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Abstract. Reliable and efficient transferability of 3D convolutional neu-
ral networks (3D-CNNs) is an important but extremely challenging issue
in medical image analysis, due to small-sized samples and the domain
shift problem (e.g., caused by the use of different scanners, protocols
and/or subject populations in different sites/datasets). Although pre-
vious studies proposed to pretrain CNNs on ImageNet, models’ trans-
ferability is usually limited due to semantic gap between natural and
medical images. In this work, we try to answer a key question: how to
learn transferable 3D-CNNs from scratch based on a small (e.g., tens
or hundreds) medical image dataset? We focus on the case of structural
MRI-based brain disorder classification using four benchmark datasets
(i.e., ADNI-1, ADNI-2, ADNI-3 and AIBL) to address this problem.
(1) We explore the influence of different network architectures on model
transferability, and find that appropriately deepening or widening a net-
work can increase the transferability (e.g., with improved sensitivity). (2)
We analyze the contributions of different parts of 3D-CNNs to the trans-
ferability, and verify that fine-tuning CNNs can significantly enhance the
transferability. This is different from the previous finding that fine-tuning
CNNs (pretrained on ImageNet) cannot improve the model transferabil-
ity in 2D medical image analysis. (3) We also study the between-task
transferability when a model is trained on a source task from scratch
and applied to a related target task. Experimental results show that,
compared to directly training CNN on related target tasks, CNN pre-
trained on a source task can yield significantly better performance.
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1 Introduction

Deep learning (e.g., with convolutional neural networks, CNNs) has been exten-
sively applied in medical image analysis [1–3], but usually suffers from the small-
sample-size problem. To address this issue, recent studies proposed to fine-tune
pretrained CNNs on ImageNet for medical imaging analysis [4–6]. However,
direct transferring pretrained CNNs usually yields sub-optimal performance, due
to the fundamental differences between natural and medical images. For instance,
medical images (e.g., T1-weighted MRIs) are typically 3-dimensional, whereas
CNNs pretrained on ImageNet usually treat all the 2D slices within a subject
scan independently. This will lead to loss of information [7,8]. In addition, sig-
nificant differences in category distributions may also make pretrained CNNs on
ImageNet (with 1, 000 classes) unsuitable for analyzing medical images.

Fig. 1. Architecture of the baseline CNN model for 3D MRI classification, consisting
of five convolutional (Conv) layers (with each followed by a pooling layer) and three
fully-connected (FC) layers (followed by softmax activation). The term “3 × 3 × 3@8”
denotes a convolutional layer with 8 filters (kernel size: 3 × 3 × 3).

A reasonable alternative is to train 3D-CNNs from scratch on a source med-
ical image dataset/site, and then to fine-tune them on a to-be-analyzed target
dataset/site [9,10]. However, training 3D-CNNs from scratch has to face two
challenges. First, the sample size is often limited (e.g., tens or hundreds). Uti-
lizing inappropriate network architecture will lead to severe over-fitting, which
may greatly affect the transferability. Second, different sites/datasets may have
significant domain shifts in terms of data distribution, caused by different scan-
ners, protocols and populations [11–14]. Thus, it is highly desirable to boost the
transferability of 3D-CNNs for medical image analysis.

In this paper, we aim to answer a key question: how to train transferable 3D-
CNNs from scratch with relatively small-sized medical images? We study the case
of structural MRI-based brain disorder classification on 4 benchmark datasets
via two tasks: (1) Alzheimer’s disease (AD) detection; and (2) mild cognitive
impairment (MCI) conversion prediction. We build a baseline 3D-CNN model
(see Fig. 1), and evaluate the performance of several variants of the baseline
CNN model with different architectures. We then analyze the transferability of
the baseline network with transfer learning on different target domains. We also
explore the between-task transferability, with the CNN model trained on a source
task (i.e., AD detection) and applied to a related task (i.e., MCI conversion
prediction). Our empirical findings will provide some insights on how to improve
the transferability of CNNs in 3D medical image analysis.
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2 Materials and Methodology

