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Abstract. Self-supervised learning provides an opportunity to explore
unlabeled chest X-rays and their associated free-text reports accumu-
lated in clinical routine without manual supervision. This paper pro-
poses a Joint Image Text Representation Learning Network (JoImTeR-
Net) for pre-training on chest X-ray images and their radiology reports.
The model was pre-trained on both the global image-sentence level
and the local image region-word level for visual-textual matching. Both
are bidirectionally constrained on Cross-Entropy based and ranking-
based Triplet Matching Losses. The region-word matching is calculated
using the attention mechanism without direct supervision about their
mapping. The pre-trained multi-modal representation learning paves
the way for downstream tasks concerning image and/or text encoding.
We demonstrate the representation learning quality by cross-modality
retrievals and multi-label classifications on two datasets: OpenI-IU and
MIMIC-CXR. Our code is available at https://github.com/mshaikh2/
JoImTeR MLMI 2021.
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1 Introduction

Chest X-ray is the most common medical imaging study globally for conducting
clinical routines to assess chest regions. Because of its popularity, large, labeled
datasets such as ChestX-ray14 dataset [24], CheXpert [10], OpenI-IU [5], and
MIMIC-CXR [11,12], were collected as benchmarks for data-driven deep learn-
ing models to archive expert-level performance in analyzing chest regions. Among
these biomedical datasets, OpenI-IU and MIMIC-CXR contain radiology reports
along with corresponding radiographs. Given the large size of collected images and
manual labeling being impractical, the disease labels are usually derived using nat-
ural language processing tools applied to the corresponding radiology reports.
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Recently, self-supervised representation learning has been explored to extract
underlying information from the data by performing proxy tasks that explore
the organization of the data itself. This is a promising direction for learn-
ing from a large amount of unlabeled biomedical data, where manual labeling
is tedious, time-consuming, subjective, and requires domain knowledge. Self-
supervised learning provides a great potential to investigate the biomedical data,
including both medical images and their associated reports, accumulated dur-
ing clinical routines. Ideally, both the modalities of the data encode the same
medical condition and should be cross-referable.

Self-Attention mechanism was introduced to find the cross references within
the same data modality [23]. This concept has contributed tremendously to the
recent success of natural language processing models, such as BERT [6]. These
models are pre-trained by predicting masked tokens to learn the underlying
semantic representations from unlabeled textual data. Once the representation
learning models are pre-trained, they can be fine-tuned and used as a backbone
for a wide range of downstream natural language processing tasks.

Motivated by the above discussion, we propose to establish the cross ref-
erences of the chest radiology images and reports to jointly learn the image-
text representations. Learning cross-modal visual and textual representation is
an essential task that can combine the semantic information contained within
images and their descriptive reports [16,17]. These approaches have also been
explored in biomedical image analysis [18]. The proposed representation learning
mechanism will provide the foundation for a wide range of biomedical vision-
and-language tasks, such as clinical inter-modal and intra-modal image-text
retrieval, medical visual question answering [1], and automatic clinical report
generation [19].

Contributions: We propose JoImTeRNet - a self-supervised pre-training net-
work trained on multimodal inputs. Our network extracts and fuses the rep-
resentations of the visual and textual modalities using both global image-
sentence matching and local attention-based region-phrase matching. Phrases
vary from length of one to three words. The proposed local region-phrase align-
ment enhances the joint representation learning by performing automatic fine-
grained matching between image region-of-interests with phrases in reports. The
local region-phrase matching is further enhanced using a soft-attention mecha-
nism in the image encoder, without the need for explicit manual bounding box
annotation or object detection on images. The quality of the learned represen-
tation is tested on the downstream classification and retrieval tasks.

2 Joint Image Text Representation Learning Network

We propose a Joint Image Text Representation Learning Network (JoImTeR-
Net) shown in Fig. 1. The JoImTeRNet architecture consists of an image and a
text encoder. The representations are matched through a list of matching tasks,
Text to Image Matching (TIM), Masked Language Modeling (MLM), Phrase to
Region Alignment (PRA), and Word to Region Alignment (WRA). The learned
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Fig. 1. The architecture of the proposed JoImTeRNet.

image and text representation are mapped to a shared feature space, given the
hypothesis that the radiographs and their corresponding report contain consis-
tent semantic meaning.

