergence attempts to reduce divergence
of μ and σ in the training distribution from those of the target distribution.
Both the surrogate and downstream task are trained with the same loss and
architecture.

3 Empirical Evaluation

3.1 Data

We primarily collect abdomen scans from the publicly available Mayo CT data
[4,23]. The dataset includes CT scans originally acquired at routine dose level
(full dose), so simulated quarter dose images are reconstructed through inserting
Poisson noise into each projection dataset. For thorough denoising evaluation,
we generate the CT scans at 5% dose level using the full dose and quarter dose
data (scaling the zero-mean independent noise from 25% to 5% dose level). While
from a clinical perspective it is more ideal to have a well-denoised quarter dose as
opposed to a lower quality denoised 5% dose, from a computational perspective,
showing the ability to remove high volumes of noise can more appropriately
evaluate the model’s full potential to accurately remove noise. We use 15 full
dose abdomen CT and the corresponding quarter (25%) dose CT scans: 10 scans
(1,533 slices, 15% for validation) for training and 5 (633 slices) for testing. 5
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chest scans (1,061 slices) are selected from the same library for cross-domain
evaluation.1

3.2 Implementation Details

Baselines: For architectural baselines, we used a VAE [12], DnCNN [26], and
RED-CNN [5]. For SSL surrogate task baselines, we use simple reconstruction
(Rec), a recent general method Noisy-as-Clean (NAC) [20] as it uses a surro-
gate to downstream training like us, and Noise2Void [13], even though it is a no
reference method, meaning a comparison is not fitting. Training: Models were
trained at varying levels of supervision in terms of the number of labeled data
(250, 500, 1000, full). Each experiment was repeated 5 times and mean scores
were reported. All inputs were normalized and resized to 256 × 256 × 1. Hyper-
parameters: The code was written in Python and PyTorch (newest versions)
and trained on an NVIDIA K80 GPU with 12 GB RAM. We used the Adam
optimizer with learning rates of 1e−5, momentum of 0.1 per 8 epochs, and a
minibatch size 10. For loss, β = 0.6 and α = 1.0 (as per VAEs). Based on tuning
experiments, choice of hyperparameters do not noticeably affect performance.
All parameters are identical for pre-text and downstream training. Evaluation:
For evaluation, we used Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index Measure (SSIM), Mean-Squared Error (MSE), and Normalized RMSE
(NRMSE). To evaluate statistical significance, we performed two-sample t-tests.

3.3 Results and Discussion

Table 1. Comparison of our RVAE architecture against other conventional and SoTA
architectures on in- and cross-domain evaluation. The best fully-supervised scores are
bolded, and best semi-supervised scores are underlined.