2.1 Studied Subjects and MR Image Pre-processing

Four benchmark datasets are used in this work, i.e., Alzheimer’s Disease Neu-
roimaging Initiative (ADNI-1) [15], ADNI-2 [16], ADNI-3 [17] and Australian
Imaging Biomarkers and Lifestyle Study of Aging database (AIBL) [18]. Note
that the subjects that simultaneously appear in ADNI-1, ADNI-2 and ADNI-3
are removed from ADNI-2 and ADNI-3 to avoid data leakage and guarantee com-
parison fairness as suggested in [7]. Their domain heterogeneity mainly comes
from the use of different scanning parameters (e.g., 1.5T or 3T) and updated
scanners. ADNI-1 contains 748 subjects with 1.5T T1-weighted structural MRIs,
including 205 AD, 231 cognitively normal (CN), 165 progressive MCI (pMCI)
and 147 stable MCI (sMCI) subjects. ADNI-2 has 708 subjects with 3T T1-
weighted structural MRIs (i.e., 162 AD, 205 CN, 88 pMCI and 253 sMCI). Note
that those subjects with pMCI would convert to MCI within 36 months and
sMCI remains stable. ADNI-3 involves 389 subjects with 3T T1-weighted struc-
tural MRIs (i.e., 60 AD and 329 CN). AIBL consists of MRIs acquired from 549
subjects (i.e., 71 AD, 447 CN, 11 pMCI and 20 sMCI). The demographic and
clinical information of the studied subjects is shown in Supplementary Materials.

All brain MRIs are pre-processed through a standard pipeline, including skull
stripping, intensity inhomogeneity correction, image re-sampling, and spatial
normalization to the Automated Anatomical Labeling (AAL) template.

2.2 Methodology

Architecture of Baseline CNN. Figure 1 illustrates the architecture of the
baseline CNN used in this work. This network consists of 5 convolutional (Conv)
layers with 3× 3× 3 filters, and 3 fully-connected layers with 128, 64 and 2 neu-
rons, respectively. A softmax layer is used for classification. Each Conv layer is
composed of a sequence of 3D convolutional filters, followed by batch normaliza-
tion and ReLU activation function. To reduce the risk of over-fitting, a 2× 2× 2
max pooling operation (stride: 2× 2× 2) is added after each Conv layer. This is
a very basic CNN model that can be flexibly extended in different applications.

Network Training. Considering the relatively larger number of subjects in
ADNI-1, we use ADNI-1 as training/source data for model training and validation,
whereas the other three datasets are treated as test/target data for transferability
evaluation. A 5-fold cross-validation strategy is used. That is, subjects in ADNI-1
are randomly partitioned into 5 folds. For parameter selection, each fold is treated
as the validation set in turn, with the rest as the training set.

The trained model is finally applied to target/test data. Such process is
repeated five times to avoid bias caused by random partition. For network train-
ing, the Adam algorithm is used as the optimizer, with a learning rate of 0.0001.
The batch size is set to 2. A drop-out rate of 0.5 is used to avoid over-fitting. We
train the network for 30 to 50 epochs, and employ an early stopping strategy
when the training or the validation loss continuously changes little for 10 epochs.
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Table 1. Results of AD detection achieved by 3D-CNNs with different network depths
on three target domains (with models trained on ADNI-1).

Target Domain Method AUC (%) ACC (%) BAC (%) SEN (%) SPE (%)

