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Abstract. We propose a novel 3D fully convolutional deep network for auto-
mated pancreas segmentation from both MRI and CT scans. More specifically,
the proposed model consists of a 3D encoder that learns to extract volume fea-
tures at different scales; features taken at different points of the encoder hierar-
chy are then sent to multiple 3D decoders that individually predict intermedi-
ate segmentation maps. Finally, all segmentation maps are combined to obtain
a unique detailed segmentation mask. We test our model on both CT and MRI
imaging data: the publicly available NIH Pancreas-CT dataset (consisting of 82
contrast-enhanced CTs) and a private MRI dataset (consisting of 40 MRI scans).
Experimental results show that our model outperforms existing methods on CT
pancreas segmentation, obtaining an average Dice score of about 88%, and yields
promising segmentation performance on a very challengingMRI data set (average
Dice score is about 77%). Additional control experiments demonstrate that the
achieved performance is due to the combination of our 3D fully-convolutional
deep network and the hierarchical representation decoding, thus substantiating
our architectural design.

Keywords: CT and MRI pancreas segmentation · Fully convolutional neural
networks · Hierarchical encoder-decoder architecture

1 Introduction

Pancreatic cancer is a growing public health concern worldwide. In 2021, an estimated
60,430 new cases of pancreatic cancer will be diagnosed in the US and 48,220 people
will die from this disease [19]. Early detection of pancreas cancer [14] is very hard and
options in treatment are very limited. Radiology imaging and automated image analysis
play key roles in diagnosis, prognosis, treatment, and intervention of pancreatic diseases;
thus, there is a strong, unmet, need for computer aided analysis tools supporting these
tasks. The first step in such analysis is to automate the medical image segmentation
procedures, since manual segmentation (current standard) is tedious, prone to error, and
it is not practical in routine clinical evaluation of the diseases [20]. Beyond the known
challenges ofmedical image segmentation problems, pancreas is one of themost difficult
organs to segment despite the recent advances in deep segmentation models.
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Computed tomography (CT) and magnetic resonance imaging (MRI) are the two
most common modalities for pancreas imaging. CT is the modality of choice for pan-
creatic cancer at the moment, while MRI is mostly used for finding other pancreatic
diseases including cysts and diabetes. Compared to CT, MRI has advantages such as
the lack of ionizing radiation, better resolution and soft tissue contrast. However, MRI
has other unique difficulties, including field inhomogeneity, non-standard intensity dis-
tributions due to variations in scanners, patients, field strengths, and high similarity in
pancreas and non-pancreas tissue densities.

Image-based pancreas analysis is by itself a challenging task. Shapes and sizes
greatly vary across different patients, making it difficult to use robust priors for improv-
ing the delineation procedures. Intensity similarities to non-pancreatic tissues, and
smooth or invisible boundaries (due to resolution limitations of medical scanners) are
other challenges that need to be addressed in a successful segmentation method. More-
over, in presence of a cyst, tumor, or other abnormalities in pancreases, segmentation
algorithms may easily fail to delineate correct boundaries.

To address these challenges, in this work we propose a novel 3D fully convolu-
tional encoder-decoder network with hierarchical multi-scale feature learning, for gen-
eral, fully-automated pancreas segmentation applicable to CT and MRI scans. Major
contributions of this study are the following:

– Our segmentation network is unique in the sense that it is volumetric, learns to
extract 3D volume features at different scales, and decodes features hierarchically,
leading to improved segmentation results;

– We show the efficacy of our work both on CT and MRI scans. Our architecture suc-
cessfully extracts pancreases from CT and MRI with high accuracy, obtaining new
state-of-the-art results on a publicly-available CT benchmark and first-ever volumet-
ric pancreas segmentation from MRI in the literature.

– Our work on MRI pancreas segmentation is an important application contribution,
due to the very limited published research on this task using MRI data with deep
learning. It is our belief that our method provides a significant state-of-the-art base-
line to be compared with for further MRI pancreas research.