Model |Dl| In-Domain Cross-Domain

LDCT U-Net VAE DnCNN RED-CNN RVAE LDCT U-Net VAE DnCNN RED-CNN RVAE

PSNR 250 20.179 17.325 17.278 19.814 23.414 24.829 16.876 16.434 16.318 16.861 18.625 19.033

500 — 18.445 19.241 20.430 23.612 26.139 — 17.385 17.329 17.192 18.919 19.193

1000 — 20.930 20.771 21.693 24.097 26.286 — 18.458 18.094 18.702 19.005 19.259

Full — 21.900 21.547 21.186 24.115 26.574 — 18.843 18.364 18.925 19.005 19.288

SSIM 250 0.7554 0.5685 0.4656 0.7031 0.8433 0.8483 0.6725 0.4781 0.3741 0.6132 0.6971 0.7438

500 — 0.6606 0.5849 0.7372 0.8522 0.8538 — 0.6094 0.4859 0.6554 0.7264 0.7467

1000 — 0.7697 0.6873 0.7460 0.8538 0.8626 — 0.6883 0.5634 0.6343 0.7327 0.7497

Full — 0.7918 0.7510 0.7907 0.8616 0.8646 — 0.7095 0.5971 0.6584 0.7467 0.7490

MSE 250 0.0107 0.0201 0.0192 0.0112 0.0054 0.0053 0.0207 0.0234 0.0238 0.0207 0.0139 0.0131

500 — 0.0144 0.0121 0.0101 0.0051 0.0050 — 0.0187 0.0188 0.0202 0.0132 0.0127

1000 — 0.0083 0.0086 0.0071 0.0052 0.0046 — 0.0147 0.0148 0.0157 0.0129 0.0125

Full — 0.0067 0.0073 0.0088 0.0047 0.0045 — 0.0135 0.0145 0.0136 0.0124 0.0122

NRMSE 250 0.3082 0.4204 0.4173 0.3171 0.2155 0.1889 0.4832 0.5186 0.5245 0.4777 0.4319 0.3861

500 — 0.3629 0.3324 0.2981 0.2078 0.1889 — 0.4647 0.4671 0.4740 0.4019 0.3789

1000 — 0.2746 0.2802 0.2533 0.1990 0.1878 — 0.4110 0.4266 0.4217 0.3819 0.3763

Full — 0.2470 0.2573 0.2749 0.1979 0.1817 — 0.3933 0.4091 0.3662 0.3745 0.3690

1 For chest scans, the 5% dose level is simulated from routine and 10% dose level scans
available in the Mayo data library.
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Table 1 shows our proposed RVAE alone is able to outperform all baselines,
including two state-of-the-art denoising architectures in DnCNN [26] and RED-
CNN [5], and even with minimum data, we are able to match the fully-supervised
metrics of those two architectures. While DnCNN and RED-CNN are older
methods, as architectures alone, they are still SoTA. Our RVAE outperforms
RED-CNN with statistical significance (p-value of 0.032 for PSNR), and also
significantly outperforms the other models (p < 0.05). For the cross-domain
chest dataset evaluation, similar improvements are shown from RVAE compared
to the baselines and the state-of-the-art, proving the generalizatibility of the
RVAE.

Table 2 displays the performance of RED-CNN and our RVAE with various
SSL tasks (trained on MSE). SSL Reconstruction simply uses the LDCT as the
input and reference, allowing the model to become familiar with the data. For
the Noisy-As-Clean surrogate task [20], we follow their implementation where
their surrogate task uses LDCT with additional injected Gaussian noise as the
input and the plain LDCT as the reference, and subsequently perform denoising.
As shown in the tables, SSWL has significantly improved performance over no
pre-training and basic reconstruction (p-value of 0.021 and 0.039 respectively).
Compared to NAC, the SoTA, we still have the best performance, confirming
the importance and ability of our proposed SSL task. Against N2V, a SoTA
no-reference method, we greatly outperform them (p-value < 0.5), proving the
effectiveness of our new method. Similar to in-domain evaluations, the cross-
domain metrics further confirm the superior performance and generalization of
SSWL, showing the importance of a task-relevant surrogate.

Image GT ROI LDCT (0.7675) REC (0.8756) NAC (0.8802) SSWL (0.8884)

Fig. 3. ROI predictions with RVAE (|Dl| = 500) and the 3 SSL tasks show higher
visual noise removal and SSIM from SSWL.

LDCT (0.7586) FDCT RED-CNN (0.8790) RED-CNN+SSWL (0.8901) RVAE (0.8851) RVAE+SSWL (0.9023)

Fig. 4. FDCT predictions from RED-CNN and RVAE (|Dl| = 500) with and without
SSWL show strong visual improvements and improved SSIM from our proposed models.
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Table 2. SSWL is compared to Rec, NAC, and N2V trained on RED-CNN and RVAE
architectures. SSWL is shown to be the most effective. Follows same key as Table 1.

