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Abstract. Supervised deep learning on medical imaging requires mas-
sive manual annotations, which are expertise-needed and time-consuming
to perform. Active learning aims at reducing annotation efforts by adap-
tively selecting the most informative samples for labeling. We propose
in this paper a novel deep active learning approach for dual-view mam-
mogram analysis, especially for breast mass segmentation and detection,
where the necessity of labeling is estimated by exploiting the consis-
tency of predictions arising from craniocaudal (CC) and mediolateral-
oblique (MLO) views. Intuitively, if mass segmentation or detection is
robustly performed, prediction results achieved on CC and MLO views
should be consistent. Exploiting the inter-view consistency is hence a
good way to guide the sampling mechanism which iteratively selects
the next image pairs to be labeled by an oracle. Experiments on pub-
lic DDSM-CBIS and INbreast datasets demonstrate that comparable
performance with respect to fully-supervised models can be reached
using only 6.83% (9.56%) of labeled data for segmentation (detection).
This suggests that combining dual-view mammogram analysis and active
learning can strongly contribute to the development of computer-aided
diagnosis systems.
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1 Introduction

Breast cancer is ranked as the leading cause of global cancer incidence among
women in 2020, with an estimated 2.3 million new cases, representing about
25% of all cancers in women [1]. Digital X-ray mammography plays an essential
role in diagnosing breast cancer at an early stage. In particular, masses are
one of the most common and important type of targeted breast abnormalities.
Conventional computer-aided diagnosis (CAD) systems usually use hand-crafted
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features tailored for mass recognition. Recently, the rise of deep learning made
the analysis of mammograms more automatic and accurate thanks to effective
training methods, advances in hardware, and most importantly, large amounts
of annotated training data [2]. Based on supervised learning using convolutional
neural networks (CNN), recent studies have achieved impressive performance
regarding mass segmentation [3–5] or detection [2,4,6–8]. Despite such success,
supervised deep learning still faces obstacles, including data acquisition and high-
quality manual annotations, which are expertise-needed and time-consuming.

Mammography screening involves two standard views acquired for left and
right breasts: craniocaudal (CC) and mediolateral-oblique (MLO). In clinical
routine, radiologists usually confirm the diagnosis through cross information
arising from both views. Examining the CC/MLO correspondence and consis-
tency between suspicious findings thus allows to improve clinical interpretations
and subsequent decisions [9]. Computational analysis of dual-view mammograms
[10–14] has been validated as an effective way to reduce false-positive cases and
improves screening performance. Nevertheless, the labeling workload of radiolo-
gists is further increased. Therefore, it is greatly needed to develop an effective
annotation suggestion algorithm to alleviate this issue.

Extensively studied in various fields, active learning (AL) aims at reducing
human annotation efforts by adaptively selecting the most informative samples
for labeling. As for medical imaging, AL has shown high potential in reducing
the annotation cost [15]. Recent studies [16,17] proposed AL frameworks for
breast cancer segmentation respectively on immunohistochemistry and biomed-
ical images. However, AL methods have not been widely exploited in X-ray
mammography analysis. Zhao et al. [18] first introduced AL into a mammogra-
phy classification system based on a support vector machine (SVM) classifier.
Shen et al. [19] proposed a mass detection framework that incorporates AL and
self-paced learning (SPL) to improve the model generalization ability. These
studies demonstrate great potential of AL in mammogram analysis. Contrary
to existing studies based on the uncertainty and diversity of a single image, our
goal is to score the dual-view mammograms according to their prediction consis-
tency. Our work can be seen as a complement to existing methods, and proves
that combining inter-view information can bring further improvements.

This paper provides the following contributions. First, we propose a novel
approach of deep AL for dual-view mammogram analysis (including breast mass
segmentation and detection), where the dual-view prediction consistency is inte-
grated as selection criterion. Second, two task-specific neural networks are care-
fully designed for more effective mammogram mass segmentation and detection.
Third, extensive experiments are conducted to reveal the relationship between
dual-view consistency and mammogram informativeness.