ADNI-2 CNN-5 93.69 ± 1.34 84.25 ± 2.69 82.65 ± 3.16 69.01 ± 7.23 96.29 ± 1.45

CNN-7 91.81 ± 0.92 84.69 ± 1.58 83.51 ± 1.65 73.46 ± 2.66 93.56 ± 1.70

CNN-10 91.38 ± 0.95 83.87 ± 0.70 82.27 ± 0.76 68.64 ± 2.56 95.90 ± 2.03

CNN-12 91.35 ± 2.48 82.88 ± 2.24 81.42 ± 2.54 68.89 ± 5.53 93.95 ± 1.97

ADNI-3 CNN-5 94.57 ± 0.96 91.00 ± 0.92 78.87 ± 3.68 61.33 ± 8.85 96.41 ± 1.91

CNN-7 93.51 ± 1.17 90.59 ± 1.91 81.76 ± 3.19 69.00 ± 5.73 94.53 ± 1.78

CNN-10 91.53 ± 1.05 91.67 ± 1.24 78.59 ± 1.70 59.67 ± 3.61 97.51 ± 1.56

CNN-12 92.25 ± 2.18 90.54 ± 1.15 80.10 ± 4.56 65.00 ± 9.34 95.20 ± 1.80

AIBL CNN-5 92.55 ± 0.99 91.00 ± 1.21 82.94 ± 2.99 71.83 ± 7.65 94.05 ± 2.21

CNN-7 89.25 ± 0.90 89.94 ± 0.76 83.06 ± 1.04 75.77 ± 4.61 90.34 ± 2.73

CNN-10 90.84 ± 1.29 91.62 ± 1.42 80.33 ± 2.51 64.79 ± 5.63 95.88 ± 1.86

CNN-12 89.60 ± 1.75 90.50 ± 1.56 81.94 ± 2.33 70.14 ± 5.92 93.74 ± 2.32

Evaluation Metric. Two classification tasks are included: (1) AD detection
(i.e., AD vs. CN classification), and (2) MCI conversion prediction (i.e., pMCI vs.
sMCI classification). Five metrics are used for performance evaluation, including
(1) area under the ROC curve (AUC), (2) classification accuracy (ACC), (3)
balanced accuracy (BAC), (4) sensitivity (SEN), and (5) specificity (SPE).

3 Transferability Vs. Different Network Architectures

Due to issues of small-sample-size and high feature dimension of medical images,
it is often challenging to design a suitable network architecture to obtain good
transferability. We now explore the influence of network capacity (in terms of
network depth and network width) on the transferability of 3D-CNNs.

Influence of Network Depth. To explore the influence of network depth
on transferability, we develop three variants of the baseline CNN with different
number of convolutional (Conv) layers, including (1) CNN-7 that contains 7
Conv layers with 8, 16, 32, 64, 64, 128 and 128 filters, respectively; (2) CNN-10
that consists of 10 Conv layers with 8, 8, 16, 16, 32, 32, 64, 64, 128, and 128,
respectively (with detailed architecture shown in Supplementary Materials); and
(3) CNN-12 that contains 12 Conv layers with 8, 8, 16, 16, 32, 32, 64, 64, 64,
128, 128 and 128 filters, respectively. The baseline model with 5 Conv layers
is called CNN-5 (see Fig. 1). The FC layers and the training strategy of these
variants remain the same as the baseline CNN-5.

The performance of these models on three target/test domains is listed in
Table 1. From the results, we can derive the following empirical findings. First,
adding more layers does not necessarily lead to better AUC and ACC perfor-
mance. For example, the AUC values of CNN-5 are generally better than those
achieved by three deeper CNNs on three test datasets, and there are no sig-
nificant differences in terms of ACC of four networks (with p-values = 0.5278,
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Table 2. Results of AD detection achieved by 3D-CNNs with different network widths
on three target domains (with models trained on ADNI-1).

Target Domain Method AUC (%) ACC (%) BAC (%) SEN (%) SPE (%)