Given an X-ray image I and its corresponding radiology report T, we first
encode them with an image encoder FI and a text encoder FT . The image
encoder contains one input convolution layer, 6 residual blocks [8] and a global
average pooling (GAP) layer. In the meantime, we also get the output from the
Soft-Attention (SA) [22] block placed after the ResBlock5 to extract the region
features r ∈ R

D×M , such that v, r = FI(I) where v ∈ R
D is the global image

features from GAP. Sentence and word level features s and w are extracted
using a Transformer [23] based text encoder FT , such that w, s = FT (T), where
w ∈ R

D×N and s ∈ R
D. Three transformer layers are deployed in FT to encode

the text report with the self-attention mechanism.

2.1 Matching Images and Sentences

To learn the joint representation of image and text pairs, we use the cross-entropy
based matching (CEM) loss [26] and the ranking-based triplet matching (TM)
loss [3]. Given a batch of image-text pairs (Ii,Ti)

B
i=1 (B is the batch size) and

their corresponding visual features v and sentence features s from FI and FT ,
probability of Ti matching with Ii using softmax as: the image-to-text CEM loss
LIT

CEM is defined as the negative log posterior probability of the images being
matched with their corresponding texts, i.e.,

LIT
CEM = −

B∑

i=1

log(P (Ti|Ii)) = −
B∑

i=1

log(
eγS(Ii,Ti)

∑B
j=1 eγS(Ii,Tj)

) (1)
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where γ is the smoothing factor. P (Ti|Ii) is the posterior probability of Ti match-
ing with Ii using softmax. Cosine similarity S(Ii,Ti) = (vT s)/(‖v‖‖s‖) is used
as the similarity score between image-text pairs. During the training, Ti is the
correct match to Ii in the batch and all the other Tj(j �= i) are mismatching
texts. Considering that image-text joint representation mapping should be bidi-
rectional, we reverse I and T in Eq. (1) and get the symmetric text-to-image
CEM loss as LTI

CEM . Thus, the bidirectional CEM loss for globally matching
image and text is defined as Ls

CEM = LIT
CEM + LTI

CEM .
Although CEM loss is designed to make the similarity between correct image-

text pairs relatively higher than other mismatched pairs, it is difficult to set a
hard margin between mismatched features. To solve this problem, TM loss [3],
a ranking-based criterion, is added to increase the distance of mismatched pairs
in the joint embedding space. Given an image Ii as the anchor, Ti is used as the
positive paired sample. We then randomly select a mismatching text Tj(j �= i)
within the batch as the negative paired sample. Symmetrically, if Ti is used as
the anchor, then Ii and Ij would be positive/negative samples. The bidirectional
TM loss for global image-text matching is formed as:

Ls
TM = LIT

TM + LTI
TM =

B∑

i,j=1

[
max(0, S(Ii,Tj) − S(Ii,Ti) + ηs)

+ max(0, S(Ij ,Ti) − S(Ii,Ti) + ηs)
]

(2)

where ηs is the hard margin and S is the cosine similarity the same as in Eq. (1).

2.2 Aligning Image Regions and Report Phrases

Both chest X-rays and their corresponding reports contain lots of fine-grained
semantic information. We introduce a region-phrase level matching to align dif-
ferent concepts in the text reports with the regions of the images to further
improve the joint representation. We apply region-phrase alignment with both
CEM loss and TM loss. The length of a phrase is in the range of 1 to 3 words.
Features of words, bigram and trigram phrases are denoted as w, p2, p3 respec-
tively.

The cosine similarity between regions and words/phrases is not feasible to
calculate directly due to the lack of explicit mapping between them. Instead, an
attention-based matching score is deployed to overcome this challenge [7,9,26].
For region-word-level matching, given (Ii,Ti) and their region-word features
(r, w), we first calculate the similarity matrix between all possible pairs of region
features and word features using dot-product, i.e., m = wT r, where m ∈ R

N×M ,
which is further normalized along N words as m̄ = SoftmaxN (m). Next, a con-
text feature c is computed as the weighted sum over region features r, weighted
by the region-word attention score α as follows:

c = αrT , where αi,j =
eγ1m̄i,j

∑M−1
k=0 eγ1m̄i,k

(3)
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where c ∈ R
N×D and α ∈ R

N×M ; γ1 is a hyper-parameter to tune the required
amount of visual attention for a word. Here, the ith vector of c is the attention-
weighted representation of all the sub-regions related to the ith word.