2 Related Work

Following the success of deep learning methods applied in medical image segmenta-
tion, researchers have recently shown an increasing interest in pancreas segmentation,
in order to support physicians in early stage diagnosis for pancreas cancer. Although
this application field is still in its infancy—also due to variabilities in texture, size and
imaging contrast—a line of promising approaches has been proposed in the literature,
mainly on CT scans [2,8,10–12,15–17,21,22,24,25]. We here describe the most sig-
nificant ones which relate to our proposed model.

In [16], a two-stage cascaded approach for pancreas localization and pancreas seg-
mentation is proposed. In the first stage, the method localizes the pancreas in the entire
3D CT scan, providing a reliable bounding box for a more refined segmentation step,
based on an efficient application of holistically-nested convolutional networks (HNNs)
on the three views of pancreas CT image. Per-pixel probability maps are then fused to
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produce a 3D bounding box of the pancreas. Projective adversarial networks [8] incor-
porate high-level 3D information through 2D projections and introduce an attention
module that supports a selective integration of global information from the segmen-
tation module to an adversarial network. More recently, [22] proposes a dual-input
v-mesh fully-convolutional network, which receives original CT scans and images pro-
cessed by contrast-specific graph-based visual saliency, in order to enhance the soft
tissue contrast and highlight differences among local regions in abdominal CT scans.

All of the above works tackle the problem of pancreas segmentation on CT scans.
However, as already mentioned, MRI acquisitions have several advantages over CT—
most importantly, fewer risks to the patients. On the other hand, MRI pancreas segmen-
tation presents additional challenges to automated visual analysis. For this reason and
others (e.g., the lack of public benchmarks), very few works have addressed pancreas
segmentation on MRI data: to the best of our knowledge, the major attempts are [1–
3]. In [3], two CNN models are combined to perform, respectively, tissue detection
and boundary detection; the results are provided as input to a conditional random field
(CRF) for final segmentation. In [1], an algorithmic approach based on hand-crafted
features is proposed, employing an ad-hoc multi-stage pipeline: contrast enhancement
within coarsely detected pancreas regions is applied to differentiate between pancre-
atic and surrounding tissue; 3D segmentation and edge detection through max-flow and
min-cuts approach and structured forest are performed; finally, non-pancreatic contours
are removed via morphological operations on area, structure and connectivity.

3 Method

Our 3D fully-convolutional pancreas segmentation model—PankNet—is based on an
encoder-decoder architecture; however, unlike standard encoder-decoder schemes with
a single decoding path (see Fig. 1a), we have parallel decoders at different abstrac-
tion levels, generating multiple intermediate segmentation maps (Fig. 1c). Hierarchical
decoding is also fundamentally different from using skip connections (Fig. 1b), since
these have the purpose to ease gradient flow and forward low-level features for output
reconstruction, while our multiple decoders aim to extract local and global dependen-
cies. The detailed architecture is shown in Fig. 2: the input data (either CT or MRI
volume) is first processed by the encoder stream of the model which aggregates volu-
metric features at different abstraction levels. These features are then given as input to

(a) encoder-decoder (b) skip-connection (c) hierarchical decoding

Fig. 1. A comparison between our proposed architecture and other types of networks used for
segmentation: (a) standard encoder–decoder architecture; (b) encoder–decoder architecture with
skip connections; (c) encoder–hierarchical decoder architecture (ours).
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Fig. 2. PanKNet architecture: the encoding path extracts aggregated volumetric features, while the
decoding path predicts four different intermediate segmentation masks (coarse to fine). Finally,
intermediate segmentations are integrated into a detailed output mask. (Color figure online)

different decoder streams, each generating a segmentation mask volume. All interme-
diate masks are concatenated along the channel dimension and finally merged through
a convolutional layer in order to predict the final segmentation mask for all input slices.

