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Abstract. Transfer learning is a machine learning technique where a
model trained on one task is used to initialize the learning procedure of
a second related task which has only a small amount of training data.
Transfer learning can also be used as a regularization procedure by penal-
izing the learned parameters if they deviate too much from their initial
values. In this study we show that the learned parameters move apart
from the source task as the image processing progresses along the network
layers. To cope with this behaviour we propose a transfer regularization
method based on monotonically decreasing regularization coefficients.
We demonstrate the power of the proposed regularized transfer learn-
ing scheme on COVID-19 opacity task. Specifically, we show that it can
improve the segmentation of coronavirus lesions in chest CT scans.
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1 Introduction

Collecting annotated medical data is usually an expensive procedure that
requires the collaboration of radiologists and researchers. One of the main differ-
ences between the medical imaging domain and computer vision is the need to
cope with a limited amount of annotated samples [2,5,11,21]. Transfer learning is
a popular strategy to overcome the difficulties posed by limited annotated train-
ing data. The goal of transfer learning is to transfer knowledge from a source task
to a target task by using the parameter set of the source task in the process of
learning the target task. Transfer learning utilizes models that are pre-trained on
large datasets, that can either be scenery datasets such as ImageNet or medical
datasets. There is a plethora of work on using transfer learning in different med-
ical imaging applications (e.g. [3,22]). Due to the popularity of transfer learning
in medical imaging, there has been also work analyzing its precise effects (see
e.g. [13,15,19]).
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A common procedure when using transfer learning is to start with a pre-
trained model on the source task and to fine-tune the model, i.e. train it further,
using a small set of data from the target task. Variants of transfer learning
include fine-tuning of all network parameters, only the parameters of the last
few layers, or simply just use the pre-trained model as a fixed feature extractor
which is followed by a trained classifier. Injecting information into a network via
parameter initialization is problematic since this information can be lost during
the optimization procedure. Li et al. [9] recently proposed that, in addition to
initialization, the pre-trained parameters can be also used as a regularization
term. They implemented an L2 penalty term to allow the fine-tuned network to
have an explicit inductive bias towards the original pre-trained model.

In this study we show that the learned parameters move apart from the source
task as the image processing progresses along the network layers, and that this
occurs even if we regularize the learned parameters. To cope with this we pro-
pose a regularization method based on monotonically decreasing regularization
coefficients that allows a gradually increasing distance of the learned parameters
from the pre-trained model along the network layers. We applied this transfer
learning regularization strategy to the task of COVID-19 opacity segmentation
and show that it improves the segmentation of Coronavirus lesions in chest CT
scans.

2 Transfer Learning via Gradual Regularization

Parameter regularization is a common technique for preventing overfitting to
the training data. Let θ be the parameter set of a given neural network. The L2

regularization modifies the loss function Loss(θ) which we minimize by adding
a regularization term that penalizes large weights:

Loss(θ) + λ‖θ‖2, (1)

where λ is the regularization coefficient. Adding the L2 term results in much
smaller weights across the entire model, and for this reason it is known as weight
decay. Network parameters are usually initialized by zero (with a small random
perturbation to avoid trivial solutions) and the regularization term prevents the
parameters from deviating too much from the initial zero values.

Transfer learning is a network training method where a model trained on a
task with a large available annotated data, is reused as the starting point for a
model on a second task. Several recent studies have suggested exploiting the full
potential of the knowledge already acquired by the model on the source task,
by penalizing the difference between the parameters of the source task and the
parameters of the target task we aim to learn [9,10]. In transfer learning the
target network is initialized by the source network parameters. Hence, a suitable
L2 regularized loss for transfer learning is:

Loss(θ) + λ‖θ − θ̄‖2, (2)
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where θ̄ is the parameter set of the source task model. The value for λ in the
range of (0,∞) controls the amount of knowledge we want to transfer from the
source task to the target task. In practice, λ is a hyper-parameter that can be
tuned using cross-validation.

Fig. 1. (a) Average L2 distance between the parameters of source and target networks
at each layer, with (λ = 8) and without (λ = 0) regularization. (b) Average L2 norm
of the parameters of source network at each layer.

