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Abstract. Accurate tissue segmentation of large-scale pediatric brainMR images
from multiple sites is essential to characterize early brain development. Due to
imaging motion/Gibbs artifacts and multi-site issue (or domain shift issue), it
remains a challenge to accurately segment brain tissues from multi-site pediatric
MR images. In this paper, we present a multi-scale self-supervised learning (M-
SSL) framework to accurately segment tissues for multi-site pediatric brain MR
images with artifacts. Specifically, we first work on the downsampled images to
estimate coarse tissue probabilities and build a global anatomic guidance. We
then train another segmentation model based on the original images to estimate
fine tissue probabilities, which are further integrated with the global anatomic
guidance to refine the segmentation results. In the testing stage, to alleviate the
multi-site issue, we propose an iterative self-supervised learning strategy to train
a site-specific segmentation model based on a set of reliable training samples
automatically generated for a to-be-segmented site. The experimental results on
pediatric brainMR imageswith real artifacts andmulti-site subjects from the iSeg-
2019 challenge demonstrate that our M-SSL method achieves better performance
compared with several state-of-the-art methods.

Keywords: Pediatric brain segmentation ·Motion/Gibbs artifacts · Deep
learning ·Multi-site issue

1 Introduction

Accurate segmentation of the pediatric brain MR images into white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) is one of the most pivotal steps to charac-
terize early brain development [1, 2]. However, compared with adult brain MR images,
pediatric brainMR images exhibit low tissue contrast caused by the ongoingmyelination
and severe imaging artifacts caused by headmotion, creating challenging tasks for tissue
segmentation [3]. Therefore, existing tools developed for adult brains, e.g., BrainSuite
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[4], FSL [5], FreeSurfer [6], and HCP pipeline [7], often perform poorly on the pediatric
brain MR images.

Recently, many efforts based on convolutional neural networks have been devoted to
the pediatric brain segmentation and achieved encouraging results. For instance, Wang
et al. [8] designed an anatomy-guided densely-connected U-Net architecture to perform
the infant brain segmentation task, with the anatomical prior as guidance to improve
the segmentation accuracy. Nie et al. [9] proposed to train fully convolutional networks
for each modality image, and then fuse their high-layer features together to obtain final
segmentation. Zöllei et al. [10] proposed an automated segmentation and surface extrac-
tion pipeline (named as Infant FreeSurfer) for T1-weighted (T1w) neuroimaging data of
infants aged 0–2 years. However, these previous worksmay not handle themotion/Gibbs
artifacts. For example, as shown in Fig. 1, Infant FreeSurfer could achieve an accurate
tissue segmentation result on an artifacts-free image (Fig. 1(a)), but fails on an image in
presence of motion/Gibbs artifacts, as shown in Fig. 1(b).

Fig. 1. Impact of artifacts for tissue segmentation. Results by Infant FreeSurfer [10] on pediatric
brain T1w MR images without/with motion/Gibbs artifacts at 24 months of age. The red and
orange dashed ellipses indicate some unreliable results, which are mainly caused bymotion/Gibbs
artifacts as shown in (b).

Moreover, the collaborative use of multi-domain images (acquired from different
imaging sites) is more prevalent recently, which makes the segmentation task more
difficult. Generally, a model trained on a specific-site dataset often performs well on
testing subjects from the same site, but poorly on subjects from other sites with different
protocols/scanners. This is called the “multi-site issue” or “domain-shift issue” problem
in medical image analysis. For instance, a MICCAI grand challenge on 6-month infant
brain MRI segmentation from multiple sites (i.e., iSeg-2019, https://iseg2019.web.unc.
edu/) reported and discussed this critical issue [1].

To accurately segment multi-site pediatric images with artifacts, we present a multi-
scale self-supervised learning (M-SSL) framework in this paper. In the training stage,
inspired by [8], we first train a segmentation model based on the downsampled images
to estimate coarse tissue probabilities and build a global anatomic guidance. We then
train another segmentation model based on the original images to estimate fine tissue
probabilities. The global anatomic guidance and the fine tissue probabilities are inte-
grated as inputs to train a final segmentation model. In the testing stage, to alleviate the
multi-site issue, we propose an iterative self-supervised learning (SSL) strategy to train
a site-specific segmentation model based on a set of reliable training samples, which are

https://iseg2019.web.unc.edu/
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automatically generated and iteratively updated, for a to-be-segmented site. The main
contributions of this paper are summarized as follows:

1. We propose a framework to accurately segment multi-site pediatric brainMR images
with motion/Gibbs artifacts.

2. We leverage downsampled tissue segmentations to build a global anatomic guidance,
which alleviates the motion/Gibbs artifacts.