3.1 Volume Feature Encoding

The model’s encoder performs aggregation of volumetric features from the input data.
It is based on S3D [23], a network originally proposed for action recognition using
3D spatial and temporal separable 3D convolution layers, pretrained on the Kinetics
Dataset [6]. We use the pretrained network, similarly to other works [3,8,9], to ease
convergence given the limited training data we have from both CT and MRI datasets.
Our encoder processes D = 48 slices from an input scan by progressively aggregating
volumetric cues down to a more compact representation of size 1024 ×W

8 × H
32 × D

32
(channels × width × height × depth). Features at the bottleneck and at the outputs of
the second, third and fourth pooling layers are fed to separate decoders, described in
the following section, to implement our hierarchical decoding strategy.

The proposed approach can be easily adapted to different encoder architectures.
Thus, we additionally design a lightweight variant of our PanKNet network by replac-
ing the S3D-based encoder with an encoder based on MobileNetV2 [18], where 2D
convolutions are replaced with 3D ones through inflation. In particular, the 2D kernels
are replicated along the third dimension, and the values of the weights are divided by the
number of replications as proposed in [4]. In this case, as input to the decoders, we select
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the output of the second, third, fourth and sixth bottleneck blocks of MobileNetV2, pro-
viding a more compact feature map of size 160×W

16 × H
32 × D

32 . This lightweight variant
has 10 times fewer parameters (2.5 millions of parameters, 9.33 MB) and than the S3D
counterpart (25.6 millions of parameters, 97.88 MB).

3.2 Hierarchical Decoding

Our hierarchical decoding strategy employs features at different points of the encoder
stream to generate intermediate segmentation masks that aim to capture and combine
fine segmentation (derived from decoders of deeper features) to coarse segmentation
(derived from decoders of initial features).We include four decoders: each one processes
a set of volumetric features taken from the corresponding level in the encoder stack and
performs segmentation on the input volume (see Fig. 2, yellow blocks). Each decoder
consists of a cascade of upsampling blocks, depending on the size of the input feature
map: decoders operating on deeper features require less blocks to recover the original
input size. Each upsampling block contains a 3D convolutional block (convolutional
layer + batch normalization + ReLU), one or two 3D separable convolutional blocks, and
a trilinear upsample layer. As last layer, a pointwise 3D convolution outputs a volume
with size 2 ×W ×H ×D, where W , H and D are the same as the input volume.

3.3 Pancreas Segmentation

Intermediate segmentation maps predicted by each of the model’s decoders are com-
bined into a global mask. In particular, the four intermediate maps are concatenated
into a 8 ×W ×H ×D tensor, which then goes through a last layer performing a voxel-
wise convolution to generate a single segmentation map of size 2×W ×H ×D.

The whole model (encoder, hierarchical decoders and output layer) is trained end-
to-end using a hierarchical Dice loss [13] between ground-truth mask, intermediate
generated masks and the output segmentation mask. Formally, given the predicted out-
put segmentation masks Sv for the input volume, the four maps Ŝvi estimated by the
decoders, and the ground-truth segmentation maps Gv for the input data, the segmen-
tation loss Ls is:

Ls

(
Sv, Ŝvi ,Gv

)
=

4∑
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2
∑
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∑
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∑
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2
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∑
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2
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where index i iterates over the four intermediate maps and index j iterates over voxels.

4 Experiments

4.1 Dataset

We evaluate the accuracy of our proposed deep segmentation method in both CT and
MRI modalities. For the former, we use the publicly available NIH Pancreas-CT dataset,
which is the most used pancreas segmentation dataset for benchmarking [15]. This
dataset includes 82 abdominal contrast-enhanced 3D CT scans. The resolution of the
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CT scans is 512 × 512 × Z, with Z (between 181 and 466) indicating the number
of slices along the transverse axis. Voxel spacing ranges from 0.5mm to 1mm. More
details on this dataset are available in [15].

In our experiments with MRI data, we use 40 in-house collected T2-weighted MRI
scans from 40 patients, who have either IPMN (intraductal papillary mucinous neo-
plasm) cysts detected in their pancreases or invasive pancreatic ductal carcinoma. Two
expert radiologists annotated pancreases manually and consensus segmentation masks
were generated at the end of the ground-truth labeling procedure with agreement. MRI
images were resized (in the transverse plane) to 256 × 256 pixels, with voxel spacing
of varying from 0.468mm to 1.406mm. To minimize uncertainties in MRI scans, we
applied a set of pre-processing steps: N4 bias field correction followed by an edge-
preserving Gaussian smoothing, and intensity standardization procedure to standardize
MRI scans across patients, scanners, and time.