2 Methods

To reduce the labeling efforts dealing with breast masses in mammograms, we
propose a novel approach of deep active learning for dual-view mammogram anal-
ysis. Specifically, we consider two scenarios: mass segmentation and detection.
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Fig. 1. Proposed deep active learning workflow. (Color figure online)

The key insight of our method is to use the consistency of mass segmentation or
detection results arising from CC/MLO view-points as active learning criteria.

The proposed AL process starts by pre-training the model on a small labeled
subset Dl. Then, we perform model inference on the unlabeled dataset Du to
select the most informative mammogram pairs according to the calculated dual-
view prediction consistency. These selected pairs are then sent to radiologists
for annotation and appended to Dl, where the model is consequently fine-tuned
on. Such AL cycle is repeated several times to gradually improve the model
performance, until the annotation budget is exhausted. The key feature of AL is
the query algorithm for the informativeness ranking of unlabeled images, which
in our work is the scoring function of the dual-view prediction consistency.

2.1 Proposed Network Architectures

Breast mass segmentation and detection are two main tasks in mammogram
analysis. We take inspiration from recent advances of deep neural networks [20–
22], and design simple and efficient networks for each of these tasks (Fig. 2).

Mass Segmentation Network (MSN). The architecture is composed of an
encoder for feature extraction, a decoder for spatial detail reconstruction and
several skip-connections between both branches to recover spatial information.
Instead of using a standard symmetric encoder-decoder architecture [21,23], we
apply an alternative asymmetric architecture where residual blocks are inte-
grated into the encoder and 1 × 1 convolution layers are part of the decoder
(Fig. 2(a)). The network complexity is greatly reduced while the performance
stays unchanged. The optimization is supervised by the combination of binary
cross-entropy (Lbce) and Dice (Ldice) losses following Lseg = Ldice+λ1Lbce with:

Ldice = 1 − 2|p ◦ y|
|p| + |y| (1)

Lbce =

{
− log(p) if y = 1
− log(1 − p) otherwise

(2)

where p and y represent the prediction mask and the ground truth mask respec-
tively, |.| and ◦ the pixel-wise sum and multiplication operations. The empirical
factor λ1 is set to 0.5 to prevent the combined loss from degenerating into Lbce.
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(a) Mass segmentation network (MSN) (b) Mass detection network (MDN)
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Fig. 2. Proposed network architectures for mass segmentation (a) and detection (b).
A downsampling (upsampling) block is applied in each red (green) arrow. (Color figure
online)

Mass Detection Network (MDN). We designed a single-stage mass detec-
tion network where a multi-scale prediction strategy is applied to detect masses
of different scales. Three detection branches with different scales {64 × 32, 32 ×
16, 16 × 8} are attached to a regular feature extraction network (Fig. 2(b)) con-
sisting of 3 residual blocks. The multi-scale architecture allows the network to
be more robust to lesions of different sizes, i.e. larger scale for smaller masses
and vise-versa. Each branch consists of a localization module and a classification
module, where the former is in charge of regressing the spatial transformation (4
coordinates offset) from predefined anchor boxes to ground truth boxes, and the
latter predicts the mass presence probability for each anchor box. We use the
focal loss (Lfocal) to supervise classification modules and the balanced L1 loss
(Lbl1) to supervise localization modules, following Ldet = Lfocal + λ2Lbl1 with:

Lfocal =

{
−α1(1 − p)γ1 log(p) if y = 1
−(1 − α1)pγ1 log(1 − p) otherwise

(3)

Lbl1 =

{
α2
β (β|x| + 1) ln(β|x| + 1) − α2|x| if |x| < 1
γ2|x| + C otherwise

(4)

We use the default parameters of Lfocal and Lbl1 as respectively introduced
in [22] and [24]: α1 = 0.25, γ1 = 2.0 for Lfocal, α2 = 0.5, γ2 = 1.5, β = 1.0 for
Lbl1. The final detection loss is the combination of Lfocal and Lbl1 with λ2 = 1.