The attention-based region-word-level matching score is computed as:

Sa(I,T) = log(
N−1∑

i=1

e(γ2S(ci,wi)))
1

γ2 (4)

where S(ci, wi) = (cT
i wi)/(‖ci‖‖wi‖), is the element-wise cosine similarity score

between ci and wi, γ2 is the importance magnification hyper-parameter for the
most relevant word and context vector pair.

By replacing the cosine similarity score S(·, ·) with the region-word matching
score Sa(·, ·) in Eq. (1) (2), we obtain the bidirectional CEM loss and TM loss
for region-word alignment as Lp1

CEM = Lrw
CEM +Lwr

CEM and Lp1
TM = Lrw

TM +Lwr
TM .

Furthermore, we obtain the phrase features by applying a 1D convolutional
layer with kernel size 2 and 3 over w to get bigram p2 = θT

p2
w and trigram

p3 = θT
p3

w phrase features respectively [14,27]. Here, θp2 , θp3 are the convolution
kernels of size 2 and 3. Our final cross-entropy with triplet matching (CETM)
loss for our image-text joint representation learning is designed as:

LCETM = λCEM (Ls
CEM +

3∑

i=1

Lpi

CEM ) + λTM (Ls
TM +

3∑

i=1

Lpi

TM ) (5)

where λCEM and λTM are the loss weight hyper-parameters.

2.3 Downstream Task

In order to demonstrate the performance of joint representation learning, we use
the pre-trained image and text encoders as the backbone and test the learned
features on multi-label classification. We add projection layers followed by two
fully connected layers for multi-label classification. Cross-entropy loss balanced
with positive/negative ratio and class-wise weights [25] are used for training.

3 Experiments

3.1 Datasets

MIMIC-CXR v2.0 [11], is a large public dataset consisting of 377,110 chest X-
rays associated with 227,835 radiology reports. We limit our study to the frontal-
view images and only keep one frontal view image for each report. Following the
pre-processing scheme in [3], we extract the impressions, findings, conclusion and
recommendation sections from the raw report, normalized by SciSpaCy [20], and
concatenate them. If none of these sections are present, we use the final report
section. 14 CheXpert labels provided in MIMIC-CXR are used for classification
task, where label 1 is considered as positive and all the other labels (−1, 0) and
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Table 1. Ablation for selecting the best loss setting. The matching score for OpenI-
IU and MIMIC-CXR is computed on 1000 and 1000/3000 test samples respectively.
Subscript s, w, p stand for image-text, region-word and region-phrase level matching.

Model setting MIMIC-CXR OPENI-IU

I2T (1K) T2I (1K) I2T (3K) T2I (3K) I2T (1K) T2I (1K)

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

TMs[3] 5.37 19.43 30.73 5.40 20.23 30.23 2.37 9.70 15.63 2.23 10.20 16.37 1.83 5.70 9.13 1.50 5.67 9.30

TMws 6.30 21.73 32.23 6.00 20.97 30.90 2.77 10.67 18.07 2.83 10.97 17.83 1.93 6.37 10.17 1.97 6.53 10.30

CEMs[7] 18.60 43.10 56.10 18.13 43.20 55.97 12.20 31.27 41.80 11.80 30.87 41.10 4.70 12.83 17.73 4.83 12.30 17.87

CEMws[26] 18.60 44.20 56.27 18.87 43.40 55.67 12.60 31.67 41.80 12.83 31.57 41.27 4.87 13.00 18.00 5.37 13.40 18.33

CETMws 19.07 45.33 57.20 19.07 44.70 56.73 12.77 31.90 43.00 12.97 31.97 42.03 5.13 13.07 18.73 5.50 13.73 19.20

CETMwps 18.93 46.20 58.67 19.07 45.27 58.50 12.67 33.20 44.07 12.83 32.43 43.40 5.07 13.07 18.83 5.67 13.83 19.20

missing labels are merged as negative. This results in 222,252 image-report pairs
with 14 binary labels. We split the dataset into 217,252, 2,000 and 3,000 samples
for training, validation and testing respectively.

OpenI-IU. [5] is a public dataset with 3,996 radiology reports and 8,121 associ-
ated chest X-ray images, which are manually annotated by human experts using
MeSH words. Similar to TieNet [25], only unique frontal images and their corre-
sponding reports which contain either findings and/or impressions are selected.
This yields 3,643 image-report pairs, which are only used as external evaluation
sets. For comparison and evaluation purposes, we select the 7 common labels in
both OpenI and MIMIC-CXR (Table 3) from the MeSH domain.