3. We propose an iterative SSL strategy to train site-specific segmentation models to
minimize the multi-site issue.

2 Dataset and Proposed M-SSL Method

Dataset and Preprocessing. T1w pediatric brain MR images used in this study for
training were from the UNC/UMN Baby Connectome Project (BCP) [11]. They were
acquired at around 24 months of age on Siemens Prisma scanners with 160 sagittal
slices using parameters: TR/TE = 2400/2.2 ms and voxel resolution = 0.8 × 0.8 ×
0.8 mm3. We randomly selected 5 subjects with manual labels as a training dataset. For
validation, T1w MR images with real artifacts were from University of Houston, which
were acquired with 160 sagittal slices using parameters: TR/TE = 1900/2.98 ms and
voxel resolution = 1.0 × 1.0 × 1.0 mm3. For image preprocessing, the resolution of
all images was resampled into 0.8 × 0.8 × 0.8 mm3, then in-house tools were used to
perform skull stripping, intensity inhomogeneity correction, and cerebellum removal.

2.1 The Proposed Method

We propose a multi-scale self-supervised training (M-SST) framework to accurately
segment tissues for multi-site pediatric MR images with motion/Gibbs artifacts, consist-
ing of training and testing stages as shown in Fig. 2. We first elaborate on the training
stage, consisting of training three segmentation models and a confidence model to detect
reliability of automated segmentation results. Then, we design the testing stage to train
a site-specific segmentation model based on a set of reliable training samples for the
to-be-segmented site. Finally, we introduce the implementation details of the proposed
method.

2.2 Training Stage

The architecture of a segmentation model can be chosen from U-Net [12], V-Net [13],
U-Net++ [14], ADU-Net [8], and nnU-Net [15] et al. In this paper, we adopt ADU-
Net as the segmentation architecture, which demonstrates outstanding performance on
pediatric brain segmentation. As shown in Fig. 2, in the training stage, benefiting from
downsampling and simulated motion/Gibbs artifacts, we first train two segmentation
models (named as SegM-A and SegM-B) to generate global anatomic guidance and the
fine tissue probabilities, which are integrated as inputs to train the third segmentation
model (named as SegM-C) later. Next, an error map, defined as the differences between
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Fig. 2. Illustration of our M-SSLmethod for brain segmentation of pediatric MR images affected
by motion/Gibbs artifacts. Training stage: Downsampled and original images with simulated
artifacts, are input to train SegM-A to build a global anatomical guidance in the downsampled
image space and SegM-B for 3 tissue probability maps in the original image space, respectively.
Then a four-channel input (one signed distance map from SegM-A and three probability maps
from SegM-B) are automatically generated for the training of SegM-C. Finally, a ConM is trained
to evaluate the reliability of those automated segmentations at the voxel level. Testing stage:
After inputting testing subjects into the trained SegM-A, -B and -C, we can obtain automated
segmentation results. Then an iterativeSSLstrategy is proposed to train a site-specific segmentation
model SegM-D for the to-be-segmented site.

ground truth and automated segmentations from SegM-C, is regarded as targets to train
a confidence model (named as ConM) that is able to automatically detect reliability of
automated segmentation results at the voxel level. Figure 3 presents the effectiveness of
the confidence map evaluated on the automated segmentation of a testing subject, where
the testing subject is not included in the training dataset of ConM. It can be seen that
some gyral shapes (circled by a yellow dotted ellipse) in the right figure of Fig. 3(d) are
not reasonable. TheConMcan effectively detect these unreasonable regions, as indicated
by the red color in Fig. 3(c), and also in the left figure of Fig. 3(d).