Model |Dl| In-domain Cross-domain

PSNR SSIM MSE NRMSE PSNR SSIM MSE NRMSE

RED-CNN + REC 250 23.414 0.8433 0.0054 0.2155 19.351 0.7551 0.0122 0.3726

500 23.612 0.8522 0.0051 0.2078 19.430 0.7572 0.0120 0.3691

1000 24.097 0.8538 0.0052 0.1990 19.499 0.7523 0.0117 0.3644

Full 24.115 0.8616 0.0047 0.1979 19.546 0.7555 0.0120 0.3678

RVAE + REC 250 23.795 0.8522 0.0051 0.2120 19.417 0.7583 0.0120 0.3694

500 24.088 0.8598 0.0050 0.2067 19.544 0.7602 0.0117 0.3640

1000 24.071 0.8650 0.0048 0.2007 19.570 0.7598 0.0116 0.3632

Full 24.301 0.8669 0.0047 0.1958 19.609 0.7613 0.0115 0.3614

RED-CNN + NAC 250 23.989 0.8375 0.0050 0.2050 19.122 0.7527 0.0124 0.3750

500 24.033 0.8541 0.0048 0.2015 19.401 0.7565 0.0127 0.3703

1000 24.219 0.8549 0.0045 0.1961 19.494 0.7577 0.0118 0.3660

Full 24.422 0.8611 0.0045 0.1958 19.579 0.7588 0.0116 0.3625

RVAE + NAC 250 23.890 0.8612 0.0052 0.2029 19.313 0.7545 0.0123 0.3739

500 24.168 0.8579 0.0047 0.1996 19.338 0.7532 0.0123 0.3726

1000 24.019 0.8647 0.0047 0.1980 19.439 0.7580 0.0122 0.3686

Full 24.186 0.8649 0.0046 0.1956 19.520 0.7596 0.0118 0.3650

RED-CNN + N2V 250 23.145 0.7899 0.008 0.2505 18.310 0.7170 0.0148 0.4098

500 23.743 0.8000 0.0075 0.2390 18.075 0.7212 0.0157 0.4206

1000 24.020 0.8032 0.0073 0.2342 18.169 0.7101 0.0153 0.4162

Full 24.116 0.8083 0.0072 0.2318 18.417 0.7215 0.0145 0.4047

RVAE + N2V 250 23.928 0.8057 0.0073 0.2352 18.241 0.7177 0.0151 0.4129

500 24.139 0.8107 0.0070 0.2297 18.307 0.7193 0.0149 0.4010

1000 24.072 0.8111 0.0070 0.2301 18.313 0.7186 0.0148 0.4099

Full 24.321 0.8113 0.0069 0.2269 18.174 0.7155 0.0153 0.4162

RED-CNN + SSWL 250 26.119 0.8509 0.0050 0.1890 19.550 0.7611 0.0117 0.3635

500 26.300 0.8542 0.0050 0.1865 19.460 0.7614 0.0120 0.3679

1000 26.710 0.8627 0.0046 0.1786 19.520 0.7617 0.0120 0.3652

Full 26.747 0.8626 0.0045 0.1764 19.547 0.7619 0.0117 0.3642

RVAE + SSWL 250 26.150 0.8612 0.0051 0.1900 19.566 0.7632 0.0116 0.3630

500 26.464 0.8659 0.0048 0.1820 19.619 0.7634 0.0115 0.3607

1000 26.799 0.8669 0.0043 0.1781 19.549 0.7619 0.0117 0.3505

Full 26.844 0.8701 0.0044 0.1774 19.617 0.7624 0.0115 0.3692

SSWL-IDN 250 26.581 0.8649 0.0046 0.1793 19.660 0.7645 0.0109 0.3556

500 26.778 0.8723 0.0045 0.1783 19.854 0.7680 0.0107 0.3530

1000 27.018 0.8744 0.0043 0.1732 20.016 0.7706 0.0105 0.3505

Full 27.800 0.8815 0.0042 0.1701 20.178 0.7739 0.0104 0.3458

The improvements from our hybrid loss are shown in our final model, SSWL-
IDN, in Table 2. When compared to RVAE + SSWL, which is trained on MSE,
we see improved performance of up to 1 to 2 scores higher for both PSNR
and SSIM. A full ablation for our hybrid loss is available in the supplemental.
Figures 3 and 4 demonstrate precise removal of noise from whole scans as well
as specific regions of interest (ROIs), proving the effectiveness of our model over
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baseline architectures and other self-supervised tasks. While certain structural
details are lost, this is due to the ultra low dose, and our method recovers details
best.

4 Conclusions

We present SSWL-IDN, a self-supervised denoising model with a novel, task-
relevant, and efficient surrogate task of window-level prediction. We also propose
a Residual-VAE specialized for denoising, as well as a hybrid loss leveraging ben-
efits of both perceptual and pixel-wise optimization. We confirm each component
of our method outperforms baselines on difficult 5% dose denoising for both in-
and cross-domain evaluations, and when combined, the model significantly out-
performs state-of-the-art methods. Improved denoising with limited reference
data is of clinical significance to reduce harms to patients. Our future work will
focus on developing cascaded and joint surrogate and downstream learning as
well as 3D architectures to utilize information in the z-dimension.
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