3.2 Implementation Details

JoImTeRNet is implemented in Pytorch [21] and all the experiments are carried
out on NVIDIA GTX 1080 Ti GPUs. For FI , we use the basic residual blocks
proposed in [8]. We employ 3 layers of Transformer blocks with 8 heads in FT .
The input image is encoded into 256 regions (r) flattened from 16 × 16 feature
map output from Res Block 5 as shown in Fig. 1. The input image is cropped
or padded to 2048 × 2048 then normalized to [−1, 1]. Random crop, rotation
and color jitter are used for data augmentation. Report input is tokenized by a
word-level tokenization scheme, where we collect all the words that appear more
than twice in MIMIC-CXR dataset, which results in vocabulary size of 8, 410.
The input reports are truncated or padded to the max length of N = 160.

Parameter Settings. We pretrain FI and FT on MIMIC-CXR training set
using the image-text matching task explained in Sect. 2.1 and 2.2 to generate
the joint image and text representations. The maximum epoch is set as 30. We
employ AdamW [15] optimizer with an initial learning rate of 10−4, which is
dropped by 10 times after 20 epochs. L2 weight decay is set as 10−4. For the
downstream classification task in Sect. 2.3, we set up two different settings for
comparison: randomly initializing the backbone and fine-tuning the pre-trained
backbone. The learning rate for the classification head in both settings is set
to 10−4. For the randomly initialized setting, we train the backbone using the
same learning rate as the classification block for 20 epochs, whereas the pre-
trained backbone is fine-tuned with a smaller learning rate of 10−5 for only 10
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Table 2. Classification AUCs on MIMIC-CXR [11] dataset. “FS” stands for training
from scratch (FS). “FT” stands for fine-tuned model. Other comparison experiments
are Visualbert [17], Uniter [4], and ClinicalBert [2].

Findings Image Image+Report Report

FS FT [17] [4] FS FT [2] FS FT

EC 0.738 0.763 0.981 0.979 0.989 0.996 0.966 0.986 0.980

Cardiomegaly 0.794 0.820 0.991 0.989 0.989 0.993 0.979 0.988 0.989

Airspace opacity 0.749 0.759 0.991 0.989 0.988 0.992 0.978 0.985 0.986

Lung lesion 0.696 0.756 0.985 0.981 0.996 0.998 0.972 0.989 0.987

Edema 0.883 0.895 0.991 0.990 0.995 0.996 0.979 0.993 0.994

Consolidation 0.794 0.810 0.989 0.988 0.994 0.998 0.979 0.996 0.995

Pneumonia 0.733 0.738 0.977 0.974 0.981 0.985 0.962 0.980 0.984

Atelectasis 0.808 0.824 0.988 0.987 0.988 0.995 0.976 0.991 0.992

Pneumothorax 0.845 0.855 0.992 0.991 0.989 0.993 0.979 0.993 0.994

Pleural effusion 0.898 0.904 0.993 0.992 0.986 0.997 0.981 0.989 0.990

Pleural others 0.812 0.839 0.981 0.973 0.996 0.999 0.964 0.998 0.993

Fracture 0.641 0.714 0.976 0.977 0.997 0.990 0.958 0.997 0.997

Support devices 0.901 0.913 0.995 0.994 0.992 0.995 0.983 0.988 0.993

No findings 0.865 0.874 – – 0.985 0.989 – 0.980 0.980

Avg 0.792 0.815 0.987 0.985 0.991 0.994 0.974 0.990 0.990

epochs. Our model pre-trained with the full loss setting CETMwps is used as
the backbone for fine-tuning. The batch size is set to 32 for all the experiments.
We select the loss hyper-parameters as γ, γ1, γ2 = 2, 1, 1, ηs, ηw = 0.5, 0.5 and
λCEM , λTM = 2.0, 1.0.