Fig. 3. The effectiveness of confidence map on a testing subject acquired at 24 months of age.
(a) T1w testing image, (b) segmentation result by SegM-C, (c) the corresponding confidence map
(generated by ConM, where some unreliable (darker) regions of WM are marked with red color),
and (d) the 3D WM rendering result (the red region corresponds with the red region of (c)). Note
that the testing subject is excluded in the training dataset of ConM.
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Global Anatomic Guidance. Prior knowledge, e.g., the cortical thickness is within a
certain range, could be employed as an anatomical guidance for the tissue segmentation
[1, 8]. Considering the artifacts as high-frequency noise, we can alleviate the artifacts by
simply downsampling the original images. Moreover, the downsampled images allow
for a large receptive field during the network training. Therefore, instead of estimat-
ing the anatomical guidance from the original images with artifacts, we work on the
downsampled images to train the SegM-A. Based on the trained model SegM-A, we
then upsample the segmentation result into the original image space and construct a
signed distance map with respect to the boundary ofWM/GM to incorporate the cortical
thickness as an anatomical guidance. In detail, after upsampling the result from SegM-A
(see Fig. 4(a)), we can derive a label image (see Fig. 4(b)). Based on the label image,
it is straightforward to construct a signed distance map with respect to the boundary
of WM/GM, as shown in Fig. 4(c). Basically, the function value at each voxel is the
shortest distance to its nearest point on the boundary of WM/GM, taking positive value
for voxels inside of WM, and negative value for voxels outside of WM.

Fig. 4. (a) Shows the probability maps estimated by the SegM-A, then the maps are upsampled
to the original size. (b) Is the generated label according to the upsampled probability maps. (c)
Illustrates the signed distance map with respect to the WM/GM boundary.

2.3 Testing Stage

Due to the multi-site issue, the trained model in the source site cannot be directly applied
to the to-be-segmented site. To alleviate the multi-site issue, we propose an iterative self-
supervised learning (SSL) strategy to train a site-specific segmentation model for the to-
be-segmented site.Basedon the idea that the better the probabilitymaps input toSegM-C,
the better the outputs of SegM-C, we therefore replace the three tissue probability maps
(part of the input of SegM-C) with the output of SegM-C. By iteratively updating the
probabilitymaps, the results of SegM-Care gradually refined (i.e., at RoundN). Then,we
apply the SSL method [2] to further refine the results at Round N, which can effectively
refine the segmentation results of testing subjects frommultiple sites. In detail, we utilize
the SSL method to automatically generate a set of reliable training samples from the
testing subjects, which are used to train a site-specific segmentation model (i.e., SegM-
D). Finally, the testing subjects are directly input to the trained SegM-D to derive final
results.
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2.4 Implementation Details

In our experiment, we set 1.0 and 0.35 as the weight parameters for simulated motion
and Gibbs artifacts [16] respectively, to preprocess MR images in the training stage of
Fig. 2. Then, we randomly extract 1,000 patches (size: 32× 32× 32) from each training
subject. The loss for segmentation models (i.e., SegM-A, SegM-B, and SegM-C) is
cross-entropy, and a spatially-weighted cross-entropy loss [2] is used for training SegM-
D. The loss of ConM is multi-task cross-entropy. The kernels are initialized by Xavier
[38], and we use SGD optimization strategy. The learning rate is 0.005 and multiplies
by 0.1 after each epoch.

3 Experimental Results

To demonstrate the performance of our proposedM-SSLmethod, we first make ablation
studies to verify the importance of each component, like downsampling, signed distance
map, and the proposed iterative SSL strategy. Then, we validate our method on pediatric
MR images with real motion/Gibbs artifacts. Finally, the method is applied on multi-site
pediatric brain subjects from the iSeg-2019 challenge [1] to report quantitative analysis.

3.1 Ablation Study

Influence of Downsampling and the Signed Distance Map. To validate the effec-
tiveness of downsampling and signed distance map, we make an ablation study to com-
pare the results obtained bySegM-C trainedwithout/with signed distancemap (generated
from original image space or downsampled image space) as shown in Fig. 5. Obviously,
compared with the results in the second and third columns of Fig. 5, the gyrus of WM
tissue (the fourth column in Fig. 5) are clearer and more reasonable with the guidance
of the signed distance map (generated from downsampled image space).

Fig. 5. The importance of downsampling and the signed distance map. From left to right: T1w
image and the WM results obtained by SegM-C trained without/with the signed distance map
(generated from original image space or downsampled image space).