We next illustrate the tendency of the parameters of the target model to
more deviate from the pre-trained values in deeper network layers. We used an
image segmentation task implemented by a U-net architecture. The details of
the source and target models are given below. We calculated the average L2

distance between the original and the tuned parameters at each network layer.
The distance between the target and the source values of each parameter is
normalized by the norm of the source value. We examined two transfer learning
cases, fine-tuning without regularization (λ = 0) and fine-tuning with a fixed
regularization (λ = 8) (Eq. 2) that was found to be the optimal value for that
setup. Figure 1a shows that at λ = 0, the distance of the tuned parameters from
their original values increases along the network layers. For the case of λ = 8,
as expected, the regularization reduces the distance between the pre-trained
and the tuned model. However, the trend toward increased deviation along the
network layers remains. Figure 1b shows the average parameter norms at each
layer of the source network. We can see that, in contrast to transfer learning, in
training from scratch there is no increased deviation from the near zero random
starting point along the network layers.

Based on the analysis described above, in this study we propose to apply the
transfer regularization gradually such that the transfer regularization coefficient
λ decreased monotonically along the network layers. A larger value of λ results
in a more aggressive knowledge transfer from the source to the target. The
first network layers perform low-level processing that do not vary much between
tasks applied to similar data types. As the data processing progresses along
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the network layers, the network is more focused on the target task which is
different from the source task. Changing the parameters of a layer also modifies
the input to the next layer, which causes the difference between the source and
target tasks to accumulate along the network layers. Hence, it makes sense to
gradually decrease the penalty of moving away from the pre-trained model as
the data processing progresses along the network layers.

Denote the parameters of a target domain network by θ = (θ1, θ2, ..., θk) such
that θi are the parameter set of the i-th layer of the network and k is the number
of layers in the network. In a similar way denote the parameters of the source
network layers by θ̄ = (θ̄1, θ̄2, ..., θ̄k).

The proposed regularized cost function for transfer learning is:

Loss(θ) +
k∑

i=1

λi‖θi − θ̄i‖2, (3)

such that
∞ ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

Setting the transfer regularization hyper-parameter λ to ∞ results in freezing
the regularized parameters. By setting the hyper-parameter λ to zero, we obtain
standard transfer learning where the only way knowledge is transferred to the
target task is via parameter initialization. In the case of the final layers that are
learned from scratch, we can still initialize them with small random numbers
and use standard L2 regularization during training.

In this study we focus on U-net networks for image segmentation tasks. The
U-net architecture [16] has become the state-of-the-art for medical image seman-
tic segmentation. It is composed of two main pathways: a contraction path
(the encoder) that captures the context by processing low-level information,
and the expanding path (the decoder), which enables precise localization. The
U-net encoder performs low and mid-level processing of the pixel map leading
to a latent image representation. In contrast, the U-net decoder, generates the
network’s decisions based on the computed representation and is focused on a
specific task accomplished by the network. The most common way of utiliz-
ing transfer learning with U-net is by initializing the encoder with pre-trained
weights and then either freezing it, or allowing re-training, depending on the
target’s data size and computational power limitations. The decoder, which is
task-dependent, is trained from scratch. We propose to exploit the full potential
of the knowledge already acquired by the model on the source task, by enabling
changes in weights, but under a certain constraint. The proposed cost function
is:

Loss(θ) +
k∑

i=1

λi‖θencoder,i − θ̄encoder,i‖2 + λ′‖θdecoder‖2 (4)

s.t. θ̄ = (θ̄encoder, θ̄decoder) and θ = (θencoder, θdecoder) are the parameters of the
source and target networks, respectively and i goes over the encoder layers. In
this scheme we refine the encoder regularization by setting a gradually decreasing
regularization coefficients along the encoder layers as described in Eq. (3).
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There are many ways to define a decreasing coefficient sequence. In this study
we used slowly decreasing functions in the form of:

λi = max(0, λ0 − α · log(i)) i = 1, ..., k (5)

such that λ0 and α are hyper-parameters that can be tuned on a validation set
using a grid search.

3 Network Implementation Details

We next describe the network architecture and pre-training used. We focused
here on the task of COVID-19 opacity segmentation. We used a 2-D U-net [16]
with a DenseNet121 [6] backbone. In our implementation, the decoder was com-
posed of decoder blocks and a final segmentation head, which consists of a con-
volutional layer and softmax activation. Each decoder block consists of a trans-
pose convolution layer, followed by two blocks of convolutional layers, batch
normalization, and ReLU activation. For the cost function, we used weighted
cross-entropy, where the weights were calculated using the class ratio in the
dataset.