ADNI-2 CNN-w1.0 93.69 ± 1.34 84.25 ± 2.69 82.65 ± 3.16 69.01 ± 7.23 96.29 ± 1.45

CNN-w2.0 94.23 ± 0.55 86.87 ± 2.17 85.59 ± 2.58 74.69 ± 6.13 96.49 ± 1.22

CNN-w4.0 93.52 ± 0.86 87.63 ± 1.61 86.94 ± 1.80 81.11 ± 4.91 92.78 ± 3.11

CNN-w5.0 90.71 ± 1.92 83.38 ± 1.49 82.03 ± 1.56 70.49 ± 3.01 93.56 ± 2.14

ADNI-3 CNN-w1.0 94.57 ± 0.96 91.00 ± 0.92 78.87 ± 3.68 61.33 ± 8.85 96.41 ± 1.91

CNN-w2.0 96.36 ± 0.58 92.70 ± 0.72 83.83 ± 2.10 71.00 ± 5.35 96.66 ± 1.47

CNN-w4.0 94.71 ± 1.39 90.80 ± 2.56 84.88 ± 1.29 76.33 ± 5.94 93.61 ± 4.10

CNN-w5.0 91.51 ± 2.10 89.51 ± 1.86 82.76 ± 2.62 73.00 ± 7.11 92.52 ± 3.01

AIBL CNN-w1.0 92.55 ± 0.99 91.00 ± 1.21 82.94 ± 2.99 71.83 ± 7.65 94.05 ± 2.21

CNN-w2.0 92.37 ± 0.98 90.42 ± 1.80 85.21 ± 1.47 78.03 ± 4.29 92.39 ± 2.55

CNN-w4.0 91.82 ± 0.56 88.38 ± 4.55 84.90 ± 1.58 80.00 ± 7.87 89.80 ± 6.50

CNN-w5.0 88.96 ± 1.84 86.60 ± 2.99 81.41 ± 1.86 72.05 ± 3.75 90.77 ± 2.27

0.5431 and 0.2348 on 3 target domains). Second, deeper CNNs tend to produce
better sensitivity to precisely detect AD subjects. For example, CNN-7 achieves
obvious improvement compared with CNN-5. However, adding too many layers
(e.g., > 10) does not necessarily benefit the detection rate of AD. Besides, all
four networks show fluctuating performance (with larger standard deviations)
in terms of sensitivity than other metrics. In contrast, all CNNs achieve rela-
tively stable detection rate of cognitively normal samples. This implies that the
cross-domain heterogeneity of AD subjects has more significant influence on the
transferability of CNNs. It is interesting to pay more attention to patients when
designing cross-domain transfer learning models.

Influence of Network Width. In this work, we refer to the number of filters
in each convolutional layer as the network width. To explore the influence of
network width on transferability, we develop three variants of the baseline CNN,
by increasing the number of filters in each layer using a widening factor w. When
w = 2.0, for example, the number of filters in each layer is doubled, and we name
this variant as CNN-w2.0.

The results of CNNs with different network widths on three test domains are
shown in Table 2. From Table 2, we can derive the following empirical findings.
First, the network width does influence the transferability, and using very small
or very large width will not benefit the transferability of CNN models. When the
widening factor w> 1.0, the network tends to achieve better overall performance
in terms of most metrics. But when w = 5.0, there is a significant performance
degradation. This implies that there is a boundary when widening the network to
achieve better transferability. Besides, widening the network helps increase the
sensitivity for AD detection. Compared with the baseline CNN (i.e., CNN-w1.0),
wider networks (e.g., CNN-w4.0) tend to have a significant better detection rate
(SEN) of AD subjects, and its effect is more pronounced compared to increasing
network depth. The possible reason is that using more filters helps capture more
local-to-global discriminative features in brain MRIs to identify AD subjects.
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4 Transferability Vs. Different Network Components

Influence of Fine-Tuning. A previous study proposed to fine-tune CNNs
pretrained on ImageNet for 2D medical image analysis [19]. Although CNNs
are pretrained with massive natural images, it is reported that when they are
used for medical image analysis, fine-tuning cannot effectively improve their
transferability. To analyze the behavior of the proposed 3D-CNN trained from
scratch, we use some labeled target data to fine-tune the pretrained baseline
CNN and evaluate its performance on the target domain. Specifically, we use
ADNI-1 as the source domain to train the baseline CNN, and then fine-tune
and test the network on ADNI-2. 20% of the samples in ADNI-2 are randomly
selected and used for fine-tuning, while the remaining samples are used as test
data for evaluating the transferability. Since the baseline CNN is trained in a 5-
fold cross-validation manner, we can obtain five pretrained CNNs. Accordingly,
the fine-tuning and evaluation procedures are carried out five times.
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Fig. 2. Performance of fine-tuned and source CNNs in AD detection.

The evaluation results on ADNI-2 in terms of three key metrics are shown
in Fig. 2. For comparison, we also report the results achieved by the pretrained
CNNs (denoted as source CNN) without fine-tuning. From this figure, we have
the following observations. First, the overall performance of the fine-tuned CNN
is better than the source CNN pretrained on ADNI-1. The underlying reason
may be that unlike the pre-trained 2D-CNN on ImageNet, the 3D-CNN trained
from scratch using 3D MRIs can learn more disease-related information patterns.
This provides a better initialization for the network, which lays the foundation
for further network optimization through fine-tuning. In addition, fine-tuning
makes the network achieve a more balanced accuracy (BAC). As shown in the
right of Fig. 2, the most significant improvement comes from the detection of AD
subjects (with much higher SEN). These results further support the conclusion
in Sect. 3 that AD subjects are more informative in enhancing the transferability
of 3D-CNNs, compared with cognitively normal subjects.

Contribution of Different Layers to Mitigating Domain Shift. When we
train a 3D-CNN from scratch and apply it to a different domain, an interesting
question is to determine the contribution of different layers on mitigating cross-
domain differences in data distribution. That is, we’d like to investigate which
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Fig. 3. Performance comparison of fine-tuning higher layer of the pretrained CNN and
fine-tuning the first layer of the CNN in AD detection.