Importance of Simulated Artifacts and Iterative SSL Strategy. In the training stage
of Fig. 2, we use simulated motion/Gibbs artifacts to preprocess the intensity images
to train SegM-B. Then, we propose an iterative SSL strategy to refine the segmentation
results during the testing stage as discussed in Sect. 2.3.We are wondering whether these
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manners are helpful to improve the accuracy of testing results or not. Figure 6 shows the
results of a testing subject with real motion/Gibbs artifacts generated by SegM-B and the
iterative SSL strategy. First, we can see the SegM-B trained on images with simulated
artifacts is more robust to deal with testing images with real artifacts (the second and
third columns in Fig. 6). Second, by leveraging the proposed iterative SSL method,
some ring-like tissue results caused by artifacts are gradually alleviated indicated by
red arrows (see the fourth to sixth columns in Fig. 6). Therefore, the simulated artifacts
added for training subjects and the proposed iterative SSL strategy are helpful to improve
the accuracy of testing results.

Fig. 6. Comparison of segmentation results for testing subjects with real artifacts. From left to
right: T1w image, the results generated by SegM-B (trained on images without/with simulated
artifacts), SegM-C and SegM-D (by iterative SSL strategy). Some regions are indicated by red
arrows to show the difference, and the corresponding 3D rendering WM results are circled by red
dotted circles.

3.2 Comparison Results on Pediatric Brain Images with Real Artifacts

We first verify the performance of our method on 9 brain T1w images with real motion
and Gibbs artifacts at 24 months of age. In this experiment, we compare with three state-
of-the-art pipelines/tools, including 1) FreeSurfer [6], 2) Infant FreeSurfer [10], and 3)
volBrain [17]. Thanks to the freely releasing these pipelines/tools from pioneers, we
can directly apply these pipelines/tools to derive tissue segmentation results according
to their manuals. Figure 7 presents exemplary tissue segmentation results of one testing
image with severe artifacts, obtained by three competing methods and our method. We
can observe that most results generated by competing methods show ring-like tissue
shapes circled by green dotted ellipses, which are mainly caused by artifacts. However,
our results have smoother and more reasonable tissue segmentations as shown in the last
column of Fig. 7. The qualitative comparison clearly demonstrates the advantage of the
proposed method in terms of accuracy.

3.3 Comparisons on Multi-site Infant Subjects in the ISeg-2019 Challenge

To quantitively validate of our proposed method, we test the multi-site brain images in
the iSeg-2019 challenge. According to the review article [1], we choose one testing site
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Fig. 7. Tissue segmentation comparison betweenFreeSurfer [6], Infant FreeSurfer [10], volBrain
[17] and our proposedmethod on a pediatric brainMR imagewith severe artifacts. The first column
shows pediatric T1w images with artifacts. The second to fifth columns are the corresponding
segmentation results generated by three competing methods and our method, which are shown
with 2D slices and 3D rendering WM tissues, respectively.

(i.e., Stanford University, exhibits different distribution in comparison of other sites) to
test our method, which consists of five testing subjects, one of them are significantly
affected by motion/Gibbs artifacts. We compare our method with top 3 methods (i.e.,
QL111111, Tao SMU, and FightAutism) in the challenge as reported in Table 1, in terms
of CSF, GMandWMresults. FromTable 1, ourmethod achieves the highest Dice ratio in
terms of GM andWM results, with significant difference compared with others (p-value
< 0.05).

Table 1. Dice ratio (%) of cross-site brain segmentation results on five testing subjects from the
iSeg-2019 challenge. “+” indicates that our proposed method is significantly better than the top
three methods with p-value < 0.05.

Method QL111111 Tao_SMU FightAutism Proposed

CSF 82.77 ± 1.15 82.89 ± 1.18 82.28 ± 1.17 82.48 ± 1.02

GM 79.95 ± 2.01 79.08 ± 2.48 79.00 ± 1.78 81.93 ± 1.27+

WM 85.90 ± 2.75 84.13 ± 3.14 84.31 ± 2.45 87.67 ± 1.69+

4 Conclusion

To conclude, we propose a multi-scale self-supervised learning (M-SSL) framework to
accurately segment tissues for multi-site pediatric brain MR images with motion/Gibbs
artifacts. According to the above experiments, the M-SSL method can achieve encour-
aging results compared with several state-of-the-art methods. In future work, we will
further improve our method and test on more multi-site subjects with artifacts.
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