4.2 Training and Evaluation Procedure

We apply the same training procedure for the two datasets, with the only difference
regarding how model backbones are pre-trained. On the NIH Pancreas-CT dataset, we
pre-train S3D on Kinetics [6] and MobileNetV2 on ImageNet [5] with weight inflation;
on our MRI data, Pancreas-MRI, we employ the backbones pre-trained on the CT task.

Input CT and MRI scans are re-oriented using the RAS axes convention for consis-
tency. We then perform voxel resampling through trilinear interpolation in order to have
isotropic (1mm) voxel spacing, and normalize the values of each scan between 0 and
1. During training, data augmentation is performed with random horizontal flipping,
random 90◦ rotation and random crops of size 128 × 128 × 48 (in RAS coordinates).
We minimize our multi-part Dice loss with mini-batch gradient descent using the Adam
optimizer (learning rate: 0.001) and batch size 8, for a total of 3000 epochs.

At inference time, we compute output segmentation masks by running a sliding
window routine over an entire input scan, using 256 × 256 × 48 windows overlapping
by 25%. Voxel labels from overlapping segmentations are obtained by averaging the set
of predictions. For evaluation, we carry out 4-fold cross-validation. At each iteration,
the set of training folds is further split into the actual training set and a validation set,
that is used to select the epoch at which Dice score on the test fold is reported. As
metrics for quantitative evaluation, we employ: Dice score coefficient (DSC), Positive
Predictive Value (PPV) and Sensitivity.

Experiments are performed on an NVIDIA Quadro P6000 GPU. The proposed app-
roach was implemented in PyTorch and MONAI; all code will be publicly released.

4.3 Results

We first test our model (as well as its lightweight variant) on the NIH Pancreas-
CT dataset and compare it to existing methods (which share our evaluation strategy
with 4-fold cross-validation), namely, [2,8,10–12,15–17,21,22,24,25]. Summarized in
Table 1, our results indicate that PanKNet outperforms existing methods over different
metrics. Note that PanKNet does not require any auxiliary regularization networks [8],
nor additional inputs [22], nor upstream pancreas localization module [12]. Remarkably,
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Table 1. Comparison of PanKNet against multiple state-of-the-art models for pancreas segmen-
tation on NIH Pancreas-CT dataset using 4-fold cross-validation. Best performance in bold,
second best in italic.

Method DSC PPV SENS

Avg Max Min

Roth et al. [15] 71.42 ± 10.11 86.29 23.99 – –

Roth et al. [16] 78.01 ± 8.20 88.65 34.11 – –

Roth et al. [17] 81.27 ± 6.27 88.96 50.69 – –

Zhou et al. [25] 82.37 ± 5.68 90.85 62.43 – –

Cai et al. [2] 82.40 ± 6.70 90.10 60.00 – –

Li et al. (2019) [10] 83.50 ± 6.20 – – 84.50 ± 6.90 83.70 ± 10.40

Liu et al. (2020) [11] 84.10 ± 4.90 – – 83.60 ± 5.90 85.30 ± 08.20

You et al. [24] 84.50 ± 4.97 91.02 62.81 – –

Khosravan et al. [8] 85.53 ± 1.23 88.71 83.20 – –

Wang et al. (2020) [21] 85.90 ± 3.40 – – – –

Man et al. (2019) [12] 86.90 ± 4.90 – – – –

Wang et al. [22] 87.04 ± 6.80 – – 89.50 ± 5.80 87.70 ± 7.90

PanKNetLight 87.13 ± 4.58 93.49 72.77 86.85 ± 6.52 88.48 ± 5.12

PanKNet 88.01 ± 4.74 93.84 70.62 88.25 ± 5.45 88.69 ± 5.99

even the lightweight variant of PanKNet yields accuracy comparable to the full model,
while outperforming existing models, showing that the choice of the backbone is not as
important as the overall employed hierarchical architecture. The best trade-off between
accuracy and computational resources for CT pancreas segmentation is represented by
PanKNetLight, whose memory occupation is about 10 MB compared to about 100 MB
of PanKNet, but with very similar performance.