2.2 Dual-View Consistency

At the selection stage of each AL cycle, we aim at filtering the most informative
mammograms in Du through the analysis of dual-view consistency. Theoretically,
given a pair of mammograms {ICC , IMLO} from the same breast, the analysis
results should be coherent. Many latent relationships can potentially be exploited
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Fig. 3. Examples of mass segmentation (left half) and mass detection (right half) for
CC/MLO pairs from DDSM-CBIS and corresponding dual-view consistency. Green
delineations represent ground truth mass annotations. (Color figure online)

as query factors, such as the number of masses detected on both views, or the
mass size, position, shape, texture... In our work, we consider the first two factors
as consistency criteria since their correlation is more obvious. In particular, the
number of identified masses from both views {NCC , NMLO} should be identical
and their sizes {SCC , SMLO} (i.e. number of pixels) should be similar. We define
two scores (Snum and Ssize) as the measurements of the following factors:

Snum =
min(NCC , NMLO)
max(NCC , NMLO)

, Ssize =
min(SCC , SMLO)
max(SCC , SMLO)

(5)

where Snum and Ssize varies from 0 (low consistency) and 1 (high consistency).
Correct predictions should meet the above two conditions simultaneously, thus
the final combined score is calculated as the minimum of Snum and Ssize:

S = min(Snum, Ssize) (6)

The proposed consistency score S provides a rough estimation of the mass
segmentation/detection prediction quality: mammogram pairs with higher S val-
ues are regarded as easy samples and vise-versa. Figure 3 shows mammogram
pairs with different S values for both segmentation and detection tasks. When S
is low, the prediction on at least one mammogram appears inaccurate. Consid-
ering the existence of labeling errors, verifying the number of found lesions from
different views tends to avoid involving ambiguous or miss-annotated samples
in the training set, towards better AL results. In this direction, our strategy
selects mammogram pairs with consistent multi-view predictions such that the
aforementioned examples are not taken into account in priority by the oracle.

2.3 Active Learning Strategies

The key of AL is to select the most informative samples to optimize a learnable
model. However, the definition of informativeness is still an open question. In the
common practice of AL, one considers examples with the most uncertainty or
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Fig. 4. Visualization of mammogram pairs selected by different AL strategies for mam-
mogram segmentation (a) and detection (b) tasks. Red (green) points are picked by
worstC (bestC) strategy. The straight line estimates the linear regression. (Color figure
online)

examples that are most likely to be wrong as informative examples. However, we
need to check if this paradigm remains valid for medical imaging. To this end,
we implement three AL strategies: random (rand), best consistency (bestC)
and worst consistency (worstC) selections. For each AL cycle, rand strategy
randomly selects b mammogram pairs from unlabeled dataset Du, while bestC
(worstC) selects b pairs with the highest (lowest) consistency score S. We visual-
ize Fig. 4 mammogram pairs selected by each AL strategy. Each point represents
a CC/MLO pair. Red (green) points are b pairs selected by worstC (bestC). We
estimate the linear regression between S and mass segmentation (Fig. 4(a)) or
detection (Fig. 4(b)) accuracy. The consistency score appears as a reasonable
reference of the prediction quality. Results were obtained during training (i.e.
without full convergence) so some points fall in the area of low consistency scores.

3 Experiments

3.1 Implementation Details

We use two publicly-available datasets for our experiments: DDSM-CBIS (Digi-
tal Database for Screening Mammography) [25] and INbreast [26], with respec-
tively 1514 and 107 cases containing ground truth mass delineations. For train-
ing AL cycles, 586 CC/MLO mammogram pairs are found from DDSM-CBIS
and employed to compute the dual-view information consistency. These pairs
are divided into a small labeled subset Dl and a simulated unlabeled pool Du.
For INbreast, all 107 images are employed as the test set since pair-wise data is
not mandatory during inference. The original mammogram has a resolution of
4084 × 3328 or 3328 × 2560, which is computationally expensive. Therefore, we
resize images to 512×256 for all experiments. Mammograms are normalized before
feeding into neural networks. Random image rotation, cropping, padding, and flip-
ping operations are applied during the training phase for data augmentation.
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The proposed framework was implemented using PyTorch. We use SGD opti-
mizer with a learning rate of 0.1 and a cosine annealing schedule. The proposed
MSN (MDN) has 45,705 (80,202) learnable parameters in total and was trained
for 2k (6k) iterations with a batch size of 32. Each experiment is repeated 5
times, and we report their average performance and the standard error. Follow-
ing common practice, we adopt the Dice coefficient and the Average Precision
(AP) score to respectively evaluate segmentation and detection performances.
Dice coefficient is defined as 1−Ldice (Eq. 1) whereas the AP score is calculated
by taking the area under the precision-recall curve.