We investigated regularization in several different pre-training scenarios. We
implemented three source tasks and used them to pre-train the encoder on the
target task (the decoder was trained from scratch). The three source tasks were
as follows:

– Natural image pre-training network: U-net with an encoder that was
trained on ImageNet.

– Medical image pre-training network: U-net with encoder that was
trained from scratch on several publicly available medical imaging segmenta-
tion tasks [20]. The network has a shared encoder for global feature extraction
followed by several medical task-specific decoders [17]. We term this network
“MedicalNet”.

– Combined natural and medical image pre-training network: The U-
net encoder was initialized with ImageNet weights and then trained on the
medical datasets as above. We term this network “ImageNet+MedicalNet”.

The overall system consisted of the trained model and a series of image
processing techniques for both the pre, and the post-processing stages. For pre-
processing, all the input slices were clipped and normalized to [0, 1] using a
window of [−1000, 0] HU and then resized to a fixed spatial input size of 384×384.
The trained network was applied to each slice separately. To construct the 3-D
segmentation, we first concatenated the slice-level probabilities generated by the
model, and then applied a post-processing pipeline that included morphological
operations and removal of opacities outside the lungs.
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4 Experiments and Results

We evaluated the system on the task of COVID-19 opacity segmentation using a
small COVID-19 dataset [7] containing 29 non-contrast CT scans from three dif-
ferent distributions, from which 3,801 slices were extracted. Lungs and areas of
infection were labeled by two radiologists and verified by an experienced radiol-
ogist. The given labels were of the lungs and infection. The train-validation-test
split was: 21 cases (2446 slices) for training, 3 cases (442 slices) for validation,
and 5 cases (913 slices) for testing, chosen at random. We compared two transfer
regularization methods:

Table 1. Segmentation results for various source networks and transfer regularization
schemes.

Pre-trained network Regularization coefficient Dice Sensitivity Precision

No pre-training 0 0.650 0.701 0.727

ImageNet 0 0.677 0.701 0.730

3 0.638 0.706 0.632

5 0.633 0.699 0.631

8 0.627 0.674 0.638

MedicalNet 0 0.687 0.724 0.782

3 0.711 0.835 0.734

5 0.718 0.759 0.807

8 0.710 0.832 0.704

15 − 1.5 · log(layer-index) 0.722 0.775 0.801

15 − 2.0 · log(layer-index) 0.776 0.772 0.828

20 − 1.5 · log(layer-index) 0.749 0.847 0.762

20 − 2.0 · log(layer-index) 0.767 0.766 0.824

ImageNet+MedicalNet 0 0.724 0.752 0.803

3 0.743 0.836 0.778

5 0.754 0.843 0.783

8 0.764 0.789 0.825

15 − 1.5 · log(layer-index) 0.794 0.785 0.860

15 − 2.0 · log(layer-index) 0.784 0.781 0.851

20 − 1.5 · log(layer-index) 0.799 0.782 0.850

20 − 2.0 · log(layer-index) 0.792 0.765 0.868

– Fixed regularization [18]: Experiments performed with constant values of
λ, starting with λ = 0; i.e., standard transfer learning via parameter initial-
ization, up to λ = 50. A high penalty for deviation from the learned weights,
which can be considered as basically freezing the encoder.
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– Layer-wize based regularization: Experiments performed with a gradu-
ally decreased λ as a function of the U-net encoder layer’s depth.

Given a 3-D chest CT scan, the system produced the correlated 3-D predic-
tion mask for the lungs, as well as the COVID-19 related infections. Once the
3-D segmentation mask for the test set had been extracted, we compared it to
the ground truth reference mask for the opacity class.

Table 1 summarizes the segmentation results for the three source tasks. The
best segmentation results were attained with ImageNet+MedicalNet, for both
the fixed and the monotonically decreasing regularizations. For the fixed regu-
larization, λ = 8 was obtained as the optimal value, as the Dice score improved
by 5.5% from 0.724 (λ = 0) to 0.764, with a p-value of 0.006. For the monotoni-
cally decreasing regularization, λ = 20 − 1.5 · log(i) was found to be the optimal
formula on a validation set. In this case the Dice score improved from the case
of no regularization (λ = 0) by 10.3% with p-value < 0.0001.