We then test our model on pancreas segmentation from MRI data. In this case, we
compare the 3D-UNet, proposed in [7], pre-trained on the NIH Pancreas-CT dataset
and fine-tuned on our MRI dataset. Furthermore, we add to this evaluation some control
experiments to show the effectiveness of the designed architecture. Consequently, we
define as baseline our encoder-decoder architecture without hierarchical decoding strat-
egy, decoding only the features at the model’s bottleneck. Results in Table 2 indicate that
both PanKNet variants outperform the state-of-the-art 3D U-Net model [7]. The base-
line (with either backbones) also performs better than 3D U-Net model [7] demonstrat-
ing that even our 3D fully convolutional network, ablated from the hierarchical decod-
ing, is effective for MRI pancreas segmentation. Adding hierarchical decoding leads to
enhanced segmentation performance, especially on DSC and PPV. Different from CT
segmentation and from baseline models, PanKNet largely outperforms its lightweight
counterpart, demonstrating that MRI pancreas segmentation is far more complex and
challenging than CT segmentation and calls for high-capacity networks to be solved.

Example segmentation masks, corresponding to the highest and lowest Dice scores
reported in Tables 1 and 2 for CT and MRI pancreas segmentation, are illustrated in
Fig. 3.
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Table 2. Segmentation performance on Pancreas-MRI dataset (4-fold CV).

Method DSC PPV SENS

Avg Max Min

3D-UNet [7] 65.05 ± 9.17 84.58 49.80 61.55 ± 7.55 74.42 ± 13.99

BaselineLight 69.17 ± 8.10 83.86 49.92 64.64 ± 7.49 84.19 ± 11.72

Baseline 65.16 ± 9.11 84.00 49.49 61.92 ± 8.22 75.22 ± 12.46

PanKNetLight 72.96 ± 10.33 88.54 49.90 71.39 ± 11.21 79.76 ± 11.53

PanKNet 77.46 ± 08.62 89.07 52.30 76.63 ± 08.66 80.91 ± 10.51
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Fig. 3. Segmentation masks at the highest (left column) and lowest Dice score (right column) on
NIH Pancreas-CT (first row) and Pancreas-MRI dataset (second row).

5 Conclusion

In this study, we propose a novel 3D fully-convolutional network for pancreas segmen-
tation from MRI and CT scans. Our proposed deep network aims at learning and com-
bining multi-scale features, namely a hierarchical decoding strategy, to generate inter-
mediate segmentation masks for a coarse-to-fine segmentation process. The intermedi-
ate masks, capturing fine details, are derived from decoders of deeper features while
coarse segmentation details are derived from decoders of initial features. We evaluated
the efficacy of our method (a) on CT scans from the publicly available NIH CT-Pancreas
benchmark, and obtained a new state of the art Dice score 88.01%, outperforming all
previous methods; and (b) on MRI scans, obtaining a Dice score of 77.46%, which can
be used as a baseline for future works on MRI pancreas segmentation. Noting that MRI
pancreas segmentation methods are extremely limited due to the challenging nature of
the problem, our study offers a fresh insight into MRI analysis of pancreas from a fully
automated volumetric segmentation strategy. PanKNet is tested for pancreas segmenta-
tion, but its architecture is general and can be applied to any 3D object segmentation
problem in medical domain.
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10. Li, H., Lü, Q., Chen, G., Huang, T., Dong, Z.: Convergence of distributed accelerated algo-
rithm over unbalanced directed networks. IEEE Trans. Syst. Man Cybern. Syst., 1–12 (2019).
https://doi.org/10.1109/TSMC.2019.2946287