3.3 Performances

Evaluation Metric. We evaluate the performance of JoImTeRNet by cross-
modality retrieval task: given one image (text) as a query, we rank a subset of
text (image), including the paired one, based on cosine similarity between the
image and text features from JoImTeRNet. Recall@K (R@K) [13] is reported,
where K ∈ {1, 5, 10}, which measures the fraction of times the correct matching
is retrieved among the top K results in the test set. We compute R@K on a
subset of 1000 image-text pairs and on the full 3000 samples in our MIMIC-
CXR test set. We also report R@K on a subset of 1000 samples in OpenI-IU in
order to evaluate JoImTeRNet on the external dataset (Table 1).

Ablation Study for Loss Settings. Ablation studies for different combina-
tions of our losses are listed in Table 1. As we can see, full loss setting CETMwps

achieves the highest R@5 and R@10 scores on all the test set, which shows the
effectiveness of our multilevel phrase matching loss. In addition, the matching
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Table 3. Classification AUCs on OpenI-IU [5] dataset. “FS” stands for training From
Scratch (FS). “FT” stands for Fine-tuned model. Other comparison experiments are
ChestX-ray14 [24], TieNet [25], Visualbert [17], Uniter [4], and ClinicalBert [2].

Findings Image Image+Report Report No. of samples

[24] FS FT [25] [17] [4] FS FT [25] [2] FS FT

Cardiomegaly 0.803 0.924 0.937 0.962 0.977 0.978 0.956 0.985 0.944 0.969 0.966 0.987 315

Edema 0.799 0.937 0.953 0.995 0.982 0.989 0.922 0.962 0.984 0.976 0.947 0.964 40

Consolidation 0.790 0.951 0.951 0.989 0.996 0.998 0.954 0.975 0.969 0.982 0.938 0.975 28

Pneumonia 0.642 0.863 0.934 0.994 0.990 0.988 0.877 0.949 0.983 0.982 0.880 0.943 36

Atelectasis 0.702 0.829 0.858 0.972 0.992 0.982 0.947 0.978 0.981 0.947 0.952 0.971 293

Pneumothorax 0.631 0.926 0.936 0.960 0.988 0.983 0.962 0.989 0.960 0.973 0.951 0.989 22

Pleural effusion 0.890 0.938 0.957 0.977 0.985 0.983 0.922 0.971 0.968 0.976 0.926 0.968 140

No finding – 0.844 0.851 – – – 0.883 0.961 – – 0.898 0.930 2789

Avg 0.751 0.910 0.932 0.978 0.987 0.986 0.934 0.973 0.970 0.972 0.932 0.971

W. Avg 0.771 0.893 0.915 0.971 0.985 0.982 0.943 0.978 0.965 0.964 0.949 0.975

performance degrades when the model is trained on global matching loss only
without the region-phrase(word)-level matching, i.e. CEMs performs worse than
CEMws. Similar results are found when comparing TMs with TMws. This result
shows that our proposed method for assisting joint representation learning using
region-word matching is able to improve the representation ability of the image-
text encoder. Moreover, the CETM combination consistently gains performance
compared with only CEM loss or TM loss settings, which is just as we expected
in Sects. 2.1 and 2.2. Notice that the matching scores are much lower on OpenI,
since OpenI contains a large amount of similar reports, e.g. ‘No acute disease.’,
which can have very similar feature representation from our model and thus
largely degrade the matching score.

Downstream Image Classification Results. The AUCs from our two set-
tings on both datasets along with other SOTA performances are shown in Table 2
and 3. We can see that the classifier performance finetuned on JoimTerNet back-
bone (FT) is always higher than training from scratch (FS), which shows the
advance of our pre-training method. As shown in Table 2, FT achieves the highest
AUCs on most tasks and labels on MIMIC-CXR test set (internal evaluation),
even better than some SOTA models [2,4,17] on image-text and text classifica-
tion. For the external evaluation on OpenI in Table 3, our FT setting extremely
improves average AUC on image classification by 18% compared with TieNet
[25], and also gains 1% on wAvg AUC than ClinicalBERT [2] on report classifi-
cation. For the image-text classification, our model is still comparable with other
SOTA models, even though our text encoder only contains 3 transformer layers
compared with [4,17] which has a 12 layer BERT encoder as the backbone.

4 Conclusion

We propose a joint image-text representation learning network and show its per-
formance on cross-modality retrieval and multi-label classification. We demon-
strate the potential of self-supervised learning when it meets the continuously
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generated biomedical images and reports. We also leverage and show the impor-
tance of information contained within the relationship of words, phrases and
image regions. Future work includes more complicated downstream tasks regard-
ing both images and text.
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