For each AL experiment, we start by training an initial model on a random
labeled subset Dl containing b pairs. During each AL cycle, we adaptively select
the next b pairs from DDSM-CBIS using three different AL strategies (rand,
bestC or worstC) from unlabeled dataset Du. These images are assigned with
annotations and appended to Dl for fine-tuning at the next AL cycle. We fix
an annotation budget B to end AL cycles. Concretely, we set b to 8 (16 images)
for all experiments. Noting that the annotation cost for segmentation is much
higher than for detection, we set the annotation budget B to 40 (80 images) for
the mass segmentation task and 56 (112 images) for the detection task. In other
words, we implement 4 (6) active cycles for segmentation (detection). Each cycle
adds 1.37% of labeled data and the whole segmentation (detection) AL process
takes 6.83% (9.56%) of labeled data in the training set.

3.2 Results

We conducted extensive experiments to evaluate the performance of rand, bestC
and worstC AL strategies. Averaged results are shown in Fig. 5. It can be seen
that the model performance is improved progressively cycle by cycle, and bestC
(Dice = 37.00%, AP = 52.83%) is consistently better than the other strategies.
bestC presents 1.62% Dice improvement and 4.02% AP gains relative to the rand
baseline. Conversely, worstC (Dice = 34.37%, AP = 43.51%) is not superior to
the baseline. From Fig. 5(b) and (d) we observe that both bestC and worstC
reduce the performance instability of rand strategy to a certain extent. In par-
ticular, with only 6.83% (9.56%) labeling budget for mass segmentation (detec-
tion), bestC achieves performance comparable to the fully supervised model
(37.00 vs 37.59% for segmentation, 52.83 vs 54.33% for detection), showing the
great potential of our method in alleviating the annotation burden. Besides, we
observe greater performance gaps for detection than segmentation. Since detec-
tion annotations only provide sparse box-level supervision, the detection task is
more critical in terms of the amount of training images.

In the common practice of traditional AL, examples with high consistency
scores provide better prediction quality, and could be seen as well-learned exam-
ples which are normally not included in AL cycles. Our results seem to contradict
this practice, since pairs with higher consistency seem more useful than those
with lower consistency. For these results, we propose some explanations: mam-
mography analysis is actually more difficult than general natural image analysis
tasks since it is difficult for humans without clinical knowledge to distinguish
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Fig. 5. Mass segmentation and detection performance with rand (green), bestC (red)
and worstC (blue) AL strategies. Black dashed lines indicate results using the complete
training set. We report average Dice score of mass segmentation (a), Dice score standard
error (b), average AP score of mass detection (c) and AP score standard error (d).
(Color figure online)

masses from surrounding healthy tissues. Medical imaging datasets can also be
very biased due to different acquisition conditions. Learning with a small amount
of medical images is challenging, especially for the first few AL cycles. For detec-
tion, Fig. 5(c) shows an AP drop for the first AL cycle of worstC, indicating that
not all labeled data are beneficial when the model does not yet have a full under-
standing of what masses are. Picking examples with good prediction results helps
to consolidate what has been learned while avoiding corner cases.

4 Conclusion

We propose a label-efficient deep learning approach that explores the prediction
consistency arising from dual-view mammograms. The main novelty is the com-
bination between multi-view mammogram analysis and active learning, which
has not been studied in the field of medical imaging to our knowledge. Our con-
tributions significantly alleviate the burden of manual labeling in breast mass
segmentation and detection tasks, which is beneficial to the development of CAD
tools. A future possible extension is to integrate existing single-view criteria into
our current framework, towards a unified active learning system.
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