11. Liu, S., et al.: Automatic pancreas segmentation via coarse location and ensemble learning.
IEEE Access 8, 2906–2914 (2020). https://doi.org/10.1109/ACCESS.2019.2961125

12. Man, Y., Huang, Y., Feng, J., Li, X., Wu, F.: Deep Q learning driven CT pancreas segmen-
tation with geometry-aware U-Net. IEEE Trans. Med. Imaging 38(8), 1971–1980 (2019).
https://doi.org/10.1109/TMI.2019.2911588

13. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volu-
metric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision
(3DV), pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79

14. Oberstein, P.E., Olive, K.P.: Pancreatic cancer: why is it so hard to treat? Ther. Adv. Gas-
troenterol. 6(4), 321–337 (2013)

15. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pan-
creas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI
2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-24553-9 68

16. Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-
nested networks for automated pancreas segmentation. In: Ourselin, S., Joskowicz, L.,
Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8 52

http://arxiv.org/abs/1707.04912
https://doi.org/10.1007/978-3-319-66179-7_77
https://doi.org/10.1109/CVPR.2009.5206848
http://arxiv.org/abs/1705.06950
https://doi.org/10.1007/978-3-030-12029-0_40
https://doi.org/10.1007/978-3-030-32226-7_8
https://doi.org/10.1007/978-3-030-32254-0_12
https://doi.org/10.1007/978-3-030-32254-0_12
https://doi.org/10.1109/TSMC.2019.2946287
https://doi.org/10.1109/ACCESS.2019.2961125
https://doi.org/10.1109/TMI.2019.2911588
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1007/978-3-319-24553-9_68
https://doi.org/10.1007/978-3-319-24553-9_68
https://doi.org/10.1007/978-3-319-46723-8_52


Hierarchical 3D Feature Learning for Pancreas Segmentation 247

17. Roth, H.R., et al.: Spatial aggregation of holistically-nested convolutional neural networks
for automated pancreas localization and segmentation. Med. Image Anal. 45, 94–107 (2018)

18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: inverted
residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520 (2018)

19. American Cancer Society: Cancer Facts & Figures. American Cancer Society (2021)
20. European Society of Radiology (ESR) communications@myesr.org Emanuele Neri Nandita

de Souza Adrian Brady Angel Alberich Bayarri Christoph D. Becker Francesca Coppola
Jacob Visser, E.S.: What the radiologist should know about artificial intelligence-an esr white
paper. Insights into imaging 10, 1–8 (2019)

21. Wang, W., et al.: A fully 3D cascaded framework for pancreas segmentation. In: 2020 IEEE
17th International Symposium on Biomedical Imaging (ISBI), pp. 207–211 (2020). https://
doi.org/10.1109/ISBI45749.2020.9098473

22. Wang, Y., et al.: Pancreas segmentation using a dual-input V-Mesh network. Med. Image
Anal. 69, 101958 (2021)

23. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning:
speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01267-0 19

24. Yu, Q., Xie, L., Wang, Y., Zhou, Y., Fishman, E.K., Yuille, A.L.: Recurrent saliency trans-
formation network: incorporating multi-stage visual cues for small organ segmentation. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8280–8289
(2018). https://doi.org/10.1109/CVPR.2018.00864

25. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for
pancreas segmentation in abdominal CT scans. In: Descoteaux, M., Maier-Hein, L., Franz,
A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 693–
701. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7 79

https://doi.org/10.1109/ISBI45749.2020.9098473
https://doi.org/10.1109/ISBI45749.2020.9098473
https://doi.org/10.1007/978-3-030-01267-0_19
https://doi.org/10.1109/CVPR.2018.00864
https://doi.org/10.1007/978-3-319-66182-7_79

	Hierarchical 3D Feature Learning for Pancreas Segmentation
	1 Introduction
	2 Related Work
	3 Method
	3.1 Volume Feature Encoding
	3.2 Hierarchical Decoding
	3.3 Pancreas Segmentation

	4 Experiments
	4.1 Dataset
	4.2 Training and Evaluation Procedure
	4.3 Results

	5 Conclusion
	References