(a) Several learned filters at Conv1 (b) Feature maps generated by Conv1

Fig. 4. Visualization of learned convolution filters and feature maps at the first con-
volution layer of the fine-tuned CNN in AD detection.

part of a CNN is more easily influenced by the cross-domain data heterogeneity.
We address this problem by fine-tuning certain layers while keeping the weights
of other layers frozen. If fine-tuning a certain layer can achieve more performance
improvement, it is assumed that this layer contributes more to alleviating the
domain shift problem. Here, we focus on the low-level part (Conv-1) and the
high-level part (Conv-5 and three fully-connected layers) in the baseline CNN.
We fine-tune these two parts separately. That is, when fine-tuning the low-level
part, the remaining layers are frozen; and vice versa.

Figure 3 reports the results in terms of three key metrics. It can be seen
that fine-tuning the high-level part of the CNN produces better SEN and BAC
results in most cases, compared with fine-tuning its low-level part. This implies
that the high-level part with finer scales contributes more to mitigating the cross-
domain data heterogeneity. The low-level part may help extract more domain-
independent information. To verify this assumption, we visualize several Conv
filters and feature maps in Conv-1 of the fine-tuned CNN in Fig. 4, from which
we can see that Conv-1 mainly extracts low-level features (with enhanced edges).

5 Transferability to Related Task

We further investigate the between-task transferability when a model is trained
on a source task from scratch and applied to a related target task. Considering
that MCI is the prodromal stage of AD [20,21], we develop two CNNs which are
trained with AD and CN subjects, and then evaluate their transferability for MCI
conversion prediction. 1) CNN-AD1: Baseline CNN and a widened CNN (with w
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Fig. 5. Results of the baseline network (left) and its widened variant CNN-w4.0 (right),
with models tested on ADNI-2 for MCI conversion prediction.

= 4.0) trained with AD and CN samples from ADNI-1. 2) CNN-AD2: Baseline
CNN and a widened CNN (with w = 4.0) trained with AD and CN samples
from ADNI-1 and ADNI-2. For comparison, we also train a baseline CNN and a
widened CNN (with w = 4.0) with MCI samples in ADNI-1. All these networks
are tested on ADNI-2 for MCI conversion prediction. The experiment is repeated
five times and the results are shown in Fig. 5.

From Fig. 5, one can observe that the networks trained with only AD and CN
samples can achieve comparable or even better performance in MCI conversion
prediction, compared with CNN-MCI trained on MCI samples. The widened
CNNs trained on AD and CN samples achieve greater transferability for MCI
conversion prediction, compared with the baseline CNN. Especially, when using
more training samples, CNN-AD2 produces much higher SEN values, indicating
its superiority in detecting pMCI patients. We also observe that the widened
CNN trained on MCI samples suffers some performance decrease which may be
attributed to the limited number of training samples. The widened CNN trained
on samples from ADNI-1 and ADNI-2 achieves the overall best performance.
This may be due to the relatively large amount of training samples and the
potential relationship between MCI and AD populations. These results show
that it is beneficial to train a CNN model on one task and transfer it to related
tasks.

6 Conclusion and Future Work

In this paper, we have conducted an experimental study on how to train a
transferable CNN for 3D medical image analysis. Based on the results for brain
MRI-based brain disorder classification, we have made some empirical findings.
(1) Appropriately adding more layers and widening the network width (i.e.,
using more filters at each Conv layer) is helpful to improve the transferability,
especially for the enhancement of sensitivity. (2) Transfer learning via fine-tuning
is beneficial to increase the transferability of the 3D CNN (trained from scratch
on a source domain). Fine-tuning high-level layers is helpful to alleviate the
domain shift issue. (3) A CNN trained on a specific task (i.e., AD detection) with
more training samples can be successfully transferred to a different but related
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task (i.e., MCI conversion prediction) with small-sized samples. The empirical
findings may provide the community with some useful references and techniques
on how to leverage 3D-CNNs for various medical image analysis tasks.

In the future, we will study the generalizability of our trained models in iden-
tifying other brain disorders such as Parkinson’s disease and autism. In addition,
we will explore neural architecture search for the analysis of architectures. Since
different diseases may affect different brain regions, it is interesting to integrate
an attention detection module to CNN, which will also be our future work.
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