Fig. 2. A qualitative comparison of COVID-19 opacity segmentation with different
transfer learning regularizations. Three examples are shown. Green, red, and yellow
represent TP, FP, and FN prediction, respectively. (Color figure online)

These results demonstrate that using an inductive bias towards the source
parameters for transfer learning, overpowers initialization on its own, since the
distributions of the source task and the target task are more similar. Thus, by
using the regularization term, either as a function of the layer number or as a
constant number, the segmentation results can be improved in cases where the
transfer learning is from a source domain close to the target domain. In cases
where the transfer learning comes from a source domain with a very different
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distribution than the target domain, as in the case from natural images to non-
contrast chest CT images, it is better to allow deviation from the learned weights.

Qualitative results are shown in Fig. 2. For each input slice, the CT slice and
the segmentation results are given for several values of λ, fixed or monotonically
decreasing function, obtained by using the ImageNet+MedicalNet as source task.
The given examples show the system prediction for slices from three different
test cases with different disease demonstrates generalization capabilities of the
proposed method in capturing ground-glass and consolidative opacities. It can
be also seen that at λ = 8 and at λ = 20 − 1.5 · log(l), the red and the yellow
regions are demonstrably lessened compared to at λ = 0 and at λ = 50, which
is indicative of improved results of the optimal regularization term.

Table 2. Classification results of the RSNA 2019 Brain CT Hemorrhage Challenge for
various transfer regularization schemes.

Methods Regularization coefficient Accuracy

No regularization 0 0.583

Fixed regularization 4 0.699

Monotonically decreasing 5 − 0.5 · log(layer-index) 0.727

There are several published results on the same COVID-19 dataset [7]. Wang
et al. [23] suggested a Hybrid-encoder transfer learning approach. Laradji et al.
[8] used a weakly supervised consistency-based strategy with point-level anno-
tations. Muller et al. [12] implemented a 3-D U-Net and using a patch-based
scheme. Paluru et al. [14] recently suggested an anamorphic depth embedding-
based lightweight model. The reported Dice scores were 0.704 [23], 0.750 [8],
0.761 [12], 0.798 [14] and 0.698 [1]. Comparison here, however, is problematic
due to different data-splits and different source tasks used for transfer learning.
We note, however, that our transfer regularization approach is complementary
to previous works and can be easily integrated into their training procedure.

To show that layerwize transfer learning regularization is a general concept
we demonstrate it on another target task: The RSNA 2019 Brain CT Hemorrhage
Challenge [4]. Detecting the hemorrhage, if present, is a critical step in treating
the patient and there is a demand for computer-aided tools. The goal is to
classify each single slice, to one of the following categories: normal, subarachnoid,
intraventricular, subdural, epidural, and intraparenchymal hemorrhage. There is
a large variability among images within the same class, making the classification
task very challenging. We used the encoder described above, and we initialized it
with the parameters of MedicalNet. On top of the encoder, we added two fully-
connected layers for the classification task. By concatenating three instances of
the same slice with different HU windowing (brain window, subdural window,
and bone window) and a [0, 1] normalization, we formed a three channeled
input. Since the dataset is highly imbalanced, we excluded most of the normal
slices and slices with noisy labels, so eventually we were left with 23,031 images,
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that were split randomly into train (n = 13,819), validation (n = 4,606) and test
(n = 4,606) sets. The parameters of the regularization term were tuned on the
validation set using a grid search. Table 2 shows the classification results on the
test set in terms of accuracy. The results demonstrate the added value of adding
such regularization term, fixed or monotonically decreasing, to the standard
classification loss.

To conclude, this study described a transfer learning regularization scheme
based on using the parameters of the source task as a regularization term where
the regularization coefficients decrease monotonically as a function of the layer
depth. We concentrated on image segmentation problems handled by the U-net
architecture where the encoder and the decoder need to be treated differently. We
addressed the specific task of segmenting COVID-19 lesions in chest CT images
and showed that adding a decreased regularization along the layer axis to the
cost function, leads to improved segmentation results. The proposed transfer
regularization method is general and can be incorporated in any situation where
transfer learning from a source task to a target task is implemented.
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